This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Counting involutions on multicomplex spaces

Nicolas Doyon Nicolas Doyon and William Verreault: Département de mathématiques et de statistique, Université Laval, Quebec City, QC, G1V 0A6, Canada Nicolas.Doyon@mat.ulaval.ca, william.verreault.2@ulaval.ca Pierre-Olivier Parisé Pierre-Olivier Parisé: Department of Mathematics, University of Hawai’i at Manoa, Honolulu, Hawai’i, United States, 96822 parisepo@math.hawaii.edu  and  William Verreault
Abstract.

We show that there is a bijection between real-linear automorphisms of the multicomplex numbers of order nn and signed permutations of length 2n12^{n-1}. This allows us to deduce a number of results on the multicomplex numbers, including a formula for the number of involutions on multicomplex spaces which generalizes a recent result on the bicomplex numbers and contrasts drastically with the quaternion case. We also generalize this formula to rr-involutions and obtain a formula for the number of involutions preserving elementary imaginary units. The proofs rely on new elementary results pertaining to multicomplex numbers that are surprisingly unknown in the literature, including a count and a representation theorem for numbers squaring to ±1\pm 1.

Key words and phrases:
Clifford algebras, real algebras, multicomplex numbers, bicomplex numbers, signed permutations, involutions.
2020 Mathematics Subject Classification:
Primary: 05Axx; Secondary: 05A05, 15A66, 13J30.

1. Introduction

Let ff be a function on a ring AA containing \mathbb{R} as a subfield. We say that ff is an involution of AA if ff is a real-linear ring homomorphism satisfying f(f(a))=af(f(a))=a for any aAa\in A.

When AA is the complex plane, it is easy to show that the only involutions f:f:\mathbb{C}\rightarrow\mathbb{C} are f(z)=zf(z)=z and f(z)=z¯f(z)=\overline{z}, the usual complex conjugate. However, for other rings, the situation might change drastically. For example, if AA is the field of quaternions, then we know from the work in [12, 14] that there are infinitely many involutions. If q=a+b𝐢+c𝐣+d𝐤q=a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k} is a quaternion with the usual rules

𝐢𝐣=𝐣𝐢=𝐤,𝐣𝐤=𝐤𝐣=𝐢,𝐤𝐢=𝐢𝐤=𝐣\displaystyle\mathbf{i}\mathbf{j}=-\mathbf{j}\mathbf{i}=\mathbf{k},\quad\mathbf{j}\mathbf{k}=-\mathbf{k}\mathbf{j}=\mathbf{i},\quad\mathbf{k}\mathbf{i}=-\mathbf{i}\mathbf{k}=\mathbf{j}

and 𝐢𝟐=𝐣𝟐=𝐤𝟐=1\mathbf{i^{2}}=\mathbf{j^{2}}=\mathbf{k^{2}}=-1, then any involution is given by fμ(q)=μqμf_{\mu}(q)=\mu q\mu where μ=a0𝐢+b0𝐣+c0𝐤\mu=a_{0}\mathbf{i}+b_{0}\mathbf{j}+c_{0}\mathbf{k} with a02+b02+c02=1a_{0}^{2}+b_{0}^{2}+c_{0}^{2}=1. This is a drastic change compared to the situation of the complex numbers where there are only two involutions of the complex plane.

In a recent work [20], the second author replaced quaternions by the commutative ring of bicomplex numbers. The bicomplex numbers are defined similarly to the quaternions. A bicomplex number ss is defined as s=a+b𝐢𝟏+c𝐢𝟐+d𝐢𝟏𝐢𝟐s=a+b\mathbf{i_{1}}+c\mathbf{i_{2}}+d\mathbf{i_{1}}\mathbf{i_{2}} with the rules

𝐢𝟏𝐢𝟐=𝐢𝟐𝐢𝟏,𝐢𝟏𝟐=𝐢𝟐𝟐=1.\displaystyle\mathbf{i_{1}}\mathbf{i_{2}}=\mathbf{i_{2}}\mathbf{i_{1}},\quad\mathbf{i_{1}^{2}}=\mathbf{i_{2}^{2}}=-1.

Bicomplex numbers are usually denoted by 𝕄(2)\mathbb{M}\mathbb{C}(2) or 𝔹\mathbb{B}\mathbb{C}. Main references for these are [17, 21]. If we ask how many involutions there are of the bicomplex numbers, then the situation is much more similar to the complex plane case, since there are only 6 involutions of the bicomplex numbers. Surprisingly, only 4 of these involutions had been found in the literature before. For more details on this, see [20, Theorem 1].

The goal of this paper is to extend the result from [20] to the multicomplex numbers of order n1n\geq 1, denoted by 𝕄(n)\mathbb{M}\mathbb{C}(n). The multicomplex numbers are a generalization of the complex numbers and the bicomplex numbers to higher dimensions. More and more efforts are put in the development of the theory of multicomplex numbers in the past decades. For example, they are used to introduce generalizations of concepts from real and complex analysis, e.g., multicomplex fractional operators [3], multicomplex hyperanalytic functions [26], Laurent series [16], Riemannian and semi-Riemannian geometry [27], and multicomplex holomorphic functions [24]. They were also used to generalize the Mandelbrot set to higher dimensions (see [1], [2], and [13]), and in theoretical physics to generalize the linear and non-linear Schrödinger’s equation [25]. The second section of this paper gives some preliminaries on the multicomplex numbers.

We note that counting involutions is very natural in many other settings than real algebras, where involutions play a fundamental role. Perhaps the most prominent example is counting involutions on the symmetric group SnS_{n} (see, for instance, [6, 18]). Related to this are signed permutations and, in particular, signed involutions. A signed permutation of length nn is a permutation of {1,2,,n}\{1,2,\ldots,n\} written in one-line notation where each entry may have a bar over it. For instance, π=31¯2\pi=3\overline{1}2 is a signed permutation. We write BnB_{n} for the set of signed permutations of length nn, which also corresponds to the group of symmetries of a hypercube, the hyperoctahedral group, which is a Coxeter group of type BB and of rank nn [5, 11, 22]. The first main result of this paper establishes a connection between real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n) and B2n1B_{2^{n-1}}.

Theorem 1.1.

For each integer n1n\geq 1, there is a bijection between the set of real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n) and B2n1B_{2^{n-1}}. Furthermore, this bijection sends the identity function to the identity signed permutation and is compatible with composition.

The proof of this theorem is given in Section 3. The idea of the proof is based on the idempotent representation of a multicomplex number and on a representation theorem for the numbers squaring to ±1\pm 1. In particular, we prove in section 2 the following elementary fact pertaining to multicomplex numbers, which was surprisingly unknown in the literature.

Proposition 1.2.

For each integer n1n\geq 1, there are 22n12^{2^{n-1}} multicomplex numbers squaring to 11, and 22n12^{2^{n-1}} squaring to 1-1.

We also prove that the same is true for idempotent elements, which resolves a recent conjecture [28].

Proposition 1.3.

For each integer n1n\geq 1, there are 22n12^{2^{n-1}} idempotent elements in 𝕄(n)\mathbb{M}\mathbb{C}(n).

We first use Theorem 1.1 to count the number of real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n).

Corollary 1.4.

For each integer n1n\geq 1, there are

22n1(2n1)!2^{2^{n-1}}(2^{n-1})!

real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n).

It also allows us to obtain a formula giving the number of involutions of the multicomplex numbers, which was our goal, and to deduce a few more corollaries.

Corollary 1.5.

For n1n\geq 1 a positive integer, write F(n)F(n) for the number of involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n).

  1. (i)

    The following formula holds:

    F(n)=(2n1)!k=02n222n12kk!(2n12k)!.F(n)=(2^{n-1})!\sum_{k=0}^{\lfloor 2^{n-2}\rfloor}\frac{2^{2^{n-1}-2k}}{k!(2^{n-1}-2k)!}.
  2. (ii)

    If g(1)=2g(1)=2, g(2)=6g(2)=6, and

    g(n)=2g(n1)+(2n2)g(n2),n3,\displaystyle g(n)=2g(n-1)+(2n-2)g(n-2),\qquad n\geq 3,

    then F(n)=g(2n1)F(n)=g(2^{n-1}).

  3. (iii)

    The asymptotics

    F(n)(2ne)2n2e2n/22eF(n)\sim\Bigl{(}\frac{2^{n}}{e}\Bigr{)}^{2^{n-2}}\frac{e^{2^{n/2}}}{\sqrt{2e}}

    hold as nn\to\infty.

Note that g(n)g(n) is documented on the OEIS under sequence A000898 [19], where more results on g(n)g(n) (hence on F(n)F(n)) can be found. Also, considering the first few values of F(n)F(n) as in the following table tells us that the fast growth rate of the previous asymptotics is not surprising.

nn 1 2 3 4 5
F(n)F(n) 2 6 76 32,400 50,305,536,256
Remark.

Theorem 1.1 could be used to deduce more results on certain subsets of real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n) from known results on BnB_{n}, but this would be rather artificial as these results would not necessarily translate mutatis mutandis in the language of multicomplex functions. However, studying involutions on multicomplex spaces via our bijection is natural because the involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n) precisely correspond to signed involutions on B2n1B_{2^{n-1}}.

We also study rr-involutions of the multicomplex numbers. We call a function ff of 𝕄(n)\mathbb{M}\mathbb{C}(n) an rr-involution if ff is a real-linear ring homomorphism such that f(r)=Idf^{(r)}=\mathrm{Id}, where f(r)f^{(r)} is the rr-th composition of ff and Id\mathrm{Id} is the identity map. Note that from this definition, it follows that if ff is an rr-involution, then it is also an mrmr-involution for any positive integer mm.

We denote by Fr(n)F_{r}(n) the number of such rr-involutions on 𝕄(n)\mathbb{M}\mathbb{C}(n). We define Sn,tS_{n,t} as the set of permutations σ\sigma of nn elements such that σ(t)=Id.\sigma^{(t)}=\mathrm{Id}. For a given permutation σ\sigma, we denote by cyck(σ)\mathrm{cyc}_{k}(\sigma) the number of disjoint cycles of length kk in σ\sigma. Using Theorem 1.1 again, we prove in section 4 the following more general result

Corollary 1.6.

Let p>2p>2 be a prime number. The number of pp-involutions of the multicomplex numbers 𝕄(n)\mathbb{MC}(n) with n1n\geq 1 is given by

Fp(n)=(2n1)!k=02n1/p2(p1)kk!pk(2n1pk)!.\displaystyle F_{p}(n)=(2^{n-1})!\sum_{k=0}^{\lfloor 2^{n-1}/p\rfloor}\frac{2^{(p-1)k}}{k!p^{k}(2^{n-1}-pk)!}.

More generally, if r>1r>1 is a positive integer, the number of rr-involutions of the multicomplex numbers 𝕄(n)\mathbb{MC}(n) with n1n\geq 1 is given by

Fr(n)=22n1σS2n1,r(k|r,r/kisodd12cyck(σ)).\displaystyle F_{r}(n)=2^{2^{n-1}}\sum_{\sigma\in S_{2^{n-1},r}}\Big{(}\prod_{k|r,\,r/k\mathrm{\,is\,odd}}\frac{1}{2^{\mathrm{cyc}_{k}(\sigma)}}\Big{)}.

Remark that if p>2n1p>2^{n-1}, then Fp(n)=1F_{p}(n)=1, and the only counted pp-involution is the identity map. Also, in the second part of Corollary 1.6, it is clear that cyck(σ)=0\mathrm{cyc}_{k}(\sigma)=0 if k>2n1k>2^{n-1}. Hence, if r>2n1r>2^{n-1}, the product could be restricted to the values of kk such that k2n1k\leq 2^{n-1}.

The previous Corollary and Theorem 1.1 imply the following result on signed rr-involutions of BnB_{n}, which we could not find in the literature, although it could be deduced from stronger results on rr-involutions in more general groups (see, e.g., [4]).

Corollary 1.7.

Fix n1n\geq 1 a positive integer. For r>1r>1, the number of signed rr-involutions on BnB_{n} is

2nσSn,r(k|r,r/kisodd12cyck(σ)).2^{n}\sum_{\sigma\in S_{n,r}}\Big{(}\prod_{k|r,\,r/k\mathrm{\,is\,odd}}\frac{1}{2^{\mathrm{cyc}_{k}(\sigma)}}\Big{)}.

In particular, for p>2p>2 a prime number, the number of pp-involutions on BnB_{n} is

n!k=0n/p2(p1)kk!pk(npk)!.n!\sum_{k=0}^{\lfloor n/p\rfloor}\frac{2^{(p-1)k}}{k!p^{k}(n-pk)!}.

Our last main result gives a count for a particular type of involutions on 𝕄(n)\mathbb{M}\mathbb{C}(n). We let 𝐢𝟏,,𝐢𝐧\mathbf{i_{1}},\ldots,\mathbf{i_{n}} be the elementary commuting imaginary units of 𝕄(n)\mathbb{MC}(n) and define the set 𝕀(n)\mathbb{I}(n) as the set of numbers that can be written as 𝐢𝟏a1𝐢𝐧an\mathbf{i_{1}}^{a_{1}}\cdots\mathbf{i_{n}}^{a_{n}} with ak{0,1}.a_{k}\in\{0,1\}. Observe that since 𝐢𝐤𝟐=1, 1kn\mathbf{i_{k}^{2}}=-1,\,1\leq k\leq n, and the elementary units commute, the elements of 𝕀(n)\mathbb{I}(n) square to ±1\pm 1. For this introduction, it is sufficient to mention that a multicomplex number η\eta can be written as a linear combination of these units as

η=𝐢𝕀(n)η𝐢𝐢,\displaystyle\eta=\sum_{\mathbf{i}\in\mathbb{I}(n)}\eta_{\mathbf{i}}\mathbf{i},

where η𝐢\eta_{\mathbf{i}}\in\mathbb{R}. The proof of Proposition 1.2 highlighted a surprising phenomenon in the multicomplex numbers: there are numbers squaring to 1-1 and 11 that are not in the set of units 𝕀(n)\mathbb{I}(n). Our observation motivates the following question: how many involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n) send the units of 𝕀(n)\mathbb{I}(n) to the units of 𝕀(n)\mathbb{I}(n)? We call such involutions 𝕀(n)\mathbb{I}(n)-preserving involutions. The following theorem gives an answer.

Theorem 1.8.

The number of 𝕀(n)\mathbb{I}(n)-preserving involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n), with n1n\geq 1, is

k=n/2n(j=1k12n2j2k2j)(j=0nk1(2k2j))2k,\displaystyle\sum_{k=\lceil n/2\rceil}^{n}\Big{(}\prod_{j=1}^{k-1}\frac{2^{n}-2^{j}}{2^{k}-2^{j}}\Big{)}\Big{(}\prod_{j=0}^{n-k-1}(2^{k}-2^{j})\Big{)}2^{k},

where an empty product is understood to be equal to 11.

The proof of Theorem 1.8 relies on completely different tools. The main idea is to transfer the problem of counting involutions on 𝕄(n)\mathbb{M}\mathbb{C}(n) to counting matrices with entries in {0,1}\{0,1\}. The proof of the last theorem is presented in Section 5. We note that we could not find a reference for the sequence of values given by the formula in Theorem 1.8 on the On-Line Encyclopedia of Integer Sequences. Moreover, Theorem 1.8 is a more natural generalization of the analogue result for bicomplex numbers from [20]. Indeed, in the bicomplex numbers, the involutions preserve the set of units 𝕀(2)\mathbb{I}(2).

2. Background on multicomplex numbers

Multicomplex numbers were introduced by Segre [23] and Cockle [7, 8, 9, 10] to give a generalization of the complex numbers to n\mathbb{C}^{n}, for n2n\geq 2. For a modern treatment of the multicomplex numbers, we refer the reader to [21]. We will mainly follow the presentation given in [2], with some changes in the notation.

2.1. Multicomplex numbers

The definition of the multicomplex numbers is given recursively. Let 𝕄(0)\mathbb{M}\mathbb{C}(0) be the set of real numbers and let 𝕄(n)\mathbb{M}\mathbb{C}(n), n1n\geq 1, be the set

(2.1) 𝕄(n):={η=η1+η2𝐢𝐧:η1,η2𝕄(n1),𝐢𝐧𝟐=1}.\displaystyle\mathbb{M}\mathbb{C}(n):=\{\eta=\eta_{1}+\eta_{2}\mathbf{i_{n}}\,:\,\eta_{1},\eta_{2}\in\mathbb{M}\mathbb{C}(n-1),\,\mathbf{i_{n}^{2}}=-1\}.

For example, when n=1n=1, we obtain the set 𝕄(1)\mathbb{M}\mathbb{C}(1) of complex numbers η1+η2𝐢𝟏\eta_{1}+\eta_{2}\mathbf{i_{1}}, where 𝐢𝟏𝟐=1\mathbf{i_{1}^{2}}=-1. When n=2n=2, we obtain the set 𝕄(2)\mathbb{M}\mathbb{C}(2) of bicomplex numbers η1+η2𝐢𝟐\eta_{1}+\eta_{2}\mathbf{i_{2}}, where η1,η2\eta_{1},\eta_{2} are complex numbers, 𝐢𝟐𝟐=1\mathbf{i_{2}^{2}}=-1, and 𝐢𝟏𝐢𝟐\mathbf{i_{1}}\neq\mathbf{i_{2}}. We say that two multicomplex numbers η\eta and ζ\zeta are equal if and only if η1=ζ1\eta_{1}=\zeta_{1} and η2=ζ2\eta_{2}=\zeta_{2}. If we let η2=0\eta_{2}=0 in the expression of a multicomplex number η=η1+η2𝐢𝐧\eta=\eta_{1}+\eta_{2}\mathbf{i_{n}}, we see that 𝕄(n1)𝕄(n)\mathbb{M}\mathbb{C}(n-1)\subset\mathbb{M}\mathbb{C}(n).

The set of multicomplex numbers becomes a commutative ring if we endow it with the following algebraic operations:

  • η+ζ:=(η1+ζ1)+(η2+ζ2)𝐢𝐧\eta+\zeta:=(\eta_{1}+\zeta_{1})+(\eta_{2}+\zeta_{2})\mathbf{i_{n}};

  • ηζ:=(η1ζ1η2ζ2)+(η1ζ2+η2ζ1)𝐢𝐧\eta\zeta:=(\eta_{1}\zeta_{1}-\eta_{2}\zeta_{2})+(\eta_{1}\zeta_{2}+\eta_{2}\zeta_{1})\mathbf{i_{n}}.

These last operations must be understood recursively.

Let η=η1+η2𝐢𝐧\eta=\eta_{1}+\eta_{2}\mathbf{i_{n}} be a multicomplex number. This means that η1,η2𝕄(n1)\eta_{1},\eta_{2}\in\mathbb{M}\mathbb{C}(n-1). Therefore, there are multicomplex numbers η11,η12,η21,η22𝕄(n2)\eta_{11},\eta_{12},\eta_{21},\eta_{22}\in\mathbb{M}\mathbb{C}(n-2) such that η1=η11+η12𝐢𝐧𝟏\eta_{1}=\eta_{11}+\eta_{12}\mathbf{i_{n-1}} and η2=η21+η22𝐢𝐧𝟏\eta_{2}=\eta_{21}+\eta_{22}\mathbf{i_{n-1}}. Replacing the η1\eta_{1} and η2\eta_{2} in the expression for η\eta, we obtain the representation of a multicomplex number in 𝕄(n)\mathbb{M}\mathbb{C}(n) in terms of four components in 𝕄(n2)\mathbb{M}\mathbb{C}(n-2):

ζ=(η11+η12𝐢𝐧𝟏)+(η21+η22𝐢𝐧𝟏)𝐢𝐧.\displaystyle\zeta=(\eta_{11}+\eta_{12}\mathbf{i_{n-1}})+(\eta_{21}+\eta_{22}\mathbf{i_{n-1}})\mathbf{i_{n}}.

From the definition of the multiplication, we can distribute 𝐢𝐧\mathbf{i_{n}} to obtain

ζ=η11+η12𝐢𝐧𝟏+η21𝐢𝐧+η22𝐢𝐧𝟏𝐢𝐧.\displaystyle\zeta=\eta_{11}+\eta_{12}\mathbf{i_{n-1}}+\eta_{21}\mathbf{i_{n}}+\eta_{22}\mathbf{i_{n-1}}\mathbf{i_{n}}.

For example, a bicomplex number η=η1+η2𝐢𝟐\eta=\eta_{1}+\eta_{2}\mathbf{i_{2}} can be expressed in a linear combination of four real numbers as follows:

η=η11+η12𝐢𝟏+η21𝐢𝟐+η22𝐢𝟏𝐢𝟐.\displaystyle\eta=\eta_{11}+\eta_{12}\mathbf{i_{1}}+\eta_{21}\mathbf{i_{2}}+\eta_{22}\mathbf{i_{1}}\mathbf{i_{2}}.

We can continue this process recursively until we reach the set 𝕄(0)\mathbb{M}\mathbb{C}(0). At each stage kk (1kn1\leq k\leq n) of the process, we obtain a representation of a multicomplex number in terms of 2k2^{k} multicomplex numbers in 𝕄(nk)\mathbb{M}\mathbb{C}(n-k). All of these representations are called the canonical representation (or the cartesian representation) of a multicomplex number. The canonical representation we are interested in is the one in terms of 2n2^{n} components in 𝕄(0)\mathbb{M}\mathbb{C}(0). To be more explicit, recall that 𝕀(n)\mathbb{I}(n) is the set of all different possible products of the elements in the set {1,𝐢𝟏,𝐢𝟐,,𝐢𝐧}\{1,\mathbf{i_{1}},\mathbf{i_{2}},\ldots,\mathbf{i_{n}}\}. Since the multiplication is commutative, the cardinality of 𝕀(n)\mathbb{I}(n) is 2n2^{n}. Therefore, we can write any multicomplex number as

(2.2) η=𝐢𝕀(n)η𝐢𝐢,\displaystyle\eta=\sum_{\mathbf{i}\in\mathbb{I}(n)}\eta_{\mathbf{i}}\mathbf{i},

where η𝐢\eta_{\mathbf{i}}\in\mathbb{R}. This tells us that the elements of 𝕀(n)\mathbb{I}(n) form a basis of 𝕄(n)\mathbb{M}\mathbb{C}(n). For instance, when n=2n=2 or 33, the following holds:

  • For η𝕄(2)\eta\in\mathbb{M}\mathbb{C}(2), we have

    η=η1+η𝐢𝟏𝐢𝟏+η𝐢𝟐𝐢𝟐+η𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟐.\displaystyle\eta=\eta_{1}+\eta_{\mathbf{i_{1}}}\mathbf{i_{1}}+\eta_{\mathbf{i_{2}}}\mathbf{i_{2}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}\mathbf{i_{1}}\mathbf{i_{2}}.
  • For η𝕄(3)\eta\in\mathbb{M}\mathbb{C}(3), we have

    η=η1+η𝐢𝟏𝐢𝟏+η𝐢𝟐𝐢𝟐+η𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟐+η𝐢𝟑𝐢𝟑+η𝐢𝟏𝐢𝟑𝐢𝟏𝐢𝟑+η𝐢𝟐𝐢𝟑𝐢𝟐𝐢𝟑+η𝐢𝟏𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑.\displaystyle\eta=\eta_{1}+\eta_{\mathbf{i_{1}}}\mathbf{i_{1}}+\eta_{\mathbf{i_{2}}}\mathbf{i_{2}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}\mathbf{i_{1}}\mathbf{i_{2}}+\eta_{\mathbf{i_{3}}}\mathbf{i_{3}}+\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}\mathbf{i_{1}}\mathbf{i_{3}}+\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{2}}\mathbf{i_{3}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}.

Using this representation and the algebraic operations defined above, we can view the set 𝕄(n)\mathbb{M}\mathbb{C}(n) as a commutative and associative algebra on the set of real numbers.

2.2. An idempotent representation for multicomplex numbers

Of particular importance in the set of multicomplex numbers are the numbers η\eta such that η2=η\eta^{2}=\eta, which are called idempotent numbers. In particular, we consider

𝐞𝐧:=1+𝐢𝐧𝟏𝐢𝐧2and𝐞¯𝐧:=1𝐢𝐧𝟏𝐢𝐧2.\displaystyle\mathbf{e_{n}}:=\frac{1+\mathbf{i_{n-1}}\mathbf{i_{n}}}{2}\quad\text{and}\quad\mathbf{\overline{e}_{n}}:=\frac{1-\mathbf{i_{n-1}}\mathbf{i_{n}}}{2}.

An additional property that these numbers have is that 𝐞𝐧𝐞¯𝐧=0\mathbf{e_{n}}\mathbf{\overline{e}_{n}}=0. If we multiply a multicomplex number η=η1+η2𝐢𝐧\eta=\eta_{1}+\eta_{2}\mathbf{i_{n}} by 𝐞𝐧\mathbf{e_{n}} and by 𝐞¯𝐧\mathbf{\overline{e}_{n}} respectively, we obtain

η𝐞𝐧=(η1η2𝐢𝐧𝟏)𝐞𝐧andη𝐞¯𝐧=(η1+η2𝐢𝐧𝟏)𝐞¯𝐧.\displaystyle\eta\mathbf{e_{n}}=(\eta_{1}-\eta_{2}\mathbf{i_{n-1}})\mathbf{e_{n}}\quad\text{and}\quad\eta\mathbf{\overline{e}_{n}}=(\eta_{1}+\eta_{2}\mathbf{i_{n-1}})\mathbf{\overline{e}_{n}}.

Since 𝐞𝐧+𝐞¯𝐧=1\mathbf{e_{n}}+\mathbf{\overline{e}_{n}}=1, summing η𝐞𝐧\eta\mathbf{e_{n}} and η𝐞¯𝐧\eta\mathbf{\overline{e}_{n}} yields the idempotent representation of a multicomplex number, namely

η=(η1η2𝐢𝐧𝟏)𝐞𝐧+(η1+η2𝐢𝐧𝟏)𝐞¯𝐧.\displaystyle\eta=(\eta_{1}-\eta_{2}\mathbf{i_{n-1}})\mathbf{e_{n}}+(\eta_{1}+\eta_{2}\mathbf{i_{n-1}})\mathbf{\overline{e}_{n}}.

We see that the numbers multiplying 𝐞𝐧\mathbf{e_{n}} and 𝐞¯𝐧\mathbf{\overline{e}_{n}} are elements of 𝕄(n1)\mathbb{M}\mathbb{C}(n-1), which we call the idempotent components of η\eta. We will denote them by η𝐞𝐧\eta_{\mathbf{e_{n}}} and η𝐞¯𝐧\eta_{\mathbf{\overline{e}_{n}}}, respectively. The idempotent representation can therefore be rewritten as

(2.3) η=η𝐞𝐧𝐞𝐧+η𝐞¯𝐧𝐞¯𝐧.\displaystyle\eta=\eta_{\mathbf{e_{n}}}\mathbf{e_{n}}+\eta_{\mathbf{\overline{e}_{n}}}\mathbf{\overline{e}_{n}}.

Note that two multicomplex numbers are equal if and only if their idempotent components are equal.

The idempotent representation is important because it transforms the multiplication of multicomplex numbers into a component-wise multiplication. More precisely, if η=η𝐞𝐧𝐞𝐧+η𝐞¯𝐧𝐞¯𝐧\eta=\eta_{\mathbf{e_{n}}}\mathbf{e_{n}}+\eta_{\mathbf{\overline{e}_{n}}}\mathbf{\overline{e}_{n}} and ζ=ζ𝐞𝐧𝐞𝐧+ζ𝐞¯𝐧𝐞¯𝐧\zeta=\zeta_{\mathbf{e_{n}}}\mathbf{e_{n}}+\zeta_{\mathbf{\overline{e}_{n}}}\mathbf{\overline{e}_{n}}, then we have

(2.4) ηζ=η𝐞𝐧ζ𝐞𝐧𝐞𝐧+η𝐞¯𝐧ζ𝐞¯𝐧𝐞¯𝐧.\displaystyle\eta\zeta=\eta_{\mathbf{e_{n}}}\zeta_{\mathbf{e_{n}}}\mathbf{e_{n}}+\eta_{\mathbf{\overline{e}_{n}}}\zeta_{\mathbf{\overline{e}_{n}}}\mathbf{\overline{e}_{n}}.

We now apply this result to the idempotent components of a multicomplex number η\eta. Define

𝐞𝐧𝟏:=1+𝐢𝐧𝟐𝐢𝐧𝟏2and𝐞¯𝐧𝟏:=1𝐢𝐧𝟐𝐢𝐧𝟏2.\displaystyle\mathbf{e_{n-1}}:=\frac{1+\mathbf{i_{n-2}}\mathbf{i_{n-1}}}{2}\quad\text{and}\quad\mathbf{\overline{e}_{n-1}}:=\frac{1-\mathbf{i_{n-2}}\mathbf{i_{n-1}}}{2}.

Then, the idempotent components η𝐞𝐧\eta_{\mathbf{e_{n}}} and η𝐞¯𝐧\eta_{\mathbf{\overline{e}_{n}}} of η𝕄(n)\eta\in\mathbb{M}\mathbb{C}(n) can be written as

η𝐞𝐧=η𝐞𝐧𝟏𝐞𝐧𝐞𝐧𝟏+η𝐞¯𝐧𝟏𝐞𝐧𝐞¯𝐧𝟏\displaystyle\eta_{\mathbf{e_{n}}}=\eta_{\mathbf{e_{n-1}}\mathbf{e_{n}}}\mathbf{e_{n-1}}+\eta_{\mathbf{\overline{e}_{n-1}}\mathbf{e_{n}}}\mathbf{\overline{e}_{n-1}}

and

η𝐞¯𝐧=η𝐞𝐧𝟏𝐞¯𝐧𝐞𝐧𝟏+η𝐞¯𝐧𝟏𝐞¯𝐧𝐞¯𝐧𝟏,\displaystyle\eta_{\mathbf{\overline{e}_{n}}}=\eta_{\mathbf{e_{n-1}}\mathbf{\overline{e}_{n}}}\mathbf{e_{n-1}}+\eta_{\mathbf{\overline{e}_{n-1}}\mathbf{\overline{e}_{n}}}\mathbf{\overline{e}_{n-1}},

where η𝐞𝐧𝟏𝐞𝐧,η𝐞¯𝐧𝟏𝐞𝐧,η𝐞𝐧𝟏𝐞¯𝐧,η𝐞¯𝐧𝟏𝐞¯𝐧𝕄(n2)\eta_{\mathbf{e_{n-1}}\mathbf{e_{n}}},\eta_{\mathbf{\overline{e}_{n-1}}\mathbf{e_{n}}},\eta_{\mathbf{e_{n-1}}\mathbf{\overline{e}_{n}}},\eta_{\mathbf{\overline{e}_{n-1}}\mathbf{\overline{e}_{n}}}\in\mathbb{M}\mathbb{C}(n-2). Replacing these in the idempotent representation of η𝕄(n)\eta\in\mathbb{M}\mathbb{C}(n), we obtain a second idempotent representation in terms of components in 𝕄(n2)\mathbb{M}\mathbb{C}(n-2):

η=η𝐞𝐧𝟏𝐞𝐧𝐞𝐧𝟏𝐞𝐧+η𝐞¯𝐧𝟏𝐞𝐧𝐞¯𝐧𝟏𝐞𝐧+η𝐞𝐧𝟏𝐞¯𝐧𝐞𝐧𝟏𝐞¯𝐧+η𝐞¯𝐧𝟏𝐞¯𝐧𝐞¯𝐧𝟏𝐞¯𝐧.\displaystyle\eta=\eta_{\mathbf{e_{n-1}}\mathbf{e_{n}}}\mathbf{e_{n-1}}\mathbf{e_{n}}+\eta_{\mathbf{\overline{e}_{n-1}}\mathbf{e_{n}}}\mathbf{\overline{e}_{n-1}}\mathbf{e_{n}}+\eta_{\mathbf{e_{n-1}}\mathbf{\overline{e}_{n}}}\mathbf{e_{n-1}}\mathbf{\overline{e}_{n}}+\eta_{\mathbf{\overline{e}_{n-1}}\mathbf{\overline{e}_{n}}}\mathbf{\overline{e}_{n-1}}\mathbf{\overline{e}_{n}}.

More generally, define the following elements for each integer k2k\geq 2:

𝐞𝐤:=1+𝐢𝐤𝟏𝐢𝐤2and𝐞¯𝐤:=1𝐢𝐤𝟏𝐢𝐤2.\displaystyle\mathbf{e_{k}}:=\frac{1+\mathbf{i_{k-1}}\mathbf{i_{k}}}{2}\quad\text{and}\quad\mathbf{\overline{e}_{k}}:=\frac{1-\mathbf{i_{k-1}}\mathbf{i_{k}}}{2}.

We then define a family of sets (k,n)\mathcal{E}(k,n) inductively for n2n\geq 2 and 2kn2\leq k\leq n:

  • (n,n):={𝐞𝐧,𝐞¯𝐧}\mathcal{E}(n,n):=\{\mathbf{e_{n}},\mathbf{\overline{e}_{n}}\} for k=nk=n;

  • (k,n):=(k+1,n)𝐞𝐤(k+1,n)𝐞¯𝐤\mathcal{E}(k,n):=\mathcal{E}(k+1,n)\mathbf{e_{k}}\cup\mathcal{E}(k+1,n)\mathbf{\overline{e}_{k}} for 2k<n2\leq k<n.

Now, for any 2kn2\leq k\leq n, an induction argument shows that the cardinality of (k,n)\mathcal{E}(k,n) is 2nk+12^{n-k+1}. Also, by induction, we have that if 𝜺(k,n)\bm{\varepsilon}\in\mathcal{E}(k,n), then 𝜺2=𝜺\bm{\varepsilon}^{2}=\bm{\varepsilon}, and if 𝜺1,𝜺2(k,n){\bm{\varepsilon}}_{1},{\bm{\varepsilon}}_{2}\in\mathcal{E}(k,n) with 𝜺1𝜺2{\bm{\varepsilon}}_{1}\neq{\bm{\varepsilon}}_{2}, then 𝜺1𝜺2=0{\bm{\varepsilon}}_{1}{\bm{\varepsilon}}_{2}=0.

Finally, any multicomplex number η𝕄(n)\eta\in\mathbb{M}\mathbb{C}(n) can be rewritten as

η=𝜺(k,n)η𝜺𝜺,\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}(k,n)}\eta_{\bm{\varepsilon}}\bm{\varepsilon},

where η𝜺𝕄(k1)\eta_{\bm{\varepsilon}}\in\mathbb{M}\mathbb{C}(k-1) for all 𝜺(k,n)\bm{\varepsilon}\in\mathcal{E}(k,n).

These new idempotent representations still have the advantage of simplifying the operation of multiplication. If

η=𝜺(k,n)η𝜺𝜺andζ=𝜺(k,n)ζ𝜺𝜺,\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}(k,n)}\eta_{\bm{\varepsilon}}\bm{\varepsilon}\quad\text{and}\quad\zeta=\sum_{\bm{\varepsilon}\in\mathcal{E}(k,n)}\zeta_{\bm{\varepsilon}}\bm{\varepsilon},

then the following holds:

  • η=ζ\eta=\zeta if and only if η𝜺=ζ𝜺\eta_{\bm{\varepsilon}}=\zeta_{\bm{\varepsilon}} for all 𝜺(k,n)\bm{\varepsilon}\in\mathcal{E}(k,n);

  • η+ζ=𝜺(k,n)(η𝜺+ζ𝜺)𝜺\eta+\zeta=\sum_{\bm{\varepsilon}\in\mathcal{E}(k,n)}(\eta_{\bm{\varepsilon}}+\zeta_{\bm{\varepsilon}})\bm{\varepsilon};

  • ηζ=𝜺(k,n)(η𝜺ζ𝜺)𝜺\eta\zeta=\sum_{\bm{\varepsilon}\in\mathcal{E}(k,n)}(\eta_{\bm{\varepsilon}}\zeta_{\bm{\varepsilon}})\bm{\varepsilon}.

There is a special case we will use later on in this paper. We denote the set (2,n)\mathcal{E}(2,n) by n\mathcal{E}_{n}. We can write any multicomplex number η\eta as

(2.5) η=𝜺nη𝜺𝜺,\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\eta_{\bm{\varepsilon}}\bm{\varepsilon},

where η𝜺𝕄(1)\eta_{\bm{\varepsilon}}\in\mathbb{M}\mathbb{C}(1) for all 𝜺n\bm{\varepsilon}\in\mathcal{E}_{n}.

2.3. Representation theorems and bijections

We use the notation UnU_{n} to denote the set of multicomplex numbers squaring to 1-1 and HnH_{n} for numbers squaring to 11, namely

Un:={η𝕄(n):η2=1}andHn:={η𝕄(n):η2=1}.\displaystyle U_{n}:=\{\eta\in\mathbb{M}\mathbb{C}(n)\,:\,\eta^{2}=-1\}\quad\text{and}\quad H_{n}:=\{\eta\in\mathbb{M}\mathbb{C}(n)\,:\,\eta^{2}=1\}.

We also write EnE_{n} for the set of idempotent elements of 𝕄(n)\mathbb{M}\mathbb{C}(n), that is,

En:={η𝕄(n):η2=η}.E_{n}:=\{\eta\in\mathbb{M}\mathbb{C}(n)\,:\,\eta^{2}=\eta\}.

For example, U3U_{3} contains the numbers

  1. (1)

    𝐢𝟏\mathbf{i_{1}}, 𝐢𝟏-\mathbf{i_{1}};

  2. (2)

    𝐢𝟐\mathbf{i_{2}}, 𝐢𝟐-\mathbf{i_{2}};

  3. (3)

    𝐢𝟑\mathbf{i_{3}}, 𝐢𝟑-\mathbf{i_{3}};

  4. (4)

    𝐢𝟏𝐢𝟐𝐢𝟑\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}, 𝐢𝟏𝐢𝟐𝐢𝟑-\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}};

  5. (5)

    𝐢𝟏+𝐢𝟐+𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑2\frac{\mathbf{i_{1}}+\mathbf{i_{2}}+\mathbf{i_{3}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 𝐢𝟏+𝐢𝟐+𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑2-\frac{\mathbf{i_{1}}+\mathbf{i_{2}}+\mathbf{i_{3}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  6. (6)

    𝐢𝟏𝐢𝟐𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑2\frac{\mathbf{i_{1}}-\mathbf{i_{2}}-\mathbf{i_{3}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 𝐢𝟏𝐢𝟐𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑2-\frac{\mathbf{i_{1}}-\mathbf{i_{2}}-\mathbf{i_{3}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  7. (7)

    𝐢𝟏+𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑2\frac{\mathbf{i_{1}}+\mathbf{i_{2}}-\mathbf{i_{3}}-\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 𝐢𝟏+𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑2-\frac{\mathbf{i_{1}}+\mathbf{i_{2}}-\mathbf{i_{3}}-\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  8. (8)

    𝐢𝟏𝐢𝟐+𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑2\frac{\mathbf{i_{1}}-\mathbf{i_{2}}+\mathbf{i_{3}}-\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 𝐢𝟏𝐢𝟐+𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑2-\frac{\mathbf{i_{1}}-\mathbf{i_{2}}+\mathbf{i_{3}}-\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2},

while H3H_{3} contains

  1. (1)

    11, 1-1;

  2. (2)

    𝐢𝟏𝐢𝟐\mathbf{i_{1}}\mathbf{i_{2}}, 𝐢𝟏𝐢𝟐-\mathbf{i_{1}}\mathbf{i_{2}};

  3. (3)

    𝐢𝟏𝐢𝟑\mathbf{i_{1}}\mathbf{i_{3}}, 𝐢𝟏𝐢𝟑-\mathbf{i_{1}}\mathbf{i_{3}};

  4. (4)

    𝐢𝟐𝐢𝟑\mathbf{i_{2}}\mathbf{i_{3}}, 𝐢𝟐𝐢𝟑-\mathbf{i_{2}}\mathbf{i_{3}};

  5. (5)

    1+𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑2\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 1+𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑2-\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  6. (6)

    1𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑2\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 1𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑2-\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  7. (7)

    1+𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑2\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 1+𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑2-\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  8. (8)

    1𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑2\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 1𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑2-\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{2},

and E3E_{3} contains

  1. (1)

    11, 0;

  2. (2)

    1+𝐢𝟏𝐢𝟐2\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}}{2}, 1𝐢𝟏𝐢𝟐2\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}}{2};

  3. (3)

    1+𝐢𝟏𝐢𝟑2\frac{1+\mathbf{i_{1}}\mathbf{i_{3}}}{2}, 1𝐢𝟏𝐢𝟑2\frac{1-\mathbf{i_{1}}\mathbf{i_{3}}}{2};

  4. (4)

    1+𝐢𝟐𝐢𝟑2\frac{1+\mathbf{i_{2}}\mathbf{i_{3}}}{2}, 1𝐢𝟐𝐢𝟑2\frac{1-\mathbf{i_{2}}\mathbf{i_{3}}}{2};

  5. (5)

    3+𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑4\frac{3+\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{4}, 1𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑4\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{4};

  6. (6)

    3𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑4\frac{3-\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{4}, 1+𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑4\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{4};

  7. (7)

    3+𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑4\frac{3+\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{4}, 1𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑4\frac{1-\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{4};

  8. (8)

    3𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑4\frac{3-\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}}}{4}, 1+𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑4\frac{1+\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}}}{4}.

Also note that the set EnE_{n} contains many more elements than the set n\mathcal{E}_{n}. For example, the elements of 3\mathcal{E}_{3} correspond to the second number in items (5)-(8) in the list of elements of E3E_{3}.

The above examples and Proposition 1.2 suggest that there is a bijection between UnU_{n} and HnH_{n}. It can be given explicitly as follows.

Proposition 2.1.

Let uu be any element of UnU_{n}. We have

Un=uHnandHn=uUn.U_{n}=uH_{n}\quad\text{and}\quad H_{n}=uU_{n}.
Proof.

Fix uUnu\in U_{n}. Define the map f:HnUnf:H_{n}\rightarrow U_{n} by f(h):=uhf(h):=uh. Then ff is injective. If vUnv\in U_{n}, then uvHn-uv\in H_{n} because (uv)2=1(-uv)^{2}=1. Therefore, there is an hHnh\in H_{n} such that h=uvh=-uv and so uh=vuh=v. This means that ff is surjective and therefore ff is a bijection. Since f(Hn)=Unf(H_{n})=U_{n}, we obtain the first equality. The second equality is obtained similarly. ∎

We are now ready to prove Proposition 1.2.

Proof of Proposition 1.2.

By Proposition 2.1, it suffices to prove it for UnU_{n}. We proceed by induction on nn. For n=1n=1, the set 𝕄(1)\mathbb{M}\mathbb{C}(1) is the set of complex numbers and there are only two solutions to η2=1\eta^{2}=-1, namely 𝐢𝟏\mathbf{i_{1}} and 𝐢𝟏-\mathbf{i_{1}}. This is exactly 22n12^{2^{n-1}} for n=1n=1. Suppose that there are 22n12^{2^{n-1}} solutions for η2=1\eta^{2}=-1 in 𝕄(n)\mathbb{M}\mathbb{C}(n). We will show that there are 22n2^{2^{n}} solutions for η2=1\eta^{2}=-1 in 𝕄(n+1)\mathbb{M}\mathbb{C}(n+1). Let η𝕄(n+1)\eta\in\mathbb{M}\mathbb{C}(n+1) be written in its idempotent representation, that is, η=η𝐞𝐧+𝟏𝐞𝐧+𝟏+η𝐞¯𝐧+𝟏𝐞¯𝐧+𝟏\eta=\eta_{\mathbf{e_{n+1}}}\mathbf{e_{n+1}}+\eta_{\mathbf{\overline{e}_{n+1}}}\mathbf{\overline{e}_{n+1}}, where η𝐞𝐧+𝟏,η𝐞¯𝐧+𝟏𝕄(n)\eta_{\mathbf{e_{n+1}}},\eta_{\mathbf{\overline{e}_{n+1}}}\in\mathbb{M}\mathbb{C}(n). Then, according to (2.4), η\eta is a solution to the equation η2=1\eta^{2}=-1 if and only if (η𝐞𝐧+𝟏,η𝐞¯𝐧+𝟏)(\eta_{\mathbf{e_{n+1}}},\eta_{\mathbf{\overline{e}_{n+1}}}) is a solution to the system of equations

{η𝐞𝐧+𝟏2=1,η𝐞¯𝐧+𝟏2=1.\displaystyle\left\{\begin{matrix}\eta_{\mathbf{e_{n+1}}}^{2}=-1,\\ \eta_{\mathbf{\overline{e}_{n+1}}}^{2}=-1.\end{matrix}\right.

Since η𝐞𝐧+𝟏,η𝐞¯𝐧+𝟏𝕄(n)\eta_{\mathbf{e_{n+1}}},\eta_{\mathbf{\overline{e}_{n+1}}}\in\mathbb{M}\mathbb{C}(n), by the induction hypothesis there are 22n12^{2^{n-1}} solutions to each equation in the system. Therefore, there are 22n122n1=22n2^{2^{n-1}}\cdot 2^{2^{n-1}}=2^{2^{n}} solutions to η2=1\eta^{2}=-1 in 𝕄(n+1)\mathbb{M}\mathbb{C}(n+1). This ends the induction and the claim is proved. ∎

To prove Proposition 1.3, one could modify the proof of Proposition 1.2 according to η2=η\eta^{2}=\eta. We prefer to give an explicit bijection between HnH_{n} and EnE_{n}.

Proposition 2.2.

The map f:HnEnf:H_{n}\to E_{n} defined by f(h)=(1+h)/2f(h)=(1+h)/2 is a bijection.

Proof.

If hHnh\in H_{n}, then

(1+h2)2=1+h2.\Big{(}\frac{1+h}{2}\Big{)}^{2}=\frac{1+h}{2}.

It follows that the map h(1+h)/2h\mapsto(1+h)/2 is well defined. It is also clearly a bijection. ∎

An interesting corollary to the proofs of Proposition 1.2 and Proposition 1.3 is the following representation theorem for certain multicomplex numbers.

Corollary 2.3.

Let η𝕄(n)\eta\in\mathbb{M}\mathbb{C}(n).

  1. (i)

    If η2=1\eta^{2}=-1, then η\eta can be written as

    η=𝜺nη𝜺𝜺\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\eta_{\bm{\varepsilon}}\bm{\varepsilon}

    where the components η𝜺{𝐢𝟏,𝐢𝟏}\eta_{\bm{\varepsilon}}\in\{\mathbf{i_{1}},-\mathbf{i_{1}}\}.

  2. (ii)

    If η2=1\eta^{2}=1, then η\eta can be written as

    η=𝜺nη𝜺𝜺\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\eta_{\bm{\varepsilon}}\bm{\varepsilon}

    where the components η𝜺{1,1}\eta_{\bm{\varepsilon}}\in\{1,-1\}.

  3. (iii)

    If η2=η\eta^{2}=\eta, then η\eta can be written as

    η=𝜺nη𝜺𝜺\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\eta_{\bm{\varepsilon}}\bm{\varepsilon}

    where the components η𝜺{0,1}\eta_{\bm{\varepsilon}}\in\{0,1\}.

Proof.

The result for numbers squaring to 1-1 is immediate. Then (ii) follows from Proposition 2.1. Part (iii) follows from Proposition 2.2 and the fact that 1=𝜺n𝜺1=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\bm{\varepsilon}. ∎

3. Characterization of Involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n)

We give a precise definition of what we mean by an involution on the set 𝕄(n)\mathbb{M}\mathbb{C}(n).

Definition 3.1.

A function f:𝕄(n)𝕄(n)f:\mathbb{M}\mathbb{C}(n)\rightarrow\mathbb{M}\mathbb{C}(n) is said to be an involution if the following conditions are satisfied:

  1. (1)

    f(f(η))=ηf(f(\eta))=\eta for any η𝕄(n)\eta\in\mathbb{M}\mathbb{C}(n);

  2. (2)

    f(η+ζ)=f(η)+f(ζ)f(\eta+\zeta)=f(\eta)+f(\zeta) and f(λη)=λf(η)f(\lambda\eta)=\lambda f(\eta) for any η,ζ𝕄(n)\eta,\zeta\in\mathbb{M}\mathbb{C}(n) and λ\lambda\in\mathbb{R};

  3. (3)

    f(ηζ)=f(η)f(ζ)f(\eta\zeta)=f(\eta)f(\zeta) for any η,ζ𝕄(n)\eta,\zeta\in\mathbb{M}\mathbb{C}(n).

The usual definition of an involution involves only the first condition. However, for the quaternions, bicomplex numbers and general algebras over commutative fields (see [12], [14], [20]), the above definition was adopted. Therefore, to be consistent with these references, we will stick to the above definition. If we take a closer look at our definition of the term “involution”, we require that the function is a real-linear homomorphism which is its own inverse. When we do not require that ff be its own inverse, we shall only say that ff is a real-linear automorphism of 𝕄(n)\mathbb{M}\mathbb{C}(n).

3.1. Auxiliary results

We now turn our attention to Theorem 1.1. Recall that for any η𝕄(n)\eta\in\mathbb{M}\mathbb{C}(n), we can write

η=𝜺nη𝜺𝜺,\displaystyle\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\eta_{\bm{\varepsilon}}\bm{\varepsilon},

where η𝜺𝕄(1)\eta_{\bm{\varepsilon}}\in\mathbb{M}\mathbb{C}(1). Write η𝜺=x𝜺+𝐢𝟏y𝜺\eta_{\bm{\varepsilon}}=x_{\bm{\varepsilon}}+\mathbf{i_{1}}y_{\bm{\varepsilon}} with x𝜺,y𝜺x_{\bm{\varepsilon}},y_{\bm{\varepsilon}}\in\mathbb{R}. Therefore, for f:𝕄(n)𝕄(n)f:\mathbb{M}\mathbb{C}(n)\rightarrow\mathbb{M}\mathbb{C}(n) a real-linear ring homomorphism, we have

f(η)=𝜺nx𝜺f(𝜺)+f(𝐢𝟏)𝜺ny𝜺f(𝜺).\displaystyle f(\eta)=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}x_{\bm{\varepsilon}}f(\bm{\varepsilon})+f(\mathbf{i_{1}})\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}y_{\bm{\varepsilon}}f(\bm{\varepsilon}).

As an immediate consequence, we obtain the following proposition.

Proposition 3.2.

An involution of 𝕄(n)\mathbb{M}\mathbb{C}(n) is completely determined by its value on 𝐢𝟏\mathbf{i_{1}} and on the set n\mathcal{E}_{n}.

To choose the value f(𝐢𝟏)f(\mathbf{i_{1}}), a key ingredient is the following observation.

Corollary 3.3.

Let ff be an involution of 𝕄(n)\mathbb{M}\mathbb{C}(n). Then the following assertions hold.

  1. (i)

    Given a multicomplex number η\eta such that η2=1\eta^{2}=-1, there exists a unique hHnh\in H_{n} such that η=𝐢𝟏h\eta=\mathbf{i_{1}}h.

  2. (ii)

    f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h for a choice of hHnh\in H_{n} that depends on ff.

Proof.

To prove (i), apply Proposition 2.1 with u=𝐢𝟏u=\mathbf{i_{1}}. Part (ii) follows from (i) and the fact that f(𝐢𝟏)2=1f(\mathbf{i_{1}})^{2}=-1. ∎

Now we shall see how ff acts on n\mathcal{E}_{n}. Let η\eta be an element of EnE_{n}. Define the set

orth(η)={ζ:ζ2=ζ,ηζ=0},\mathrm{orth}(\eta)=\{\zeta:\zeta^{2}=\zeta,\,\eta\zeta=0\},

that is, the set of idempotent elements orthogonal to η\eta. We write

(3.1) η=𝜺nη𝜺𝜺\eta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\eta_{\bm{\varepsilon}}\bm{\varepsilon}

and v(η)v(\eta) for the number of coefficients equal to 0 in the right-hand side of (3.1). If the number ζ\zeta is such that ζ2=ζ\zeta^{2}=\zeta and ζ=𝜺nζ𝜺𝜺\zeta=\sum_{\bm{\varepsilon}\in\mathcal{E}_{n}}\zeta_{\bm{\varepsilon}}\bm{\varepsilon}, then the equality ζη=0\zeta\eta=0 is equivalent to η𝜺ζ𝜺=0\eta_{\bm{\varepsilon}}\zeta_{\bm{\varepsilon}}=0 for all 𝜺n\bm{\varepsilon}\in\mathcal{E}_{n}. If η𝜺=0\eta_{\bm{\varepsilon}}=0, ζ𝜺\zeta_{\bm{\varepsilon}} can take the values 0 or 1, while if η𝜺=1\eta_{\bm{\varepsilon}}=1, ζ𝜺\zeta_{\bm{\varepsilon}} must be equal to 0. We thus have

  • #orth(η)=2v(η)\#\mathrm{orth}(\eta)=2^{v(\eta)};

  • #orth(0)=22n1\#\mathrm{orth}(0)=2^{2^{n-1}};

  • If 𝜺n\bm{\varepsilon}\in\mathcal{E}_{n}, then #orth(𝜺)=22n11;\#\mathrm{orth}(\bm{\varepsilon})=2^{2^{n-1}-1};

  • If η0\eta\neq 0 and ηn\eta\not\in\mathcal{E}_{n}, then #orth(η)<22n11\#\mathrm{orth}(\eta)<2^{2^{n-1}-1}.

In the above statements, the notation #A\#A means the cardinality of the set AA. A second key ingredient in proving our main result is the following lemma describing the action of ff on the element of n\mathcal{E}_{n}.

Lemma 3.4.

Let ff be a bijection from 𝕄(n)\mathbb{M}\mathbb{C}(n) to 𝕄(n)\mathbb{M}\mathbb{C}(n) such that f(0)=0f(0)=0 and f(ηζ)=f(η)f(ζ)f(\eta\zeta)=f(\eta)f(\zeta). Let η\eta be such that η2=η\eta^{2}=\eta. Then

  1. (i)

    (f(η))2=f(η)(f(\eta))^{2}=f(\eta).

  2. (ii)

    #orth(f(η))=#orth(η)\#\mathrm{orth}(f(\eta))=\#\mathrm{orth}(\eta).

  3. (iii)

    If 𝜺n\bm{\varepsilon}\in\mathcal{E}_{n}, then f(𝜺)nf(\bm{\varepsilon})\in\mathcal{E}_{n}.

Proof.

The first part of the lemma follows directly from the fact that

f(η)=f(η2)=f(η)f(η).f(\eta)=f(\eta^{2})=f(\eta)f(\eta).

To prove part (ii), assume that ζorth(η)\zeta\in\mathrm{orth}(\eta). We then have

f(ζ)f(η)=f(ζη)=f(0)=0.f(\zeta)f(\eta)=f(\zeta\eta)=f(0)=0.

Since ff is a bijection, the converse is also true, that is, if ζ\zeta is such that f(ζ)orth(f(η))f(\zeta)\in\mathrm{orth}(f(\eta)), then ζorth(η)\zeta\in\mathrm{orth}(\eta). Therefore, ζorth(η)\zeta\in\mathrm{orth}(\eta) if and only if f(ζ)orth(f(η))f(\zeta)\in\mathrm{orth}(f(\eta)). This, together with the fact that f(0)=0f(0)=0, implies that

#orth(f(η))=#orth(η).\#\mathrm{orth}(f(\eta))=\#\mathrm{orth}(\eta).

Suppose now that 𝜺n\bm{\varepsilon}\in\mathcal{E}_{n}. Since f(0)=0f(0)=0 and ff is bijective, we have f(𝜺)0f(\bm{\varepsilon})\neq 0. This implies

22n11=#orth(𝜺)=#orth(f(𝜺))=2v(f(𝜺))2^{2^{n-1}-1}=\#\mathrm{orth}(\bm{\varepsilon})=\#\mathrm{orth}(f(\bm{\varepsilon}))=2^{v(f(\bm{\varepsilon}))}

and thus v(f(𝜺))=2n11v(f(\bm{\varepsilon}))=2^{n-1}-1. We deduce f(𝜺)nf(\bm{\varepsilon})\in\mathcal{E}_{n}. ∎

Knowing how ff acts on 𝐢𝟏\mathbf{i_{1}} and on n\mathcal{E}_{n}, we can show the following.

Lemma 3.5.

Write 𝛆𝐣, 1j2n1\bm{\varepsilon_{j}},\,1\leq j\leq 2^{n-1}, for the elements of n\mathcal{E}_{n}. Suppose that f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h with

h=j=12n1η𝜺𝒋𝜺𝒋.\displaystyle h=\sum_{j=1}^{2^{n-1}}\eta_{\bm{\varepsilon_{j}}}\bm{\varepsilon_{j}}.

Suppose that f(𝛆𝐣)=𝛆𝐤f(\bm{\varepsilon_{j}})=\bm{\varepsilon_{k}}. Then

(3.2) f(𝐢𝟏𝜺𝒋)=𝐢𝟏η𝜺𝒌𝜺𝒌.\displaystyle f(\mathbf{i_{1}}\bm{\varepsilon_{j}})=\mathbf{i_{1}}\eta_{\bm{\varepsilon_{k}}}\bm{\varepsilon_{k}}.

Furthermore, the function ff is completely determined by its action on the set 𝐢𝟏n\mathbf{i_{1}}\mathcal{E}_{n}.

Proof.

The formula (3.2) follows from direct computation and from the orthogonality of the elements of the set n\mathcal{E}_{n}.

Suppose that we know the action of ff on the set 𝐢𝟏n\mathbf{i_{1}}\mathcal{E}_{n}. Then, from the identity

f(𝜺𝒌)=(f(𝐢𝟏𝜺𝒌))2,\displaystyle f(\bm{\varepsilon_{k}})=-\big{(}f(\mathbf{i_{1}}\bm{\varepsilon_{k}})\big{)}^{2},

we can recover the value of f(𝜺𝒌)f(\bm{\varepsilon_{k}}). The identity

f(𝐢𝟏)=k=12n1f(𝐢𝟏𝜺𝒌)\displaystyle f(\mathbf{i_{1}})=\sum_{k=1}^{2^{n-1}}f(\mathbf{i_{1}}\bm{\varepsilon_{k}})

allows us to recover the value of f(𝐢𝟏)f(\mathbf{i_{1}}). The result then follows from Proposition 3.2. ∎

We now have all the tools to prove our Theorem 1.1.

3.2. Proof of Theorem 1.1 and its corollaries

Recall that we write BnB_{n} for the set of signed permutations of length nn, which are permutations of {1,2,,n}\{1,2,\ldots,n\} written in one-line notation where each entry may have a bar over it. An alternative description of BnB_{n}, which is more useful to us, can be given as follows. Any signed permutation π\pi can be seen as a bijection of {1,,n,1,,n}\{1,\ldots,n,-1,\ldots,-n\} to itself such that π(i)=π(i)\pi(-i)=-\pi(i) and (i)=i-(-i)=i for i=1,,ni=1,\ldots,n, where we have identified the bar with the - sign. For a real number aa, we define sgn(a)=1\mathrm{sgn}(a)=1 if a>0a>0, sng(0)=0\mathrm{sng}(0)=0 and sgn(a)=1\mathrm{sgn}(a)=-1 if a<0a<0.

Proof of Theorem 1.1.

Let ff be a real-linear automorphism of 𝕄(n)\mathbb{M}\mathbb{C}(n). From Lemma 3.5, ff is determined by its action on the set 𝐢𝟏n\mathbf{i_{1}}\mathcal{E}_{n} and f(𝐢𝟏𝜺𝒋)=𝐢𝟏η𝜺𝒌𝜺𝒌f(\mathbf{i_{1}}\bm{\varepsilon_{j}})=\mathbf{i_{1}}\eta_{\bm{\varepsilon_{k}}}\bm{\varepsilon_{k}}, with η𝜺𝒌{1,1}\eta_{\bm{\varepsilon_{k}}}\in\{-1,1\}. To such a function ff we can associate the signed permutation π\pi that satisfies π(j)=η𝜺𝒌k\pi(j)=\eta_{\bm{\varepsilon_{k}}}k. Conversely, for a given signed permutation π\pi, we can define the function ff by f(𝐢𝟏𝜺𝒋)=𝐢𝟏sgn(π(j))𝜺|π(j)|f(\mathbf{i_{1}}\bm{\varepsilon_{j}})=\mathbf{i_{1}}\mathrm{sgn}(\pi(j))\bm{\varepsilon}_{|\pi(j)|}. It is clear from our construction that this bijection maps the identity to the identity and is compatible with composition. ∎

Theorem 1.1 allows us to deduce the corollaries that were presented in the Introduction.

Proof of Corollary 1.4.

For a given permutation of {1,,n}\{1,\ldots,n\}, we can define a signed permutation by choosing whether we put a bar or not over each entry. It is thus obvious that #Bn=2nn!\#B_{n}=2^{n}\cdot n!. The result follows. ∎

Remark.

A more direct way to interpret the previous formula for the number of real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n) corresponds to choosing a value for f(𝐢𝟏)f(\mathbf{i_{1}}) and a permutation of n\mathcal{E}_{n}. There are (2n1)!(2^{n-1})! such permutations, and since f(𝐢𝟏)2=1f(\mathbf{i_{1}})^{2}=-1, from Proposition 1.2 there are 22n12^{2^{n-1}} possible values for f(𝐢𝟏)f(\mathbf{i_{1}}).

Proof of Corollary 1.5.

The formula in (i) and the asymptotic formula in (iii) follow from known results for signed involutions (see [5] and [15], respectively).

For (ii), by Theorem 1.1 it suffices to prove that g(n)g(n) counts the number of signed involutions of length nn. But πBn\pi\in B_{n} either fixes nn and sends it to nn or n-n, or it sends nn to jj or j-j, where j{1,2,,n1}j\in\{1,2,\ldots,n-1\}. Establishing the base cases g(1)g(1) and g(2)g(2) is straightforward. ∎

3.3. Counting involutions again

In this section, we present a more direct alternative approach to obtain the formula for the number of involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n) in Corollary 1.5(i), using a counting argument. The main reason we choose to include this second proof is that this approach gives more insight into the nature of the multicomplex numbers since it relies on representation theorems for important subrings of 𝕄(n)\mathbb{M}\mathbb{C}(n).

Recall from Corollary 3.3 that f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h for a unique hHnh\in H_{n} that depends on ff. Assuming that ff is an involution, the next result gives a way to choose hh.

Lemma 3.6.

Let ff be an involution of 𝕄(n)\mathbb{M}\mathbb{C}(n) for n1n\geq 1. Suppose that f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h for some hHnh\in H_{n}. Then, we have f(h)=hf(h)=h.

Proof.

Apply ff on f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h to get

𝐢𝟏=f(𝐢𝟏)f(h).\displaystyle\mathbf{i_{1}}=f(\mathbf{i_{1}})f(h).

Using again f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h, we see that

(3.3) 𝐢𝟏=𝐢𝟏hf(h).\displaystyle\mathbf{i_{1}}=\mathbf{i_{1}}hf(h).

Since 𝐢𝟏\mathbf{i_{1}} is invertible in 𝕄(n)\mathbb{M}\mathbb{C}(n), we obtain 1=hf(h)1=hf(h). Multiplying by hh, we therefore obtain h=f(h)h=f(h). ∎

Based on this last lemma, we introduce the sets

(3.4) Yn:={hHnrhh:rh}andfix(f):={ηYn:f(η)=η}.\displaystyle Y_{n}:=\left\{\sum_{h\in H_{n}}r_{h}h\,:\,r_{h}\in\mathbb{R}\right\}\quad\text{and}\quad\operatorname{fix}(f):=\{\eta\in Y_{n}\,:\,f(\eta)=\eta\}.

It is easy to see that YnY_{n} is a vector subspace and a subring of 𝕄(n)\mathbb{M}\mathbb{C}(n) containing HnH_{n} and fix(f)\operatorname{fix}(f) is a vector subspace and a subring of YnY_{n} if ff is an involution.

We can now prove the formula for F(n)F(n) again.

Second proof of Corollary 1.5(i).

Let ff be an involution of 𝕄(n)\mathbb{M}\mathbb{C}(n). We still have that ff is determined by its action on 𝐢𝟏\mathbf{i_{1}} and on n\mathcal{E}_{n}, and that it induces a permutation of the elements of this set. For n=1n=1, we already know that there are 22 involutions on the complex space. This matches with the formula.

For n2n\geq 2, since ff is an involution, the permutation induced by ff should contain cycles of length 22 (transpositions) and should fix some elements of n\mathcal{E}_{n}. Let k{0,1,,2n2}k\in\{0,1,\ldots,2^{n-2}\}. The number of permutations of a set of 2n12^{n-1} elements with kk transpositions and 2n12k2^{n-1}-2k fixed elements is given by

(2n1)!2kk!(2n12k)!.\displaystyle\frac{(2^{n-1})!}{2^{k}k!(2^{n-1}-2k)!}.

We now need to find the possible values of f(𝐢𝟏)f(\mathbf{i_{1}}). We know that f(𝐢𝟏)=𝐢𝟏hf(\mathbf{i_{1}})=\mathbf{i_{1}}h for some choice of hfix(f)h\in\operatorname{fix}(f) by Corollary 3.3 and Lemma 3.6. Since fix(f)\operatorname{fix}(f) is a subring of YnY_{n} and ff is real-linear, it is sufficient to know the coefficients of hh in its representation with respect to a basis of fix(f)\operatorname{fix}(f). We will find such a basis. Denote the elements of n\mathcal{E}_{n} by 𝜺𝟏\bm{\varepsilon_{1}}, \ldots, 𝜺𝟐𝒏𝟏\bm{\varepsilon_{2^{n-1}}}. Suppose that ff is given by

f(𝜺𝒋𝟏)=𝜺𝒋𝟐,f(𝜺𝒋𝟑)=𝜺𝒋𝟒,,f(𝜺𝒋𝟐𝒌𝟏)=𝜺𝟐𝒌\displaystyle f(\bm{\varepsilon_{j_{1}}})=\bm{\varepsilon_{j_{2}}},\,f(\bm{\varepsilon_{j_{3}}})=\bm{\varepsilon_{j_{4}}},\,\ldots,\,f(\bm{\varepsilon_{j_{2k-1}}})=\bm{\varepsilon_{2k}}

and f(𝜺𝒋𝟐𝒌+𝟏)=𝜺𝒋𝟐𝒌+𝟏f(\bm{\varepsilon_{j_{2k+1}}})=\bm{\varepsilon_{j_{2k+1}}}, \ldots, f(𝜺𝒋𝟐𝒏𝟏)=𝜺𝒋𝟐𝒏𝟏f(\bm{\varepsilon_{j_{2^{n-1}}}})=\bm{\varepsilon_{j_{2^{n-1}}}}. From Corollary 2.3(ii), we can write

h==12n1c𝜺𝒋\displaystyle h=\sum_{\ell=1}^{2^{n-1}}c_{\ell}\bm{\varepsilon_{j_{\ell}}}

with c{1,1}c_{\ell}\in\{-1,1\}. We have

f(h)=(c2𝜺𝒋𝟏+c1𝜺𝒋𝟐)++(c2k𝜺𝒋𝟐𝒌𝟏+c2k1𝜺𝒋𝟐𝒌)+c2k+1𝜺𝒋𝟐𝒌+𝟏++c2n1𝜺𝒋𝟐𝒏𝟏.\displaystyle f(h)=(c_{2}\bm{\varepsilon_{j_{1}}}+c_{1}\bm{\varepsilon_{j_{2}}})+\ldots+(c_{2k}\bm{\varepsilon_{j_{2k-1}}}+c_{2k-1}\bm{\varepsilon_{j_{2k}}})+c_{2k+1}\bm{\varepsilon_{j_{2k+1}}}+\ldots+c_{2^{n-1}}\bm{\varepsilon_{j_{2^{n-1}}}}.

It follows that f(h)=hf(h)=h if and only if c1=c2,c3=c4,,c2k1=c2kc_{1}=c_{2},c_{3}=c_{4},\ldots,c_{2k-1}=c_{2k}. This is equivalent to stating that

fix(f)=span{(𝜺𝒋𝟏+𝜺𝒋𝟐),,(𝜺𝒋𝟐𝒌𝟏+𝜺𝒋𝟐𝒌),𝜺𝒋𝟐𝒌+𝟏,,𝜺𝒋𝟐𝒏𝟏}.\displaystyle\operatorname{fix}(f)=\mathrm{span}_{\mathbb{R}}\{(\bm{\varepsilon_{j_{1}}}+\bm{\varepsilon_{j_{2}}}),\,\ldots,\,(\bm{\varepsilon_{j_{2k-1}}}+\bm{\varepsilon_{j_{2k}}}),\bm{\varepsilon_{j_{2k+1}}},\,\ldots,\,\bm{\varepsilon_{j_{2^{n-1}}}}\}.

We deduce that hh should be of the form

h==1 odd2k1a(𝜺𝒋+𝜺𝒋+𝟏)+=2+12n1a𝜺𝒋,\displaystyle h=\sum_{\underset{\ell\text{ odd}}{\ell=1}}^{2k-1}a_{\ell}(\bm{\varepsilon_{j_{\ell}}}+\bm{\varepsilon_{j_{\ell+1}}})+\sum_{\ell=2\ell+1}^{2^{n-1}}a_{\ell}\bm{\varepsilon_{j_{\ell}}},

with a{1,1}a_{\ell}\in\{-1,1\}. This implies that the number of ways to choose hh is

22n1k.\displaystyle 2^{2^{n-1}-k}.

Finally, summing from k=0k=0 to k=2n2k=2^{n-2}, we obtain that the number of involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n) for n2n\geq 2 is

k=02n222n1k(2n1)!2kk!(2n12k)!=(2n1)!k=02n222n12kk!(2n12k)!.\displaystyle\sum_{k=0}^{2^{n-2}}\frac{2^{2^{n-1}-k}(2^{n-1})!}{2^{k}k!(2^{n-1}-2k)!}=(2^{n-1})!\sum_{k=0}^{2^{n-2}}\frac{2^{2^{n-1}-2k}}{k!(2^{n-1}-2k)!}.

This completes the proof. ∎

4. Solutions to f(r)=Idf^{(r)}=\mathrm{Id}

In the last section, we investigated involutions, functions ff such that f(2)=Idf^{(2)}=\mathrm{Id}. The content of Corollary 1.6 is to answer the natural question of what happens when 2 is replaced by an arbitrary integer rr. Recall that we write Fr(n)F_{r}(n) for the number of real-linear automorphisms of 𝕄(n)\mathbb{M}\mathbb{C}(n) such that f(r)=Id.f^{(r)}=\mathrm{Id}. From Theorem 1.1, the set of real-linear automorphisms ff of 𝕄(n)\mathbb{M}\mathbb{C}(n) such that f(r)=Idf^{(r)}=\mathrm{Id} can be identified with the set of signed permutations πB2n1\pi\in B_{2^{n-1}} such that π(r)=Id\pi^{(r)}=\mathrm{Id}. We will thus enumerate such signed permutations in order to prove Corollary 1.6. Note that this proves directly Corollary 1.7 as well.

Proof of Corollary 1.6.

For a signed permutation π\pi, we let σ=un(π)\sigma=\mathrm{un}(\pi) stand for the corresponding unsigned permutation. Clearly, π(r)=Id\pi^{(r)}=\mathrm{Id} implies σ(r)=Id\sigma^{(r)}=\mathrm{Id} while the converse is not true. Recall that Sn,tS_{n,t} stands for the set of permutations σ\sigma of nn elements such that σ(t)=Id\sigma^{(t)}=\mathrm{Id}. We have directly

Fr(n)=σS2n1,r#{πB2n1:un(π)=σ,π(r)=Id}.\displaystyle F_{r}(n)=\sum_{\sigma\in S_{2^{n-1},r}}\#\left\{\pi\in B_{2^{n-1}}:\mathrm{un}(\pi)=\sigma,\pi^{(r)}=\mathrm{Id}\right\}.

The cardinalities of the sets in the above sum correspond to the number of ways of choosing the signs of the signed permutations. Any unsigned permutation σ\sigma can be written as a product of disjoint cycles. Under the assumption that σ(r)=Id\sigma^{(r)}=\mathrm{Id}, we have that the lengths of these cycles are divisors of rr. Assume that σ\sigma has a cycle of length ss and assume without loss of generality that this cycle is (1,2,,s)(1,2,\ldots,s). Let c1,c2,,csc_{1},c_{2},\ldots,c_{s} be the signs associated to the elements 1,2,,s1,2,\ldots,s in the signed permutation π\pi. We have

π(r)(j)=(c1cs)r/sj,1js,\displaystyle\pi^{(r)}(j)=(c_{1}\cdots c_{s})^{r/s}j,\qquad 1\leq j\leq s,

and thus

π(r)(j)=j for 1js(c1cs)r/s=1.\displaystyle\pi^{(r)}(j)=j\text{ for }1\leq j\leq s\quad\iff\quad(c_{1}\cdots c_{s})^{r/s}=1.

If r/sr/s is even, then the signs c1,,csc_{1},\ldots,c_{s} can be chosen arbitrarily and the number of possible choices is equal to 2s2^{s}. On the other hand, if r/sr/s is odd then c1csc_{1}\cdots c_{s} must be equal to 1. The number of possible choices in this case is thus 2s12^{s-1}. For a given unsigned permutation σ\sigma, we denote by cycs(σ)\mathrm{cyc}_{s}(\sigma) the number of disjoint cycles of length ss in σ\sigma. We thus have

(4.1) #{πB2n1:un(π)=σ,π(r)=Id}=(s|r,r/s is even 2scycs(σ))(s|r,r/s is odd 2(s1)cycs(σ)).\#\left\{\pi\in B_{2^{n-1}}:\mathrm{un}(\pi)=\sigma,\pi^{(r)}=\mathrm{Id}\right\}=\left(\prod_{s|r,r/s\text{ is even }}2^{s\cdot\mathrm{cyc}_{s}(\sigma)}\right)\left(\prod_{s|r,r/s\text{ is odd }}2^{(s-1)\mathrm{cyc}_{s}(\sigma)}\right).

By noticing that for a fixed permutation σ\sigma, s|rscycs(σ)=2n1\sum_{s|r}s\cdot\mathrm{cyc}_{s}(\sigma)=2^{n-1}, the last expression can be rewritten as

(4.2) #{πB2n1:un(π)=σ,π(r)=Id}=22n1(s|r,r/s is odd 12cycs(σ)).\displaystyle\#\left\{\pi\in B_{2^{n-1}}:\mathrm{un}(\pi)=\sigma,\pi^{(r)}=\mathrm{Id}\right\}=2^{2^{n-1}}\left(\prod_{s|r,r/s\text{ is odd }}\frac{1}{2^{\mathrm{cyc}_{s}(\sigma)}}\right).

Summing over all permutations σS2n1,r\sigma\in S_{2^{n-1},r}, we get

Fr(n)=22n1σS2n1,r(s|r,r/s is odd 12cycs(σ)).\displaystyle F_{r}(n)=2^{2^{n-1}}\sum_{\sigma\in S_{2^{n-1},r}}\left(\prod_{s|r,r/s\text{ is odd }}\frac{1}{2^{\mathrm{cyc}_{s}(\sigma)}}\right).

Remark that when r=pr=p is an odd prime, equation (4.1) simplifies to

(4.3) #{πB2n1:un(π)=σ,π(p)=Id}=(2(11)cyc1(σ))(2(p1)cycp(σ))=2(p1)cycp(σ).\#\left\{\pi\in B_{2^{n-1}}:\mathrm{un}(\pi)=\sigma,\pi^{(p)}=\mathrm{Id}\right\}=\Big{(}2^{(1-1)\mathrm{cyc}_{1}(\sigma)}\Big{)}\Big{(}2^{(p-1)\mathrm{cyc}_{p}(\sigma)}\Big{)}=2^{(p-1)\mathrm{cyc}_{p}(\sigma)}.

The number of permutations of 2n12^{n-1} elements with kk cycles of length pp and 2n1pk2^{n-1}-pk fixed elements is given by

(4.4) (2n1)!pkk!(2n1pk)!.\frac{(2^{n-1})!}{p^{k}k!(2^{n-1}-pk)!}.

From equations (4.3) and (4.4), we conclude that for an odd prime pp,

Fp(n)=(2n1)!k=02n1/p2k(p1)pkk!(2n1pk)!,\displaystyle F_{p}(n)=(2^{n-1})!\sum_{k=0}^{\lfloor 2^{n-1}/p\rfloor}\frac{2^{k(p-1)}}{p^{k}k!(2^{n-1}-pk)!},

and this concludes the proof. ∎

Note that the above argument does not work when r=2r=2, although equation (4.4) still holds. In this case, equation (4.2) simplifies to

(4.5) #{πB2n1:un(π)=σ,π(2)=Id}=22n112cyc2(σ)=22n1k,\displaystyle\#\left\{\pi\in B_{2^{n-1}}:\mathrm{un}(\pi)=\sigma,\pi^{(2)}=\mathrm{Id}\right\}=2^{2^{n-1}}\frac{1}{2^{\mathrm{cyc}_{2}(\sigma)}}=2^{2^{n-1}-k},

where kk is the number of cycles of length 22 in the unsigned permutation σ\sigma. From equations (4.4) and (4.5), we therefore obtain

F(n)=F2(n)=(2n1)!k=02n222n1kk!2k(2n12k)!=(2n1)!k=02n222n12kk!(2n12k)!,F(n)=F_{2}(n)=(2^{n-1})!\sum_{k=0}^{2^{n-2}}\frac{2^{2^{n-1}-k}}{k!2^{k}(2^{n-1}-2k)!}=(2^{n-1})!\sum_{k=0}^{2^{n-2}}\frac{2^{2^{n-1}-2k}}{k!(2^{n-1}-2k)!},

as before.

5. Involutions preserving elementary units

Our focus is now on proving Theorem 1.8. The method of proof will be quite different from those used in previous sections. This comes from the fact that it is hard to devise a workable condition to detect if an hHnh\in H_{n} is an element of 𝕀(n)\mathbb{I}(n) based on the idempotent components of hh. For this section, it will be more useful to use the canonical representation (2.2) of a multicomplex number.

If ff is an involution, then for any multicomplex number η\eta, we have

f(η)=𝐢𝕀(n)η𝐢f(𝐢).\displaystyle f(\eta)=\sum_{\mathbf{i}\in\mathbb{I}(n)}\eta_{\mathbf{i}}f(\mathbf{i}).

Since each 𝐢𝕀(n)\{1}\mathbf{i}\in\mathbb{I}(n)\backslash\{1\} is a product of the units 𝐢𝟏,𝐢𝟐,,𝐢𝐧\mathbf{i_{1}},\mathbf{i_{2}},\ldots,\mathbf{i_{n}} and ff is a real-linear homomorphism, we obtain the following proposition.

Proposition 5.1.

If f:𝕄(n)𝕄(n)f:\mathbb{M}\mathbb{C}(n)\rightarrow\mathbb{M}\mathbb{C}(n) is an involution, then its values are completely determined by its action on 𝐢𝟏,𝐢𝟐,,𝐢𝐧\mathbf{i_{1}},\mathbf{i_{2}},\ldots,\mathbf{i_{n}}.

Now, what are the possible values of each f(𝐢𝐤)f(\mathbf{i_{k}}) for 1kn1\leq k\leq n? Since f(𝐢𝐤)Unf(\mathbf{i_{k}})\in U_{n} and here we restrict our attention to involutions preserving 𝕀(n)\mathbb{I}(n), f(𝐢𝐤)f(\mathbf{i_{k}}) should be a product of an odd number of imaginary units 𝐢𝟏\mathbf{i_{1}}, 𝐢𝟐\mathbf{i_{2}}, \ldots, 𝐢𝐧\mathbf{i_{n}}. Therefore, an 𝕀(n)\mathbb{I}(n)-preserving involution ff of 𝕄(n)\mathbb{M}\mathbb{C}(n) can be characterized by

f(𝐢𝐣)=𝐢𝟏a1,j𝐢𝟐a2,j𝐢𝐧an,j(1)an+1,j, 1jn.f(\mathbf{i_{j}})=\mathbf{i_{1}}^{a_{1,j}}\mathbf{i_{2}}^{a_{2,j}}\cdots\mathbf{i_{n}}^{a_{n,j}}(-1)^{a_{n+1,j}},\qquad\,1\leq j\leq n.

Furthermore, for 1jn1\leq j\leq n we have

1=f(1)=f(𝐢𝐣𝟐)=f(𝐢𝐣)2=(1)a1,j(1)a2,j(1)an,j,-1=f(-1)=f(\mathbf{i_{j}^{2}})=f(\mathbf{i_{j}})^{2}=(-1)^{a_{1,j}}(-1)^{a_{2,j}}\cdots(-1)^{a_{n,j}},

which implies

k=1nak,j1(mod2),1jn.\sum_{k=1}^{n}a_{k,j}\equiv 1\pmod{2},\qquad 1\leq j\leq n.

The first equality in the above chain of equalities comes from the fact that ff is, in particular, a ring homomorphism. In summary, we are trying to count functions ff on 𝕄(n)\mathbb{M}\mathbb{C}(n) satisfying the following conditions:

  1. (1)

    f(1)=1f(-1)=-1;

  2. (2)

    𝐢𝐣𝟐=1\mathbf{i_{j}^{2}}=-1 for 1jn1\leq j\leq n;

  3. (3)

    f(𝐢𝐣𝐢𝐤)=f(𝐢𝐣)f(𝐢𝐤)f(\mathbf{i_{j}}\mathbf{i_{k}})=f(\mathbf{i_{j}})f(\mathbf{i_{k}}) for 1j,kn1\leq j,k\leq n;

  4. (4)

    f(f(𝐢𝐣))=𝐢𝐣f(f(\mathbf{i_{j}}))=\mathbf{i_{j}} for 1jn1\leq j\leq n;

  5. (5)

    f(𝐢𝐣)=𝐢𝟏a1,j𝐢𝟐a2,j𝐢𝐧an,j(1)an+1,jf(\mathbf{i_{j}})=\mathbf{i_{1}}^{a_{1,j}}\mathbf{i_{2}}^{a_{2,j}}\cdots\mathbf{i_{n}}^{a_{n,j}}(-1)^{a_{n+1,j}} for 1jn1\leq j\leq n;

  6. (6)

    a1,j,,an+1,j{0,1}a_{1,j},\ldots,a_{n+1,j}\in\{0,1\} and k=1nak,j1(mod2)\sum_{k=1}^{n}a_{k,j}\equiv 1\pmod{2} for 1jn1\leq j\leq n.

With this setup, we are now ready to prove Theorem 1.8.

Proof of Theorem 1.8.

We will use a matrix representation to obtain the number of involutions satisfying the previous description. A function ff as described by (1)(1) to (6)(6) above will be represented by the matrix

Af:=[a1,1a1,2a1,n0a2,1a2,2a2,n0an,1an,2an,n0an+1,1an+1,2an+1,n1].A_{f}:=\begin{bmatrix}a_{1,1}&a_{1,2}&\ldots&a_{1,n}&0\\ a_{2,1}&a_{2,2}&\ldots&a_{2,n}&0\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}&0\\ a_{n+1,1}&a_{n+1,2}&\cdots&a_{n+1,n}&1\end{bmatrix}.

The condition k=1nak,j1(mod2)\sum_{k=1}^{n}a_{k,j}\equiv 1\pmod{2} for 1jn1\leq j\leq n then translates to a condition on the matrix AfA_{f} as

(5.1) [a1,1a1,2a1,n0a2,1a2,2a2,n0an,1an,2an,n0an+1,1an+1,2an+1,n1]T[11110][11110](mod2).\begin{bmatrix}a_{1,1}&a_{1,2}&\ldots&a_{1,n}&0\\ a_{2,1}&a_{2,2}&\ldots&a_{2,n}&0\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ a_{n,1}&a_{n,2}&\ldots&a_{n,n}&0\\ a_{n+1,1}&a_{n+1,2}&\ldots&a_{n+1,n}&1\end{bmatrix}^{T}\begin{bmatrix}1\\ 1\\ 1\\ 1\\ 0\end{bmatrix}\equiv\begin{bmatrix}1\\ 1\\ 1\\ 1\\ 0\end{bmatrix}\pmod{2}.

To simplify the notation, we will simply write AA for AfA_{f}. On the other hand, the condition f(f(𝐢𝐣))=𝐢𝐣, 1jnf(f(\mathbf{i_{j}}))=\mathbf{i_{j}},\,1\leq j\leq n, translates into

(5.2) A2I(mod2).A^{2}\equiv I\pmod{2}.

Our problem thus becomes the problem of enumerating matrices AA with {0,1}\{0,1\} entries and satisfying conditions (5.1) and (5.2).

We set X=AIX=A-I. Since we are working modulo 2, we have

A2IA2I0(mod2)(AI)20(mod2)X20(mod2).A^{2}\equiv I\Leftrightarrow A^{2}-I\equiv 0\pmod{2}\Leftrightarrow(A-I)^{2}\equiv 0\pmod{2}\Leftrightarrow X^{2}\equiv 0\pmod{2}.

The problem now becomes enumerating (n+1)×(n+1)(n+1)\times(n+1) matrices XX such that

  1. (1)

    The entries of XX are equal to 0 or 1,

  2. (2)

    X20(mod2)X^{2}\equiv 0\pmod{2};

  3. (3)

    The sum of each column of XX is 0(mod2)\equiv 0\pmod{2};

  4. (4)

    The right column of XX has only zeros.

We denote by YY the submatrix of XX obtained by omitting the right column of XX and its bottom row, that is

Y=[a1,11a1,2a1,na2,1a2,21a2,nan,1an,2an,n1].Y=\begin{bmatrix}a_{1,1}-1&a_{1,2}&\ldots&a_{1,n}\\ a_{2,1}&a_{2,2}-1&\ldots&a_{2,n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n,1}&a_{n,2}&\ldots&a_{n,n}-1\end{bmatrix}.

The conditions on XX imply the following conditions on YY:

  1. (1)

    The entries of YY are equal to 0 or 1;

  2. (2)

    Y20(mod2)Y^{2}\equiv 0\pmod{2};

  3. (3)

    The sum of each column of YY is 0(mod2)\equiv 0\pmod{2}.

We denote by kk the dimension of the kernel of YY, that is, k:=dim(ker(Y))k:=\dim(\ker(Y)). Because Y2=0Y^{2}=0, we have

(5.3) kn/2.k\geq n/2.

Observe that the dimension of the kernel of YY is equal to the dimension of the kernel of YY^{\top}. It will be easier to work with this transpose.

We use the notation e:=(1,1,,1)\vec{e}:=(1,1,\ldots,1)^{\top}. Condition 3 on the matrix YY is equivalent to

eker(Y).\vec{e}\in\ker(Y^{\top}).

For a fixed value of kk, the number of ways of choosing ker(Y)\ker(Y^{\top}) with the restriction that eker(Y)\vec{e}\in\ker(Y^{\top}) is given by

(5.4) B(k,n):=j=1k12n2j2k2j,B(k,n):=\prod_{j=1}^{k-1}\frac{2^{n}-2^{j}}{2^{k}-2^{j}},

with the convention that B(k,n)=1B(k,n)=1 for k=0,1k=0,1. To see this, first note that the number of ways of choosing an ordered sequence of kk linearly independent vectors (with e\vec{e} as the first vector of the sequence) is given by

(5.5) j=1k1(2n2j),\prod_{j=1}^{k-1}(2^{n}-2^{j}),

since when choosing a new vector, one cannot choose any linear combination of previously chosen vectors. Now, many choices of vector sequences (or basis choices) will describe the same subspace. Given a basis of linearly independent vectors, the number of ways of choosing a basis that will span the same subspace (under the condition that e\vec{e} is the first vector of the ordered basis) is given by

(5.6) j=1k1(2k2j).\prod_{j=1}^{k-1}(2^{k}-2^{j}).

Equality (5.4) follows from (5.5) and (5.6).

Now, suppose that the kernel ker(Y)\ker(Y^{\top}) has been chosen. Let kk again be the dimension of the kernel of YY^{\top}. Let u1,u2,uk\vec{u}_{1},\vec{u}_{2},\ldots\vec{u}_{k} be a vector basis of ker(Y)\ker(Y^{\top}). Let v1,v2,,vnk\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{n-k} be vectors such that u1,u2,uk,v1,v2,,vnk\vec{u}_{1},\vec{u}_{2},\ldots\vec{u}_{k},\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{n-k} is a vector basis of 2n\mathbb{Z}_{2}^{n}. We will now find the number of ways of choosing Ran(Y)\mathrm{Ran}\,(Y^{\top}), the range of YY^{\top}.

Since Y20(mod2)Y^{2}\equiv 0\pmod{2}, we deduce that (Y)20(mod2)(Y^{\top})^{2}\equiv 0\pmod{2}. This last identity implies that

(Y)2vj=0,1jnk(Y^{\top})^{2}\vec{v}_{j}=\vec{0},\qquad 1\leq j\leq n-k

and thus

Yvjker(Y),1jnk.Y^{\top}\vec{v}_{j}\in\ker(Y^{\top}),\qquad 1\leq j\leq n-k.

We therefore have

Yvj=s=1krs,jus,Y^{\top}\vec{v}_{j}=\sum_{s=1}^{k}r_{s,j}\vec{u}_{s},

where rs,j{0,1}r_{s,j}\in\{0,1\} and 1jnk1\leq j\leq n-k. The number of ways to choose the value of Yv1Y^{\top}\vec{v}_{1} is given by

2k1.2^{k}-1.

This comes from the fact that v1ker(Y)\vec{v}_{1}\not\in\ker(Y^{\top}) and therefore the rs,jr_{s,j} cannot all be zero. One can now choose the values of Yv2,Yv3,,YvnkY^{\top}\vec{v}_{2},Y^{\top}\vec{v}_{3},\ldots,Y^{\top}\vec{v}_{n-k} under the restriction that the vectors YvjY^{\top}\vec{v}_{j} must be linearly independent. To see why these vectors must be linearly independent, suppose that w\vec{w} is a linear combination of the vectors vj\vec{v}_{j} such that Yw=0Y^{\top}\vec{w}=\vec{0}. This implies wker(Y)\vec{w}\in\ker(Y^{\top}). We thus have exhibited a vector w\vec{w} that can be expressed both as a linear combination of the vectors uj\vec{u}_{j} and as a linear combination of the vectors vj\vec{v}_{j}. This contradicts the fact that u1,u2,uk,v1,v2,,vnk\vec{u}_{1},\vec{u}_{2},\ldots\vec{u}_{k},\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{n-k} is a basis of 2n\mathbb{Z}_{2}^{n}. This constraint of linear independence implies that the number of ways of choosing the vector vj\vec{v}_{j} is equal to 2k2j12^{k}-2^{j-1} for 1jnk1\leq j\leq n-k. We conclude that the number of ways of choosing the image of YY^{\top} is given by

(5.7) D(k,n)=j=0nk1(2k2j).D(k,n)=\prod_{j=0}^{n-k-1}(2^{k}-2^{j}).

Putting everything together, the number of ways of choosing the matrix YY^{\top}, or equivalently the number of ways of choosing the matrix YY, is given by

B(k,n)D(k,n)=j=1k12n2j2k2jj=0nk1(2k2j).B(k,n)D(k,n)=\prod_{j=1}^{k-1}\frac{2^{n}-2^{j}}{2^{k}-2^{j}}\prod_{j=0}^{n-k-1}(2^{k}-2^{j}).

Finally, to fully specify the matrix XX, one has to specify its bottom row (describing the signs in the involution). The condition X20(mod2)X^{2}\equiv 0\pmod{2} can be written, after transposing, as

[a1,11a2,1an,1an+1,1a1,2a2,21an,2an+1,2a1,na2,nan,n1an+1,n0000][a1,11a2,1an,1an+1,1a1,2a2,21an,2an+1,2a1,na2,nan,n1an+1,n0000]0\begin{bmatrix}a_{1,1}-1&a_{2,1}&\cdots&a_{n,1}&a_{n+1,1}\\ a_{1,2}&a_{2,2}-1&\cdots&a_{n,2}&a_{n+1,2}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ a_{1,n}&a_{2,n}&\cdots&a_{n,n}-1&a_{n+1,n}\\ 0&0&\cdots&0&0\end{bmatrix}\begin{bmatrix}a_{1,1}-1&a_{2,1}&\cdots&a_{n,1}&a_{n+1,1}\\ a_{1,2}&a_{2,2}-1&\cdots&a_{n,2}&a_{n+1,2}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ a_{1,n}&a_{2,n}&\cdots&a_{n,n}-1&a_{n+1,n}\\ 0&0&\cdots&0&0\end{bmatrix}\equiv 0

modulo 2. This implies, in particular, that

(a1,11,a2,1,,an,1)(an+1,1,an+1,2,,an+1,n)\displaystyle(a_{1,1}-1,a_{2,1},\ldots,a_{n,1})\cdot(a_{n+1,1},a_{n+1,2},\ldots,a_{n+1,n}) \displaystyle\equiv 0(mod2),\displaystyle 0\pmod{2},
(a1,2,a2,21,,an,2)(an+1,1,an+1,2,,an+1,n)\displaystyle(a_{1,2},a_{2,2}-1,\ldots,a_{n,2})\cdot(a_{n+1,1},a_{n+1,2},\ldots,a_{n+1,n}) \displaystyle\equiv 0(mod2),\displaystyle 0\pmod{2},
\displaystyle\vdots
(a1,n,a2,n,,an,n1)(an+1,1,an+1,2,,an+1,n)\displaystyle(a_{1,n},a_{2,n},\ldots,a_{n,n}-1)\cdot(a_{n+1,1},a_{n+1,2},\ldots,a_{n+1,n}) \displaystyle\equiv 0(mod2).\displaystyle 0\pmod{2}.

It follows that the vector

w:=[an+1,1an+1,2an+1,n]\vec{w}:=\begin{bmatrix}a_{n+1,1}\\ a_{n+1,2}\\ \vdots\\ a_{n+1,n}\end{bmatrix}

must be in the kernel of the matrix

[a1,11a2,1an,1a1,2a2,21an,2a1,na2,nan,n1],\begin{bmatrix}a_{1,1}-1&a_{2,1}&\ldots&a_{n,1}\\ a_{1,2}&a_{2,2}-1&\ldots&a_{n,2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1,n}&a_{2,n}&\ldots&a_{n,n}-1\end{bmatrix},

which is precisely YY^{\top}. If the dimension of the kernel of YY^{\top} is equal to kk, then the number of ways of choosing the sign column

[an+1,1an+1,2an+1,n]\begin{bmatrix}a_{n+1,1}\\ a_{n+1,2}\\ \vdots\\ a_{n+1,n}\end{bmatrix}

is equal to

(5.8) 2k.2^{k}.

This last number comes from the fact that w=s=1krsuk\vec{w}=\sum_{s=1}^{k}r_{s}\vec{u}_{k} with rs{0,1}r_{s}\in\{0,1\}.

From equations (5.3), (5.4), (5.7), and (5.8), we conclude that the number of involutions satisfying (1) to (6) is equal to

n/2knD(k,n)B(k,n)2k=n/2kn(j=1k12n2j2k2j)(j=0nk12k2j)2k.\sum_{n/2\leq k\leq n}D(k,n)B(k,n)2^{k}=\sum_{n/2\leq k\leq n}\Big{(}\prod_{j=1}^{k-1}\frac{2^{n}-2^{j}}{2^{k}-2^{j}}\Big{)}\Big{(}\prod_{j=0}^{n-k-1}2^{k}-2^{j}\Big{)}2^{k}.

This completes the proof. ∎

6. Generating rr-Involutions

The proof of Corollary 1.6 combined with the explicit bijection in the proof of Theorem 1.1 gives a way to generate the rr-involutions of 𝕄(n)\mathbb{M}\mathbb{C}(n), for r2r\geq 2. Here, we describe this method (which is a brute force method).

  1. (1)

    Select a permutation σS2n1,r\sigma\in S_{2^{n-1},r} of the symbols {1,2,,2n1}\{1,2,\ldots,2^{n-1}\}.

  2. (2)

    Generate all the possible sign permutations π\pi by considering all the possible sign insertions in σ\sigma.

  3. (3)

    For a given sign permutation in the last step, check if π(r)=Id\pi^{(r)}=\mathrm{Id}.

  4. (4)

    Generate the rr-involution of 𝕄(n)\mathbb{M}\mathbb{C}(n) by setting f(𝐢𝟏𝜺𝒋)=𝐢𝟏sgn(π(j))𝜺|𝝅(𝒋)|f(\mathbf{i_{1}}\bm{\varepsilon_{j}})=\mathbf{i_{1}}\mathrm{sgn}(\pi(j))\bm{\varepsilon_{|\pi(j)|}}.

Using this method we can generate, for example, the following 66-involution of the space 𝕄(3)\mathbb{M}\mathbb{C}(3). Letting 𝜺𝟏=(1𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑)/4\bm{\varepsilon_{1}}=(1-\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}})/4, 𝜺𝟐=(1+𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑)/4\bm{\varepsilon_{2}}=(1+\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}-\mathbf{i_{2}}\mathbf{i_{3}})/4, 𝜺𝟑=(1𝐢𝟏𝐢𝟐+𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑)/4\bm{\varepsilon_{3}}=(1-\mathbf{i_{1}}\mathbf{i_{2}}+\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}})/4, and 𝜺𝟒=(1+𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑)/4\bm{\varepsilon_{4}}=(1+\mathbf{i_{1}}\mathbf{i_{2}}-\mathbf{i_{1}}\mathbf{i_{3}}+\mathbf{i_{2}}\mathbf{i_{3}})/4, then

f(𝐢𝟏𝜺𝟏)=𝐢𝟏𝜺𝟑,f(𝐢𝟏𝜺𝟐)=𝐢𝟏(1)𝜺𝟐,f(𝐢𝟏𝜺𝟑)=𝐢𝟏𝜺𝟒,f(𝐢𝟏𝜺𝟒)=𝐢𝟏𝜺𝟏.f(\mathbf{i_{1}}\bm{\varepsilon_{1}})=\mathbf{i_{1}}\bm{\varepsilon_{3}},\,f(\mathbf{i_{1}}\bm{\varepsilon_{2}})=\mathbf{i_{1}}(-1)\bm{\varepsilon_{2}},\,f(\mathbf{i_{1}}\bm{\varepsilon_{3}})=\mathbf{i_{1}}\bm{\varepsilon_{4}},\,f(\mathbf{i_{1}}\bm{\varepsilon_{4}})=\mathbf{i_{1}}\bm{\varepsilon_{1}}.

This 66-involution comes from the following sign permutation (using the bar notation):

π=32¯41.\displaystyle\pi=3\overline{2}41.

Note that we could create a 33-involution by using the unsigned permutation

σ=3241.\displaystyle\sigma=3241.

We can rewrite the above 66-involution ff using the elementary units (canonical representation) as follows:

f(η)=\displaystyle f(\eta)= η1+𝐢𝟏(η𝐢𝟏𝐢𝟐𝐢𝟑+η𝐢𝟏+η𝐢𝟐+η𝐢𝟑)/2+𝐢𝟐(η𝐢𝟏𝐢𝟐𝐢𝟑+η𝐢𝟏η𝐢𝟐+η𝐢𝟑)/2\displaystyle\,\eta_{1}+\mathbf{i_{1}}(\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}+\eta_{\mathbf{i_{1}}}+\eta_{\mathbf{i_{2}}}+\eta_{\mathbf{i_{3}}})/2+\mathbf{i_{2}}(-\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}+\eta_{\mathbf{i_{1}}}-\eta_{\mathbf{i_{2}}}+\eta_{\mathbf{i_{3}}})/2
+𝐢𝟏𝐢𝟐η𝐢𝟏𝐢𝟑+𝐢𝟑(η𝐢𝟏𝐢𝟐𝐢𝟑+η𝐢𝟏η𝐢𝟐η𝐢𝟑)/2𝐢𝟏𝐢𝟑η𝐢𝟐𝐢𝟑𝐢𝟐𝐢𝟑η𝐢𝟏𝐢𝟐\displaystyle+\mathbf{i_{1}}\mathbf{i_{2}}\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}+\mathbf{i_{3}}(\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}+\eta_{\mathbf{i_{1}}}-\eta_{\mathbf{i_{2}}}-\eta_{\mathbf{i_{3}}})/2-\mathbf{i_{1}}\mathbf{i_{3}}\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}-\mathbf{i_{2}}\mathbf{i_{3}}\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}
+𝐢𝟏𝐢𝟐𝐢𝟑(η𝐢𝟏𝐢𝟐𝐢𝟑+η𝐢𝟏+η𝐢𝟐η𝐢𝟑)/2,\displaystyle+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}(-\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}+\eta_{\mathbf{i_{1}}}+\eta_{\mathbf{i_{2}}}-\eta_{\mathbf{i_{3}}})/2,

where

η=η1+𝐢𝟏η𝐢𝟏+𝐢𝟐η𝐢𝟐+𝐢𝟏𝐢𝟐η𝐢𝟏𝐢𝟐+𝐢𝟑η𝐢𝟑+𝐢𝟏𝐢𝟑η𝐢𝟏𝐢𝟑+𝐢𝟐𝐢𝟑η𝐢𝟐𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑η𝐢𝟏𝐢𝟐𝐢𝟑.\displaystyle\eta=\eta_{1}+\mathbf{i_{1}}\eta_{\mathbf{i_{1}}}+\mathbf{i_{2}}\eta_{\mathbf{i_{2}}}+\mathbf{i_{1}}\mathbf{i_{2}}\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}+\mathbf{i_{3}}\eta_{\mathbf{i_{3}}}+\mathbf{i_{1}}\mathbf{i_{3}}\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}+\mathbf{i_{2}}\mathbf{i_{3}}\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}.

This 66-involution is non-trivial in the sense that it sends some of the elementary units in 𝕀(3)\mathbb{I}(3) to units in U3\𝕀(3)U_{3}\backslash\mathbb{I}(3). From the expression above, we see that

f(𝐢𝟏)=𝐢𝟏+𝐢𝟐+𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑2,f(𝐢𝟐)=𝐢𝟏𝐢𝟐𝐢𝟑+𝐢𝟏𝐢𝟐𝐢𝟑2, and f(𝐢𝟑)=𝐢𝟏+𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑2.f(\mathbf{i_{1}})=\frac{\mathbf{i_{1}}+\mathbf{i_{2}}+\mathbf{i_{3}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2},\;f(\mathbf{i_{2}})=\frac{\mathbf{i_{1}}-\mathbf{i_{2}}-\mathbf{i_{3}}+\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2},\text{ and }f(\mathbf{i_{3}})=\frac{\mathbf{i_{1}}+\mathbf{i_{2}}-\mathbf{i_{3}}-\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}{2}.

The proof of Theorem 1.8 suggests a way to generate a list of 𝕀(n)\mathbb{I}(n)-preserving involutions for a fixed value of nn.

  1. (1)

    Fix a value of kk and loop over the values of k[n/2,n]k\in[n/2,n].

  2. (2)

    Generate a basis u1,uk\vec{u}_{1},\ldots\vec{u}_{k} (including e\vec{e}) of all subspaces of dimension kk of 2n\mathbb{Z}_{2}^{n}.

  3. (3)

    For each basis in the list generated in step 2, find a set of vectors v1,,vnk\vec{v}_{1},\ldots,\vec{v}_{n-k} so that the vectors u1,,uk,v1,,vnk\vec{u}_{1},\ldots,\vec{u}_{k},\vec{v}_{1},\ldots,\vec{v}_{n-k} form a basis of 2n\mathbb{Z}_{2}^{n}.

  4. (4)

    For each vector vj\vec{v}_{j}, choose the image of vj\vec{v}_{j} as a linear combination of the vectors uj\vec{u}_{j}. Note this image by sj\vec{s}_{j}.

  5. (5)

    Obtain the matrix YY^{\top} as in the above proof by solving

    Y[u1,,uk,v1,,vnk]=[0,,0,s1,,snk].Y^{\top}[\vec{u}_{1},\ldots,\vec{u}_{k},\vec{v}_{1},\ldots,\vec{v}_{n-k}]=[\vec{0},\ldots,\vec{0},\vec{s}_{1},\ldots,\vec{s}_{n-k}].
  6. (6)

    Generate a list of involutions by looping over all possibilities for the choice of the sign vector associated to YY, fully specifying the matrix XX in the above proof.

Here is a sample of such involutions preserving elementary units for n=3n=3:

  1. (1)

    f(η)=η1η𝐢𝟏𝐢𝟏η𝐢𝟐𝐢𝟐+η𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟐+η𝐢𝟏𝐢𝟐𝐢𝟑𝐢𝟑+η𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟑+η𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑+η𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑f(\eta)=\eta_{1}-\eta_{\mathbf{i_{1}}}\mathbf{i_{1}}-\eta_{\mathbf{i_{2}}}\mathbf{i_{2}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}\mathbf{i_{1}i_{2}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{3}}+\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{1}i_{3}}+\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}\mathbf{i_{2}i_{3}}+\eta_{\mathbf{i_{3}}}\mathbf{i_{1}i_{2}i_{3}};

  2. (2)

    f(η)=η1η𝐢𝟏𝐢𝟏η𝐢𝟐𝐢𝟐+η𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟐η𝐢𝟏𝐢𝟐𝐢𝟑𝐢𝟑η𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟑η𝐢𝟏𝐢𝟑𝐢𝟐𝐢𝟑η𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑f(\eta)=\eta_{1}-\eta_{\mathbf{i_{1}}}\mathbf{i_{1}}-\eta_{\mathbf{i_{2}}}\mathbf{i_{2}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}\mathbf{i_{1}i_{2}}-\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{3}}-\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{1}i_{3}}-\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}\mathbf{i_{2}i_{3}}-\eta_{\mathbf{i_{3}}}\mathbf{i_{1}i_{2}i_{3}};

  3. (3)

    f(η)=η1+η𝐢𝟏𝐢𝟏+η𝐢𝟑𝐢𝟐+η𝐢𝟏𝐢𝟑𝐢𝟏𝐢𝟐+η𝐢𝟐𝐢𝟑+η𝐢𝟏𝐢𝟐𝐢𝟏𝐢𝟑+η𝐢𝟐𝐢𝟑𝐢𝟐𝐢𝟑+η𝐢𝟏𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑f(\eta)=\eta_{1}+\eta_{\mathbf{i_{1}}}\mathbf{i_{1}}+\eta_{\mathbf{i_{3}}}\mathbf{i_{2}}+\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}\mathbf{i_{1}i_{2}}+\eta_{\mathbf{i_{2}}}\mathbf{i_{3}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}}\mathbf{i_{1}i_{3}}+\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{2}i_{3}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{1}i_{2}i_{3}};

  4. (4)

    f(η)=η1+η𝐢𝟏𝐢𝟏η𝐢𝟑𝐢𝟐η𝐢𝟏𝐢𝟑𝐢𝟏𝐢𝟐η𝐢𝟐𝐢𝟑η𝐢𝟏𝐢𝟑𝐢𝟏𝐢𝟑+η𝐢𝟐𝐢𝟑𝐢𝟐𝐢𝟑+η𝐢𝟏𝐢𝟐𝐢𝟑𝐢𝟏𝐢𝟐𝐢𝟑f(\eta)=\eta_{1}+\eta_{\mathbf{i_{1}}}\mathbf{i_{1}}-\eta_{\mathbf{i_{3}}}\mathbf{i_{2}}-\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}\mathbf{i_{1}i_{2}}-\eta_{\mathbf{i_{2}}}\mathbf{i_{3}}-\eta_{\mathbf{i_{1}}\mathbf{i_{3}}}\mathbf{i_{1}i_{3}}+\eta_{\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{2}i_{3}}+\eta_{\mathbf{i_{1}}\mathbf{i_{2}}\mathbf{i_{3}}}\mathbf{i_{1}i_{2}i_{3}}.

References

  • [1] Brouillette, G., Parisé, P.-O., and Rochon, D. Tricomplex distance estimation for filled-in Julia sets and multibrot sets. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29, 6 (2019), 1950085, 15.
  • [2] Brouillette, G., and Rochon, D. Characterization of the principal 3D slices related to the multicomplex Mandelbrot set. Advances in applied Clifford algebras 29, 39 (2019).
  • [3] Ceballos, J., Coloma, N., Di Teodoro, A., Ochoa-Tocachi, D., and Ponce, F. Fractional multicomplex polynomials. Complex Anal. Oper. Theory 16, 4 (2022), Paper No. 60, 30.
  • [4] Chigira, N. The solutions of xd=1x^{d}=1 in finite groups. J. Algebra 180, 3 (1996), 653–661.
  • [5] Chow, C.-O. Counting involutory, unimodal, and alternating signed permutations. Discrete Math. 306, 18 (2006), 2222–2228.
  • [6] Chowla, S., Herstein, I. N., and Moore, W. K. On recursions connected with symmetric groups. I. Canad. J. Math. 3 (1951), 328–334.
  • [7] Cockle, J. On certain functions resembling quaternions, and on a new imaginary in algebra. The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science 33 (1848), 435–439.
  • [8] Cockle, J. On a new imaginary in algebra. The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science 34 (1849), 37–47.
  • [9] Cockle, J. On the symbols of algebra, and on the theory of tessarines. The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science 34 (1849), 406–410.
  • [10] Cockle, J. On impossible equations, on impossible quantities, and on tessarines. The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science 37 (1850), 281–283.
  • [11] Egge, E. S. Restricted symmetric permutations. Ann. Comb. 11, 3-4 (2007), 405–434.
  • [12] Ell, T. A., and Sangwine, S. J. Quaternion involutions and anti-involutions. Comput. Math. Appl. 53, 1 (2007), 137–143.
  • [13] Garant-Pelletier, V., and Rochon, D. On a generalized Fatou-Julia theorem in multicomplex spaces. Fractals 17, 3 (2009), 241–255.
  • [14] Lawson, J., and Kizil, E. Characterizations of automorphic and anti-automorphic involutions of the quaternions. Linear Multilinear Algebra 69, 11 (2021), 1975–1980.
  • [15] Lin, Y.-C. R. Asymptotic formula for symmetric involutions. arXiv preprint arXiv:1310.0988 (2013).
  • [16] Luna-Elizarrarás, M. E., Pérez-Regalado, C. O., and Shapiro, M. On the Laurent series for bicomplex holomorphic functions. Complex Var. Elliptic Equ. 62, 9 (2017), 1266–1286.
  • [17] Luna-Elizarraras, M. E., Shapiro, M., C. Struppa, D., and Vajiac, A. Bicomplex holomorphic functions : the algebra, geometry and analysis of bicomplex numbers. Frontiers in Mathematics. Springer: Cham, Switzerland, 2015.
  • [18] Moser, L., and Wyman, M. On solutions of xd=1x^{d}=1 in symmetric groups. Canadian J. Math. 7 (1955), 159–168.
  • [19] OEIS Foundation Inc. (2022). The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A000898.
  • [20] Parisé, P.-O. Involutions of bicomplex numbers. arXiv preprint arXiv:2207.06636 (2022).
  • [21] Price, G. B. An Introduction to Multicomplex Spaces and Functions. M. Dekker: New York, NY, USA, 1991.
  • [22] Reiner, V. Signed permutation statistics. European J. Combin. 14, 6 (1993), 553–567.
  • [23] Segre, C. The real representation of complex elements and hyperalgebraic entities (italian). Mathematische Annalen 40 (1892), 413–467.
  • [24] Struppa, D. C., Vajiac, A., and Vajiac, M. B. Holomorphy in multicomplex spaces. In Spectral theory, mathematical system theory, evolution equations, differential and difference equations, vol. 221 of Oper. Theory Adv. Appl. Birkhäuser/Springer Basel AG, Basel, 2012, pp. 617–634.
  • [25] Theaker, K. A., and Van Gorder, R. A. Multicomplex wave functions for linear and nonlinear Schrödinger equations. Adv. Appl. Clifford Algebr. 27, 2 (2017), 1857–1879.
  • [26] Vajiac, A., and Vajiac, M. B. Multicomplex hyperfunctions. Complex Variables and Elliptic Equations 57, 7–8 (2012), 751–762.
  • [27] Vajiac, M. B. Norms and moduli on multicomplex spaces. In Clifford analysis and related topics, vol. 260 of Springer Proc. Math. Stat. Springer, Cham, 2018, pp. 113–140.
  • [28] Vallières, A., and Rochon, D. Relationship between the mandelbrot algorithm and the platonic solids. Mathematics 10, 3 (2022).