This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Counting paths, cycles and blow-ups in planar graphs

Christopher Cox Department of Mathematics, Iowa State University, Ames, IA, USA. cocox@iastate.edu. Supported in part through NSF RTG Grant DMS-1839918.    Ryan R. Martin Department of Mathematics, Iowa State University, Ames, IA, USA. rymartin@iastate.edu. Supported in part through Simons Collaboration Grants #353292 and #709641.
Abstract

For a planar graph HH, let 𝐍𝒫(n,H)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,H) denote the maximum number of copies of HH in an nn-vertex planar graph. In this paper, we prove that 𝐍𝒫(n,P7)427n4\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{7})\sim{4\over 27}n^{4}, 𝐍𝒫(n,C6)(n/3)3\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{6})\sim(n/3)^{3}, 𝐍𝒫(n,C8)(n/4)4\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{8})\sim(n/4)^{4} and 𝐍𝒫(n,K4{1})(n/6)6\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{K_{4}\{1\}})\sim(n/6)^{6}, where K4{1}{K_{4}\{1\}} is the 11-subdivision of K4K_{4}. In addition, we obtain significantly improved upper bounds on 𝐍𝒫(n,P2m+1)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1}) and 𝐍𝒫(n,C2m)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{2m}) for m4m\geq 4. For a wide class of graphs HH, the key technique developed in this paper allows us to bound 𝐍𝒫(n,H)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,H) in terms of an optimization problem over weighted graphs.

1 Introduction

In this paper, we use standard graph theory definitions and notation (c.f. [9]): PnP_{n}, CnC_{n} and KnK_{n} denote the path, cycle and clique on nn vertices, respectively. The complete bipartite graph with parts of size aa and bb is denoted by Ka,bK_{a,b}. We use also standard big-oh and little-oh notation.

For graphs GG and HH, let 𝐍(G,H)\operatorname{\mathbf{N}}(G,H) denote the number of (unlabeled) copies of HH in GG. For a collection of graphs 𝒢\mathcal{G} and a positive integer nn, define

𝐍𝒢(n,H)=defmax{𝐍(G,H):G𝒢,|V(G)|=n}.\operatorname{\mathbf{N}}_{\mathcal{G}}(n,H)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\max\bigl{\{}\operatorname{\mathbf{N}}(G,H):G\in\mathcal{G},\ \lvert V(G)\rvert=n\bigr{\}}.

In this paper, we are concerned with asymptotically determining 𝐍𝒫(n,H)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,H) for various graphs HH, where 𝒫\mathcal{P} is the set of all planar graphs.

The study of 𝐍𝒫(n,H)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,H) was initiated by Hakimi and Schmeichel [6], who determined 𝐍𝒫(n,C3)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{3}) and 𝐍𝒫(n,C4)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{4}) exactly. Alon and Caro [1] continued this study by determining 𝐍𝒫(n,K2,k)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,K_{2,k}) exactly for all kk; in particular, they determined 𝐍𝒫(n,P3)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{3}). Győri et al. [4] later gave the exact value for 𝐍𝒫(n,P4)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{4}), and the same authors determined 𝐍𝒫(n,C5)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{5}) in [5]. Generalizations of some of these results to other surfaces were established by Huynh, Joret and Wood [8].

The main driving force behind this manuscript is a recent conjecture of Ghosh et al. [2] which posits that

𝐍𝒫(n,P2m+1)=4m(nm)m+1+O(nm)for all m2;\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1})=4m\biggl{(}{n\over m}\biggr{)}^{m+1}+O(n^{m})\qquad\text{for all }m\geq 2; (1)

the authors construct graphs which meet the lower bound for all m2m\geq 2, and they prove the case of m=2m=2, showing that 𝐍𝒫(n,P5)=n3+O(n2)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{5})=n^{3}+O(n^{2}). We make steps toward this conjecture by proving:

Theorem 1.1.

The following hold:

𝐍𝒫(n,P7)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{7}) =427n4+O(n41/5),\displaystyle={4\over 27}\cdot n^{4}+O(n^{4-1/5}), and
𝐍𝒫(n,P2m+1)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1}) nm+12(m1)!+O(nm+4/5)\displaystyle\leq{n^{m+1}\over 2\cdot(m-1)!}+O(n^{m+4/5})\quad for all m4.\displaystyle\text{for all }m\geq 4.

This, in particular, establishes the m=3m=3 case of Ghosh et al.’s conjecture, albeit with a worse error-term than predicted. Prior to this result, the best general upper bound that we are aware of is

𝐍𝒫(n,P2m+1)(6n)m+12for all m3,\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1})\leq{(6n)^{m+1}\over 2}\qquad\text{for all }m\geq 3,

though this bound does not appear to be in the literature.

The methods used to prove this result extend to even cycles.

Theorem 1.2.

The following hold:

𝐍𝒫(n,C6)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{6}) =(n3)3+O(n31/5),\displaystyle=\biggl{(}{n\over 3}\biggr{)}^{3}+O(n^{3-1/5}),
𝐍𝒫(n,C8)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{8}) =(n4)4+O(n41/5),\displaystyle=\biggl{(}{n\over 4}\biggr{)}^{4}+O(n^{4-1/5}),\quad and
𝐍𝒫(n,C2m)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{2m}) nmm!+O(nm1/5)\displaystyle\leq{n^{m}\over m!}+O(n^{m-1/5}) for all m5.\displaystyle\text{for all }m\geq 5.

Prior to this result, the best general upper bound that we are aware of is

𝐍𝒫(n,C2m)(6n)m4mfor all m3.\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{2m})\leq{(6n)^{m}\over 4m}\qquad\text{for all }m\geq 3.

We present also new proofs of some known results.

Theorem 1.3.

The following hold:

  1. 1.

    𝐍𝒫(n,P5)=n3+O(n14/5)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{5})=n^{3}+O(n^{14/5}), (Ghosh et al. [2])

  2. 2.

    𝐍𝒫(n,C4)=n22+O(n9/5)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{4})={n^{2}\over 2}+O(n^{9/5}), (Hakimi–Schmeichel [6])

  3. 3.

    𝐍𝒫(n,K2,k)=nkk!+O(nk1+16/(k+8))\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,K_{2,k})={n^{k}\over k!}+O(n^{k-1+16/(k+8)})  for k9k\geq 9. (Alon–Caro [1])

Although these results are already known and our error-terms are worse than those attained in the original papers, these results demonstrate the strength of the method developed in this paper. Indeed, after applying one of a trio of general reduction lemmas (discussed in Section 2), each of these results follow in about one to two lines. Furthermore, our results actually apply to a wider class of graphs than just planar graphs, namely the class of graphs which have linearly many edges and have no copy of K3,3K_{3,3}.

Beyond odd paths and even cycles, our methods allow us to tackle particular blow-ups of graphs.

Definition 1.4.

Let H=(V,E)H=(V,E) be a graph and let kk be a positive integer. The kk-edge-blow-up of HH is the graph H{k}{H\{k\}}, which is formed by replacing every edge xyExy\in E by an independent set of size kk and connecting each of these kk new vertices to both xx and yy.

For example, Cm{1}=C2m{C_{m}\{1\}}=C_{2m} for m3m\geq 3 and K2{k}=K2,k{K_{2}\{k\}}=K_{2,k} for k1k\geq 1. We note that the graph Cm{}{C_{m}\{\ell\}} where =nmm\ell=\lfloor{n-m\over m}\rfloor realizes the lower-bound in eq. 1.

Alon and Caro [1] determined 𝐍𝒫(n,K2{k})\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{K_{2}\{k\}}) exactly for all kk; we extend this to the other two planar cliques by showing:

Theorem 1.5.

For all positive integers kk,

𝐍𝒫(n,K3{k})\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{K_{3}\{k\}}) =1(k!)3(n3)3k+O(n3kk/(k+4)),and\displaystyle={1\over(k!)^{3}}\biggl{(}{n\over 3}\biggr{)}^{3k}+O(n^{3k-k/(k+4)}),\quad\text{and}
𝐍𝒫(n,K4{k})\displaystyle\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{K_{4}\{k\}}) =1(k!)6(n6)6k+O(n6kk/(k+4)).\displaystyle={1\over(k!)^{6}}\biggl{(}{n\over 6}\biggr{)}^{6k}+O(n^{6k-k/(k+4)}).

In general, it is not difficult to show that 𝐍𝒫(n,H{k})=Θ(nkm)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})=\Theta(n^{km}) if HH is a planar graph on mm edges and kδ(H)2k\cdot\delta(H)\geq 2. Indeed, the graph H{}{H\{\ell\}} where =n|V(H)|m\ell=\lfloor{n-\lvert V(H)\rvert\over m}\rfloor shows that

𝐍𝒫(n,H{k})(k)m=1(k!)m(nm)kmO(nkm1),\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})\geq{\ell\choose k}^{m}={1\over(k!)^{m}}\biggl{(}{n\over m}\biggr{)}^{km}-O(n^{km-1}), (2)

and it is an exercise to bound

𝐍𝒫(n,H{k})(6n)km|AutH|(k!)m,\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})\leq{(6n)^{km}\over\lvert\operatorname{Aut}H\rvert\cdot(k!)^{m}}, (3)

where AutH\operatorname{Aut}H is the automorphism group of HH. The key step in the proof of this upper bound is the content of Proposition 2.9. In this paper, we significantly improve the leading constant in the upper-bound.

Theorem 1.6.

Let HH be a planar graph on mm edges and let kk be a positive integer. If either

  • k(δ(H)1)2k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2, or

  • δ(H)=1\delta(H)=1 and k9k\geq 9,

then

𝐍𝒫(n,H{k})nkm(km)!+o(nkm).\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})\leq{n^{km}\over(km)!}+o(n^{km}).

Compare this result to the naïve bounds in eqs. 2 and 3. In fact, provided kk is sufficiently large, we are able to asymptotically pin down 𝐍𝒫(n,H{k})\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}}).

Theorem 1.7.

Let HH be a planar graph on mm edges and let kk be a positive integer. If either

  • δ(H)2\delta(H)\geq 2 and klog(m+1)mlog(1+1/m)k\geq{\log(m+1)\over m\log(1+1/m)}, or

  • δ(H)=1\delta(H)=1 and kmax{9,log(m+1)mlog(1+1/m)}k\geq\max\bigl{\{}9,{\log(m+1)\over m\log(1+1/m)}\bigr{\}},

then

𝐍𝒫(n,H{k})=1(k!)m(nm)km+o(nkm).\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})={1\over(k!)^{m}}\biggl{(}{n\over m}\biggr{)}^{km}+o(n^{km}).

The requirement that klog(m+1)mlog(1+1/m)k\geq{\log(m+1)\over m\log(1+1/m)} in the above theorem is necessary for some graphs HH. As an example, let II denote the skeleton of the icosahedron and let II^{-} denote the graph formed by deleting any edge from II. Since |E(I)|=29\lvert E(I^{-})\rvert=29 and δ(I)=4\delta(I^{-})=4, Theorem 1.7 implies that 𝐍𝒫(n,I{k})1(k!)29(n29)29k\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{I^{-}\{k\}})\sim{1\over(k!)^{29}}\bigl{(}{n\over 29}\bigr{)}^{29k} for all k4k\geq 4. However, for k{1,2,3}k\in\{1,2,3\}, the graph I{}{I\{\ell\}} where =n1230\ell=\lfloor{n-12\over 30}\rfloor realizes

𝐍𝒫(n,I{k})30(k)2930(k!)29(n30)29k>1.57(k!)29(n29)29k,\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{I^{-}\{k\}})\geq 30{\ell\choose k}^{29}\sim{30\over(k!)^{29}}\biggl{(}{n\over 30}\biggr{)}^{29k}>{1.57\over(k!)^{29}}\biggl{(}{n\over 29}\biggr{)}^{29k},

since 𝐍(I,I)=30\operatorname{\mathbf{N}}(I,I^{-})=30. The icosahedron is not unique in this regard (see Proposition 4.11).

The paper is organized as follows. In Section 2, we present the key contribution of this paper: a trio of reduction lemmas from which all of our results follow. Section 2.1 contains the proofs of these reduction lemmas. We then, in Section 3, use these reduction lemmas to prove Theorem 1.1 and part 1 of Theorem 1.3. In Section 4, we establish Theorems 1.2, 1.5, 1.6 and 1.7 along with parts 2 and 3 of Theorem 1.3. We conclude with a list of remarks and conjectures in Section 5.

1.1 Notation and preliminaries

We use standard graph theory definitions and notation (c.f. [9]). For a graph GG, we use V(G)V(G) and E(G)E(G) to denote its vertex-set and edge-set, respectively. When the graph is understood, we omit the parenthetical and simply write VV and EE.

For vV(G)v\in V(G), we write NG(v)N_{G}(v) to denote the neighborhood of vv in GG and degG(v)=def|NG(v)|\deg_{G}(v)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\lvert N_{G}(v)\rvert to denote the degree of vv in GG. For vertices u,vV(G)u,v\in V(G), we write degG(u,v)=def|NG(u)NG(v)|\deg_{G}(u,v)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\lvert N_{G}(u)\cap N_{G}(v)\rvert to denote the co-degree of uu and vv in GG. When the graph GG is understood, we omit the subscript.

For positive integers mnm\leq n, we write [n][n] to denote the set {1,,n}\{1,\dots,n\} and write [m,n][m,n] to denote the set {m,,n}\{m,\dots,n\}. For a set XX, we use (X)n(X)_{n} to denote the set of tuples (x1,,xn)Xn(x_{1},\dots,x_{n})\in X^{n} with x1,,xnx_{1},\dots,x_{n} distinct; this notation mirrors that of the falling-factorial. Finally, we will often write xyxy to denote the set {x,y}\{x,y\} for notational convenience.

We require a special case of the Karush–Kuhn–Tucker (KKT) conditions (c.f. [3, Corollaries 9.6 and 9.10]) in order to prove Lemmas 3.3 and 4.5.

Theorem 1.8 (Special case of the KKT conditions).

Let f:nf\colon\mathbb{R}^{n}\to\mathbb{R} be a continuously differentiable function and consider the optimization problem

maxf(𝐱)s.t.ixi=1x1,,xn0.\begin{array}[]{cl}\max&f(\mathbf{x})\\ \text{s.t.}&\sum_{i}x_{i}=1\\ &x_{1},\dots,x_{n}\geq 0.\end{array}

If 𝐱\mathbf{x}^{*} achieves this maximum, then there is some λ\lambda\in\mathbb{R} such that, for each i[n]i\in[n], either

xi=0,orfxi(𝐱)=λ.x_{i}^{*}=0,\qquad\text{or}\qquad{\partial f\over\partial x_{i}}(\mathbf{x}^{*})=\lambda.

2 The key reduction lemmas

Aside from the bounds stated in the introduction, the main contribution of this paper is the technique used in their proofs.

For graphs G,HG,H, let 𝐂(G,H)\operatorname{\mathbf{C}}(G,H) denote the set of (unlabeled) copies of HH in GG; so |𝐂(G,H)|=𝐍(G,H)\lvert\operatorname{\mathbf{C}}(G,H)\rvert=\operatorname{\mathbf{N}}(G,H). For a finite set XX, we abbreviate 𝐂(X,H)=def𝐂(KX,H)\operatorname{\mathbf{C}}(X,H)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\operatorname{\mathbf{C}}(K_{X},H), where KXK_{X} is the clique on vertex-set XX; in other words, 𝐂(X,H)\operatorname{\mathbf{C}}(X,H) is the set of all copies HH^{\prime} of HH with V(H)XV(H^{\prime})\subseteq X.

The following definition lays out the key quantities used throughout this paper.

Definition 2.1.

Fix a finite set XX and let μ\mu be a probability mass on (X2){X\choose 2}. We define the following quantities:

  1. 1.

    For xXx\in X, define

    μ¯(x)=defyX{x}μ(xy),\bar{\mu}(x)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{y\in X\setminus\{x\}}\mu(xy),

    which is the probability that an edge sampled from μ\mu is incident to xx. It can also be thought of as the weighted degree of xx. Note that xXμ¯(x)=2\sum_{x\in X}\bar{\mu}(x)=2 thanks to the handshaking lemma.

  2. 2.

    For an integer m2m\geq 2, define

    ρ(μ;m)\displaystyle\rho(\mu;m) =def𝐱(X)mμ¯(x1)(i=1m1μ(xixi+1))μ¯(xm),and\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{\mathbf{x}\in(X)_{m}}\bar{\mu}(x_{1})\biggl{(}\prod_{i=1}^{m-1}\mu(x_{i}x_{i+1})\biggr{)}\bar{\mu}(x_{m}),\quad\text{and}
    ρ(m)\displaystyle\rho(m) =defsup{ρ(μ;m):suppμ(X2) for some finite set X}.\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sup\biggl{\{}\rho(\mu;m):\operatorname{supp}\mu\subseteq{X\choose 2}\text{ for some finite set }X\biggr{\}}.

    The quantity ρ(μ;m)\rho(\mu;m) is essentially the probability that, upon independently sampling edges e1,,em+1e_{1},\dots,e_{m+1} from μ\mu, the edges e2,,eme_{2},\dots,e_{m} form a copy of PmP_{m}, e1e_{1} is incident to the first vertex of this path and em+1e_{m+1} is incident to the last vertex of this path (see the proof of Theorem 3.2 for a more precise interpretation).

  3. 3.

    For a subgraph GKXG\subseteq K_{X}, define

    μ(G)=defeE(G)μ(e),\mu(G)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\prod_{e\in E(G)}\mu(e),

    which is essentially the probability that |E(G)|\lvert E(G)\rvert edges sampled independently from μ\mu form the edge-set of GG.

  4. 4.

    For a graph HH with no isolated vertices and a positive integer kk, define

    β(μ;H,k)\displaystyle\beta(\mu;H,k) =defH𝐂(X,H)μ(H)k,and\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\mu(H^{\prime})^{k},\quad\text{and}
    β(H,k)\displaystyle\beta(H,k) =defsup{β(μ;H,k):suppμ(X2) for some finite set X}.\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sup\biggl{\{}\beta(\mu;H,k):\operatorname{supp}\mu\subseteq{X\choose 2}\text{ for some finite set }X\biggr{\}}.

    The quantity β(μ;H,k)\beta(\mu;H,k) is essentially the probability that k|E(H)|k\cdot\lvert E(H)\rvert edges sampled independently from μ\mu form a copy of HH wherein each edge has multiplicity kk (see the proof of Theorem 4.2 for a more precise interpretation).

While we are primarily concerned with planar graphs, our results apply to a much broader class of graphs.

Definition 2.2.

For any fixed C>0C>0, the collection of graphs 𝒢C\mathcal{G}_{C} is defined as follows: G𝒢CG\in\mathcal{G}_{C} if and only if

  1. 1.

    GG has no copy of K3,3K_{3,3}, and

  2. 2.

    Every subgraph HGH\subseteq G satisfies |E(H)|C|V(H)|\lvert E(H)\rvert\leq C\cdot\lvert V(H)\rvert.

Observe that 𝒢C1𝒢C2\mathcal{G}_{C_{1}}\subseteq\mathcal{G}_{C_{2}} if C1C2C_{1}\leq C_{2} and that 𝒫𝒢3\mathcal{P}\subseteq\mathcal{G}_{3}. Furthermore, observe that H{k}𝒢2{H\{k\}}\in\mathcal{G}_{2} for any graph HH and any positive integer kk. In each of the results discussed in the introduction, 𝒫\mathcal{P} can be replaced by 𝒢C\mathcal{G}_{C} for any C2C\geq 2 (due to monotonicity, all of our upper-bounds hold for any C>0C>0, but the lower-bound constructions require C2C\geq 2).

We quickly remark that our results apply to an even wider class of graphs than 𝒢C\mathcal{G}_{C}, though we avoid this more general situation for the sake of readability. We discuss these further generalizations in Section 5.

For paths of odd order, we show:

Lemma 2.3 (Reduction lemma for odd paths).

If m2m\geq 2, then

𝐍𝒢C(n,P2m+1)ρ(m)2nm+1+O(nm+4/5),\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,P_{2m+1})\leq{\rho(m)\over 2}\cdot n^{m+1}+O(n^{m+4/5}),

where the implicit constant in the big-oh notation depends on mm and CC.

For general edge-blow-ups, we prove:

Lemma 2.4 (Reduction lemma for edge-blow-ups).

Let HH be a graph on mm edges and let kk be a positive integer. If k(δ(H)1)2k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2, then

𝐍𝒢C(n,H{k})β(H,k)(k!)mnkm+O(nkmk/(k+4)).\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,{H\{k\}})\leq{\beta(H,k)\over(k!)^{m}}\cdot n^{km}+O(n^{km-k/(k+4)}).

If δ(H)=1\delta(H)=1 and k9k\geq 9, then

𝐍𝒢C(n,H{k})β(H,k)(k!)mnkm+O(nkm1+16/(k+8)).\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,{H\{k\}})\leq{\beta(H,k)\over(k!)^{m}}\cdot n^{km}+O(n^{km-1+16/(k+8)}).

In both cases, the implicit constant in the big-oh notation depends on HH, kk and CC.

Recall that C2m=Cm{1}C_{2m}={C_{m}\{1\}} for m3m\geq 3 and that C4=K2{2}C_{4}={K_{2}\{2\}}. Unfortunately, since δ(Cm)=2\delta(C_{m})=2 for m3m\geq 3 and δ(K2)=1\delta(K_{2})=1, we cannot apply Lemma 2.4 to these graphs. However, with a slightly different approach, we can obtain exactly this extension.

Lemma 2.5 (Reduction lemma for even cycles).

The following hold:

𝐍𝒢C(n,C4)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,C_{4}) β(K2,2)2n2+O(n21/5),\displaystyle\leq{\beta(K_{2},2)\over 2}\cdot n^{2}+O(n^{2-1/5}), and
𝐍𝒢C(n,C2m)\displaystyle\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,C_{2m}) β(Cm,1)nm+O(nm1/5)\displaystyle\leq\beta(C_{m},1)\cdot n^{m}+O(n^{m-1/5})\quad for m3,\displaystyle\text{for }m\geq 3,

where the implicit constant in the big-oh notation depends on mm and CC.

Note that there is still a gap in the reduction lemmas when it comes to K2{k}=K2,k{K_{2}\{k\}}=K_{2,k}, which we can handle only if k=2k=2 or k9k\geq 9; we suspect that this gap can be closed. Granted, at least when dealing with 𝒫\mathcal{P}, this result is already superseded by the results of Alon and Caro [1]. However, we believe that the obvious reduction lemma holds for H{k}{H\{k\}} provided kδ(H)2k\cdot\delta(H)\geq 2, though we do not currently have a proof.

While the individual details in each of these reduction lemmas differ, the underlying philosophy is the same. The key idea is to show that the vast majority of the copies of HH in GG interact predictably with the largest degree vertices of GG. This being the case, we then argue that GG can be suitably approximated by an edge-blow-up of some graph, possibly where each edge is blown up by different amounts. The probability masses μ\mu discussed in Definition 2.1 are a compact way to represent these edge-blow-ups which approximate GG.

2.1 Proofs of the reduction lemmas

In this section, we prove Lemmas 2.3, 2.4 and 2.5. The approach to the lemmas is very similar, yet each requires separate analysis.

We begin by presenting a simple proposition, pieces of which are used in each proof.

Proposition 2.6.

Let G=(V,E)𝒢CG=(V,E)\in\mathcal{G}_{C} be a graph on nn vertices. For ε>0\varepsilon>0, define V~=def{vV:deg(v)εn}\widetilde{V}\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\{v\in V:\deg(v)\geq\varepsilon n\}. Then,

|V~|2Cε,anduv(V~2)deg(u,v)n+4(Cε)4.\lvert\widetilde{V}\rvert\leq{2C\over\varepsilon},\qquad\text{and}\qquad\sum_{uv\in{\widetilde{V}\choose 2}}\deg(u,v)\leq n+4\biggl{(}{C\over\varepsilon}\biggr{)}^{4}.
Proof.

We begin by observing that

εn|V~|vV~deg(v)vVdeg(v)=2|E|2Cn|V~|2Cε.\varepsilon n\cdot\lvert\widetilde{V}\rvert\leq\sum_{v\in\widetilde{V}}\deg(v)\leq\sum_{v\in V}\deg(v)=2\lvert E\rvert\leq 2Cn\quad\implies\quad\lvert\widetilde{V}\rvert\leq{2C\over\varepsilon}.

For notational convenience set E~=def(V~2)\widetilde{E}\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}{\widetilde{V}\choose 2} and S=defuvE~deg(u,v)S\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{uv\in\widetilde{E}}\deg(u,v). Since GG has no copy of K3,3K_{3,3}, we know that |N(u)N(v)N(w)|2\bigl{\lvert}N(u)\cap N(v)\cap N(w)\bigr{\rvert}\leq 2 for any distinct u,v,wVu,v,w\in V. Hence, we can apply the second Bonferroni inequality to bound

n\displaystyle n |uvE~(N(u)N(v))|uvE~|N(u)N(v)|{uv,wz}(E~2)|N(u)N(v)N(w)N(z)|\displaystyle\geq\biggl{\lvert}\bigcup_{uv\in\widetilde{E}}\bigl{(}N(u)\cap N(v)\bigr{)}\biggr{\rvert}\geq\sum_{uv\in\widetilde{E}}\bigl{\lvert}N(u)\cap N(v)\bigr{\rvert}-\sum_{\{uv,wz\}\in{\widetilde{E}\choose 2}}\bigl{\lvert}N(u)\cap N(v)\cap N(w)\cap N(z)\bigr{\rvert}
S2(|E~|2)S14|V~|4S4(Cε)4,\displaystyle\geq S-2{\lvert\widetilde{E}\rvert\choose 2}\geq S-{1\over 4}\lvert\widetilde{V}\rvert^{4}\geq S-4\biggl{(}{C\over\varepsilon}\biggr{)}^{4},

which proves the proposition. ∎

Reduction lemma for odd paths.

Proof of Lemma 2.3.

Fix G=(V,E)𝒢CG=(V,E)\in\mathcal{G}_{C} on nn vertices and fix 𝐯=(v1,,vm)(V)m\mathbf{v}=(v_{1},\dots,v_{m})\in(V)_{m}. Label V(P2m+1)={p1,p2,,p2m+1}V(P_{2m+1})=\{p_{1},p_{2},\dots,p_{2m+1}\} in consecutive order and consider the copies of P2m+1P_{2m+1} in GG wherein viv_{i} plays the role of vertex p2ip_{2i}. Observe that there are then at most deg(v1)\deg(v_{1}) choices for the image of p1p_{1}, at most deg(vi,vi+1)\deg(v_{i},v_{i+1}) choices for the image of p2i+1p_{2i+1} for i[m1]i\in[m-1] and at most deg(vm)\deg(v_{m}) choices for the image of p2m+1p_{2m+1}. Thus, there are at most

D(𝐯)=defdeg(v1)(i=1m1deg(vi,vi+1))deg(vm)D(\mathbf{v})\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\deg(v_{1})\biggl{(}\prod_{i=1}^{m-1}\deg(v_{i},v_{i+1})\biggr{)}\deg(v_{m})

copies of P2m+1P_{2m+1} in GG wherein viv_{i} plays the role of vertex p2ip_{2i} and so we can bound

𝐍(G,P2m+1)12𝐯(V)mD(𝐯).\operatorname{\mathbf{N}}(G,P_{2m+1})\leq{1\over 2}\sum_{\mathbf{v}\in(V)_{m}}D(\mathbf{v}).

Fix ε=ε(n)>0\varepsilon=\varepsilon(n)>0 to be chosen later and define the set

E~=def{uv(V2):deg(u,v)εn}.\widetilde{E}\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\biggl{\{}uv\in{V\choose 2}:\deg(u,v)\geq\varepsilon n\biggr{\}}.

The set E~\widetilde{E} induces a graph G~\widetilde{G} with vertex-set V~V\widetilde{V}\subseteq V. Certainly if vV~v\in\widetilde{V}, then deg(v)εn\deg(v)\geq\varepsilon n and so |V~|2C/ε\lvert\widetilde{V}\rvert\leq 2C/\varepsilon, thanks to Proposition 2.6.

Next define

P~m\displaystyle\widetilde{P}_{m} =def{𝐯(V)m:vivi+1E~ for all i[m1]},and\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\bigl{\{}\mathbf{v}\in(V)_{m}:v_{i}v_{i+1}\in\widetilde{E}\text{ for all $i\in[m-1]$}\bigr{\}},\quad\text{and}
M~\displaystyle\widetilde{M} =def𝐯P~mD(𝐯).\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{\mathbf{v}\in\widetilde{P}_{m}}D(\mathbf{v}).

We aim to show that 𝐍(G,P2m+1)M~/2\operatorname{\mathbf{N}}(G,P_{2m+1})\approx\widetilde{M}/2.

For any u,vVu,v\in V, we have deg(u,v)min{deg(u),deg(v)}\deg(u,v)\leq\min\{\deg(u),\deg(v)\}, so for any 𝐯(V)m\mathbf{v}\in(V)_{m}, we can bound

D(𝐯)\displaystyle D(\mathbf{v}) (i=1jdeg(vi))deg(vj,vj+1)(i=j+1mdeg(vi))for all j[m1]\displaystyle\leq\biggl{(}\prod_{i=1}^{j}\deg(v_{i})\biggr{)}\cdot\deg(v_{j},v_{j+1})\cdot\biggl{(}\prod_{i=j+1}^{m}\deg(v_{i})\biggr{)}\quad\text{for all $j\in[m-1]$}
D(𝐯)\displaystyle\implies D(\mathbf{v}) (mini[k1]deg(vi,vi+1))i=1mdeg(vi).\displaystyle\leq\biggl{(}\min_{i\in[k-1]}\deg(v_{i},v_{i+1})\biggr{)}\prod_{i=1}^{m}\deg(v_{i}).

We can therefore bound

2𝐍(G,P2m+1)M~\displaystyle 2\cdot\operatorname{\mathbf{N}}(G,P_{2m+1})-\widetilde{M} 𝐯(V)mP~mD(𝐯)𝐯(V)mP~m(mini[k1]deg(vi,vi+1))i=1mdeg(vi)\displaystyle\leq\sum_{\mathbf{v}\in(V)_{m}\setminus\widetilde{P}_{m}}D(\mathbf{v})\leq\sum_{\mathbf{v}\in(V)_{m}\setminus\widetilde{P}_{m}}\biggl{(}\min_{i\in[k-1]}\deg(v_{i},v_{i+1})\biggr{)}\prod_{i=1}^{m}\deg(v_{i})
𝐯(V)mP~mεni=1mdeg(vi)εnv1,,vmVi=1mdeg(vi)\displaystyle\leq\sum_{\mathbf{v}\in(V)_{m}\setminus\widetilde{P}_{m}}\varepsilon n\cdot\prod_{i=1}^{m}\deg(v_{i})\leq\varepsilon n\cdot\sum_{v_{1},\dots,v_{m}\in V}\ \prod_{i=1}^{m}\deg(v_{i})
=εn(vVdeg(v))mεn(2Cn)m=O(εnm+1).\displaystyle=\varepsilon n\cdot\biggl{(}\sum_{v\in V}\deg(v)\biggr{)}^{m}\leq\varepsilon n\cdot(2Cn)^{m}=O\bigl{(}\varepsilon n^{m+1}\bigr{)}.

Set U={vVV~:|N(v)V~|3}U=\{v\in V\setminus\widetilde{V}:\lvert N(v)\cap\widetilde{V}\rvert\geq 3\} and define the subgraph G=(V,E)G^{\prime}=(V^{\prime},E^{\prime}) of GG as follows:

  • Delete all vertices in UU, and

  • Delete all vertices vVV~v\in V\setminus\widetilde{V} for which N(v)V~=N(v)\cap\widetilde{V}=\varnothing, and

  • Delete all edges induced by V~\widetilde{V}, and

  • Delete all edges induced by VV~V\setminus\widetilde{V}.

Since GG has no copy of K3,3K_{3,3},

|U|2(|V~|3)2(2C/ε3)=O(ε3).\lvert U\rvert\leq 2{\lvert\widetilde{V}\rvert\choose 3}\leq 2{2C/\varepsilon\choose 3}=O(\varepsilon^{-3}).

For 𝐯(V~)m\mathbf{v}\in(\widetilde{V})_{m}, define

D(𝐯)\displaystyle D^{\prime}(\mathbf{v}) =defdegG(v1)(i=1m1degG(vi,vi+1))degG(vm),and\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\deg_{G^{\prime}}(v_{1})\biggl{(}\prod_{i=1}^{m-1}\deg_{G^{\prime}}(v_{i},v_{i+1})\biggr{)}\deg_{G^{\prime}}(v_{m}),\quad\text{and}
M~\displaystyle\widetilde{M}^{\prime} =def𝐯P~mD(𝐯).\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{\mathbf{v}\in\widetilde{P}_{m}}D^{\prime}(\mathbf{v}).

For vV~v\in\widetilde{V}, observe that

degG(v)degG(v)=1degG(v)degG(v)degG(v)1O(ε1)+O(ε3)εn=1O(1ε4n).{\deg_{G^{\prime}}(v)\over\deg_{G}(v)}=1-{\deg_{G}(v)-\deg_{G^{\prime}}(v)\over\deg_{G}(v)}\geq 1-{O(\varepsilon^{-1})+O(\varepsilon^{-3})\over\varepsilon n}=1-O\biggl{(}{1\over\varepsilon^{4}n}\biggr{)}.

Similarly, for uvE~uv\in\widetilde{E},

degG(u,v)degG(u,v)1O(ε1)+O(ε3)εn=1O(1ε4n).{\deg_{G^{\prime}}(u,v)\over\deg_{G}(u,v)}\geq 1-{O(\varepsilon^{-1})+O(\varepsilon^{-3})\over\varepsilon n}=1-O\biggl{(}{1\over\varepsilon^{4}n}\biggr{)}.

Therefore, for any 𝐯P~m\mathbf{v}\in\widetilde{P}_{m}, we have

D(𝐯)D(𝐯)=degG(v1)degG(v1)(i=1m1degG(vi,vi+1)degG(vi,vi+1))degG(vm)degG(vm)1O(1ε4n),{D^{\prime}(\mathbf{v})\over D(\mathbf{v})}={\deg_{G^{\prime}}(v_{1})\over\deg_{G}(v_{1})}\biggl{(}\prod_{i=1}^{m-1}{\deg_{G^{\prime}}(v_{i},v_{i+1})\over\deg_{G}(v_{i},v_{i+1})}\biggr{)}{\deg_{G^{\prime}}(v_{m})\over\deg_{G}(v_{m})}\geq 1-O\biggl{(}{1\over\varepsilon^{4}n}\biggr{)},

and so

M~(1O(1ε4n))M~.\widetilde{M}^{\prime}\geq\biggl{(}1-O\biggl{(}{1\over\varepsilon^{4}n}\biggr{)}\biggr{)}\widetilde{M}.

Next, we can partition VV~=U1U2V^{\prime}\setminus\widetilde{V}=U_{1}\cup U_{2} where Ui={vVV~:|NG(v)|=i}U_{i}=\{v\in V^{\prime}\setminus\widetilde{V}:\lvert N_{G^{\prime}}(v)\rvert=i\}. We claim that we may suppose U1=U_{1}=\varnothing. Indeed, suppose that xU1x\in U_{1} and that xuE(G)xu\in E(G^{\prime}), so uV~u\in\widetilde{V}. Consider selecting any vv such that uvE~uv\in\widetilde{E} and introducing the edge xvxv. (Note that if GG was planar to begin with, then GG^{\prime} is still planar after this modification.) Observe that M~\widetilde{M}^{\prime} can only increase under this operation and so we may suppose that U1=U_{1}=\varnothing.

Thus, set S=defuv(V~2)degG(u,v)S\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{uv\in{\widetilde{V}\choose 2}}\deg_{G^{\prime}}(u,v) and let μ\mu be the probability mass on (V~2){\widetilde{V}\choose 2} defined by μ(uv)=degG(u,v)/S\mu(uv)=\deg_{G^{\prime}}(u,v)/S. Since V=V~U2V^{\prime}=\widetilde{V}\cup U_{2}, and GG^{\prime} has no edges induced by V~\widetilde{V}, we observe that S=|U2|nS=\lvert U_{2}\rvert\leq n. Furthermore, for any vV~v\in\widetilde{V}, we have μ¯(v)=degG(v)/S\bar{\mu}(v)=\deg_{G^{\prime}}(v)/S. Therefore,

M~\displaystyle\widetilde{M}^{\prime} =𝐯P~mD(𝐯)𝐯(V~)mD(𝐯)=Sm+1𝐯(V~)mμ¯(v1)(i=1m1μ(vivi+1))μ¯(vm)\displaystyle=\sum_{\mathbf{v}\in\widetilde{P}_{m}}D^{\prime}(\mathbf{v})\leq\sum_{\mathbf{v}\in(\widetilde{V})_{m}}D^{\prime}(\mathbf{v})=S^{m+1}\cdot\sum_{\mathbf{v}\in(\widetilde{V})_{m}}\bar{\mu}(v_{1})\biggl{(}\prod_{i=1}^{m-1}\mu(v_{i}v_{i+1})\biggr{)}\bar{\mu}(v_{m})
=ρ(μ;m)Sm+1ρ(μ;m)nm+1ρ(m)nm+1.\displaystyle=\rho(\mu;m)\cdot S^{m+1}\leq\rho(\mu;m)\cdot n^{m+1}\leq\rho(m)\cdot n^{m+1}.

Finally, selecting ε=n1/5\varepsilon=n^{-1/5} yields

𝐍(G,P2m+1)\displaystyle\operatorname{\mathbf{N}}(G,P_{2m+1}) 12M~+O(εnm+1)12(1+O(1ε4n))ρ(m)nm+1+O(εnm+1)\displaystyle\leq{1\over 2}\widetilde{M}+O(\varepsilon n^{m+1})\leq{1\over 2}\biggl{(}1+O\biggl{(}{1\over\varepsilon^{4}n}\biggr{)}\biggr{)}\rho(m)\cdot n^{m+1}+O(\varepsilon n^{m+1})
=ρ(m)2nm+1+O(nm+4/5).\displaystyle={\rho(m)\over 2}\cdot n^{m+1}+O(n^{m+4/5}).\qed

Before moving on, we make a few remarks.

Remark 2.7.

It is not difficult to argue that for m2m\geq 2 and C2C\geq 2,

𝐍𝒢C(n,P2m+1)ρ(m)2nm+1o(nm+1),\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,P_{2m+1})\geq{\rho(m)\over 2}\cdot n^{m+1}-o(n^{m+1}),

so Lemma 2.3 is asymptotically tight. Indeed, fix a finite set XX and a probability mass μ\mu on (X2){X\choose 2}. For a sufficiently large integer nn, let GG be the edge-blow-up of KXK_{X} formed by blowing up each edge e(X2)e\in{X\choose 2} into a set of size nμ(e)\lfloor n\cdot\mu(e)\rfloor. Then, one can show that G𝒢2G\in\mathcal{G}_{2} and

𝐍(G,P2m+1)ρ(μ;m)2nm+1O(nm).\operatorname{\mathbf{N}}(G,P_{2m+1})\geq{\rho(\mu;m)\over 2}\cdot n^{m+1}-O(n^{m}).
Remark 2.8.

For a finite set XX and a probability mass μ\mu on (X2){X\choose 2}, let GμG_{\mu} be the graph with vertex-set XX and edge-set suppμ\operatorname{supp}\mu. In the proof of Lemma 2.3, if G𝒫G\in\mathcal{P}, then we can guarantee also that G𝒫G^{\prime}\in\mathcal{P}, even after the modification that ensures U1=U_{1}=\varnothing. Therefore, we can actually establish

𝐍𝒫(n,P2m+1)=ρ𝒫(m)2nm+1+o(nm+1)for m2,\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1})={\rho_{\mathcal{P}}(m)\over 2}\cdot n^{m+1}+o(n^{m+1})\qquad\text{for }m\geq 2,

where

ρ𝒫(m)=sup{ρ(μ;m):Gμ𝒫}.\rho_{\mathcal{P}}(m)=\sup\bigl{\{}\rho(\mu;m):G_{\mu}\in\mathcal{P}\bigr{\}}.

Although this refinement exists, we do not believe it to be helpful here. That is to say, we believe that ρ𝒫(m)=ρ(m)\rho_{\mathcal{P}}(m)=\rho(m) for all m2m\geq 2.

Reduction lemma for edge-blow-ups.

We will need another simple proposition in order to establish Lemma 2.4.

Proposition 2.9.

Let HH be a graph on mm edges and let kk be a positive integer. If G=(V,E)G=(V,E) is any graph and kδ(H)2k\cdot\delta(H)\geq 2, then

H𝐂(V,H)xyE(H)degG(x,y)k(2|E|)km|AutH|.\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{xy\in E(H^{\prime})}\deg_{G}(x,y)^{k}\leq{\bigl{(}2\lvert E\rvert\bigr{)}^{km}\over\lvert\operatorname{Aut}H\rvert}.
Proof.

Since kδ(H)2k\cdot\delta(H)\geq 2, we know that for any x+x\in\mathbb{R}^{+} and vV(H)v\in V(H), we have

1+xkdegH(v)/2(1+x)kdegH(v)/2.1+x^{k\cdot\deg_{H}(v)/2}\leq(1+x)^{k\cdot\deg_{H}(v)/2}.

Additionally, for uvV(G)u\neq v\in V(G), observe that deg(u,v)min{deg(u),deg(v)}deg(u)deg(v)\deg(u,v)\leq\min\{\deg(u),\deg(v)\}\leq\sqrt{\deg(u)\deg(v)}.

Using these two facts and translating between labeled and unlabeled copies of HH, we can bound

H𝐂(V,H)xyE(H)degG(x,y)k\displaystyle\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{xy\in E(H^{\prime})}\deg_{G}(x,y)^{k} H𝐂(V,H)xyE(H)(degG(x)degG(y))k/2\displaystyle\leq\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{xy\in E(H^{\prime})}\bigl{(}\deg_{G}(x)\deg_{G}(y)\bigr{)}^{k/2}
=H𝐂(V,H)xV(H)degG(x)kdegH(x)/2\displaystyle=\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{x\in V(H^{\prime})}\deg_{G}(x)^{k\cdot\deg_{H^{\prime}}(x)/2}
=1|AutH|g:V(H)Vg injectionvV(H)degG(g(v))kdegH(v)/2\displaystyle={1\over\lvert\operatorname{Aut}H\rvert}\sum_{\begin{subarray}{c}g\colon V(H)\to V\\ g\text{ injection}\end{subarray}}\ \prod_{v\in V(H)}\deg_{G}\bigl{(}g(v)\bigr{)}^{k\cdot\deg_{H}(v)/2}
1|AutH|g:V(H)VvV(H)degG(g(v))kdegH(v)/2.\displaystyle\leq{1\over\lvert\operatorname{Aut}H\rvert}\sum_{g\colon V(H)\to V}\ \prod_{v\in V(H)}\deg_{G}\bigl{(}g(v)\bigr{)}^{k\cdot\deg_{H}(v)/2}.

From here, we use the fact that

x1,,xnXi=1nfi(xi)=i=1n(xXfi(x))\sum_{x_{1},\dots,x_{n}\in X}\ \prod_{i=1}^{n}f_{i}(x_{i})=\prod_{i=1}^{n}\biggl{(}\sum_{x\in X}f_{i}(x)\biggr{)}

for any finite set XX and any functions f1,,fn:Xf_{1},\dots,f_{n}\colon X\to\mathbb{R} in order to bound

H𝐂(V,H)xyE(H)degG(x,y)k\displaystyle\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{xy\in E(H^{\prime})}\deg_{G}(x,y)^{k} 1|AutH|vV(H)(xVdegG(x)kdegH(v)/2)\displaystyle\leq{1\over\lvert\operatorname{Aut}H\rvert}\prod_{v\in V(H)}\biggl{(}\sum_{x\in V}\deg_{G}(x)^{k\cdot\deg_{H}(v)/2}\biggr{)}
1|AutH|vV(H)(xVdegG(x))kdegH(v)/2=(2|E|)km|AutH|.\displaystyle\leq{1\over\lvert\operatorname{Aut}H\rvert}\prod_{v\in V(H)}\biggl{(}\sum_{x\in V}\deg_{G}(x)\biggr{)}^{k\cdot\deg_{H}(v)/2}={\bigl{(}2\lvert E\rvert\bigr{)}^{km}\over\lvert\operatorname{Aut}H\rvert}.\qed
Proof of Lemma 2.4.

Fix G=(V,E)𝒢CG=(V,E)\in\mathcal{G}_{C} on nn vertices. Fix an injection g:V(H)Vg\colon V(H)\to V and consider the of copies of H{k}{H\{k\}} in GG where, for each vV(H)v\in V(H), g(v)g(v) plays the role of vertex vv. For each uvE(H)uv\in E(H), observe that there are at most (deg(g(u),g(v))k){\deg(g(u),g(v))\choose k} choices for the kk common neighbors of u,vu,v in H{k}{H\{k\}}; thus there are at most

uvE(H)(deg(g(u),g(v))k)\prod_{uv\in E(H)}{\deg\bigl{(}g(u),g(v)\bigr{)}\choose k}

ways to extend gg to an embedding of H{k}{H\{k\}}. In particular, we can bound

𝐍(G,H{k})\displaystyle\operatorname{\mathbf{N}}(G,{H\{k\}}) H𝐂(V,H)xyE(H)(deg(x,y)k)1(k!)mH𝐂(V,H)xyE(H)deg(x,y)k.\displaystyle\leq\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{xy\in E(H^{\prime})}{\deg(x,y)\choose k}\leq{1\over(k!)^{m}}\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(V,H)}\ \prod_{xy\in E(H^{\prime})}\deg(x,y)^{k}. (4)

Fix ε=ε(n)>0\varepsilon=\varepsilon(n)>0 to be chosen later and define

V~\displaystyle\widetilde{V} =def{vV:deg(v)εn},and\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\{v\in V:\deg(v)\geq\varepsilon n\},\quad\text{and}
M~\displaystyle\widetilde{M} =defH𝐂(V~,H)xyE(H)deg(x,y)k.\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(\widetilde{V},H)}\ \prod_{xy\in E(H^{\prime})}\deg(x,y)^{k}.

We claim that M~\widetilde{M} approximates 𝐍(G,H{k})\operatorname{\mathbf{N}}(G,{H\{k\}}). The proof of this fact depends heavily on the minimum degree of HH, so we break the proof into two claims.

Claim 2.10.

If k(δ(H)1)2k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2, then

𝐍(G,H{k})M~(k!)m+O(εknkm).\operatorname{\mathbf{N}}(G,{H\{k\}})\leq{\widetilde{M}\over(k!)^{m}}+O(\varepsilon^{k}n^{km}).
Proof.

Set E~=(V~2)\widetilde{E}={\widetilde{V}\choose 2}. For H𝐂(V,H)H^{\prime}\in\operatorname{\mathbf{C}}(V,H), observe that V(H)V~V(H^{\prime})\subseteq\widetilde{V} if and only if E(H)E~E(H^{\prime})\subseteq\widetilde{E}. Furthermore, observe that if uvE~uv\notin\widetilde{E}, then deg(u,v)<εn\deg(u,v)<\varepsilon n. Using eq. 4, we begin by bounding

(k!)m𝐍(G,H{k})M~\displaystyle(k!)^{m}\cdot\operatorname{\mathbf{N}}(G,{H\{k\}})-\widetilde{M} H𝐂(V,H):V(H)V~xyE(H)deg(x,y)k=H𝐂(V,H):E(H)E~xyE(H)deg(x,y)k\displaystyle\leq\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ V(H^{\prime})\not\subseteq\widetilde{V}\end{subarray}}\ \prod_{xy\in E(H^{\prime})}\deg(x,y)^{k}=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ E(H^{\prime})\not\subseteq\widetilde{E}\end{subarray}}\ \prod_{xy\in E(H^{\prime})}\deg(x,y)^{k}
H𝐂(V,H):E(H)E~eE(H)E~(εn)kxyE(H){e}deg(x,y)k\displaystyle\leq\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ E(H^{\prime})\not\subseteq\widetilde{E}\end{subarray}}\ \sum_{e\in E(H^{\prime})\setminus\widetilde{E}}(\varepsilon n)^{k}\cdot\prod_{xy\in E(H^{\prime})\setminus\{e\}}\deg(x,y)^{k}
(εn)keE(H)H′′𝐂(V,He)xyE(H′′)deg(x,y)k\displaystyle\leq(\varepsilon n)^{k}\cdot\sum_{e\in E(H)}\ \sum_{H^{\prime\prime}\in\operatorname{\mathbf{C}}(V,H-e)}\ \prod_{xy\in E(H^{\prime\prime})}\deg(x,y)^{k}

Now, for any eE(H)e\in E(H), we have kδ(He)k(δ(H)1)2k\cdot\delta(H-e)\geq k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2, and so we can apply Proposition 2.9 to HeH-e to bound

(k!)m𝐍(G,H{k})M~\displaystyle(k!)^{m}\cdot\operatorname{\mathbf{N}}(G,{H\{k\}})-\widetilde{M} (εn)keE(H)(2|E|)k(m1)|Aut(He)|\displaystyle\leq(\varepsilon n)^{k}\cdot\sum_{e\in E(H)}{\bigl{(}2\lvert E\rvert\bigr{)}^{k(m-1)}\over\lvert\operatorname{Aut}(H-e)\rvert}
εkm(2C)k(m1)nkm=O(εknkm).\displaystyle\leq\varepsilon^{k}\cdot m\cdot(2C)^{k(m-1)}\cdot n^{km}=O(\varepsilon^{k}n^{km}).\qed
Claim 2.11.

If δ(H)=1\delta(H)=1 and k2k\geq 2, then

𝐍(G,H{k})M~(k!)m+O(εk/2nkm+1).\operatorname{\mathbf{N}}(G,{H\{k\}})\leq{\widetilde{M}\over(k!)^{m}}+O(\varepsilon^{k/2}n^{km+1}).
Proof.

The proof of this fact is very similar to the proof of Proposition 2.9. For u,vVu,v\in V, certainly deg(u,v)min{deg(u),deg(v)}deg(u)deg(v)\deg(u,v)\leq\min\{\deg(u),\deg(v)\}\leq\sqrt{\deg(u)\deg(v)}. Thus, by applying eq. 4, we can bound

(k!)m𝐍(G,H{k})M~\displaystyle(k!)^{m}\operatorname{\mathbf{N}}(G,{H\{k\}})-\widetilde{M} =H𝐂(V,H):V(H)V~xyE(H)deg(x,y)kH𝐂(V,H):V(H)V~xyE(H)(deg(x)deg(y))k/2\displaystyle=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ V(H^{\prime})\not\subseteq\widetilde{V}\end{subarray}}\ \prod_{xy\in E(H^{\prime})}\deg(x,y)^{k}\leq\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ V(H)\not\subseteq\widetilde{V}\end{subarray}}\ \prod_{xy\in E(H^{\prime})}\bigl{(}\deg(x)\deg(y)\bigr{)}^{k/2}
=H𝐂(V,H):V(H)V~xV(H)deg(x)kdegH(x)/2\displaystyle=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ V(H^{\prime})\not\subseteq\widetilde{V}\end{subarray}}\ \prod_{x\in V(H^{\prime})}\deg(x)^{k\cdot\deg_{H^{\prime}}(x)/2}
H𝐂(V,H):V(H)V~yV(H)V~(εn)kdegH(y)/2xV(H){y}deg(x)kdegH(x)/2\displaystyle\leq\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(V,H):\\ V(H^{\prime})\not\subseteq\widetilde{V}\end{subarray}}\ \sum_{y\in V(H^{\prime})\setminus\widetilde{V}}(\varepsilon n)^{k\cdot\deg_{H^{\prime}}(y)/2}\prod_{x\in V(H^{\prime})\setminus\{y\}}\deg(x)^{k\cdot\deg_{H^{\prime}}(x)/2}

Next, by translating between labeled and unlabeled copies of HH, we continue to bound

(k!)m𝐍(G,H{k})M~\displaystyle(k!)^{m}\operatorname{\mathbf{N}}(G,{H\{k\}})-\widetilde{M} 1|AutH|vV(H)g:V(H)Vg(v)V~(εn)kdegH(v)/2uV(H){v}deg(g(u))kdegH(u)/2\displaystyle\leq{1\over\lvert\operatorname{Aut}H\rvert}\sum_{v\in V(H)}\ \sum_{\begin{subarray}{c}g\colon V(H)\to V\\ g(v)\notin\widetilde{V}\end{subarray}}\ (\varepsilon n)^{k\cdot\deg_{H}(v)/2}\prod_{u\in V(H)\setminus\{v\}}\deg\bigl{(}g(u)\bigr{)}^{k\cdot\deg_{H}(u)/2}
n|AutH|vV(H)(εn)kdegH(v)/2g:V(Hv)VuV(Hv)deg(g(u))kdegH(u)/2.\displaystyle\leq{n\over\lvert\operatorname{Aut}H\rvert}\sum_{v\in V(H)}(\varepsilon n)^{k\cdot\deg_{H}(v)/2}\sum_{g\colon V(H-v)\to V}\ \prod_{u\in V(H-v)}\deg\bigl{(}g(u)\bigr{)}^{k\cdot\deg_{H}(u)/2}.

From here, we use the fact that k2k\geq 2 and proceed by the same steps in Proposition 2.9 to bound

(k!)m𝐍(G,H{k})M~\displaystyle(k!)^{m}\operatorname{\mathbf{N}}(G,{H\{k\}})-\widetilde{M} n|AutH|vV(H)(εn)kdegH(v)/2uV(Hv)(xVdeg(x)kdegH(u)/2)\displaystyle\leq{n\over\lvert\operatorname{Aut}H\rvert}\sum_{v\in V(H)}(\varepsilon n)^{k\cdot\deg_{H}(v)/2}\prod_{u\in V(H-v)}\biggl{(}\sum_{x\in V}\deg(x)^{k\cdot\deg_{H}(u)/2}\biggr{)}
n|AutH|vV(H)(εn)kdegH(v)/2uV(Hv)(xVdeg(x))kdegH(u)/2\displaystyle\leq{n\over\lvert\operatorname{Aut}H\rvert}\sum_{v\in V(H)}(\varepsilon n)^{k\cdot\deg_{H}(v)/2}\prod_{u\in V(H-v)}\biggl{(}\sum_{x\in V}\deg(x)\biggr{)}^{k\cdot\deg_{H}(u)/2}
n|AutH|vV(H)(εn)kdegH(v)/2(2Cn)kmkdegH(v)/2\displaystyle\leq{n\over\lvert\operatorname{Aut}H\rvert}\sum_{v\in V(H)}(\varepsilon n)^{k\cdot\deg_{H}(v)/2}\cdot(2Cn)^{km-k\cdot\deg_{H}(v)/2}
n|AutH||V(H)|εk/2(2C)kmnkm=O(εk/2nkm+1).\displaystyle\leq{n\over\lvert\operatorname{Aut}H\rvert}\cdot\lvert V(H)\rvert\cdot\varepsilon^{k/2}\cdot(2C)^{km}\cdot n^{km}=O(\varepsilon^{k/2}n^{km+1}).\qed

We turn our attention now to bounding M~\widetilde{M}. Set S=defuv(V~2)deg(u,v)S\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{uv\in{\widetilde{V}\choose 2}}\deg(u,v) and define the probability mass μ\mu on (V~2){\widetilde{V}\choose 2} by μ(uv)=deg(u,v)/S\mu(uv)=\deg(u,v)/S. By applying Proposition 2.6, we see that

M~=β(μ;H,k)Skmβ(H,k)(n+O(ε4))km=β(H,k)nkm(1+O(1nε4))km\widetilde{M}=\beta(\mu;H,k)\cdot S^{km}\leq\beta(H,k)\cdot\bigl{(}n+O(\varepsilon^{-4})\bigr{)}^{km}=\beta(H,k)\cdot n^{km}\cdot\biggl{(}1+O\biggl{(}{1\over n\varepsilon^{4}}\biggr{)}\biggr{)}^{km}

Therefore, if ε4n\varepsilon^{4}n\to\infty, we have

M~β(H,k)nkm+O(nkm1ε4).\widetilde{M}\leq\beta(H,k)\cdot n^{km}+O\biggl{(}{n^{km-1}\over\varepsilon^{4}}\biggr{)}. (5)

From here, we break into cases to conclude the proof.

Case: k(δ(H)1)2k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2. Select ε=n1/(k+4)\varepsilon=n^{-1/(k+4)}. Since k1k\geq 1, we have ε4n\varepsilon^{4}n\to\infty; hence we can apply eq. 5 and Claim 2.10 to bound

𝐍(G,H{k})\displaystyle\operatorname{\mathbf{N}}(G,{H\{k\}}) M~(k!)m+O(εknkm)β(H,k)(k!)mnkm+O(nkm1ε4)+O(εknkm)\displaystyle\leq{\widetilde{M}\over(k!)^{m}}+O(\varepsilon^{k}n^{km})\leq{\beta(H,k)\over(k!)^{m}}\cdot n^{km}+O\biggl{(}{n^{km-1}\over\varepsilon^{4}}\biggr{)}+O(\varepsilon^{k}n^{km})
=β(H,k)(k!)mnkm+O(nkmk/(k+4)).\displaystyle={\beta(H,k)\over(k!)^{m}}\cdot n^{km}+O(n^{km-k/(k+4)}).

Case: δ(H)=1\delta(H)=1 and k9k\geq 9. Select ε=n4/(k+8)\varepsilon=n^{-4/(k+8)}. Since k9k\geq 9, we have ε4n\varepsilon^{4}n\to\infty; hence we can apply eq. 5 and Claim 2.11 to bound

𝐍(G,H{k})\displaystyle\operatorname{\mathbf{N}}(G,{H\{k\}}) M~(k!)m+O(εk/2nkm+1)β(H,k)(k!)mnkm+O(nkm1ε4)+O(εk/2nkm+1)\displaystyle\leq{\widetilde{M}\over(k!)^{m}}+O(\varepsilon^{k/2}n^{km+1})\leq{\beta(H,k)\over(k!)^{m}}\cdot n^{km}+O\biggl{(}{n^{km-1}\over\varepsilon^{4}}\biggr{)}+O(\varepsilon^{k/2}n^{km+1})
=β(H,k)(k!)mnkm+O(nkm1+16/(k+8)).\displaystyle={\beta(H,k)\over(k!)^{m}}\cdot n^{km}+O(n^{km-1+16/(k+8)}).\qed

Before moving on, we make a couple remarks.

Remark 2.12.

It is not difficult to argue that if HH is a graph on mm edges with no isolated vertices, kk is a positive integer and C2C\geq 2, then

𝐍𝒢C(n,H{k})β(H,k)(k!)mnkmo(nkm),\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,{H\{k\}})\geq{\beta(H,k)\over(k!)^{m}}\cdot n^{km}-o(n^{km}),

so Lemma 2.4 is asymptotically tight. Indeed, fix a finite set XX and a probability mass μ\mu on (X2){X\choose 2}. For a sufficiently large integer nn, let GG be the edge-blow-up of KXK_{X} formed by blowing up each edge e(X2)e\in{X\choose 2} into a set of size nμ(e)\lfloor n\cdot\mu(e)\rfloor. Then, one can show that G𝒢2G\in\mathcal{G}_{2} and

𝐍(G,H{k})β(μ;H,k)(k!)mnkmO(nkm1).\operatorname{\mathbf{N}}(G,{H\{k\}})\geq{\beta(\mu;H,k)\over(k!)^{m}}\cdot n^{km}-O(n^{km-1}).
Remark 2.13.

For a finite set XX and a probability mass μ\mu on (X2){X\choose 2}, let GμG_{\mu} be the graph with vertex-set XX and edge-set suppμ\operatorname{supp}\mu. By following the proof of Lemma 2.3 more diligently, one can show that if HH is planar and k(δ(H)1)2k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2, then

𝐍𝒫(n,H{k})=β𝒫(H,k)(k!)mnkm+o(nkm),\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})={\beta_{\mathcal{P}}(H,k)\over(k!)^{m}}\cdot n^{km}+o(n^{km}),

where

β𝒫(H,k)=sup{β(μ;H,k):Gμ𝒫}.\beta_{\mathcal{P}}(H,k)=\sup\bigl{\{}\beta(\mu;H,k):G_{\mu}\in\mathcal{P}\bigr{\}}.

Despite our beliefs when it comes to this same refinement in Lemma 2.3 (see Remark 2.8), this could actually be an important refinement for certain planar graphs HH. For instance, we believe that β(K5,1)>β𝒫(K5,1)\beta(K_{5}^{-},1)>\beta_{\mathcal{P}}(K_{5}^{-},1) where K5K_{5}^{-} is the 55-clique minus an edge (we discuss this further in Section 4.3).

In any case, we do not know how to prove a similar refinement in the case that δ(H)=1\delta(H)=1 and k9k\geq 9.

Reduction lemma for even cycles.

In order to prove Lemma 2.5, we will first need a straight-forward upper bound on the number of even paths in a graph.

Proposition 2.14.

If G=(V,E)G=(V,E) is any graph and mm is a positive integer, then

𝐍(G,P2m)(2|E|)m2.\operatorname{\mathbf{N}}(G,P_{2m})\leq{(2\lvert E\rvert)^{m}\over 2}.
Proof.

Label V(P2m)={p1,p2,,p2m}V(P_{2m})=\{p_{1},p_{2},\dots,p_{2m}\} in consecutive order. For (v1,,vm)(V)m(v_{1},\dots,v_{m})\in(V)_{m}, consider the copies of P2mP_{2m} in GG wherein viv_{i} plays the role of p2ip_{2i}. Observe that there are then at most deg(v1)\deg(v_{1}) choices for the image of p1p_{1} and at most deg(vi,vi+1)\deg(v_{i},v_{i+1}) choices for the image of p2i+1p_{2i+1} for all i[m1]i\in[m-1]. Since deg(vi,vi+1)deg(vi+1)\deg(v_{i},v_{i+1})\leq\deg(v_{i+1}), we can therefore bound

𝐍(G,P2m1)\displaystyle\operatorname{\mathbf{N}}(G,P_{2m-1}) 12𝐯(V)mdeg(v1)(i=1m1deg(vi,vi+1))12𝐯(V)mi=1mdeg(vi)\displaystyle\leq{1\over 2}\sum_{\mathbf{v}\in(V)_{m}}\deg(v_{1})\biggl{(}\prod_{i=1}^{m-1}\deg(v_{i},v_{i+1})\biggr{)}\leq{1\over 2}\sum_{\mathbf{v}\in(V)_{m}}\prod_{i=1}^{m}\deg(v_{i})
12v1,,vmVi=1mdeg(vi)=12(vVdeg(v))m=(2|E|)m2.\displaystyle\leq{1\over 2}\sum_{v_{1},\dots,v_{m}\in V}\prod_{i=1}^{m}\deg(v_{i})={1\over 2}\biggl{(}\sum_{v\in V}\deg(v)\biggr{)}^{m}={(2\lvert E\rvert)^{m}\over 2}.\qed

We require additionally a simple observation about 22-colorings of CmC_{m}.

Proposition 2.15.

Fix m2m\geq 2. For any 22-coloring χ:/m{0,1}\chi\colon\mathbb{Z}/m\mathbb{Z}\to\{0,1\}, there is some i/mi\in\mathbb{Z}/m\mathbb{Z} for which either χ(i)=χ(i+2)=0\chi(i)=\chi(i+2)=0 or χ(i)=χ(i+3)=1\chi(i)=\chi(i+3)=1.

Proof.

Suppose for the sake of contradiction that the claim does not hold. Since we are done if χ1\chi\equiv 1, we may suppose, without loss of generality, that χ(0)=0\chi(0)=0. This then implies that χ(2)=χ(2)=1\chi(-2)=\chi(2)=1. But then χ(1)=χ(1)=0\chi(1)=\chi(-1)=0; a contradiction. ∎

We are now ready to prove the reduction lemma for even cycles.

Recalling eq. 4 from the proof of Lemma 2.4, we know that for a graph GG,

𝐍(G,C4)\displaystyle\operatorname{\mathbf{N}}(G,C_{4}) uv(V2)(deg(u,v)2),and\displaystyle\leq\sum_{uv\in{V\choose 2}}{\deg(u,v)\choose 2},\quad\text{and}
𝐍(G,C2m)\displaystyle\operatorname{\mathbf{N}}(G,C_{2m}) H𝐂(V,Cm)xyE(H)deg(x,y)for m3.\displaystyle\leq\sum_{H\in\operatorname{\mathbf{C}}(V,C_{m})}\ \prod_{xy\in E(H)}\deg(x,y)\quad\text{for }m\geq 3.

We will not use either of these inequalities directly, but it will be helpful to keep them in mind throughout the following proof.

Proof of Lemma 2.5.

Let G=(V,E)𝒢CG=(V,E)\in\mathcal{G}_{C} be a graph on nn vertices. Fix ε=ε(n)>0\varepsilon=\varepsilon(n)>0 to be chosen later and define

V~=def{vV:deg(v)εn}.\widetilde{V}\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\bigl{\{}v\in V:\deg(v)\geq\varepsilon n\bigr{\}}.

We denote an element of 𝐂(G,C2m)\operatorname{\mathbf{C}}(G,C_{2m}) by a tuple (u1,,u2m)(u_{1},\dots,u_{2m}), which is a list of the vertices of the cycle in some cyclic order. We define the following sets

Good =def{(v1,,v2m)𝐂(G,C2m):v1,v3,,v2m1V~ or v2,v4,,v2mV~},\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\bigl{\{}(v_{1},\dots,v_{2m})\in\operatorname{\mathbf{C}}(G,C_{2m}):v_{1},v_{3},\dots,v_{2m-1}\in\widetilde{V}\text{ or }v_{2},v_{4},\dots,v_{2m}\in\widetilde{V}\bigr{\}},
Bad =def𝐂(G,C2m)Good,\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\operatorname{\mathbf{C}}(G,C_{2m})\setminus\textsc{Good},
Big =def{(v1,,v2m)Bad:vi,vi+2V~ for some i[2m]},\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\bigl{\{}(v_{1},\dots,v_{2m})\in\textsc{Bad}:v_{i},v_{i+2}\in\widetilde{V}\text{ for some }i\in[2m]\bigr{\}},
Small =def{(v1,,v2m)Bad:vi,vi+3V~ for some i[2m]}.\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\bigl{\{}(v_{1},\dots,v_{2m})\in\textsc{Bad}:v_{i},v_{i+3}\notin\widetilde{V}\text{ for some }i\in[2m]\bigr{\}}.

Thanks to Proposition 2.15, we know that Bad=BigSmall\textsc{Bad}=\textsc{Big}\cup\textsc{Small}. We aim to show that 𝐍(G,C2m)|Good|\operatorname{\mathbf{N}}(G,C_{2m})\approx\lvert\textsc{Good}\rvert. To do so, we must show that both Big and Small are both of insignificant size.

Claim 2.16.

|Big|O(εnm)+O(nm1/ε3)\lvert\textsc{Big}\rvert\leq O(\varepsilon n^{m})+O(n^{m-1}/\varepsilon^{3}).

Proof.

If m=2m=2, then Big=\textsc{Big}=\varnothing and so the claim holds. Hence, we may suppose that m3m\geq 3. Fix H=(u1,,u2m)BigH=(u_{1},\dots,u_{2m})\in\textsc{Big}; without loss of generality, we may suppose that u1,u3V~u_{1},u_{3}\in\widetilde{V}. Since HBadH\in\textsc{Bad}, there must be some i{5,7,,2m1}i\in\{5,7,\dots,2m-1\} for which deg(ui)<εn\deg(u_{i})<\varepsilon n, and so we bound

i=1mdeg(u2i1,u2i+1)εndeg(u1,u3)i=3mdeg(u2i1).\prod_{i=1}^{m}\deg(u_{2i-1},u_{2i+1})\leq\varepsilon n\cdot\deg(u_{1},u_{3})\cdot\prod_{i=3}^{m}\deg(u_{2i-1}).

By appealing additionally to Proposition 2.6, we can therefore crudely bound

|Big|\displaystyle\lvert\textsc{Big}\rvert 𝐯(V)m:v1,v2V~,viV~ for some i[3,m]i=1mdeg(vi,vi+1)v1v2V~,v3,,vmVεndeg(v1,v2)i=3mdeg(vi)\displaystyle\leq\sum_{\begin{subarray}{c}\mathbf{v}\in(V)_{m}:\\ v_{1},v_{2}\in\widetilde{V},\\ v_{i}\notin\widetilde{V}\text{ for some }i\in[3,m]\end{subarray}}\prod_{i=1}^{m}\deg(v_{i},v_{i+1})\leq\sum_{\begin{subarray}{c}v_{1}\neq v_{2}\in\widetilde{V},\\ v_{3},\dots,v_{m}\in V\end{subarray}}\varepsilon n\cdot\deg(v_{1},v_{2})\cdot\prod_{i=3}^{m}\deg(v_{i})
=εn(v1v2V~deg(v1,v2))(vVdeg(v))m2εn(2n+O(1ε4))(2Cn)m2\displaystyle=\varepsilon n\cdot\biggl{(}\sum_{v_{1}\neq v_{2}\in\widetilde{V}}\deg(v_{1},v_{2})\biggr{)}\biggl{(}\sum_{v\in V}\deg(v)\biggr{)}^{m-2}\leq\varepsilon n\cdot\biggl{(}2n+O\biggl{(}{1\over\varepsilon^{4}}\biggl{)}\biggr{)}\cdot(2Cn)^{m-2}
=O(εnm)+O(nm1ε3).\displaystyle=O(\varepsilon n^{m})+O\biggl{(}{n^{m-1}\over\varepsilon^{3}}\biggr{)}.\qed
Claim 2.17.

|Small|O(εnm)\lvert\textsc{Small}\rvert\leq O(\varepsilon n^{m}).

Proof.

Fix (u1,,u2m)Small(u_{1},\dots,u_{2m})\in\textsc{Small}; without loss of generality, we may suppose that u2m2,u1V~u_{2m-2},u_{1}\notin\widetilde{V}. Observe that u1,,u2m2u_{1},\dots,u_{2m-2} forms a copy of P2m2P_{2m-2} and that the edge u2m1u2mu_{2m-1}u_{2m} has both end-points in N(u1)N(u2m2)N(u_{1})\cup N(u_{2m-2}). Therefore, by applying Proposition 2.14 and using the fact that G𝒢CG\in\mathcal{G}_{C}, we see that

|Small|\displaystyle\lvert\textsc{Small}\rvert 2𝐍(G,P2m2)maxuvVV~|E(G[N(u)N(v)])|\displaystyle\leq 2\cdot\operatorname{\mathbf{N}}(G,P_{2m-2})\cdot\max_{u\neq v\in V\setminus\widetilde{V}}\bigl{\lvert}E\bigl{(}G[N(u)\cup N(v)]\bigr{)}\bigr{\rvert}
(2|E|)m1maxuvVV~C|N(u)N(v)|\displaystyle\leq(2\lvert E\rvert)^{m-1}\cdot\max_{u\neq v\in V\setminus\widetilde{V}}C\cdot\bigl{\lvert}N(u)\cup N(v)\bigr{\rvert}
(2Cn)m1C2εn=O(εnm).\displaystyle\leq(2Cn)^{m-1}\cdot C\cdot 2\varepsilon n=O(\varepsilon n^{m}).\qed

We now deal with Good. Define S=defuv(V~2)deg(u,v)S\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{uv\in{\widetilde{V}\choose 2}}\deg(u,v) and let μ\mu be the probability mass on (V~2){\widetilde{V}\choose 2} defined by μ(uv)=deg(u,v)/S\mu(uv)=\deg(u,v)/S. If m=2m=2, then we can bound

|Good|\displaystyle\lvert\textsc{Good}\rvert uv(V~2)(deg(u,v)2)12uv(V~2)deg(u,v)2=S22uv(V~2)μ(uv)2\displaystyle\leq\sum_{uv\in{\widetilde{V}\choose 2}}{\deg(u,v)\choose 2}\leq{1\over 2}\sum_{uv\in{\widetilde{V}\choose 2}}\deg(u,v)^{2}={S^{2}\over 2}\sum_{uv\in{\widetilde{V}\choose 2}}\mu(uv)^{2}
=S22H𝐂(V~,K2)μ(H)2=β(μ;K2,2)2S2β(K2,2)2S2.\displaystyle={S^{2}\over 2}\sum_{H\in\operatorname{\mathbf{C}}(\widetilde{V},K_{2})}\mu(H)^{2}={\beta(\mu;K_{2},2)\over 2}\cdot S^{2}\leq{\beta(K_{2},2)\over 2}\cdot S^{2}.

Similarly, if m3m\geq 3, then we can bound

|Good|\displaystyle\lvert\textsc{Good}\rvert H𝐂(V~,Cm)xyE(H)deg(x,y)=SmH𝐂(V~,Cm)xyE(H)μ(xy)\displaystyle\leq\sum_{H\in\operatorname{\mathbf{C}}(\widetilde{V},C_{m})}\ \prod_{xy\in E(H)}\deg(x,y)=S^{m}\sum_{H\in\operatorname{\mathbf{C}}(\widetilde{V},C_{m})}\ \prod_{xy\in E(H)}\mu(xy)
=SmH𝐂(V~,Cm)μ(H)=β(μ;Cm,1)Smβ(Cm,1)Sm.\displaystyle=S^{m}\sum_{H\in\operatorname{\mathbf{C}}(\widetilde{V},C_{m})}\mu(H)=\beta(\mu;C_{m},1)\cdot S^{m}\leq\beta(C_{m},1)\cdot S^{m}.

Thus, by applying Proposition 2.6 and setting B2=β(K2,2)/2B_{2}=\beta(K_{2},2)/2 and Bm=β(Cm,1)B_{m}=\beta(C_{m},1) for all m3m\geq 3, we have shown that

|Good|BmSmBm(n+O(1/ε4))m=Bmnm+O(nm1ε4),\lvert\textsc{Good}\rvert\leq B_{m}\cdot S^{m}\leq B_{m}\bigl{(}n+O(1/\varepsilon^{4})\bigr{)}^{m}=B_{m}\cdot n^{m}+O\biggl{(}{n^{m-1}\over\varepsilon^{4}}\biggr{)},

provided ε4n\varepsilon^{4}n\to\infty. Therefore, by selecting ε=n1/5\varepsilon=n^{-1/5} and applying Claims 2.16 and 2.17, we bound

𝐍(G,C2m)\displaystyle\operatorname{\mathbf{N}}(G,C_{2m}) =|Good|+|Bad||Good|+|Big|+|Small|\displaystyle=\lvert\textsc{Good}\rvert+\lvert\textsc{Bad}\rvert\leq\lvert\textsc{Good}\rvert+\lvert\textsc{Big}\rvert+\lvert\textsc{Small}\rvert
Bmnm+O(nm1ε4)+O(εnm)+O(nm1ε3)=Bmnm+O(nm1/5).\displaystyle\leq B_{m}\cdot n^{m}+O\biggl{(}{n^{m-1}\over\varepsilon^{4}}\biggr{)}+O(\varepsilon n^{m})+O\biggl{(}{n^{m-1}\over\varepsilon^{3}}\biggr{)}=B_{m}\cdot n^{m}+O(n^{m-1/5}).\qed

3 Odd paths

Thanks to Lemma 2.3, in order to bound 𝐍𝒫(G,P2m+1)\operatorname{\mathbf{N}}_{\mathcal{P}}(G,P_{2m+1}) from above, it suffices to find upper bounds on ρ(m)\rho(m). Recall that for a finite set XX and a probability mass μ\mu on (X2){X\choose 2},

ρ(μ;m)=𝐱(X)mμ¯(x1)(i=1m1μ(xixi+1))μ¯(xm),\rho(\mu;m)=\sum_{\mathbf{x}\in(X)_{m}}\bar{\mu}(x_{1})\biggl{(}\prod_{i=1}^{m-1}\mu(x_{i}x_{i+1})\biggr{)}\bar{\mu}(x_{m}),

where μ¯(x)=yX{x}μ(xy)\bar{\mu}(x)=\sum_{y\in X\setminus\{x\}}\mu(xy).

First, we handle the case of m=2m=2.

Proposition 3.1.

ρ(2)=2\rho(2)=2.

Proof.

The lower bound is realized if |suppμ|=1\lvert\operatorname{supp}\mu\rvert=1.

For the upper bound, fix a finite set XX and a probability mass μ\mu on (X2){X\choose 2}. Define the matrix MX×XM\in\mathbb{R}^{X\times X} by Mxy=μ(xy)M_{xy}=\mu(xy) under the convention that μ(xx)=0\mu(xx)=0. Observe that MM is a symmetric, non-negative matrix all of whose row-sums are bounded above by 11. In particular, the largest eigenvalue of MM is at most 11 (c.f. [7, Lemma 8.1.21]). Thus, by applying standard facts about the Rayleigh quotient (c.f. [7, Theorem 4.2.2]) and using the fact that xXμ¯(x)=2\sum_{x\in X}\bar{\mu}(x)=2, we bound

ρ(μ;2)=xyXμ¯(x)μ(xy)μ¯(y)=μ¯,Mμ¯μ¯,μ¯=xXμ¯(x)2xXμ¯(x)=2.\rho(\mu;2)=\sum_{x\neq y\in X}\bar{\mu}(x)\mu(xy)\bar{\mu}(y)=\langle\bar{\mu},M\bar{\mu}\rangle\leq\langle\bar{\mu},\bar{\mu}\rangle=\sum_{x\in X}\bar{\mu}(x)^{2}\leq\sum_{x\in X}\bar{\mu}(x)=2.\qed

From here, we have a quick proof of the asymptotic result of Ghosh et al. [2], albeit with a worse error term.

Proof of part 1 of Theorem 1.3.

By applying Lemma 2.3 and Proposition 3.1, we bound

𝐍𝒫(n,P5)𝐍𝒢3(n,P5)ρ(2)2n3+O(n14/5)=n3+O(n14/5).\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{5})\leq\operatorname{\mathbf{N}}_{\mathcal{G}_{3}}(n,P_{5})\leq{\rho(2)\over 2}\cdot n^{3}+O(n^{14/5})=n^{3}+O(n^{14/5}).\qed

Next, we establish a general upper bound on ρ(m)\rho(m).

Theorem 3.2.

For any m3m\geq 3,

ρ(m)1(m1)!.\rho(m)\leq{1\over(m-1)!}.
Proof.

Fix a finite set XX and a probability mass μ\mu on (X2){X\choose 2}. The key to this bound is to interpret ρ(μ;m)\rho(\mu;m) as the probability of some event in a probability space defined by μ\mu. Intuitively ρ(μ;m)\rho(\mu;m) is the probability that if we independently sample edges e1,,em+1e_{1},\dots,e_{m+1} from μ\mu, then e2,,eme_{2},\dots,e_{m} form a path with vertices x1,,xmx_{1},\dots,x_{m}, e1e_{1} is incident to x1x_{1} and em+1e_{m+1} is incident to xmx_{m}. We now make this intuition precise.

For a tuple 𝐱(X)m\mathbf{x}\in(X)_{m}, define the sets

(𝐱)\displaystyle\mathcal{E}(\mathbf{x}) =def{(e2,,em)(X2)m1:{e2,,em}={x1x2,x2x3,,xm1xm}},and\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\biggl{\{}(e_{2},\ldots,e_{m})\in{X\choose 2}^{m-1}:\{e_{2},\ldots,e_{m}\}=\{x_{1}x_{2},x_{2}x_{3},\ldots,x_{m-1}x_{m}\}\biggr{\}},\qquad\text{and}
(𝐱)\displaystyle\mathcal{L}(\mathbf{x}) =def{(e1,em+1)(X2)2:e1x1 and em+1xm}.\displaystyle\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\biggl{\{}(e_{1},e_{m+1})\in{X\choose 2}^{2}:e_{1}\ni x_{1}\text{ and }e_{m+1}\ni x_{m}\biggr{\}}.

Observe that 𝐏𝐫μ2[(𝐱)]=μ¯(x1)μ¯(xm)\operatorname*{\mathbf{Pr}}_{\mu^{2}}[\mathcal{L}(\mathbf{x})]=\bar{\mu}(x_{1})\cdot\bar{\mu}(x_{m}) and that

μm1(𝐞)=i=1m1μ(xixi+1),for all 𝐞(𝐱),\mu^{m-1}(\mathbf{e})=\prod_{i=1}^{m-1}\mu(x_{i}x_{i+1}),\qquad\text{for all }\mathbf{e}\in\mathcal{E}(\mathbf{x}),

where μj\mu^{j} is the product distribution induced on (X2)j{X\choose 2}^{j} by μ\mu.

We can therefore write

ρ(μ;m)\displaystyle\rho(\mu;m) =𝐱(X)mμ¯(x1)(i=1m1μ(xixi+1))μ¯(xm)=𝐱(X)m(1|(𝐱)|𝐞(𝐱)μm1(𝐞))𝐏𝐫μ2[(𝐱)]\displaystyle=\sum_{\mathbf{x}\in(X)_{m}}\bar{\mu}(x_{1})\biggl{(}\prod_{i=1}^{m-1}\mu(x_{i}x_{i+1})\biggr{)}\bar{\mu}(x_{m})=\sum_{\mathbf{x}\in(X)_{m}}\biggl{(}{1\over\lvert\mathcal{E}(\mathbf{x})\rvert}\sum_{\mathbf{e}\in\mathcal{E}(\mathbf{x})}\mu^{m-1}(\mathbf{e})\biggr{)}\cdot\operatorname*{\mathbf{Pr}}_{\mu^{2}}[\mathcal{L}(\mathbf{x})]
=1(m1)!𝐱(X)m𝐏𝐫μm1[(𝐱)]𝐏𝐫μ2[(𝐱)]=1(m1)!𝐱(X)m𝐏𝐫μm+1[(𝐱)×(𝐱)].\displaystyle={1\over(m-1)!}\sum_{\mathbf{x}\in(X)_{m}}\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}(\mathbf{x})]\cdot\operatorname*{\mathbf{Pr}}_{\mu^{2}}[\mathcal{L}(\mathbf{x})]={1\over(m-1)!}\sum_{\mathbf{x}\in(X)_{m}}\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}[\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x})].

For 𝐱(X)m\mathbf{x}\in(X)_{m}, consider the reverse tuple 𝐱~(X)m\widetilde{\mathbf{x}}\in(X)_{m} where x~i=xm+1i\widetilde{x}_{i}=x_{m+1-i}. The events (𝐱)×(𝐱)\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x}) and (𝐲)×(𝐲)\mathcal{E}(\mathbf{y})\times\mathcal{L}(\mathbf{y}) are almost always disjoint when 𝐱𝐲\mathbf{x}\neq\mathbf{y}. The only circumstance in which they double-count the same event is when 𝐲=𝐱~\mathbf{y}=\widetilde{\mathbf{x}}, in which case (𝐱)=(𝐱~)\mathcal{E}(\mathbf{x})=\mathcal{E}(\widetilde{\mathbf{x}}) and (𝐱)(𝐱~)={(x1xm,x1xm)}\mathcal{L}(\mathbf{x})\cap\mathcal{L}(\widetilde{\mathbf{x}})=\{(x_{1}x_{m},x_{1}x_{m})\}. Indeed, for 𝐱,𝐲(X)m\mathbf{x},\mathbf{y}\in(X)_{m}, we have {x1x2,,xm1xm}={y1y2,,ym1ym}\{x_{1}x_{2},\dots,x_{m-1}x_{m}\}=\{y_{1}y_{2},\dots,y_{m-1}y_{m}\} if and only if 𝐲{𝐱,𝐱~}\mathbf{y}\in\{\mathbf{x},\widetilde{\mathbf{x}}\}; thus

(𝐱)(𝐲)={(𝐱)if 𝐲{𝐱,𝐱~},otherwise,\mathcal{E}(\mathbf{x})\cap\mathcal{E}(\mathbf{y})=\begin{cases}\mathcal{E}(\mathbf{x})&\text{if }\mathbf{y}\in\{\mathbf{x},\widetilde{\mathbf{x}}\},\\ \varnothing&\text{otherwise},\end{cases}

and

((𝐱)×(𝐱))((𝐲)×(𝐲))={(𝐱)×(𝐱)if 𝐲=𝐱,(𝐱)×{(x1xm,x1xm)}if 𝐲=𝐱~,otherwise.\bigl{(}\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x})\bigr{)}\cap\bigl{(}\mathcal{E}(\mathbf{y})\times\mathcal{L}(\mathbf{y})\bigr{)}=\begin{cases}\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x})&\text{if }\mathbf{y}=\mathbf{x},\\ \mathcal{E}(\mathbf{x})\times\{(x_{1}x_{m},\ x_{1}x_{m})\}&\text{if }\mathbf{y}=\widetilde{\mathbf{x}},\\ \varnothing&\text{otherwise}.\end{cases}

Therefore, by grouping together 𝐱\mathbf{x} and 𝐱~\widetilde{\mathbf{x}}, we compute

(m1)!ρ(μ;m)\displaystyle(m-1)!\cdot\rho(\mu;m) =𝐱(X)m𝐏𝐫μm+1[(𝐱)×(𝐱)]\displaystyle=\sum_{\mathbf{x}\in(X)_{m}}\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}[\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x})]
=𝐏𝐫μm+1[𝐱(X)m((𝐱)×(𝐱))]+𝐏𝐫μm+1[𝐱(X)m((𝐱)×{(x1xm,x1xm)})].\displaystyle=\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}\biggl{[}\bigcup_{\mathbf{x}\in(X)_{m}}\bigl{(}\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x})\bigr{)}\biggr{]}+\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}\biggl{[}\bigcup_{\mathbf{x}\in(X)_{m}}\bigl{(}\mathcal{E}(\mathbf{x})\times\{(x_{1}x_{m},x_{1}x_{m})\}\bigr{)}\biggr{]}.

Next, by writing

=def𝐱(X)m(𝐱),\mathcal{E}\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\bigcup_{\mathbf{x}\in(X)_{m}}\mathcal{E}(\mathbf{x}),

we bound

𝐏𝐫μm+1[𝐱(X)m((𝐱)×(𝐱))]\displaystyle\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}\biggl{[}\bigcup_{\mathbf{x}\in(X)_{m}}\bigl{(}\mathcal{E}(\mathbf{x})\times\mathcal{L}(\mathbf{x})\bigr{)}\biggr{]} 𝐏𝐫μm+1[×𝐱(X)m(𝐱)]𝐏𝐫μm1[],\displaystyle\leq\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}\biggl{[}\mathcal{E}\times\bigcup_{\mathbf{x}\in(X)_{m}}\mathcal{L}(\mathbf{x})\biggr{]}\leq\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}],

and

𝐏𝐫μm+1[𝐱(X)m((𝐱)×{(x1xm,x1xm)})]\displaystyle\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}\biggl{[}\bigcup_{\mathbf{x}\in(X)_{m}}\bigl{(}\mathcal{E}(\mathbf{x})\times\{(x_{1}x_{m},x_{1}x_{m})\}\bigr{)}\biggr{]} 𝐏𝐫μm+1[×𝐱(X)m{(x1xm,x1xm)}]\displaystyle\leq\operatorname*{\mathbf{Pr}}_{\mu^{m+1}}\biggl{[}\mathcal{E}\times\bigcup_{\mathbf{x}\in(X)_{m}}\{(x_{1}x_{m},x_{1}x_{m})\}\biggr{]}
=𝐏𝐫μm1[]𝐏𝐫μ2[e(X2){(e,e)}]=𝐏𝐫μm1[]e(X2)μ(e)2.\displaystyle=\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}]\cdot\operatorname*{\mathbf{Pr}}_{\mu^{2}}\biggl{[}\bigcup_{e\in{X\choose 2}}\{(e,e)\}\biggr{]}=\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}]\cdot\sum_{e\in{X\choose 2}}\mu(e)^{2}.

Any member of \mathcal{E} has the property that its coordinates are distinct members of (X2){X\choose 2}; hence, since m3m\geq 3, we can bound

𝐏𝐫μm1[]\displaystyle\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}] 𝐏𝐫μm1[{(e2,e3,,em)(X2)m1:e2,e3,,em distinct}]\displaystyle\leq\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}\biggl{[}\biggl{\{}(e_{2},e_{3},\ldots,e_{m})\in{X\choose 2}^{m-1}:e_{2},e_{3},\dots,e_{m}\text{ distinct}\biggr{\}}\biggr{]}
𝐏𝐫μ2[{(e2,e3)(X2)2:e2e3}]=1e(X2)μ(e)2.\displaystyle\leq\operatorname*{\mathbf{Pr}}_{\mu^{2}}\biggl{[}\biggl{\{}(e_{2},e_{3})\in{X\choose 2}^{2}:e_{2}\neq e_{3}\biggr{\}}\biggr{]}=1-\sum_{e\in{X\choose 2}}\mu(e)^{2}.

Putting everything together, we have shown that

(m1)!ρ(μ;m)\displaystyle(m-1)!\cdot\rho(\mu;m) 𝐏𝐫μm1[]+𝐏𝐫μm1[]e(X2)μ(e)2(1e(X2)μ(e)2)(1+e(X2)μ(e)2)\displaystyle\leq\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}]+\operatorname*{\mathbf{Pr}}_{\mu^{m-1}}[\mathcal{E}]\cdot\sum_{e\in{X\choose 2}}\mu(e)^{2}\leq\biggl{(}1-\sum_{e\in{X\choose 2}}\mu(e)^{2}\biggr{)}\biggl{(}1+\sum_{e\in{X\choose 2}}\mu(e)^{2}\biggr{)}
=1(e(X2)μ(e)2)21,\displaystyle=1-\biggl{(}\sum_{e\in{X\choose 2}}\mu(e)^{2}\biggr{)}^{2}\leq 1,

which establishes the claim. ∎

3.1 Paths of order 7

In this section, we prove Theorem 1.1. The main content in this section is the proof that ρ(3)=8/27\rho(3)=8/27, which hinges on the following general inequality. We note that the following lemma is a special case of the much more general Theorem 4.10, but we give a direct and self-contained proof here.

Lemma 3.3.

If a1,,an0a_{1},\dots,a_{n}\geq 0, then

(iai2)2iai418(iai)4.\biggl{(}\sum_{i}a_{i}^{2}\biggr{)}^{2}-\sum_{i}a_{i}^{4}\leq{1\over 8}\biggl{(}\sum_{i}a_{i}\biggr{)}^{4}.
Proof.

We notice first that the claim is trivial if ai=0a_{i}=0 for all ii. Furthermore, scaling the aia_{i}’s by any positive constant leaves the inequality invariant. As such, we may suppose that iai=1\sum_{i}a_{i}=1.

Therefore, noting that (ixi2)2ixi4=ijxi2xj2\bigl{(}\sum_{i}x_{i}^{2}\bigr{)}^{2}-\sum_{i}x_{i}^{4}=\sum_{i\neq j}x_{i}^{2}x_{j}^{2}, it suffices to show that

maxijxi2xj2s.t.ixi=1xi0for all i[n],\begin{array}[]{cl}\max&\sum_{i\neq j}x_{i}^{2}x_{j}^{2}\\ \text{s.t.}&\sum_{i}x_{i}=1\\ &x_{i}\geq 0\qquad\text{for all }i\in[n],\end{array} (6)

is bounded above by 1/81/8. Let a1,,ana_{1},\dots,a_{n} denote an optimal solution to eq. 6; without loss of generality, we may suppose that a1an>0a_{1}\geq\dots\geq a_{n}>0. Additionally, let MM denote the optimal value, that is, M=ijai2aj2M=\sum_{i\neq j}a_{i}^{2}a_{j}^{2}. We may certainly suppose that n2n\geq 2 since otherwise M=0M=0.

By applying the KKT conditions (Theorem 1.8) to eq. 6, we find that there is some fixed λ\lambda\in\mathbb{R} for which

aij:jiaj2=λfor all i[n].a_{i}\sum_{j:\ j\neq i}a_{j}^{2}=\lambda\qquad\text{for all }i\in[n]. (7)

From here, we use the fact that iai=1\sum_{i}a_{i}=1 to determine,

λ=iaiλ=iai2j:jiaj2=ijai2aj2=M.\lambda=\sum_{i}a_{i}\lambda=\sum_{i}a_{i}^{2}\sum_{j:\ j\neq i}a_{j}^{2}=\sum_{i\neq j}a_{i}^{2}a_{j}^{2}=M. (8)

Now, consider the numbers b1,,bn1b_{1},\dots,b_{n-1} defined by

bi=ai/(1an),b_{i}=a_{i}/(1-a_{n}),

which are well-defined since n2n\geq 2 and hence an<1a_{n}<1. Note that bi>0b_{i}>0 and ibi=1\sum_{i}b_{i}=1. Therefore,

Mijbi2bj2\displaystyle M\geq\sum_{i\neq j}b_{i}^{2}b_{j}^{2} =1(1an)4i,j[n1]:ijai2aj2=1(1an)4(ijai2aj22an2j=1n1aj2)\displaystyle={1\over(1-a_{n})^{4}}\sum_{\begin{subarray}{c}i,j\in[n-1]:\\ i\neq j\end{subarray}}a_{i}^{2}a_{j}^{2}={1\over(1-a_{n})^{4}}\biggl{(}\sum_{i\neq j}a_{i}^{2}a_{j}^{2}-2a_{n}^{2}\sum_{j=1}^{n-1}a_{j}^{2}\biggr{)}
=1(1an)4(M2Man)=M12an(1an)4,\displaystyle={1\over(1-a_{n})^{4}}\bigl{(}M-2Ma_{n}\bigr{)}=M\cdot{1-2a_{n}\over(1-a_{n})^{4}},

where the penultimate equality follows from eqs. 7 and 8. We conclude that 12an(1an)41-2a_{n}\leq(1-a_{n})^{4} and thus an0.45a_{n}\geq 0.45. Since a1ana_{1}\geq\dots\geq a_{n}, this then implies that n=2n=2. Thus, we apply the AM–GM inequality to finally bound

M=2a12a222(a1+a22)4=18.M=2a_{1}^{2}a_{2}^{2}\leq 2\biggl{(}{a_{1}+a_{2}\over 2}\biggr{)}^{4}={1\over 8}.\qed

We will apply the following direct corollary of Lemma 3.3.

Corollary 3.4.

If a1,,an,b1,,bn0a_{1},\dots,a_{n},b_{1},\dots,b_{n}\geq 0, then

(iaibi)2iai2bi218(iai)2(ibi)2.\biggl{(}\sum_{i}a_{i}b_{i}\biggr{)}^{2}-\sum_{i}a_{i}^{2}b_{i}^{2}\leq{1\over 8}\biggl{(}\sum_{i}a_{i}\biggr{)}^{2}\biggl{(}\sum_{i}b_{i}\biggr{)}^{2}.
Proof.

By applying Lemma 3.3 and the Cauchy–Schwarz inequality, we bound

(iaibi)2iai2bi2\displaystyle\biggl{(}\sum_{i}a_{i}b_{i}\biggr{)}^{2}-\sum_{i}a_{i}^{2}b_{i}^{2} =(i(aibi)2)2i(aibi)4\displaystyle=\biggl{(}\sum_{i}(\sqrt{a_{i}b_{i}})^{2}\biggr{)}^{2}-\sum_{i}(\sqrt{a_{i}b_{i}})^{4}
18(iaibi)418(iai)2(ibi)2.\displaystyle\leq{1\over 8}\biggl{(}\sum_{i}\sqrt{a_{i}b_{i}}\biggr{)}^{4}\leq{1\over 8}\biggl{(}\sum_{i}a_{i}\biggr{)}^{2}\biggl{(}\sum_{i}b_{i}\biggr{)}^{2}.\qed

We can now determine ρ(3)\rho(3).

Theorem 3.5.

ρ(3)=8/27\rho(3)=8/27.

Proof.

To prove the lower bound, let μ\mu be the uniform distribution on ([3]2){[3]\choose 2}. Then

ρ(μ;3)=(x,y,z)([3])3μ¯(x)μ(xy)μ(yz)μ¯(z)=3!23131323=827.\rho(\mu;3)=\sum_{(x,y,z)\in([3])_{3}}\bar{\mu}(x)\mu(xy)\mu(yz)\bar{\mu}(z)=3!\cdot{2\over 3}\cdot{1\over 3}\cdot{1\over 3}\cdot{2\over 3}={8\over 27}.

To establish the upper bound, fix a finite set XX and let μ\mu be any probability distribution on (X2){X\choose 2}. We begin by writing

ρ(μ;3)\displaystyle\rho(\mu;3) =(x,y,z)(X)3μ¯(x)μ(xy)μ(yz)μ¯(z)=yXxX{y}μ¯(x)μ(xy)zX{x,y}μ¯(z)μ(zy)\displaystyle=\sum_{(x,y,z)\in(X)_{3}}\bar{\mu}(x)\mu(xy)\mu(yz)\bar{\mu}(z)=\sum_{y\in X}\sum_{x\in X\setminus\{y\}}\bar{\mu}(x)\mu(xy)\sum_{z\in X\setminus\{x,y\}}\bar{\mu}(z)\mu(zy)
=yX[(xX{y}μ¯(x)μ(xy))2xX{y}μ¯(x)2μ(xy)2].\displaystyle=\sum_{y\in X}\biggl{[}\biggl{(}\sum_{x\in X\setminus\{y\}}\bar{\mu}(x)\mu(xy)\biggr{)}^{2}-\sum_{x\in X\setminus\{y\}}\bar{\mu}(x)^{2}\mu(xy)^{2}\biggr{]}.

Then, by applying Corollary 3.4 to the inner expression and using the fact that xXμ¯(x)=2\sum_{x\in X}\bar{\mu}(x)=2, we bound

ρ(μ;3)\displaystyle\rho(\mu;3) yX18(xX{y}μ¯(x))2(xX{y}μ(xy))2=18yX(2μ¯(y))2μ¯(y)2.\displaystyle\leq\sum_{y\in X}{1\over 8}\biggl{(}\sum_{x\in X\setminus\{y\}}\bar{\mu}(x)\biggr{)}^{2}\biggl{(}\sum_{x\in X\setminus\{y\}}\mu(xy)\biggr{)}^{2}={1\over 8}\sum_{y\in X}\bigl{(}2-\bar{\mu}(y)\bigr{)}^{2}\cdot\bar{\mu}(y)^{2}.

We finally observe that the expression x(2x)2x(2-x)^{2} for 0x10\leq x\leq 1 is maximized when x=2/3x=2/3, yielding a value of 32/2732/27. Therefore,

ρ(μ;3)\displaystyle\rho(\mu;3) 18yXμ¯(y)μ¯(y)(2μ¯(y))2427yXμ¯(y)=827.\displaystyle\leq{1\over 8}\sum_{y\in X}\bar{\mu}(y)\cdot\bar{\mu}(y)\bigl{(}2-\bar{\mu}(y)\bigr{)}^{2}\leq{4\over 27}\sum_{y\in X}\bar{\mu}(y)={8\over 27}.\qed

Now that we know ρ(3)\rho(3), the proof of Theorem 1.1 follows quickly.

Proof of Theorem 1.1.

First, the graph K3{}{K_{3}\{\ell\}} where =n33\ell=\lfloor{n-3\over 3}\rfloor shows that

𝐍𝒫(n,P7)427n4O(n3).\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{7})\geq{4\over 27}\cdot n^{4}-O(n^{3}).

Next, we apply Lemma 2.3 to bound

𝐍𝒫(n,P2m+1)𝐍𝒢3(n,P2m+1)ρ(m)2nm+1+O(nm+4/5),\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1})\leq\operatorname{\mathbf{N}}_{\mathcal{G}_{3}}(n,P_{2m+1})\leq{\rho(m)\over 2}\cdot n^{m+1}+O(n^{m+4/5}),

for all m2m\geq 2. Finally, Theorem 3.5 tells us that ρ(3)=8/27\rho(3)=8/27, and Theorem 3.2 tells us that ρ(m)1/(m1)!\rho(m)\leq 1/(m-1)! for all m4m\geq 4; hence the claim follows. ∎

4 Edge-blow-ups and even cycles

Thanks to Lemmas 2.4 and 2.5, in order to bound 𝐍𝒫(n,H{k})\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}}) from above for various H,kH,k, it suffices to prove upper bounds on β(H,k)\beta(H,k). Recall that for a finite set XX and a probability mass μ\mu on (X2){X\choose 2},

β(μ;H,k)=H𝐂(X,H)μ(H)k,\beta(\mu;H,k)=\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\mu(H^{\prime})^{k},

where 𝐂(X,H)\operatorname{\mathbf{C}}(X,H) is the set of copies of HH in KXK_{X}, and

μ(H)=eE(H)μ(e).\mu(H^{\prime})=\prod_{e\in E(H^{\prime})}\mu(e).

We deal first with the case of H=K2H=K_{2}.

Proposition 4.1.

β(K2,k)=1\beta(K_{2},k)=1 for all k1k\geq 1.

Proof.

The lower bound is realized if |suppμ|=1\lvert\operatorname{supp}\mu\rvert=1.

Let XX be a finite set and let μ\mu be a probability mass on (X2){X\choose 2}. Then

β(μ;K2,k)=K𝐂(X,K2)μ(K)k=e(X2)μ(e)k(e(X2)μ(e))k=1.\beta(\mu;K_{2},k)=\sum_{K\in\operatorname{\mathbf{C}}(X,K_{2})}\mu(K)^{k}=\sum_{e\in{X\choose 2}}\mu(e)^{k}\leq\biggl{(}\sum_{e\in{X\choose 2}}\mu(e)\biggr{)}^{k}=1.\qed

Since 𝒫𝒢3\mathcal{P}\subseteq\mathcal{G}_{3}, parts 2 and 3 of Theorem 1.3 follow immediately thanks to Lemmas 2.5 and 2.4, respectively.

Next, we prove a general upper bound on β(H,k)\beta(H,k).

Theorem 4.2.

If HH is a graph on mm edges with no isolated vertices and kk is a positive integer, then

β(H,k)(k!)m(km)!.\beta(H,k)\leq{\ (k!)^{m}\over(km)!}.
Proof.

Fix a finite set XX and let μ\mu be a probability mass on (X2){X\choose 2}. The key to this bound is to relate β(μ;H,k)\beta(\mu;H,k) to an event in a probability space defined by μ\mu. Intuitively, β(μ;H,k)\beta(\mu;H,k) is the probability that kmkm edges sampled independently from μ\mu form a copy of HH wherein each edge has multiplicity kk. We now make this intuition precise.

For H𝐂(X,H)H^{\prime}\in\operatorname{\mathbf{C}}(X,H), define the set

𝒞(H)=def{𝐞(X2)km:each eE(H) occurs exactly k times in 𝐞}.\mathcal{C}(H^{\prime})\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\biggl{\{}\mathbf{e}\in{X\choose 2}^{km}:\text{each $e\in E(H^{\prime})$ occurs exactly $k$ times in }\mathbf{e}\biggr{\}}.

Observe that

|𝒞(H)|=(kmk,,k)=(km)!(k!)m,\lvert\mathcal{C}(H^{\prime})\rvert={km\choose k,\dots,k}={(km)!\over(k!)^{m}},

and that μ(H)k=μkm(𝐞)\mu(H^{\prime})^{k}=\mu^{km}(\mathbf{e}) for every 𝐞𝒞(H)\mathbf{e}\in\mathcal{C}(H^{\prime}), where μkm\mu^{km} is the product distribution on (X2)km{X\choose 2}^{km} induced by μ\mu.

Now, the events {𝒞(H):H𝐂(X,H)}\bigl{\{}\mathcal{C}(H^{\prime}):H^{\prime}\in\operatorname{\mathbf{C}}(X,H)\bigr{\}} are pairwise disjoint since the entries of any 𝐞𝒞(H)\mathbf{e}\in\mathcal{C}(H^{\prime}) uniquely define the edge-set of HH^{\prime}. Consequently, we can bound

β(μ;H,k)\displaystyle\beta(\mu;H,k) =H𝐂(X,H)μ(H)k=H𝐂(X,H)1|𝒞(H)|𝐞𝒞(H)μkm(𝐞)\displaystyle=\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\mu(H^{\prime})^{k}=\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}{1\over\lvert\mathcal{C}(H^{\prime})\rvert}\sum_{\mathbf{e}\in\mathcal{C}(H^{\prime})}\mu^{km}(\mathbf{e})
=(k!)m(km)!H𝐂(X,H)𝐏𝐫μkm[𝒞(H)]=(k!)m(km)!𝐏𝐫μkm[H𝐂(X,H)𝒞(H)](k!)m(km)!.\displaystyle={(k!)^{m}\over(km)!}\cdot\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\operatorname*{\mathbf{Pr}}_{\mu^{km}}[\mathcal{C}(H^{\prime})]={(k!)^{m}\over(km)!}\cdot\operatorname*{\mathbf{Pr}}_{\mu^{km}}\biggl{[}\bigcup_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\mathcal{C}(H^{\prime})\biggr{]}\leq{(k!)^{m}\over(km)!}.\qed

From here, we can immediately prove Theorem 1.6.

Proof of Theorem 1.6.

First, Theorem 4.2 tells us that β(H,k)(k!)m/(km)!\beta(H,k)\leq(k!)^{m}/(km)!. Then, thanks to Lemma 2.4, if k(δ(H)1)2k\cdot\bigl{(}\delta(H)-1\bigr{)}\geq 2 or if δ(H)=1\delta(H)=1 and k9k\geq 9, then

𝐍𝒫(n,H{k})𝐍𝒢3(n,H{k})β(H,k)(k!)mnkm+o(nkm)nkm(km)!+o(nkm).\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}})\leq\operatorname{\mathbf{N}}_{\mathcal{G}_{3}}(n,{H\{k\}})\leq{\beta(H,k)\over(k!)^{m}}\cdot n^{km}+o(n^{km})\leq{n^{km}\over(km)!}+o(n^{km}).\qed

4.1 The structure of optimal masses

In this section, we establish structural properties about those masses which achieve β(H,k)\beta(H,k), which will be used in the next sections in order to prove Theorems 1.2, 1.5 and 1.7.

Of course, a priori, it is not even clear that β(H,k)\beta(H,k) is ever achieved. In fact, one can show that β(K1,m,1)=1/m!\beta(K_{1,m},1)=1/m! for all m2m\geq 2, yet this value is never achieved. Indeed, one can argue that for all nm2n\geq m\geq 2,

max{β(μ;K1,m,1):|suppμ|n}=(nm)1nm<1m!.\max\bigl{\{}\beta(\mu;K_{1,m},1):\lvert\operatorname{supp}\mu\rvert\leq n\bigr{\}}={n\choose m}\cdot{1\over n^{m}}<{1\over m!}.

The same phenomenon occurs for β(mK2,1)\beta(mK_{2},1) for m2m\geq 2 where mK2mK_{2} is the matching on mm edges. We conjecture that these are the only situations in which β(H,k)\beta(H,k) is not achieved. See Corollary 4.7 for partial results in this direction.

Despite this, for any fixed, finite set XX with at least two elements, the quantity max{β(μ;H,k):suppμ(X2)}\max\bigl{\{}\beta(\mu;H,k):\operatorname{supp}\mu\subseteq{X\choose 2}\bigr{\}} exists, thanks to compactness.

Definition 4.3.

Let HH be a graph with no isolated vertices and let kk be a positive integer. For a finite set XX, we denote by Opt(X;H,k)\operatorname{Opt}(X;H,k) the set of all probability masses μ\mu on (X2){X\choose 2} satisfying

β(μ;H,k)=max{β(μ;H,k):suppμ(X2)}.\beta(\mu;H,k)=\max\biggl{\{}\beta(\mu^{\prime};H,k):\operatorname{supp}\mu^{\prime}\subseteq{X\choose 2}\biggr{\}}.

In the case that β(H,k)\beta(H,k) is achieved, we denote by Opt(H,k)\operatorname{Opt}(H,k) the set of all masses μ\mu satisfying β(μ;H,k)=β(H,k)\beta(\mu;H,k)=\beta(H,k).

Fix a finite set XX and a probability mass μ\mu on (X2){X\choose 2} and let GμG_{\mu} be the graph with vertex-set XX and edge-set suppμ\operatorname{supp}\mu. Observe that β(μ;H,k)>0\beta(\mu;H,k)>0 if and only if GμG_{\mu} has a copy of HH; consequently, if β(μ;H,k)>0\beta(\mu;H,k)>0, then |suppμ||E(H)|\lvert\operatorname{supp}\mu\rvert\geq\lvert E(H)\rvert and |suppμ¯||V(H)|\lvert\operatorname{supp}\bar{\mu}\rvert\geq\lvert V(H)\rvert. We see also that if |X||V(H)|\lvert X\rvert\geq\lvert V(H)\rvert and μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k), then GμG_{\mu} must contain a copy of HH. Additionally, we can determine such an optimal μ\mu exactly if |suppμ|=|E(H)|\lvert\operatorname{supp}\mu\rvert=\lvert E(H)\rvert:

Proposition 4.4.

Let H=(V,E)H=(V,E) be a graph on mm edges with no isolated vertices and let kk be a positive integer. Fix any finite set XX with |X||V|\lvert X\rvert\geq\lvert V\rvert and fix μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k). If |suppμ|=m\lvert\operatorname{supp}\mu\rvert=m, then μ\mu is the uniform distribution on E(H)E(H^{\prime}) for some H𝐂(X,H)H^{\prime}\in\operatorname{\mathbf{C}}(X,H) and thus β(μ;H,k)=mkm\beta(\mu;H,k)=m^{-km}.

Proof.

We know that GμG_{\mu} contains a copy of HH since |X||V|\lvert X\rvert\geq\lvert V\rvert and μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k). Since |suppμ|=m\lvert\operatorname{supp}\mu\rvert=m, we conclude that GμG_{\mu} must in fact be a copy of HH, possibly with isolated vertices. We can therefore apply the arithmetic–geometric mean inequality to bound

β(μ;H,k)=esuppμμ(e)k(1mesuppμμ(e))km=1mkm,\beta(\mu;H,k)=\prod_{e\in\operatorname{supp}\mu}\mu(e)^{k}\leq\biggl{(}{1\over m}\sum_{e\in\operatorname{supp}\mu}\mu(e)\biggr{)}^{km}={1\over m^{km}},

with equality if and only if μ(e)=1/m\mu(e)=1/m for every esuppμe\in\operatorname{supp}\mu. ∎

We next derive regularity conditions for the members of Opt(X;H,k)\operatorname{Opt}(X;H,k).

Lemma 4.5.

Let HH be a graph on mm edges with no isolated vertices, let kk be a positive integer and fix a finite set XX. If μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k), then

μ(e)mβ(μ;H,k)\displaystyle\mu(e)\cdot m\cdot\beta(\mu;H,k) =H𝐂(X,H):E(H)eμ(H)k\displaystyle=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni e\end{subarray}}\mu(H^{\prime})^{k} for every e(X2),and\displaystyle\text{for every }e\in{X\choose 2},\quad\text{and}
μ¯(x)mβ(μ;H,k)\displaystyle\bar{\mu}(x)\cdot m\cdot\beta(\mu;H,k) =H𝐂(X,H):V(H)xdegH(x)μ(H)k\displaystyle=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ V(H^{\prime})\ni x\end{subarray}}\deg_{H^{\prime}}(x)\cdot\mu(H^{\prime})^{k}\qquad for every xX.\displaystyle\text{for every }x\in X.
Proof.

By the definition of β\beta, we can write

β(μ;H,k)=maxH𝐂(X,H)eE(H)xeks.t.e(X2)xe=1xe0for all e(X2).\begin{array}[]{ccl}\beta(\mu;H,k)=&\max&\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\ \prod_{e\in E(H^{\prime})}x_{e}^{k}\\ &\text{s.t.}&\sum_{e\in{X\choose 2}}x_{e}=1\\ &&x_{e}\geq 0\qquad\text{for all }e\in{X\choose 2}.\end{array}

In particular, we can apply the KKT conditions (Theorem 1.8) to μ\mu. By doing so, we find that there is some fixed λ\lambda\in\mathbb{R} such that D(e)=λD(e)=\lambda for all esuppμe\in\operatorname{supp}\mu, where

D(e)=defH𝐂(X,H):E(H)eμ(e)k1sE(H){e}μ(s)k.D(e)\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni e\end{subarray}}\ \mu(e)^{k-1}\prod_{s\in E(H^{\prime})\setminus\{e\}}\mu(s)^{k}.

Of course, whether or not esuppμe\in\operatorname{supp}\mu, we always have

λμ(e)=D(e)μ(e)=H𝐂(X,H):E(H)eμ(H)k.\lambda\cdot\mu(e)=D(e)\cdot\mu(e)=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni e\end{subarray}}\mu(H^{\prime})^{k}.

Using 𝟏[S]\mathbf{1}[S] to denote the indicator function of an event SS, we compute

λ\displaystyle\lambda =e(X2)λμ(e)=e(X2)D(e)μ(e)=e(X2)H𝐂(X,H):E(H)eμ(H)k\displaystyle=\sum_{e\in{X\choose 2}}\lambda\cdot\mu(e)=\sum_{e\in{X\choose 2}}D(e)\cdot\mu(e)=\sum_{e\in{X\choose 2}}\ \sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni e\end{subarray}}\mu(H^{\prime})^{k}
=H𝐂(X,H)μ(H)ke(X2)𝟏[eE(H)]=mβ(μ;H,k),\displaystyle=\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\mu(H^{\prime})^{k}\cdot\sum_{e\in{X\choose 2}}\mathbf{1}[e\in E(H^{\prime})]=m\cdot\beta(\mu;H,k),

and so

μ(e)mβ(μ;H,k)=μ(e)λ=H𝐂(X,H):E(H)eμ(H)k,\mu(e)\cdot m\cdot\beta(\mu;H,k)=\mu(e)\cdot\lambda=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni e\end{subarray}}\mu(H^{\prime})^{k},

for every e(X2)e\in{X\choose 2}.

From here, we see also that for each xXx\in X,

μ¯(x)mβ(μ;H,k)\displaystyle\bar{\mu}(x)\cdot m\cdot\beta(\mu;H,k) =yX{x}μ(xy)mβ(μ;H,k)=yX{x}H𝐂(X,H):E(H)xyμ(H)k\displaystyle=\sum_{y\in X\setminus\{x\}}\mu(xy)\cdot m\cdot\beta(\mu;H,k)=\sum_{y\in X\setminus\{x\}}\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni xy\end{subarray}}\mu(H^{\prime})^{k}
=H𝐂(X,H)μ(H)kyX{x}𝟏[xyE(H)]\displaystyle=\sum_{H^{\prime}\in\operatorname{\mathbf{C}}(X,H)}\mu(H^{\prime})^{k}\cdot\sum_{y\in X\setminus\{x\}}\mathbf{1}[xy\in E(H^{\prime})]
=H𝐂(X,H):V(H)xdegH(x)μ(H)k.\displaystyle=\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ V(H^{\prime})\ni x\end{subarray}}\deg_{H^{\prime}}(x)\cdot\mu(H^{\prime})^{k}.\qed

These regularity conditions allow us to place bounds on the edge- and vertex-masses in an optimal mass.

Lemma 4.6.

Let HH be a graph on mm edges with no isolated vertices, let kk be a positive integer and fix a finite set XX with |X||V(H)|\lvert X\rvert\geq\lvert V(H)\rvert. If μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k), then

1mμ(e)\displaystyle 1-m\cdot\mu(e) (1μ(e))km\displaystyle\leq\bigl{(}1-\mu(e)\bigr{)}^{km}\qquad for all esuppμ,and\displaystyle\text{for all }e\in\operatorname{supp}\mu,\quad\text{and}
1mδ(H)μ¯(x)\displaystyle 1-{m\over\delta(H)}\bar{\mu}(x) (1μ¯(x))km\displaystyle\leq\bigl{(}1-\bar{\mu}(x)\bigr{)}^{km} for all xsuppμ¯.\displaystyle\text{for all }x\in\operatorname{supp}\bar{\mu}.
Proof.

Since |X||V(H)|\lvert X\rvert\geq\lvert V(H)\rvert, we know that β(μ;H,k)>0\beta(\mu;H,k)>0.

We prove first that 1mμ(e)(1μ(e))km1-m\cdot\mu(e)\leq\bigl{(}1-\mu(e)\bigr{)}^{km} for any esuppμe\in\operatorname{supp}\mu. Fix any esuppμe\in\operatorname{supp}\mu. If μ(e)1/m\mu(e)\geq 1/m, then the claim is trivial; otherwise, μ(e)<1/m\mu(e)<1/m, and we can define the mass μ\mu^{\prime} on (X2){X\choose 2} by

μ(s)=11μ(e){0if s=e,μ(s)otherwise.\mu^{\prime}(s)={1\over 1-\mu(e)}\cdot\begin{cases}0&\text{if }s=e,\\ \mu(s)&\text{otherwise}.\end{cases}

Since μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k), we apply Lemma 4.5 to see that

β(μ;H,k)β(μ;H,k)\displaystyle\beta(\mu;H,k)\geq\beta(\mu^{\prime};H,k) =1(1μ(e))km(β(μ;H,k)H𝐂(X,H):E(H)eμ(H)k)\displaystyle={1\over(1-\mu(e))^{km}}\cdot\biggl{(}\beta(\mu;H,k)-\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ E(H^{\prime})\ni e\end{subarray}}\mu(H^{\prime})^{k}\biggr{)}
=β(μ;H,k)1mμ(e)(1μ(e))km,\displaystyle=\beta(\mu;H,k)\cdot{1-m\cdot\mu(e)\over(1-\mu(e))^{km}},

which implies that 1mμ(e)(1μ(e))km1-m\cdot\mu(e)\leq\bigl{(}1-\mu(e)\bigr{)}^{km}.

We prove next that 1mδμ¯(x)(1μ¯(x))km1-{m\over\delta}\bar{\mu}(x)\leq\bigl{(}1-\bar{\mu}(x)\bigr{)}^{km} for any xsuppμ¯x\in\operatorname{supp}\bar{\mu}, where δ=δ(H)\delta=\delta(H). Fix any xsuppμ¯x\in\operatorname{supp}\bar{\mu}. If μ¯(x)δ/m\bar{\mu}(x)\geq\delta/m, then the claim is trivial; otherwise, μ¯(x)<δ/m\bar{\mu}(x)<\delta/m, and we can define the mass μ\mu^{\prime} on (X2){X\choose 2} by

μ(s)=11μ¯(x){0if sx,μ(s)otherwise.\mu^{\prime}(s)={1\over 1-\bar{\mu}(x)}\cdot\begin{cases}0&\text{if }s\ni x,\\ \mu(s)&\text{otherwise}.\end{cases}

Since μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k), we again apply Lemma 4.5 to see that

β(μ;H,k)β(μ;H,k)\displaystyle\beta(\mu;H,k)\geq\beta(\mu^{\prime};H,k) =1(1μ¯(x))km(β(μ;H,k)H𝐂(X,H):V(H)xμ(H)k)\displaystyle={1\over(1-\bar{\mu}(x))^{km}}\cdot\biggl{(}\beta(\mu;H,k)-\sum_{\begin{subarray}{c}H^{\prime}\in\operatorname{\mathbf{C}}(X,H):\\ V(H^{\prime})\ni x\end{subarray}}\mu(H^{\prime})^{k}\biggr{)}
1(1μ¯(x))km(β(μ;H,k)μ¯(x)δmβ(μ;H,k))\displaystyle\geq{1\over(1-\bar{\mu}(x))^{km}}\cdot\biggl{(}\beta(\mu;H,k)-{\bar{\mu}(x)\over\delta}\cdot m\cdot\beta(\mu;H,k)\biggr{)}
=β(μ;H,k)1mδμ¯(x)(1μ¯(x))km,\displaystyle=\beta(\mu;H,k)\cdot{1-{m\over\delta}\bar{\mu}(x)\over(1-\bar{\mu}(x))^{km}},

which implies that 1mδμ¯(x)(1μ¯(x))km1-{m\over\delta}\bar{\mu}(x)\leq\bigl{(}1-\bar{\mu}(x)\bigr{)}^{km}. ∎

We remark that one can show also that μ(e)1/m\mu(e)\leq 1/m for all esuppμe\in\operatorname{supp}\mu and that μ¯(x)Δ(H)/m\bar{\mu}(x)\leq\Delta(H)/m for all xsuppμ¯x\in\operatorname{supp}\bar{\mu}; however, we have not found any use for these inequalities.

Lemma 4.6 allows us to place lower-bounds on μ(e)\mu(e) for esuppμe\in\operatorname{supp}\mu and on μ¯(x)\bar{\mu}(x) for xsuppμ¯x\in\operatorname{supp}\bar{\mu} when μ\mu is an optimal mass. For instance, consider the inequality 1mμ(e)(1μ(e))km1-m\cdot\mu(e)\leq\bigl{(}1-\mu(e)\bigr{)}^{km}. This inequality always holds if k=1k=1, but if k2k\geq 2, then we observe that the curves 1mx1-mx and (1x)km(1-x)^{km} intersect at 0 and at a unique x(0,1]x^{*}\in(0,1]. Furthermore, 1mx>(1x)km1-mx>(1-x)^{km} for all x(0,x)x\in(0,x^{*}) and 1mx(1x)km1-mx\leq(1-x)^{km} for all x[x,1]x\in[x^{*},1]. Therefore, if we can locate some x(0,1]x\in(0,1] for which 1mx>(1x)km1-mx>(1-x)^{km}, then we will have shown that μ(e)>x\mu(e)>x for all esuppμe\in\operatorname{supp}\mu. Similar reasoning can be applied to the inequality 1mδμ¯(x)(1μ¯(x))km1-{m\over\delta}\bar{\mu}(x)\leq\bigl{(}1-\bar{\mu}(x)\bigr{)}^{km}; that is, if we can locate some z(0,1]z\in(0,1] for which 1mδz>(1z)km1-{m\over\delta}z>(1-z)^{km}, then we will have shown that μ¯(x)>z\bar{\mu}(x)>z for all xsuppμ¯x\in\operatorname{supp}\bar{\mu}.

Indeed, we will apply precisely this reasoning in order to establish Theorems 4.8, 4.9 and 4.10. However, before we get to this, we first remark on a useful consequence of Lemma 4.6.

Corollary 4.7.

For a graph HH and a positive integer kk, if kδ(H)2k\cdot\delta(H)\geq 2, then β(H,k)\beta(H,k) is achieved.

Proof.

Let XX be a finite set with |X||V(H)|\lvert X\rvert\geq\lvert V(H)\rvert and fix any μOpt(X;H,k)\mu\in\operatorname{Opt}(X;H,k). By passing to a subset of XX if necessary, we may suppose that suppμ¯=X\operatorname{supp}\bar{\mu}=X. Thanks to compactness, in order to show that β(H,k)\beta(H,k) is achieved, it suffices to show that |X|\lvert X\rvert is bounded above by some constant depending only on HH and kk.

Set δ=δ(H)\delta=\delta(H), m=|E(H)|m=\lvert E(H)\rvert and fix xXx\in X with μ¯(x)\bar{\mu}(x) minimum. If μ¯(x)δ/m\bar{\mu}(x)\geq\delta/m, then

2=yXμ¯(y)|X|μ¯(x)|X|δm|X|2mδ.2=\sum_{y\in X}\bar{\mu}(y)\geq\lvert X\rvert\cdot\bar{\mu}(x)\geq\lvert X\rvert\cdot{\delta\over m}\quad\implies\quad\lvert X\rvert\leq{2m\over\delta}.

Otherwise, μ¯(x)<δ/m\bar{\mu}(x)<\delta/m. We then apply Lemma 4.6 and use the inequalities ez/(1z)<1z<eze^{-z/(1-z)}<1-z<e^{-z} for 0<z<10<z<1 to bound

1\displaystyle 1 1mδμ¯(x)(1μ¯(x))km>exp{mδμ¯(x)1mδμ¯(x)+kmμ¯(x)}=exp{mμ¯(x)1mδμ¯(x)(k1δkmδμ¯(x))},\displaystyle\geq{1-{m\over\delta}\bar{\mu}(x)\over(1-\bar{\mu}(x))^{km}}>\exp\biggl{\{}{-{m\over\delta}\bar{\mu}(x)\over 1-{m\over\delta}\bar{\mu}(x)}+km\cdot\bar{\mu}(x)\biggr{\}}=\exp\biggl{\{}{m\cdot\bar{\mu}(x)\over 1-{m\over\delta}\bar{\mu}(x)}\biggl{(}k-{1\over\delta}-{km\over\delta}\bar{\mu}(x)\biggr{)}\biggr{\}},

and so μ¯(x)>kδ1km\bar{\mu}(x)>{k\delta-1\over km}. Therefore, since kδ2k\delta\geq 2,

2=yXμ¯(y)>|X|kδ1km|X|<2kmkδ1.2=\sum_{y\in X}\bar{\mu}(y)>\lvert X\rvert\cdot{k\delta-1\over km}\quad\implies\quad\lvert X\rvert<{2km\over k\delta-1}.\qed

4.2 Cliques and even cycles

In this section, we prove Theorems 1.2 and 1.5.

We begin by computing β(Kt,k)\beta(K_{t},k).

Theorem 4.8.

For all t2t\geq 2 and all k1k\geq 1,

β(Kt,k)=(t2)k(t2).\beta(K_{t},k)={t\choose 2}^{-k{t\choose 2}}.
Proof.

The lower bound is realized by the uniform distribution on E(Kt)E(K_{t}).

For the upper bound, we have already shown that β(K2,k)=1\beta(K_{2},k)=1 (Proposition 4.1), so we may suppose that t3t\geq 3. Fix any μOpt(Kt,k)\mu\in\operatorname{Opt}(K_{t},k), which can be done thanks to Corollary 4.7. Note that |suppμ¯|t\lvert\operatorname{supp}\bar{\mu}\rvert\geq t and that |suppμ|(t2)\lvert\operatorname{supp}\mu\rvert\geq{t\choose 2}.

Set z=2/(t+1)z=2/(t+1); we use a version of Bernoulli’s inequality, (1x)n<1nx1+(n1)x(1-x)^{n}<1-{nx\over 1+(n-1)x} for 0<x<10<x<1 and n>1n>1, to bound

(1z)k(t2)\displaystyle(1-z)^{k{t\choose 2}} (1z)(t2)<1(t2)z1+((t2)1)z=1(t2)t1z.\displaystyle\leq(1-z)^{{t\choose 2}}<1-{{t\choose 2}z\over 1+({t\choose 2}-1)z}=1-{{t\choose 2}\over t-1}z.

Thus, thanks to Lemma 4.6, we know that μ¯(x)>2/(t+1)\bar{\mu}(x)>2/(t+1) for every xsuppμ¯x\in\operatorname{supp}\bar{\mu}. From here, we see that

2=xsuppμ¯μ¯(x)>|suppμ¯|2t+1|suppμ¯|<t+1|suppμ¯|=t.2=\sum_{x\in\operatorname{supp}\bar{\mu}}\bar{\mu}(x)>\lvert\operatorname{supp}\bar{\mu}\rvert\cdot{2\over t+1}\quad\implies\quad\lvert\operatorname{supp}\bar{\mu}\rvert<t+1\quad\implies\quad\lvert\operatorname{supp}\bar{\mu}\rvert=t.

Therefore, |suppμ|=(t2)\lvert\operatorname{supp}\mu\rvert={t\choose 2}, and so the claim follows from Proposition 4.4. ∎

Thus, the proof of Theorem 1.5 follows immediately from Lemma 2.4 (or Lemma 2.5 for K3{1}{K_{3}\{1\}}) and Theorem 4.8. In fact, we have shown that

𝐍𝒢C(n,Kt{k})=1(k!)(t2)(n(t2))k(t2)+O(nk(t2)k/(k+4)),\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,{K_{t}\{k\}})={1\over(k!)^{{t\choose 2}}}\biggl{(}{n\over{t\choose 2}}\biggr{)}^{k{t\choose 2}}+O(n^{k{t\choose 2}-k/(k+4)}),

for all t3t\geq 3, k1k\geq 1 and C2C\geq 2.

We next determine β(C4,k)\beta(C_{4},k).

Theorem 4.9.

β(C4,k)=44k\beta(C_{4},k)=4^{-4k} for all k1k\geq 1.

Proof.

The lower bound is achieved by the uniform distribution on the edges of C4C_{4}.

For the upper bound, fix any μOpt(C4,k)\mu\in\operatorname{Opt}(C_{4},k), which can be done thanks to Corollary 4.7. Set X=suppμ¯X=\operatorname{supp}\bar{\mu}; we claim that |X|=4\lvert X\rvert=4. Indeed, for any xXx\in X, Lemma 4.6 tells us that

12μ¯(x)(1μ¯(x))4k(1μ¯(x))4μ¯(x)>0.45.1-2\bar{\mu}(x)\leq\bigl{(}1-\bar{\mu}(x)\bigr{)}^{4k}\leq\bigl{(}1-\bar{\mu}(x)\bigr{)}^{4}\quad\implies\quad\bar{\mu}(x)>0.45.

Therefore,

2=xXμ¯(x)>0.45|X||X|<4.45,2=\sum_{x\in X}\bar{\mu}(x)>0.45\cdot\lvert X\rvert\quad\implies\quad\lvert X\rvert<4.45,

and so |X|=4\lvert X\rvert=4. We can therefore decompose (X2)={e1,f1}{e2,f2}{e3,f3}{X\choose 2}=\{e_{1},f_{1}\}\cup\{e_{2},f_{2}\}\cup\{e_{3},f_{3}\} where ei,fie_{i},f_{i} are parallel edges, i.e. eifi=e_{i}\cap f_{i}=\varnothing. Since every copy of C4C_{4} is uniquely determined by a pair of these parallel edges, we can write

β(μ;C4,k)\displaystyle\beta(\mu;C_{4},k) ={i,j}([3]2)μ(ei)kμ(fi)kμ(ej)kμ(fj)k({i,j}([3]2)μ(ei)μ(fi)μ(ej)μ(fj))k\displaystyle=\sum_{\{i,j\}\in{[3]\choose 2}}\mu(e_{i})^{k}\mu(f_{i})^{k}\mu(e_{j})^{k}\mu(f_{j})^{k}\leq\biggl{(}\sum_{\{i,j\}\in{[3]\choose 2}}\mu(e_{i})\mu(f_{i})\mu(e_{j})\mu(f_{j})\biggr{)}^{k}
=12k((i=13μ(ei)μ(fi))2i=13μ(ei)2μ(fi)2)k.\displaystyle={1\over 2^{k}}\biggl{(}\biggl{(}\sum_{i=1}^{3}\mu(e_{i})\mu(f_{i})\biggr{)}^{2}-\sum_{i=1}^{3}\mu(e_{i})^{2}\mu(f_{i})^{2}\biggr{)}^{k}.

We finally apply Corollary 3.4 and the AM–GM inequality to bound

β(μ;C4,k)\displaystyle\beta(\mu;C_{4},k) 12k(18(i=13μ(ei)i=13μ(fi))2)k142k(12i=13(μ(ei)+μ(fi)))4k=144k.\displaystyle\leq{1\over 2^{k}}\biggl{(}{1\over 8}\biggl{(}\sum_{i=1}^{3}\mu(e_{i})\cdot\sum_{i=1}^{3}\mu(f_{i})\biggr{)}^{2}\biggr{)}^{k}\leq{1\over 4^{2k}}\biggl{(}{1\over 2}\sum_{i=1}^{3}\bigl{(}\mu(e_{i})+\mu(f_{i})\bigr{)}\biggr{)}^{4k}={1\over 4^{4k}}.\qed

The proof of Theorem 1.2 now follows quickly.

Proof of Theorem 1.2.

The lower bounds are given in eq. 2.

Now, by applying Lemma 2.5, we know that

𝐍𝒫(n,C2m)𝐍𝒢3(n,C2m)β(Cm,1)nm+O(nm1/5),\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{2m})\leq\operatorname{\mathbf{N}}_{\mathcal{G}_{3}}(n,C_{2m})\leq\beta(C_{m},1)\cdot n^{m}+O(n^{m-1/5}),

for m3m\geq 3. Finally, Theorem 4.8 gives β(C3,1)=33\beta(C_{3},1)=3^{-3}, Theorem 4.9 gives β(C4,1)=44\beta(C_{4},1)=4^{-4} and Theorem 4.2 gives β(Cm,1)1/m!\beta(C_{m},1)\leq 1/m! for all m5m\geq 5; hence the claim follows. ∎

4.3 Sufficiently large edge-blow-ups

We conclude our study of β(H,k)\beta(H,k) by proving Theorem 1.7.

Theorem 4.10.

Let HH be a graph on mm edges with no isolated vertices and let kk be a positive integer. If klog(m+1)mlog(1+1/m)k\geq{\log(m+1)\over m\log(1+1/m)}, then β(H,k)=mkm\beta(H,k)=m^{-km}.

Proof.

We begin by observing that if k=log(m+1)mlog(1+1/m)k={\log(m+1)\over m\log(1+1/m)}, then (m+1)km1=mkm(m+1)^{km-1}=m^{km}. Since k,mk,m are positive integers and m,m+1m,m+1 are coprime, this can happen only if k=m=1k=m=1. This situation was covered in Proposition 4.1, so we may suppose that k>log(m+1)mlog(1+1/m)k>{\log(m+1)\over m\log(1+1/m)}.

Fix any μOpt(H,k)\mu\in\operatorname{Opt}(H,k), which can be done thanks to Corollary 4.7 since k>log(m+1)mlog(1+1/m)1k>{\log(m+1)\over m\log(1+1/m)}\geq 1. Set x=1/(m+1)x=1/(m+1) and observe that

(1x)km\displaystyle(1-x)^{km} <(1x)log(m+1)log(1+1/m)=(mm+1)log(m+1)log(m/(m+1))=1m+1=1mx.\displaystyle<(1-x)^{{\log(m+1)\over\log(1+1/m)}}=\biggl{(}{m\over m+1}\biggr{)}^{-{\log(m+1)\over\log(m/(m+1))}}={1\over m+1}=1-mx.

Thus, thanks to Lemma 4.6, we see that μ(e)>1/(m+1)\mu(e)>1/(m+1) for every esuppμe\in\operatorname{supp}\mu. We conclude that

1=esuppμμ(e)>|suppμ|m+1|suppμ|<m+1|suppμ|=m,1=\sum_{e\in\operatorname{supp}\mu}\mu(e)>{\lvert\operatorname{supp}\mu\rvert\over m+1}\quad\implies\quad\lvert\operatorname{supp}\mu\rvert<m+1\quad\implies\quad\lvert\operatorname{supp}\mu\rvert=m,

and so the claim follows from Proposition 4.4. ∎

The proof of Theorem 1.7 then follows immediately from Lemma 2.4 and Theorem 4.10.

The lower bound of klog(m+1)mlog(1+1/m)k\geq{\log(m+1)\over m\log(1+1/m)} in Theorem 4.10 is tight for infinitely many graphs.

Proposition 4.11.

Let HH be any edge-transitive graph on m+13m+1\geq 3 edges. If HH^{-} is an mm-edge subgraph of HH with no isolated vertices, then β(H,k)>mkm\beta(H^{-},k)>m^{-km} for all positive integers k<log(m+1)mlog(1+1/m)k<{\log(m+1)\over m\log(1+1/m)}.

Proof.

First, note that log(m+1)mlog(1+1/m)>1{\log(m+1)\over m\log(1+1/m)}>1 since m2m\geq 2; hence the range for kk is nontrivial.

Let μ\mu denote the uniform distribution on E(H)E(H). Since HH is edge-transitive, we know that 𝐍(H,H)=m+1\operatorname{\mathbf{N}}(H,H^{-})=m+1 and so

β(H,k)mkm\displaystyle{\beta(H^{-},k)\over m^{-km}} β(μ;H,k)mkm=(m+1)(mm+1)km>(m+1)(mm+1)log(m+1)log(m/(m+1))=1.\displaystyle\geq{\beta(\mu;H^{-},k)\over m^{-km}}=(m+1)\cdot\biggl{(}{m\over m+1}\biggr{)}^{km}>(m+1)\cdot\biggl{(}{m\over m+1}\biggr{)}^{-{\log(m+1)\over\log(m/(m+1))}}=1.\qed

We remark that this is the reason that it is likely necessary to use the refined β𝒫(H,k)\beta_{\mathcal{P}}(H,k) mentioned in Remark 2.13 in order to determine 𝐍𝒫(n,H{k})\operatorname{\mathbf{N}}_{\mathcal{P}}(n,{H\{k\}}) for H{K5,K3,3}H\in\{K_{5}^{-},K_{3,3}^{-}\} and kk small. For example, the proof of Proposition 4.11 shows that β(K5,1)108\beta(K_{5}^{-},1)\geq 10^{-8}, yet we think it is likely that β𝒫(K5,1)=99\beta_{\mathcal{P}}(K_{5}^{-},1)=9^{-9} since K5K_{5} is not planar.

5 Remarks and open problems

The techniques introduced in this paper are far reaching. Although we were able to compute ρ(m)\rho(m) and β(H,k)\beta(H,k) for certain mm and HH, there is much we could not do.

Odd paths and even cycles

The main question left open by this paper is that of determining ρ(m)\rho(m) for m4m\geq 4.

Conjecture 5.1.

For all m2m\geq 2, ρ(m)\rho(m) is achieved by the uniform distribution on E(Cm)E(C_{m}). In particular, ρ(m)=8mm\rho(m)=8\cdot m^{-m}.

If true, then

𝐍𝒫(n,P2m+1)=4m(nm)m+1+O(nm+4/5)for all m2,\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+1})=4m\biggl{(}{n\over m}\biggr{)}^{m+1}+O(n^{m+4/5})\qquad\text{for all }m\geq 2,

which would verify a conjecture of Ghosh et al. [2], albeit with a worse error term than predicted. Currently, we have only a proof for the cases of m=2m=2 and m=3m=3.

Even if Conjecture 5.1 is true, the methods developed in this paper are likely too crude to achieve the posited error-term of O(nm)O(n^{m}), which would verify the conjecture of Ghosh et al. in full.

Turning to even cycles, we conjecture the following:

Conjecture 5.2.

For all m3m\geq 3, β(Cm,1)\beta(C_{m},1) is achieved by the uniform distribution on E(Cm)E(C_{m}). In particular, β(Cm,1)=mm\beta(C_{m},1)=m^{-m}.

If true, then

𝐍𝒫(n,C2m)=(nm)m+O(nm1/5)for all m3.\operatorname{\mathbf{N}}_{\mathcal{P}}(n,C_{2m})=\biggl{(}{n\over m}\biggr{)}^{m}+O(n^{m-1/5})\qquad\text{for all }m\geq 3.

Currently, we have only a proof for the cases of m=3m=3 and m=4m=4.

It is likely that proving β(Cm,1)=mm\beta(C_{m},1)=m^{-m} is well within reach for m{5,6}m\in\{5,6\}. Indeed, for these values of mm, one can use Lemma 4.6 to show that β(Cm,1)\beta(C_{m},1) is achieved by a mass μ\mu spanning exactly mm vertices. Furthermore, one can show that μ¯(x)=2/m\bar{\mu}(x)=2/m for each xsuppμ¯x\in\operatorname{supp}\bar{\mu}. We have not explored either of these cases any further. Unfortunately, applying Lemma 4.6 to β(C7,1)\beta(C_{7},1) only allows us to say that this quantity is achieved by a mass spanning at most 88 vertices.

Edge-blow-ups.

The question of determining β(H,k)\beta(H,k) is wide open for most graphs HH. One obvious lower-bound on β(H,k)\beta(H,k) is the value achieved by the uniform distribution on E(H)E(H).

Question 5.3.

For which graphs H=(V,E)H=(V,E) is β(H,1)\beta(H,1) achieved by the uniform distribution on EE? That is, for which graphs HH is β(H,1)=|E||E|\beta(H,1)=\lvert E\rvert^{-\lvert E\rvert}?

We have already noted that this is not the case for infinitely many graphs (Proposition 4.11).

Even though β(H,1)\beta(H,1) is not always achieved by the uniform distribution on E(H)E(H), it seems reasonable to expect that, given a finite set XX, the quantity max{β(μ;H,1):suppμ(X2)}\max\bigl{\{}\beta(\mu;H,1):\operatorname{supp}\mu\subseteq{X\choose 2}\bigr{\}} is achieved by the uniform distribution on the edges of some graph. If true, this leads to the following question, which could be interesting in its own right.

Question 5.4.

For a graph HH on mm edges with no isolated vertices, what bounds can be placed on the quantity

supG𝐍(G,H)|E(G)|m?\sup_{G}{\operatorname{\mathbf{N}}(G,H)\over\ \lvert E(G)\rvert^{m}}?

Certainly this quantity is at least 1/mm1/m^{m} and is at most 1/m!1/m!. Additionally, we believe that the supremum can be replaced by a maximum unless H=K1,mH=K_{1,m} or H=mK2H=mK_{2} for some m2m\geq 2 where mK2mK_{2} is the matching on mm edges.

Finally, we still do not even know if β(H,1)\beta(H,1) is achieved for many graphs. Recall that β(K1,m,1)\beta(K_{1,m},1) and β(mK2,1)\beta(mK_{2},1) are never achieved for m2m\geq 2, yet β(H,k)\beta(H,k) is achieved provided that kδ(H)2k\cdot\delta(H)\geq 2 (Corollary 4.7).

Conjecture 5.5.

If HH is a graph with no isolated vertices and kk is a positive integer, then β(H,k)\beta(H,k) is not achieved if and only if k=1k=1 and either H=K1,mH=K_{1,m} or H=mK2H=mK_{2} for some m2m\geq 2.

The reduction lemmas.

Finally, we discuss the reduction lemmas in general. First, as mentioned in Section 2 after the statement of Lemma 2.5, we believe the following to be true:

Conjecture 5.6.

Let HH be a graph on mm edges and let kk be a positive integer. If kδ(H)2k\cdot\delta(H)\geq 2, then

𝐍𝒢C(n,H{k})=β(H,k)(k!)mnkm+o(nkm).\operatorname{\mathbf{N}}_{\mathcal{G}_{C}}(n,{H\{k\}})={\beta(H,k)\over(k!)^{m}}\cdot n^{km}+o(n^{km}).

Beyond this, it is natural to wonder if there is an analogous reduction lemma for even paths and odd cycles. For example, the conjectured (asymptotic) extremal example for 𝐍𝒫(n,P2m+2)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,P_{2m+2}) is a modification of Cm{n/m}{C_{m}\{n/m\}} wherein a path is placed among the interior vertices of each blown-up edge (see [2, Conjecture 2]); hence, we expect that the techniques used in this paper can be modified to tackle this question. It is probably necessary to use more about the planar structure of the host-graph in order to extend the reduction lemmas to this situation.

Interestingly, the reduction lemmas did not explicitly require the host-graph to have only linearly many edges. By playing with the error-terms, one can extend each of the reduction lemmas to the collection of graphs GG which have no K3,3K_{3,3} and |E(H)|C|V(H)|1+c\lvert E(H)\rvert\leq C\cdot\lvert V(H)\rvert^{1+c} for each subgraph HGH\subseteq G, where C>0C>0 is any fixed constant and c>0c>0 depends on the particular situation at hand. We opted to avoid this more general situation for the sake of readability.

Furthermore, it was not crucial that the host-graph avoided copies of K3,3K_{3,3}. Indeed each of the reduction lemmas can be reworked to handle the case when the host-graph avoids copies of K3,tK_{3,t} for some fixed t3t\geq 3. In particular, the reduction lemmas apply to the class graphs which can be embedded onto any surface of a fixed genus. However, the fact that one side of this forbidden biclique has size 33 appears to be necessary for each of our arguments. It seems unlikely that similar reduction lemmas could be pushed through if the host-graph only avoids copies of, say, K4,4K_{4,4}.

Finally, it is pertinent to point out that the techniques developed in this paper can likely be extended to prove stability results for 𝐍𝒫(n,H)\operatorname{\mathbf{N}}_{\mathcal{P}}(n,H) for various graphs HH. This would, however, likely require a few new ideas.

References

  • [1] N. Alon and Y. Caro. On the number of subgraphs of prescribed type of planar graphs with a given number of vertices. In Convexity and graph theory (Jerusalem, 1981), volume 87 of North-Holland Math. Stud., pages 25–36. North-Holland, Amsterdam, 1984.
  • [2] D. Ghosh, E. Győri, R. R. Martin, A. Paulos, N. Salia, C. Xiao, and O. Zamora. The maximum number of paths of length four in a planar graph. Discrete Mathematics, 344(5):112317, 2021.
  • [3] O. Güler. Foundations of Optimization. Springer New York, 2010.
  • [4] E. Győri, A. Paulos, N. Salia, C. Tompkins, and O. Zamora. The maximum number of paths of length three in a planar graph. arXiv:1909.13539, 2019.
  • [5] E. Győri, A. Paulos, N. Salia, C. Tompkins, and O. Zamora. The maximum number of pentagons in a planar graph. arXiv:1909.13532, 2019.
  • [6] S. L. Hakimi and E. F. Schmeichel. On the number of cycles of length kk in a maximal planar graph. J. Graph Theory, 3(1):69–86, 1979.
  • [7] R. Horn and C. Johnson. Matrix analysis. Cambridge University Press, Cambridge New York, 2012.
  • [8] T. Huynh, G. Joret, and D. R. Wood. Subgraph densities in a surface. arXiv:2003.13777, 2021.
  • [9] D. West. Introduction to graph theory. Pearson, United States, 2018.