This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cosmological 21cm line observations to test scenarios of super-Eddington accretion on to black holes being seeds of high-redshifted supermassive black holes

Kazunori Kohri kohri@post.kek.jp Theory Center, IPNS, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Toyokazu Sekiguchi Theory Center, IPNS, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan    Sai Wang Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Abstract

In this paper, we study scenarios of the super-Eddington accretion onto black holes at high redshifts z>10z>10, which are expected to be seeds to evolve to supermassive black holes until redshift z7z\sim 7. For an initial mass, MBH,ini2×103MM_{\rm BH,ini}\lesssim 2\times 10^{3}M_{\odot} of a seed BH, we definitely need the super-Eddington accretion, which can be applicable to both astrophysical and primordial origins. Such an accretion disk inevitably emitted high-energy photons which had heated the cosmological plasma of the inter-galactic medium continuously from high redshifts. In this case, the cosmic history of cosmological gas temperature is modified, by which the absorption feature of the cosmological 21 cm lines is suppressed. By comparing theoretical predictions of the 21cm line absorption with the observational data at z17z\sim 17, we obtain a cosmological upper bound on the mass-accretion rate as a function of the seed BH masses. In order to realize MBH109MM_{\rm BH}\sim 10^{9}M_{\odot} at z7z\sim 7 by a continuous mass-accretion on to a seed BH, to be consistent with the cosmological 21cm line absorption at z17z\sim 17, we obtained an severe upper bound on the initial mass of the seed BH to be MBH,ini102MM_{\rm BH,ini}\lesssim 10^{2}M_{\odot} (MBH,ini106MM_{\rm BH,ini}\lesssim 10^{6}M_{\odot}) when we assume a seed BH with its comoving number density nseed,0103Mpc3n_{\rm seed,0}\sim 10^{-3}{\rm Mpc}^{-3} (nseed,0107Mpc3n_{\rm seed,0}\sim 10^{-7}{\rm Mpc}^{-3}). We also discuss some implications for application to primordial black holes as the seed black holes.

preprint: KEK-TH-2389 KEK-Cosmo-0284 

I Introduction

Quite recently a luminous quasar (QSO) J0313-1806 was observed at redshift zz= 7.642 Wang:2021apjl . The mass of the central black hole (BH) in this QSO system is quite large MBH=(1.6±0.4)×109MM_{\rm BH}=(1.6\pm 0.4)\times 10^{9}M_{\odot}. In addition to this BH, so far several QSOs at around zz\sim7 have been already reported, each of which has a massive central BH similarly with the order of MBH𝒪(109)MM_{\rm BH}\sim{\cal O}(10^{9})~{}M_{\odot}. In astronomy and astrophysics, it is a big challenge to produce such supermassive black holes (SMBHs) in an early Universe within cosmic time t(z7)0.76t(z\sim 7)\sim 0.76 Gyr. 111Here we used the Hubble parameter H0=68km/s/MpcH_{0}=68{\rm km/s/Mpc}, the omega parameters of matter, ΩM=0.32\Omega_{M}=0.32 and cosmological constant ΩΛ=0.68\Omega_{\Lambda}=0.68 as reference values.

One of the most natural scenarios to increase a BH mass to a massive one should be a gas accretion on to it. However, even if the Eddington accretion is realized, there is no easy solution. For example, when we assume the Eddington accretion rate is successively-continuing with a radiative efficiency ηeff0.1\eta_{\rm eff}\sim 0.1 from cosmic time t(z=30)=0.10t(z=30)=0.10 Gyr Barkana:2000fd to t(z=7)=0.76t(z=7)=0.76 Gyr, the seed mass at z30z\gtrsim 30 should be 𝒪(103.3)M\sim{\cal O}(10^{3.3})~{}M_{\odot} in order to obtain MBH𝒪(109)MM_{\rm BH}\sim{\cal O}(10^{9})~{}M_{\odot} until z=7z=7. Therefore, even if we assume the Eddington accretion rate, we need a massive seed as an initial condition Woods:2018lty ; Inayoshi:2019fun . Possible scenarios to produce such massive seed BHs have been studied, e.g., through collapses of massive stars/gas clouds, or through mergers of massive stars/ black holes Loeb:1994wv ; Omukai:2000ic ; Oh:2001ex ; Volonteri:2005fj ; Lodato:2006hw ; Wise:2007bf ; Regan:2008rv ; Shang:2009ij ; Volonteri:2010wz ; Hosokawa:2012uq ; Inayoshi:2012zi ; Latif:2013pyq ; Hosokawa:2013mba ; Regan:2014maa ; Inayoshi:2014rda ; Ferrara:2014wua ; Becerra:2014xea ; Latif:2015eoa ; Chon:2016nmh ; wise:2019nature ; Becerra:2018mnras ; Maio:2018sfz ; Mayer:2017nature ; Mayer:2018gyh ; Mayer:2014nva ; Dijkstra:2014mnras ; Sugimura:2014sqa ; Wolcott-Green:2016grm ; Wolcott-Green:2020avn ; Chon:2018mnras ; Matsukoba:2018qxr ; Bromm:2002hb ; Spaans:2006ur ; Sanders:1970 ; PortegiesZwart:2002iks ; PortegiesZwart:2004ggg ; Freitag:2005yd ; Omukai:2008wv ; Devecchi:2009 ; Devecchi:2012nw ; katz:2015 ; Sakurai:2017opi ; Stone:2016ryd ; Reinoso:2018bfv ; Tagawa:2019vep ; Boekholt:2018gbw ; yajima:2016mnras ; Davies:2011pd ; Lupi:2015wxp . Alternatively, those massive seeds may be formed through other primordial origins such as primordial black holes Kawasaki:2012kn ; Kohri:2014lza ; Nakama:2016kfq ; Serpico:2020ehh ; Unal:2020mts (See also Refs. Carr:2009jm ; Green:2020jor ; Carr:2021bzv ; Carr:2020gox for review articles). Another possibility would be assuming a super-Eddington accretion rate 222 For concrete models of the super-Eddington accretion, see references for the slim disk models Watarai:2000 ; Watarai:2003tr ; Yuan:2014gma , the neutrino-dominated accretion flows Kohri:2002kz ; Kohri:2005tq , etc. and references therein. on to a light seed BH Begelman:1978 ; Sadowski:2009gg ; Wyithe:2012 ; Madau:2014pta ; Inayoshi:2015pox ; Pezzulli:2016 ; Pezzulli:2017ikf ; Begelman:2016gle ; Alexander:2014 ; Pacucci:2017mcu ; Mayer:2018gyh ; Takeo:2020vmm ; natarajan:2021 333See also Ref. Ebisuzaki:2001qm for another mechanism through mergers of seed BHs which were produced by mergers of massive stars.

To test consistencies of the theoretical disk models for the (super-)Eddington accretions with observations, in principle we can use cosmological 21cm line emissions/absorptions which were produced in the dark ages at z𝒪(10)𝒪(102)z\sim{\cal O}(10)-{\cal O}(10^{2}) (e.g., see Tanaka:2015sba ; Ewall-Wice:2018bzf ; Sazonov:2018tnj ; Ewall-Wice:2019may ; Ma:2021pgp for earlier works). So far, the EDGES collaboration has reported the observational data for the absorption feature of the cosmological global 21cm line spectrum at around z17z\sim 17 Bowman:2018yin . If there existed an extra heating source due to emissions from the accretion disks in this epoch, gas temperature could be larger than the standard value predicted in the standard Λ\Lambda-cold dark matter (Λ\LambdaCDM) model. In this case, a depth of the 21cm line absorption should have become shallower than the one in the Λ\LambdaCDM model. Because the EDGES collaboration reported the large depth with finite errors, we can test this kind of scenarios and obtain a conservative upper bound on such an extra emission at least not to bury the observed absorption trough DAmico:2018sxd ; Hiroshima:2021bxn . It is known that a cosmological extra heating of the order of 𝒪(1020)eV/sec/cm3{\cal O}(10^{-20})\mathrm{eV}/\mathrm{sec}/\mathrm{cm}^{3} at z17z\sim 17 affects the absorption feature of the global 21cm line spectrum (e.g., see Ref. Hiroshima:2021bxn and references therein). In this paper, by using this logic, we discuss how we can constrain the scenarios of the (super-)Eddington accretions onto high-redshifted seed BHs which are expected to evolve to the SMBHs until z7z\sim 7 and obtain observational bounds on the accretion rates.

This paper is organized as follows. In Sec. II, we review how energy injection affects evolution of the intergalactic medium (IGM). Models of accretion disks are introduced in Sec. III. In Sec. IV, we discuss energy injections from accretions onto seed black holes. In Sec. V, we present our results. We conclude in the final section VI.

Throughout the paper, we adopt the Heaviside–Lorentz units of c==kB=1c=\hbar=k_{B}=1 unless otherwise stated.

II Evolution equations of IGM in the presence of energy injection

In this section, we explain how energy injection affects evolutions of the IGM. For illustrative purposes, we follow a simple description of hydrogen in the IGM, which is based on the effective three-level atom Peebles:1968ja ; Zeldovich:1969en ; Seager:1999km . As will be shown in Sec V however, we actually execute the public recombination code HyRec444https://pages.jh.edu/~yalihai1/hyrec/hyrec.html, which is based on the state-of-art effective multi-level atom (See AliHaimoud:2010dx ; Chluba:2010ca ). In this study, for simplicity we focus only on ionization and recombination of hydrogen while assuming helium is neutral. It is known that this simplification is a good approximation as long as we are interested in processes that occurred in the cosmic dark ages (Dark Ages) Liu:2016cnk (See also Liu:2019bbm ).

The cosmic evolution of the ionization fraction, xex_{e}, is then described by the following equation:

dxedt\displaystyle\frac{dx_{e}}{dt} =\displaystyle= CP[αH(Tm)xe2nHβH(Tγ)(1xe)eEα/Tγ]\displaystyle-C_{\rm P}\left[\alpha_{\rm H}(T_{m})x_{e}^{2}n_{H}-\beta_{\rm H}(T_{\gamma})(1-x_{e})e^{-E_{\alpha}/T_{\gamma}}\right] (1)
+dEinjdVdt1nH[fion(t)E0+(1CP)fexc(t)Eα],\displaystyle\quad+\frac{dE_{\rm inj}}{dVdt}\frac{1}{n_{\rm H}}\left[\frac{f_{\rm ion}(t)}{E_{0}}+\frac{(1-C_{\rm P})f_{\rm exc}(t)}{E_{\alpha}}\right],

where TmT_{m} and TγT_{\gamma} are the temperatures of gas and photon, respectively. nHn_{\rm H} is the number density of hydrogen, E013.6eVE_{0}\simeq 13.6\,{\rm eV} is the ionization energy of hydrogen, and Eα=3E0/4E_{\alpha}=3E_{0}/4 is the energy of Ly-α\alpha. Here αH\alpha_{\rm H} is the case-B recombination coefficient, and βH\beta_{\rm H} is the corresponding ionization rate. The Peebles’ CC-factor (CPC_{\rm P}), represents the probability that a hydrogen atom initially in the n=2n=2 shell reaches the ground state without being photoionized. It is given by

CP=ΛnH(1xe)+12π2Eα3H(t)ΛnH(1xe)+12π2Eα3H(t)+βHnH(1xe),\displaystyle C_{\rm P}=\frac{\Lambda n_{\rm H}(1-x_{e})+\frac{1}{2\pi^{2}}E_{\alpha}^{3}H(t)}{\Lambda n_{\rm H}(1-x_{e})+\frac{1}{2\pi^{2}}E_{\alpha}^{3}H(t)+\beta_{H}n_{H}(1-x_{e})}, (2)

where Λ8.23\Lambda\simeq 8.23s-1 is the two-photon decay rate of the hydrogen 2ss-state, and H(t)H(t) is the Hubble expansion rate. The last term in (1) represents the effects of energy injection with the energy injection rate per unit volume per time, dEinj/(dVdt)dE_{\rm inj}/(dVdt), which will be shown in detail in the next section.

Evolutions of the gas temperature TmT_{m} is described by the following equation:

dTmdt\displaystyle\frac{dT_{m}}{dt} =\displaystyle= 2H(t)Tm+ΓC(TγTm)+dEinjdVdt1nH2fheat(z)3(1+xe+fHe),\displaystyle-2H(t)T_{m}+\Gamma_{C}(T_{\gamma}-T_{m})+\frac{dE_{\rm inj}}{dVdt}\frac{1}{n_{\rm H}}\frac{2f_{\rm heat}(z)}{3(1+x_{e}+f_{\rm He})}, (3)

where ΓC\Gamma_{C} is the coupling rate of TmT_{m} to TγT_{\gamma}, which is dominated by the Compton scattering,

ΓC=8σTarTγ43mexe1+fHe+xe,\displaystyle\Gamma_{C}=\frac{8\sigma_{T}a_{r}T_{\gamma}^{4}}{3m_{e}}\frac{x_{e}}{1+f_{\rm He}+x_{e}}, (4)

where σT\sigma_{T} is the Thomson scattering cross section, ara_{r} is radiation constant, mem_{e} is the electron mass, and fHef_{\rm He} is the number ratio of helium to hydrogen. The last term in (3) represents heating of the gas temperature due to the energy injection. As defined in Slatyer:2015jla ; Slatyer:2015kla the coefficients fion(t)f_{\rm ion}(t), fexc(t)f_{\rm exc}(t), and fheat(t)f_{\rm heat}(t) (collectively denoted by {fc(t)}\{f_{c}(t)\} hereafter) are the fractions of injected energy deposited into the hydrogen ionization, the hydrogen excitation, and the heating of gas, respectively.

Refer to caption
Figure 1: Luminosity LL of the accretion disk as a function of the accretion rates for three models, RIAF (Radiation Inefficient Accretion Flow) Yuan:2014gma , the standard disk, and the slim disk Watarai:2000 . Here LEL_{\rm E} is the Eddington luminosity and M˙crit\dot{M}_{\rm crit} is the corresponding critical accretion rate. In the theoretical calculations, the dimensionless viscous parameter αvis\alpha_{\rm vis} is taken to be 0.1.

III Models of accretion disks

In Fig. 1, we plot the luminosity LL from the accretion disks as a function of the accretion rate M˙\dot{M} in case of the viscous parameter αvis\alpha_{\rm vis} (=0.1) in the unified picture of the three models (see Fig. 2Yuan:2014gma , RIAF (Radiation Inefficient Accretion Flow) (m˙102\dot{m}\lesssim 10^{-2}), the standard disk (102m˙110^{-2}\lesssim\dot{m}\lesssim 1)), and the slim disk (1m˙1\lesssim\dot{m}). The luminosity is normalized by the Eddington luminosity,

LE1.3×1038ergsec1(MBHM),\displaystyle L_{E}\simeq 1.3\times 10^{38}\mathrm{erg\ sec^{-1}}\left(\frac{M_{\rm BH}}{M_{\odot}}\right), (5)

where MM_{\odot} denotes Solar mass (2.0×1033(\simeq 2.0\times 10^{33} g). The accretion rate is normalized by the critical accretion rate, M˙crit\dot{M}_{\rm crit} to be

m˙=M˙M˙crit,\displaystyle\dot{m}=\frac{\dot{M}}{\dot{M}_{\rm crit}}, (6)

where M˙critηeff1LE\dot{M}_{\rm crit}\equiv\eta_{\rm eff}^{-1}L_{E} with the radiative efficiently ηeff\eta_{\rm eff}, which ranges ηeff11016\eta_{\rm eff}^{-1}\sim 10-16 in the standard disk and the slim disk models Watarai:2000 ; Mineshige:2008 , and approximately in the RIAF model with m˙103\dot{m}\gtrsim 10^{-3} Yuan:2014gma . In this study, for simplicity we take ηeff1=10\eta_{\rm eff}^{-1}=10 as a reference value. Then the critical accretion rate is represented by

M˙crit1.4×1018gsec1(ηeff110)(MBHM).\displaystyle\dot{M}_{\rm crit}\simeq 1.4\times 10^{18}{\rm g}\ {\rm sec}^{-1}\left(\frac{\eta_{\rm eff}^{-1}}{10}\right)\left(\frac{M_{\rm BH}}{M_{\odot}}\right). (7)
Refer to caption
Figure 2: A unified picture of accretion disk models Yuan:2014gma ; Kohri:2002kz . Here we plot accretion rates as a function of αvisΣ\alpha_{\rm vis}\Sigma for the RIAF Yuan:2014gma , the standard disk, and the slim disk Watarai:2000 , respectively. Here Σ=ρ𝑑z\Sigma=\int\rho dz is the surface density which is obtained by integrating the mass density ρ\rho along the vertical axis (z) with respect to the disk plane.

The spectrum of the emissivity in each model is approximately parametrized by the following function form,

dLdω=Anorm(ωωmin)psexp[ωωcut],\displaystyle\frac{dL}{d\omega}=A_{\rm norm}\left(\frac{\omega}{\omega_{\rm min}}\right)^{p_{s}}\exp\left[-\frac{\omega}{\omega_{\rm cut}}\right], (8)

with the photon energy ω\omega, AnormA_{\rm norm} being the normalization factor in unit of erg sec-1 eV-1 to be consistent with the curve plotted in Fig. 1. These parameters are fitted to be the values shown in Table I (See Refs. Watarai:2000 ; Yuan:2014gma ; Mineshige:2008 ).

RIAF Standard disk Slim disk
ωmin\omega_{\rm min} in eV (MBH/10M)1/2\left(M_{\rm BH}/10M_{\odot}\right)^{-1/2} 1 1
ps(ωωmin)p_{s}(\omega\geq\omega_{\rm min}) -1 1/3 -1
ps(ω<ωmin)p_{s}(\omega<\omega_{\rm min}) 2 2 2
ωcut\omega_{\rm cut} in keV 200 10m˙1/4(MBH/10M)1/4\dot{m}^{1/4}\left(M_{\rm BH}/10M_{\odot}\right)^{-1/4} 10m˙1/4(MBH/10M)1/4\dot{m}^{1/4}\left(M_{\rm BH}/10M_{\odot}\right)^{-1/4}
Table 1: A set of parameters parametrized in an analytical form in Eq. (8)

In Fig. 3, we plot ωdLdω\omega\frac{dL}{d\omega} as a function of the energy ω\omega in eV for MBHM_{\rm BH} = 10 MM_{\odot} (left) and MBHM_{\rm BH} = 105M10^{5}M_{\odot} (right). 555See also Ref. Kawanaka:2020uen for possible modifications of the spectrum for the slim disk through the Inverse Compton scattering by energetic electron in coronae. In order to observationally confirm the shape of the spectra, we also have to additionally consider possible absorptions of soft X-rays by Compton absorbers. It is interesting that we can trace such absorbers by measuring neutral hydrogen with column density NHI1021cm2N_{\rm HI}\sim 10^{21}{\rm cm}^{-2} by future low-redshifted 21 cm observations Moss:2017 ; Ursini:2017ixb ; Curran:2018 ; Hickox:2018xjf ; Morganti:2018 ; Liszt:2020 .

Refer to caption
Refer to caption
Figure 3: Plots of ωdLdω\omega\frac{dL}{d\omega} as a function of the photon energy ω\omega in eV for MBHM_{\rm BH} = 10 MM_{\odot} (left) and MBHM_{\rm BH} = 105M10^{5}M_{\odot} (right).
Refer to caption
Figure 4: Plots of ωdEinjdtdVdω\omega\frac{dE_{\rm inj}}{dtdVd\omega} as a function of the photon energy ω\omega in eV at zz = 17. Here we took the comoving number density of the seed, nseed,0=103Mpc3n_{\rm seed,0}=10^{-3}{\rm Mpc}^{-3} and MBH=10MM_{\rm BH}=10M_{\odot}.

IV Energy injection and deposition into the IGM from accretion disks

The energy injection rate is given as

dEinjdVdt(z)=0𝑑ωdEinjdVdtdω(z),\displaystyle\frac{dE_{\rm inj}}{dVdt}(z)=\int_{0}^{\infty}d\omega\frac{dE_{\rm inj}}{dVdtd\omega}(z), (9)

with

dEinjdVdtdω(z)=nseed(z)dLdω,\displaystyle\frac{dE_{\rm inj}}{dVdtd\omega}(z)=n_{\rm seed}(z)\frac{dL}{d\omega}, (10)

where nseed(z)n_{\rm seed}(z) is the number density of the seed BHs as a function of zz, which are expected to be evolved to SMBHs in a late epoch. Then, we parametrize the form of nseed(z)n_{\rm seed}(z) to be

nseed(z)=nseed,0(1+z)3\displaystyle n_{\rm seed}(z)=n_{\rm seed,0}(1+z)^{3} (11)

with the comoving number density of the seed BHs nseed,0n_{\rm seed,0}. This equation requires careful attention to the actual meaning of nseed,0n_{\rm seed,0}. Surely it is equal to nseed(z=0)n_{\rm seed}(z=0) at face value. However, it is notable that nseed,0n_{\rm seed,0} can increase at a later time as a function of cosmic time, depending on models, e.g., for z7z\lesssim 7. For each value of nseed,0n_{\rm seed,0} thus, we take it to be constant at least from z30z\sim 30 to z10z\sim 10. Here we may take a maximum value of it possibly to be nseed,0𝒪(1)×103Mpc3(ΩCDMh2/0.1)(Mgal/1012M)1n_{\rm seed,0}\sim{\cal O}(1)\times 10^{-3}~{}{\rm Mpc}^{-3}({\Omega_{\rm CDM}h^{2}}/{0.1})({M_{\rm gal}}/{10^{12}M_{\odot}})^{-1} which is derived roughly by assuming that every (massive) galaxy at least had a seed BH in its center in the comoving coordinate (ρCDM/Mgal\sim\rho_{\rm CDM}/M_{\rm gal}Serpico:2020ehh , with the energy density of cold dark matter (CDM) ρCDM\rho_{\rm CDM}, the reduced Hubble constant h(0.7)h~{}(\sim 0.7), and MgalM_{\rm gal} being a typical mass of a massive galaxy (𝒪(1)×1012M\sim{\cal O}(1)\times 10^{12}M_{\odot}). This value of nseed,0𝒪(1)×103Mpc3n_{\rm seed,0}\sim{\cal O}(1)\times 10^{-3}{\rm Mpc}^{-3} is consistent with the observations of the SMBHs at z=0z=0 Williot:2010waa ; Tanaka:2015sba . On the other hand, as a conservative limit of it, we may take nseed,0𝒪(1)×107Mpc3n_{\rm seed,0}\sim{\cal O}(1)\times 10^{-7}~{}{\rm Mpc}^{-3} to fit some observations of the SMBHs at around z=6z=6 Williot:2010waa 666In this case, we assume that the number density of the seed BHs does not increase much from z=7z=7 to z=6z=6. In this latter case, it is interpreted that the main components of the seeds were produced at a late time z<6z<6. Because we cannot judge which value of the normalization of nseed(z)n_{\rm seed}(z) is more correct, in the current study therefore, we adopt some representative values by changing it in the range of nseed,0=107Mpc3103Mpc3n_{\rm seed,0}=10^{-7}~{}{\rm Mpc}^{-3}-10^{-3}~{}{\rm Mpc}^{-3} as an initial value of the comoving number density set at a higher redshift z1720z\gg 17-20 and study the effect in each case. In Fig. 4, we plot ωdEinjdtdVdω\omega\frac{dE_{\rm inj}}{dtdVd\omega} as a function of the energy ω\omega in eV at z=17z=17. Here we took nseed,0=103Mpc3n_{\rm seed,0}=10^{-3}{\rm Mpc}^{-3} and MBHM_{\rm BH} = 10 MM_{\odot} as a reference.

To compute the deposition fractions {fc(t)}\{f_{c}(t)\}, we need detailed information about both the spectrum of photon emitted from accretion disks and processes of their interactions with the IGM. The authors of Refs. Shull:1985 ; Chen:2003gz ; Padmanabhan:2005es ; Ripamonti:2006gq ; Kanzaki:2008qb ; Slatyer:2009yq ; Kanzaki:2009hf ; Evoli:2012zz studied how those energetic photons lose their energy through interaction processes with the IGM and affect ionization and heating of the IGM. A typical timescale of energy-loss processes for photons with their energy ranges 103eVω1011eV10^{3}\,{\rm eV}\simeq\omega\simeq 10^{11}\,{\rm eV} can be longer than the Hubble time. This requires detailed computation of the energy deposition fully over cosmological time scales. Here we adopt ways of computations done in Ref. Slatyer:2015kla 777https://faun.rc.fas.harvard.edu/epsilon/, in which the effects of energy injection is treated at a linear level, i.e, omitting higher-order nonlinear terms. For full treatments including feedback of the modification of the IGM evolution in the computation of {fc(t)}\{f_{c}(t)\}, we refer to Ref. Liu:2019bbm .

By using Eqs.(9), (10) and (11), we can estimate the energy injection rate analytically to be

dEinjdVdt1020eVsec1cm3×(nseed,0103Mpc3)(1+z18)3(L1040ergsec1).\displaystyle\frac{dE_{\rm inj}}{dVdt}\sim 10^{-20}~{}\mathrm{eV}~{}\mathrm{sec}^{-1}\mathrm{cm}^{-3}\times\left(\frac{n_{\rm seed,0}}{10^{-3}{\rm Mpc}^{-3}}\right)\left(\frac{1+z}{18}\right)^{3}\left(\frac{L}{10^{40}\mathrm{erg}~{}\mathrm{sec}^{-1}}\right). (12)

It has been known that this order-of-magnitude energy injection rate (dEinj/dVdt𝒪(1020)eVsec1cm3\sim dE_{\rm inj}/dVdt\sim{\cal O}(10^{-20})~{}\mathrm{eV}~{}\mathrm{sec}^{-1}~{}\mathrm{cm}^{-3}) should have affected the absorption feature of the global 21cm line spectrum at around z17z\sim 17 Hiroshima:2021bxn 888 see also Refs.Poulin:2016anj ; DAmico:2018sxd ; Mena:2019nhm ; Liu:2020wqz ; Bolliet:2020ofj . This means that we see intuitively that the (super-)Eddington accretion rate [1038erg/sec(MBH/M)\gtrsim 10^{38}{\rm erg/sec}(M_{\rm BH}/M_{\odot})] can be highly constrained for MBH102MM_{\rm BH}\gtrsim 10^{2}M_{\odot} in case of nseed,0103Mpc3n_{\rm seed,0}\sim 10^{-3}{\rm Mpc}^{-3} by observational data of the cosmological 21cm line absorption.

The time evolution of MBH=M(t)M_{\rm BH}=M(t) is solved to be

MBH(t)=MBH,iniexp(m˙fduty1ηeffηeffttiniτE),\displaystyle M_{\rm BH}(t)=M_{\rm BH,ini}\exp\left(\dot{m}f_{\rm duty}\frac{1-\eta_{\rm eff}}{\eta_{\rm eff}}\frac{t-t_{\rm ini}}{\tau_{E}}\right), (13)

where MBH,iniMBH(t=tini)M_{\rm BH,ini}\equiv M_{\rm BH}(t=t_{\rm ini}) at t=tinit=t_{\rm ini} with a constant m˙\dot{m} and a possible suppression factor fduty1f_{\rm duty}\lesssim 1 Sassano:2021maj ; Pacucci:2021ubg due to efficiencies for a continuous accretion and so on. We adopt fduty=1f_{\rm duty}=1 as a simple reference value in this study. Here the timescale of the Eddington accretion is given by

τEMBHc2LE=σTc4πμGmp0.45Gyr.\displaystyle\tau_{E}\equiv\frac{M_{\rm BH}c^{2}}{L_{E}}=\frac{\sigma_{T}c}{4\pi\mu Gm_{p}}\simeq 0.45\mathrm{Gyr}. (14)

V Results

In Fig. 5, the evolutions of xe(z)x_{e}(z) and Tm(z)T_{m}(z) are shown as a function of redshift zz in case with the emission from accretion disk, which started from the initial redshift zini=30z_{\rm ini}=30. Here we assumed there is no significant heating from the other astrophysical sources.

Refer to caption Refer to caption
Figure 5: Evolutions of the ionization fraction xex_{e} and the temperatures of gas TmT_{m} in the heating by photons emitted from accretion disks with the initial redshift zini=30z_{\rm ini}=30. We plot the cases of the initial black hole mass for MBH,ini=30MM_{\rm BH,ini}=30M_{\odot} (left) and 100M100M_{\odot} (right), respectively. The normalized mass-accretion rate is taken to be m˙\dot{m} = 0.10.1 (blue), 11 (orange), and 1010 (green). For reference, the photon temperature Tγ(z)T_{\gamma}(z) (black dashed) is also plotted in each panel.

Compared to cases where such an energy injection is absent, the gas temperatures TmT_{m} is highly enhanced. This is due to the extra heating by photons emitted from the accretion disks, which modified the evolution of the spin temperature, TsT_{s}, associated with the hyperfine splitting in the ground states of neutral hydrogen. This allows us to constrain emission from accretion disks from observations of differential brightness temperature of redshifted 21 cm line emission T21cmT_{\rm 21cm} before reionization (See e.g. Furlanetto:2006jb ),

T21cm(z)=Ts(z)Tγ(z)1+zτ21cm(z).\displaystyle T_{\rm 21cm}(z)=\frac{T_{s}(z)-T_{\gamma}(z)}{1+z}\tau_{\rm 21cm}(z). (15)
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Upper bounds on accretion rates normalized by the Eddington accretion rate as a function of initial black hole masses set at the initial redshift ziniz_{\rm ini}=30. The shaded region is observationally excluded for nseed,0/Mpc3n_{\rm seed,0}/{\rm Mpc}^{-3} chosen to be (a) 10310^{-3}, (b) 10410^{-4}, (c) 10510^{-5}, and (d) 10610^{-6}. The blue, orange, magenta, and green solid lines denote the conditions given in Eq. (13), on which successfully MBH/M=109M_{\rm BH}/M_{\odot}=10^{9},10810^{8}, 10710^{7}, and 10610^{6} are realized at z=7z=7 with fduty=1f_{\rm duty}=1 from top to bottom, respectively.
Refer to caption
Figure 7: Upper bounds on accretion rates normalized by the Eddington accretion rate as a function of initial black hole masses set at the initial redshift ziniz_{\rm ini}=30. The notations are the same as those in Fig. 6 but for nseed,0/Mpc3=107n_{\rm seed,0}/{\rm Mpc}^{-3}=10^{-7}.

A time-evolution of the spin temperature TsT_{s} is controlled by relative couplings of TsT_{s} with the photon temperature TγT_{\gamma}, the gas temperature TmT_{m}, and the color temperature TcT_{c}, which is the effective temperature associated with background Lyman-α\alpha radiation. Throughout the epoch we are currently studying, the IGM is fully optically thick for emissions of Lyman-α\alpha radiation. Therefore, it is reasonable to assume TcTmT_{c}\approx T_{m}. The EDGES collaboration reported a global absorption (not emission) signal Bowman:2018yin

T21cm=500500+200mK(99%CL),\displaystyle T_{\rm 21cm}=-500^{+200}_{-500}\quad{\rm mK}\quad(99\%{\rm CL}), (16)

which means the gas temperature is smaller than the photon temperature Tm<TγT_{m}<T_{\gamma}. Here we considered the delayed deposition which was studied in Ref. Liu:2018uzy ; Basu:2020qoe 999The optical depth for the X-ray with a few keV highly depends on redshifts with a rapidly-changing function of zz, and accidentally becomes O(1) at zz = 10 – 30. This is clearly shown in literature, e.g., Fig.2 of Ref. Chen:2003gz and Fig.3 of Ref. Slatyer:2015kla . Therefore, to be thermalized for the emitted X-rays, we need a time of the order of or even much longer than the Hubble time at that time. That is the reason why the thermalization was not realized immediately and got delayed.

In general, photon emissions from accretion disks suppress the amplitude of the absorption for the global 21cm signals by ionizing and heating the IGM. It is reasonable to assume a tight coupling of spin temperature to gas temperature through the Lyman-α\alpha pumping (the Wouthuysen-Field effect Wouthuysen:1952 ; Field:1959 ). This maximizes the absorption depth, which gives the most conservative limit on extra-photon emissions. In addition, we did not assume other ambiguous astrophysical heating sources such as UV emissions from stars formed by non-standard CDM halo formations at small scales, annihilating/decaying dark matter, and so on, that also helps to obtain the most conservative upper bound on it. The prediction in the standard Λ\LambdaCDM model without such a heating by the accretion disks gives T21cm230mKT_{\rm 21cm}\simeq-230\,{\rm mK} (e.g., see Ref. Hiroshima:2021bxn ). We obtain an upper bound on the photon emissions from accretion rate by requiring T21cm75mKT_{\rm 21cm}\leq-75\,{\rm mK}, which correspond to the 2σ\sigma upper bound on it with given uncertainties of the EDGES (ΔT21cm+155\Delta T_{\rm 21cm}\simeq+155 mK) at 95%\% C.L. Hiroshima:2021bxn Here we did not assume any exotic cooling mechanisms such as interaction between baryon and CDM only to fit the observational depth of the absorption feature reported by EDGES (see also DAmico:2018sxd ).  101010Quite recently the SARAS 3 collaboration reported that they rejected the signal by the EDGES at 95.3 %\% C.L. Singh:2021mxo . In this paper however, we only use the sensitivity on the errors (not the signal of the absorption feature) of the EDGES, which is not inconsistent with the claim by the SARAS 3. See similar discussions, e.g., in Ref. Saha:2021pqf .

In Fig. 6, we show the upper bound on the accretion rate as a function of the initial seed BH mass (MBH,iniM_{\rm BH,ini}) conservatively-obtained in this study, which means that the shaded region (the upper-right region) is excluded for nseed,0n_{\rm seed,0} chosen to be (a) 103Mpc310^{-3}{\rm Mpc}^{-3}, (b) 104Mpc310^{-4}{\rm Mpc}^{-3}, (c) 105Mpc310^{-5}{\rm Mpc}^{-3}, and (d) 106Mpc310^{-6}{\rm Mpc}^{-3}. The blue, orange, magenta, and green solid lines denote the conditions given in Eq. (13), on which successfully MBH=109MM_{\rm BH}=10^{9}M_{\odot}, 108M10^{8}M_{\odot}, 107M10^{7}M_{\odot}, and 106M10^{6}M_{\odot} are realized at z=7z=7 with fduty=1f_{\rm duty}=1 and ηeff1=10\eta_{\rm eff}^{-1}=10, respectively. In case of fduty<1f_{\rm duty}<1 or ηeff110\eta_{\rm eff}^{-1}\neq 10, readers can read off a value of the yy-axis by using the scaling law of it [m˙fduty(ηeff11)]\left[\propto\dot{m}f_{\rm duty}(\eta_{\rm eff}^{-1}-1)\right]111111We do not use the data reported by the HERA Phase 1 to obtain the mild lower bound on 21cm emissions at around z10z\lesssim 10HERA:2021bsv because it does not constrain any model parameter in the current setup where we have not specified when the standard processes of the cosmological reionization occurred. Here we have chosen the reference value of the initial redshift to be zini=30z_{\rm ini}=30 after that the accretion had started by following the discussions in Bromm:2013iya . Even if we adopted a larger value of ziniz_{\rm ini}, the obtained bound becomes much stronger. Thus, our current choice gives a conservative bounds on the plane of (MBH,iniM_{\rm BH,~{}ini}, m˙\dot{m}). A more comprehensive analysis by studying every case with changing those values is outside the scope of the current paper.

In case of the maximum value of nseed,0=103Mpc3n_{\rm seed,0}=10^{-3}{\rm Mpc}^{-3} shown in Fig. 6(a), to satisfy the condition for the successful SMBH formation with MBH=109MM_{\rm BH}=10^{9}M_{\odot} at z=7z=7, the initial masses of seed BHs have been excluded for MBH,ini102MM_{\rm BH,~{}ini}\gtrsim 10^{2}M_{\odot} at 95%\% C.L. Therefore, the reference value of the initial seed mass MBH,ini103.3MM_{\rm BH,~{}ini}\sim 10^{3.3}M_{\odot} with the just-on Eddington accretion rate is apparently excluded in this case. This means that we inevitably need the super-Eddington accretion rate for lighter-mass seed BHs, MBH,ini102MM_{\rm BH,~{}ini}\lesssim 10^{2}M_{\odot}.

In Fig. 7, we plot the excluded region when we adopt the most conservative case, nseed,0=107Mpc3n_{\rm seed,0}=10^{-7}{\rm Mpc}^{-3}. From this figure, we find that the initial mass of the seed BHs for MBH,ini106MM_{\rm BH,~{}ini}\lesssim 10^{6}M_{\odot} are allowed at 95%\% C.L. to obtain MBH=109MM_{\rm BH}=10^{9}M_{\odot} at z=7z=7. In this case, we need M˙0.5M˙crit\dot{M}\sim 0.5\dot{M}_{\rm crit} for continuous accretions on to the initial seed mass MBH,ini=106MM_{\rm BH,~{}ini}=10^{6}M_{\odot} set at zini=30z_{\rm ini}=30 until z=7z=7.

From Fig. 6 and Fig. 7, readers can read off every constraint by changing nseed,0n_{\rm seed,0}. For example, according to information of Fig. 8 of Ref. Williot:2010waa , to realize MBH=107MM_{\rm BH}=10^{7}M_{\odot} until z=7z=7 with nseed,0=105Mpc3n_{\rm seed,0}=10^{-5}{\rm Mpc}^{-3} we can see MBH,ini104MM_{\rm BH,~{}ini}\lesssim 10^{4}M_{\odot} are allowed at 95%\% C.L. from the magenta line in Fig. 6(c).

In Fig. 8, we plot the lines of the conditions to realize MBH(z=7)=M_{\rm BH}(z=7)= 109M10^{9}M_{\odot}, 108M10^{8}M_{\odot}, 107M10^{7}M_{\odot}, 106M10^{6}M_{\odot} in the 2D plane of the initial BH mass MBH,iniM_{\rm BH,ini} set at zini=30z_{\rm ini}=30 and the comoving number density of the seed BHs nseed,0n_{\rm seed,0} in case of (a) M˙/M˙crit=1.0\dot{M}/\dot{M}_{\rm crit}=1.0, and (b) M˙/M˙crit=0.5\dot{M}/\dot{M}_{\rm crit}=0.5. The upper-right regions (red regions) are excluded by the observational bounds on the 21 cm lines at around z17z\sim 17. From Fig. 8(a), to realize MBH(z=7)=M_{\rm BH}(z=7)= 109M10^{9}M_{\odot}, we find that nseed,04×105Mpc3n_{\rm seed,0}\gtrsim 4\times 10^{-5}{\rm Mpc}^{-3} is excluded for M˙/M˙crit1.0\dot{M}/\dot{M}_{\rm crit}\gtrsim 1.0. This means that we need another mechanism to create the seed BHs after z17z\ll 17. On the other hand, from Fig. 8(b), we obtained the conservative upper limit on MBH,iniM_{\rm BH,ini} to be 106M10^{6}M_{\odot} with the minimum mass-accretion rate M˙/M˙crit0.5\dot{M}/\dot{M}_{\rm crit}\gtrsim 0.5 to realize MBH(z=7)=M_{\rm BH}(z=7)= 109M10^{9}M_{\odot} for a conservative lower limit on the comoving number density of the seed BHs nseed,0=107Mpc3n_{\rm seed,0}=10^{-7}{\rm Mpc}^{-3}.

Refer to caption
Refer to caption
Figure 8: Upper bounds on the 2D plane of the initial BH mass MBH,iniM_{\rm BH,ini} set at zini=30z_{\rm ini}=30 and the comoving number density of the seed BHs nseed,0n_{\rm seed,0}. The lines give the conditions to realize MBH(z=7)=M_{\rm BH}(z=7)= 109M10^{9}M_{\odot}, 108M10^{8}M_{\odot}, 107M10^{7}M_{\odot}, 106M10^{6}M_{\odot} in case of (a) M˙/M˙crit=1.0\dot{M}/\dot{M}_{\rm crit}=1.0, and (b) M˙/M˙crit=0.5\dot{M}/\dot{M}_{\rm crit}=0.5 by the accretions. The upper-right regions (red regions) are excluded by the observational bounds on the 21 cm lines at around z17z\sim 17.

It is notable that those bounds can be applicable to scenarios for accretions on to primordial black holes (PBHs) like as floating BHs, which were produced at z30z\gg 30121212We can refer to papers for the other aspects of researches about the PBHs constrained from 21cm line observations for cosmological accretions on to PBHs Gong:2017sie ; Gong:2018sos ; Hektor:2018qqw ; Mena:2019nhm ; Hutsi:2019hlw ; Hasinger:2020ptw ; Villanueva-Domingo:2021cgh ; Yang:2021idt ; Yang:2021agk ; Acharya:2022txp and evaporation of PBHs Mack:2008nv ; Carr:2009jm ; Clark:2018ghm ; Carr:2020gox ; Halder:2021jiv ; Natwariya:2021xki ; Mittal:2021egv ; Cang:2021owu ; Saha:2021pqf . Those BHs could enter into halos by chance and be surrounded by dense gas at higher redshifts. In this case, the cosmological omega parameter of the seed BHs (ΩsBH\Omega_{\rm sBH}) is related to nseed,0n_{\rm seed,0} by

ΩsBH/ΩCDM1010(nseed,0103Mpc3)(MBH,ini102M)(MSMBH109M)(Mgal1012M)1.\displaystyle\Omega_{\rm sBH}/\Omega_{\rm CDM}\sim 10^{-10}\left(\frac{n_{\rm seed,0}}{10^{-3}{\rm Mpc}^{-3}}\right)\left(\frac{M_{\rm BH,ini}}{10^{2}M_{\odot}}\right)\left(\frac{M_{\rm SMBH}}{10^{9}M_{\odot}}\right)\left(\frac{M_{\rm gal}}{10^{12}M_{\odot}}\right)^{-1}. (17)

with MSMBHM_{\rm SMBH} the mass of SMBHs. Then, MBH,iniM_{\rm BH,ini} has two meanings: 1) the mass of a BH which was originally equal to it, or 2) which had evolved to this value by an accretion until z=ziniz=z_{\rm ini}. This parametrization also requires careful attention to the meaning of ΩsBH\Omega_{\rm sBH} (or nseed,0n_{\rm seed,0}) here. It is different from the usual definition of the cosmological omega parameter for the homogeneously-distributed field component of the BHs, but for the one inside halos surrounded by rich gas. Actually it should be highly model-dependent to estimate the real fraction of such seed BHs captured into this kind of systems to the total BHs.

VI Conclusion

In this paper we have studied the scenarios of the accretions on to black holes from sub- to super- Eddington rates at high redshifts z10z\gg 10 which are expected to become seeds to evolve to supermassive black holes until redshift z7z\sim 7. Such an accretion disk emits copious high-energy photons (the UV and keV-MeV photons) which had heated the plasma of the intergalactic medium continuously at high redshifts. In this case, the gas temperature is modified, by which the absorption of the cosmological 21 cm lines are suppressed at around z17z\sim 17.

As is shown in Fig. 6 and Fig. 7, by comparing the theoretical prediction of the global cosmological 21cm line absorption with the signal observed by the EDGES collaboration, conservatively we have obtained the upper bounds on the mass-accretion rate on to each initial seed black hole set at z2030z\gtrsim 20-30. If we adopted a maximum value for the comoving number density of the seed BH to be nseed,0=103Mpc3n_{\rm seed,0}=10^{-3}{\rm Mpc}^{-3} shown in Fig.7, in order to satisfy the successful formations of the supermassive black holes until z=7z=7, we obtained the upper bound on the seed-BH masses to be MBH,ini102MM_{\rm BH,ini}\lesssim 10^{2}M_{\odot}. Clearly the reference model MBH,ini103.3MM_{\rm BH,ini}\sim 10^{3.3}M_{\odot} with the exact Eddington accretion rate (m˙=1\dot{m}=1) is excluded. In other words, for a seed BH mass smaller than 102M10^{2}M_{\odot} we inevitably need the super-Eddington accretion. Alternatively, such a high accretion on to a larger seed mass (MBH,ini102MM_{\rm BH,ini}\gtrsim 10^{2}M_{\odot}) should have started after z1720z\sim 17-20.

On the other hand, if we adopted a conservative value for the comoving number density of the seed BH, nseed,0=107Mpc3n_{\rm seed,0}=10^{-7}{\rm Mpc}^{-3} to fit the observations of SMBHs partly with MBH109MM_{\rm BH}\sim 10^{9}M_{\odot} at z6z\sim 6 Williot:2010waa , we obtain a milder bound on the initial seed mass, MBH,ini106MM_{\rm BH,ini}\lesssim 10^{6}M_{\odot}. In this latter case, we only need a sub-Eddington rate for MBH,ini103.3106MM_{\rm BH,ini}\sim 10^{3.3}-10^{6}M_{\odot}.

This constraint is applicable to scenarios for accretions on to primordial black holes (PBHs) and so on. Then, the cosmological omega parameter of the seed PBHs,i.e., ΩsBH\Omega_{\rm sBH} (not the homogeneously-distributed field component of the PBHs, ΩPBH\Omega_{\rm PBH}) is related to nseed,0n_{\rm seed,0} approximately by ΩsBH/ΩCDM1010(nseed,0/103Mpc3)(MBH,ini/102M)(MSMBH/109M)(Mgal/1012M)1\Omega_{\rm sBH}/\Omega_{\rm CDM}\sim 10^{-10}(n_{\rm seed,0}/10^{-3}{\rm Mpc}^{-3})(M_{\rm BH,ini}/10^{2}M_{\odot})(M_{\rm SMBH}/10^{9}M_{\odot})(M_{\rm gal}/10^{12}M_{\odot})^{-1}.

In future, more precise data of high-redshifted 21cm lines will be reported by HERA Beardsley:2014bea , SKA SKAspec , Omniscope Omniscope or DAPPER Burns:2021ndk . By adopting those data, then we will be able to detect signatures of the super-Eddington accretion on to the seed BHs to evolve to the high-redshifted SMBHs.

Acknowledgements.
We thank Kohei Inayoshi, Norita Kawanaka, Koutarou Kyutoku, Vivian Poulin and Pasquale D. Serpico for useful discussions. This work was supported in part by JSPS KAKENHI Grant Numbers JP17H01131 (K.K. and T.S.), JP15H02082 (T.S.), JP18H04339 (T.S.), JP18K03640 (T.S.), and MEXT KAKENHI Grant Numbers JP19H05114 (K.K.), JP20H04750 (K.K.). S.W. is partially supported by the grants from the National Natural Science Foundation of China with Grant No. 12175243, the Institute of High Energy Physics with Grant No. Y954040101, and the Key Research Program of the Chinese Academy of Sciences with Grant No. XDPB15. Numerical computations were carried out on Cray XC50 at Center for Computational Astrophysics, National Astronomical Observatory of Japan.

References

  • (1) F. Wang et al, Astrophys. J. Lett. 907L (2021) 1 [arXiv:2101.03179 [astro-ph.GA]]
  • (2) R. Barkana and A. Loeb, Phys. Rept. 349, 125-238 (2001) [arXiv:astro-ph/0010468 [astro-ph]].
  • (3) T. E. Woods, B. Agarwal, V. Bromm, A. Bunker, K. J. Chen, S. Chon, A. Ferrara, S. C. O. Glover, L. Haemmerlé and Z. Haiman, et al. Publ. Astron. Soc. Austral. 36, e027 (2019) [arXiv:1810.12310 [astro-ph.GA]].
  • (4) K. Inayoshi, E. Visbal and Z. Haiman, Ann. Rev. Astron. Astrophys. 58, 27-97 (2020) [arXiv:1911.05791 [astro-ph.GA]].
  • (5) A. Loeb and F. A. Rasio, Astrophys. J. 432, 52 (1994) [arXiv:astro-ph/9401026 [astro-ph]].
  • (6) K. Omukai, Astrophys. J. 546, 635 (2001) [arXiv:astro-ph/0011446 [astro-ph]].
  • (7) S. P. Oh and Z. Haiman, Astrophys. J. 569, 558 (2002) [arXiv:astro-ph/0108071 [astro-ph]].
  • (8) G. Lodato and P. Natarajan, Mon. Not. Roy. Astron. Soc. 371, 1813-1823 (2006) [arXiv:astro-ph/0606159 [astro-ph]].
  • (9) M. Volonteri and M. J. Rees, Astrophys. J. 633, 624-629 (2005) [arXiv:astro-ph/0506040 [astro-ph]].
  • (10) K. Inayoshi and K. Omukai, Mon. Not. Roy. Astron. Soc. 422, 2539-2546 (2012) [arXiv:1202.5380 [astro-ph.CO]].
  • (11) T. Hosokawa, H. W. Yorke, K. Inayoshi, K. Omukai and N. Yoshida, Astrophys. J. 778, 178 (2013) doi:10.1088/0004-637X/778/2/178 [arXiv:1308.4457 [astro-ph.SR]].
  • (12) J. A. Regan, P. H. Johansson and J. H. Wise, Astrophys. J. 795, no.2, 137 (2014) [arXiv:1407.4472 [astro-ph.GA]].
  • (13) K. Inayoshi, K. Omukai and E. J. Tasker, Mon. Not. Roy. Astron. Soc. 445, 109 (2014) [arXiv:1404.4630 [astro-ph.GA]].
  • (14) A. Ferrara, S. Salvadori, B. Yue and D. R. G. Schleicher, Mon. Not. Roy. Astron. Soc. 443, no.3, 2410-2425 (2014) [arXiv:1406.6685 [astro-ph.GA]].
  • (15) F. Becerra, T. H. Greif, V. Springel and L. Hernquist, Mon. Not. Roy. Astron. Soc. 446, 2380-2393 (2015) [arXiv:1409.3572 [astro-ph.GA]].
  • (16) V. Bromm and A. Loeb, Astrophys. J. 596, 34-46 (2003) [arXiv:astro-ph/0212400 [astro-ph]].
  • (17) J. H. Wise, M. J. Turk and T. Abel, Astrophys. J. 682, 745 (2008) [arXiv:0710.1678 [astro-ph]].
  • (18) J. A. Regan and M. G. Haehnelt, Mon. Not. Roy. Astron. Soc. 396, 343 (2009) [arXiv:0810.2802 [astro-ph]].
  • (19) C. Shang, G. Bryan and Z. Haiman, Mon. Not. Roy. Astron. Soc. 402, 1249 (2010) [arXiv:0906.4773 [astro-ph.CO]].
  • (20) T. Hosokawa, K. Omukai and H. W. Yorke, Astrophys. J. 756, 93 (2012) [arXiv:1203.2613 [astro-ph.CO]].
  • (21) M. A. Latif, D. R. G. Schleicher, W. Schmidt and J. C. Niemeyer, Mon. Not. Roy. Astron. Soc. 436, 2989 (2013) [arXiv:1309.1097 [astro-ph.CO]].
  • (22) S. Chon, S. Hirano, T. Hosokawa and N. Yoshida, Astrophys. J. 832, no.2, 134 (2016) [arXiv:1603.08923 [astro-ph.GA]].
  • (23) M. A. Latif, D. R. G. Schleicher and T. Hartwig, Mon. Not. Roy. Astron. Soc. 458 (2016) 233 [arXiv:1510.02788 [astro-ph.GA]].
  • (24) F. Becerra F, F. Marinacci, V. Bromm, and L.E. Hernquist Mon. Not. Roy. Astron. Soc, 480 (2018) 5029 [arXiv:1804.06413 [astro-ph.GA]]
  • (25) J.H. Wise, J.A. Regan, B.W. O’Shea, M.L. Norman, T.P. Downes, H. Xu, Nature 566, 85 (2019)
  • (26) U. Maio, S. Borgani, B. Ciardi and M. Petkova, Publ. Astron. Soc. Austral. 36, e020 (2019) [arXiv:1811.01964 [astro-ph.GA]].
  • (27) L. Mayer, Nature Astron. 1, 0108 (2017)
  • (28) L. Mayer and S. Bonoli, Rept. Prog. Phys. 82, no.1, 016901 (2019) [arXiv:1803.06391 [astro-ph.GA]].
  • (29) L. Mayer, D. Fiacconi, S. Bonoli, T. Quinn, R. Roskar, S. Shen and J. Wadsley, Astrophys. J. 810, no.1, 51 (2015) [arXiv:1411.5683 [astro-ph.GA]].
  • (30) M. Dijkstra, A. Ferrara, A. Mesinger, Mon. Not. Roy. Astron. Soc, 442 (2014) 2036
  • (31) K. Sugimura, K. Omukai and A. K. Inoue, Mon. Not. Roy. Astron. Soc. 445, no.1, 544-553 (2014) [arXiv:1407.4039 [astro-ph.GA]].
  • (32) J. Wolcott-Green, Z. Haiman and G. L. Bryan, Mon. Not. Roy. Astron. Soc. 469, no.3, 3329-3336 (2017) [arXiv:1609.02142 [astro-ph.GA]].
  • (33) J. Wolcott-Green, Z. Haiman and G. L. Bryan, Mon. Not. Roy. Astron. Soc. 500, no.1, 138-144 (2020) [arXiv:2001.05498 [astro-ph.GA]].
  • (34) S. Chon, T. Hosokawa, N. Yoshida, Mon. Not. Roy. Astron. Soc. 475, 4104 (2018)
  • (35) R. Matsukoba, S. Z. Takahashi, K. Sugimura and K. Omukai, Mon. Not. Roy. Astron. Soc. 484, no.2, 2605-2619 (2019) [arXiv:1901.00007 [astro-ph.GA]].
  • (36) M. Spaans and J. Silk, Astrophys. J. 652, 902-906 (2006) [arXiv:astro-ph/0601714 [astro-ph]].
  • (37) D. B. Sanders, Astrophys. J. 162, 791 (1970)
  • (38) S. F. Portegies Zwart and S. L. W. McMillan, Astrophys. J. 576, 899-907 (2002) [arXiv:astro-ph/0201055 [astro-ph]].
  • (39) S. F. Portegies Zwart, H. Baumgardt, P. Hut, J. Makino and S. L. W. McMillan, Nature 428, 724 (2004) [arXiv:astro-ph/0402622 [astro-ph]].
  • (40) M. Freitag, M. A. Gurkan and F. A. Rasio, Mon. Not. Roy. Astron. Soc. 368, 141-161 (2006) [arXiv:astro-ph/0503130 [astro-ph]].
  • (41) K. Omukai, R. Schneider and Z. Haiman, Astrophys. J. 686, 801 (2008) [arXiv:0804.3141 [astro-ph]].
  • (42) B. Devecchi, and M. Volonteri, Astrophys. J 694, 302 (2009)
  • (43) M. Volonteri, Astron. Astrophys. Rev. 18, 279-315 (2010) [arXiv:1003.4404 [astro-ph.CO]].
  • (44) B. Devecchi, M. Volonteri, E. M. Rossi, M. Colpi and S. Portegies Zwart, Mon. Not. Roy. Astron. Soc. 421, 1465 (2012) [arXiv:1201.3761 [astro-ph.CO]].
  • (45) H. Katz, D. Sijacki and M.G. Haehnelt, Mon. Not. Roy. Astron. Soc. 451 (2015) 2352
  • (46) Y. Sakurai, N. Yoshida, M. S. Fujii and S. Hirano, Mon. Not. Roy. Astron. Soc. 472, no.2, 1677-1684 (2017) [arXiv:1704.06130 [astro-ph.GA]].
  • (47) N. C. Stone, A. H. W. Küpper and J. P. Ostriker, Mon. Not. Roy. Astron. Soc. 467, no.4, 4180-4199 (2017) [arXiv:1606.01909 [astro-ph.GA]].
  • (48) B. Reinoso, D. R. G. Schleicher, M. Fellhauer, R. S. Klessen and T. C. N. Boekholt, Astron. Astrophys. 614, A14 (2018) [arXiv:1801.05891 [astro-ph.GA]].
  • (49) H. Tagawa, Z. Haiman and B. Kocsis, [arXiv:1909.10517 [astro-ph.GA]].
  • (50) T. C. N. Boekholt, D. R. G. Schleicher, M. Fellhauer, R. S. Klessen, B. Reinoso, A. M. Stutz and L. Haemmerle, Mon. Not. Roy. Astron. Soc. 476, no.1, 366-380 (2018) [arXiv:1801.05841 [astro-ph.GA]].
  • (51) H. Yajima and S. Khochfar, Mon. Not. Roy. Astron. Soc. 457 2423 (2016)
  • (52) M. B. Davies, M. C. Miller and J. M. Bellovary, Astrophys. J. Lett. 740, L42 (2011) [arXiv:1106.5943 [astro-ph.CO]].
  • (53) A. Lupi, F. Haardt, M. Dotti, D. Fiacconi, L. Mayer and P. Madau, Mon. Not. Roy. Astron. Soc. 456, no.3, 2993-3003 (2016) [arXiv:1512.02651 [astro-ph.GA]].
  • (54) M. Kawasaki, A. Kusenko and T. T. Yanagida, Phys. Lett. B 711, 1-5 (2012) [arXiv:1202.3848 [astro-ph.CO]].
  • (55) K. Kohri, T. Nakama and T. Suyama, Phys. Rev. D 90, no.8, 083514 (2014) [arXiv:1405.5999 [astro-ph.CO]].
  • (56) T. Nakama, T. Suyama and J. Yokoyama, Phys. Rev. D 94, no.10, 103522 (2016) [arXiv:1609.02245 [gr-qc]].
  • (57) P. D. Serpico, V. Poulin, D. Inman and K. Kohri, Phys. Rev. Res. 2, no.2, 023204 (2020) [arXiv:2002.10771 [astro-ph.CO]].
  • (58) C. Ünal, E. D. Kovetz and S. P. Patil, Phys. Rev. D 103, no.6, 063519 (2021) [arXiv:2008.11184 [astro-ph.CO]].
  • (59) B. J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, Phys. Rev. D 81, 104019 (2010) [arXiv:0912.5297 [astro-ph.CO]].
  • (60) B. J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, [arXiv:2002.12778 [astro-ph.CO]].
  • (61) A. M. Green and B. J. Kavanagh, J. Phys. G 48, no.4, 043001 (2021) [arXiv:2007.10722 [astro-ph.CO]].
  • (62) B. J. Carr and F. Kuhnel, [arXiv:2110.02821 [astro-ph.CO]].
  • (63) K. Watarai, J. Fukue, M. Takeuchi, S. Mineshige, Publ. Astron. Soc. Jap. 52, 133 (2000)
  • (64) K. y. Watarai and S. Mineshige, Astrophys. J. 596, 421-429 (2003) [arXiv:astro-ph/0306548 [astro-ph]].
  • (65) F. Yuan and R. Narayan, Ann. Rev. Astron. Astrophys. 52, 529-588 (2014) [arXiv:1401.0586 [astro-ph.HE]].
  • (66) K. Kohri and S. Mineshige, Astrophys. J. 577, 311-321 (2002) [arXiv:astro-ph/0203177 [astro-ph]].
  • (67) K. Kohri, R. Narayan and T. Piran, Astrophys. J. 629, 341-361 (2005) [arXiv:astro-ph/0502470 [astro-ph]].
  • (68) M. C. Begelman, Mon. Not. Roy. Astron. Soc. 184, 53 (1978)
  • (69) A. Sadowski, Astrophys. J. Suppl. 183, 171-178 (2009) [arXiv:0906.0355 [astro-ph.HE]].
  • (70) J. S. B. Wyithe and A. Loeb, Mon. Not. Roy. Astron. Soc. 425, 2892 (2012)
  • (71) P. Madau, F. Haardt and M. Dotti, Astrophys. J. Lett. 784, L38 (2014) [arXiv:1402.6995 [astro-ph.CO]].
  • (72) K. Inayoshi, Z. Haiman and J. P. Ostriker, Mon. Not. Roy. Astron. Soc. 459, no.4, 3738-3755 (2016) [arXiv:1511.02116 [astro-ph.HE]].
  • (73) E. Pezzulli, R. Valiante, and R. Schneider Mon. Not. Roy. Astron. Soc. 458, 3047 (2016)
  • (74) E. Pezzulli, M. Volonteri, R. Schneider and R. Valiante, Mon. Not. Roy. Astron. Soc. 471, no.1, 589-595 (2017) [arXiv:1706.06592 [astro-ph.GA]].
  • (75) M. C. Begelman and M. Volonteri, Mon. Not. Roy. Astron. Soc. 464, 1102 (2017) [arXiv:1609.07137 [astro-ph.HE]].
  • (76) T. Alexander and P. Natarajan, Science 345 (2014) 1330.
  • (77) F. Pacucci, P. Natarajan, M. Volonteri, N. Cappelluti and C. M. Urry, Astrophys. J. Lett. 850, no.2, L42 (2017) [arXiv:1710.09375 [astro-ph.GA]].
  • (78) E. Takeo, K. Inayoshi and S. Mineshige, Mon. Not. Roy. Astron. Soc. 497, no.1, 302-317 (2020) [arXiv:2002.07187 [astro-ph.HE]].
  • (79) P. Natarajan, Mon. Not. Roy. Astron. Soc. 501, 1413 (2021)
  • (80) T. Ebisuzaki, J. Makino, T. G. Tsuru, Y. Funato, S. F. Portegies Zwart, P. Hut, S. McMillan, S. Matsushita, H. Matsumoto and R. Kawabe, Astrophys. J. Lett. 562, L19 (2001) [arXiv:astro-ph/0106252 [astro-ph]].
  • (81) T. L. Tanaka, R. M. O’Leary and R. Perna, Mon. Not. Roy. Astron. Soc. 455, no.3, 2619-2626 (2016) [arXiv:1509.05406 [astro-ph.CO]].
  • (82) A. Ewall-Wice, T. C. Chang, J. Lazio, O. Dore, M. Seiffert and R. A. Monsalve, Astrophys. J. 868, no.1, 63 (2018) [arXiv:1803.01815 [astro-ph.CO]].
  • (83) S. Sazonov and I. Khabibullin, Mon. Not. Roy. Astron. Soc. 489, no.1, 1127-1138 (2019) [arXiv:1812.05527 [astro-ph.HE]].
  • (84) A. Ewall-Wice, T. C. Chang and T. J. W. Lazio, Mon. Not. Roy. Astron. Soc. 492, no.4, 6086-6104 (2020) [arXiv:1903.06788 [astro-ph.GA]].
  • (85) Q. B. Ma, B. Ciardi, M. B. Eide, P. Busch, Y. Mao and Q. J. Zhi, Astrophys. J. 912, no.2, 143 (2021) [arXiv:2103.09394 [astro-ph.CO]].
  • (86) J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen and N. Mahesh, Nature 555, no.7694, 67-70 (2018) [arXiv:1810.05912 [astro-ph.CO]].
  • (87) G. D’Amico, P. Panci and A. Strumia, Phys. Rev. Lett. 121 (2018) no.1, 011103 doi:10.1103/PhysRevLett.121.011103 [arXiv:1803.03629 [astro-ph.CO]].
  • (88) N. Hiroshima, K. Kohri, T. Sekiguchi and R. Takahashi, Phys. Rev. D 104, no.8, 083547 (2021) [arXiv:2103.14810 [astro-ph.CO]].
  • (89) P. J. E. Peebles, Astrophys. J. 153, 1 (1968)
  • (90) Y. B. Zeldovich, V. G. Kurt and R. A. Sunyaev, Sov. Phys. JETP 28, 146 (1969) [Zh.Eksp.Teor.Fiz. 55 (1968) 278-286]
  • (91) S. Seager, D. D. Sasselov and D. Scott, Astrophys. J. Suppl. 128, 407-430 (2000) [arXiv:astro-ph/9912182 [astro-ph]].
  • (92) Y. Ali-Haimoud and C. M. Hirata, Phys. Rev. D 83, 043513 (2011) [arXiv:1011.3758 [astro-ph.CO]].
  • (93) J. Chluba and R. M. Thomas, Mon. Not. Roy. Astron. Soc. 412, 748 (2011) [arXiv:1010.3631 [astro-ph.CO]].
  • (94) H. Liu, T. R. Slatyer and J. Zavala, Phys. Rev. D 94, no.6, 063507 (2016) [arXiv:1604.02457 [astro-ph.CO]].
  • (95) H. Liu, G. W. Ridgway and T. R. Slatyer, Phys. Rev. D 101, no.2, 023530 (2020) [arXiv:1904.09296 [astro-ph.CO]].
  • (96) T. R. Slatyer, Phys. Rev. D 93, no.2, 023527 (2016) [arXiv:1506.03811 [hep-ph]].
  • (97) T. R. Slatyer, Phys. Rev. D 93, no.2, 023521 (2016) [arXiv:1506.03812 [astro-ph.CO]].
  • (98) S. Kato, J. Fukue and S. Mineshige, “Black-Hole Accretion Disks — Towards a New Paradigm”, ISBN 978-4-87698-740-5, Kyoto University Press (Kyoto, Japan), 2008,
  • (99) N. Kawanaka and S. Mineshige, Publ. Astron. Soc. Jap. 73, 630 (2021) [arXiv:2012.05386 [astro-ph.HE]].
  • (100) V.A. Moss, J.R. Allison, E.M. Sadler, R. Urquhart, R. Soria, J.R. Callingham, S.J. Curran, et al, Mon. Not. Roy. Astron. Soc. 471, 2952-2973 (2017), [arXiv:1707.01542 [astro-ph.GA]]
  • (101) F. Ursini, L. Bassani, F. Panessa, A. Bazzano, A. J. Bird, A. Malizia and P. Ubertini, Mon. Not. Roy. Astron. Soc. 474, no.4, 5684-5693 (2018) [arXiv:1712.01300 [astro-ph.HE]].
  • (102) S. J. Curran and S. W. Duchesne, Mon. Not. Roy. Astron. Soc. 476, no.d34, 5580-3590 (2018) [arXiv:1802.05760 [astro-ph.GA]]
  • (103) R. C. Hickox and D. M. Alexander, Ann. Rev. Astron. Astrophys. 56, 625-671 (2018) [arXiv:1806.04680 [astro-ph.GA]].
  • (104) R. Morganti and T. Oosterloo, Astron. Astrophys. Review 26, 4 (2018) [arXiv:1807.01475 [astro-ph.GA]]
  • (105) H. Liszt, Astrophys. J. Lett. 908, L127 (2020) [arXiv:2012.04702 [astro-ph.GA]]
  • (106) C. J. Willott, L. Albert, D. Arzoumanian, J. Bergeron, D. Crampton, P. Delorme, J.B. Hutchings, A. Omont, C. Reyle, and D. Schade, Astrophys. J. 140, 546 (2010) [arXiv:1006.1342 [astro-ph.CO]]
  • (107) J. M. Shull, and M. E. van Steenberg, Astrophys. J. 298, 268 (1985).
  • (108) X. L. Chen and M. Kamionkowski, Phys. Rev. D 70, 043502 (2004) [arXiv:astro-ph/0310473 [astro-ph]].
  • (109) E. Ripamonti, M. Mapelli and A. Ferrara, Mon. Not. Roy. Astron. Soc. 374, 1067-1077 (2007) [arXiv:astro-ph/0606482 [astro-ph]].
  • (110) N. Padmanabhan and D. P. Finkbeiner, Phys. Rev. D 72, 023508 (2005) [arXiv:astro-ph/0503486 [astro-ph]].
  • (111) T. Kanzaki and M. Kawasaki, Phys. Rev. D 78, 103004 (2008) [arXiv:0805.3969 [astro-ph]].
  • (112) T. R. Slatyer, N. Padmanabhan and D. P. Finkbeiner, Phys. Rev. D 80, 043526 (2009) [arXiv:0906.1197 [astro-ph.CO]].
  • (113) T. Kanzaki, M. Kawasaki and K. Nakayama, Prog. Theor. Phys. 123, 853-865 (2010) [arXiv:0907.3985 [astro-ph.CO]].
  • (114) C. Evoli, M. Valdes, A. Ferrara and N. Yoshida, Mon. Not. Roy. Astron. Soc. 422, 420-433 (2012)
  • (115) V. Poulin, J. Lesgourgues and P. D. Serpico, JCAP 03, 043 (2017) [arXiv:1610.10051 [astro-ph.CO]].
  • (116) O. Mena, S. Palomares-Ruiz, P. Villanueva-Domingo and S. J. Witte, Phys. Rev. D 100, no.4, 043540 (2019) [arXiv:1906.07735 [astro-ph.CO]].
  • (117) H. Liu, W. Qin, G. W. Ridgway and T. R. Slatyer, [arXiv:2008.01084 [astro-ph.CO]].
  • (118) B. Bolliet, J. Chluba and R. Battye, [arXiv:2012.07292 [astro-ph.CO]].
  • (119) F. Sassano, R. Schneider, R. Valiante, K. Inayoshi, S. Chon, K. Omukai, L. Mayer and P. R. Capelo, Mon. Not. Roy. Astron. Soc. 506, no.1, 613-632 (2021) [arXiv:2106.08330 [astro-ph.GA]].
  • (120) F. Pacucci and A. Loeb, [arXiv:2110.10176 [astro-ph.GA]].
  • (121) S. Furlanetto, S. P. Oh and F. Briggs, Phys. Rept. 433, 181-301 (2006) [arXiv:astro-ph/0608032 [astro-ph]].
  • (122) H. Liu and T. R. Slatyer, Phys. Rev. D 98, no.2, 023501 (2018) [arXiv:1803.09739 [astro-ph.CO]].
  • (123) R. Basu, S. Banerjee, M. Pandey and D. Majumdar, [arXiv:2010.11007 [astro-ph.CO]].
  • (124) S. A. Wouthuysen, Astron. J. 57 31–32 (1952).
  • (125) G. B. Field, Astrophys. J. 129 536 (1959).
  • (126) S. Singh, J. N. T., R. Subrahmanyan, N. U. Shankar, B. S. Girish, A. Raghunathan, R. Somashekar, K. S. Srivani and M. S. Rao, [arXiv:2112.06778 [astro-ph.CO]].
  • (127) A. K. Saha and R. Laha, [arXiv:2112.10794 [astro-ph.CO]].
  • (128) Z. Abdurashidova et al. [HERA], [arXiv:2108.02263 [astro-ph.CO]].
  • (129) V. Bromm, Rept. Prog. Phys. 76, 112901 (2013) [arXiv:1305.5178 [astro-ph.CO]].
  • (130) J. O. Gong and N. Kitajima, JCAP 08, 017 (2017) [arXiv:1704.04132 [astro-ph.CO]].
  • (131) J. O. Gong and N. Kitajima, JCAP 11, 041 (2018) [arXiv:1803.02745 [astro-ph.CO]].
  • (132) A. Hektor, G. Hütsi, L. Marzola, M. Raidal, V. Vaskonen and H. Veermäe, Phys. Rev. D 98, no.2, 023503 (2018) [arXiv:1803.09697 [astro-ph.CO]].
  • (133) G. Hütsi, M. Raidal and H. Veermäe, Phys. Rev. D 100, no.8, 083016 (2019) [arXiv:1907.06533 [astro-ph.CO]].
  • (134) G. Hasinger, JCAP 07, 022 (2020) [arXiv:2003.05150 [astro-ph.CO]].
  • (135) P. Villanueva-Domingo and K. Ichiki, [arXiv:2104.10695 [astro-ph.CO]].
  • (136) Y. Yang, Phys. Rev. D 104, no.6, 063528 (2021) [arXiv:2108.11130 [astro-ph.CO]].
  • (137) Y. Yang, Mon. Not. Roy. Astron. Soc. 508, 5709 (2021) [arXiv:2110.06447 [astro-ph.CO]].
  • (138) S. K. Acharya, J. Dhandha and J. Chluba, [arXiv:2208.03816 [astro-ph.CO]].
  • (139) K. J. Mack and D. H. Wesley, [arXiv:0805.1531 [astro-ph]].
  • (140) S. Clark, B. Dutta, Y. Gao, Y. Z. Ma and L. E. Strigari, Phys. Rev. D 98, no.4, 043006 (2018) [arXiv:1803.09390 [astro-ph.HE]].
  • (141) A. Halder and M. Pandey, Mon. Not. Roy. Astron. Soc. 508, 3446 (2021) [arXiv:2101.05228 [astro-ph.CO]].
  • (142) P. K. Natwariya, A. C. Nayak and T. Srivastava, [arXiv:2107.12358 [astro-ph.CO]].
  • (143) S. Mittal, A. Ray, G. Kulkarni and B. Dasgupta, [arXiv:2107.02190 [astro-ph.CO]].
  • (144) J. Cang, Y. Gao and Y. Z. Ma, [arXiv:2108.13256 [astro-ph.CO]].
  • (145) A. P. Beardsley, M. F. Morales, A. Lidz, M. Malloy and P. M. Sutter, Astrophys. J. 800, no.2, 128 (2015) [arXiv:1410.5427 [astro-ph.CO]].
  • (146) https://www.skatelescope.org
  • (147) M. Tegmark and M. Zaldarriaga, Phys. Rev. D 82 (2010) 103501 [arXiv:0909.0001].
  • (148) J. Burns, S. Bale, R. Bradley, Z. Ahmed, S. W. Allen, J. Bowman, S. Furlanetto, R. MacDowall, J. Mirocha and B. Nhan, et al. [arXiv:2103.05085 [astro-ph.CO]].