This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Covering entropy for types in tracial W\mathrm{W}^{*}-algebras

David Jekel
Abstract

We study embeddings of tracial W\mathrm{W}^{*}-algebras into a ultraproduct of matrix algebras through an amalgamation of free probabilistic and model-theoretic techniques. Jung implicitly and Hayes explicitly defined 11-bounded entropy hh through the asymptotic covering numbers of Voiculescu’s microstate spaces, that is, spaces of matrix tuples (X1(N),X2(N),)(X_{1}^{(N)},X_{2}^{(N)},\dots) having approximately the same *-moments as the generators (X1,X2,)(X_{1},X_{2},\dots) of a given tracial W\mathrm{W}^{*}-algebra. We study the analogous covering entropy for microstate spaces defined through formulas that use suprema and infima, not only *-algebra operations and the trace–formulas which arise in the model theory of tracial W\mathrm{W}^{*}-algebras initiated by Farah, Hart, and Sherman. By relating the new theory with the original 11-bounded entropy, we show that if \mathcal{M} is a separable tracial W\mathrm{W}^{*}-algebra with h(𝒩:)0h(\mathcal{N}:\mathcal{M})\geq 0, then there exists an embedding of \mathcal{M} into a matrix ultraproduct 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}) such that h(𝒩:𝒬)h(\mathcal{N}:\mathcal{Q}) is arbitrarily close to h(𝒩:)h(\mathcal{N}:\mathcal{M}). We deduce that if all embeddings of \mathcal{M} into 𝒬\mathcal{Q} are automorphically equivalent, then \mathcal{M} is strongly 11-bounded and in fact has h()0h(\mathcal{M})\leq 0.

1 Introduction

1.1 Overview

The study of W\mathrm{W}^{*}-algebras or von Neumann algebras is a deep and challenging subject with many connections to fields as diverse as ergodic theory, geometric group theory, random matrix theory, quantum information, and model theory. Our present goal is to bring together two of these facets—the model theory of tracial W\mathrm{W}^{*}-algebras studied in [7, 8, 9, 1] and Voiculescu’s free entropy theory which, roughly speaking, quantifies the amount of matrix approximations for the generators of W\mathrm{W}^{*}-algebra (see e.g. [32, 33, 12, 25, 16]). On the free entropy side, we will work in the framework of Hayes’ 11-bounded entropy hh [16] which arose out of the work of Jung [25]; for history and motivation, refer to [18, §2]. The sibling paper [23] develops the analog of Voiculescu’s free microstate entropy for the setting of model-theoretic types.

We adapt the framework of 11-bounded entropy [25, 16] to capture data about the generators’ model-theoretic type and not only their non-commutative law. The non-commutative law of a tuple (Xj)j(X_{j})_{j\in\mathbb{N}} from =(M,τ)\mathcal{M}=(M,\tau) encodes the joint moments τ(p(X))\tau(p(X)) for non-commutative *-polynomials pp; laws thus describe tracial von Neumann algebras with chosen generators up to generator-preserving isomorphism. The type includes the values of more complicated formulas that involve not only the addition, adjoint, product, and trace operations, but also taking suprema and infima in auxiliary variables over an operator norm ball in \mathcal{M}. For instance, the type would include the value of the formula

supZD1infYB¯(0,1)[τ(X1YX2Z)2+τ(X22Y5)],\sup_{Z\in D_{1}^{\mathcal{M}}}\inf_{Y\in\overline{B}_{\mathcal{M}}(0,1)}[\tau(X_{1}YX_{2}Z)^{2}+\tau(X_{2}^{2}Y^{5})],

where D1D_{1}^{\mathcal{M}} denotes the closed unit ball with respect to operator norm. The entropy Ent𝒰(μ)\operatorname{Ent}^{\mathcal{U}}(\mu) of a type μ\mu is defined in terms of the exponential growth rates of the covering numbers of microstate spaces (spaces of matrix tuples with approximately the same type as our chosen generators, as in Voiculescu’s work), just like Jung and Hayes’ 11-bounded entropy except with types instead of laws. However, we prefer the term “covering entropy” rather than “11-bounded entropy” as a more intrinsic description of the definition. The superscript 𝒰\mathcal{U} denotes the fact that we take limits with respect to a fixed non-principal ultrafilter 𝒰\mathcal{U} on \mathbb{N}.

Just as in the original definition of the 11-bounded entropy, a key property of the covering entropy Ent𝒰(μ)\operatorname{Ent}^{\mathcal{U}}(\mu) is that it is invariant under change of coordinates (see §4.3). More precisely, if 𝐗\mathbf{X} and 𝐘\mathbf{Y} are tuples from \mathcal{M} with W(𝐗)=W(𝐘)\mathrm{W}^{*}(\mathbf{X})=\mathrm{W}^{*}(\mathbf{Y}), then their types tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) and tp(𝐘)\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}) have the same covering entropy (Corollary 4.10). This allows us to define the entropy Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) of a separable tracial W\mathrm{W}^{*}-algebra 𝒩\mathcal{N}\subseteq\mathcal{M} as the entropy of the type of any generating set. As suggested in [18], we streamline the proof of this invariance property using the result that every tuple 𝐘\mathbf{Y} from W(𝐗)\mathrm{W}^{*}(\mathbf{X}) can be expressed as 𝐟(𝐗)\mathbf{f}(\mathbf{X}) for some quantifier-free definable function (see [22, §13]). More generally, we can extend the definition of Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) to the case where 𝒩\mathcal{N}\subseteq\mathcal{M} is not separable by setting it to be the supremum of Ent𝒰(𝒩0:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}_{0}:\mathcal{M}) over separable W\mathrm{W}^{*}-subalgebras 𝒩0𝒩\mathcal{N}_{0}\subseteq\mathcal{N} or equivalently, the supremum of Ent𝒰(tp(𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) over all tuples 𝐗L(𝒩)\mathbf{X}\in L^{\infty}(\mathcal{N})^{\mathbb{N}} (see Definition 4.11).

The covering entropy Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) can be viewed intuitively as a measurement of the amount of tracial W\mathrm{W}^{*}-embeddings of 𝒩\mathcal{N} into the matrix ultraproduct 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}) that extend to elementary embeddings of \mathcal{M} (compare §4.4). This is the analog of the idea that the 11-bounded entropy h(𝒩:)h(\mathcal{N}:\mathcal{M}) of 𝒩\mathcal{N} in the presence of \mathcal{M} quantifies the amount of W\mathrm{W}^{*}-embeddings of 𝒩\mathcal{N} into 𝒬\mathcal{Q} that extend to any embedding of \mathcal{M}. Thus, our work is motivated in part by the study of embeddings into ultraproducts, which is one theme of recent work on von Neumann algebras [28, 14, 20, 2, 1, 11].

We make a precise connection between Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) and 11-bounded entropy as follows. There is a canonical projection πqf\pi_{\operatorname{qf}} from the space of types to the space of non-commutative laws, since a non-commutative law describes the evaluation of quantifier-free formulas (rather than all logical formulas) in a tuple 𝐗\mathbf{X}. Given a non-commutative law (or quantifier-free type) μ\mu, the 11-bounded entropy h𝒰(μ)h^{\mathcal{U}}(\mu) can be expressed through the following variational principle (Corollary 5.4):

h𝒰(μ)=supνπqf1(μ)Ent𝒰(ν).h^{\mathcal{U}}(\mu)=\sup_{\nu\in\pi_{\operatorname{qf}}^{-1}(\mu)}\operatorname{Ent}^{\mathcal{U}}(\nu). (1.1)

Thus, the 11-bounded entropy is the quantifier-free version of the entropy for types.

In a similar way, the 11-bounded entropy of 𝒩\mathcal{N} in the presence of \mathcal{M} is the version using existential types. Entropy in the presence is described using microstates for a tuple 𝐗\mathbf{X} in 𝒩\mathcal{N} such that there exist compatible microstates for a tuple 𝐘\mathbf{Y} that generates \mathcal{M}. In the model-theoretic framework, the existence of such microstates for \mathcal{M} is described through the evaluation of existential formulas in the original generators and their microstates (see §5.4). Similar to the quantifier-free setting, there is a projection π\pi_{\exists} from the space of types into the space of existential types, and a similar variational principle expressing the covering entropy of an existential type μ\mu as the supremum of Ent𝒰(ν)\operatorname{Ent}^{\mathcal{U}}(\nu) over full types νπ1(μ)\nu\in\pi_{\exists}^{-1}(\mu) (Lemma 5.13).

Altogether these ingredients allow us to prove the following result about ultraproduct embeddings, which is restated and proved in Theorem 5.24:

Theorem 1.1.

Let cc\in\mathbb{R}. Let 𝒩\mathcal{N}\subseteq\mathcal{M} be an inclusion of separable tracial W\mathrm{W}^{*}-algebras h𝒰(𝒩:)>ch^{\mathcal{U}}(\mathcal{N}:\mathcal{M})>c. Then there exists an embedding ι\iota of \mathcal{M} into the matrix ultraproduct 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}) such that Ent𝒰(ι(𝒩):𝒬)>c\operatorname{Ent}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})>c, hence also h𝒰(ι(𝒩):𝒬)>ch^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})>c.

The hypotheses of the theorem hold for instance when 𝒩=\mathcal{N}=\mathcal{M} is a nontrivial free product by [33, Proposition 6.8] and [25, Corollary 3.5] and [16, Proposition A.16] since h𝒰(:)=h^{\mathcal{U}}(\mathcal{M}:\mathcal{M})=\infty. They also hold for the von Neumann algebras of groups with non-approximately-inner cocycles by [30, Theorem 3] and [25, Corollary 3.5] and [16, Proposition A.16].

In particular, since there exists \mathcal{M} with h𝒰(:)=h^{\mathcal{U}}(\mathcal{M}:\mathcal{M})=\infty, the theorem implies that there exist types in 𝒬\mathcal{Q} with arbitrarily large covering entropy, and therefore, h𝒰(𝒬:𝒬)=h^{\mathcal{U}}(\mathcal{Q}:\mathcal{Q})=\infty. Similarly, the entropy Ent𝒰(𝒬:𝒬)\operatorname{Ent}^{\mathcal{U}}(\mathcal{Q}:\mathcal{Q}) given by Definition 4.11 is infinite.

Corollary 1.2.

Let 𝒰\mathcal{U} be a free ultrafilter on \mathbb{N} and let 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}). Then h𝒰(𝒬:𝒬)=h^{\mathcal{U}}(\mathcal{Q}:\mathcal{Q})=\infty and Ent𝒰(𝒬:𝒬)=\operatorname{Ent}^{\mathcal{U}}(\mathcal{Q}:\mathcal{Q})=\infty. Hence, 𝒬\mathcal{Q} is not strongly 11-bounded.

The following corollary of Theorem 1.1 was communicated to me by Ben Hayes.

Corollary 1.3.

Let 𝒩\mathcal{N}\subseteq\mathcal{M} be an inclusion of separable tracial W\mathrm{W}^{*}-algebras h()>0h(\mathcal{M})>0 such that 𝒩\mathcal{N} is a II1\mathrm{II}_{1} factor (it has trivial center). Then there exists a free ultrafilter 𝒱\mathcal{V} and an embedding ι:n𝒱Mn()\iota:\mathcal{M}\to\prod_{n\to\mathcal{V}}M_{n}(\mathbb{C}) such that 𝒩n𝒱Mn()=\mathcal{N}^{\prime}\cap\prod_{n\to\mathcal{V}}M_{n}(\mathbb{C})=\mathbb{C}.

Proof.

The 11-bounded entropy h()h(\mathcal{M}) is the supremum of h𝒱()h^{\mathcal{V}}(\mathcal{M}) over free ultrafilters 𝒱\mathcal{V}. Hence, there exists some free ultrafilter 𝒰\mathcal{U} such that h𝒱()>0h^{\mathcal{V}}(\mathcal{M})>0 and by Theorem 1.1 there is an embedding ι0:𝒬=n𝒰Mn()\iota_{0}:\mathcal{M}\to\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}) with h𝒰(ι0():𝒬)>0h^{\mathcal{U}}(\iota_{0}(\mathcal{M}):\mathcal{Q})>0.

A general fact about 11-bounded entropy is that if 𝒜\mathcal{A}\subseteq\mathcal{B} and 𝒜\mathcal{A}^{\prime}\cap\mathcal{B} is diffuse, then h(𝒜:)0h(\mathcal{A}:\mathcal{B})\leq 0. Indeed, if 𝒜\mathcal{A}^{\prime}\cap\mathcal{B} is diffuse, it contains a diffuse amenable subalgebra 𝒞\mathcal{C}. Let

𝒩=W(u𝒬 unitary: u𝒞u𝒞 is diffuse),\mathcal{N}=\mathrm{W}^{*}(u\in\mathcal{Q}\text{ unitary: }u\mathcal{C}u^{*}\cap\mathcal{C}\text{ is diffuse}),

(this is known as the step 1 wq-normalizer of 𝒞\mathcal{C} and was introduced in [10]). Note that 𝒜𝒩\mathcal{A}\subseteq\mathcal{N}. Hence, by [16, Property 1, p. 10]

h𝒰(𝒜:)h𝒰(𝒩:).h^{\mathcal{U}}(\mathcal{A}:\mathcal{B})\leq h^{\mathcal{U}}(\mathcal{N}:\mathcal{B}).

By [16, Theorem 2.8 and Proposition 3.2],

h𝒰(𝒩:)=h𝒰(𝒞:).h^{\mathcal{U}}(\mathcal{N}:\mathcal{B})=h^{\mathcal{U}}(\mathcal{C}:\mathcal{B}).

Then using [16, Property 1, p. 10] again,

h𝒰(𝒞:)h𝒰(𝒞:𝒞)=h𝒰(𝒞),h^{\mathcal{U}}(\mathcal{C}:\mathcal{B})\leq h^{\mathcal{U}}(\mathcal{C}:\mathcal{C})=h^{\mathcal{U}}(\mathcal{C}),

which is zero since 𝒞\mathcal{C} is amenable. Hence, h(𝒜:)0h(\mathcal{A}:\mathcal{B})\leq 0.

By contrapositive, since in our case h(ι():𝒬)h𝒰(ι0():𝒬)>0h(\iota(\mathcal{M}):\mathcal{Q})\geq h^{\mathcal{U}}(\iota_{0}(\mathcal{M}):\mathcal{Q})>0, then ι0()𝒬\iota_{0}(\mathcal{M})^{\prime}\cap\mathcal{Q} is not diffuse. Therefore, it contains a minimal projection pp. Let p𝒬pp\mathcal{Q}p be the compression of 𝒬\mathcal{Q} by pp equipped with the trace τp𝒬p(x)=τ𝒬(pxp)/τ(p)\tau_{p\mathcal{Q}p}(x)=\tau_{\mathcal{Q}}(pxp)/\tau(p), and let ι:p𝒬p\iota:\mathcal{M}\to p\mathcal{Q}p be the map ι(x)=pι0(x)p=ι0(x)\iota(x)=p\iota_{0}(x)p=\iota_{0}(x). Since pp commutes with ι0()\iota_{0}(\mathcal{M}), it follows that ι0\iota_{0} is a *-homomorphism, and since \mathcal{M} is a II1 factor and hence has a unique trace, the map ι\iota must be trace-preserving. Because pp was a minimal projection in ι0()𝒬\iota_{0}(\mathcal{M})^{\prime}\cap\mathcal{Q}, we know ι()p𝒬p\iota(\mathcal{M})^{\prime}\cap p\mathcal{Q}p has no nontrivial projections and hence is \mathbb{C}.

Finally, note that p𝒬pp\mathcal{Q}p is a matrix ultraproduct n𝒱Mn()\prod_{n\to\mathcal{V}}M_{n}(\mathbb{C}) for some ultrafilter 𝒱\mathcal{V}. Indeed, by stability of projections there exist projections pnp_{n} in Mn()M_{n}(\mathbb{C}) such that pp is the equivalence class of (pn)n(p_{n})_{n\in\mathbb{N}} in 𝒬\mathcal{Q}. Let k(n)k(n) be the rank of pnp_{n}. One can check that p𝒬p=n𝒰pnMn()pnn𝒰Mk(n)()p\mathcal{Q}p=\prod_{n\to\mathcal{U}}p_{n}M_{n}(\mathbb{C})p_{n}\cong\prod_{n\to\mathcal{U}}M_{k(n)}(\mathbb{C}), which is simply a matrix ultraproduct for a different ultrafilter 𝒱\mathcal{V}. ∎

As shown in [23, Theorem 1.2], the analogous result holds for free entropy rather than 11-bounded entropy without having to change the ultrafilter 𝒰\mathcal{U} to the ultrafilter 𝒱\mathcal{V}.

1.2 Embeddings into Ultraproducts

Our results relate to recent work and questions about embeddings into ultraproducts. Jung [24] used the study of microstates to show that a separable tracial W\mathrm{W}^{*}-algebra 𝒜\mathcal{A} is amenable if and only if all embeddings of 𝒜\mathcal{A} into 𝒰\mathcal{R}^{\mathcal{U}} are unitarily conjugate. Atkinson and Kunnawalkam Elayavalli [2] strengthened this result by showing that 𝒜\mathcal{A} is amenable if and only if all embeddings of 𝒜\mathcal{A} into 𝒰\mathcal{R}^{\mathcal{U}} are ucp-conjugate (meaning they are conjugate by an automorphism of 𝒰\mathcal{R}^{\mathcal{U}} that lifts to a sequence of unital completely positive maps \mathcal{R}\to\mathcal{R}). Atkinson, Goldbring, and Kunnawalkam Elayavalli [1] later showed that if a separable II1\mathrm{II}_{1} factor \mathcal{M} is Connes-embeddable and all embeddings of \mathcal{M} into 𝒰\mathcal{M}^{\mathcal{U}} are automorphically conjugate, then \mathcal{M}\cong\mathcal{R}.

One can ask similar questions for embeddings into the ultraproduct 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}) for some fixed free ultrafilter 𝒰\mathcal{U}. In [2], the authors showed that if 𝒜\mathcal{A} is a separable Connes-embeddable tracial W\mathrm{W}^{*}-algebra and the space of unitary orbits of embeddings 𝒜𝒬\mathcal{A}\to\mathcal{Q} is separable in a certain metric, then 𝒜\mathcal{A} must be amenable. In particular, if all embeddings 𝒜𝒬\mathcal{A}\to\mathcal{Q} are unitarily conjugate, then 𝒜\mathcal{A} is amenable. It is an open question whether this result still holds when “unitarily conjugate” is replaced by “automorphically conjugate.” However, Theorem 1.1 implies the following result, which was pointed out to me by Srivatsav Kunnawalkam Elayavalli:

Corollary 1.4.

Let 𝒜\mathcal{A} be a tracial W\mathrm{W}^{*}-algebra. Suppose that any two embeddings 𝒜𝒬=n𝒰Mn()\mathcal{A}\to\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}) are conjugate by an automorphism of 𝒬\mathcal{Q}. Then h𝒰(𝒜)0h^{\mathcal{U}}(\mathcal{A})\leq 0.

Proof.

We proceed by contradiction. Suppose that h𝒰(𝒜)>0h^{\mathcal{U}}(\mathcal{A})>0. By Theorem 1.1, there exists an embedding α:𝒜𝒬\alpha:\mathcal{A}\to\mathcal{Q} with h𝒰(α(𝒜):𝒬)>0h^{\mathcal{U}}(\alpha(\mathcal{A}):\mathcal{Q})>0. Moreover, since 𝒜\mathcal{A} is Connes-embeddable, so is ¯𝒜\mathcal{R}\overline{\otimes}\mathcal{A}, so there exists some embedding β:¯𝒜𝒬\beta:\mathcal{R}\overline{\otimes}\mathcal{A}\to\mathcal{Q}. In particular, β()β(𝒜)𝒬\beta(\mathcal{R})\subseteq\beta(\mathcal{A})^{\prime}\cap\mathcal{Q}. If we assume for contradiction that α\alpha and β|𝒜\beta|_{\mathcal{A}} are conjugate by an automorphism, then α(𝒜)𝒬\alpha(\mathcal{A})^{\prime}\cap\mathcal{Q} also contains a copy of \mathcal{R}, so in particular, α(𝒜)𝒬\alpha(\mathcal{A})^{\prime}\cap\mathcal{Q} is diffuse. As pointed out in the proof of Corollary 1.3, this implies that h(α(𝒜):𝒬)=0h(\alpha(\mathcal{A}):\mathcal{Q})=0, which contradicts our choice of α\alpha. ∎

Intuitively, the corollary says that if the space of embeddings modulo automorphic conjugacy is trivial, then the space of embeddings modulo unitary conjugacy is not too large, since h𝒰(𝒜)h^{\mathcal{U}}(\mathcal{A}) quantifies the “amount” of embeddings 𝒜𝒬\mathcal{A}\to\mathcal{Q} up to unitary conjugacy. The conclusion that h𝒰(𝒜)=0h^{\mathcal{U}}(\mathcal{A})=0 is a weakening of amenability since by Jung’s theorem [24] amenability is equivalent to the space of embeddings modulo unitary conjugacy being trivial.

We remark that the free entropy techniques used here to study embeddings into 𝒬\mathcal{Q} cannot be directly applied to study embeddings into 𝒰\mathcal{R}^{\mathcal{U}}. For instance, Theorem 1.1 does not make sense with 𝒬\mathcal{Q} replaced by 𝒰\mathcal{R}^{\mathcal{U}}. Indeed, 𝒰\mathcal{R}^{\mathcal{U}} has property Gamma by [9, §3.2.2], and every tracial W\mathrm{W}^{*}-algebra with property Gamma has 11-bounded entropy zero (this is a special case of [16, Corollary 4.6] and it is shown explicitly in [18, §1.2, Example 4]). Thus, h(𝒰)=0h(\mathcal{R}^{\mathcal{U}})=0 and therefore, for any subalgebra \mathcal{M} of 𝒰\mathcal{R}^{\mathcal{U}}, we also have h𝒰(:𝒰)=0h^{\mathcal{U}}(\mathcal{M}:\mathcal{R}^{\mathcal{U}})=0 by [16, §2, Property 1]. Hence, Theorem 1.1 would not hold with 𝒰\mathcal{R}^{\mathcal{U}} instead of 𝒬\mathcal{Q}. By contrast, many other operator-theoretic and model-theoretic techniques are more easily applied to 𝒰\mathcal{R}^{\mathcal{U}} than to 𝒬\mathcal{Q} since 𝒰\mathcal{R}^{\mathcal{U}} is an ultrapower; see for instance [14, 15, 13].

1.3 Outline

In large part, our goal is to establish communication between the free probabilistic and model theoretic subgroups of operator algebras, and to show that many of the notions in free probability (such as non-commutative laws, microstates spaces in the presence, and relative microstate spaces) arise naturally from the model-theoretic framework. Therefore, we strive to make the exposition largely self-contained and use model-theoretic language throughout.

We start out by explaining the model-theoretic framework for operator algebras in §2. In particular, we give a more detailed explanation than current literature of the languages and structures for multiple sorts and multiple domains of quantification for each. Next, in §3, we give a self-contained development of definable predicates and functions of infinite tuples, including the result that every element of a tracial W\mathrm{W}^{*}-algebra can be realized by applying a quantifier-free definable function to the generators which was observed in [22, 18].

§4 develops the framework of covering entropy for types. We show the invariance of entropy under change of coordinates in §4.3, describe the relationship with ultraproduct embeddings in §4.4, and finally show that adding variables in the (model-theoretic) algebraic closure of given tuple 𝐗\mathbf{X} does not change its entropy in §4.5.

In §5, we describe the quantifier-free and existential versions of entropy, showing that they agree with the 11-bounded entropy of Hayes. We conclude the proof Theorem 1.1 there.

In the appendix §6, we describe a generalization to conditional (or “relative”) entropy, which focuses on quantifying the embeddings 𝒩𝒬\mathcal{N}\to\mathcal{Q} which restrict to a fixed embedding ι:𝒜𝒬\iota:\mathcal{A}\to\mathcal{Q} on a given W\mathrm{W}^{*}-subalgebra 𝒜\mathcal{A}. The existential version of the conditional covering entropy was studied by Hayes explicitly for 𝒜\mathcal{A} diffuse abelian and implicitly for 𝒜\mathcal{A} diffuse amenable [16], in which case it agrees with the unconditional version. However, the conditional covering entropy (for full, quantifier-free, or existential types) makes sense for any diffuse 𝒜\mathcal{A} with a specified embedding α:𝒜𝒬\alpha:\mathcal{A}\to\mathcal{Q} (though, as far as we know, it may depend on the embedding α\alpha). Moreover, conditional entropy is natural from the model-theoretic perspective, since it arises from replacing formulas in the original language with formulas that have coefficients from the subalgebra 𝒜\mathcal{A}.

1.4 Acknowledgements

This was work was partially funded by the NSF postdoc grant DMS-2002826. I thank the organizers and hosts of the 2017 workshop on the model theory of operator algebras at University of California, Irvine, and of the 2018 long program Quantitative Linear Algebra at the Institute of Pure and Applied Mathematics at UCLA for conferences that greatly contributed to my knowledge of operator algebras, entropy, and model theory. Special thanks to Ben Hayes for pointing out Corollary 1.3, Srivatsav Kunnawalkam Elayavalli for pointing out Corollary 1.4, and Jennifer Pi for reading the paper in detail and finding many typos. Thanks to Isaac Goldbring, Ben Hayes, and Adrian Ioana for their comments on the paper and advice on references. Finally, thanks to the anonymous referees for numerous emendations to the paper.

2 Continuous model theory for tracial W\mathrm{W}^{*}-algebras

This section sketches the setup of continuous model theory, or model theory for metric structures [3, 4] and its application to operator algebras in [7, 8, 9]. We strive to present a self-contained exposition for two reasons: First, some readers may not be familiar with the model-theoretic terminology. Second, we are following the treatment in [8] which introduces “domains of quantification” to cut down on the number of “sorts,” which means that some of the statements need to modified from their original form in [3].

2.1 Background on operator algebras

We start by giving some basic terminology and background on operator algebras. For further detail and history, we suggest consulting the references [26, 6, 29, 31, 5, 34].

C\mathrm{C}^{*}-algebras:

  1. (1)

    A (unital) algebra over \mathbb{C} is a unital ring AA with a unital inclusion map A\mathbb{C}\to A.

  2. (2)

    A (unital) *-algebra is an algebra AA equipped with a conjugate linear involution * such that (ab)=ba(ab)^{*}=b^{*}a^{*}.

  3. (3)

    A unital C\mathrm{C}^{*}-algebra is a *-algebra AA equipped with a complete norm \lVert\cdot\rVert such that abab\lVert ab\rVert\leq\lVert a\rVert\lVert b\rVert and aa=a2\lVert a^{*}a\rVert=\lVert a\rVert^{2} for a,bAa,b\in A.

A collection of fundamental results in C\mathrm{C}^{*}-algebra theory establishes that C\mathrm{C}^{*}-algebras can always be represented as algebras of operators on Hilbert spaces. If HH is a Hilbert space, the algebra of bounded operators B(H)B(H) is a C\mathrm{C}^{*}-algebra. Conversely, every unital C\mathrm{C}^{*}-algebra can be embedded into B(H)B(H) by some unital and isometric *-homomorphism ρ\rho. By isometric, we mean that ρ(a)=a\lVert\rho(a)\rVert=\lVert a\rVert, where ρ(a)\lVert\rho(a)\rVert is the operator norm on B(H)B(H) and a\lVert a\rVert is the given norm on the C\mathrm{C}^{*}-algebra AA.

W\mathrm{W}^{*}-algebras: A von Neumann algebra is a *-subalgebra of B(H)B(H) (for some Hilbert space HH) that is closed in the strong operator topology, the topology of pointwise convergence as functions on HH. A W\mathrm{W}^{*}-algebra is a C\mathrm{C}^{*}-algebra that admits a predual (that is, it is the dual of some Banach space). A deep result of Sakai showed that for a C\mathrm{C}^{*}-algebra AA is a W\mathrm{W}^{*}-algebra if and only if it is isomorphic to a von Neumann algebra; moreover, the weak-\star topology on a W\mathrm{W}^{*}-algebra AA is uniquely determined by its C\mathrm{C}^{*}-algebra structure [29, Corollary 1.13.3].

Tracial W\mathrm{W}^{*}-algebras: A tracial W\mathrm{W}^{*}-algebra is a W\mathrm{W}^{*}-algebra MM together with a linear map τ:M\tau:M\to\mathbb{C} satisfying:

  • positivity: τ(xx)0\tau(x^{*}x)\geq 0 for all xMx\in M

  • unitality: τ(1)=1\tau(1)=1

  • traciality: τ(xy)=τ(yx)\tau(xy)=\tau(yx) for x,yAx,y\in A

  • faithfulness: τ(xx)=0\tau(x^{*}x)=0 implies x=0x=0 for xAx\in A.

  • weak-\star continuity: τ:M\tau:M\to\mathbb{C} is weak-\star continuous.

We call τ\tau a faithful normal tracial state.

The standard representation: Given a tracial W\mathrm{W}^{*}-algebra (M,τ)(M,\tau), we can form a Hilbert space L2(M,τ)L^{2}(M,\tau) as the completion of MM with respect to the inner product x,yτ=τ(xy)\langle x,y\rangle_{\tau}=\tau(x^{*}y); if xMx\in M, then we denote the corresponding element of L2(M,τ)L^{2}(M,\tau) by x^\widehat{x}. There is a unique unital *-homomorphism πτ:MB(L2(M,τ))\pi_{\tau}:M\to B(L^{2}(M,\tau)) satisfying πτ(x)y^=xy^\pi_{\tau}(x)\widehat{y}=\widehat{xy} for x,yMx,y\in M. Now πτ\pi_{\tau} is a *-homomorphism isometric with respect to the operator norm, and its image is a von Neumann algebra. The construction of L2(M,τ)L^{2}(M,\tau) and πτ\pi_{\tau} is a special case of the GNS (Gelfand-Naimark-Segal) construction and πτ\pi_{\tau} is also known as the standard representation of (M,τ)(M,\tau). Note the convergence of a net xix_{i} to xx in MM with respect to the strong operator topology in B(L2(M,τ))B(L^{2}(M,\tau)) implies convergence of x^i=πτ(xi)1^\widehat{x}_{i}=\pi_{\tau}(x_{i})\widehat{1} to x^=πτ(x)1^\widehat{x}=\pi_{\tau}(x)\widehat{1} in L2(M,τ)L^{2}(M,\tau). (It turns out that the converse is true if (xi)iI(x_{i})_{i\in I} is bounded in operator norm, but we will not need to use this fact directly.)

*-polynomials and generators: Given an index set II, we denote by xi,xi:iI\mathbb{C}\langle x_{i},x_{i}^{*}:i\in I\rangle the free unital algebra (or non-commutative polynomial algebra) generated by indeterminates xix_{i} and xix_{i}^{*} for iIi\in I. We equip xi,xi:iI\mathbb{C}\langle x_{i},x_{i}^{*}:i\in I\rangle with the unique *-operation sending xix_{i} to xix_{i}^{*}, thus making it into a *-algebra. If AA is a unital *-algebra and (ai)iI(a_{i})_{i\in I} a collection of elements, there is a unique unital *-homomorphism ρ:xi,xi:iIA\rho:\mathbb{C}\langle x_{i},x_{i}^{*}:i\in I\rangle\to A mapping xix_{i} to aia_{i} for each iIi\in I. We refer to the elements of xi,xi:iI\mathbb{C}\langle x_{i},x_{i}^{*}:i\in I\rangle as non-commutative *-polynomials, and if pxi,xi:iIp\in\mathbb{C}\langle x_{i},x_{i}^{*}:i\in I\rangle and ρ:xi,xi:iIA\rho:\mathbb{C}\langle x_{i},x_{i}^{*}:i\in I\rangle\to A is as above, we denote ρ(p)\rho(p) by p(ai:iI)p(a_{i}:i\in I). Moreover, the image of ρ\rho is the *-algebra generated by (ai)iI(a_{i})_{i\in I}.

If AA is a C\mathrm{C}^{*}-algebra and (ai)iI(a_{i})_{i\in I} is a collection of elements of II, then the C\mathrm{C}^{*}-algebra generated by (ai)iI(a_{i})_{i\in I} is the norm-closure of the *-algebra generated by (ai)iI(a_{i})_{i\in I}. Similarly, if MM is a von Neumann algebra and (ai)iI(a_{i})_{i\in I} is a collection of elements of MM, then the von Neumann subalgebra or W\mathrm{W}^{*}-subalgebra generated by (ai)iI(a_{i})_{i\in I} is the strong operator topology closure of the *-algebra generated by (ai)iI(a_{i})_{i\in I}. In particular, we say that (ai)iI(a_{i})_{i\in I} generates MM if the strong operator topology closure is all of MM.

2.2 Languages and structures

Next, let us sketch the setup of continuous model theory, or model theory for metric structures [3, 4]. We will follow the treatment in [8] which introduces “domains of quantification” to cut down on the number of “sorts” neeeded.

A language \mathcal{L} consists of:

  • A set 𝒮\mathcal{S} whose elements are called sorts.

  • For each S𝒮S\in\mathcal{S}, a privileged relation symbol dSd_{S} (which will represent a metric) and a set 𝒟S\mathcal{D}_{S} whose elements are called domains of quantification for SS.

  • For each S𝒮S\in\mathcal{S} and D,D𝒟SD,D^{\prime}\in\mathcal{D}_{S} an assigned constant CD,DC_{D,D^{\prime}}.

  • A countably infinite set of variable symbols for each sort SS. We denote the variables by (xi)i(x_{i})_{i\in\mathbb{N}}.

  • A set of function symbols.

  • For each function symbol ff, an assigned tuple (S1,,Sn)(S_{1},\dots,S_{n}) of sorts called the domain, another sort SS called the codomain. We call nn the arity of ff.

  • For each function symbol ff with domain (S1,,Sn)(S_{1},\dots,S_{n}) and codomain SS, and for every 𝐃=(D1,,Dn)𝒟S1××𝒟Sn\mathbf{D}=(D_{1},\dots,D_{n})\in\mathcal{D}_{S_{1}}\times\dots\times\mathcal{D}_{S_{n}}, there is an assigned Df,𝐃𝒟SD_{f,\mathbf{D}}\in\mathcal{D}_{S} (representing a range bound), and assigned moduli of continuity ωf,𝐃,1\omega_{f,\mathbf{D},1}, …, ωf,𝒟,n\omega_{f,\mathcal{D},n}. (Here “modulus of coninuity” means a continuous increasing, zero-preserving function [0,)[0,)[0,\infty)\to[0,\infty)).

  • A set of relation symbols.

  • For each relation symbol RR, an assigned domain (S1,,Sn)(S_{1},\dots,S_{n}) as in the case of function symbols.

  • For each relation symbol RR and for every 𝐃=(D1,,Dn)𝒟S1××𝒟Sn\mathbf{D}=(D_{1},\dots,D_{n})\in\mathcal{D}_{S_{1}}\times\dots\times\mathcal{D}_{S_{n}}, an assigned bound NR,𝐃[0,)N_{R,\mathbf{D}}\in[0,\infty) and assigned moduli of continuity ωR,𝐃,1\omega_{R,\mathbf{D},1}, …, ωR,𝒟,n\omega_{R,\mathcal{D},n}.

Given a language \mathcal{L}, an \mathcal{L}-structure \mathcal{M} assigns an object to each symbol in \mathcal{L}, called the interpretation of that symbol, in the following manner:

  • Each sort S𝒮S\in\mathcal{S} is assigned a metric space SS^{\mathcal{M}}, and the symbol dSd_{S} is interpreted as the metric dSd_{S}^{\mathcal{M}} on SS^{\mathcal{M}}.

  • Each domain of quantification D𝒟SD\in\mathcal{D}_{S} is assigned a subset DSD^{\mathcal{M}}\subseteq S^{\mathcal{M}}, such that DD^{\mathcal{M}} is complete for each DD, S=D𝒟SDS^{\mathcal{M}}=\bigcup_{D\in\mathcal{D}_{S}}D^{\mathcal{M}}, and supXD,YDdS(X,Y)CD,D\sup_{X\in D,Y\in D^{\prime}}d_{S}^{\mathcal{M}}(X,Y)\leq C_{D,D^{\prime}}.

  • Each function symbol ff with domain (S1,,Sn)(S_{1},\dots,S_{n}) and codomain SS is interpreted as a function f:S1××SnSf^{\mathcal{M}}:S_{1}^{\mathcal{M}}\times\dots\times S_{n}^{\mathcal{M}}\to S^{\mathcal{M}}. Moreover, for each 𝐃=(D1,,Dn)𝒟S1××𝒟Sn\mathbf{D}=(D_{1},\dots,D_{n})\in\mathcal{D}_{S_{1}}\times\dots\times\mathcal{D}_{S_{n}}, the function ff^{\mathcal{M}} maps D1××DnD_{1}^{\mathcal{M}}\times\dots\times D_{n}^{\mathcal{M}} into Df,𝐃D_{f,\mathbf{D}}^{\mathcal{M}}. Finally, ff^{\mathcal{M}} restricted to D1××DnD_{1}^{\mathcal{M}}\times\dots\times D_{n}^{\mathcal{M}} is uniformly continuous in the iith variable with modulus of continuity of ωf,𝐃,i\omega_{f,\mathbf{D},i}.

  • Each relation symbol RR with domain (S1,,Sn)(S_{1},\dots,S_{n}) is interpreted as a function R:S1××SnR^{\mathcal{M}}:S_{1}^{\mathcal{M}}\times\dots\times S_{n}^{\mathcal{M}}\to\mathbb{R}. Moreover, for each 𝐃=(D1,,Dn)𝒟S1××𝒟Sn\mathbf{D}=(D_{1},\dots,D_{n})\in\mathcal{D}_{S_{1}}\times\dots\times\mathcal{D}_{S_{n}}, ff^{\mathcal{M}} is bounded by NR,𝐃N_{R,\mathbf{D}} on M(D1)××M(Dn)M(D_{1})\times\dots\times M(D_{n}) and uniformly continuous in the iith argument with modulus of continuity of ωR,𝐃,i\omega_{R,\mathbf{D},i}.

The language tr\mathcal{L}_{\operatorname{tr}} of tracial W\mathrm{W}^{*}-algebras can be described as follows. We will also simultaneously describe how a tracial W\mathrm{W}^{*}-algebra (M,τ)(M,\tau) gives rise to an tr\mathcal{L}_{\operatorname{tr}}-structure \mathcal{M}, that is, how each symbol will be interpreted.

  • A single sort, to be interpreted as the W\mathrm{W}^{*}-algebra MM. If =(M,τ)\mathcal{M}=(M,\tau) is a tracial W\mathrm{W}^{*}-algebra, we denote the interpretation of this sort by L()L^{\infty}(\mathcal{M}) because of the intuition of tracial W\mathrm{W}^{*}-algebras as non-commutative measure spaces.

  • Domains of quantification {Dr}r(0,)\{D_{r}\}_{r\in(0,\infty)}, to be interpreted as the operator norm balls of radius rr in MM.

  • The metric symbol dd, to be interpreted as the metric induced by 2,τ\lVert\cdot\rVert_{2,\tau}.

  • A binary function symbol ++, to be interpreted as addition.

  • A binary function symbol \cdot, to be interpreted as multiplication.

  • A unary function symbol *, to be interpreted as the adjoint operation.

  • For each λ\lambda\in\mathbb{C}, a unary function symbol, to be interpreted as multiplication by λ\lambda.

  • Function symbols of arity 0 (in other words constants) 0 and 11, to be interpreted as additive and multiplicative identity elements.

  • Two unary relation symbols Retr\operatorname{Re}\operatorname{tr} and Imtr\operatorname{Im}\operatorname{tr}, to be interpreted the real and imaginary parts of the trace τ\tau.

  • For technical reasons explained in [8], we also introduce for each dd-variable non-commutative polynomial pp a symbol tp:L()dt_{p}:L^{\infty}(\mathcal{M})^{d} representing the evaluation of pp, along with the appropriate range bounds Ntp,𝐫N_{t_{p},\mathbf{r}} given by the supremum of p(X1,,Xd)\lVert p(X_{1},\dots,X_{d})\rVert over all (X1,,Xd)(X_{1},\dots,X_{d}) in a tracial W\mathrm{W}^{*}-algebra \mathcal{M}.

Each function and relation symbol is assigned range bounds and moduli of continuity that one would expect, e.g. multiplication is supposed to map Dr×DrD_{r}\times D_{r^{\prime}} into DrrD_{rr^{\prime}} with ω(Dr,Dr),1(t)=rt\omega_{(D_{r},D_{r}^{\prime}),1}^{\cdot}(t)=r^{\prime}t and ω(Dr,Dr),2=rt\omega_{(D_{r},D_{r}^{\prime}),2}^{\cdot}=rt.

Although not every tr\mathcal{L}_{\operatorname{tr}}-structure comes from a tracial W\mathrm{W}^{*}-algebra, one can formulate axioms in the language such that any structure satisfying these axioms comes from a tracial W\mathrm{W}^{*}-algebra [8, §3.2]. In order to state this result precisely, we first have to explain formulas and sentences.

2.3 Syntax: Terms, formulas, conditions, and sentences

Terms in a language \mathcal{L} are expressions obtained by iteratively composing the function symbols and variables. For example, if x1x_{1}, x2x_{2}, …are variables in a sort SS and f:S×SSf:S\times S\to S and g:S×SSg:S\times S\to S are function symbols, then f(g(x1,x2),x1)f(g(x_{1},x_{2}),x_{1}) is a term. Each term has assigned range bounds and moduli of continuity in each variable which are the natural ones computed from those of the individual function symbols making up the composition. Any term ff with variables x1S1x_{1}\in S_{1}, …, xkSkx_{k}\in S_{k} and output in SS can be interpreted in an \mathcal{L}-structure as a function S1××SkSS_{1}^{\mathcal{M}}\times\dots\times S_{k}^{\mathcal{M}}\to S^{\mathcal{M}}. For example, in the language tr\mathcal{L}_{\operatorname{tr}}, the terms are expressions obtained from iterating scalar multiplication, addition, multiplication, and the *-operation on variables and the unit symbol 11. If (M,τ)(M,\tau) is a tracial W\mathrm{W}^{*}-algebra, then the interpretation of a term in \mathcal{M} is a function represented by a *-polynomial.

Basic formulas in a language are obtained by evaluating relation symbols on terms. In other words, if T1T_{1}, …, TkT_{k} are terms valued in sorts S1S_{1}, …, SkS_{k}, and RR is a relation S1××SkS_{1}\times\dots\times S_{k}\to\mathbb{R}, then R(T1,,Tn)R(T_{1},\dots,T_{n}) is a basic formula. The basic formulas have assigned range bounds and moduli of continuity similar to the function symbols. In an \mathcal{L}-structure \mathcal{M}, a basic formula ϕ\phi is interpreted as a function ϕ:S1××Sk\phi^{\mathcal{M}}:S_{1}^{\mathcal{M}}\times\dots\times S_{k}^{\mathcal{M}}\to\mathbb{R}. In tr\mathcal{L}_{\operatorname{tr}}, a basic formula can take the form Retr(f)\operatorname{Re}\operatorname{tr}(f) or Imtr(f)\operatorname{Im}\operatorname{tr}(f) where ff is an expression obtained by iterating the algebraic operations. Thus, when evaluated in a tracial W\mathrm{W}^{*}-algebra, it corresponds to the real or imaginary part of the trace of a non-commutative *-polynomial.

Formulas are obtained from basic formulas by iterating several operations:

  • Given a formulas ϕ1\phi_{1}, …, ϕn\phi_{n} and F:nF:\mathbb{R}^{n}\to\mathbb{R} continuous, F(ϕ1,,ϕn)F(\phi_{1},\dots,\phi_{n}) is a formula.

  • If ϕ\phi is a formula, DD is a domain of quantification for some sort SS, and xx is one of our variables in SS, then infxDϕ\inf_{x\in D}\phi and supxDϕ\sup_{x\in D}\phi are formulas.

Each occurrence of a variable in ϕ\phi is either bound to a quanitifer supxD\sup_{x\in D} or infxD\inf_{x\in D}, or else it is free. We will often write ϕ(x1,,xn)\phi(x_{1},\dots,x_{n}) for a formula to indicate that the free variables are x1x_{1}, …, xnx_{n}.

All these formulas also have assigned range bounds and moduli of continuity. The moduli of continuity of F(ϕ1,,ϕn)F(\phi_{1},\dots,\phi_{n}) are obtained by composition from the moduli of continuity of FF and ϕj\phi_{j} as in [3, §2 appendix and Theorem 3.5]. Next, if ϕ:S1××SnS\phi:S_{1}\times\dots\times S_{n}\to S and D𝒟SnD\in\mathcal{D}_{S_{n}}

ψ(x1,,xn1)=supxnDϕ(x1,,xn1,xn),\psi(x_{1},\dots,x_{n-1})=\sup_{x_{n}\in D}\phi(x_{1},\dots,x_{n-1},x_{n}),

then

ωψ,(D1,,Dn1),j=ωϕ,(D1,,Dn1,D),j.\omega_{\psi,(D_{1},\dots,D_{n-1}),j}=\omega_{\phi,(D_{1},\dots,D_{n-1},D),j}.

Each formula has an interpretation in every \mathcal{L}-structure \mathcal{M}, defined by induction on the complexity of the formula. If ϕ=F(ϕ1,,ϕn)\phi=F(\phi_{1},\dots,\phi_{n}), then ϕ=F(ϕ1,,ϕn)\phi^{\mathcal{M}}=F(\phi_{1}^{\mathcal{M}},\dots,\phi_{n}^{\mathcal{M}}). Similarly, if ψ(x1,,xn1)=supxnDψ(x1,,xn)\psi(x_{1},\dots,x_{n-1})=\sup_{x_{n}\in D}\psi(x_{1},\dots,x_{n}), then

ψ(X1,X2,,Xn)=supXnDϕ(X1,,Xn1).\psi^{\mathcal{M}}(X_{1},X_{2},\dots,X_{n})=\sup_{X_{n}\in D^{\mathcal{M}}}\phi^{\mathcal{M}}(X_{1},\dots,X_{n-1}).

Here X1X_{1}, …, XnX_{n} are elements of the sorts in the \mathcal{L}-structure \mathcal{M}, rather than formal variables.

Example 2.1.

In tr\mathcal{L}_{\operatorname{tr}}, some terms are

x1x2,(x1x2)x3+(x2x3)(x1x3).x_{1}x_{2},\quad(x_{1}x_{2})x_{3}+(x_{2}^{*}x_{3})(x_{1}x_{3}^{*})^{*}.

A basic formula is

Retr(x1x2+x3(x2x1)).\operatorname{Re}\operatorname{tr}(x_{1}x_{2}+x_{3}^{*}(x_{2}x_{1})^{*}).

Another formula is

Retr(x1x2)+eImtr(x1(x2x3)Retr(x4).\operatorname{Re}\operatorname{tr}(x_{1}x_{2})+e^{\operatorname{Im}\operatorname{tr}(x_{1}^{*}(x_{2}x_{3}^{*})\operatorname{Re}\operatorname{tr}(x_{4})}.

We can also write a formula

supx1D2[Retr(x1x2)+eImtr(x1(x2x3)Retr(x4)],\sup_{x_{1}\in D_{2}}[\operatorname{Re}\operatorname{tr}(x_{1}x_{2})+e^{\operatorname{Im}\operatorname{tr}(x_{1}^{*}(x_{2}x_{3}^{*})\operatorname{Re}\operatorname{tr}(x_{4})}],

which will be interpreted as the supremum of the previous formula over x1x_{1} in the ball of radius 22. In this formula, x1x_{1} is bound to the quantifier supx1D2\sup_{x_{1}\in D_{2}} and the variables x2x_{2} and x3x_{3} are free.

For convenience, we will assume that our formulas do not have two copies of the same variable (i.e. if a variable is bound to a quantifier, there is no other variable of the same name that is free or bound to a different quantifier). For instance, in the formula

Imtr(x1)supx1D1Retr(x1x2+x3x1),\operatorname{Im}\operatorname{tr}(x_{1})\sup_{x_{1}\in D_{1}}\operatorname{Re}\operatorname{tr}(x_{1}x_{2}+x_{3}x_{1}^{*}),

the first occurrence of x1x_{1} is free while the latter two occurrences are bound to the quantifier supx1D1\sup_{x_{1}\in D_{1}}, but we can rewrite this formula equivalently as

Imtr(x1)supy1D1Retr(y1x2+x3y1).\operatorname{Im}\operatorname{tr}(x_{1})\sup_{y_{1}\in D_{1}}\operatorname{Re}\operatorname{tr}(y_{1}x_{2}+x_{3}y_{1}^{*}).

We will typically denote the free variables by (xi)i(x_{i})_{i\in\mathbb{N}} and the bound variables by (yi)i(y_{i})_{i\in\mathbb{N}}. Lowercase letters will be used for formal variables while uppercase letters will be used for individual operators in operator algebras (or more generally elements of an \mathcal{L}-structure).

2.4 Theories, models, and axioms

A sentence is a formula with no free variables. If ϕ\phi is a sentence, then the interpretation ϕ\phi^{\mathcal{M}} in an \mathcal{L}-structure is simply a real number.

A theory T\mathrm{T} in a language \mathcal{L} is a set of sentences. We say that an \mathcal{L}-structure \mathcal{M} models the theory T\mathrm{T}, or T\mathcal{M}\models\mathrm{T} if ϕ=0\phi^{\mathcal{M}}=0 for all ϕT\phi\in\mathrm{T}.

If \mathcal{M} is an \mathcal{L}-structure, then the theory of \mathcal{M}, denoted Th()\operatorname{Th}(\mathcal{M}) is the set of sentences ϕ\phi such that ϕ=0\phi^{\mathcal{M}}=0. As observed in [8], the theory of \mathcal{M} also uniquely determines the values ϕ\phi^{\mathcal{M}} of all sentences ϕ\phi since ϕc\phi-c is a sentence for every constant cc\in\mathbb{R}.

More generally, if 𝒞\mathcal{C} is a class of \mathcal{L}-structures, then Th(𝒞)\operatorname{Th}(\mathcal{C}) is the set of all sentences ϕ\phi such that ϕ=0\phi^{\mathcal{M}}=0 for all \mathcal{M} in 𝒞\mathcal{C}. The class 𝒞\mathcal{C} is said to be axiomatizable if every \mathcal{L}-structure that models Th(𝒞)\operatorname{Th}(\mathcal{C}) is actually in 𝒞\mathcal{C}.

It is shown in [8, §3.2] that the class of tr\mathcal{L}_{\operatorname{tr}}-structures that represent actual tracial W\mathrm{W}^{*}-algebras is axiomatizable. The axioms, roughly speaking, encode the fact that \mathcal{M} is a *-algebra, the fact that τ\tau is a tracial state, the fact that xyL2()ryL2()\lVert xy\rVert_{L^{2}(\mathcal{M})}\leq r\lVert y\rVert_{L^{2}(\mathcal{M})} for xDrx\in D_{r}^{\mathcal{M}}, the relationship between the distance and the trace, the fact that DrD_{r}^{\mathcal{M}} is contained in DrD_{r^{\prime}}^{\mathcal{M}} for r<rr<r^{\prime} (that is, supxDrinfyDrd(x,y)=0\sup_{x\in D_{r}}\inf_{y\in D_{r^{\prime}}}d(x,y)=0), and the fact that tpt_{p} agrees with the evaluation of the non-commutative polynomial pp.

The theory of tracial W\mathrm{W}^{*}-algebras will be denoted Ttr\mathrm{T}_{\operatorname{tr}}. It is also shown in [8] that II1\mathrm{II}_{1} factors (infinite-dimensional tracial W\mathrm{W}^{*}-algebras with trivial center) are axiomatizable by a theory TII1\mathrm{T}_{\mathrm{II}_{1}}.

2.5 Ultraproducts

An important construction for continuous model theory and for W\mathrm{W}^{*}-algebras is the ultraproduct. Ultraproducts are a way of constructing a limiting object out of arbitrary sequences (or more generally indexed families) of objects. In order to force limits to exist, one uses a device called an ultrafilter.

Let II be an index set. An ultrafilter 𝒰\mathcal{U} on II is a collection of subsets of II such that

  • 𝒰\varnothing\not\in\mathcal{U}.

  • If ABIA\subseteq B\subseteq I and A𝒰A\in\mathcal{U}, then B𝒰B\in\mathcal{U}.

  • If AA, B𝒰B\in\mathcal{U}, then AB𝒰A\cap B\in\mathcal{U}.

  • For each AIA\subseteq I, either A𝒰A\in\mathcal{U} or Ac𝒰A^{c}\in\mathcal{U}.

If 𝒰\mathcal{U} is an ultrafilter on II, Ω\Omega is a topological space, and f:IΩf:I\to\Omega is a function, then we say that

limi𝒰f(i)=w\lim_{i\to\mathcal{U}}f(i)=w

if for every neighborhood OwO\ni w in Ω\Omega, the preimage f1(O)f^{-1}(O) is an element of 𝒰\mathcal{U}. Now if iIi\in I, there is an ultrafilter 𝒰i:={AI:iA}\mathcal{U}_{i}:=\{A\subseteq I:i\in A\}, which is called a principal ultrafilter. All other ultrafilters are called non-principal or free ultrafilters.

The set of all ultrafilters on II can be identified with the Stone-Čech compactification of II, where II is given the discrete topology (see e.g. [19, §3]). The principal ultrafilters correspond to the points of the original space II. In particular, this means that if Ω\Omega is a compact Hausdorff space and f:IΩf:I\to\Omega is a function, then limi𝒰f(i)\lim_{i\to\mathcal{U}}f(i) exists in Ω\Omega.

Now consider a language \mathcal{L}. Let II be an index set, 𝒰\mathcal{U} an ultrafilter on II, and for each iIi\in I, let \mathcal{M} be an \mathcal{L}-structure. The ultraproduct i𝒰i\prod_{i\to\mathcal{U}}\mathcal{M}_{i} is the \mathcal{L}-structure \mathcal{M} defined as follows (see [3, §5]): For each sort SS, consider tuples (Xi)iI(X_{i})_{i\in I} where XiSiX_{i}\in S^{\mathcal{M}_{i}}.

  • Let’s call (Xi)iI(X_{i})_{i\in I} confined if there exists D𝒟SD\in\mathcal{D}_{S} such that XiDiX_{i}\in D^{\mathcal{M}_{i}} for all ii.

  • Let’s call (Xi)iI(X_{i})_{i\in I} and (Yi)iI(Y_{i})_{i\in I} equivalent if limi𝒰dSi(Xi,Yi)=0\lim_{i\to\mathcal{U}}d_{S}^{\mathcal{M}_{i}}(X_{i},Y_{i})=0.

  • For a confined tuple (Xi)iI(X_{i})_{i\in I}, let [Xi]iI[X_{i}]_{i\in I} denote its equivalence class.

We define SS^{\mathcal{M}} to be the set of equivalence classes of confined tuples (Xi)iI(X_{i})_{i\in I}. The metric dSd_{S}^{\mathcal{M}} on SS^{\mathcal{M}} is then given by

dS([Xi]iI,[Yi]iI)=limi𝒰dSi(Xi,Yi).d_{S}^{\mathcal{M}}([X_{i}]_{i\in I},[Y_{i}]_{i\in I})=\lim_{i\to\mathcal{U}}d_{S}^{\mathcal{M}_{i}}(X_{i},Y_{i}).

This is independent of the choice of representative for the equivalence classes because of the triangle inequality, and it is finite because if XiDiX_{i}\in D^{\mathcal{M}_{i}} and Yi(D)iY_{i}\in(D^{\prime})^{\mathcal{M}_{i}} for all ii, then dSi(Xi,Yi)CD,Dd_{S}^{\mathcal{M}_{i}}(X_{i},Y_{i})\leq C_{D,D^{\prime}}. Then SS^{\mathcal{M}} is a metric space and S=D𝒟SDS^{\mathcal{M}}=\bigcup_{D\in\mathcal{D}_{S}}D^{\mathcal{M}}, where DD^{\mathcal{M}} is the set of classes [Xi]iI[X_{i}]_{i\in I} with XiDiX_{i}\in D^{\mathcal{M}_{i}} for all ii. Moreover, DD^{\mathcal{M}} is automatically complete [3, Proposition 5.3].

Each function symbol f:S1××SnSf:S_{1}\times\dots\times S_{n}\to S receives its interpretation ff^{\mathcal{M}} through

f([X1,i]iI,,[Xn,i]iI)=[fi(X1,i,,Xn,i)]iI,f^{\mathcal{M}}([X_{1,i}]_{i\in I},\dots,[X_{n,i}]_{i\in I})=[f^{\mathcal{M}_{i}}(X_{1,i},\dots,X_{n,i})]_{i\in I},

which is well-defined because of the uniform continuity of ff on each domain of quantification, and similarly, each relation receives its interpretation in \mathcal{M} through

R([X1,i]iI,,[Xn,i]iI)=limi𝒰Ri(X1,i,,Xn,i).R^{\mathcal{M}}([X_{1,i}]_{i\in I},\dots,[X_{n,i}]_{i\in I})=\lim_{i\to\mathcal{U}}R^{\mathcal{M}_{i}}(X_{1,i},\dots,X_{n,i}).

One can verify by the same reasoning as [3, §5] that \mathcal{M} is indeed an \mathcal{L}-structure.

One of the reasons ultraproducts are so important is because of the following result, known as (the continuous analog of) Łos’s theorem. See [3, Theorem 5.4].

Theorem 2.2.

Let \mathcal{L} be a language, 𝒰\mathcal{U} an ultrafilter on an index set II, and i\mathcal{M}_{i} an \mathcal{L}-structure for each iIi\in I. Let =i𝒰i\mathcal{M}=\prod_{i\to\mathcal{U}}\mathcal{M}_{i}. If ϕ\phi is a formula with free variables x1S1x_{1}\in S_{1}, …, xnSnx_{n}\in S_{n}, then for any [X1,i]iIS1[X_{1,i}]_{i\in I}\in S_{1}^{\mathcal{M}}, …, [Xn,i]iISn[X_{n,i}]_{i\in I}\in S_{n}^{\mathcal{M}}, we have

ϕ([X1,i]iI,,[Xn,i]iI)=limi𝒰ϕi(X1,i,,Xn,i).\phi^{\mathcal{M}}([X_{1,i}]_{i\in I},\dots,[X_{n,i}]_{i\in I})=\lim_{i\to\mathcal{U}}\phi^{\mathcal{M}_{i}}(X_{1,i},\dots,X_{n,i}).
Corollary 2.3.

In the situation of the previous theorem, if T\mathrm{T} is an \mathcal{L}-theory, and if iT\mathcal{M}_{i}\models\mathrm{T} for all ii, then T\mathcal{M}\models\mathrm{T}.

In particular, this shows that an ultraproduct of tr\mathcal{L}_{\operatorname{tr}}-structures that are tracial W\mathrm{W}^{*}-algebras will also be an tr\mathcal{L}_{\operatorname{tr}}-structure that is a tracial W\mathrm{W}^{*}-algebra. One can verify that the model-theoretic ultraproduct agrees in this case with the ultraproduct of tracial W\mathrm{W}^{*}-algebras.

3 Definable predicates and functions

This section describes types, definable predicates, and definable functions. The material in §3.1 - §3.4 is largely a mixture of folklore and adaptations of [3]; our main contribution is to write down the results in the setting of infinite tuples and domains of quantification. In §3.5, we give a characterization of quantifier-free definable functions in tr\mathcal{L}_{\operatorname{tr}} based on [22, §13] and [18, §2].

3.1 Types

Definition 3.1.

Let 𝐒=(Sj)j\mathbf{S}=(S_{j})_{j\in\mathbb{N}} be an \mathbb{N}-tuple of sorts in \mathcal{L}. Let 𝐒\mathcal{F}_{\mathbf{S}} be the space of \mathcal{L}-formulas with free variables (xj)j(x_{j})_{j\in\mathbb{N}} with xjx_{j} from the sort SjS_{j}. If \mathcal{M} is an \mathcal{L}-structure and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}, then the type of 𝐗\mathbf{X} is the map

tp(𝐗):𝐒:ϕϕ(𝐗).\operatorname{tp}^{\mathcal{M}}(\mathbf{X}):\quad\mathcal{F}_{\mathbf{S}}\to\mathbb{R}:\quad\phi\mapsto\phi^{\mathcal{M}}(\mathbf{X}).
Definition 3.2.

Let 𝐒=(Sj)j\mathbf{S}=(S_{j})_{j\in\mathbb{N}} be an \mathbb{N}-tuple of sorts in \mathcal{L}, and let T\mathrm{T} be an \mathcal{L}-theory. If 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, then we denote by 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) the set of types tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) of all 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}.

Definition 3.3.

If 𝐒\mathbf{S} is an \mathbb{N}-tuple of \mathcal{L}-sorts, the set 𝕊\mathcal{F}_{\mathbb{S}} of formulas defines a real vector space. For each \mathcal{L}-structure \mathcal{M} and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}, the type tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) is a (real) linear map 𝐒\mathcal{F}_{\mathbf{S}}\to\mathbb{R}. Thus, for each \mathcal{L}-theory T\mathrm{T} and 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, the space 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is a subset of the dual 𝕊\mathcal{F}_{\mathbb{S}}^{\dagger}. We equip 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) with the weak-\star topology (also known as the logic topology).

The following observation is well known; see [3, Corollary 5.12, Proposition 8.6]

Observation 3.4.

𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is compact in the weak-\star topology.

Proof.

Each formula ϕ\phi has a range bound Nϕ,𝐃N_{\phi,\mathbf{D}} such that |ϕ(𝐗)|Nϕ,𝐃|\phi^{\mathcal{M}}(\mathbf{X})|\leq N_{\phi,\mathbf{D}} for all \mathcal{L}-structures \mathcal{M} and all 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}. Thus, 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is a subset of ϕ𝒟[Nϕ,𝐃,Nϕ,𝐃]\prod_{\phi\in\mathcal{F}_{\mathcal{D}}}[-N_{\phi,\mathbf{D}},N_{\phi,\mathbf{D}}] with the product topology, which is compact by Tychonoff’s theorem.

Moreover, 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is a closed subset. While closedness can be expressed in terms of nets, it can also be expressed in terms of ultralimits. A set AA is closed if and only if for every II and f:IAf:I\to A and ultrafilter 𝒰\mathcal{U}, the limit limi𝒰f(i)\lim_{i\to\mathcal{U}}f(i) exists in AA. It then follows from Theorem 2.2 that if [Xi]iI[X_{i}]_{i\in I} is an element of an ultraproduct \mathcal{M} of \mathcal{L}-structures i\mathcal{M}_{i}, then tp([Xi]iI)=limi𝒰tpi(Xi)\operatorname{tp}^{\mathcal{M}}([X_{i}]_{i\in I})=\lim_{i\to\mathcal{U}}\operatorname{tp}^{\mathcal{M}_{i}}(X_{i}). ∎

Although many times authors choose to work with 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) for each 𝐃\mathbf{D}, we find it convenient to specify a topology on the entire space of types 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) that extends the topology on each 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}), so that our later results can be stated about 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) globally. The topology on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is given by a categorical colimit of the topologies on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}).

Definition 3.5.

For a language \mathcal{L}, tuple 𝐒\mathbf{S} of sorts, and theory T\mathrm{T}, let 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) denote the space of 𝐒\mathbf{S}-types for all T\mathcal{M}\models\mathrm{T}. Note that 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) is the union of all 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) for all 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. We say that 𝒪𝕊𝐒(T)\mathcal{O}\subseteq\mathbb{S}_{\mathbf{S}}(\mathrm{T}) is open if 𝒪𝕊𝐃(T)\mathcal{O}\cap\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is open for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}; this defines a topology on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}), which we will also call the logic topology.

Observation 3.6.

For a language \mathcal{L}, tuple 𝐒\mathbf{S} of sorts, theory T\mathrm{T}, and 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, the inclusion map 𝕊𝐃(T)𝕊𝐒(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\mathbf{S}}(\mathrm{T}) is a topological embedding.

Proof.

Note that 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) is Hausdorff; indeed, μ\mu and ν\nu are two distinct types, then there exists a formula ϕ\phi with μ(ϕ)ν(ϕ)\mu(\phi)\neq\nu(\phi). One can check that the sets

U\displaystyle U ={σ𝕊𝐒(T):|σ(ϕ)μ(ϕ)|<|σ(ϕ)ν(ϕ)|},\displaystyle=\{\sigma\in\mathbb{S}_{\mathbf{S}}(\mathrm{T}):|\sigma(\phi)-\mu(\phi)|<|\sigma(\phi)-\nu(\phi)|\},
V\displaystyle V ={σ𝕊𝐒(T):|σ(ϕ)ν(ϕ)|<|σ(ϕ)μ(ϕ)|}\displaystyle=\{\sigma\in\mathbb{S}_{\mathbf{S}}(\mathrm{T}):|\sigma(\phi)-\nu(\phi)|<|\sigma(\phi)-\mu(\phi)|\}

are open and they separate μ\mu and ν\nu.

Continuity of the inclusion map 𝕊𝐃(T)𝕊𝐒(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\mathbf{S}}(\mathrm{T}) follows from the definition of open sets in 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}). Then since 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is compact and 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) is Hausdorff, the map is a topological embedding. ∎

Observation 3.7.

For a language \mathcal{L}, tuple 𝐒\mathbf{S} of sorts, theory T\mathrm{T}, and topological space Ω\Omega, a function ψ:𝕊𝐒(T)Ω\psi:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\Omega is continuous if and only if ψ|𝕊𝐃(T)\psi|_{\mathbb{S}_{\mathbf{D}}(\mathrm{T})} is continuous for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}.

Proof.

This follows from the definition of open sets in 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}). ∎

3.2 Definable predicates

Next, we describe definable predicates, which are certain limits of formulas. It will turn out that definable predicates correspond precisely to continuous functions 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{R}, and thus they are a natural completion of the space of formulas in the setting of continuous model theory. Our approach to the definition will be semantic rather than syntactic, defining these objects immediately in terms of their interpretations.

Definition 3.8.

Let \mathcal{L} be a language and T\mathrm{T} an \mathcal{L}-theory. A definable predicate relative to T\mathrm{T} is a collection of functions ϕ:jSj\phi^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}\to\mathbb{R} (for each T\mathcal{M}\models\mathrm{T}) such that for every collection of domains 𝐃=(Dj)j\mathbf{D}=(D_{j})_{j\in\mathbb{N}} and every ϵ>0\epsilon>0, there exists a finite FF\subseteq\mathbb{N} and an \mathcal{L}-formula ψ(xj:jF)\psi(x_{j}:j\in F) such that whenever T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}, we have

|ϕ(𝐗)ψ(Xj:jF)|<ϵ.|\phi^{\mathcal{M}}(\mathbf{X})-\psi^{\mathcal{M}}(X_{j}:j\in F)|<\epsilon.

In other words a definable predicate is an object that can be uniformly approximated by a formula on any product of domains of quantification, where the approximation works uniformly for all models of the theory T\mathrm{T}. This is done relative to T\mathrm{T} because, for instance, in the study of tracial W\mathrm{W}^{*}-algebras we do not care if the definable predicate makes sense to evaluate on arbitrary tr\mathcal{L}_{\operatorname{tr}}-structures, only those which actually come from tracial W\mathrm{W}^{*}-algebras.

Note that every formula defines a definable predicate. However, two formulas as defined in the previous section (where the range bounds and moduli of continuity are part of the definition) may reduce to the same definable predicate (especially given the restriction that we work relative to a given theory T\mathrm{T}).

The next proposition describes definable predicates as continuous functions on the space of types. This is an adaptation of [3, Theorem 9.9] to the setting with domains of quantification.

Proposition 3.9.

Let \mathcal{L} be a language and T\mathrm{T} an \mathcal{L}-theory. Let ϕ\phi be a collection of functions ϕ:jSj\phi^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}\to\mathbb{R} for each T\mathcal{M}\models\mathrm{T}. The following are equivalent:

  1. (1)

    ϕ\phi is a definable predicate relative to T\mathrm{T}.

  2. (2)

    There exists a continuous γ:𝕊𝐒(T)\gamma:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{R} such that ϕ(𝐗)=γ(tp(𝐗))\phi^{\mathcal{M}}(\mathbf{X})=\gamma(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) for all T\mathcal{M}\models\mathrm{T} and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}.

Proof.

(1) \implies (2). First, suppose that ϕ\phi is a formula. Then by definition of type, ϕ(𝐗)\phi^{\mathcal{M}}(\mathbf{X}) only depends on the type of 𝐗\mathbf{X} in \mathcal{M}, and hence ϕ(𝐗)=γ(tp(𝐗))\phi^{\mathcal{M}}(\mathbf{X})=\gamma(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) for some γ:𝕊𝐒(T)\gamma:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{R}. For each 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, the restriction of γ\gamma to a map 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{R} is continuous by definition of the weak-\star topology. Hence, by Observation 3.7, γ\gamma is a continuous function 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{R}.

Now let ϕ\phi be a general definable predicate. Fix 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. Then taking ϵ=1/n\epsilon=1/n in Definition 3.8, there exists a formula ϕ𝐃,n\phi_{\mathbf{D},n} depending on finitely many of the variables xjx_{j}, such that

|ϕ(𝐗)ϕ𝐃,n(𝐗)|<1n|\phi^{\mathcal{M}}(\mathbf{X})-\phi_{\mathbf{D},n}^{\mathcal{M}}(\mathbf{X})|<\frac{1}{n} (3.1)

for all T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}. By the previous paragraph, there exists a continuous γ𝐃,n:𝕊𝐃(T)\gamma_{\mathbf{D},n}:\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{R} such that ϕ𝐃,n(𝐗)=γ𝐃,n(tp(𝐗))\phi_{\mathbf{D},n}^{\mathcal{M}}(\mathbf{X})=\gamma_{\mathbf{D},n}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) for all T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}. By (3.1),

supμ𝕊𝐃(T)|γ𝐃,n(μ)γ𝐃,m(μ)|1n+1m,\sup_{\mu\in\mathbb{S}_{\mathbf{D}}(\mathrm{T})}|\gamma_{\mathbf{D},n}(\mu)-\gamma_{\mathbf{D},m}(\mu)|\leq\frac{1}{n}+\frac{1}{m},

which implies that the sequence γ𝐃,n\gamma_{\mathbf{D},n} converges as nn\to\infty to a continuous γ𝐃:𝕊𝐃(T)\gamma_{\mathbf{D}}:\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{R}. Also, by (3.1),

ϕ(𝐗)=γ𝐃(tp(𝐗)))\phi^{\mathcal{M}}(\mathbf{X})=\gamma_{\mathbf{D}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})))

for T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}. This in turn implies that γ𝐃\gamma_{\mathbf{D}} and γ𝐃\gamma_{\mathbf{D}^{\prime}} agree on 𝕊𝐃(T)𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\cap\mathbb{S}_{\mathbf{D}^{\prime}}(\mathrm{T}) for any 𝐃\mathbf{D} and 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. Thus, for some function γ:𝕊𝐒(T)\gamma:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{R}, we have γ𝐃=γ|𝐃\gamma_{\mathbf{D}}=\gamma|_{\mathbf{D}} for 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. By Observation 3.7, γ\gamma is continuous on 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}).

(2) \implies (1). Assume there exists γ:𝕊𝐒(T)\gamma:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{R} continuous such that ϕ(𝐗)=γ(tp(𝐗))\phi^{\mathcal{M}}(\mathbf{X})=\gamma(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) for all T\mathcal{M}\models\mathrm{T} and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}. Fix 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. Let 𝒜\mathcal{A} be the set of functions 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{R} given by the application of formulas ϕ𝐒\phi\in\mathcal{F}_{\mathbf{S}}. Then 𝒜\mathcal{A} is a subalgebra of C(𝕊𝐃(T),)C(\mathbb{S}_{\mathbf{D}}(\mathrm{T}),\mathbb{R}) since formulas are closed under sums, products, and scalar multiplication by real numbers. Moreover, 𝒜\mathcal{A} separates points because by definition two types are the same if they agree on all formulas. Therefore, since γ|𝕊𝐃(T)\gamma|_{\mathbb{S}_{\mathbf{D}}(\mathrm{T})} is continuous, the Stone-Weierstrass theorem implies that there exists a formula ψ\psi depending on finitely many of the variables xjx_{j} such that |ϕ(𝐗)ψ(𝐗)|<ϵ|\phi^{\mathcal{M}}(\mathbf{X})-\psi^{\mathcal{M}}(\mathbf{X})|<\epsilon whenever T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}. ∎

Lemma 3.10.

If 𝐒\mathbf{S} is an \mathbb{N}-tuple of types and 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, then the logic topology on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) agrees with the weak-\star topology obtained by viewing 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) as a subspace of the dual of the vector space of definable predicates.

Proof.

We defined the logic topology as the weak-\star topology generated by the pairing of types with formulas in variables xjSjx_{j}\in S_{j} for jj\in\mathbb{N}. Since every formula gives a definable predicate, the weak-\star topology obtained from the pairing with definable predicates is at least as strong as the logic topology. On other hand, for each 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, every definable predicate can be approximated uniformly by jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}, and hence the pairing with each definable predicate ϕ\phi defines a map 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{R} that is continuous with respect to the logic topology, and hence the logic topology is at least as strong as the weak-\star topology obtained from pairing with definable predicates. ∎

Just like formulas, definable predicates are uniformly continuous on any product of domains of quantification. But to say this properly, we should clarify what “uniform continuity” means for a function of infinitely many variables. If Ωj\Omega_{j} is a metric space, then jΩj\prod_{j\in\mathbb{N}}\Omega_{j} with the product topology is metrizable but without a canonical choice of metric. However, we will say that ϕ:jΩj\phi:\prod_{j\in\mathbb{N}}\Omega_{j}\to\mathbb{R} is uniformly continuous if for every ϵ>0\epsilon>0, there exists a finite FF\subseteq\mathbb{N} and δ>0\delta>0, such that

dj(xj,yj)<δ for jF|ϕ(x)ϕ(y)|<ϵ.d_{j}(x_{j},y_{j})<\delta\text{ for }j\in F\implies|\phi(x)-\phi(y)|<\epsilon.

In other words, uniform continuity is defined with respect to the product uniform structure on jΩj\prod_{j\in\mathbb{N}}\Omega_{j} (see for instance [21] for background on uniform structures).

Observation 3.11.

If ϕ=(ϕ)\phi=(\phi^{\mathcal{M}}) is a definable predicate over \mathcal{L} relative to T\mathrm{T}, then ϕ\phi satisfies the following uniform continuity property:

For every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} and ϵ>0\epsilon>0, there exists a finite FF\subseteq\mathbb{N} and δ>0\delta>0 such that, for every T\mathcal{M}\models\mathrm{T} and 𝐗,𝐘jDj\mathbf{X},\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}},

d(Xj,Yj)<δ for all jF|ϕ(𝐗)ϕ(𝐘)|<ϵ.d^{\mathcal{M}}(X_{j},Y_{j})<\delta\text{ for all }j\in F\implies|\phi^{\mathcal{M}}(\mathbf{X})-\phi^{\mathcal{M}}(\mathbf{Y})|<\epsilon.

Moreover, for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, there exists a constant CC such that |ϕ|C|\phi^{\mathcal{M}}|\leq C for all T\mathcal{M}\models\mathrm{T}.

By construction, this result holds for formulas in finitely many XjX_{j}’s, and it holds for general definable predicates by the principle that uniform continuity and boundedness are preserved under uniform limits.

Another useful property is that definable predicates are closed under the same types of operations as formulas. In fact, we can use infinitary rather than finitary operations. Point (1) here is an adaptation of [3, Proposition 9.3].

Lemma 3.12.
  1. (1)

    If F:F:\mathbb{R}^{\mathbb{N}}\to\mathbb{R} is continuous (where \mathbb{R}^{\mathbb{N}} has the product topology) and (ϕj)j(\phi_{j})_{j\in\mathbb{N}} are definable predicates jSj\prod_{j\in\mathbb{N}}S_{j}\to\mathbb{R} in \mathcal{L} relative to T\mathrm{T}, then F((ϕj)j)F((\phi_{j})_{j\in\mathbb{N}}) is a definable predicate.

  2. (2)

    If ϕ\phi is a definable predicate jSj×jSj\prod_{j\in\mathbb{N}}S_{j}\times\prod_{j\in\mathbb{N}}S_{j}^{\prime}\to\mathbb{R} in \mathcal{L} relative to T\mathrm{T} and 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}^{\prime}}, then

    ψ(𝐗,𝐘):=inf𝐘j(Dj)ϕ(𝐗,𝐘)\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y}):=\inf_{\mathbf{Y}\in\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}}}\phi(\mathbf{X},\mathbf{Y})

    is also definable predicate in \mathcal{L} relative to T\mathrm{T}.

Proof.
  1. (1)

    This follows from 3.9 and the fact that continuity is preserved by composition.

  2. (2)

    Fix 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} and ϵ>0\epsilon>0. Then there exist a formula ϕ0\phi_{0} whose free variables are a finite subset of the xjx_{j}’s and yjy_{j}’s, such that |ϕϕ0|<ϵ|\phi^{\mathcal{M}}-\phi_{0}^{\mathcal{M}}|<\epsilon on jDj×j(Dj)\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}\times\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}. Note that

    ψ0(𝐗)=inf𝐘jDjϕ0(𝐗,𝐘)\psi_{0}^{\mathcal{M}}(\mathbf{X})=\inf_{\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}}\phi_{0}^{\mathcal{M}}(\mathbf{X},\mathbf{Y})

    also defines a formula because the infimum is effectively over only finitely many YjY_{j}’s. Also, |ψ0ψ|ϵ|\psi_{0}^{\mathcal{M}}-\psi^{\mathcal{M}}|\leq\epsilon on jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}. Therefore, ψ\psi is a definable predicate. ∎

We conclude with a brief remark on separability since we will use the separability of tr\mathcal{L}_{\operatorname{tr}} in the sequel. For a \mathcal{L}-theory T\mathrm{T}, we equip C(𝕊𝐒(T))C(\mathbb{S}_{\mathbf{S}}(\mathrm{T})) with the locally convex topology generated by the family of seminorms

ϕϕ|𝕊𝐃(T)C(𝕊𝐃(T))\phi\mapsto\lVert\phi|_{\mathbb{S}_{\mathbf{D}}(\mathrm{T})}\rVert_{C(\mathbb{S}_{\mathbf{D}}(\mathrm{T}))}

for 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. In other words, a net ϕi\phi_{i} to ϕ\phi converges in this topology if and only if (ϕϕi)|𝕊𝐃(T)C(𝕊𝐃(T))0\lVert(\phi-\phi_{i})|_{\mathbb{S}_{\mathbf{D}}(\mathrm{T})}\rVert_{C(\mathbb{S}_{\mathbf{D}}(\mathrm{T}))}\to 0 for all 𝐃\mathbf{D}.

Definition 3.13.

A language \mathcal{L} is separable if

  1. (1)

    \mathcal{L} has countably many sorts.

  2. (2)

    For every \mathbb{N}-tuple 𝕊\mathbb{S} of sorts, the space C(𝕊𝐒())C(\mathbb{S}_{\mathbf{S}}(\varnothing)) is separable, where \varnothing denotes the empty theory.

Observation 3.14.

If \mathcal{L} is a separable language, T\mathrm{T} is an \mathcal{L}-theory, and 𝐃\mathbf{D} is an \mathbb{N}-tuple of domains from an \mathbb{N}-tuple of sorts 𝐒\mathbf{S}, then 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is metrizable.

Proof.

By separability of \mathcal{L}, there is a dense sequence (ϕn)n(\phi_{n})_{n\in\mathbb{N}} in C(𝕊𝐒())C(\mathbb{S}_{\mathbf{S}}(\varnothing)). Since the restriction maps C(𝕊𝐒())C(𝕊𝐃())C(\mathbb{S}_{\mathbf{S}}(\varnothing))\to C(\mathbb{S}_{\mathbf{D}}(\varnothing)) and C(𝕊𝐃())C(𝕊𝐃(T))C(\mathbb{S}_{\mathbf{D}}(\varnothing))\to C(\mathbb{S}_{\mathbf{D}}(\mathrm{T})) are continuous, (ϕn)(\phi_{n}) also defines a dense subset in C(𝕊𝐃(T))C(\mathbb{S}_{\mathbf{D}}(\mathrm{T})). For each nn, there exists a constant KnK_{n} such that |μ(ϕn)|Kn|\mu(\phi_{n})|\leq K_{n} for all μ𝕊𝐃(T)\mu\in\mathbb{S}_{\mathbf{D}}(\mathrm{T}); this holds because ϕn\phi_{n} can be uniformly approximated on 𝐃\mathbf{D} by formulas, which are also uniformly bounded. Then we may define a metric on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) by

d(μ,ν)=n12nKn|μ(ϕn)ν(ϕn)|.d(\mu,\nu)=\sum_{n\in\mathbb{N}}\frac{1}{2^{n}K_{n}}|\mu(\phi_{n})-\nu(\phi_{n})|.

The verification that this induces the weak-* topology is routine. The types 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) induce linear functionals on C(𝐒𝐃(T))C(\mathbf{S}_{\mathbf{D}}(\mathrm{T})), or in other words, 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is contained in the unit ball of the dual of C(𝕊𝐃(T))C(\mathbb{S}_{\mathbf{D}}(\mathrm{T})) so convergence on a dense subset of C(𝕊𝐃(T))C(\mathbb{S}_{\mathbf{D}}(\mathrm{T})) is equivalent to convergence on all of C(𝕊𝐃(T))C(\mathbb{S}_{\mathbf{D}}(\mathrm{T})). ∎

Observation 3.15.

The language tr\mathcal{L}_{\operatorname{tr}} of tracial W\mathrm{W}^{*}-algebras is separable.

Proof.

Consider tr\mathcal{L}_{\operatorname{tr}} formulas obtained using only scalar multiplication by numbers in [i]\mathbb{Q}[i] rather than \mathbb{C} and using only suprema and infima over DrD_{r} for r(0,)r\in\mathbb{Q}\cap(0,\infty). There are only countably many such formulas, and one can show that these formulas are dense in the space of definable predicates. ∎

3.3 Definable functions

Although definable functions are often defined only for finite tuples, it is useful for the theory of covering entropy to work with infinite tuples as both the input and the output functions. The following “functional” description of definable functions makes it easy to prove properties relating them with definable predicates and the type space.

Definition 3.16.

Let 𝐒\mathbf{S} and 𝐒\mathbf{S}^{\prime} be \mathbb{N}-tuples of sorts in the language \mathcal{L}. A definable function f:jSjjSjf:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime} relative to the \mathcal{L}-theory T\mathrm{T} is a collection of maps 𝐟:jSjj(Sj)\mathbf{f}^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}\to\prod_{j\in\mathbb{N}}(S_{j}^{\prime})^{\mathcal{M}} for T\mathcal{M}\models\mathrm{T} satisfying the following conditions:

  1. (1)

    For each 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, there exists 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}^{\prime}} such that for every T\mathcal{M}\models\mathrm{T}, 𝐟\mathbf{f}^{\mathcal{M}} maps jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} into j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}}.

  2. (2)

    Whenever 𝐒~\tilde{\mathbf{S}} is another tuple of sorts and ϕ\phi is a definable predicate relative to T\mathrm{T} in the free variables xjSjx_{j}^{\prime}\in S_{j}^{\prime} and x~jS~j\tilde{x}_{j}\in\tilde{S}_{j} for jj\in\mathbb{N}, then ϕ(𝐟(𝐱),𝐱~)\phi(\mathbf{f}(\mathbf{x}),\tilde{\mathbf{x}}) is a definable predicate in the variables 𝐱=(xj)j\mathbf{x}=(x_{j})_{j\in\mathbb{N}} and 𝐱~=(x~j)j\tilde{\mathbf{x}}=(\tilde{x}_{j})_{j\in\mathbb{N}}.

The next proposition gives a more down-to-earth characterization of definable functions which can be more easily checked in examples. This is in fact typically used as the definition [3, Definition 9.22].

Proposition 3.17.

Let 𝐒\mathbf{S} and 𝐒\mathbf{S}^{\prime} be \mathbb{N}-tuples of types in the language \mathcal{L} and let T\mathrm{T} be an \mathcal{L}-theory. Let 𝐟:jSjjSj\mathbf{f}:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime} be a collection of maps 𝐟:jSjj(Sj)\mathbf{f}^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}\to\prod_{j\in\mathbb{N}}(S_{j}^{\prime})^{\mathcal{M}} for T\mathcal{M}\models\mathrm{T} satisfying (1) of Definition 3.16. Then 𝐟\mathbf{f} is a definable function if and only if, for each kk\in\mathbb{N}, the map ϕk(𝐱,y)=d(fk(𝐱),y)\phi_{k}(\mathbf{x},y)=d(f_{k}(\mathbf{x}),y) is a definable predicate on jSj×Sk\prod_{j\in\mathbb{N}}S_{j}\times S_{k}^{\prime}.

Proof.

(\implies) Let 𝐒~=𝐒\tilde{\mathbf{S}}=\mathbf{S}^{\prime}, and consider the definable predicate ϕ(𝐱,𝐱~)=d(xk,x~k)\phi(\mathbf{x}^{\prime},\tilde{\mathbf{x}})=d(x_{k}^{\prime},\tilde{x}_{k}). Taking 𝐒~=𝐒\tilde{\mathbf{S}}=\mathbf{S}^{\prime} in Definition 3.16 (2), we see that if 𝐟\mathbf{f} is a definable function, then ϕ(𝐟(𝐱),𝐱~)=d(fk(𝐱),x~k)\phi(\mathbf{f}(\mathbf{x}),\tilde{\mathbf{x}})=d(f_{k}(\mathbf{x}),\tilde{x}_{k}) is a definable predicate. So substituting yy for x~k\tilde{x}_{k}, we have proved the claim.

(\impliedby) In order to verify (2) of Definition 3.16, let 𝐒~\tilde{\mathbf{S}} be an \mathbb{N}-tuple of sorts, and let ϕ(𝐱,𝐱~)\phi(\mathbf{x}^{\prime},\tilde{\mathbf{x}}) be a definable predicate on jSj×jS~j\prod_{j\in\mathbb{N}}S_{j}^{\prime}\times\prod_{j\in\mathbb{N}}\tilde{S}_{j}. We need to show that ψ(𝐱,𝐱~)=ϕ(𝐟(𝐱),𝐱~)\psi(\mathbf{x},\tilde{\mathbf{x}})=\phi(\mathbf{f}(\mathbf{x}),\tilde{\mathbf{x}}) is a well-defined definable predicate relative to T\mathrm{T}. Thus, to check Definition 3.8, fix 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} and 𝐃~j𝒟S~j\tilde{\mathbf{D}}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{\tilde{S}_{j}} and ϵ>0\epsilon>0. Since we assumed that Definition 3.16 (1) holds, there exists 𝐃\mathbf{D}^{\prime} such that ff maps jDj\prod_{j\in\mathbb{N}}D_{j} into jDj\prod_{j\in\mathbb{N}}D_{j}^{\prime}.

By Definition 3.8, there exists a formula η\eta depending on finitely many of the variables xjx_{j}^{\prime} and x~j\tilde{x}_{j} that approximates ϕ\phi within ϵ/2\epsilon/2 on j(Dj)×j(D~j)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}}\times\prod_{j\in\mathbb{N}}(\tilde{D}_{j})^{\mathcal{M}}. Let FF^{\prime} be the set of indices jj such that η\eta depends on xjx_{j}^{\prime}. For t>0t>0, let

ψt(𝐱,𝐱~)=infyjDj:jF[η(yj:jF,𝐱~)+1tjFd(𝐟j(𝐱),yj)],\psi_{t}(\mathbf{x},\tilde{\mathbf{x}})=\inf_{y_{j}\in D_{j}^{\prime}:j\in F}\left[\eta(y_{j}:j\in F,\tilde{\mathbf{x}})+\frac{1}{t}\sum_{j\in F}d(\mathbf{f}_{j}(\mathbf{x}),y_{j})\right],

which is a definable predicate by our assumption on 𝐟\mathbf{f} and by Lemma 3.12 (2).

We want to show that ψt\psi_{t} is close to ϕ\phi when tt is sufficiently small. We automatically have ψt(𝐗,𝐗~)η(𝐟(𝐗),𝐗~)\psi_{t}^{\mathcal{M}}(\mathbf{X},\tilde{\mathbf{X}})\leq\eta^{\mathcal{M}}(\mathbf{f}(\mathbf{X}),\tilde{\mathbf{X}}) for 𝐗j(Dj)\mathbf{X}\in\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} and 𝐗~j(D~j)\tilde{\mathbf{X}}\in\prod_{j\in\mathbb{N}}(\tilde{D}_{j})^{\mathcal{M}} when T\mathcal{M}\models\mathrm{T} since 𝐟j(𝐗)\mathbf{f}_{j}(\mathbf{X}) is a value of 𝐘\mathbf{Y} participating in the infimum. To get a bound in the other direction, first observe that since η\eta is a formula, |η||\eta| is bounded on jDj×jD~j\prod_{j\in\mathbb{N}}D_{j}^{\prime}\times\prod_{j\in\mathbb{N}}\tilde{D}_{j} by some constant CC. We then observe using the triangle inequality that

η(𝐘,𝐗~)+1tjFd(Yj,fj(𝐗))η(𝐟(𝐗),𝐗~)\eta^{\mathcal{M}}(\mathbf{Y},\tilde{\mathbf{X}})+\frac{1}{t}\sum_{j\in F}d^{\mathcal{M}}(Y_{j},f_{j}^{\mathcal{M}}(\mathbf{X}))\geq\eta^{\mathcal{M}}(\mathbf{f}^{\mathcal{M}}(\mathbf{X}),\tilde{\mathbf{X}})

unless jFd(Yj,fj(𝐗))<2Ct\sum_{j\in F}d^{\mathcal{M}}(Y_{j},f_{j}^{\mathcal{M}}(\mathbf{X}))<2Ct, and therefore the infimum is witnessed by 𝐘\mathbf{Y} such that jFd(Yj,fj(𝐗))<2Ct\sum_{j\in F}d^{\mathcal{M}}(Y_{j},f_{j}^{\mathcal{M}}(\mathbf{X}))<2Ct. Furthermore, by the uniform continuity property of the formula η\eta (Observation 3.11), there exists tt such that if jFd(Yj,fj(𝐗))<2Ct\sum_{j\in F}d^{\mathcal{M}}(Y_{j},f_{j}^{\mathcal{M}}(\mathbf{X}))<2Ct, then

|η(𝐘,𝐗~)η(𝐟(𝐗),𝐗~)|<ϵ2.|\eta^{\mathcal{M}}(\mathbf{Y},\tilde{\mathbf{X}})-\eta^{\mathcal{M}}(\mathbf{f}(\mathbf{X}),\tilde{\mathbf{X}})|<\frac{\epsilon}{2}.

It follows that for this value of tt,

η(𝐟(𝐗),𝐗~)ϵ2ψt(𝐗,𝐗~)η(𝐟(𝐗),𝐗~)\eta^{\mathcal{M}}(\mathbf{f}(\mathbf{X}),\tilde{\mathbf{X}})-\frac{\epsilon}{2}\leq\psi_{t}^{\mathcal{M}}(\mathbf{X},\tilde{\mathbf{X}})\leq\eta^{\mathcal{M}}(\mathbf{f}(\mathbf{X}),\tilde{\mathbf{X}})

hence also

|ψt(𝐗,𝐗~)ψ(𝐗,𝐗~)|<ϵ,|\psi_{t}^{\mathcal{M}}(\mathbf{X},\tilde{\mathbf{X}})-\psi^{\mathcal{M}}(\mathbf{X},\tilde{\mathbf{X}})|<\epsilon,

for T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} and 𝐗~j(D~j)\tilde{\mathbf{X}}\in\prod_{j\in\mathbb{N}}(\tilde{D}_{j})^{\mathcal{M}}. Since ψ\psi can be approximated in this way by definable predicates, it is a definable predicate, which proves the claim of the proposition. ∎

Corollary 3.18.

If fk:jSjSkf_{k}:\prod_{j\in\mathbb{N}}S_{j}\to S_{k}^{\prime} is a term for each kk\in\mathbb{N}, then 𝐟=(fj)j\mathbf{f}=(f_{j})_{j\in\mathbb{N}} is a definable function relative to any theory T\mathrm{T}.

Proof.

By definition a term maps a product of domains of quantification into some domain of quantification, which verifies (1) of Definition 3.16. Moreover, for each kk, d(fk(𝐱),yk)d(f_{k}(\mathbf{x}),y_{k}) is a formula, hence a definable predicate, so by the previous proposition 𝐟\mathbf{f} is a definable function. ∎

Similar to definable predicates, definable functions are automatically uniformly continuous with respect to dd on each product of domains of quantification. This is a straightforward generalization of [3, Proposition 9.23].

Lemma 3.19.

Let \mathcal{L} be a language, T\mathrm{T} an \mathcal{L}-theory, 𝐒\mathbf{S} and 𝐒\mathbf{S}^{\prime} \mathbb{N}-tuples of sorts, and 𝐟:jSjjSj\mathbf{f}:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime} a definable function. Then for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} and FF\subseteq\mathbb{N} finite and ϵ>0\epsilon>0, there exists EE\subseteq\mathbb{N} finite and δ>0\delta>0 such that

dSi(Xi,Yi)<δ for all iEdSj(fj(𝐗),fj(𝐘))<ϵ for all jF.d_{S_{i}}^{\mathcal{M}}(X_{i},Y_{i})<\delta\text{ for all }i\in E\implies d_{S_{j}^{\prime}}^{\mathcal{M}}(f_{j}^{\mathcal{M}}(\mathbf{X}),f_{j}^{\mathcal{M}}(\mathbf{Y}))<\epsilon\text{ for all }j\in F.

whenever T\mathcal{M}\models\mathrm{T} and 𝐗,𝐘jDj\mathbf{X},\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}.

Proof.

Let 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} such that 𝐟\mathbf{f}^{\mathcal{M}} maps jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} into j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}. Fix ϵ>0\epsilon>0 and FF\subseteq\mathbb{N} finite. Then by Lemma 3.12 and Proposition 3.17, the object

ϕ(𝐗,𝐘)=maxjFdSj(fj(𝐗),Yj)\phi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})=\max_{j\in F}d_{S_{j}^{\prime}}^{\mathcal{M}}(f_{j}^{\mathcal{M}}(\mathbf{X}),Y_{j})

is a definable predicate relative to T\mathrm{T}. Hence, by Observation 3.11 there exists EE\subseteq\mathbb{N} finite and δ>0\delta>0 such that

dSi(Xi,Xi)<δ for iE and dSj(Yj,Yj)<δ for jF|ϕ(𝐗,𝐘)ϕ(𝐗,𝐘)|<ϵd_{S_{i}}^{\mathcal{M}}(X_{i}^{\prime},X_{i})<\delta\text{ for }i\in E\text{ and }d_{S_{j}^{\prime}}^{\mathcal{M}}(Y_{j},Y_{j}^{\prime})<\delta\text{ for }j\in F\implies|\phi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})-\phi^{\mathcal{M}}(\mathbf{X}^{\prime},\mathbf{Y}^{\prime})|<\epsilon

for 𝐗\mathbf{X}, 𝐗jDj\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} and 𝐘\mathbf{Y}, 𝐘j(Dj)\mathbf{Y}^{\prime}\in\prod_{j\in\mathcal{M}}(D_{j}^{\prime})^{\mathcal{M}} and T\mathcal{M}\models\mathrm{T}. Taking 𝐘=𝐟(𝐗)\mathbf{Y}=\mathbf{f}(\mathbf{X}), we see that

|ϕ(𝐗,𝐟(𝐗))ϕ(𝐗,𝐟(𝐗))|=maxjFdSj(fj(𝐗),fj(𝐗))<ϵ|\phi^{\mathcal{M}}(\mathbf{X},\mathbf{f}^{\mathcal{M}}(\mathbf{X}))-\phi^{\mathcal{M}}(\mathbf{X}^{\prime},\mathbf{f}^{\mathcal{M}}(\mathbf{X}))|=\max_{j\in F}d_{S_{j}^{\prime}}^{\mathcal{M}}(f_{j}(\mathbf{X}^{\prime}),f_{j}(\mathbf{X}))<\epsilon

whenever T\mathcal{M}\models\mathrm{T} and 𝐗\mathbf{X}, 𝐗jDj\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{j} and maxiEdSi(Xi,Xi)<δ\max_{i\in E}d_{S_{i}}^{\mathcal{M}}(X_{i},X_{i}^{\prime})<\delta, which is the desired uniform continuity property. ∎

Next, we describe the relationship between definable functions and types.

Lemma 3.20.

Let 𝐒\mathbf{S} and 𝐒\mathbf{S}^{\prime} be \mathbb{N}-tuples of sorts, and let 𝐟:jSjjSj\mathbf{f}:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime} be a definable function relative to T\mathrm{T}.

  1. (1)

    If ϕ\phi is a definable predicate in the variables xjSjx_{j}^{\prime}\in S_{j}^{\prime} for jj\in\mathbb{N}, then ϕ𝐟\phi\circ\mathbf{f} is a definable predicate.

  2. (2)

    If T\mathcal{M}\models\mathrm{T} and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}, then tp(𝐟(𝐗))\operatorname{tp}^{\mathcal{M}}(\mathbf{f}^{\mathcal{M}}(\mathbf{X})) is uniquely determined by tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) and 𝐟\mathbf{f}.

  3. (3)

    Let 𝐟:𝕊𝐒(T)𝕊𝐒(T)\mathbf{f}_{*}:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{S}_{\mathbf{S}^{\prime}}(\mathrm{T}) be the map such that tp(𝐟(𝐗))=𝐟tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{f}^{\mathcal{M}}(\mathbf{X}))=\mathbf{f}_{*}\operatorname{tp}^{\mathcal{M}}(\mathbf{X}). Then 𝐟\mathbf{f}_{*} is continuous with respect to the logic topology.

Proof.

(1) Considering another \mathbb{N}-tuple 𝐒~\tilde{\mathbf{S}} of sorts, we may view ϕ(𝐱)\phi(\mathbf{x}) as a definable predicate in (𝐱,𝐱~)(\mathbf{x},\tilde{\mathbf{x}}), and hence by Definition 3.16, ϕ𝐟\phi\circ\mathbf{f} is a definable predicate.

(2) For every definable predicate ϕ\phi in 𝐱\mathbf{x}^{\prime}, ϕ𝐟\phi\circ\mathbf{f} is a definable predicate, and hence ϕ𝐟(𝐗)\phi^{\mathcal{M}}\circ\mathbf{f}^{\mathcal{M}}(\mathbf{X}) is uniquely determined by tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) for all T\mathcal{M}\models\mathrm{T} and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}. Since this is true for every definable predicate ϕ\phi in variables 𝐱\mathbf{x}^{\prime}, it follows that tp(𝐟(𝐗))\operatorname{tp}^{\mathcal{M}}(\mathbf{f}(\mathbf{X})) is uniquely determined by 𝐟\mathbf{f} and tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}).

(3) Let 𝒪\mathcal{O} be an open set in 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}^{\prime}}(\mathrm{T}). By definition of the topology on 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}), in order to show that (𝐟)1(𝒪)(\mathbf{f}_{*})^{-1}(\mathcal{O}) is open, is suffices to show that (𝐟)1(𝒪)𝕊𝐃(T)(\mathbf{f}_{*})^{-1}(\mathcal{O})\cap\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is open for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}.

For any such 𝐃\mathbf{D}, by Definition 3.16 (1), there exists 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}^{\prime}} such that 𝐟\mathbf{f}^{\mathcal{M}} maps jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} into j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}. This implies that 𝐟\mathbf{f}_{*} maps 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) into 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}^{\prime}}(\mathrm{T}). Hence, (𝐟)1(𝒪)𝕊𝐃(T)=(𝐟|𝕊𝐃(T))1(𝒪𝕊𝐃(T))(\mathbf{f}_{*})^{-1}(\mathcal{O})\cap\mathbb{S}_{\mathbf{D}}(\mathrm{T})=(\mathbf{f}_{*}|_{\mathbb{S}_{\mathbf{D}}(\mathrm{T})})^{-1}(\mathcal{O}\cap\mathbb{S}_{\mathbf{D}^{\prime}}(\mathrm{T})), so to show that this set is (𝐟)1(𝒪)𝕊𝐃(T)(\mathbf{f}_{*})^{-1}(\mathcal{O})\cap\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is open, it suffices to check continuity of 𝐟\mathbf{f}_{*} as a map 𝕊𝐃(T)𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\mathbf{D}^{\prime}}(\mathrm{T}).

By Lemma 3.10, the topology on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}^{\prime}}(\mathrm{T}) is generated by the pairings of types with every definable predicate ϕ\phi in the variables 𝐱\mathbf{x}^{\prime}. If ϕ\phi is such a definable predicate, then ϕ𝐟\phi\circ\mathbf{f} is a definable predicate in 𝐱\mathbf{x} by (1), and therefore, it is continuous with respect to the logic topology on 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}). Thus, the map 𝐟:𝕊𝐃(T)𝕊𝐃(T)\mathbf{f}_{*}:\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\mathbf{D}^{\prime}}(\mathrm{T}) is continuous as desired. ∎

Finally, we verify that definable functions are closed under composition.

Observation 3.21.

Let 𝐒\mathbf{S}, 𝐒\mathbf{S}^{\prime}, and 𝐒′′\mathbf{S}^{\prime\prime} be \mathbb{N}-tuples of sorts in the language \mathcal{L}. If 𝐟:jSjjSj\mathbf{f}:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime} and 𝐠:jSjjSj′′\mathbf{g}:\prod_{j\in\mathbb{N}}S_{j}^{\prime}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime\prime} are definable functions, then so is 𝐠𝐟\mathbf{g}\circ\mathbf{f}.

Proof.

If 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, then since 𝐟\mathbf{f} is definable, there exists 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}^{\prime}} such that 𝐟\mathbf{f}^{\mathcal{M}} maps jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} into j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} for every T\mathcal{M}\models\mathrm{T}. Similarly, there exists 𝐃′′j𝒟Sj′′\mathbf{D}^{\prime\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}^{\prime\prime}} such that 𝐠\mathbf{g}^{\mathcal{M}} maps j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} into j(Dj′′)\prod_{j\in\mathbb{N}}(D_{j}^{\prime\prime})^{\mathcal{M}}. Hence, (𝐠𝐟)(\mathbf{g}\circ\mathbf{f})^{\mathcal{M}} maps jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} into j(Dj′′)\prod_{j\in\mathbb{N}}(D_{j}^{\prime\prime})^{\mathcal{M}}, so that 𝐠𝐟\mathbf{g}\circ\mathbf{f} satisfies (1) of Definition 3.16.

Let 𝐒~\tilde{\mathbf{S}} be another \mathbb{N}-tuple of sorts and let ϕ\phi be a definable predicate in the variables xj′′Sj′′x_{j}^{\prime\prime}\in S_{j}^{\prime\prime} for jj\in\mathbb{N} and x~j\tilde{x}_{j} for jj\in\mathbb{N}. By the definability of 𝐠\mathbf{g}, ψ(𝐱,𝐱~):=ϕ(𝐠(𝐱),𝐱~)\psi(\mathbf{x}^{\prime},\tilde{\mathbf{x}}):=\phi(\mathbf{g}(\mathbf{x}^{\prime}),\tilde{\mathbf{x}}) is also a definable predicate. Then by definability of 𝐟\mathbf{f}, ψ(𝐟(𝐱),𝐱~)=ϕ((𝐠𝐟)(𝐱),𝐱~)\psi(\mathbf{f}(\mathbf{x}),\tilde{\mathbf{x}})=\phi((\mathbf{g}\circ\mathbf{f})(\mathbf{x}),\tilde{\mathbf{x}}) is a definable predicate. Therefore, 𝐠𝐟\mathbf{g}\circ\mathbf{f} satisfies (2) of Definition 3.16, so it is a definable function. ∎

3.4 Quantifier-free types and definable predicates

Quantifier-free formulas, that is, formulas defined without suprema or infima, are the simplest kind of formula and have special significance in our study of tracial W\mathrm{W}^{*}-algebras.

Definition 3.22.

Quantifier-free formulas are formulas obtained through the application of relations to terms and iterative application of continuous functions n\mathbb{R}^{n}\to\mathbb{R}, that is, formulas obtained without using sup\sup and inf\inf operations. If 𝐒\mathbf{S} is an \mathbb{N}-tuple of sorts, we denote the set of quantifier-free formulas in variables xjSjx_{j}\in S_{j} for jj\in\mathbb{N} by qf,𝐒\mathcal{F}_{\operatorname{qf},\mathbf{S}}.

Quantifier-free types, the space of quantifier-free types, and quantifier-free definable predicates are defined in the same ways as the analogous objects for types, to wit:

Definition 3.23.

Let 𝐒\mathbf{S} be an \mathbb{N}-tuple of sorts in the language \mathcal{L}. If \mathcal{M} is an \mathcal{L}-structure, then the quantifier-free type of 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}} is the map

tpqf(𝐗):𝐒:ϕϕ(𝐗).\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}):\mathcal{F}_{\mathbf{S}}\to\mathbb{R}:\phi\mapsto\phi^{\mathcal{M}}(\mathbf{X}).
Definition 3.24.
  • If T\mathrm{T} is an \mathcal{L}-theory and 𝐒\mathbf{S} is an \mathbb{N}-tuple of sorts, then 𝕊qf,𝐒(T)\mathbb{S}_{\operatorname{qf},\mathbf{S}}(\mathrm{T}) will denote the set of types tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}) for 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}} and T\mathcal{M}\models\mathrm{T}.

  • If 𝐃j𝐃𝐒\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathbf{D}_{\mathbf{S}}, then 𝕊qf,𝐃(T)\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) will denote the set of types tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) for T\mathcal{M}\models\mathrm{T} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}.

  • We equip 𝕊qf,𝐃(T)\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) with the weak-\star topology as a subset of the dual of qf,𝐒\mathcal{F}_{\operatorname{qf},\mathbf{S}}.

  • We equip 𝕊qf,𝐒(T)\mathbb{S}_{\operatorname{qf},\mathbf{S}}(\mathrm{T}) with the topology such that 𝒪\mathcal{O} is open if and only if 𝒪𝕊qf,𝐃(T)\mathcal{O}\cap\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) is open for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. We call this the (quantifier-free) logic topology.

Definition 3.25.

Let T\mathrm{T} be an \mathcal{L}-theory and 𝐒\mathbf{S} is an \mathbb{N}-tuple of sorts. A quantifier-free definable predicate is collection of functions ϕ:jSj\phi^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}\to\mathbb{R} for T\mathcal{M}\models\mathrm{T} such that for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} and ϵ>0\epsilon>0, there exists a quantifier-free formula ψ\psi in finitely many of the variables xjSjx_{j}\in S_{j}, such that

|ϕ(𝐗)ψ(𝐗)|<ϵ|\phi^{\mathcal{M}}(\mathbf{X})-\psi^{\mathcal{M}}(\mathbf{X})|<\epsilon

for 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} for T\mathcal{M}\models\mathrm{T}.

The following can be verified in the same way as for types, when 𝐒\mathbf{S} is an \mathbb{N}-tuple of sorts and T\mathrm{T} is an \mathcal{L}-theory:

  • For each 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, the space 𝕊qf,𝐃(T)\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) is a compact Hausdorff space.

  • ϕ\phi is a quantifier-free definable predicate if and only if ϕ(𝐗)=ω(tp(𝐗))\phi^{\mathcal{M}}(\mathbf{X})=\omega(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) for some continuous ω:𝕊qf,𝐒(T)\omega:\mathbb{S}_{\operatorname{qf},\mathbf{S}}(\mathrm{T})\to\mathbb{R}.

  • If ϕj\phi_{j} is a quantifier-free definable predicate for jj\in\mathbb{N} and F:F:\mathbb{R}^{\mathbb{N}}\to\mathbb{R} is continuous, then F((ϕj)j)F((\phi_{j})_{j\in\mathbb{N}}) is a quantifier-free definable predicate.

Furthermore, the quantifier-free type space and the type space can be related as follows.

Observation 3.26.

Let 𝐒\mathbf{S} be an \mathbb{N}-tuple of sorts in \mathcal{L} and T\mathrm{T} an \mathcal{L}-theory. Let π:𝕊𝐒(T)𝕊qf,𝐒(T)\pi:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{S}_{\operatorname{qf},\mathbf{S}}(\mathrm{T}) be the map that sends a type (as a linear map 𝐒\mathcal{F}_{\mathbf{S}}\to\mathbb{R}) to its restriction to qf,𝐒\mathcal{F}_{\operatorname{qf},\mathbf{S}}. Then π(𝕊𝐃(T))=𝕊qf,𝐃(T)\pi(\mathbb{S}_{\mathbf{D}}(\mathrm{T}))=\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) for each 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, and π\pi is a topological quotient map.

Proof.

First, π\pi is a continuous map 𝕊𝐃(T)𝕊qf,𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) by definition of the weak-\star topology. Then since a set in 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) is open if and only if its restriction to 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is open, and the same holds for the quantifier-free versions, we deduce that π\pi is continuous. It is immediate from the definitions that π(𝕊𝐃(T))=𝕊qf,𝐃(T)\pi(\mathbb{S}_{\mathbf{D}}(\mathrm{T}))=\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}). Then because 𝕊𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T}) is compact and 𝕊qf,𝐃(T)\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}) is Hausdorff, π\pi defines a topological quotient map 𝕊𝐃(T)𝕊qf,𝐃(T)\mathbb{S}_{\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\operatorname{qf},\mathbf{D}}(\mathrm{T}). Finally, using the definition of open sets in 𝕊𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T}) and 𝕊qf,𝐒(T)\mathbb{S}_{\operatorname{qf},\mathbf{S}}(\mathrm{T}), we deduce that 𝒪𝕊qf,𝐒(T)\mathcal{O}\subseteq\mathbb{S}_{\operatorname{qf},\mathbf{S}}(\mathrm{T}) is open if and only if π1(𝒪)\pi^{-1}(\mathcal{O}) is open, hence π\pi is a topological quotient map. ∎

Remark 3.27.

A convenient feature of tr\mathcal{L}_{\operatorname{tr}} is that π1(𝕊qf,𝐫(Ttr))=𝕊𝐫(Ttr)\pi^{-1}(\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}))=\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Indeed, suppose that Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐗L()\mathbf{X}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} with tpqf(𝐗)𝕊𝐫(Ttr)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Then the operator norm of XjX_{j} can be recovered from tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}) through

Xj=limk(Retr((XjXj)k))1/2k,\lVert X_{j}\rVert=\lim_{k\to\infty}(\operatorname{Re}\operatorname{tr}^{\mathcal{M}}((X_{j}^{*}X_{j})^{k}))^{1/2k},

hence 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}}, so that tp(𝐗)𝕊𝐫(Ttr)\operatorname{tp}^{\mathcal{M}}(\mathbf{X})\in\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}).

3.5 Quantifier-free definable functions in tr\mathcal{L}_{\operatorname{tr}}

Quantifier-free definable functions are defined analogously to definable functions.

Definition 3.28.

T\mathrm{T} be an \mathcal{L}-theory, and let 𝐒\mathbf{S} and 𝐒\mathbf{S}^{\prime} be \mathbb{N}-tuples of sorts. A quantifier-free definable function 𝐟:jSjjSj\mathbf{f}:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime} is a collection of functions 𝐟:jSjj(Sj)\mathbf{f}^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}\to\prod_{j\in\mathbb{N}}(S_{j}^{\prime})^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T} satisfying the following conditions:

  1. (1)

    For each 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}, there exists 𝐃j𝒟Sj\mathbf{D}^{\prime}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}^{\prime}} such that for every T\mathcal{M}\models\mathrm{T}, 𝐟\mathbf{f}^{\mathcal{M}} maps jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} into j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}}.

  2. (2)

    Whenever 𝐒~\tilde{\mathbf{S}} is another tuple of sorts and ϕ\phi is a quantifier-free definable predicate relative to T\mathrm{T} in the free variables xjSjx_{j}^{\prime}\in S_{j}^{\prime} and x~jS~j\tilde{x}_{j}\in\tilde{S}_{j} for jj\in\mathbb{N}, then ϕ(𝐟(𝐱),𝐱~)\phi(\mathbf{f}(\mathbf{x}),\tilde{\mathbf{x}}) is a quantifier-free definable predicate in the variables 𝐱=(xj)j\mathbf{x}=(x_{j})_{j\in\mathbb{N}} and 𝐱~=(x~j)j\tilde{\mathbf{x}}=(\tilde{x}_{j})_{j\in\mathbb{N}}.

Example 3.29.

If fjf_{j} is a term in a finite subset of the variables xjx_{j}, then 𝐟=(fj)j\mathbf{f}=(f_{j})_{j\in\mathbb{N}} is a quantifier-free definable function relative to any \mathcal{L}-theory T\mathrm{T}. To see this, suppose that ϕ\phi is a quantifier-free definable predicate and 𝐃\mathbf{D} is a tuple of domains of quantification. Let 𝐟\mathbf{f} map 𝐃\mathbf{D} into 𝐃\mathbf{D}^{\prime}. As a quantifier-free definable predicate, ϕ\phi can, for any given ϵ>0\epsilon>0, be approximated on 𝐃\mathbf{D}^{\prime} by a quantifier-free formula ψ\psi with error smaller than ϵ\epsilon on j(Dj)\prod_{j\in\mathbb{N}}(D_{j}^{\prime})^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}. Then ψ𝐟\psi\circ\mathbf{f} is a quantifier-free formula that approximates ϕ𝐟\phi\circ\mathbf{f} within ϵ\epsilon on jDj\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}.

The following facts about quantifier-free definable functions are verified just as in the case of definable functions:

  • Quantifier-free definable functions are closed under composition.

  • If ϕ\phi is a quantifier-free definable predicate and 𝐟\mathbf{f} is a quantifier-free definable function, then ϕ𝐟\phi\circ\mathbf{f} is a quantifier-free definable predicate.

  • For each definable function 𝐟:jSjjSj\mathbf{f}:\prod_{j\in\mathbb{N}}S_{j}\to\prod_{j\in\mathbb{N}}S_{j}^{\prime}, there is a continuous map 𝐟:𝕊𝐒(T)𝕊𝐒(T)\mathbf{f}_{*}:\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{S}_{\mathbf{S}^{\prime}}(\mathrm{T}) given by tpqf(𝐟(𝐗))=𝐟tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{f}(\mathbf{X}))=\mathbf{f}_{*}\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}).

  • If 𝐟\mathbf{f} is a quantifier-free definable function, then for each kk\in\mathbb{N}, the object ϕ(𝐱,y)=dSk(fk(𝐱),y)\phi(\mathbf{x},y)=d_{S_{k}^{\prime}}(f_{k}(\mathbf{x}),y) is a quantifier-free definable predicate.

  • Hence, 𝐟\mathbf{f} is a quantifier-free definable function, then it is a definable function by Proposition 3.17.

  • Thus, a quantifier-free definable function is uniformly continuous on every product of domains of quantification.

The proof of (\impliedby) in Proposition 3.17 uses quantifiers (specifically infima) and thus does not directly adapt to the quantifier-free setting. This is why we argued that terms are quantifier-free functions directly in Example 3.29 rather than as in Corollary 3.18.

In the special case of tr\mathcal{L}_{\operatorname{tr}} and Ttr\mathrm{T}_{\operatorname{tr}}, we have the following characterizations of quantifier-free definable functions. Recall that tr\mathcal{L}_{\operatorname{tr}} has one type SS and the domains of quantification are given by DrD_{r} for each r>0r>0. Given 𝐫=(rj)j(0,)\mathbf{r}=(r_{j})_{j\in\mathbb{N}}\in(0,\infty)^{\mathbb{N}}, we write 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) for the set of quantifier-free types of \mathbb{N}-tuples in jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} in tr\mathcal{L}_{\operatorname{tr}} relative to Ttr\mathrm{T}_{\operatorname{tr}}. A variant of this theorem was proved in the author’s Ph.D. thesis [22, Proposition 13.6.4].

Theorem 3.30.

Let 𝐟\mathbf{f} be a collection of functions 𝐟:L()L()\mathbf{f}^{\mathcal{M}}:L^{\infty}(\mathcal{M})^{\mathbb{N}}\to L^{\infty}(\mathcal{M})^{\mathbb{N}} for each Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}}. Suppose that for every 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, there exists 𝐫(0,)\mathbf{r}^{\prime}\in(0,\infty)^{\mathbb{N}} such that 𝐟\mathbf{f}^{\mathcal{M}} maps jDrj\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}} into jDrj\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}; assume that for each 𝐫\mathbf{r} a corresponding 𝐫\mathbf{r}^{\prime} has been chosen, which we will refer to below. Then the following are equivalent.

  1. (1)

    𝐟\mathbf{f} is a quantifier-free definable function in tr\mathcal{L}_{\operatorname{tr}} relative to Ttr\mathrm{T}_{\operatorname{tr}}.

  2. (2)

    For each kk\in\mathbb{N}, the object ϕ(𝐱,y)=dSk(fk(𝐱),y)\phi(\mathbf{x},y)=d_{S_{k}^{\prime}}(f_{k}(\mathbf{x}),y) is a quantifier-free definable predicate.

  3. (3)

    For each kk\in\mathbb{N}, 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, and quantifier-free type μ𝕊qf,𝐃𝐫(Ttr)\mu\in\mathbb{S}_{\operatorname{qf},\mathbf{D}_{\mathbf{r}}}(\mathrm{T}_{\operatorname{tr}}) and ϵ>0\epsilon>0, there exists a term gg and an open neighborhood 𝒪\mathcal{O} of μ\mu in 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) such that, for all T\mathcal{M}\models\mathrm{T} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},

    g(𝐗)Drkg^{\mathcal{M}}(\mathbf{X})\in D_{r_{k}^{\prime}}

    and

    tpqf(𝐗)𝒪d(fk(𝐗),g(𝐗))<ϵ.\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O}\implies d^{\mathcal{M}}(f_{k}^{\mathcal{M}}(\mathbf{X}),g^{\mathcal{M}}(\mathbf{X}))<\epsilon.
  4. (4)

    For each kk\in\mathbb{N}, 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, and ϵ>0\epsilon>0, there exist mm\in\mathbb{N}, quantifier-free formulas ϕ1\phi_{1}, …, ϕm\phi_{m}, and terms g1g_{1}, …, gmg_{m} such that

    j=1mϕj(𝐗)gj(𝐗)Drk and d(fk(𝐗),j=1mϕj(𝐗)gj(𝐗))<ϵ\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})\in D_{r_{k}^{\prime}}\text{ and }d^{\mathcal{M}}\left(f_{k}^{\mathcal{M}}(\mathbf{X}),\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})\right)<\epsilon

    whenever T\mathcal{M}\models\mathrm{T} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}}.

Proof.

(1) \implies (2) follows as in Proposition 3.17.

(2) \implies (3). Fix 𝐫\mathbf{r} and μ\mu and ϵ\epsilon. Let 𝐗\mathbf{X} be an \mathbb{N}-tuple from a tracial W\mathrm{W}^{*}-algebra \mathcal{M} which has quantifier-free type μ\mu. Note that if ϕ\phi is a quantifier-free formula and 𝒩\mathcal{N} is a W\mathrm{W}^{*}-subalgebra of \mathcal{M} containing 𝐗\mathbf{X}, then ϕ𝒩(𝐗)=ϕ(𝐗)\phi^{\mathcal{N}}(\mathbf{X})=\phi^{\mathcal{M}}(\mathbf{X}). Hence, the quantifier-free type of 𝐗\mathbf{X} in 𝒩\mathcal{N} is the same as the quantifier-free type in \mathcal{M}. In particular, we can replace \mathcal{M} with 𝒩=W(𝐗)\mathcal{N}=\mathrm{W}^{*}(\mathbf{X}) and thus assume without loss of generality that =W(𝐗)\mathcal{M}=\mathrm{W}^{*}(\mathbf{X}).

Recall that \mathcal{M} is faithfully represented on the GNS space L2()L^{2}(\mathcal{M}) (see §2.1, the standard representation). By the Kaplansky density theorem [27], [26, Theorem 5.3.5], the ball of radius rkr_{k}^{\prime} in the C\mathrm{C}^{*}-algebra C(𝐗)\mathrm{C}^{*}(\mathbf{X}) generated by 𝐗\mathbf{X} is dense in the ball of radius rkr_{k}^{\prime} in =W(𝐗)\mathcal{M}=\mathrm{W}^{*}(\mathbf{X}) with respect to the strong operator topology. Since approximation in the strong operator topology implies approximation in the 22-norm associated to the trace, it follows that there exists ZC(𝐗)Z\in\mathrm{C}^{*}(\mathbf{X}) such that Zrk\lVert Z\rVert\leq r_{k}^{\prime} and ZY2=d(Z,Y)<ϵ/2\lVert Z-Y\rVert_{2}=d^{\mathcal{M}}(Z,Y)<\epsilon/2.

Next, we must obtain a term gg bounded by rkr_{k}^{\prime} such that d(g(𝐗),Y)<ϵd^{\mathcal{M}}(g^{\mathcal{M}}(\mathbf{X}),Y)<\epsilon. Because we want gg to be bounded by rkr_{k}^{\prime} on jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} for all Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}}, we view the *-polynomials in infinitely many indeterminates as part of a universal C\mathrm{C}^{*}-algebra. For *-polynomials pp in infinitely many variables xj:jx_{j}:j\in\mathbb{N}, let

pu=sup{p(𝐗):𝐗jDrj,Ttr}.\lVert p\rVert_{u}=\sup\left\{\lVert p(\mathbf{X})\rVert:\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},\mathcal{M}\models\mathrm{T}_{\operatorname{tr}}\right\}.

This defines a C\mathrm{C}^{*}-norm on xj,xj:j\mathbb{C}\langle x_{j},x_{j}^{*}:j\in\mathbb{N}\rangle. Let AA be the completion of xj,xj:j\mathbb{C}\langle x_{j},x_{j}^{*}:j\in\mathbb{N}\rangle into a C\mathrm{C}^{*}-algebra. If Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐗jDj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}, then p(𝐗)pu\lVert p(\mathbf{X})\rVert\leq\lVert p\rVert_{u} by definition, so there is a *-homomorphism π:AC(𝐗)\pi:A\to\mathrm{C}^{*}(\mathbf{X}) mapping xjAx_{j}\in A to XjX_{j}\in\mathcal{M} for each jj\in\mathbb{N}. By [5, II.5.1.5], there exists zAz\in A such that π(z)=Z\pi(z)=Z and zArk\lVert z\rVert_{A}\leq r_{k}^{\prime}.

Now by definition xj,xj:j\mathbb{C}\langle x_{j},x_{j}^{*}:j\in\mathbb{N}\rangle is dense in AA. It follows that every element of the rkr_{k}^{\prime}-ball of AA can be approximated by non-commutative *-polynomials in the rkr_{k}^{\prime}-ball. In particular, there exists some gxj,xj:jg\in\mathbb{C}\langle x_{j},x_{j}^{*}:j\in\mathbb{N}\rangle with gzA<ϵ/2\lVert g-z\rVert_{A}<\epsilon/2, and we can also arrange that gArk\lVert g\rVert_{A}\leq r_{k}^{\prime}.

Then gg is a term such that g𝒩(𝐘)rk\lVert g^{\mathcal{N}}(\mathbf{Y})\rVert\leq r_{k}^{\prime} for all 𝐘jDrj𝒩\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}} for all 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and such that

d(fk(𝐗),g(𝐗))<ϵ.d^{\mathcal{M}}(f_{k}^{\mathcal{M}}(\mathbf{X}),g^{\mathcal{M}}(\mathbf{X}))<\epsilon.

for our particular choice of =W(𝐗)\mathcal{M}=\mathrm{W}^{*}(\mathbf{X}) with tpqf(𝐗)=μ\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})=\mu. Now observe that

ψ(𝐱)=d(fk(𝐱),g(𝐱))\psi(\mathbf{x})=d(f_{k}(\mathbf{x}),g(\mathbf{x}))

is a quantifier-free definable predicate since the term gg is a quantifier-free definable function. Let

𝒪={ν𝕊qf,𝐫(Ttr):ν(ψ)<ϵ}.\mathcal{O}=\{\nu\in\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\psi)<\epsilon\}.

Then 𝒪μ\mathcal{O}\ni\mu by our choice of gg and 𝒪\mathcal{O} is open by continuity of ψ\psi. Moreover, by definition, if 𝒩T\mathcal{N}\models\mathrm{T} and 𝐘jDrj\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}} and tpqf𝒩(𝐘)𝒪\operatorname{tp}_{\operatorname{qf}}^{\mathcal{N}}(\mathbf{Y})\in\mathcal{O}, then d𝒩(fk𝒩(𝐘),g𝒩(𝐘))<ϵd^{\mathcal{N}}(f_{k}^{\mathcal{N}}(\mathbf{Y}),g^{\mathcal{N}}(\mathbf{Y}))<\epsilon.

(3) \implies (4). Fix kk\in\mathbb{N}, 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, and δ>0\delta>0. For each μ𝕊𝐫(Ttr)\mu\in\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}), there exists an open 𝒪μ𝕊𝐫(Ttr)\mathcal{O}_{\mu}\subseteq\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) and a term gμg_{\mu} such that for T\mathcal{M}\models\mathrm{T} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},

gμ(𝐗)Drkg_{\mu}^{\mathcal{M}}(\mathbf{X})\in D_{r_{k}^{\prime}}

and

tpqf(𝐗)𝒪d(gμ(𝐗),fk(𝐗))<δ.\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O}\implies d^{\mathcal{M}}(g_{\mu}^{\mathcal{M}}(\mathbf{X}),f_{k}^{\mathcal{M}}(\mathbf{X}))<\delta.

The sets 𝒪μ\mathcal{O}_{\mu} form an open cover of the compact set 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}), and hence there exists mm\in\mathbb{N} and μ1\mu_{1}, …, μm\mu_{m} such that 𝒪μ1\mathcal{O}_{\mu_{1}}, …, 𝒪μm\mathcal{O}_{\mu_{m}} cover 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Let 𝒪j=𝒪μj\mathcal{O}_{j}=\mathcal{O}_{\mu_{j}}, gj=gμjg_{j}=g_{\mu_{j}}.

Since 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) is a compact Hausdorff space, there exists a continuous partition of unity ψ1\psi_{1}, …, ψm\psi_{m} subordinated to the cover 𝒪1\mathcal{O}_{1}, …, 𝒪m\mathcal{O}_{m}. In other words, there exist γ1\gamma_{1}, …, γmC(𝕊qf,𝐫(Ttr))\gamma_{m}\in C(\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})) such that γj0\gamma_{j}\geq 0, γj|𝒪jc=0\gamma_{j}|_{\mathcal{O}_{j}^{c}}=0, and j=1mγj=1\sum_{j=1}^{m}\gamma_{j}=1. Therefore, for T\mathcal{M}\models\mathrm{T} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},

d(j=1mγj(tpqf(𝐗))gj(𝐗),fk(𝐗))\displaystyle d^{\mathcal{M}}\left(\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))g_{j}^{\mathcal{M}}(\mathbf{X}),f_{k}^{\mathcal{M}}(\mathbf{X})\right) =j=1mγj(tpqf(𝐗))(gj(𝐗)fk(𝐗))L2()\displaystyle=\left\lVert\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))(g_{j}^{\mathcal{M}}(\mathbf{X})-f_{k}^{\mathcal{M}}(\mathbf{X}))\right\rVert_{L^{2}(\mathcal{M})}
j=1mγj(tpqf(𝐗))gj(𝐗)fk(𝐗)L2()\displaystyle\leq\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))\left\lVert g_{j}^{\mathcal{M}}(\mathbf{X})-f_{k}^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{2}(\mathcal{M})}
j=1mγj(tpqf(𝐗))δ\displaystyle\leq\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))\delta
=δ,\displaystyle=\delta,

and

j=1mγj(tpqf(𝐗))gj(𝐗)L()j=1mγj(tpqf(𝐗))gj(𝐗)L()rk.\left\lVert\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))g_{j}^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{\infty}(\mathcal{M})}\leq\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))\lVert g_{j}^{\mathcal{M}}(\mathbf{X})\rVert_{L^{\infty}(\mathcal{M})}\leq r_{k}^{\prime}.

Because quantifier-free formulas comprise a dense subset of C(𝕊qf(T))C(\mathbb{S}_{\operatorname{qf}}(\mathrm{T})) by the Stone-Weierstrass theorem, there exist quantifier-free formulas ψ1\psi_{1}, …, ψm\psi_{m} such that

|ψj(𝐗)γj(tp(𝐗))|δm for Ttr and 𝐗jDj.|\psi_{j}^{\mathcal{M}}(\mathbf{X})-\gamma_{j}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X}))|\leq\frac{\delta}{m}\text{ for }\mathcal{M}\models\mathrm{T}_{\operatorname{tr}}\text{ and }\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}.

It follows that

j=1mψj(𝐗)gj(𝐗)L()rkj=1m|ψj(𝐗)|rk(1+δ),\left\lVert\sum_{j=1}^{m}\psi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{\infty}(\mathcal{M})}\leq r_{k}^{\prime}\sum_{j=1}^{m}|\psi_{j}^{\mathcal{M}}(\mathbf{X})|\leq r_{k}^{\prime}(1+\delta),

and

j=1mγj(tpqf(𝐗))gj(𝐗)j=1mψj(𝐗)gj(𝐗)L2()rkδ.\left\lVert\sum_{j=1}^{m}\gamma_{j}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))g_{j}^{\mathcal{M}}(\mathbf{X})-\sum_{j=1}^{m}\psi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{2}(\mathcal{M})}\leq r_{k}^{\prime}\delta.

Therefore, let ϕj=(1+δ)1ψj\phi_{j}=(1+\delta)^{-1}\psi_{j}. Then

j=1mϕj(𝐗)gj(𝐗)L()(1+δ)1rkj=1m|ψj(𝐗)|rk,\left\lVert\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{\infty}(\mathcal{M})}\leq(1+\delta)^{-1}r_{k}^{\prime}\sum_{j=1}^{m}|\psi_{j}^{\mathcal{M}}(\mathbf{X})|\leq r_{k}^{\prime},

and

j=1mϕj(𝐗)gj(𝐗)j=1mψj(𝐗)gj(𝐗)L2()rk(1(1+δ)1)=δrk1+δ.\left\lVert\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})-\sum_{j=1}^{m}\psi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{2}(\mathcal{M})}\leq r_{k}^{\prime}(1-(1+\delta)^{-1})=\frac{\delta r_{k}^{\prime}}{1+\delta}.

Hence, by the triangle inequality,

j=1mϕj(𝐗)gj(𝐗)f(𝐗)L2()δ+δrk+δrk1+δ.\left\lVert\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})-f^{\mathcal{M}}(\mathbf{X})\right\rVert_{L^{2}(\mathcal{M})}\leq\delta+\delta r_{k}^{\prime}+\frac{\delta r_{k}^{\prime}}{1+\delta}.

By choosing δ\delta sufficiently small, we can guarantee that the right-hand side is smaller than a given ϵ>0\epsilon>0, so the quantifier-free formulas ϕ1\phi_{1}, …, ϕm\phi_{m} have the desired properties for (4).

(4) \implies (2). Fix kk and we will show that ϕ(𝐱,y)=d(fk(𝐱),y)\phi(\mathbf{x},y)=d(f_{k}(\mathbf{x}),y) is a quantifier-free definable predicate. To this end, fix 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, r>0r^{\prime}>0, and ϵ>0\epsilon>0, and we will approximate ϕ\phi by a quantifier-free formula on jDj×Dr\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}\times D_{r^{\prime}} within ϵ\epsilon for Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}}. Let mm\in\mathbb{N} and ϕ1\phi_{1}, …, ϕm\phi_{m} and g1g_{1}, …, gmg_{m} be as in (4) for our given 𝐫\mathbf{r} and ϵ\epsilon, and let

h(𝐗)=j=1mϕj(𝐗)gj(𝐗).h^{\mathcal{M}}(\mathbf{X})=\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X}).

Then for Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}} and YDrY\in D_{r^{\prime}}, we have

|d(fk(𝐗),Y)d(h(𝐗),Y)|d(fk(𝐗),h(𝐗))<ϵ.|d^{\mathcal{M}}(f_{k}^{\mathcal{M}}(\mathbf{X}),Y)-d^{\mathcal{M}}(h^{\mathcal{M}}(\mathbf{X}),Y)|\leq d^{\mathcal{M}}(f_{k}^{\mathcal{M}}(\mathbf{X}),h^{\mathcal{M}}(\mathbf{X}))<\epsilon.

But note that

d(h(𝐗),Y)\displaystyle d^{\mathcal{M}}(h^{\mathcal{M}}(\mathbf{X}),Y) =j=1ϕj(𝐗)gj(𝐗)YL2()\displaystyle=\left\lVert\sum_{j=1}\phi_{j}^{\mathcal{M}}(\mathbf{X})g_{j}^{\mathcal{M}}(\mathbf{X})-Y\right\rVert_{L^{2}(\mathcal{M})}
=(j,k=1mϕj(𝐗)ϕk(𝐗)Retr(gj(𝐗)gk(𝐗))\displaystyle=\biggl{(}\sum_{j,k=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})\phi_{k}^{\mathcal{M}}(\mathbf{X})\operatorname{Re}\operatorname{tr}^{\mathcal{M}}(g_{j}^{\mathcal{M}}(\mathbf{X})^{*}g_{k}^{\mathcal{M}}(\mathbf{X}))
2j=1mϕj(𝐗)Retr(gjY)+Retr(YY))1/2,\displaystyle\qquad-2\sum_{j=1}^{m}\phi_{j}^{\mathcal{M}}(\mathbf{X})\operatorname{Re}\operatorname{tr}^{\mathcal{M}}(g_{j}^{\mathcal{M}}Y)+\operatorname{Re}\operatorname{tr}^{\mathcal{M}}(Y^{*}Y)\biggr{)}^{1/2},

which is a quantifier-free formula by inspection.

(3) \implies (1). Let ϕ\phi be a quantifier-free definable predicate, and we will show that ϕ𝐟\phi\circ\mathbf{f} defines a continuous function on 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) for each 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}} for each 𝐫\mathbf{r}, and hence ϕ𝐟\phi\circ\mathbf{f} is a quantifier-free definable predicate. To this end, it suffices to show that for each 𝐫(0,)\mathbf{r}\in(0,\infty), each μ𝕊qf,𝐫(Ttr)\mu\in\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}), and each ϵ>0\epsilon>0, there exists an neighborhood 𝒪\mathcal{O} of μ\mu in 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) such that

|ϕ𝐟(𝐗)μ(ϕ𝐟)|<ϵ|\phi^{\mathcal{M}}\circ\mathbf{f}^{\mathcal{M}}(\mathbf{X})-\mu(\phi\circ\mathbf{f})|<\epsilon

whenever Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and tpqf(𝐗)𝒪\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O}.

Fix 𝐫\mathbf{r}, μ\mu, and ϵ\epsilon. Let 𝐫(0,)\mathbf{r}^{\prime}\in(0,\infty)^{\mathbb{N}} be such that 𝐟\mathbf{f}^{\mathcal{M}} maps jDrj\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}} into jDrj\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}} for T\mathcal{M}\models\mathrm{T}. By the uniform continuity property of definable predicates, there exists FF\subseteq\mathbb{N} finite and δ>0\delta>0 such that

𝐘,𝐘jDrj and maxkFd(Yk,Yk)<δ|ϕ(𝐘)ϕ(𝐘)|<ϵ3.\mathbf{Y},\mathbf{Y}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}\text{ and }\max_{k\in F}d^{\mathcal{M}}(Y_{k},Y_{k}^{\prime})<\delta\implies|\phi^{\mathcal{M}}(\mathbf{Y})-\phi^{\mathcal{M}}(\mathbf{Y}^{\prime})|<\frac{\epsilon}{3}.

By (3), for each kFk\in F, choose a term gkg_{k} and open 𝒪k𝕊𝐫(Ttr)\mathcal{O}_{k}\subseteq\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) such that, for all T\mathcal{M}\models\mathrm{T} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},

gk(𝐗)Drkg_{k}^{\mathcal{M}}(\mathbf{X})\in D_{r_{k}^{\prime}}

and

tpqf(𝐗)𝒪kd(fk(𝐗),g(𝐗))<δ.\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O}_{k}\implies d^{\mathcal{M}}(f_{k}^{\mathcal{M}}(\mathbf{X}),g^{\mathcal{M}}(\mathbf{X}))<\delta.

For kFk\not\in F, let gk=0g_{k}=0. Then, by our choice of δ\delta and gkg_{k}^{\mathcal{M}}, for all T\mathcal{M}\models\mathrm{T} and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},

tpqf(𝐗)kF𝒪k|ϕ(𝐟(𝐗))ϕ(𝐠(𝐗))|<ϵ3.\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\bigcap_{k\in F}\mathcal{O}_{k}\implies|\phi^{\mathcal{M}}(\mathbf{f}^{\mathcal{M}}(\mathbf{X}))-\phi^{\mathcal{M}}(\mathbf{g}^{\mathcal{M}}(\mathbf{X}))|<\frac{\epsilon}{3}.

Moreover, 𝐠=(gk)k\mathbf{g}=(g_{k})_{k\in\mathbb{N}} is an \mathbb{N}-tuple of terms, hence 𝐠\mathbf{g} is a quantifier-free definable function. This implies that ϕ𝐠\phi\circ\mathbf{g} is a quantifier-free definable predicate. This implies that

𝒪:={ν𝕊qf,𝐫(Ttr):|ν(ϕ𝐠)μ(ϕ𝐠)|<ϵ/3}\mathcal{O}^{\prime}:=\{\nu\in\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):|\nu(\phi\circ\mathbf{g})-\mu(\phi\circ\mathbf{g})|<\epsilon/3\}

is open in 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Let

𝒪:=𝒪k=1m𝒪k.\mathcal{O}:=\mathcal{O}^{\prime}\cap\bigcap_{k=1}^{m}\mathcal{O}_{k}.

Then Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and tpqf(𝐗)𝒪\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O} implies that

|ϕ𝐟(𝐗)μ(ϕ𝐟)||ϕ𝐟(𝐗)ϕ𝐠(𝐗)|+|ϕ𝐠(𝐗)μ(ϕ𝐠)|+|μ(ϕ𝐠)μ(ϕ𝐟)|<ϵ|\phi^{\mathcal{M}}\circ\mathbf{f}^{\mathcal{M}}(\mathbf{X})-\mu(\phi\circ\mathbf{f})|\\ \leq|\phi^{\mathcal{M}}\circ\mathbf{f}^{\mathcal{M}}(\mathbf{X})-\phi^{\mathcal{M}}\circ\mathbf{g}^{\mathcal{M}}(\mathbf{X})|+|\phi^{\mathcal{M}}\circ\mathbf{g}^{\mathcal{M}}(\mathbf{X})-\mu(\phi\circ\mathbf{g})|+|\mu(\phi\circ\mathbf{g})-\mu(\phi\circ\mathbf{f})|<\epsilon

as desired. ∎

Example 3.31.

Suppose ρjC()\rho_{j}\in C(\mathbb{R}), and let fj(𝐗)=ρj(12(Xj+Xj))f_{j}^{\mathcal{M}}(\mathbf{X})=\rho_{j}(\frac{1}{2}(X_{j}+X_{j}^{*})) for T\mathcal{M}\models\mathrm{T}, where ρj(12(Xj+Xj))\rho_{j}(\frac{1}{2}(X_{j}+X_{j}^{*})) is defined through functional calculus. By approximating ρj\rho_{j} uniformly on [rj,rj][-r_{j},r_{j}] by a polynomial gjg_{j} and applying the spectral theorem, we can verify Theorem 3.30 (3) and hence conclude that 𝐟\mathbf{f} is a quantifier-free definable function relative to Ttr\mathrm{T}_{\operatorname{tr}}. Similarly, if fj(𝐗)=Xjρj(XjXj)f_{j}(\mathbf{X})=X_{j}\rho_{j}(X_{j}^{*}X_{j}), then 𝐟\mathbf{f} is a quantifier-free definable function, an observation that we will use in the proof of Proposition 3.32. In this way, continuous functional calculus fits into the larger model-theoretic framework of quantifier-free definable functions.

Building on Theorem 3.30 and Example 3.31, we can show that every element of the W\mathrm{W}^{*}-algebra can be realized as a quantifier-free definable function applied to the generators. This fact will be use later on to show that covering entropy remains invariant under change of generators for a tracial W\mathrm{W}^{*}-algebra. This is a version of [22, Proposition 13.6.6] and [18, Proposition 2.4], and the idea behind the proof is a “forced limit” construction (see [4, §3.2], [3, §9, definable predicates]) applied to quantifier-free definable functions rather than quantifier-free definable predicates.

Proposition 3.32.

If =(M,τ)\mathcal{M}=(M,\tau) is a tracial W\mathrm{W}^{*}-algebra and 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}} generates MM and 𝐘jDrj\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}, then there exists a quantifier-free definable function 𝐟\mathbf{f} in tr\mathcal{L}_{\operatorname{tr}} relative to Ttr\mathrm{T}_{\operatorname{tr}} such that 𝐘=𝐟(𝐗)\mathbf{Y}=\mathbf{f}(\mathbf{X}). In fact, 𝐟\mathbf{f} can be chosen so that fkf_{k}^{\mathcal{M}} maps jL()\prod_{j\in\mathbb{N}}L^{\infty}(\mathcal{M}) into jDrj\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}} for all T\mathcal{M}\models\mathrm{T}.

Proof.

Arguing as in (2) \implies (3) of Theorem 3.30, for each kk\in\mathbb{N} and mm\in\mathbb{N}, there exists a non-commutative polynomial gk,mg_{k,m} such that

gk,m𝒩(𝐗)L(𝒩)rk\lVert g_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{\infty}(\mathcal{N})}\leq r_{k}^{\prime}

for 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐗jDrj𝒩\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}} and

d(gk,m(𝐗),Yk)<12m+1.d^{\mathcal{M}}(g_{k,m}^{\mathcal{M}}(\mathbf{X}),Y_{k})<\frac{1}{2^{m+1}}.

Hence also

d(gk,m(𝐗),gk,m+1(𝐗))<32m+2<12m.d^{\mathcal{M}}(g_{k,m}^{\mathcal{M}}(\mathbf{X}),g_{k,m+1}^{\mathcal{M}}(\mathbf{X}))<\frac{3}{2^{m+2}}<\frac{1}{2^{m}}.

Let Fm:F_{m}:\mathbb{R}\to\mathbb{R} be the continuous function such that Fm(t)=0F_{m}(t)=0 for t3/2m+2t\leq 3/2^{m+2} and Fm(t)=1F_{m}(t)=1 for t1/2mt\geq 1/2^{m} and FmF_{m} is affine on [3/2m+2,1/2m][3/2^{m+2},1/2^{m}]. Then

ϕk,m(𝐱)=Fk(d(gk,m(𝐱),gk,m+1(𝐱)))\phi_{k,m}(\mathbf{x})=F_{k}(d(g_{k,m}(\mathbf{x}),g_{k,m+1}(\mathbf{x})))

is a quantifier-free formula. Moreover, by construction, ϕk,m(𝐗)=1\phi_{k,m}^{\mathcal{M}}(\mathbf{X})=1 for our given \mathcal{M} and 𝐗\mathbf{X}, while at the same time ϕk,m𝒩(𝐗)\phi_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime}) is zero whenever gk,m𝒩(𝐗)gk,m+1𝒩(𝐗))L2(𝒩)>1/2m\lVert g_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})-g_{k,m+1}^{\mathcal{N}}(\mathbf{X}^{\prime}))\rVert_{L^{2}(\mathcal{N})}>1/2^{m} for any 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐗jDrj𝒩\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}}. Let

ψk,m=ϕk,1ϕk,2ϕk,m.\psi_{k,m}=\phi_{k,1}\phi_{k,2}\dots\phi_{k,m}.

Then ψk,m\psi_{k,m} satisfies the same properties that we just showed for ϕk,m\phi_{k,m} with the additional property that ψk,m+1ψk,m\psi_{k,m+1}\leq\psi_{k,m}.

For 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐗L(𝒩)\mathbf{X}^{\prime}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}, define

fk,m𝒩(𝐗)\displaystyle f_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime}) :=gk,1𝒩(𝐗)+j=1m1ψk,j𝒩(𝐗)(gk,j+1𝒩(𝐗)gk,j𝒩(𝐗))\displaystyle:=g_{k,1}^{\mathcal{N}}(\mathbf{X}^{\prime})+\sum_{j=1}^{m-1}\psi_{k,j}^{\mathcal{N}}(\mathbf{X}^{\prime})(g_{k,j+1}^{\mathcal{N}}(\mathbf{X}^{\prime})-g_{k,j}^{\mathcal{N}}(\mathbf{X}^{\prime}))
=(1ψk,1)𝒩(𝐗)gk,1𝒩(𝐗)+j=2m1(ψk,j1ψk,j)𝒩(𝐗)gk,j𝒩(𝐗)+ψk,m1𝒩(𝐗)gk,m𝒩(𝐗).\displaystyle=(1-\psi_{k,1})^{\mathcal{N}}(\mathbf{X}^{\prime})g_{k,1}^{\mathcal{N}}(\mathbf{X}^{\prime})+\sum_{j=2}^{m-1}(\psi_{k,j-1}-\psi_{k,j})^{\mathcal{N}}(\mathbf{X}^{\prime})g_{k,j}^{\mathcal{N}}(\mathbf{X}^{\prime})+\psi_{k,m-1}^{\mathcal{N}}(\mathbf{X}^{\prime})g_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime}).

Then 𝐟,m=(fk,m)k\mathbf{f}_{\cdot,m}=(f_{k,m})_{k\in\mathbb{N}} is a quantifier-free definable function by Theorem 3.30 since it is equal to a finite sum of quantifier-free formulas multiplied by terms. Observe that for 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐗jDrj𝒩\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}},

fk,m𝒩(𝐗)L(𝒩)(1ψk,1)𝒩(𝐗)rk+j=2m1(ψk,j1ψk,j)𝒩(𝐗)rk+ψk,m1𝒩(𝐗)rk=rk,\lVert f_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{\infty}(\mathcal{N})}\leq(1-\psi_{k,1})^{\mathcal{N}}(\mathbf{X}^{\prime})r_{k}^{\prime}+\sum_{j=2}^{m-1}(\psi_{k,j-1}-\psi_{k,j})^{\mathcal{N}}(\mathbf{X}^{\prime})r_{k}^{\prime}+\psi_{k,m-1}^{\mathcal{N}}(\mathbf{X}^{\prime})r_{k}^{\prime}=r_{k}^{\prime},

relying on the fact that ψk,jψk,j1\psi_{k,j}\leq\psi_{k,j-1}. Furthermore, for 𝐗jDrj𝒩\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}}, we have

fk,m𝒩(𝐗)fk,m+1𝒩(𝐗)L2(𝒩)=ψk,m𝒩(𝐗)gk,m𝒩(𝐗)gk,m+1𝒩(𝐗)L2(𝒩)12m.\lVert f_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})-f_{k,m+1}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{2}(\mathcal{N})}=\psi_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})\lVert g_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})-g_{k,m+1}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{2}(\mathcal{N})}\leq\frac{1}{2^{m}}.

This implies that for 𝐗jDrj𝒩\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}}, the sequence fk,m𝒩(𝐗)f_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime}) converges as mm\to\infty to some fk𝒩(𝐗)f_{k}^{\mathcal{N}}(\mathbf{X}^{\prime}) with

fk𝒩(𝐗)fk,m𝒩(𝐗)L2(𝒩)12m1.\lVert f_{k}^{\mathcal{N}}(\mathbf{X}^{\prime})-f_{k,m}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{2}(\mathcal{N})}\leq\frac{1}{2^{m-1}}.

Furthermore, for our given \mathcal{M} and 𝐗\mathbf{X}, we have

fk(𝐗)=gk,1(𝐗)+j=1(gk+1,j(𝐗)gk,j(𝐗))=Ykf_{k}^{\mathcal{M}}(\mathbf{X})=g_{k,1}^{\mathcal{M}}(\mathbf{X})+\sum_{j=1}^{\infty}(g_{k+1,j}^{\mathcal{M}}(\mathbf{X})-g_{k,j}^{\mathcal{M}}(\mathbf{X}))=Y_{k}

because we assumed that gk,j(𝐗)Ykg_{k,j}^{\mathcal{M}}(\mathbf{X})\to Y_{k} as jj\to\infty.

Now this fkf_{k} is only well-defined a priori on jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} for our fixed choice of 𝐫\mathbf{r}. In order to extend it to a global function, we use a cut-off trick based on Example 3.31. Let ρj:\rho_{j}:\mathbb{R}\to\mathbb{R} be the function

ρj(t)={1,trj2,rjt1/2,trj2.\rho_{j}(t)=\begin{cases}1,&t\leq r_{j}^{2},\\ r_{j}t^{-1/2},&t\geq r_{j}^{2}.\end{cases}

Let 𝐡\mathbf{h} be given by hj𝒩(𝐗)=Xjρj((Xj)Xj)h_{j}^{\mathcal{N}}(\mathbf{X}^{\prime})=X_{j}^{\prime}\rho_{j}((X_{j}^{\prime})^{*}X_{j}). Then 𝐡\mathbf{h} is a quantifier-free definable function relative to Ttr\mathrm{T}_{\operatorname{tr}} by Example 3.31. Moreover, if 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐗\mathbf{X}^{\prime}\in, we have

hj𝒩(𝐗)L(𝒩)2=hj𝒩(𝐗)hj𝒩(𝐗)L(𝒩)=ρj((Xj)Xj))(Xj)Xjρj((Xj)Xj)L(𝒩)rj2,\lVert h_{j}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{\infty}(\mathcal{N})}^{2}=\lVert h_{j}^{\mathcal{N}}(\mathbf{X}^{\prime})^{*}h_{j}^{\mathcal{N}}(\mathbf{X}^{\prime})\rVert_{L^{\infty}(\mathcal{N})}\\ =\lVert\rho_{j}((X_{j}^{\prime})^{*}X_{j}^{\prime}))(X_{j}^{\prime})^{*}X_{j}^{\prime}\rho_{j}((X_{j}^{\prime})^{*}X_{j}^{\prime})\rVert_{L^{\infty}(\mathcal{N})}\leq r_{j}^{2},

since ρj(t)2trj2\rho_{j}(t)^{2}t\leq r_{j}^{2}. Therefore, 𝐡𝒩\mathbf{h}^{\mathcal{N}} maps L(𝒩)L^{\infty}(\mathcal{N})^{\mathbb{N}} into jDrj𝒩\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}} for all 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}}. Also, 𝐡𝒩(𝐗)=𝐗\mathbf{h}^{\mathcal{N}}(\mathbf{X}^{\prime})=\mathbf{X}^{\prime} for 𝐗jDrj𝒩\mathbf{X}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}}.

Now 𝐟,m𝐡\mathbf{f}_{\cdot,m}\circ\mathbf{h} is a quantifier-free definable function since it is a composition of quantifier-free definable functions. Because fk,mf_{k,m} converges to fkf_{k} uniformly on jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} as mm\to\infty, we see that fk,m𝐡f_{k,m}\circ\mathbf{h} converges uniformly to fk𝐡f_{k}\circ\mathbf{h} globally as mm\to\infty. This implies that 𝐟𝐡\mathbf{f}\circ\mathbf{h} is a quantifier-free definable function because quantifier-free functions are closed under limits that are uniform on each product of domains (for instance, using Theorem 3.30 (3) or (4)). Moreover, 𝐟(𝐡(𝐗))=𝐟(𝐗)=𝐘\mathbf{f}^{\mathcal{M}}(\mathbf{h}^{\mathcal{M}}(\mathbf{X}))=\mathbf{f}^{\mathcal{M}}(\mathbf{X})=\mathbf{Y} by construction. Finally, (𝐟𝐡)𝒩(\mathbf{f}\circ\mathbf{h})^{\mathcal{N}} maps into jDrj𝒩\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{N}} for all 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} since (fk,m𝐡)𝒩(f_{k,m}\circ\mathbf{h})^{\mathcal{N}} maps jDrj𝒩\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}} into Drk𝒩D_{r_{k}^{\prime}}^{\mathcal{N}}. ∎

Remark 3.33.

We can also deduce from the proof that every continuous function γ\gamma on 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) extends to a continuous function on 𝕊qf(Ttr)\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}), namely γ𝐡\gamma\circ\mathbf{h}_{*} where 𝐡\mathbf{h} is as in the proof. In other words, every quantifier-free definable predicate on jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} relative to Ttr\mathrm{T}_{\operatorname{tr}} extends to a global quantifier-free definable predicate. The same can be said for definable predicates, dropping the word “quantifier-free” in this argument.

Proposition 3.32 also leads to a proof of the following fact, which is well-known among W\mathrm{W}^{*}-algebraists:

Lemma 3.34.

Let 𝐗\mathbf{X} be an \mathbb{N}-tuple in a tracial W\mathrm{W}^{*}-algebra \mathcal{M} and 𝐘\mathbf{Y} an \mathbb{N}-tuple in a tracial W\mathrm{W}^{*}-algebra 𝒩\mathcal{N}. Let W(𝐗)\mathrm{W}^{*}(\mathbf{X}) and W(𝐘)\mathrm{W}^{*}(\mathbf{Y}) be the W\mathrm{W}^{*}-subalgebras generated by 𝐗\mathbf{X} and 𝐘\mathbf{Y} with the traces obtained from restricting the traces on \mathcal{M} and 𝒩\mathcal{N} respectively. Then the following are equivalent:

  1. (1)

    tpqf(𝐗)=tpqf𝒩(𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})=\operatorname{tp}_{\operatorname{qf}}^{\mathcal{N}}(\mathbf{Y}).

  2. (2)

    There exists a trace-preserving *-isomorphism σ:W(𝐗)W(𝐘)\sigma:\mathrm{W}^{*}(\mathbf{X})\to\mathrm{W}^{*}(\mathbf{Y}) such that σ(𝐗)=𝐘\sigma(\mathbf{X})=\mathbf{Y}.

Proof.

(2) \implies (1). If such a *-isomorphism σ\sigma exists, then for every pxi,xi:ip\in\mathbb{C}\langle x_{i},x_{i}^{*}:i\in\mathbb{N}\rangle, we have τ(p(𝐗))=τ𝒩(σ(p(𝐗)))=τ𝒩(p(𝐘))\tau_{\mathcal{M}}(p(\mathbf{X}))=\tau_{\mathcal{N}}(\sigma(p(\mathbf{X})))=\tau_{\mathcal{N}}(p(\mathbf{Y})). Hence, every atomic formula evaluates to the same thing on 𝐗\mathbf{X} and on 𝐘\mathbf{Y}. Since general quantifier-free formulas are obtained by applying continuous connectives to atomic formulas, it follows by induction on complexity that ϕ(𝐗)=ϕ𝒩(𝐘)\phi^{\mathcal{M}}(\mathbf{X})=\phi^{\mathcal{N}}(\mathbf{Y}) for any quantifier-free formula 𝐘\mathbf{Y}, and hence tpqf(𝐗)=tpqf𝒩(𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})=\operatorname{tp}_{\operatorname{qf}}^{\mathcal{N}}(\mathbf{Y}).

(1) \implies (2). Let qf(Ttr)\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) be the set of quantifier-free definable functions in tr\mathcal{L}_{\operatorname{tr}} with respect to Ttr\mathrm{T}_{\operatorname{tr}}. Since quantifier-free functions are closed under composition, qf(Ttr)\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) is a *-algebra. Moreover, the evaluation maps α:qf(Ttr),ff(𝐗)\alpha:\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}})\to\mathcal{M},f\mapsto f^{\mathcal{M}}(\mathbf{X}) and β:qf(Ttr)𝒩,ff𝒩(𝐘)\beta:\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}})\to\mathcal{N},f\mapsto f^{\mathcal{N}}(\mathbf{Y}) are *-homomorphisms, and by the previous proposition the images of α\alpha and β\beta are W(𝐗)\mathrm{W}^{*}(\mathbf{X}) and W(𝐘)\mathrm{W}^{*}(\mathbf{Y}) respectively. Since Retr(f)\operatorname{Re}\operatorname{tr}(f) and Imtr(f)\operatorname{Im}\operatorname{tr}(f) are quantifier-free definable predicates, τα(f)=tr(f)(𝐗)=tr(f)𝒩(𝐘)=τ𝒩β(f)\tau_{\mathcal{M}}\circ\alpha(f)=\operatorname{tr}(f)^{\mathcal{M}}(\mathbf{X})=\operatorname{tr}(f)^{\mathcal{N}}(\mathbf{Y})=\tau_{\mathcal{N}}\circ\beta(f) for fqf(Ttr)f\in\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}), hence also α(f)L2()=β(f)L2(𝒩)\lVert\alpha(f)\rVert_{L^{2}(\mathcal{M})}=\lVert\beta(f)\rVert_{L^{2}(\mathcal{N})}. This implies that kerα=kerβ\ker\alpha=\ker\beta. Therefore, we obtain a *-isomorphism W(𝐗)qf(Ttr)/kerα=qf(Ttr)/kerβW(𝐘)\mathrm{W}^{*}(\mathbf{X})\cong\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}})/\ker\alpha=\mathcal{F}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}})/\ker\beta\cong\mathrm{W}^{*}(\mathbf{Y}), which is trace-preserving since τα=τ𝒩β\tau_{\mathcal{M}}\circ\alpha=\tau_{\mathcal{N}}\circ\beta. ∎

4 Entropy for types

We define a version of Hayes’ 11-bounded entropy for types rather than only quantifier-free types. Later, in §5, we will see that Hayes’ 11-bounded entropy of 𝒩\mathcal{N} in the presence of \mathcal{M} (denoted h𝒰(𝒩:)h^{\mathcal{U}}(\mathcal{N}:\mathcal{M})) can be realized as a special case of entropy for a closed subset of the type space.

4.1 Definition of covering entropy

If 𝒦\mathcal{K} is a subset of the type space 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) and 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, we define

Γ𝐫(n)(𝒦)={𝐗jDrjMn():tpMn()(𝐗)𝒦}.\Gamma_{\mathbf{r}}^{(n)}(\mathcal{K})=\left\{\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{M_{n}(\mathbb{C})}:\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X})\in\mathcal{K}\right\}.

We view this as a microstate space as in Voiculescu’s free entropy theory. We will then define the entropy of 𝒪\mathcal{O} through covering numbers of Γ𝐫(n)(𝒪)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}) up to unitary conjugation.

Definition 4.1 (Orbital covering numbers).

Given ΩMn()\Omega\subseteq M_{n}(\mathbb{C})^{\mathbb{N}} and a finite FF\subseteq\mathbb{N} and ϵ>0\epsilon>0, we define NF,ϵorb(Ω)N_{F,\epsilon}^{\operatorname{orb}}(\Omega) to be the set of 𝐘Mn()\mathbf{Y}\in M_{n}(\mathbb{C})^{\mathbb{N}} such that there exists a unitary UU in Mn()M_{n}(\mathbb{C}) and 𝐗Ω\mathbf{X}\in\Omega such that YiUXiU2<ϵ\lVert Y_{i}-UX_{i}U^{*}\rVert_{2}<\epsilon for all iFi\in F. If ΩNF,ϵorb(Ω)\Omega\subseteq N_{F,\epsilon}^{\operatorname{orb}}(\Omega^{\prime}), we say that Ω\Omega^{\prime} orbitally (F,ϵ)(F,\epsilon)-covers Ω\Omega. We denote by KF,ϵorb(Ω)K_{F,\epsilon}^{\operatorname{orb}}(\Omega) the minimum cardinality of a set Ω\Omega^{\prime} that orbitally (F,ϵ)(F,\epsilon)-covers Ω\Omega.

Definition 4.2.

Fix a non-principal ultrafilter 𝒰\mathcal{U} on \mathbb{N}. For a subset 𝒦\mathcal{K} of the 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) and FIF\subseteq I finite and ϵ>0\epsilon>0, we define

Ent𝐫,F,ϵ𝒰(𝒦)=infopen 𝒪𝒦limn𝒰1n2logKF,ϵorb(Γ𝐫(n)(𝒪)).\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})=\inf_{\text{open }\mathcal{O}\supseteq\mathcal{K}}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})).
Observation 4.3 (Monotonicity).

Let 𝒦𝒦𝕊(Ttr)\mathcal{K}^{\prime}\subseteq\mathcal{K}\subseteq\mathbb{S}(\mathrm{T}_{\operatorname{tr}}), let FFF^{\prime}\subseteq F\subseteq\mathbb{N} finite, let 0<ϵϵ0<\epsilon\leq\epsilon^{\prime}, and let 𝐫\mathbf{r}, 𝐫(0,)\mathbf{r}^{\prime}\in(0,\infty)^{\mathbb{N}} with rjrjr_{j}^{\prime}\leq r_{j}. Then

Ent𝐫,F,ϵ𝒰(𝒦)Ent𝐫,F,ϵ𝒰(𝒦).\operatorname{Ent}_{\mathbf{r}^{\prime},F^{\prime},\epsilon^{\prime}}^{\mathcal{U}}(\mathcal{K}^{\prime})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}).

In particular, if 𝒪𝕊(Ttr)\mathcal{O}\subseteq\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) is open, then

Ent𝐫,F,ϵ𝒰(𝒪)=limn𝒰1n2logKF,ϵorb(Γ𝐫(n)(𝒪)).\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O})=\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})).
Definition 4.4 (Entropy for types).

For 𝒦𝕊(T)\mathcal{K}\subseteq\mathbb{S}(\mathrm{T}), define

Ent𝐫𝒰(𝒦):=supfinite Fϵ>0Ent𝐫,F,ϵ𝒰(𝒦).\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}):=\sup_{\begin{subarray}{c}\text{finite }F\subseteq\mathbb{N}\\ \epsilon>0\end{subarray}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}).

and

Ent𝒰(𝒦):=sup𝐫(0,)Ent𝐫𝒰(𝒦).\operatorname{Ent}^{\mathcal{U}}(\mathcal{K}):=\sup_{\mathbf{r}\in(0,\infty)^{\mathbb{N}}}\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}).

Moreover, if μ𝕊(Ttr)\mu\in\mathbb{S}(\mathrm{T}_{\operatorname{tr}}), we define Ent𝒰(μ)=Ent𝒰({μ})\operatorname{Ent}^{\mathcal{U}}(\mu)=\operatorname{Ent}^{\mathcal{U}}(\{\mu\}).

4.2 Variational principle

In this section, we show that the covering entropy defines an upper semi-continuous function on the type space, and then deduce a variational principle for the entropy of a closed set, in the spirit of various results in the theory of entropy and large deviations.

Lemma 4.5 (Upper semi-continuity).

For each 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, FF\subseteq\mathbb{N} finite, and ϵ>0\epsilon>0, the function μEnt𝐫,F,ϵ𝒰(μ)\mu\mapsto\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu) is upper semi-continuous on 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}).

Proof.

For each open 𝒪𝕊(Ttr)\mathcal{O}\subseteq\mathbb{S}(\mathrm{T}_{\operatorname{tr}}), let

f𝒪(μ)={Ent𝐫,F,ϵ𝒰(𝒪),μ𝒪, otherwise.f_{\mathcal{O}}(\mu)=\begin{cases}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}),&\mu\in\mathcal{O}\\ \infty,&\text{ otherwise.}\end{cases}

Since 𝒪\mathcal{O} is open, f𝒪f_{\mathcal{O}} is upper semi-continuous. Moreover, Ent𝐫,F,ϵ𝒰(μ)\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu) is the infimum of f𝒪(μ)f_{\mathcal{O}}(\mu) over all open 𝒪𝕊(Ttr)\mathcal{O}\subseteq\mathbb{S}(\mathrm{T}_{\operatorname{tr}}), and the infimum of a family of upper semi-continuous functions is upper semi-continuous. ∎

Proposition 4.6 (Variational principle).

Let 𝒦𝕊(Ttr)\mathcal{K}\subseteq\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) and let 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, FF\subseteq\mathbb{N} finite, and ϵ>0\epsilon>0. Then

supμ𝒦Ent𝐫,F,ϵ𝒰(μ)Ent𝐫,F,ϵ𝒰(𝒦)supμcl(𝒦)Ent𝐫,F,ϵ𝒰(μ).\sup_{\mu\in\mathcal{K}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu)\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})\leq\sup_{\mu\in\operatorname{cl}(\mathcal{K})}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu). (4.1)

Hence,

supμ𝒦Ent𝒰(μ)Ent𝒰(𝒦)supμcl(𝒦)Ent𝒰(μ).\sup_{\mu\in\mathcal{K}}\operatorname{Ent}^{\mathcal{U}}(\mu)\leq\operatorname{Ent}^{\mathcal{U}}(\mathcal{K})\leq\sup_{\mu\in\operatorname{cl}(\mathcal{K})}\operatorname{Ent}^{\mathcal{U}}(\mu). (4.2)
Proof.

If μ𝒦\mu\in\mathcal{K}, then by monotonicity (Observation 4.3), EntF,ϵ𝒰({μ})EntF,ϵ𝒰(𝒦)\operatorname{Ent}_{F,\epsilon}^{\mathcal{U}}(\{\mu\})\leq\operatorname{Ent}_{F,\epsilon}^{\mathcal{U}}(\mathcal{K}). Taking the supremum over μ𝒦\mu\in\mathcal{K}, we obtain the first inequality of (4.1).

For the second inequality of (4.1), let C=supμcl(𝒦)EntF,ϵ𝒰(μ)C=\sup_{\mu\in\operatorname{cl}(\mathcal{K})}\operatorname{Ent}_{F,\epsilon}^{\mathcal{U}}(\mu). If C=C=\infty, there is nothing to prove. Otherwise, let C>CC^{\prime}>C. For each μcl(𝒦)𝕊𝐫(Ttr)\mu\in\operatorname{cl}(\mathcal{K})\cap\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}), there exists some open neighborhood 𝒪μ\mathcal{O}_{\mu} of μ\mu in 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) such that Ent𝐫,F,ϵ𝒰(𝒪μ)<C\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{\mu})<C^{\prime}. Since {𝒪μ}μcl(𝒦)𝕊𝐫(Ttr)\{\mathcal{O}_{\mu}\}_{\mu\in\operatorname{cl}(\mathcal{K})\cap\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})} is an open cover of the compact set cl(𝒦)𝕊𝐫(Ttr)\operatorname{cl}(\mathcal{K})\cap\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}), there exist μ1\mu_{1}, …, μkcl(𝒦)𝕊𝐫(Ttr)\mu_{k}\in\operatorname{cl}(\mathcal{K})\cap\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) such that

𝒦𝕊𝐫(Ttr)j=1k𝒪μj.\mathcal{K}\cap\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\subseteq\bigcup_{j=1}^{k}\mathcal{O}_{\mu_{j}}.

Let 𝒪=j=1k𝒪μj\mathcal{O}=\bigcup_{j=1}^{k}\mathcal{O}_{\mu_{j}}. Then

KF,ϵorb(Γ𝐫(n)(𝒪))j=1kKF,ϵorb(Γ𝐫(n)(𝒪μj))kmaxjKF,ϵorb(Γ𝐫(n)(𝒪μj)).K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}))\leq\sum_{j=1}^{k}K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}_{\mu_{j}}))\leq k\max_{j}K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}_{\mu_{j}})).

Thus,

1n2logKF,ϵorb(Γ𝐫(n)(𝒪))1n2logk+maxj1n2logKF,ϵorb(Γ𝐫(n)(𝒪μj)).\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}))\leq\frac{1}{n^{2}}\log k+\max_{j}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}_{\mu_{j}})).

Taking the limit as n𝒰n\to\mathcal{U},

Ent𝐫,F,ϵ𝒰(cl(𝒦))Ent𝐫,F,ϵ𝒰(𝒪)maxjEnt𝐫,F,ϵ𝒰(𝒪μj)C.\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\operatorname{cl}(\mathcal{K}))\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O})\leq\max_{j}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{\mu_{j}})\leq C^{\prime}.

Since C>CC^{\prime}>C was arbitrary,

Ent𝐫,F,ϵ𝒰(𝒦)Ent𝐫,F,ϵ(cl(𝒦))C=supμcl(𝒦)Ent𝐫,F,ϵ𝒰(μ),\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}(\operatorname{cl}(\mathcal{K}))\leq C=\sup_{\mu\in\operatorname{cl}(\mathcal{K})}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu),

completing the proof of (4.1). Taking the supremum over FF and ϵ\epsilon and 𝐫\mathbf{r} in (4.1), we obtain (4.2). ∎

4.3 Invariance under change of coordinates

Next, we prove certain invariance properties of the covering entropy. First, Ent𝐫𝒰(μ)\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mu) is independent of 𝐫\mathbf{r} provided that μ𝕊𝐫(Ttr)\mu\in\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Second, if W(𝐗)=W(𝐘)\mathrm{W}^{*}(\mathbf{X})=\mathrm{W}^{*}(\mathbf{Y}) inside \mathcal{M}, then Ent𝒰(tp(𝐗))=Ent𝒰(tp(𝐘))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})), which allows us to define Ent𝒰(𝒩,)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N},\mathcal{M}) for a W\mathrm{W}^{*}-subalgebra 𝒩\mathcal{N} inside \mathcal{M}. Both of these properties are deduced from the following lemma about push-forward under definable functions. This is closely related to [16, Lemma A.8 and Theorem A.9].

Proposition 4.7 (Monotonicity under push-forward).

Let 𝐟\mathbf{f} be a definable function relative to Ttr\mathrm{T}_{\operatorname{tr}}, let 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, and let 𝐫(0,)\mathbf{r}^{\prime}\in(0,\infty)^{\mathbb{N}} be such that 𝐟\mathbf{f} maps jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} into jDrj\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}. Let 𝒦𝕊𝐫(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) be closed. Then

Ent𝐫𝒰(𝐟(𝒦))Ent𝐫𝒰(𝒦).\operatorname{Ent}_{\mathbf{r}^{\prime}}^{\mathcal{U}}(\mathbf{f}_{*}(\mathcal{K}))\leq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}).
Remark 4.8.

The analogous monotonicity property does not hold for the original 11-bounded entropy hh of a quantifier-free type, but it does hold for 11-bounded entropy in the presence. The monotonicity property holds for the full type and for the existential type of 𝐗\mathbf{X} because those types already encode information about how 𝐗\mathbf{X} interacts with the ambient algebra. For more information, see Remark 5.16.

Proof.

Let FF^{\prime}\subseteq\mathbb{N} finite and ϵ(0,1)\epsilon^{\prime}\in(0,1) be given. Because 𝐟\mathbf{f} is a definable function, it is uniformly continuous by Lemma 3.19, hence there exists a finite FIF\subseteq I and ϵ>0\epsilon>0 such that for every Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐗\mathbf{X}, 𝐘jDrj\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}},

XjYj2<ϵ for all jFfj(𝐗)fj(𝐘)2<ϵ/3 for all jF.\lVert X_{j}-Y_{j}\rVert_{2}<\epsilon\text{ for all }j\in F\implies\lVert f_{j^{\prime}}(\mathbf{X})-f_{j^{\prime}}(\mathbf{Y})\rVert_{2}<\epsilon^{\prime}/3\text{ for all }j^{\prime}\in F^{\prime}. (4.3)

Let 𝒪\mathcal{O} be a neighborhood of 𝒦\mathcal{K} in 𝕊𝐫(Ttr)\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). By Urysohn’s lemma, there exists a continuous function ψ:𝕊𝐫(Ttr)[0,1]\psi:\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\to[0,1] such that ϕ=0\phi=0 on 𝒦\mathcal{K} and ϕ=1\phi=1 on 𝕊𝐫(Ttr)𝒪\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\setminus\mathcal{O}. As in Proposition 3.9, there exists a formula η\eta such that |ηϕ|<ϵ/3|\eta^{\mathcal{M}}-\phi^{\mathcal{M}}|<\epsilon^{\prime}/3 on jDrj\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}}. Next, define ψ:jSrj\psi^{\mathcal{M}}:\prod_{j\in\mathbb{N}}S_{r_{j}^{\prime}}^{\mathcal{M}}\to\mathbb{R} by

ψ(𝐘)=inf𝐗jDj(η(𝐗)+maxjFd(fj(𝐗),Yj)),\psi^{\mathcal{M}}(\mathbf{Y})=\inf_{\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}}\left(\eta^{\mathcal{M}}(\mathbf{X})+\max_{j^{\prime}\in F^{\prime}}d^{\mathcal{M}}(f_{j^{\prime}}^{\mathcal{M}}(\mathbf{X}),Y_{j^{\prime}})\right),

which is a definable predicate relative to Ttr\mathrm{T}_{\operatorname{tr}} by Lemma 3.12.

Viewing ψ\psi as a continuous function on 𝕊𝐫(Ttr)\mathbb{S}_{\mathbf{r}^{\prime}}(\mathrm{T}_{\operatorname{tr}}), let 𝒪=ψ1((,2ϵ/3))\mathcal{O}^{\prime}=\psi^{-1}((-\infty,2\epsilon^{\prime}/3)). Note that 𝐟(𝒦)𝒪\mathbf{f}_{*}(\mathcal{K})\subseteq\mathcal{O}^{\prime} since if 𝐘=𝐟(𝐗)\mathbf{Y}=\mathbf{f}^{\mathcal{M}}(\mathbf{X}), then we can take this value of 𝐗\mathbf{X} in the infimum defining ψ\psi and obtain that ψ(𝐘)ϵ/3\psi^{\mathcal{M}}(\mathbf{Y})\leq\epsilon^{\prime}/3. Meanwhile, if Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐘jDrj\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}} with tp(𝐘)𝒪\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})\in\mathcal{O}^{\prime}, then there exists 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}} with

η(𝐗)+maxjFd(fj(𝐗),𝐘j)<2ϵ3,\eta^{\mathcal{M}}(\mathbf{X})+\max_{j^{\prime}\in F^{\prime}}d^{\mathcal{M}}(f_{j^{\prime}}^{\mathcal{M}}(\mathbf{X}),\mathbf{Y}_{j^{\prime}})<\frac{2\epsilon^{\prime}}{3},

which implies that tp(𝐗)𝒪\operatorname{tp}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O} and maxiFfi(𝐘)𝐗i<2ϵ/3\max_{i^{\prime}\in F^{\prime}}\lVert f_{i^{\prime}}^{\mathcal{M}}(\mathbf{Y})-\mathbf{X}_{i^{\prime}}\rVert<2\epsilon^{\prime}/3. Applying this with =Mn()\mathcal{M}=M_{n}(\mathbb{C}), we obtain

Γ(n)(𝒪)N2ϵ/3(𝐟Mn()(Γ(n)(𝒪))).\Gamma^{(n)}(\mathcal{O}^{\prime})\subseteq N_{2\epsilon^{\prime}/3}(\mathbf{f}^{M_{n}(\mathbb{C})}(\Gamma^{(n)}(\mathcal{O}))).

If Ω\Omega is an (F,ϵ)(F,\epsilon)-cover of Γ(n)(𝒪)\Gamma^{(n)}(\mathcal{O}), then by (4.3) and the fact that 𝐟\mathbf{f} is equivariant with respect to conjugation of an \mathbb{N}-tuple by a fixed unitary, 𝐟(Ω)\mathbf{f}_{*}(\Omega) is an orbital (F,ϵ/3)(F^{\prime},\epsilon^{\prime}/3)-cover of 𝐟(Γ(n)(𝒪))\mathbf{f}_{*}(\Gamma^{(n)}(\mathcal{O})), and therefore also an orbital (F,ϵ)(F^{\prime},\epsilon^{\prime})-cover of Γ(n)(𝒪)\Gamma^{(n)}(\mathcal{O}^{\prime}). It follows that

K𝐫,F,ϵorb(Γ(n)(𝒪))K𝐫,F,ϵorb(Γ(n)(𝒪)).K_{\mathbf{r}^{\prime},F^{\prime},\epsilon^{\prime}}^{\operatorname{orb}}(\Gamma^{(n)}(\mathcal{O}^{\prime}))\leq K_{\mathbf{r},F,\epsilon}^{\operatorname{orb}}(\Gamma^{(n)}(\mathcal{O})).

Hence,

Ent𝐫,F,ϵ𝒰(𝐟(𝒦))Ent𝐫,F,ϵ𝒰(𝒪)Ent𝐫,F,ϵ(𝒪).\operatorname{Ent}_{\mathbf{r}^{\prime},F^{\prime},\epsilon^{\prime}}^{\mathcal{U}}(\mathbf{f}_{*}(\mathcal{K}))\leq\operatorname{Ent}_{\mathbf{r}^{\prime},F^{\prime},\epsilon^{\prime}}^{\mathcal{U}}(\mathcal{O}^{\prime})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}(\mathcal{O}).

Since 𝒪\mathcal{O} was an arbitrary neighborhood of 𝒦\mathcal{K}, we obtain

Ent𝐫,F,ϵ𝒰(𝐟(𝒦))Ent𝐫,F,ϵ𝒰(𝒦)Ent𝐫𝒰(𝒦).\operatorname{Ent}_{\mathbf{r}^{\prime},F^{\prime},\epsilon^{\prime}}^{\mathcal{U}}(\mathbf{f}_{*}(\mathcal{K}))\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})\leq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}).

Since FF^{\prime} and ϵ\epsilon^{\prime} were arbitary, we conclude that Ent𝐫𝒰(𝐟(𝒦))Ent𝐫𝒰(𝒦)\operatorname{Ent}_{\mathbf{r}^{\prime}}^{\mathcal{U}}(\mathbf{f}_{*}(\mathcal{K}))\leq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}), as desired. ∎

Corollary 4.9.

If 𝒦\mathcal{K} is a closed subset of 𝐒𝐫(Ttr)\mathbf{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}), then Ent𝒰(𝒦)=Ent𝐫𝒰(𝒦)\operatorname{Ent}^{\mathcal{U}}(\mathcal{K})=\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}).

Proof.

By definition, Ent𝒰(𝒦)Ent𝐫𝒰(𝒦)\operatorname{Ent}^{\mathcal{U}}(\mathcal{K})\geq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}). On the other hand, fix some 𝐫(0,)\mathbf{r}^{\prime}\in(0,\infty)^{\mathbb{N}} and let 𝐫′′=max(𝐫,𝐫)\mathbf{r}^{\prime\prime}=\max(\mathbf{r}^{\prime},\mathbf{r}). By Observation 4.3,

Ent𝐫𝒰(𝒦)Ent𝐫′′𝒰(𝒦).\operatorname{Ent}_{\mathbf{r}^{\prime}}^{\mathcal{U}}(\mathcal{K})\leq\operatorname{Ent}_{\mathbf{r}^{\prime\prime}}^{\mathcal{U}}(\mathcal{K}).

Now applying Proposition 4.7 to the identity map, since id\operatorname{id} maps jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} into jDrj′′\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime\prime}}, it follows that

Ent𝐫′′𝒰(𝒦)Ent𝐫𝒰(𝒦).\operatorname{Ent}_{\mathbf{r}^{\prime\prime}}^{\mathcal{U}}(\mathcal{K})\leq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}).

Since 𝐫\mathbf{r}^{\prime} was arbitrary, Ent𝒰(𝒦)Ent𝐫𝒰(𝒦)\operatorname{Ent}^{\mathcal{U}}(\mathcal{K})\leq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mathcal{K}). ∎

Corollary 4.10.

Let =(M,τ)\mathcal{M}=(M,\tau) be a tracial W\mathrm{W}^{*}-algebra and 𝐗\mathbf{X}, 𝐘M\mathbf{Y}\in M^{\mathbb{N}}. If 𝐘W(𝐗)\mathbf{Y}\in\mathrm{W}^{*}(\mathbf{X})^{\mathbb{N}}, then

Ent𝒰(tp(𝐘))Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

In particular, if W(𝐗)=W(𝐘)\mathrm{W}^{*}(\mathbf{X})=\mathrm{W}^{*}(\mathbf{Y}), then Ent𝒰(tp(𝐗))=Ent𝒰(tp(𝐘))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})).

Proof.

By Proposition 3.32, there exists a quantifier-free definable function 𝐟\mathbf{f} relative to Ttr\mathrm{T}_{\operatorname{tr}} such that 𝐘=𝐟(𝐗)\mathbf{Y}=\mathbf{f}^{\mathcal{M}}(\mathbf{X}). Now tp(𝐘)=𝐟tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})=\mathbf{f}_{*}\operatorname{tp}^{\mathcal{M}}(\mathbf{X}). Hence, applying Proposition 4.7 to 𝒦={tp(𝐗)}\mathcal{K}=\{\operatorname{tp}^{\mathcal{M}}(\mathbf{X})\} (for an appropriate choice of 𝐫\mathbf{r}), we obtain Ent𝒰(tp(𝐘))Ent𝒰(tp(𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})). The second claim follows by symmetry. ∎

With this invariance result in hand, it seems natural to define the covering entropy for a separable W\mathrm{W}^{*}-subalgebra of \mathcal{M} as the entropy of any \mathbb{N}-tuple of generators. However, the following definition works even in the non-separable case.

Definition 4.11.

If =(M,τ)\mathcal{M}=(M,\tau) is a tracial W\mathrm{W}^{*}-algebra and 𝒩\mathcal{N} is a W\mathrm{W}^{*}-subalgebra, we define

Ent𝒰(𝒩:)=sup𝐗L(𝒩)Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})=\sup_{\mathbf{X}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}}\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).
Observation 4.12.

Let \mathcal{M} be a tracial W\mathrm{W}^{*}-algebra, and let 𝒩\mathcal{N} be a W\mathrm{W}^{*}-subalgebra. If 𝐗L(𝒩)sa\mathbf{X}\in L^{\infty}(\mathcal{N})_{\operatorname{sa}}^{\mathbb{N}} generates 𝒩\mathcal{N}, then for any 𝐘𝒩\mathbf{Y}\in\mathcal{N}^{\mathbb{N}}, we have Ent𝒰(tp(𝐘))Ent𝒰(tp(𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})) by Corollary 4.10, and therefore,

Ent𝒰(𝒩:)=Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Moreover, if 𝒫\mathcal{P} is a W\mathrm{W}^{*}-subalgebra of 𝒩\mathcal{N}, then Ent𝒰(𝒫:)Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{P}:\mathcal{M})\leq\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}).

Remark 4.13.

Furthermore, it is evident from Definition 4.11 that Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) only depends on the set of types in \mathcal{M} that are realized in L(𝒩)L^{\infty}(\mathcal{N})^{\mathbb{N}}. Hence, if two embeddings 𝒩1\mathcal{N}\to\mathcal{M}_{1} and 𝒩2\mathcal{N}\to\mathcal{M}_{2} are elementarily equivalent—meaning that for every definable predicate ϕ\phi and 𝐗L(𝒩)\mathbf{X}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}, we have ϕ1(𝐗)=ϕ2(𝐗)\phi^{\mathcal{M}_{1}}(\mathbf{X})=\phi^{\mathcal{M}_{2}}(\mathbf{X})—then Ent𝒰(𝒩:1)=Ent𝒰(𝒩:2)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}_{1})=\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}_{2}).

4.4 Entropy and ultraproduct embeddings

Lemma 4.14 (Ultraproduct realization of types).

Let 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}). Let μ𝕊(Ttr)\mu\in\mathbb{S}(\mathrm{T}_{\operatorname{tr}}). Then Ent𝒰(μ)\operatorname{Ent}^{\mathcal{U}}(\mu) is either nonnegative or it is -\infty. Moreover, Ent𝒰(μ)0\operatorname{Ent}^{\mathcal{U}}(\mu)\geq 0 if and only if there exists 𝐗L(𝒬)\mathbf{X}\in L^{\infty}(\mathcal{Q})^{\mathbb{N}} such that tp𝒬(𝐗)=μ\operatorname{tp}^{\mathcal{Q}}(\mathbf{X})=\mu.

Proof.

Note that logKF,ϵorb(Γ𝐫(n)(𝒪))\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})) is either 0\geq 0 or it is -\infty. Therefore, Ent𝐫𝒰(μ)\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mu) is either nonnegative or it is -\infty. It remains to show the second claim of the lemma.

(\implies) In light of the foregoing argument, if Ent𝒰(μ)0\operatorname{Ent}^{\mathcal{U}}(\mu)\geq 0, then Ent𝐫𝒰(μ)0\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\mu)\geq 0 for some 𝐫\mathbf{r}. By Observations 3.14 and 3.15, 𝕊𝐫(Ttr)\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) is metrizable, hence there is a sequence (𝒪k)k(\mathcal{O}_{k})_{k\in\mathbb{N}} of neighborhoods of μ\mu in 𝕊(T)\mathbb{S}(\mathrm{T}) such that 𝒪¯k+1𝒪k\overline{\mathcal{O}}_{k+1}\subseteq\mathcal{O}_{k} and k𝒪k={μ}\bigcap_{k\in\mathbb{N}}\mathcal{O}_{k}=\{\mu\}. For kk\in\mathbb{N}, let

Ek={n:Γ𝐫(n)(𝒪k)}.E_{k}=\{n\in\mathbb{N}:\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}_{k})\neq\varnothing\}.

Now choose 𝐗(n)MN()\mathbf{X}^{(n)}\in M_{N}(\mathbb{C})^{\mathbb{N}} as follows. For each nE1n\not\in E_{1}, set 𝐗(n)=0\mathbf{X}^{(n)}=0. For each nEkEk+1n\in E_{k}\setminus E_{k+1}, let 𝐗(n)\mathbf{X}^{(n)} be an element of Γ𝐫(n)(𝒪k)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}_{k}). If nkEkn\in\bigcap_{k\in\mathbb{N}}E_{k}, that means that Γ(n)({μ})\Gamma^{(n)}(\{\mu\})\neq\varnothing, so in this case we may choose 𝐗(n)Mn()\mathbf{X}^{(n)}\in M_{n}(\mathbb{C})^{\mathbb{N}} with tpMn()(𝐗(n))=μ\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})=\mu.

Since 𝒰\mathcal{U} is an ultrafilter, either Ek𝒰E_{k}\in\mathcal{U} or Ekc𝒰E_{k}^{c}\in\mathcal{U}. If we had Ekc𝒰E_{k}^{c}\in\mathcal{U}, then limn𝒰(1/n2)logKF,ϵorb(Γ(n)(𝒪k))\lim_{n\to\mathcal{U}}(1/n^{2})\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma^{(n)}(\mathcal{O}_{k})) would be -\infty since the set would be empty for nEkcn\in E_{k}^{c}. Hence, Ek𝒰E_{k}\in\mathcal{U}. For nEkn\in E_{k}, we have tpMn()(𝐗(n))𝒪k\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})\in\mathcal{O}_{k}. Therefore, limn𝒰tpMn()(𝐗(n))𝒪¯k\lim_{n\to\mathcal{U}}\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})\in\overline{\mathcal{O}}_{k}. Since this holds for all kk, limn𝒰tpMn()(𝐗(n))=μ\lim_{n\to\mathcal{U}}\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})=\mu. Let 𝐗=[𝐗(n)]nL(𝒬)\mathbf{X}=[\mathbf{X}^{(n)}]_{n\in\mathbb{N}}\in L^{\infty}(\mathcal{Q})^{\mathbb{N}}. Then

tp𝒬(𝐗)=limn𝒰tpMn()(𝐗(n))=μ.\operatorname{tp}^{\mathcal{Q}}(\mathbf{X})=\lim_{n\to\mathcal{U}}\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})=\mu.

(\impliedby) Suppose that 𝐗\mathbf{X} is an element of the ultraproduct with type μ\mu. Let rj=Xjr_{j}=\lVert X_{j}\rVert_{\infty}. Express 𝐗\mathbf{X} as [𝐗(n)]n[\mathbf{X}^{(n)}]_{n\in\mathbb{N}} for some 𝐗(n)Mn()\mathbf{X}^{(n)}\in M_{n}(\mathbb{C})^{\mathbb{N}} with Xj(n)rj\lVert X_{j}^{(n)}\rVert\leq r_{j}. Since the type of 𝐗(n)\mathbf{X}^{(n)} converges to the type of 𝐗\mathbf{X}, for every neighborhood 𝒪\mathcal{O} of μ\mu, there exists E𝒰E\in\mathcal{U} such that tpMn()(𝐗(n))𝒪\operatorname{tp}^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})\in\mathcal{O} for all nEn\in E, and in particular, Γ𝐫(n)(𝒪)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})\neq\varnothing for nEn\in E. This implies that EntF,ϵ𝒰(𝒪)0\operatorname{Ent}_{F,\epsilon}^{\mathcal{U}}(\mathcal{O})\geq 0 for every FF and ϵ\epsilon. Hence, Ent𝒰(μ)0\operatorname{Ent}^{\mathcal{U}}(\mu)\geq 0. ∎

Recall that an embedding 𝒬\mathcal{M}\to\mathcal{Q} of tracial W\mathrm{W}^{*}-algebras is said to be elementary if for every definable predicate ϕ\phi and 𝐗L()\mathbf{X}\in L^{\infty}(\mathcal{M})^{\mathbb{N}}, we have ϕ𝒬(𝐗)=ϕ(𝐗)\phi^{\mathcal{Q}}(\mathbf{X})=\phi^{\mathcal{M}}(\mathbf{X}). This in particular implies that \mathcal{M} and 𝒬\mathcal{Q} are elementarily equivalent, that is, they have the same theory.

Corollary 4.15.

Suppose that \mathcal{M} is a separable tracial W\mathrm{W}^{*}-algebra and 𝒩\mathcal{N}\subseteq\mathcal{M} is a W\mathrm{W}^{*}-subalgebra. If Ent𝒰(𝒩:)0\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})\geq 0, then there exists an elementary embedding ι:𝒬\iota:\mathcal{M}\to\mathcal{Q}.

Remark 4.16.

Since the embedding ι:𝒬\iota:\mathcal{M}\to\mathcal{Q} is elementary, in particular the embeddings 𝒩\mathcal{N}\to\mathcal{M} and 𝒩𝒬\mathcal{N}\to\mathcal{Q} are elementarily equivalent, and hence Ent𝒰(ι(𝒩):𝒬)=Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})=\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}).

Proof of Corollary 4.15.

By Observation 4.12, Ent𝒰(:)Ent𝒰(𝒩:)0\operatorname{Ent}^{\mathcal{U}}(\mathcal{M}:\mathcal{M})\geq\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})\geq 0. Let 𝐗L()\mathbf{X}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} generate \mathcal{M}. Then by the previous lemma, there exists 𝐗𝒬\mathbf{X}^{\prime}\in\mathcal{Q} with the same type of 𝐗\mathbf{X}. In particular, since 𝐗\mathbf{X} and 𝐗\mathbf{X}^{\prime} have the same quantifier-free type, Lemma 3.34 shows that there is an embedding ι:𝒬\iota:\mathcal{M}\to\mathcal{Q} with ι(𝐗)=𝐗\iota(\mathbf{X})=\mathbf{X}^{\prime}. To show that ι\iota is elementary, suppose that 𝐘L()\mathbf{Y}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} and ϕ\phi is a definable predicate. By Proposition 3.32, there exists a quantifier-free definable function 𝐟\mathbf{f} such that 𝐘=𝐟(𝐗)\mathbf{Y}=\mathbf{f}^{\mathcal{M}}(\mathbf{X}). Since 𝐟\mathbf{f} is quantifier-free, d𝒬(ι(Yj),fj𝒬(𝐗))=d(Yj,fj(𝐗))=0d^{\mathcal{Q}}(\iota(Y_{j}),f_{j}^{\mathcal{Q}}(\mathbf{X}^{\prime}))=d^{\mathcal{M}}(Y_{j},f_{j}^{\mathcal{M}}(\mathbf{X}))=0, hence ι(𝐘)=𝐟𝒬(ι(𝐗))\iota(\mathbf{Y})=\mathbf{f}^{\mathcal{Q}}(\iota(\mathbf{X})). Therefore, ϕ𝒬(ι(𝐘))=(ϕ𝐟)𝒬(𝐗)=(ϕ𝐟)(𝐗)=ϕ(𝐘)\phi^{\mathcal{Q}}(\iota(\mathbf{Y}))=(\phi\circ\mathbf{f})^{\mathcal{Q}}(\mathbf{X}^{\prime})=(\phi\circ\mathbf{f})^{\mathcal{M}}(\mathbf{X})=\phi^{\mathcal{M}}(\mathbf{Y}), where the middle equality follows because tp𝒬(𝐗)=tp(𝐗)\operatorname{tp}^{\mathcal{Q}}(\mathbf{X}^{\prime})=\operatorname{tp}^{\mathcal{M}}(\mathbf{X}), and therefore the embedding is elementary. ∎

4.5 Entropy and Algebraicity

In this section, we show that Ent𝒰(𝒩:)=Ent𝒰(acl(𝒩):)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})=\operatorname{Ent}^{\mathcal{U}}(\operatorname{acl}(\mathcal{N}):\mathcal{M}), where acl(𝒩)\operatorname{acl}(\mathcal{N}) is the algebraic closure of continuous model theory. At present, very little is known about algebraic closures for tracial W\mathrm{W}^{*}-algebras. Nonetheless, it is natural to study how the model-theoretic 11-bounded entropy behaves under this model-theoretic operation, analogously to how Hayes studied the behavior of 11-bounded entropy under various W\mathrm{W}^{*}-algebraic operations (see [16, §2] and [18, §2.3]).

First, we explain the definition of algebraic closure.

Definition 4.17 (Algebraicity).

Let \mathcal{M} be a structure in some language \mathcal{L}, and let 𝒩\mathcal{N} be a substructure. Let SS be a sort in \mathcal{L}.

  • A map ϕ:S\phi:S^{\mathcal{M}}\to\mathbb{R} is a definable predicate in \mathcal{M} over 𝒩\mathcal{N} if for every 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}} and ϵ>0\epsilon>0, there exists a formula ψ\psi in variables xjx_{j} from SjS_{j} for jj\in\mathbb{N} and yjy_{j} from SjS_{j}^{\prime} for jj\in\mathbb{N}, and there exists 𝐘j(Sj)𝒩\mathbf{Y}\in\prod_{j\in\mathbb{N}}(S_{j}^{\prime})^{\mathcal{N}} such that

    |ϕ(𝐗)ψ(𝐗,𝐘)|<ϵ for all 𝐗jDj.|\phi(\mathbf{X})-\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})|<\epsilon\text{ for all }\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}.
  • If ASA\subseteq S^{\mathcal{M}}, we say that AA is definable in \mathcal{M} over 𝒩\mathcal{N} if the map S:Xd(X,A)S^{\mathcal{M}}\to\mathbb{R}:X\mapsto d^{\mathcal{M}}(X,A) is definable in \mathcal{M} over 𝒩\mathcal{N}.

  • If aSa\in S^{\mathcal{M}}, we say that aa is algebraic over 𝒩\mathcal{N} if there exists a compact set ASA\subseteq S^{\mathcal{M}} such that aAa\in A and AA is definable in \mathcal{M} over 𝒩\mathcal{N}.

Remark 4.18.

It will be convenient in our arguments that for tracial W\mathrm{W}^{*}-algebras \mathcal{M} and 𝒩\mathcal{N}, if a function ϕ:L()\phi:L^{\infty}(\mathcal{M})\to\mathbb{R} is definable in \mathcal{M} over 𝒩\mathcal{N}, then there exists a definable predicate θ\theta and 𝐘L(𝒩)\mathbf{Y}\in L^{\infty}(\mathcal{N})^{\mathbb{N}} such that ϕ(X)=θ(X,𝐘)\phi(X)=\theta(X,\mathbf{Y}). This follows by a forced-limit argument similar to Proposition 3.32: Since ϕ\phi is definable in \mathcal{M} over 𝒩\mathcal{N}, then for each kk\in\mathbb{N}, there exists a formula θk\theta_{k} and 𝐘kL(𝒩)\mathbf{Y}_{k}\in L^{\infty}(\mathcal{N})^{\mathbb{N}} such that

|ϕ(X)θk(X,𝐘k)|<12k for XDk.|\phi(X)-\theta_{k}(X,\mathbf{Y}_{k})|<\frac{1}{2^{k}}\text{ for }X\in D_{k}^{\mathcal{M}}.

Let 𝐘\mathbf{Y} by an \mathbb{N}-tuple obtained by joining together the 𝐘k\mathbf{Y}_{k}’s into a single tuple, so that θk\theta_{k} can be viewed as a definable predicate in (X,𝐘)(X,\mathbf{Y}). Similar to the proof of Proposition 3.32, there exists a definable predicate ψk\psi_{k} such that ψk(X,𝐘)=1\psi_{k}^{\mathcal{M}}(X,\mathbf{Y})=1 and ψk(θk+1θk)<2/2k\psi_{k}\cdot(\theta_{k+1}-\theta_{k})<2/2^{k} on DkD_{k}. Then

θ:=θ1+k=1ψk(θk+1θk)\theta:=\theta_{1}+\sum_{k=1}^{\infty}\psi_{k}(\theta_{k+1}-\theta_{k})

converges uniformly on every domain DrD_{r} and satisfies ϕ(X)=θ(X,𝐘)\phi(X)=\theta^{\mathcal{M}}(X,\mathbf{Y}).

Definition 4.19 (Algebraic closure).

Let \mathcal{M} be an \mathcal{L}-structure and 𝒩\mathcal{N} an \mathcal{L}-substructure. We define Sacl(𝒩)S^{\operatorname{acl}(\mathcal{N})} to be the set of aSa\in S^{\mathcal{M}} that are algebraic in \mathcal{M} over 𝒩\mathcal{N}. We let acl(𝒩)=(Sacl(𝒩))S𝒮\operatorname{acl}(\mathcal{N})=(S^{\operatorname{acl}(\mathcal{N})})_{S\in\mathcal{S}}. (Although we omit \mathcal{M} from the notation, the algebraic closure a priori depends on the ambient structure \mathcal{M}.)

For the properties of algebraic closure, see [3, §10]. In particular, one can show that if 𝒩1acl(𝒩2)\mathcal{N}_{1}\subseteq\operatorname{acl}(\mathcal{N}_{2}), then acl(𝒩1)acl(𝒩2)\operatorname{acl}(\mathcal{N}_{1})\subseteq\operatorname{acl}(\mathcal{N}_{2}) (“what is algebraic over the algebraic closure of 𝒩2\mathcal{N}_{2} is algebraic over 𝒩2\mathcal{N}_{2}). Moreover, one can verify directly from Definition 4.17 that ff is a term and Y1Y_{1}, …, Yk𝒩Y_{k}\in\mathcal{N}, then f(Y1,,Yk)acl(𝒩)f^{\mathcal{M}}(Y_{1},\dots,Y_{k})\in\operatorname{acl}(\mathcal{N}). By combining these properties, it follows that acl(𝒩)\operatorname{acl}(\mathcal{N}) is an \mathcal{L}-substructure of \mathcal{M}.

Thus, in particular, if 𝒩\mathcal{N}\subseteq\mathcal{M} are tracial W\mathrm{W}^{*}-algebras, then the algebraic closure acl(𝒩)\operatorname{acl}(\mathcal{N}) of 𝒩\mathcal{N} in \mathcal{M} is a tracial W\mathrm{W}^{*}-subalgebra of \mathcal{M} as well. We will show that Ent𝒰(acl(𝒩):)=Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\operatorname{acl}(\mathcal{N}):\mathcal{M})=\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}). We first consider the case of adjoining to an \mathbb{N}-tuple 𝐗\mathbf{X} a single element YY that is algebraic over W(𝐗)\mathrm{W}^{*}(\mathbf{X}), and this case takes the bulk of the work.

Theorem 4.20.

Let 𝐗\mathbf{X} be an \mathbb{N}-tuple in =(M,τ)\mathcal{M}=(M,\tau). Let YMY\in M be algebraic over W(𝐗)\mathrm{W}^{*}(\mathbf{X}). Then

Ent𝒰(tp(Y,𝐗))=Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

The inequality Ent𝒰(tp(𝐗))Ent𝒰(tp(Y,𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X})) follows from Proposition 4.7, so we only need to prove the opposite inequality.

The idea of the argument is that YY comes from a definable compact set AA. We can cover AA by some finite number kk of ϵ\epsilon-balls. Transferring this to the microstate approximations would tell us that for each matrix approximation 𝐗\mathbf{X}^{\prime} for 𝐗\mathbf{X}, the possible matrix approximations for YY can be covered by kk many ϵ\epsilon-balls. So the covering number for the microstate space of (Y,𝐗)(Y,\mathbf{X}) would be at most kk times that of 𝐗\mathbf{X}; the factor of kk is negligible in the large-nn limit because we will take the logarithm and divide by n2n^{2}.

Proof.

Ent𝒰(tp(𝐗))Ent𝒰(tp(Y,𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X})) holds by Proposition 4.7.

By algebraicity of YY and Remark 4.18, there exists a compact AA\subseteq\mathcal{M}, a definable predicate ϕ\phi relative to Ttr\mathrm{T}_{\operatorname{tr}}, and 𝐗W(𝐗)\mathbf{X}^{\prime}\in\mathrm{W}^{*}(\mathbf{X})^{\mathbb{N}} such that YAY\in A and d(Z,A)=ϕ(Z,𝐗)d^{\mathcal{M}}(Z,A)=\phi^{\mathcal{M}}(Z,\mathbf{X}^{\prime}). Since 𝐗=𝐟(𝐗)\mathbf{X}^{\prime}=\mathbf{f}(\mathbf{X}) for some quantifier-free definable function 𝐟\mathbf{f}, we have

d(Z,A)=ϕ(Z,𝐟(𝐗))=ψ(Z,𝐗),d^{\mathcal{M}}(Z,A)=\phi^{\mathcal{M}}(Z,\mathbf{f}(\mathbf{X}))=\psi^{\mathcal{M}}(Z,\mathbf{X}),

where ψ\psi is the definable predicate given by composing ψ\psi with 𝐟\mathbf{f} in the coordinates 22, 33, ….

Fix 𝐫=(rj)j\mathbf{r}=(r_{j})_{j\in\mathbb{N}} such that XjDrjX_{j}\in D_{r_{j}} and fix rr such that ZDrZ\in D_{r}. We want to show that

sup(F,ϵ)inf𝒪tp(Y,𝐗)limn𝒰1n2logKF,ϵorb(Γr,𝐫(n)(𝒪))sup(F,ϵ)inf𝒪tp(Y,𝐗)limn𝒰1n2logKF,ϵorb(Γ𝐫(n)(𝒪))\sup_{(F^{\prime},\epsilon^{\prime})}\inf_{\mathcal{O}\ni\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X})}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F^{\prime},\epsilon^{\prime}}^{\operatorname{orb}}(\Gamma_{r,\mathbf{r}}^{(n)}(\mathcal{O}^{\prime}))\leq\sup_{(F,\epsilon)}\inf_{\mathcal{O}\ni\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X})}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}))

Here we regard \mathbb{N} as starting at 11, and we index the tuple (Y,𝐗)(Y,\mathbf{X}) by {0}\{0\}\sqcup\mathbb{N}, where the 0 index corresponds to YY. Fix F{0}F^{\prime}\subseteq\{0\}\sqcup\mathbb{N} finite and ϵ>0\epsilon^{\prime}>0. Since enlarging FF^{\prime} would only increase the quantity inside the sup(F,ϵ)\sup_{(F^{\prime},\epsilon^{\prime})}, assume without loss of generality that FF^{\prime} contains the index 0 corresponding to the variable YY, hence F={0}F1F^{\prime}=\{0\}\sqcup F_{1} for some F1F_{1}\subseteq\mathbb{N}.

By compactness of AA, there exists kk\in\mathbb{N} and there exist Y1Y_{1}, …, YkAY_{k}\in A such that the ϵ/4\epsilon^{\prime}/4-balls centered at Y1Y_{1}, …, YkY_{k} cover AA. This implies that every point within a distance of ϵ/4\epsilon^{\prime}/4 from AA is within a distance of ϵ/2\epsilon^{\prime}/2 from one of the points Y1Y_{1}, …, YkY_{k}, and therefore

supYDrmin(ϵ/4ψ(Y,𝐗),min(d(Y,Y1),,d(Y,Yk))ϵ/2)0.\sup_{Y\in D_{r}^{\mathcal{M}}}\min\Bigl{(}\epsilon^{\prime}/4-\psi^{\mathcal{M}}(Y,\mathbf{X}),\min(d^{\mathcal{M}}(Y,Y_{1}),\dots,d^{\mathcal{M}}(Y,Y_{k}))-\epsilon^{\prime}/2\Bigr{)}\leq 0.

Choose tj(0,)t_{j}\in(0,\infty) such that YjDtjY_{j}\in D_{t_{j}}. Let α\alpha and β\beta be the definable predicates

α(y1,,yk,𝐱)\displaystyle\alpha(y_{1},\dots,y_{k},\mathbf{x}) =supyDrmin(ϵ/4ψ(y,𝐱),min(d(y,y1),,d(y,yk))ϵ/2),\displaystyle=\sup_{y\in D_{r}^{\mathcal{M}}}\min(\epsilon^{\prime}/4-\psi(y,\mathbf{x}),\min(d(y,y_{1}),\dots,d(y,y_{k}))-\epsilon^{\prime}/2),
β(𝐱)\displaystyle\beta(\mathbf{x}) =infy1Dt1infykDtkα(y1,,yk,𝐱),\displaystyle=\inf_{y_{1}\in D_{t_{1}}}\dots\inf_{y_{k}\in D_{t_{k}}}\alpha(y_{1},\dots,y_{k},\mathbf{x}),

so that α(Y1,,Yk,𝐗)0\alpha^{\mathcal{M}}(Y_{1},\dots,Y_{k},\mathbf{X})\leq 0 and β(𝐗)0\beta^{\mathcal{M}}(\mathbf{X})\leq 0.

By uniform continuity (Observation 3.11), there exists F2F_{2}\subseteq\mathbb{N} finite and δ>0\delta>0 such that for all 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}}, all Y1Dt1Y_{1}^{\prime}\in D_{t_{1}}, …, YkDtkY_{k}^{\prime}\in D_{t_{k}}, and all 𝐗\mathbf{X}^{\prime}, 𝐗′′jDrj𝒩\mathbf{X}^{\prime\prime}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{N}}, we have

maxjF2d𝒩(Xj,Xj′′)<δ|α𝒩(Y1,,Yk,𝐗)α𝒩(Y1,,Yk,𝐗′′)|<ϵ16.\max_{j\in F_{2}}d^{\mathcal{N}}(X_{j}^{\prime},X_{j}^{\prime\prime})<\delta\implies|\alpha^{\mathcal{N}}(Y_{1}^{\prime},\dots,Y_{k}^{\prime},\mathbf{X}^{\prime})-\alpha^{\mathcal{N}}(Y_{1}^{\prime},\dots,Y_{k}^{\prime},\mathbf{X}^{\prime\prime})|<\frac{\epsilon^{\prime}}{16}.

Fix a neighborhood 𝒪\mathcal{O} of tp(𝐗)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}), and let

𝒪={tp𝒩(Y,𝐗):𝒩Ttr,ψ𝒩(Y,𝐗)<ϵ/8,β𝒩(𝐗)<ϵ/16,tp𝒩(𝐗)𝒪},\mathcal{O}^{\prime}=\{\operatorname{tp}^{\mathcal{N}}(Y^{\prime},\mathbf{X}^{\prime}):\mathcal{N}\models\mathrm{T}_{\operatorname{tr}},\psi^{\mathcal{N}}(Y^{\prime},\mathbf{X}^{\prime})<\epsilon^{\prime}/8,\beta^{\mathcal{N}}(\mathbf{X})<\epsilon^{\prime}/16,\operatorname{tp}^{\mathcal{N}}(\mathbf{X}^{\prime})\in\mathcal{O}\},

which is a neighborhood of tp(Y,𝐗)\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X}). Let ϵ=min(δ,ϵ)\epsilon=\min(\delta,\epsilon^{\prime}) and F=F1F2F=F_{1}\cup F_{2}. We claim that

KF,ϵorb(Γr,𝐫(𝒪))kKF,ϵorb(Γ𝐫(𝒪)).K_{F^{\prime},\epsilon^{\prime}}^{\operatorname{orb}}(\Gamma_{r,\mathbf{r}}(\mathcal{O}^{\prime}))\leq k\,K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}(\mathcal{O})).

There exists an orbital (F,ϵ)(F,\epsilon)-cover Ω\Omega of Γ𝐫(n)(𝒪)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}) with ΩΓ𝐫(n)(𝒪)\Omega\subseteq\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}) and |Ω|KF,ϵ/2(Γ𝐫(n)(𝒪))|\Omega|\leq K_{F,\epsilon/2}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})). Indeed, we can let Ω0\Omega_{0} be any orbital (F,ϵ/2)(F,\epsilon/2)-cover of Γ𝐫(n)(𝒪)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}) not necessarily contained in Γ𝐫(n)(𝒪)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}) and let Ω\Omega contain one point Γ𝐫(n)(𝒪)NF,ϵ/2(𝐘)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})\cap N_{F,\epsilon/2}(\mathbf{Y}) for each 𝐘Ω\mathbf{Y}\in\Omega^{\prime} where the intersection is nonempty.

For each 𝐗Γ𝐫(n)(𝒪)\mathbf{X}^{\prime}\in\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}), we have

βMn()(𝐗)<ϵ16,\beta^{M_{n}(\mathbb{C})}(\mathbf{X}^{\prime})<\frac{\epsilon^{\prime}}{16},

and therefore, there exist Y1Dr1Mn()Y_{1}^{\prime}\in D_{r_{1}}^{M_{n}(\mathbb{C})}, …, YkDrkMn()Y_{k}^{\prime}\in D_{r_{k}}^{M_{n}(\mathbb{C})} such that

αMn()(Y1,,Yk,𝐗)<ϵ16.\alpha^{M_{n}(\mathbb{C})}(Y_{1}^{\prime},\dots,Y_{k}^{\prime},\mathbf{X}^{\prime})<\frac{\epsilon^{\prime}}{16}.

Choose for each 𝐗Ω\mathbf{X}^{\prime}\in\Omega a corresponding Y1(𝐗)Y_{1}^{\prime}(\mathbf{X}^{\prime}), …, Yk(𝐗)Y_{k}^{\prime}(\mathbf{X}^{\prime}), and let

Ω={(Y1(𝐗),𝐗),,(Yk(𝐗),𝐗):𝐗Ω}.\Omega^{\prime}=\{(Y_{1}^{\prime}(\mathbf{X}^{\prime}),\mathbf{X}^{\prime}),\dots,(Y_{k}^{\prime}(\mathbf{X}^{\prime}),\mathbf{X}^{\prime}):\mathbf{X}^{\prime}\in\Omega\}.

We claim that Ω\Omega^{\prime} is an orbital (F,ϵ)(F^{\prime},\epsilon^{\prime})-cover of Γr,𝐫(n)(𝒪)\Gamma_{r,\mathbf{r}}^{(n)}(\mathcal{O}^{\prime}). Let (Y′′,𝐗′′)Γr,𝐫(n)(𝒪)(Y^{\prime\prime},\mathbf{X}^{\prime\prime})\in\Gamma_{r,\mathbf{r}}^{(n)}(\mathcal{O}^{\prime}). Then 𝐗′′Γ𝐫(𝒪)\mathbf{X}^{\prime\prime}\in\Gamma_{\mathbf{r}}(\mathcal{O}). Therefore, there exists a unitary UU and 𝐗Ω\mathbf{X}^{\prime}\in\Omega such that U𝐗′′UNF,ϵ(𝐗)U\mathbf{X}^{\prime\prime}U^{*}\in N_{F,\epsilon}(\mathbf{X}^{\prime}). Let Y1=Y1(𝐗)Y_{1}^{\prime}=Y_{1}^{\prime}(\mathbf{X}^{\prime}), …, Yk=Yk(𝐗)Y_{k}^{\prime}=Y_{k}^{\prime}(\mathbf{X}^{\prime}), and note that because dMn()(Xj,Xj′′)<δd^{M_{n}(\mathbb{C})}(X_{j}^{\prime},X_{j}^{\prime\prime})<\delta for jF2j\in F_{2}, we have

|αMn()(Y1,,Yk,U𝐗′′U)αMn()(Y1,,Yk,𝐗)|<ϵ16,|\alpha^{M_{n}(\mathbb{C})}(Y_{1}^{\prime},\dots,Y_{k}^{\prime},U\mathbf{X}^{\prime\prime}U^{*})-\alpha^{M_{n}(\mathbb{C})}(Y_{1}^{\prime},\dots,Y_{k}^{\prime},\mathbf{X}^{\prime})|<\frac{\epsilon^{\prime}}{16},

hence

αMn()(Y1,,Yk,U𝐗′′U)<ϵ16+ϵ16=ϵ8.\alpha^{M_{n}(\mathbb{C})}(Y_{1}^{\prime},\dots,Y_{k}^{\prime},U\mathbf{X}^{\prime\prime}U^{*})<\frac{\epsilon^{\prime}}{16}+\frac{\epsilon^{\prime}}{16}=\frac{\epsilon^{\prime}}{8}.

By definition of α\alpha, this means that

supYDrMn()min(ϵ/4ψMn()(Y,U𝐗′′U),min(dMn()(Y,Y1),,dMn()(Y,Yk))ϵ/2)<ϵ8.\sup_{Y^{\prime}\in D_{r}^{M_{n}}(\mathbb{C})}\min\Bigl{(}\epsilon^{\prime}/4-\psi^{M_{n}(\mathbb{C})}(Y^{\prime},U\mathbf{X}^{\prime\prime}U^{*}),\\ \min(d^{M_{n}(\mathbb{C})}(Y^{\prime},Y_{1}^{\prime}),\dots,d^{M_{n}(\mathbb{C})}(Y^{\prime},Y_{k}^{\prime}))-\epsilon^{\prime}/2\Bigr{)}<\frac{\epsilon^{\prime}}{8}.

Now because (Y′′,𝐗′′)Γr,𝐫(n)(𝒪)(Y^{\prime\prime},\mathbf{X}^{\prime\prime})\in\Gamma_{r,\mathbf{r}}^{(n)}(\mathcal{O}^{\prime}), we have

ψMn()(UY′′U,U𝐗′′U)=ψMn()(Y′′,𝐗′′)<ϵ/8,\psi^{M_{n}(\mathbb{C})}(UY^{\prime\prime}U^{*},U\mathbf{X}^{\prime\prime}U^{*})=\psi^{M_{n}(\mathbb{C})}(Y^{\prime\prime},\mathbf{X}^{\prime\prime})<\epsilon^{\prime}/8,

it follows that

ϵ4ψMn()(UY′′U,U𝐗′′U)>ϵ8\frac{\epsilon^{\prime}}{4}-\psi^{M_{n}(\mathbb{C})}(UY^{\prime\prime}U^{*},U\mathbf{X}^{\prime\prime}U^{*})>\frac{\epsilon^{\prime}}{8}

and therefore

min(dMn()(UY′′U,Y1),,dMn()(UY′′U,Yk))ϵ2<ϵ8,\min(d^{M_{n}(\mathbb{C})}(UY^{\prime\prime}U^{*},Y_{1}^{\prime}),\dots,d^{M_{n}(\mathbb{C})}(UY^{\prime\prime}U^{*},Y_{k}^{\prime}))-\frac{\epsilon^{\prime}}{2}<\frac{\epsilon^{\prime}}{8},

hence d(UY′′U,Yi)<ϵ/2+ϵ/8<ϵd(UY^{\prime\prime}U^{*},Y_{i})<\epsilon^{\prime}/2+\epsilon^{\prime}/8<\epsilon^{\prime} for some i{1,,k}i\in\{1,\dots,k\}. Therefore, overall

U𝐗′′UNF,ϵ(𝐗)NF1,ϵ(𝐗) and UY′′UNϵ(Yi),U\mathbf{X}^{\prime\prime}U^{*}\in N_{F,\epsilon}(\mathbf{X}^{\prime})\subseteq N_{F_{1},\epsilon^{\prime}}(\mathbf{X}^{\prime})\text{ and }UY^{\prime\prime}U^{*}\in N_{\epsilon^{\prime}}(Y_{i}^{\prime}),

and thus (Y′′,𝐗′′)NF,ϵ(Yi,𝐗)(Y^{\prime\prime},\mathbf{X}^{\prime\prime})\in N_{F^{\prime},\epsilon^{\prime}}(Y_{i}^{\prime},\mathbf{X}^{\prime}), which shows that Γr,𝐫(n)(𝒪)NF,ϵorb(Ω)\Gamma_{r,\mathbf{r}^{\prime}}^{(n)}(\mathcal{O}^{\prime})\subseteq N_{F^{\prime},\epsilon^{\prime}}^{\operatorname{orb}}(\Omega^{\prime}).

We conclude that

KF,ϵ(Γr,𝐫(n)(𝒪))kKF,ϵ/2(Γ𝐫(n)(𝒪)).K_{F^{\prime},\epsilon^{\prime}}(\Gamma_{r,\mathbf{r}}^{(n)}(\mathcal{O}^{\prime}))\leq k\,K_{F,\epsilon/2}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})).

Hence, applying limn𝒰(1/n2)log\lim_{n\to\mathcal{U}}(1/n^{2})\log to both sides,

Ent(r,𝐫),F,ϵ𝒰(𝒪)Ent𝐫,F,ϵ𝒰(𝒪).\operatorname{Ent}_{(r,\mathbf{r}^{\prime}),F^{\prime},\epsilon^{\prime}}^{\mathcal{U}}(\mathcal{O}^{\prime})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}).

Because for every 𝒪\mathcal{O} there exists such an 𝒪\mathcal{O}^{\prime}, we obtain

Ent(r,𝐫),F,ϵ𝒰(tp(Y,𝐗))Ent𝐫,F,ϵ/2(tp(𝐗)).\operatorname{Ent}_{(r,\mathbf{r}),F^{\prime},\epsilon^{\prime}}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X}))\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon/2}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Then because for every (F,ϵ)(F^{\prime},\epsilon^{\prime}) there exists such an (F,ϵ)(F,\epsilon), we get

Entr,𝐫𝒰(tp(Y,𝐗))Ent𝐫𝒰(tp(𝐗)).\operatorname{Ent}_{r,\mathbf{r}}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(Y,\mathbf{X}))\leq\operatorname{Ent}_{\mathbf{r}}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Taking the supremum over 𝐫\mathbf{r} and rr completes the proof. ∎

Corollary 4.21.

Let \mathcal{M} be a tracial W\mathrm{W}^{*}-algebra and 𝒩\mathcal{N} a tracial W\mathrm{W}^{*}-subalgebra. Then

Ent𝒰(acl(𝒩):)=Ent𝒰(𝒩:).\operatorname{Ent}^{\mathcal{U}}(\operatorname{acl}(\mathcal{N}):\mathcal{M})=\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}).
Proof.

The inequality Ent𝒰(acl(𝒩):)Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\operatorname{acl}(\mathcal{N}):\mathcal{M})\geq\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) holds by Observation 4.12.

On the other hand, suppose that 𝐘\mathbf{Y} is an \mathbb{N}-tuple in acl(𝒩)\operatorname{acl}(\mathcal{N}). Using Remark 4.18, each YkY_{k} is algebraic over some separable W\mathrm{W}^{*}-subalgebra of 𝒩\mathcal{N}. Let 𝒩0𝒩\mathcal{N}_{0}\subseteq\mathcal{N} be the join of all these subalgebras, so that 𝒩0\mathcal{N}_{0} is separable and 𝐘\mathbf{Y} is algebraic over 𝒩0\mathcal{N}_{0}. Let 𝐗L(𝒩0)\mathbf{X}\in L^{\infty}(\mathcal{N}_{0})^{\mathbb{N}} generate 𝒩0\mathcal{N}_{0}. Since Y1Y_{1} is algebraic over 𝒩0\mathcal{N}_{0}, we have

Ent𝒰(tp(𝐗,Y1))=Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},Y_{1}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Similarly, since Y2Y_{2} is algebraic over W(𝐗,Y1)\mathrm{W}^{*}(\mathbf{X},Y_{1}), we have

Ent𝒰(tp(𝐗,Y1,Y2))=Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},Y_{1},Y_{2}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Continuing inductively, for kk\in\mathbb{N},

Ent𝒰(tp(𝐗,Y1,,Yk))=Ent𝒰(tp(𝐗)).\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},Y_{1},\dots,Y_{k}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Now to analyze Ent𝒰(tp(𝐗,𝐘))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},\mathbf{Y})), suppose 𝐫(0,)𝒩\mathbf{r}\in(0,\infty)^{\mathcal{N}\sqcup\mathbb{N}} and ϵ>0\epsilon>0 and FF\subseteq\mathbb{N}\sqcup\mathbb{N} is finite. Then F{1,,k}F\subseteq\mathbb{N}\sqcup\{1,\dots,k\} for some kk\in\mathbb{N}. For every neighborhood 𝒪\mathcal{O} of tp(𝐗,Y1,,Yk)\operatorname{tp}^{\mathcal{M}}(\mathbf{X},Y_{1},\dots,Y_{k}), there is a corresponding neighborhood 𝒪\mathcal{O}^{\prime} of tp(𝐗,𝐘)\operatorname{tp}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}) given as the preimage of 𝒪\mathcal{O} under map restricting the type of an \mathbb{N}\sqcup\mathbb{N}-tuple to the type of the {1,,k}\mathbb{N}\sqcup\{1,\dots,k\}-subtuple. Since F{1,,k}F\subseteq\mathbb{N}\sqcup\{1,\dots,k\}, then

Ent𝐫,F,ϵ𝒰(𝒪)=Ent𝐫,F,ϵ𝒰(𝒪)\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}^{\prime})=\operatorname{Ent}_{\mathbf{r}^{\prime},F,\epsilon}^{\mathcal{U}}(\mathcal{O})

where 𝐫\mathbf{r}^{\prime} is the restriction of 𝐫\mathbf{r} to {1,,k}\mathbb{N}\sqcup\{1,\dots,k\}. This implies that

Ent𝐫,F,ϵ𝒰(tp(𝐗,𝐘))Ent𝐫,F,ϵ𝒰(tp(𝐗,Y1,,Yk))Ent𝒰(tp(𝐗,Y1,,Yk))=Ent𝒰(tp(𝐗)).\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}))\\ \leq\operatorname{Ent}_{\mathbf{r}^{\prime},F,\epsilon}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},Y_{1},\dots,Y_{k}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},Y_{1},\dots,Y_{k}))=\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Since 𝐫\mathbf{r}, FF, and ϵ\epsilon were arbitrary, Ent𝒰(tp(𝐗,𝐘))Ent𝒰(tp(𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})). Also, Ent𝒰(tp(𝐘))Ent𝒰(tp(𝐗,𝐘))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}))\leq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X},\mathbf{Y})) by Corollary 4.10. Since 𝐘\mathbf{Y} was an arbitrary \mathbb{N}-tuple in acl(𝒩)\operatorname{acl}(\mathcal{N}), we obtain Ent𝒰(acl(𝒩):)Ent𝒰(𝒩:)\operatorname{Ent}^{\mathcal{U}}(\operatorname{acl}(\mathcal{N}):\mathcal{M})\leq\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) as desired. ∎

5 Entropy for quantifier-free and existential types

In this section, we explain how Hayes’ 11-bounded entropy (or covering entropy for non-commutative laws) relates to the entropy for types in this paper. Specifically, the 11-bounded entropy for laws corresponds is the version for quantifier-free types and the 11-bounded entropy of 𝒩\mathcal{N} in the presence of a larger W\mathrm{W}^{*}-algebra \mathcal{M} is the version for existential types.

5.1 Entropy for quantifier-free types

We begin with the quantifier-free version, essentially the same as orbital version of h()h(\mathcal{M}) in [16, Appendix A].

Definition 5.1 (Entropy for quantifier-free types).

For 𝒦𝕊qf(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) and 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, we define

Γ𝐫(n)(𝒦)={𝐗jDrjMn():tpqfMn()(𝐗)𝒦}.\Gamma_{\mathbf{r}}^{(n)}(\mathcal{K})=\left\{\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{M_{n}(\mathbb{C})}:\operatorname{tp}_{\operatorname{qf}}^{M_{n}(\mathbb{C})}(\mathbf{X})\in\mathcal{K}\right\}.

Then we define for FF\subseteq\mathbb{N} finite and ϵ>0\epsilon>0,

Entqf,𝐫,F,ϵ𝒰(𝒦)=inf𝒪𝒦 open in 𝕊𝐫(Ttr)limn𝒰1n2logKF,ϵorb(Γ𝐫(n)(𝒪)),\operatorname{Ent}_{\operatorname{qf},\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})=\inf_{\mathcal{O}\supseteq\mathcal{K}\text{ open in }\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})),

and we set

Entqf𝒰(𝒦)=sup𝐫,F,ϵEntqf,𝐫,F,ϵ𝒰(𝒦).\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{K})=\sup_{\mathbf{r},F,\epsilon}\operatorname{Ent}_{\operatorname{qf},\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}).

For μ𝕊qf(Ttr)\mu\in\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}), let Entqf𝒰(μ)=Entqf𝒰({μ})\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mu)=\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\{\mu\}).

Some earlier works such as [16] phrased the definition of Entqf𝒰(μ)\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mu) in terms of particular open sets 𝒪k\mathcal{O}_{k} (for instance, those defined by looking at moments of order up to kk being within some distance 1/k1/k of the moments of μ\mu). This does not change the definition because of the following lemma.

Lemma 5.2.

Let 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}. Let 𝒦𝕊𝐫(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Let (𝒪k)k(\mathcal{O}_{k})_{k\in\mathbb{N}} be a sequence of open subsets of 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) such that 𝒪¯k+1𝒪k\overline{\mathcal{O}}_{k+1}\subseteq\mathcal{O}_{k} and k=1𝒪k=𝒦\bigcap_{k=1}^{\infty}\mathcal{O}_{k}=\mathcal{K}. Then

Ent𝐫,F,ϵ𝒰(𝒦)=limkEnt𝐫,F,ϵ𝒰(𝒪k)=infkEnt𝐫,F,ϵ𝒰(𝒪k).\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})=\lim_{k\to\infty}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k})=\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k}).

The same holds with 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}) and Ent𝒰\operatorname{Ent}^{\mathcal{U}} replaced by their quantifier-free versions.

Proof.

By Observation 4.3,

Ent𝐫,F,ϵ𝒰(𝒦)Ent𝐫,F,ϵ𝒰(𝒪k+1)Ent𝐫,F,ϵ𝒰(𝒪k),\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k+1})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k}),

so that

Ent𝐫,F,ϵ𝒰(𝒦)infkEnt𝐫,F,ϵ𝒰(𝒪k)=limkEnt𝐫,F,ϵ𝒰(𝒪k).\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})\leq\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k})=\lim_{k\to\infty}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k}).

For the inequality in the other direction, fix 𝒪𝒦\mathcal{O}\supseteq\mathcal{K} open. Then 𝕊𝐫(Ttr)𝒪\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\setminus\mathcal{O} is closed and disjoint from kk. Moreover, it is contained in 𝒦c=k𝒪kc=k𝒪¯kc\mathcal{K}^{c}=\bigcup_{k\in\mathbb{N}}\mathcal{O}_{k}^{c}=\bigcup_{k\in\mathbb{N}}\overline{\mathcal{O}}_{k}^{c}. By compactness, there is a finite subcollection of 𝒪¯kc\overline{\mathcal{O}}_{k}^{c}’s that covers 𝕊𝐫(Ttr)𝒪\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\setminus\mathcal{O}. The 𝒪k\mathcal{O}_{k}’s are nested, so there exists some kk such that 𝕊𝐫(Ttr)𝒪𝒪k¯c\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\setminus\mathcal{O}\subseteq\overline{\mathcal{O}_{k}}^{c}, hence 𝒪k𝕊𝐫(Ttr)𝒪\mathcal{O}_{k}\cap\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}})\subseteq\mathcal{O}. Therefore,

infkEnt𝐫,F,ϵ𝒰(𝒪k)Ent𝐫,F,ϵ𝒰(𝒪).\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}).

Since 𝒪\mathcal{O} was arbitrary,

infkEnt𝐫,F,ϵ𝒰(𝒪k)Ent𝐫,F,ϵ𝒰(𝒦).\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k})\leq\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}).

The argument for the quantifier-free case is identical. ∎

This lemma also allows us to relate the entropy Entqf𝒰\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}} for quantifier-free types directly to the entropy for types Ent𝒰\operatorname{Ent}^{\mathcal{U}}.

Lemma 5.3.

Let πqf:𝕊(Ttr)𝕊qf(Ttr)\pi_{\operatorname{qf}}:\mathbb{S}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) be the canonical restriction map. Let 𝒦𝕊qf(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) be closed. Then

Entqf𝒰(𝒦)=Ent𝒰(πqf1(𝒦)).\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{K})=\operatorname{Ent}^{\mathcal{U}}(\pi_{\operatorname{qf}}^{-1}(\mathcal{K})).
Proof.

Fix 𝐫(0,)𝒩\mathbf{r}\in(0,\infty)^{\mathcal{N}}, and let 𝒦𝐫=𝒦𝕊qf,𝐫(Ttr)\mathcal{K}_{\mathbf{r}}=\mathcal{K}\cap\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}). Since 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) is metrizable, there exists a sequence of open sets 𝒪k\mathcal{O}_{k} in 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) such that 𝒪¯k+1𝒪k\overline{\mathcal{O}}_{k+1}\subseteq\mathcal{O}_{k} and k𝒪k=𝒦𝐫\bigcap_{k\in\mathbb{N}}\mathcal{O}_{k}=\mathcal{K}_{\mathbf{r}} (and these can be extended to open sets in 𝕊qf(Ttr)\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) since the inclusion of 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) is a topological embedding). Now πqf1(𝒪k)\pi_{\operatorname{qf}}^{-1}(\mathcal{O}_{k}) is open in 𝕊𝐫(Ttr)\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) and πqf1(𝒪k+1)¯πqf1(𝒪¯k+1)πqf1(𝒪k)\overline{\pi_{\operatorname{qf}}^{-1}(\mathcal{O}_{k+1})}\subseteq\pi_{\operatorname{qf}}^{-1}(\overline{\mathcal{O}}_{k+1})\subseteq\pi_{\operatorname{qf}}^{-1}(\mathcal{O}_{k}) and kπqf1(𝒪k)=πqf1(𝒦𝐫)\bigcap_{k\in\mathbb{N}}\pi_{\operatorname{qf}}^{-1}(\mathcal{O}_{k})=\pi_{\operatorname{qf}}^{-1}(\mathcal{K}_{\mathbf{r}}). Note that Γ𝐫(n)(𝒪k)=Γ𝐫(n)(πqf1(𝒪k))\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}_{k})=\Gamma_{\mathbf{r}}^{(n)}(\pi_{\operatorname{qf}}^{-1}(\mathcal{O}_{k})). Thus, using the previous lemma,

Entqf,𝐫,F,ϵ𝒰(𝒦)\displaystyle\operatorname{Ent}_{\operatorname{qf},\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}) =Entqf,𝐫,F,ϵ𝒰(𝒦𝐫)\displaystyle=\operatorname{Ent}_{\operatorname{qf},\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}_{\mathbf{r}})
=infkEntqf,𝐫,F,ϵ(𝒪k)\displaystyle=\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\operatorname{qf},\mathbf{r},F,\epsilon}(\mathcal{O}_{k})
=infkEnt𝐫,F,ϵ(πqf1(𝒪k))\displaystyle=\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}(\pi_{\operatorname{qf}}^{-1}(\mathcal{O}_{k}))
=Ent𝐫,F,ϵ𝒰(πqf1(𝒦𝐫))\displaystyle=\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\pi_{\operatorname{qf}}^{-1}(\mathcal{K}_{\mathbf{r}}))
=Ent𝐫,F,ϵ𝒰(πqf1(𝒦)).\displaystyle=\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\pi_{\operatorname{qf}}^{-1}(\mathcal{K})).

Taking the supremum over 𝐫\mathbf{r}, FF, and ϵ\epsilon completes the argument. ∎

In particular, by combining this with the variational principle (Proposition 4.6), we obtain the following corollary.

Corollary 5.4.

Let πqf:𝕊(Ttr)𝕊qf(Ttr)\pi_{\operatorname{qf}}:\mathbb{S}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) be the restriction map. If μ𝕊qf(Ttr)\mu\in\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}), then

Entqf𝒰(μ)=supνπqf1(μ)Ent𝒰(ν).\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mu)=\sup_{\nu\in\pi_{\operatorname{qf}}^{-1}(\mu)}\operatorname{Ent}^{\mathcal{U}}(\nu).

This also implies that the quantifier-free entropy of tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}) only depends on W(𝐗)\mathrm{W}^{*}(\mathbf{X}), which is an important property of 11-bounded entropy previously established by Hayes in [16, Theorem A.9].

Corollary 5.5.

Let =(M,τ)\mathcal{M}=(M,\tau) be a tracial W\mathrm{W}^{*}-algebra. Let 𝐗\mathbf{X}, 𝐘M\mathbf{Y}\in M^{\mathbb{N}}. If W(𝐗)=W(𝐘)\mathrm{W}^{*}(\mathbf{X})=\mathrm{W}^{*}(\mathbf{Y}), then

Entqf𝒰(tpqf(𝐗))=Entqf𝒰(tpqf(𝐘)).\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}))=\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{Y})).
Proof.

By Proposition 3.32, there exist quantifier-free definable functions 𝐟\mathbf{f} and 𝐠\mathbf{g} such that 𝐟(𝐗)=𝐘\mathbf{f}^{\mathcal{M}}(\mathbf{X})=\mathbf{Y} and 𝐠(𝐘)=𝐗\mathbf{g}^{\mathcal{M}}(\mathbf{Y})=\mathbf{X}. If μπqf1(tpqf(𝐗))\mu\in\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})), then 𝐟μπqf1(tpqf(𝐘))\mathbf{f}_{*}\mu\in\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{Y})) since πqf𝐟=𝐟πqf\pi_{\operatorname{qf}}\circ\mathbf{f}_{*}=\mathbf{f}_{*}\circ\pi_{\operatorname{qf}}. Similarly, 𝐠\mathbf{g}_{*} maps πqf1(tpqf(𝐘))\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{Y})) into πqf1(tpqf(𝐗))\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})).

Since d(𝐟𝐠(𝐱),𝐱)d(\mathbf{f}\circ\mathbf{g}(\mathbf{x}),\mathbf{x}) is a quantifier-free definable predicate, its value only depends on the quantifier-free type of the input, and thus 𝐠𝒩𝐟𝒩(𝐙)=𝐙\mathbf{g}^{\mathcal{N}}\circ\mathbf{f}^{\mathcal{N}}(\mathbf{Z})=\mathbf{Z} whenever 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and tpqf𝒩(𝐙)=tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{N}}(\mathbf{Z})=\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}). In particular, if μπqf1(tpqf(𝐗))\mu\in\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})), then 𝐠𝐟μ=μ\mathbf{g}_{*}\mathbf{f}_{*}\mu=\mu. The same holds for 𝐠𝐟\mathbf{g}\circ\mathbf{f}. Hence, 𝐟\mathbf{f} and 𝐠\mathbf{g} define mutually inverse maps between πqf1(tpqf(𝐗))\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})) and πqf1(tpqf(𝐘))\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{Y})). Note also that πqf1(tpqf(𝐗))\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})) is contained in 𝕊𝐫(Ttr)\mathbb{S}_{\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) for some 𝐫\mathbf{r} by Remark 3.27. Therefore, by Proposition 4.7,

Ent𝒰(πqf1(tpqf𝒰(𝐗)))=Ent𝒰(πqf1(tpqf𝒰(𝐘))),\operatorname{Ent}^{\mathcal{U}}(\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{U}}(\mathbf{X})))=\operatorname{Ent}^{\mathcal{U}}(\pi_{\operatorname{qf}}^{-1}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{U}}(\mathbf{Y}))),

which implies the claimed result by Lemma 5.3. ∎

Furthermore, since the quantifier-free type does not depend on the ambient tracial W\mathrm{W}^{*}-algebra \mathcal{M}, it follows that if 𝐗\mathbf{X} and 𝐘\mathbf{Y} in different tracial W\mathrm{W}^{*}-algebras generate isomorphic tracial W\mathrm{W}^{*}-algebras, then their quantifier-free types have the same entropy. Hence, it is consistent to define for a separable tracial W\mathrm{W}^{*}-algebra \mathcal{M},

Entqf𝒰()=Entqf𝒰(tpqf(𝐗)),\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M})=\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})),

where 𝐗\mathbf{X} is an \mathbb{N}-tuple of generators for \mathcal{M} (for the definition of Entqf𝒰()\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M}) in the case of non-separable \mathcal{M}, see Remark 5.21 below). However, Remark 5.16 shows that there is no quantifier-free analog of monotonicity under pushforward (Proposition 4.7).

5.2 Existential types

Now we turn our attention to existential types.

Definition 5.6.

An existential formula in a language \mathcal{L} is a formula of the form

ϕ(𝐱)=infy1D1,,ykDkψ(𝐱,y1,,yk),\phi(\mathbf{x})=\inf_{y_{1}\in D_{1},\dots,y_{k}\in D_{k}}\psi(\mathbf{x},y_{1},\dots,y_{k}),

where ψ\psi is a quantifier-free formula and D1D_{1}, …, DkD_{k} are domains of quantification in the appropriate sorts. Similarly, we say that ϕ\phi is an existential definable predicate relative to T\mathrm{T} if

ϕ(𝐗)=inf𝐘jDjψ(𝐗,𝐘)\phi^{\mathcal{M}}(\mathbf{X})=\inf_{\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}}\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})

for T\mathcal{M}\models\mathrm{T}, where ψ\psi is a quantifier-free definable predicate.

Observation 5.7.

Any existential definable predicate can be approximated uniformly on each product of domains of quantification by an existential formula.

Definition 5.8.

Let \mathcal{M} be an \mathcal{L}-structure, 𝐒\mathbf{S} an \mathbb{N}-tuple of sorts, and 𝐗jSj\mathbf{X}\in\prod_{j\in\mathbb{N}}S_{j}^{\mathcal{M}}. Let ,𝐒\mathcal{F}_{\exists,\mathbf{S}} denote the space of existential formulas. The existential type tp(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}) is the map

tp(𝐗):,𝐒,ϕϕ(𝐗).\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}):\mathcal{F}_{\exists,\mathbf{S}}\to\mathbb{R},\phi\mapsto\phi^{\mathcal{M}}(\mathbf{X}).

If T\mathrm{T} is an \mathcal{L}-theory, we denote the set of existential types that arise in models of T\mathrm{T} by 𝕊,𝐒(T)\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}).

The topology for existential types, however, is not simply the weak-\star topology on 𝕊,𝐃(T)\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}) for each tuple of domains. Rather, we define neighborhoods of a type μ=tp(𝐗)\mu=\operatorname{tp}^{\mathcal{M}}(\mathbf{X}) using sets of the form {ν:ν(ϕ)<μ(ϕ)+ϵ}\{\nu:\nu(\phi)<\mu(\phi)+\epsilon\}. The idea is that if ϕ(𝐗)=inf𝐘jDjψ(𝐗,𝐘)\phi^{\mathcal{M}}(\mathbf{X})=\inf_{\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{j}^{\mathcal{M}}}\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y}) for some quantifier-free definable predicate ϕ\phi, then μ(ϕ)c\mu(\phi)\leq c means that there exists 𝐘\mathbf{Y} such that ψ(𝐗,𝐘)<c+δ\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})<c+\delta for any δ>0\delta>0. Thus, a neighborhood corresponds to types ν\nu where there exists 𝐘\mathbf{Y} that gets within ϵ\epsilon of the infimum achieved by μ\mu.

Definition 5.9.

Let T\mathrm{T} be an \mathcal{L}-theory, 𝐒\mathbf{S} an \mathbb{N}-tuple of sorts, and 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}. We say that 𝒪𝕊,𝐃(T)\mathcal{O}\subseteq\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}) is open if for every μ𝒪\mu\in\mathcal{O}, there exist existential formulas ϕ1\phi_{1}, …, ϕk\phi_{k} and ϵ1\epsilon_{1}, …, ϵk>0\epsilon_{k}>0 such that

{ν𝕊,𝐃(T):ν(ϕj)<μ(ϕj)+ϵj for j=1,,k}𝒪.\{\nu\in\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}):\nu(\phi_{j})<\mu(\phi_{j})+\epsilon_{j}\text{ for }j=1,\dots,k\}\subseteq\mathcal{O}.

Moreover, we say that 𝒪𝕊,𝐒(T)\mathcal{O}\subseteq\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}) is open if 𝒪𝕊,𝐃(T)\mathcal{O}\cap\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}) is open in 𝕊,𝐃(T)\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}) for all 𝐃j𝒟Sj\mathbf{D}\in\prod_{j\in\mathbb{N}}\mathcal{D}_{S_{j}}.

Observation 5.10.
  • Any set of the form {ν:ν(ϕ1)<c1,,ν(ϕk)<ck}\{\nu:\nu(\phi_{1})<c_{1},\dots,\nu(\phi_{k})<c_{k}\}, where ϕ1\phi_{1}, …, ϕk\phi_{k} are existential definable predicates, is open in 𝕊,𝐒(T)\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}).

  • The same holds if ϕj\phi_{j} is an existential definable predicate rather than existential formula, since it can be uniformly approximated by existential formulas on each product of domains of quantification, hence existential definable predicates may be used in Definition 5.9 without changing the definition.

  • The inclusion 𝕊,𝐃(T)𝕊,𝐒(T)\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T})\to\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}) is a topological embedding since each of the basic open sets in 𝕊,𝐃(T)\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}) given by ν(ϕj)<μ(ϕj)+ϵj\nu(\phi_{j})<\mu(\phi_{j})+\epsilon_{j} for j=1j=1, …, kk extends to an open set in 𝕊,𝐒(T)\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}).

  • The restriction map 𝕊𝐒(T)𝕊,𝐒(T)\mathbb{S}_{\mathbf{S}}(\mathrm{T})\to\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}) is continuous.

Remark 5.11.

Like the Zariski topology on the space of ideals in a commutative ring, the topology on 𝕊,𝐒(T)\mathbb{S}_{\exists,\mathbf{S}}(\mathrm{T}) is often non-Hausdorff. For instance, the closure of a point is given by

{μ}¯={ν:ν(ϕ)μ(ϕ) for all ϕ,𝐒}.\overline{\{\mu\}}=\{\nu:\nu(\phi)\geq\mu(\phi)\text{ for all }\phi\in\mathcal{F}_{\exists,\mathbf{S}}\}.

Meanwhile, the intersection of all neighborhoods of μ\mu is given by

𝒦μ={ν:ν(ϕ)μ(ϕ) for all ϕ,𝐒}.\mathcal{K}_{\mu}=\{\nu:\nu(\phi)\leq\mu(\phi)\text{ for all }\phi\in\mathcal{F}_{\exists,\mathbf{S}}\}. (5.1)

We say that ν\nu extends μ\mu if ν(ϕ)μ(ϕ)\nu(\phi)\leq\mu(\phi) for all existential formulas ϕ\phi, which is equivalent to saying that for ϕ,𝐒\phi\in\mathcal{F}_{\exists,\mathbf{S}}, we have μ(ϕ)=0\mu(\phi)=0 implies that ν(ϕ)=0\nu(\phi)=0 (since max(ϕc,0)\max(\phi-c,0) is an existential formula if ϕ\phi is). Then {μ}=𝒦μ\{\mu\}=\mathcal{K}_{\mu} if and only if it does have any proper extension, or it is maximal. These closed points correspond to existential types from existentially closed models (see [15, §6.2]), and such maximal existential types in 𝕊,𝐃(T)\mathbb{S}_{\exists,\mathbf{D}}(\mathrm{T}) form a compact Hausdorff space. However, our present goal is to work with general tracial W\mathrm{W}^{*}-algebras, not only those that are existentially closed.

5.3 Entropy for existential types

Here we define the entropy for existential types which corresponds to Hayes’ entropy of 𝒩\mathcal{N} in the presence of \mathcal{M}. We explain our definition in this subsection, and in the next one we relate it with Hayes’ definition.

Definition 5.12.

For 𝒦𝕊(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}), let

Γ𝐫(n)(𝒦)={𝐗jDrjMn():tpMn()(𝐗)𝒦},\Gamma_{\mathbf{r}}^{(n)}(\mathcal{K})=\{\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{M_{n}(\mathbb{C})}:\operatorname{tp}_{\exists}^{M_{n}(\mathbb{C})}(\mathbf{X})\in\mathcal{K}\},

and define for 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, FF\subseteq\mathbb{N}, finite, and ϵ>0\epsilon>0,

Ent,𝐫,F,ϵ𝒰(𝒦)=inf𝒪𝒦 openlimn𝒰1n2logKF,ϵorb(Γ𝐫(n)(𝒪)).\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K})=\inf_{\mathcal{O}\supseteq\mathcal{K}\text{ open}}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})).

Then let

Ent𝒰(𝒦)=sup𝐫,F,ϵEnt,𝐫,F,ϵ𝒰(𝒦).\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{K})=\sup_{\mathbf{r},F,\epsilon}\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}).

Because of the non-Hausdorff nature of 𝕊(Ttr)\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}), we will be content to focus on the existential entropy for an individual existential type rather than for a closed set of existential types.

Lemma 5.13.

Let μ𝕊(Ttr)\mu\in\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}), and let 𝒦μ\mathcal{K}_{\mu} be given by (5.1). Let π:𝕊(Ttr)𝕊(Ttr)\pi:\mathbb{S}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}) be the canonical restriction map. Then

Ent𝒰(μ)=Ent𝒰(π1(𝒦μ))=supνπ1(𝒦μ)Ent𝒰(ν).\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mu)=\operatorname{Ent}^{\mathcal{U}}\left(\pi^{-1}\left(\mathcal{K}_{\mu}\right)\right)=\sup_{\nu\in\pi^{-1}(\mathcal{K}_{\mu})}\operatorname{Ent}^{\mathcal{U}}(\nu).
Proof.

Fix 𝐫(0,)\mathbf{r}\in(0,\infty)^{\mathbb{N}}, FF\subseteq\mathbb{N} finite, and ϵ>0\epsilon>0. If 𝒪\mathcal{O} is a neighborhood of μ\mu in 𝕊(Ttr)\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}), then it contains 𝒦μ\mathcal{K}_{\mu}, and hence π1(𝒪)\pi^{-1}(\mathcal{O}) is a neighborhood of π1(𝒦μ)\pi^{-1}(\mathcal{K}_{\mu}) in 𝕊(Ttr)\mathbb{S}(\mathrm{T}_{\operatorname{tr}}). Moreover, Γ𝐫(n)(𝒪)=Γ𝐫(n)(π1(𝒪))\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O})=\Gamma_{\mathbf{r}}^{(n)}(\pi^{-1}(\mathcal{O})), hence

Ent𝐫,F,ϵ𝒰(π1(𝒦μ))Ent,𝐫,F,ϵ𝒰(μ).\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}\left(\pi^{-1}\left(\mathcal{K}_{\mu}\right)\right)\leq\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu).

It remains to show the reverse inequality. Since the space of definable predicates on jDrj\prod_{j\in\mathbb{N}}D_{r_{j}} relative to Ttr\mathrm{T}_{\operatorname{tr}} is separable with respect to the uniform metric, so is the space of existential definable predicates. Let (ϕj)j(\phi_{j})_{j\in\mathbb{N}} be a sequence of existential definable predicates that are dense in this space. Let

𝒪k={ν𝕊,𝐫(Ttr):ν(ϕj)<μ(ϕj)+1k for jk}.\mathcal{O}_{k}=\left\{\nu\in\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{j})<\mu(\phi_{j})+\frac{1}{k}\text{ for }j\leq k\right\}.

Note that

k𝒪k={ν𝕊,𝐫(Ttr):ν(ϕk)μ(ϕk) or k}=𝒦μ.\bigcap_{k\in\mathbb{N}}\mathcal{O}_{k}=\{\nu\in\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{k})\leq\mu(\phi_{k})\text{ or }k\in\mathbb{N}\}=\mathcal{K}_{\mu}.

Moreover,

π1(𝒪k+1)¯{ν𝕊(Ttr):ν(ϕj)μ(ϕj)+1k+1 for jk+1}π1(𝒪k).\overline{\pi^{-1}(\mathcal{O}_{k+1})}\subseteq\left\{\nu\in\mathbb{S}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{j})\leq\mu(\phi_{j})+\frac{1}{k+1}\text{ for }j\leq k+1\right\}\subseteq\pi^{-1}(\mathcal{O}_{k}).

Therefore, by Lemma 5.2 applied to π1(𝒪k)\pi^{-1}(\mathcal{O}_{k}), we have

Ent,𝐫,F,ϵ𝒰(μ)infkEnt,𝐫,F,ϵ𝒰(𝒪k)=infkEnt𝐫,F,ϵ𝒰(π1(𝒪k))=Ent𝐫,F,ϵ𝒰(π1(𝒦μ)),\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu)\leq\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{O}_{k})=\inf_{k\in\mathbb{N}}\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\pi^{-1}(\mathcal{O}_{k}))=\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\pi^{-1}(\mathcal{K}_{\mu})),

where the last equality follows from the density of {ϕk:k}\{\phi_{k}:k\in\mathbb{N}\}. Thus, Ent,𝐫,F,ϵ𝒰(μ)=Ent𝐫,F,ϵ𝒰(π1(𝒦μ))\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mu)=\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\pi^{-1}(\mathcal{K}_{\mu})). Taking the supremum over 𝐫\mathbf{r}, FF, and ϵ\epsilon yields the first asserted equality Ent𝒰(μ)=Ent𝒰(π1(𝒦μ))\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mu)=\operatorname{Ent}^{\mathcal{U}}(\pi^{-1}(\mathcal{K}_{\mu})). The second equality follows from the applying the variational principle (Proposition 4.6) to the closed set π1(𝒦μ)\pi^{-1}(\mathcal{K}_{\mu}). ∎

Like the entropy for full types, the entropy for existential types satisfies a certain monotonicity under pushforwards. First, to clarify the meaning of pushforward, note that if 𝐟\mathbf{f} is a quantifier-free definable function and ϕ\phi is an existential definable predicate, say

ϕ(𝐗)=inf𝐘jDrjψ(𝐗,𝐘) for Ttr,\phi^{\mathcal{M}}(\mathbf{X})=\inf_{\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}}\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})\text{ for }\mathcal{M}\models\mathrm{T}_{\operatorname{tr}},

where ψ\psi is a quantifier-free definable predicate, then

(ϕ𝐟)(𝐗)=inf𝐘jDrjψ(𝐟(𝐗),𝐘)(\phi\circ\mathbf{f})^{\mathcal{M}}(\mathbf{X})=\inf_{\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}}\psi^{\mathcal{M}}(\mathbf{f}(\mathbf{X}),\mathbf{Y})

is also an existential definable predicate. Hence, there is a well-defined pushforward map 𝐟:𝕊(Ttr)𝕊(Ttr)\mathbf{f}_{*}:\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}) given by 𝐟μ(ϕ)=μ(ϕ𝐟)\mathbf{f}_{*}\mu(\phi)=\mu(\phi\circ\mathbf{f}). Furthermore, 𝐟\mathbf{f}_{*} is continuous with respect to the topology on 𝕊(Ttr)\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}) for the same reason that ϕ𝐟\phi\circ\mathbf{f} is an existential definable predicate whenever ϕ\phi is an existential definable predicate and 𝐟\mathbf{f} is a quantifier-free definable function.

The following lemma can be proved directly in a similar way to Proposition 4.7, as was essentially done by Hayes in [16]; compare also the proof of Proposition 5.23 below. However, as one of our main goals is to illuminate the model-theoretic nature of the existential entropy, we will give an argument to deduce this from Proposition 4.7.

Lemma 5.14.

Let μ𝕊(Ttr)\mu\in\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}) and let 𝐟\mathbf{f} be a quantifier-free definable function relative to Ttr\mathrm{T}_{\operatorname{tr}}. Then

Ent𝒰(𝐟μ)Ent𝒰(μ).\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathbf{f}_{*}\mu)\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mu).
Proof.

Let π:𝕊(Ttr)𝕊(Ttr)\pi:\mathbb{S}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}) be the restriction map. Let

𝒦=𝒦μ={ν𝕊(Ttr):ν(ϕ)μ(ϕ) for existential ϕ},\mathcal{K}=\mathcal{K}_{\mu}=\{\nu\in\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi)\leq\mu(\phi)\text{ for existential }\phi\},

and similarly, let 𝒦=𝒦𝐟μ\mathcal{K}^{\prime}=\mathcal{K}_{\mathbf{f}_{*}\mu}. By Lemma 5.13,

Ent𝒰(μ)\displaystyle\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mu) =Ent𝒰(𝒦)=Ent𝒰(π1(𝒦))\displaystyle=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{K})=\operatorname{Ent}^{\mathcal{U}}(\pi^{-1}(\mathcal{K}))
Ent𝒰(𝐟μ)\displaystyle\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathbf{f}_{*}\mu) =Ent𝒰(𝒦)=Ent𝒰(π1(𝒦)).\displaystyle=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{K}^{\prime})=\operatorname{Ent}^{\mathcal{U}}(\pi^{-1}(\mathcal{K}^{\prime})).

Meanwhile, by Proposition 4.7, Corollary 4.9, and Remark 3.27,

Ent𝒰(𝐟π1(𝒦))Ent𝒰(π1(𝒦)).\operatorname{Ent}^{\mathcal{U}}(\mathbf{f}_{*}\pi^{-1}(\mathcal{K}))\leq\operatorname{Ent}^{\mathcal{U}}(\pi^{-1}(\mathcal{K})).

Therefore, it suffices to show that π1(𝒦)=𝐟(π1(𝒦))\pi^{-1}(\mathcal{K}^{\prime})=\mathbf{f}_{*}(\pi^{-1}(\mathcal{K})).

By continuity of the pushforward on the space of existential types, it follows that 𝐟(𝒦)𝒦\mathbf{f}_{*}(\mathcal{K})\subseteq\mathcal{K}^{\prime}, and hence

𝐟(π1(𝒦))π1(𝐟(𝒦))π1(𝒦).\mathbf{f}_{*}(\pi^{-1}(\mathcal{K}))\subseteq\pi^{-1}(\mathbf{f}_{*}(\mathcal{K}))\subseteq\pi^{-1}(\mathcal{K}^{\prime}).

To prove the reverse inclusion, fix νπ1(𝒦)\nu\in\pi^{-1}(\mathcal{K}^{\prime}). Fix 𝐫\mathbf{r} such that 𝒦𝕊,𝐫(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) and 𝐫\mathbf{r}^{\prime} such that 𝐟\mathbf{f} maps jDrj\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}} into jDrj\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}} for Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}}. For FF\subseteq\mathbb{N} finite and ϕ1\phi_{1}, …, ϕk\phi_{k} existential definable predicates, consider the definable predicate

ψ(𝐘)=inf𝐗jDrj[jFd(fj(𝐗),Yj)+j=1kmax(0,ϕj(𝐗)μ(ϕj))].\psi^{\mathcal{M}}(\mathbf{Y})=\inf_{\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}}\left[\sum_{j\in F}d^{\mathcal{M}}(f_{j}^{\mathcal{M}}(\mathbf{X}),Y_{j})+\sum_{j=1}^{k}\max(0,\phi_{j}^{\mathcal{M}}(\mathbf{X})-\mu(\phi_{j}))\right].

Then ψ\psi is an existential definable predicate: Indeed, if ϕi(𝐗)=inf𝐙jDri,jηi(𝐗,𝐙)\phi_{i}^{\mathcal{M}}(\mathbf{X})=\inf_{\mathbf{Z}\in\prod_{j\in D_{r_{i,j}}}}\eta_{i}^{\mathcal{M}}(\mathbf{X},\mathbf{Z}), where η\eta is quantifier-free then

ψ(𝐘)=inf𝐗jDrjinf𝐙ijDri,jfor i=1,,k[jFd(fj(𝐗),Yj)+i=1kmax(0,ηi(𝐗,𝐙i)μ(ϕi))].\psi^{\mathcal{M}}(\mathbf{Y})=\inf_{\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}}\inf_{\begin{subarray}{c}\mathbf{Z}_{i}\in\prod_{j\in\mathbb{N}}D_{r_{i,j}}^{\mathcal{M}}\\ \text{for }i=1,\dots,k\end{subarray}}\left[\sum_{j\in F}d^{\mathcal{M}}(f_{j}^{\mathcal{M}}(\mathbf{X}),Y_{j})+\sum_{i=1}^{k}\max(0,\eta_{i}^{\mathcal{M}}(\mathbf{X},\mathbf{Z}_{i})-\mu(\phi_{i}))\right].

Since νπ1(𝒦)\nu\in\pi^{-1}(\mathcal{K}^{\prime}), it follows that

ν(ψ)𝐟μ(ψ)=0;\nu(\psi)\leq\mathbf{f}_{*}\mu(\psi)=0;

this last equality holds because if tp𝒩(𝐗)=μ\operatorname{tp}_{\exists}^{\mathcal{N}}(\mathbf{X}^{\prime})=\mu and 𝐘=𝐟(𝐗)\mathbf{Y}^{\prime}=\mathbf{f}_{*}(\mathbf{X}^{\prime}), then ψ𝒩(𝐘)=0\psi^{\mathcal{N}}(\mathbf{Y}^{\prime})=0 since 𝐗\mathbf{X}^{\prime} participates in the infimum defining ψ𝒩(𝐘)\psi^{\mathcal{N}}(\mathbf{Y}^{\prime}).

Unwinding the definition of ν(ψ)0\nu(\psi)\leq 0, we have shown that for every ϵ>0\epsilon>0 and FF\subseteq\mathbb{N} finite and ϕ1\phi_{1}, …, ϕk\phi_{k} existential definable predicates, there exist Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐘L()\mathbf{Y}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} and 𝐗L()\mathbf{X}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} with tp(𝐘)=ν\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})=\nu and

jFd(fj(𝐗),Yj)+j=1kmax(0,ϕj(𝐗)μ(ϕj))<ϵ.\sum_{j\in F}d^{\mathcal{M}}(f_{j}^{\mathcal{M}}(\mathbf{X}),Y_{j})+\sum_{j=1}^{k}\max(0,\phi_{j}^{\mathcal{M}}(\mathbf{X})-\mu(\phi_{j}))<\epsilon.

Using an ultraproduct argument (or equivalently using the compactness theorem in continuous model theory, [3, Theorem 5.8], [4, Corollary 2.16]), there exists some \mathcal{M} and 𝐗\mathbf{X} and 𝐘\mathbf{Y} such that tp(𝐘)=ν\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})=\nu and

d(Yj,fj(𝐗))=0 and ϕ(𝐗)μ(ϕ) for all existential definable predicates ϕ.d^{\mathcal{M}}(Y_{j},f_{j}^{\mathcal{M}}(\mathbf{X}))=0\text{ and }\phi^{\mathcal{M}}(\mathbf{X})\leq\mu(\phi)\text{ for all existential definable predicates }\phi.

This implies that tp(𝐗)𝒦μ=𝒦\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})\in\mathcal{K}_{\mu}=\mathcal{K}, hence tp(𝐗)π1(𝒦)\operatorname{tp}^{\mathcal{M}}(\mathbf{X})\in\pi^{-1}(\mathcal{K}). Therefore, ν=tp(𝐘)=𝐟tp(𝐗)𝐟(π1(𝒦))\nu=\operatorname{tp}^{\mathcal{M}}(\mathbf{Y})=\mathbf{f}_{*}\operatorname{tp}^{\mathcal{M}}(\mathbf{X})\in\mathbf{f}_{*}(\pi^{-1}(\mathcal{K})) as desired. ∎

The next corollary follows from Lemma 5.14 and Proposition 3.32.

Corollary 5.15.

If Ttr\mathcal{M}\models\mathrm{T}_{\operatorname{tr}} and 𝐗\mathbf{X}, 𝐘L()\mathbf{Y}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} and W(𝐘)W(𝐗)\mathrm{W}^{*}(\mathbf{Y})\subseteq\mathrm{W}^{*}(\mathbf{X}), then

Ent𝒰(tp(𝐘))Ent𝒰(tp(𝐗)).\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}))\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

In particular, if W(𝐗)=W(𝐘)\mathrm{W}^{*}(\mathbf{X})=\mathrm{W}^{*}(\mathbf{Y}), then Ent𝒰(tp(𝐘))=Ent𝒰(tp(𝐗))\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{Y}))=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M}}(\mathbf{X})).

Remark 5.16.

The monotonicity property fails for the quantifier-free entropy. For instance, let \mathcal{M} be the von Neumann algebra of the free group 𝔽2\mathbb{F}_{2} and \mathcal{R} the hyperfinite II1\mathrm{II}_{1} factor. Then Entqf𝒰()=\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M})=\infty but Entqf𝒰(¯)=0\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M}\overline{\otimes}\mathcal{R})=0 (by the same reasoning as in Corollary 1.4). The proof of Lemma 5.19 breaks down because if π:𝕊(Ttr)𝕊qf(Ttr)\pi:\mathbb{S}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) is the restriction map, then π1(𝐟μ)𝐟(π1(μ))\pi^{-1}(\mathbf{f}_{*}\mu)\neq\mathbf{f}_{*}(\pi^{-1}(\mu)) in general. Given a 𝐘\mathbf{Y} with tpqf(𝐘)=𝐟μ\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{Y})=\mathbf{f}_{*}\mu, in order to show the existence of some 𝐗\mathbf{X} with 𝐟(𝐗)𝐘\mathbf{f}^{\mathcal{M}}(\mathbf{X})\approx\mathbf{Y}, we would have to use an existential formula in 𝐘\mathbf{Y}.

Now come to the definition of existential entropy for 𝒩\mathcal{N}\subseteq\mathcal{M}, which we will show in §5.4 is equivalent to Hayes’ h(𝒩:)h(\mathcal{N}:\mathcal{M}).

Definition 5.17.

Let \mathcal{M} be a tracial W\mathrm{W}^{*}-algebra and 𝒩\mathcal{N}\subseteq\mathcal{M} a W\mathrm{W}^{*}-subalgebra. Then define

Ent𝒰(𝒩:):=sup𝐗L(𝒩)Ent𝒰(tp(𝐗)).\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}):=\sup_{\mathbf{X}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}}\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})).

The following is immediate from Corollary 5.15.

Corollary 5.18.

Let \mathcal{M} be a tracial W\mathrm{W}^{*}-algebra and 𝒩\mathcal{N}\subseteq\mathcal{M} a W\mathrm{W}^{*}-subalgebra. If 𝐗L(𝒩)\mathbf{X}\in L^{\infty}(\mathcal{N})^{\mathbb{N}} generates 𝒩\mathcal{N}, then Ent𝒰(𝒩:)=Ent𝒰(tp(𝐗))\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})).

Lemma 5.19.

Let 123\mathcal{M}_{1}\subseteq\mathcal{M}_{2}\subseteq\mathcal{M}_{3} be a tracial W\mathrm{W}^{*}-algebras. Then

Ent𝒰(1:3)Ent𝒰(2:3) and Ent𝒰(1:3)Ent𝒰(1:2).\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}_{1}:\mathcal{M}_{3})\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}_{2}:\mathcal{M}_{3})\text{ and }\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}_{1}:\mathcal{M}_{3})\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}_{1}:\mathcal{M}_{2}).
Proof.

The first inequality is immediate from Definition 5.17. For the second inequality, note that for every 𝐗L(1)\mathbf{X}\in L^{\infty}(\mathcal{M}_{1})^{\mathbb{N}}, for every existential formula ϕ\phi, we have ϕ3(𝐗)ϕ2(𝐗)\phi^{\mathcal{M}_{3}}(\mathbf{X})\leq\phi^{\mathcal{M}_{2}}(\mathbf{X}) since the first is the infimum over a larger set than the second. In other words, tp3(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}_{3}}(\mathbf{X}) is an extension of tp2(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}_{2}}(\mathbf{X}), and hence every neighborhood of tp2(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}_{2}}(\mathbf{X}) is also a neighborhood of tp3(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}_{3}}(\mathbf{X}). This implies that Ent𝒰(tp3(𝐗))Ent𝒰(tp2(𝐗))\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}_{3}}(\mathbf{X}))\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}_{2}}(\mathbf{X})). Since this holds for all 𝐗L()\mathbf{X}\in L^{\infty}(\mathcal{M})^{\mathbb{N}}, we obtain Ent𝒰(1:3)Ent𝒰(1:2)\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}_{1}:\mathcal{M}_{3})\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}_{1}:\mathcal{M}_{2}). ∎

Next, we show that the quantifier-free entropy can be expressed in terms of the existential entropy.

Lemma 5.20.

Let \mathcal{M} be a separable tracial W\mathrm{W}^{*}-algebra. Then

Entqf𝒰()=Ent𝒰(:).\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M})=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}:\mathcal{M}).
Proof.

Suppose 𝐗L()\mathbf{X}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} generates \mathcal{M}. Fix 𝐫\mathbf{r} such that 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}}. Let π:𝕊(Ttr)𝕊qf(Ttr)\pi:\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) be the restriction map. It suffices to show that Ent,𝐫,F,ϵ(tp(𝐗))=Entqf,𝐫,F,ϵ𝒰(tpqf(𝐗))\operatorname{Ent}_{\exists,\mathbf{r},F,\epsilon}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}))=\operatorname{Ent}_{\operatorname{qf},\mathbf{r},F,\epsilon}^{\mathcal{U}}(\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})) for all 𝐫\mathbf{r}, FF, and ϵ\epsilon, which in turn will follow if we prove that every neighborhood 𝒪\mathcal{O}^{\prime} of tp(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}) in 𝕊,𝐫(Ttr)\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) contains π1(𝒪)\pi^{-1}(\mathcal{O}) for some neighborhood 𝒪\mathcal{O} of tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}) in 𝕊qf,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}) and vice versa.

Let 𝒪\mathcal{O} be a neighborhood of tpqf(𝐗)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X}). By the definition / properties of the weak-\star topology, there exist some quantifier-free definable predicates ϕ1\phi_{1}, …, ϕk\phi_{k} and intervals (ak,bk)(a_{k},b_{k}) such that

tpqf(𝐗){ν𝕊qf,𝐫(Ttr):ν(ϕi)(ai,bi) for i=1,,k}𝒪.\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\{\nu\in\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{i})\in(a_{i},b_{i})\text{ for }i=1,\dots,k\}\subseteq\mathcal{O}.

Then ϕi\phi_{i} and ϕi-\phi_{i} are both existential definable predicates, hence

π1(𝒪)𝒪:={ν𝕊,𝐫(Ttr):ν(ϕi)<bi,ν(ϕk)<ai for i=1,,k}.\pi^{-1}(\mathcal{O})\supseteq\mathcal{O}^{\prime}:=\{\nu\in\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{i})<b_{i},\nu(-\phi_{k})<-a_{i}\text{ for }i=1,\dots,k\}.

Conversely, let 𝒪\mathcal{O}^{\prime} be a neighborhood of tp(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}) in 𝕊,𝐫(𝐗)\mathbb{S}_{\exists,\mathbf{r}}(\mathbf{X}). Then there exists existential definable predicates ϕ1\phi_{1}, …, ϕk\phi_{k} and c1c_{1}, …, ckc_{k}\in\mathbb{R} such that

tp(𝐗){ν𝕊,𝐫(Ttr):ν(ϕi)<ci for i=1,,k}𝒪.\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})\in\{\nu\in\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{i})<c_{i}\text{ for }i=1,\dots,k\}\subseteq\mathcal{O}^{\prime}.

Suppose that

ϕi𝒩(𝐗)=inf𝐘jDri,j𝒩ψi𝒩(𝐗,𝐘)\phi_{i}^{\mathcal{N}}(\mathbf{X}^{\prime})=\inf_{\mathbf{Y}^{\prime}\in\prod_{j\in\mathbb{N}}D_{r_{i,j}}^{\mathcal{N}}}\psi_{i}^{\mathcal{N}}(\mathbf{X}^{\prime},\mathbf{Y}^{\prime})

for all 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐗L(𝒩)\mathbf{X}^{\prime}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}, where ψi\psi_{i} is quantifier-free. Because ϕi(𝐗)<ci\phi_{i}^{\mathcal{M}}(\mathbf{X})<c_{i}, there exists 𝐘ijDri,j\mathbf{Y}_{i}\in\prod_{j\in\mathbb{N}}D_{r_{i,j}}^{\mathcal{M}} with ψi(𝐗,𝐘i)<ci\psi_{i}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}_{i})<c_{i}. By Proposition 3.32, there exists a quantifier-free definable function 𝐟i\mathbf{f}_{i} such that 𝐘i=𝐟i(𝐗)\mathbf{Y}_{i}=\mathbf{f}_{i}^{\mathcal{M}}(\mathbf{X}) and 𝐟i𝒩\mathbf{f}_{i}^{\mathcal{N}} maps into jDri,j𝒩\prod_{j\in\mathbb{N}}D_{r_{i,j}}^{\mathcal{N}} for all 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}}. Let

ηi𝒩(𝐗)=ψi𝒩(𝐗,𝐟𝒩(𝐗))ϕi𝒩(𝐗).\eta_{i}^{\mathcal{N}}(\mathbf{X}^{\prime})=\psi_{i}^{\mathcal{N}}(\mathbf{X}^{\prime},\mathbf{f}^{\mathcal{N}}(\mathbf{X}^{\prime}))\geq\phi_{i}^{\mathcal{N}}(\mathbf{X}^{\prime}).

Then ηi\eta_{i} is quantifier-free. Thus,

tpqf(𝐗)𝒪:={ν𝕊qf,𝐫(Ttr):ν(ηi)<ci},\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X})\in\mathcal{O}:=\{\nu\in\mathbb{S}_{\operatorname{qf},\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\eta_{i})<c_{i}\},

and

π1(𝒪){ν𝕊,𝐫(Ttr):ν(ϕi)<ci for i=1,,k}𝒪\pi^{-1}(\mathcal{O})\subseteq\{\nu\in\mathbb{S}_{\exists,\mathbf{r}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{i})<c_{i}\text{ for }i=1,\dots,k\}\subseteq\mathcal{O}^{\prime}

as desired. ∎

Remark 5.21.

Therefore, it is natural to define Entqf𝒰()\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M}) for general (not necessarily separable \mathcal{M}) by Entqf𝒰():=Ent𝒰(:)\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M}):=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}:\mathcal{M}).

5.4 Existential entropy and entropy in the presence

Let us finally explain why the existential entropy defined here agrees with (the ultrafilter version of) Hayes’ 11-bounded entropy of 𝒩\mathcal{N} in the presence of \mathcal{M} in [16]. The definition is given in terms of Voiculescu’s microstate spaces for some 𝐗\mathbf{X} in the presence of 𝐘\mathbf{Y} from [33].

Definition 5.22 (Hayes [16]).

Let \mathcal{M} be a tracial W\mathrm{W}^{*}-algebra. Let II and JJ be arbitrary index sets and let 𝐗L()I\mathbf{X}\in L^{\infty}(\mathcal{M})^{I} and 𝐘L()J\mathbf{Y}\in L^{\infty}(\mathcal{M})^{J}. Let 𝐫(0,)I\mathbf{r}\in(0,\infty)^{I} and 𝐫(0,)J\mathbf{r}^{\prime}\in(0,\infty)^{J} such that Xjrj\lVert X_{j}\rVert\leq r_{j} and Yjrj\lVert Y_{j}\rVert\leq r_{j}^{\prime}. Let 𝕊𝐫,𝐫,qf(Ttr)\mathbb{S}_{\mathbf{r},\mathbf{r}^{\prime},\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}) be the set of quantifier-free types of tuples from iIDri×jJDrj\prod_{i\in I}D_{r_{i}}\times\prod_{j\in J}D_{r_{j}^{\prime}} equipped with the weak-\star topology. Let p:Mn()IJMn()Ip:M_{n}(\mathbb{C})^{I\sqcup J}\to M_{n}(\mathbb{C})^{I} be the canonical coordinate projection. Then we define

h𝐫,𝐫𝒰(𝐗:𝐘):=supϵ>0supFI finiteinf𝒪tpqf(𝐗,𝐘)limn𝒰1n2logKF,ϵorb(p[Γ𝐫,𝐫(n)(𝒪)]),h_{\mathbf{r},\mathbf{r}^{\prime}}^{\mathcal{U}}(\mathbf{X}:\mathbf{Y}):=\sup_{\epsilon>0}\sup_{F\subseteq I\text{ finite}}\inf_{\mathcal{O}\ni\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y})}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(p[\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O})]),

where 𝒪\mathcal{O} ranges over all neighborhoods of tpqf(𝐗,𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}) in 𝕊𝐫,𝐫,qf(Ttr)\mathbb{S}_{\mathbf{r},\mathbf{r}^{\prime},\operatorname{qf}}(\mathrm{T}_{\operatorname{tr}}).

Here we use arbitrary index sets II and JJ rather than \mathbb{N} because we do not assume that \mathcal{M} is separable. This is a technical issue we will have to consider when proving that our definition using \mathbb{N}-tuples agrees with Hayes.’ Apart from that, the idea of the proof is that a matrix tuple 𝐗\mathbf{X}^{\prime} is in the projection p[Γ𝐫,𝐫(n)(𝒪)]p[\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O})] if and only if there exists some 𝐘\mathbf{Y}^{\prime} such that tpqfMn()(𝐗,𝐘)𝒪\operatorname{tp}_{\operatorname{qf}}^{M_{n}(\mathbb{C})}(\mathbf{X}^{\prime},\mathbf{Y}^{\prime})\in\mathcal{O}. If 𝐗,𝐘\mathbf{X}^{\prime},\mathbf{Y}^{\prime} being in Γ𝐫,𝐫(n)(𝒪)\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O}) can be detected by a quantifier-free formula being less than some cc (using Urysohn’s lemma), then 𝐗\mathbf{X}^{\prime} being in p[Γ𝐫,𝐫(n)(𝒪)]p[\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O})] can be detected by an existential formula.

Proposition 5.23.

In the setup of Definition 5.22, we have h𝐫,𝐫𝒰(𝐗:𝐘)=Ent𝒰(W(𝐗):W(𝐗,𝐘))h_{\mathbf{r},\mathbf{r}^{\prime}}^{\mathcal{U}}(\mathbf{X}:\mathbf{Y})=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathrm{W}^{*}(\mathbf{X}):\mathrm{W}^{*}(\mathbf{X},\mathbf{Y})).

We remark at the start of the proof that all the facts we proved about definable predicates and functions work for arbitrary index sets, so long as they do not invoke metrizability of the type space. We also leave some details to the reader for the sake of space.

Proof.

We may assume without loss of generality that =W(𝐗,𝐘)\mathcal{M}=\mathrm{W}^{*}(\mathbf{X},\mathbf{Y}) since restricting to a smaller W\mathrm{W}^{*}-algebra does not change the quantifier-free type of (𝐗,𝐘)(\mathbf{X},\mathbf{Y}).

First, let us show that h𝐫,𝐫𝒰(𝐗:𝐘)Ent𝒰(W(𝐗):)h_{\mathbf{r},\mathbf{r}^{\prime}}^{\mathcal{U}}(\mathbf{X}:\mathbf{Y})\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathrm{W}^{*}(\mathbf{X}):\mathcal{M}). Let FIF\subseteq I finite and ϵ>0\epsilon>0. First, to deal with changing index sets from II to \mathbb{N}, let α:F\alpha:F\to\mathbb{N} be an injective function and let 𝐟\mathbf{f} be the quantifier-free definable function that sends an II-tuple 𝐗\mathbf{X}^{\prime} to the \mathbb{N}-tuple obtained by putting XjX_{j}^{\prime} into the α(j)\alpha(j)th entry for jFj\in F and fills the other entries with zeros. Let 𝐙=𝐟(𝐗)\mathbf{Z}=\mathbf{f}^{\mathcal{M}}(\mathbf{X}), fix some T(0,)\mathrm{T}\in(0,\infty)^{\mathbb{N}} with 𝐙jDtj𝒩\mathbf{Z}\in\prod_{j\in\mathbb{N}}D_{t_{j}}^{\mathcal{N}}, and let 𝒪\mathcal{O} be a neighborhood of μ=tp(𝐙)\mu=\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{Z}) in 𝕊,T(Ttr)\mathbb{S}_{\exists,\mathrm{T}}(\mathrm{T}_{\operatorname{tr}}). Then there exist existential definable predicates ϕ1\phi_{1}, …, ϕk\phi_{k} and ϵ1\epsilon_{1}, …, ϵk>0\epsilon_{k}>0 such that

{ν𝕊,T(Ttr):ν(ϕj)μ(ϕj)+ϵj for j=1,,k}𝒪.\{\nu\in\mathbb{S}_{\exists,\mathrm{T}}(\mathrm{T}_{\operatorname{tr}}):\nu(\phi_{j})\leq\mu(\phi_{j})+\epsilon_{j}\text{ for }j=1,\dots,k\}\subseteq\mathcal{O}.

There exist quantifier-free definable predicates ψ1\psi_{1}, …, ψk\psi_{k} such that

ϕj𝒩(𝐙)=inf𝐖iDti,j𝒩ψj𝒩(𝐙,𝐖) for all 𝒩 and 𝐙L(𝒩).\phi_{j}^{\mathcal{N}}(\mathbf{Z}^{\prime})=\inf_{\mathbf{W}^{\prime}\in\prod_{i\in\mathbb{N}}D_{t_{i,j}}^{\mathcal{N}}}\psi_{j}^{\mathcal{N}}(\mathbf{Z}^{\prime},\mathbf{W}^{\prime})\text{ for all }\mathcal{N}\text{ and }\mathbf{Z}^{\prime}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}.

Moreover, for our particular \mathcal{M} and 𝐙\mathbf{Z}, there exists 𝐖jiDti,j\mathbf{W}_{j}\in\prod_{i\in\mathbb{N}}D_{t_{i,j}}^{\mathcal{M}} such that

ψj(𝐙,𝐖j)<μ(ϕj)+ϵj.\psi_{j}^{\mathcal{M}}(\mathbf{Z},\mathbf{W}_{j})<\mu(\phi_{j})+\epsilon_{j}.

By Proposition 3.32, 𝐖j=𝐠j(𝐗,𝐘)\mathbf{W}_{j}=\mathbf{g}_{j}(\mathbf{X},\mathbf{Y}) for some quantifier-free definable function 𝐠j\mathbf{g}_{j}. Let ψj(𝐟,𝐠j)\psi_{j}(\mathbf{f},\mathbf{g}_{j}) denote the quantifier-free definable predicate defined for IJI\sqcup J-tuples by applying 𝐟\mathbf{f} to the II-tuple and 𝐠j\mathbf{g}_{j} to the IJI\sqcup J-tuple and then applying ψj\psi_{j}. Then

𝒪:=j=1k{σ𝕊qf,𝐫,𝐫(Ttr):σ(ψj(𝐟,𝐠j))<μ(ϕj)+ϵj}\mathcal{O}^{\prime}:=\bigcap_{j=1}^{k}\{\sigma\in\mathbb{S}_{\operatorname{qf},\mathbf{r},\mathbf{r}^{\prime}}(\mathrm{T}_{\operatorname{tr}}):\sigma(\psi_{j}(\mathbf{f},\mathbf{g}_{j}))<\mu(\phi_{j})+\epsilon_{j}\}

is a neighborhood of tpqf(𝐗,𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}) in 𝕊qf,𝐫,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r},\mathbf{r}^{\prime}}(\mathrm{T}_{\operatorname{tr}}) such that

p[Γ𝐫,𝐫(n)(𝒪)](𝐟Mn())1[ΓT(n)(𝒪)].p[\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O}^{\prime})]\subseteq(\mathbf{f}^{M_{n}(\mathbb{C})})^{-1}[\Gamma_{\mathrm{T}}^{(n)}(\mathcal{O})].

Therefore,

KF,ϵorb(p[Γ𝐫,𝐫(n)(𝒪)])Kα(F),ϵorb(ΓT(n)(𝒪)).K_{F,\epsilon}^{\operatorname{orb}}(p[\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O}^{\prime})])\leq K_{\alpha(F),\epsilon}^{\operatorname{orb}}(\Gamma_{\mathrm{T}}^{(n)}(\mathcal{O})).

Because for every such 𝒪\mathcal{O}, there exists such an 𝒪\mathcal{O}^{\prime}, we obtain that

inf𝒪tpqf(𝐗,𝐘)limn𝒰1n2logKF,ϵorb(p[Γ𝐫,𝐫(n)(𝒪)])Ent,α(F),ϵ𝒰(tp(𝐟(𝐗)))Ent𝒰(W(𝐗):).\inf_{\mathcal{O}^{\prime}\ni\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y})}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}^{\operatorname{orb}}(p[\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O}^{\prime})])\leq\operatorname{Ent}_{\exists,\alpha(F),\epsilon}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{f}(\mathbf{X})))\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathrm{W}^{*}(\mathbf{X}):\mathcal{M}).

Since FF and ϵ\epsilon were arbitrary, we are done with the first inequality.

To prove the second inequality, we must show that for all 𝐙W(𝐗)\mathbf{Z}\in\mathrm{W}^{*}(\mathbf{X})^{\mathbb{N}}, we have Ent(tp(𝐙))h𝐫,𝐫(𝐗:𝐘)\operatorname{Ent}_{\exists}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{Z}))\leq h_{\mathbf{r},\mathbf{r}^{\prime}}(\mathbf{X}:\mathbf{Y}). Fix 𝐙\mathbf{Z}, let T(0,)\mathrm{T}\in(0,\infty)^{\mathbb{N}} with Zjtj\lVert Z_{j}\rVert\leq t_{j}, and write 𝐙=𝐟(𝐗)\mathbf{Z}=\mathbf{f}^{\mathcal{M}}(\mathbf{X}) for some quantifier-free definable function 𝐟\mathbf{f} depending on countably many coordinates of 𝐗\mathbf{X}. Let 𝒪\mathcal{O}^{\prime} be a neighborhood of tpqf(𝐗,𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}). Note that 𝒪\mathcal{O}^{\prime} contains a neighborhood of μ\mu that depends only on finitely many coordinates of 𝐗\mathbf{X} and 𝐘\mathbf{Y}. By Urysohn’s lemma and Remark 3.33, there exists a quantifier-free definable predicate ψ\psi with values in [0,1][0,1] (depending on only finitely many coordinates) such that ψ(𝐗,𝐘)=0\psi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})=0 and

{σ𝕊qf,𝐫,𝐫(Ttr):σ(ψ)<1}𝒪.\{\sigma\in\mathbb{S}_{\operatorname{qf},\mathbf{r},\mathbf{r}^{\prime}}(\mathrm{T}_{\operatorname{tr}}):\sigma(\psi)<1\}\subseteq\mathcal{O}^{\prime}.

Fix FF\subseteq\mathbb{N} finite and ϵ(0,2)\epsilon\in(0,2), and consider the existential formula

ϕ𝒩(𝐙)=inf𝐗iIDri𝒩inf𝐘jJDrj𝒩(kFd𝒩(𝐟k𝒩(𝐗),𝐙k)+ψ𝒩(𝐗,𝐘)).\phi^{\mathcal{N}}(\mathbf{Z}^{\prime})=\inf_{\mathbf{X}^{\prime}\in\prod_{i\in I}D_{r_{i}}^{\mathcal{N}}}\inf_{\mathbf{Y}^{\prime}\in\prod_{j\in J}D_{r_{j}^{\prime}}^{\mathcal{N}}}\left(\sum_{k\in F}d^{\mathcal{N}}(\mathbf{f}_{k}^{\mathcal{N}}(\mathbf{X}^{\prime}),\mathbf{Z}_{k}^{\prime})+\psi^{\mathcal{N}}(\mathbf{X}^{\prime},\mathbf{Y}^{\prime})\right).

Because 𝐟\mathbf{f} and ψ\psi only depend on countably many coordinates, the infima can be expressed using only countably many variables, so this expression is a valid existential definable predicate. Moreover, note that for 𝐙kDtkMn()\mathbf{Z}^{\prime}\in\prod_{k\in\mathbb{N}}D_{t_{k}}^{M_{n}(\mathbb{C})}, we have

ϕMn()(𝐙)<ϵ2𝐙Nϵ/2(𝐟Mn()p(Γ𝐫,𝐫(n))(𝒪)).\phi^{M_{n}(\mathbb{C})}(\mathbf{Z}^{\prime})<\frac{\epsilon}{2}\implies\mathbf{Z}^{\prime}\in N_{\epsilon/2}(\mathbf{f}^{M_{n}(\mathbb{C})}\circ p(\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)})(\mathcal{O}^{\prime})).

Let 𝒪={μ𝕊,T(Ttr):μ(ϕ)<ϵ/2}\mathcal{O}=\{\mu\in\mathbb{S}_{\exists,\mathrm{T}}(\mathrm{T}_{\operatorname{tr}}):\mu(\phi)<\epsilon/2\}. By applying the uniform continuity of 𝐟\mathbf{f} (Lemma 3.19) for the given ϵ/2\epsilon/2 and FF in the target space, we obtain a corresponding FIF^{\prime}\subseteq I and δ>0\delta>0 such that

Kϵ,Forb(ΓT(n)(𝒪))Kϵ/2,Forb(𝐟Mn()p(Γ𝐫,𝐫(n))(𝒪))Kδ,Forb(p(Γ𝐫,𝐫(n)(𝒪))).K_{\epsilon,F}^{\operatorname{orb}}(\Gamma_{\mathrm{T}}^{(n)}(\mathcal{O}))\leq K_{\epsilon/2,F}^{\operatorname{orb}}(\mathbf{f}^{M_{n}(\mathbb{C})}\circ p(\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)})(\mathcal{O}^{\prime}))\leq K_{\delta,F^{\prime}}^{\operatorname{orb}}(p(\Gamma_{\mathbf{r},\mathbf{r}^{\prime}}^{(n)}(\mathcal{O}^{\prime}))).

Applying the definitions of the appropriate limits, suprema, and infima shows that Ent𝒰(tp(𝐙))h𝐫,𝐫(𝐗:𝐘)\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{Z}))\leq h_{\mathbf{r},\mathbf{r}^{\prime}}(\mathbf{X}:\mathbf{Y}). ∎

5.5 Applications to ultraproduct embeddings

Theorem 5.24.

Let 𝒩\mathcal{N}\subseteq\mathcal{M} be separable tracial W\mathrm{W}^{*}-algebras, and let 𝒬=n𝒰Mn()\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}). Suppose that Ent𝒰(𝒩:)0\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{N}:\mathcal{M})\geq 0. Then for every c<Ent𝒰(𝒩:)c<\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}), there exists an embedding ι:𝒬\iota:\mathcal{M}\to\mathcal{Q} such that Ent𝒰(ι(𝒩):𝒬)Ent𝒰(ι(𝒩):𝒬)>c\operatorname{Ent}_{\exists}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})\geq\operatorname{Ent}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})>c.

Proof.

Let 𝐗\mathbf{X} be an \mathbb{N}-tuple of generators for 𝒩\mathcal{N}. Let π:𝕊(Ttr)𝕊(Ttr)\pi:\mathbb{S}(\mathrm{T}_{\operatorname{tr}})\to\mathbb{S}_{\exists}(\mathrm{T}_{\operatorname{tr}}) be the restriction map. By Lemma 5.13,

c<Ent𝒰(tp(𝐗))=supμπ1(𝒦tp(𝐗))Ent𝒰(μ),c<\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}))=\sup_{\mu\in\pi^{-1}(\mathcal{K}_{\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})})}\operatorname{Ent}^{\mathcal{U}}(\mu),

so there exists a type μ\mu such that π(μ)𝒦tp(𝐗)\pi(\mu)\in\mathcal{K}_{\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})} and Ent𝒰(μ)>c\operatorname{Ent}^{\mathcal{U}}(\mu)>c. By Lemma 4.14, there exists 𝐗𝒬\mathbf{X}^{\prime}\in\mathcal{Q} with tp𝒬(𝐗)=μ\operatorname{tp}^{\mathcal{Q}}(\mathbf{X}^{\prime})=\mu. As in Corollary 4.15, there exists an embedding ι:𝒩𝒬\iota:\mathcal{N}\to\mathcal{Q} with ι(𝐗)=𝐗\iota(\mathbf{X})=\mathbf{X}^{\prime}. Observe that

Ent𝒰(ι(𝒩):𝒬)=Ent𝒰(tp𝒬(𝐗))Ent𝒰(tp𝒬(𝐗))=Ent𝒰(ι(𝒩):𝒬)=Ent𝒰(μ)>c,\operatorname{Ent}_{\exists}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\operatorname{tp}_{\exists}^{\mathcal{Q}}(\mathbf{X}^{\prime}))\geq\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{Q}}(\mathbf{X}^{\prime}))=\operatorname{Ent}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})=\operatorname{Ent}^{\mathcal{U}}(\mu)>c,

where we apply in order Corollary 5.18, Lemma 5.13, Observation 4.12, and the choice of μ\mu and 𝐗\mathbf{X}^{\prime}.

It only remains to show that ι\iota extends to an embedding of \mathcal{M}. Let 𝐘L()\mathbf{Y}\in L^{\infty}(\mathcal{M})^{\mathbb{N}} be a set of generators. Let 𝐫\mathbf{r} and 𝐫\mathbf{r}^{\prime} be such that 𝐗jDrj\mathbf{X}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{\mathcal{M}} and 𝐘jDrj\mathbf{Y}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{M}}. Since the quantifier-free type space 𝕊qf,𝐫,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r},\mathbf{r}^{\prime}}(\mathrm{T}_{\operatorname{tr}}) for \mathbb{N}\sqcup\mathbb{N}-tuples is metrizable, there exists a nonnegative continuous function on 𝕊qf,𝐫,𝐫(Ttr)\mathbb{S}_{\operatorname{qf},\mathbf{r},\mathbf{r}^{\prime}}(\mathrm{T}_{\operatorname{tr}}) that equals zero at and only at the point tpqf(𝐗,𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}). By Remark 3.33, this continuous function extends to a global quantifier-free definable predicate ϕ\phi. Let ψ\psi be the existential predicate given by

ψ𝒩(𝐙)=inf𝐖jDrj𝒩ϕ𝒩(𝐙,𝐖)\psi^{\mathcal{N}}(\mathbf{Z})=\inf_{\mathbf{W}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{N}}}\phi^{\mathcal{N}}(\mathbf{Z},\mathbf{W})

for 𝒩Ttr\mathcal{N}\models\mathrm{T}_{\operatorname{tr}} and 𝐙L(𝒩)\mathbf{Z}\in L^{\infty}(\mathcal{N})^{\mathbb{N}}. Thus, ψ(𝐗)ϕ(𝐗,𝐘)=0\psi^{\mathcal{M}}(\mathbf{X})\leq\phi^{\mathcal{M}}(\mathbf{X},\mathbf{Y})=0.

Because ψ\psi is existential and tp𝒬(𝐗)𝒦tp(𝐗)\operatorname{tp}_{\exists}^{\mathcal{Q}}(\mathbf{X}^{\prime})\in\mathcal{K}_{\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X})}, we have ψ𝒬(𝐗)ψ(𝐗)=0\psi^{\mathcal{Q}}(\mathbf{X}^{\prime})\leq\psi^{\mathcal{M}}(\mathbf{X})=0. We may write 𝐗=[𝐗(n)]n\mathbf{X}^{\prime}=[\mathbf{X}^{(n)}]_{n\in\mathbb{N}} where 𝐗(n)jDrjMn()\mathbf{X}^{(n)}\in\prod_{j\in\mathbb{N}}D_{r_{j}}^{M_{n}(\mathbb{C})} (this follows for instance from the construction of 𝐗\mathbf{X}^{\prime} through Lemma 4.14). Then

limn𝒰ψMn()(𝐗(n))=ψ𝒬(𝐗)=0,\lim_{n\to\mathcal{U}}\psi^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)})=\psi^{\mathcal{Q}}(\mathbf{X}^{\prime})=0,

hence there exists 𝐘(n)jDrjMn()\mathbf{Y}^{(n)}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{M_{n}(\mathbb{C})} such that

limn𝒰ϕMn()(𝐗(n),𝐘(n))=0.\lim_{n\to\mathcal{U}}\phi^{M_{n}(\mathbb{C})}(\mathbf{X}^{(n)},\mathbf{Y}^{(n)})=0.

Let 𝐘=[𝐘(n)]njDrj𝒬\mathbf{Y}^{\prime}=[\mathbf{Y}^{(n)}]_{n\in\mathbb{N}}\in\prod_{j\in\mathbb{N}}D_{r_{j}^{\prime}}^{\mathcal{Q}}. Then ϕ𝒬(𝐗,𝐘)=0\phi^{\mathcal{Q}}(\mathbf{X}^{\prime},\mathbf{Y}^{\prime})=0, and therefore, tpqf𝒬(𝐗,𝐘)=tpqf(𝐗,𝐘)\operatorname{tp}_{\operatorname{qf}}^{\mathcal{Q}}(\mathbf{X}^{\prime},\mathbf{Y}^{\prime})=\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{X},\mathbf{Y}). Hence, by Lemma 3.34, there exists an embedding ι:𝒬\iota^{\prime}:\mathcal{M}\to\mathcal{Q} with ι(𝐗,𝐘)=(𝐗,𝐘)\iota^{\prime}(\mathbf{X},\mathbf{Y})=(\mathbf{X}^{\prime},\mathbf{Y}^{\prime}). This is the desired extension of ι\iota. ∎

Remark 5.25.

Note that Ent𝒰(ι(𝒩):𝒬)Ent𝒰(𝒩:)\operatorname{Ent}_{\exists}^{\mathcal{U}}(\iota(\mathcal{N}):\mathcal{Q})\leq\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}) for any such embedding ι\iota. Thus, the point of the theorem is that some ι\iota can be chosen to make this inequality close to an equality. It is not obvious that there is an existential type in 𝒬\mathcal{Q} extending the tp(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}) with close to the same amount of entropy of μ\mu. The key ingredient is the variational principle (Proposition 4.6) applied through Lemma 5.13, which gives us not only an existential type tp𝒬(𝐗)\operatorname{tp}_{\exists}^{\mathcal{Q}}(\mathbf{X}^{\prime}) extending tp(𝐗)\operatorname{tp}_{\exists}^{\mathcal{M}}(\mathbf{X}) with large entropy, but even the full type tp𝒬(𝐗)\operatorname{tp}^{\mathcal{Q}}(\mathbf{X}^{\prime}) with large entropy.

In particular, the theorem shows that if Entqf𝒰()>0\operatorname{Ent}_{\operatorname{qf}}^{\mathcal{U}}(\mathcal{M})>0, then there exists an embedding of \mathcal{M} into 𝒬\mathcal{Q} with Ent𝒰(:𝒬)>0\operatorname{Ent}^{\mathcal{U}}(\mathcal{M}:\mathcal{Q})>0, and hence also h(:𝒬)=Ent𝒰(:𝒬)>0h(\mathcal{M}:\mathcal{Q})=\operatorname{Ent}_{\exists}^{\mathcal{U}}(\mathcal{M}:\mathcal{Q})>0.

6 Remarks on conditional entropy

In this section, we sketch how the previous results could be adapted to the setting of entropy relative to a W\mathrm{W}^{*}-subalgebra. However, we will not give the arguments in detail because we will not be giving any new applications of the conditional version of entropy. Our goal is mainly to complete our translation between the different flavors of microstate spaces in free entropy theory and the different flavors of types in the conditional setting.

Hayes’ original definition of 11-bounded entropy used microstate spaces relative to a fixed microstate sequence for some self-adjoint element with diffuse spectrum. He then showed that this was equivalent to the 11-bounded entropy defined through unitary orbits (the definition that we have used so far in this paper). As remarked in [17, §4.1], the same reasoning shows that orbital 11-bounded entropy is equivalent to 11-bounded entropy relative to fixed microstates for any diffuse amenable W\mathrm{W}^{*}-subalgebra 𝒫\mathcal{P} of \mathcal{M}. In fact, one can formulate the definition of 11-bounded entropy of \mathcal{M} relative to any W\mathrm{W}^{*}-subalgebra 𝒜\mathcal{A} with a fixed choice of microstates 𝐘(n)\mathbf{Y}^{(n)} with limn𝒰tpqfMn()(𝐘(n))=tpqf(𝐘)\lim_{n\to\mathcal{U}}\operatorname{tp}_{\operatorname{qf}}^{M_{n}(\mathbb{C})}(\mathbf{Y}^{(n)})=\operatorname{tp}_{\operatorname{qf}}^{\mathcal{M}}(\mathbf{Y}). Unlike the case where 𝒜\mathcal{A} is amenable, the 11-bounded entropy relative to 𝒜\mathcal{A} may, as far as we know, depend on the choice of microstates for 𝒜\mathcal{A}, and in general it will not coincide with the orbital 11-bounded entropy. Nonetheless, relative 11-bounded entropy for general 𝒜\mathcal{A} has a natural motivation in terms of ultraproduct embeddings: Fixing 𝒜𝒩\mathcal{A}\subseteq\mathcal{N}\subseteq\mathcal{M} and an embedding ι:𝒜𝒬:=n𝒰Mn()\iota:\mathcal{A}\to\mathcal{Q}:=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}), a relative 11-bounded entropy h(𝒩:|𝒜,ι)h(\mathcal{N}:\mathcal{M}|\mathcal{A},\iota) would quantify the amount of embeddings of ι:𝒩𝒬\iota^{\prime}:\mathcal{N}\to\mathcal{Q} that extend ι\iota and which admit some extension ι′′:𝒬\iota^{\prime\prime}:\mathcal{M}\to\mathcal{Q}.

Just as we have interpreted the entropy in the presence as corresponding to existential types in the model-theoretic framework, relative entropy naturally corresponds to types over 𝒜\mathcal{A}. Types over 𝒜\mathcal{A} represent types in a language tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}} described as follows. Let 𝒜\mathcal{A} be a separable tracial W\mathrm{W}^{*}-algebra. Let tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}} be the language obtained by adding to tr\mathcal{L}_{\operatorname{tr}} a constant symbol α(a)Da\alpha(a)\in D_{\lVert a\rVert} for each a𝒜a\in\mathcal{A}.

Let Ttr,𝒜\mathrm{T}_{\operatorname{tr},\mathcal{A}} be the tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}} theory obtained from Ttr\mathrm{T}_{\operatorname{tr}} by adding the (infinite family of) axioms

  • α(a+b)=α(a)+α(b)\alpha(a+b)=\alpha(a)+\alpha(b) for each a,b𝒜a,b\in\mathcal{A}.

  • α(λa)=λα(a)\alpha(\lambda a)=\lambda\alpha(a) for a𝒜a\in\mathcal{A} and λ\lambda\in\mathbb{C}.

  • α(ab)=α(a)α(b)\alpha(ab)=\alpha(a)\alpha(b) for a,b𝒜a,b\in\mathcal{A}.

  • α(a)=α(a)\alpha(a^{*})=\alpha(a)^{*} for a𝒜a\in\mathcal{A}.

  • α(1)=1\alpha(1)=1.

  • Retrα(a)=τ𝒜(a)\operatorname{Re}\operatorname{tr}\alpha(a)=\tau_{\mathcal{A}}(a) where τ𝒜\tau_{\mathcal{A}} is the given trace on the tracial W\mathrm{W}^{*}-algebra 𝒜\mathcal{A}.

We leave it as an exercise to the reader to verify that every model of Ttr,𝒜\mathrm{T}_{\operatorname{tr},\mathcal{A}} is given by a tracial W\mathrm{W}^{*}-algebra \mathcal{M} together with an embedding (unital, trace-preserving *-homomorphism) α:𝒜\alpha:\mathcal{A}\to\mathcal{M}, and conversely every such embedding defines a model of Ttr,𝒜\mathrm{T}_{\operatorname{tr},\mathcal{A}}. Given a tracial W\mathrm{W}^{*}-algebra \mathcal{M} and an inclusion α:𝒜\alpha:\mathcal{A}\to\mathcal{M}, the tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}}-type of a tuple 𝐗\mathbf{X} is also known as the type of 𝐗\mathbf{X} over 𝒜\mathcal{A} and denoted tp(𝐗/𝒜)\operatorname{tp}^{\mathcal{M}}(\mathbf{X}/\mathcal{A}).

Next, we want to define versions of entropy for quantifier-free, full, and existential types over 𝒜\mathcal{A}, using covering numbers for microstate spaces corresponding to neighborhoods of the type over 𝒜\mathcal{A}. Unfortunately, we cannot use neighborhoods in the space of tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}}-types 𝕊𝒜(Ttr,𝒜)\mathbb{S}_{\mathcal{A}}(\mathrm{T}_{\operatorname{tr},\mathcal{A}}) because the matrix algebra Mn()M_{n}(\mathbb{C}) could never be a model of Ttr,𝒜\mathrm{T}_{\operatorname{tr},\mathcal{A}} since it cannot contain a copy of 𝒜\mathcal{A} unless 𝒜\mathcal{A} is finite-dimensional. In other words, the issue is that we must work with approximate embeddings αn:𝒜Mn()\alpha_{n}:\mathcal{A}\to M_{n}(\mathbb{C}) rather than literal embeddings, since the latter may not exist. Thus, we will look at tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}} structures that satisfy Ttr\mathrm{T}_{\operatorname{tr}} but not necessarily Ttr,𝒜T_{\operatorname{tr},\mathcal{A}}, which are tracial von Neumann algebras together with a function α:𝒜\alpha:\mathcal{A}\to\mathcal{M} that is not necessarily is a *-homomorphism or even linear but does satisfy α(a)a\lVert\alpha(a)\rVert\leq\lVert a\rVert for a𝒜a\in\mathcal{A}. We will denote by 𝕊𝒜(Ttr)\mathbb{S}_{\mathcal{A}}(T_{\operatorname{tr}}) the set of tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}}-types that arise from models of TtrT_{\operatorname{tr}}, so that 𝕊𝒜(Ttr)S𝒜(Ttr,𝒜)\mathbb{S}_{\mathcal{A}}(\mathrm{T}_{\operatorname{tr}})\supseteq S_{\mathcal{A}}(\mathrm{T}_{\operatorname{tr},\mathcal{A}}).

Given a sequence of functions αn:𝒜Mn()\alpha_{n}:\mathcal{A}\to M_{n}(\mathbb{C}) and 𝒪S𝒜(Ttr)\mathcal{O}\subseteq S_{\mathcal{A}}(T_{\operatorname{tr}}), we define the microstate space

Γ𝐫(n)(𝒪αn)={𝐗Mn():tpMn(),αn(𝐗)𝒪},\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}\mid\alpha_{n})=\{\mathbf{X}\in M_{n}(\mathbb{C})^{\mathbb{N}}:\operatorname{tp}^{M_{n}(\mathbb{C}),\alpha_{n}}(\mathbf{X})\in\mathcal{O}\},

where tpMn(),αn(𝐗)\operatorname{tp}^{M_{n}(\mathbb{C}),\alpha_{n}}(\mathbf{X}) is the 𝒜\mathcal{L}_{\mathcal{A}} type of 𝐗\mathbf{X} in the 𝒜\mathcal{L}_{\mathcal{A}} structure given by Mn()M_{n}(\mathbb{C}) and αn:𝒜Mn()\alpha_{n}:\mathcal{A}\to M_{n}(\mathbb{C}). We are interested only in the case when (αn)n(\alpha_{n})_{n\in\mathbb{N}} defines a trace-preserving *-homomorphism α:𝒜𝒬=n𝒰Mn()\alpha:\mathcal{A}\to\mathcal{Q}=\prod_{n\to\mathcal{U}}M_{n}(\mathbb{C}). Then for a closed set 𝒦𝕊𝒜(Ttr,𝒜)𝕊𝒜(Ttr)\mathcal{K}\subseteq\mathbb{S}_{\mathcal{A}}(\mathrm{T}_{\operatorname{tr},\mathcal{A}})\subseteq\mathbb{S}_{\mathcal{A}}(\mathrm{T}_{\operatorname{tr}}), we define

Ent𝐫,F,ϵ𝒰(𝒦α)=inf𝒪𝒦 openlimn𝒰1n2logKF,ϵ(Γ𝐫(n)(𝒪α),\operatorname{Ent}_{\mathbf{r},F,\epsilon}^{\mathcal{U}}(\mathcal{K}\mid\alpha)=\inf_{\mathcal{O}\supseteq\mathcal{K}\text{ open}}\lim_{n\to\mathcal{U}}\frac{1}{n^{2}}\log K_{F,\epsilon}(\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}\mid\alpha),

where the infimum is over all open neighborhoods of 𝒦\mathcal{K} in S𝒜(Ttr)S_{\mathcal{A}}(\mathrm{T}_{\operatorname{tr}}), and then let Ent𝒰(𝒦α)\operatorname{Ent}^{\mathcal{U}}(\mathcal{K}\mid\alpha) be the supremum over 𝐫\mathbf{r}, FF, and ϵ\epsilon.

As the notation above suggests, it turns out that this quantity only depends on the embedding α:𝒜𝒬\alpha:\mathcal{A}\to\mathcal{Q}, not on the particular lift (αn)n(\alpha_{n})_{n\in\mathbb{N}}. To see this, suppose βn\beta_{n} is another such lift, so that for every a𝒜a\in\mathcal{A} we have dMn()(αn(a),βn(a))0d^{M_{n}(\mathbb{C})}(\alpha_{n}(a),\beta_{n}(a))\to 0 as n𝒰n\to\mathcal{U}. Using Urysohn’s lemma, taking a smaller neighborhood if necessary, we can assume the neighborhood 𝒪\mathcal{O} is given by ϕ<δ\phi<\delta for some nonnegative formula ϕ(x1,x2,)\phi(x_{1},x_{2},\dots) in tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}}. Then ϕ\phi can be equivalently viewed as an tr\mathcal{L}_{\operatorname{tr}} formula in the variables xjx_{j} together with additional variables corresponding to the elements of 𝒜\mathcal{A}. By uniform continuity of the formulas, |ϕ(𝐗,αn(a))a𝒜)ϕ(𝐗,(βn(a))a𝒜)|<δ/2|\phi(\mathbf{X},\alpha_{n}(a))_{a\in\mathcal{A}})-\phi(\mathbf{X},(\beta_{n}(a))_{a\in\mathcal{A}})|<\delta/2 for nn in a small enough neighborhood of 𝒰\mathcal{U}. Thus, if the neighborhood 𝒪\mathcal{O}^{\prime} is given by ϕ<δ/2\phi<\delta/2, we get Γ𝐫(n)(𝒪βn)Γ𝐫(n)(𝒪αn)\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}^{\prime}\mid\beta_{n})\subseteq\Gamma_{\mathbf{r}}^{(n)}(\mathcal{O}\mid\alpha_{n}). The argument is finished by taking the appropriate infima over 𝒪\mathcal{O} and limits.111For the analog of this argument in the existential case, we would work only with the case when 𝒦=𝒦μ\mathcal{K}=\mathcal{K}_{\mu} for a single existential tr,𝒜\mathcal{L}_{\operatorname{tr},\mathcal{A}}-type. The only issue adapting the above argument to the existential case is in finding, for a given a neighborhood 𝒪\mathcal{O} of 𝒦μ\mathcal{K}_{\mu}, a sub-neighborhood of the form ϕ1((,ϵ))\phi^{-1}((-\infty,\epsilon)) for an existential formula ϕ\phi. Since the space of existential types is not Hausdorff, we cannot apply Urysohn’s lemma, but rather must work with the existential formulas directly to construct such a neighborhood.

We remark that the approximate embedding αn:𝒜Mn()\alpha_{n}:\mathcal{A}\to M_{n}(\mathbb{C}) can be thought of as a choice of microstates for every element of 𝒜\mathcal{A}. But, as in Hayes original description of relative 11-bounded entropy, we could instead fix a generating set 𝐀\mathbf{A} for 𝒜\mathcal{A}, fix microstates 𝐀(n)\mathbf{A}^{(n)} for that generating set, and define microstate spaces of matrix tuples 𝐗\mathbf{X} such that the tr\mathcal{L}_{\operatorname{tr}}-type of (𝒜(n),𝐗)(\mathcal{A}^{(n)},\mathbf{X}) is in a certain neighborhood 𝒪\mathcal{O} of the set 𝒦\mathcal{K}. It is a technical exercise to show that these definitions are equivalent, the key point being that every element of aa can be expressed as a quantifier-free definable function of the generating tuple 𝐀\mathbf{A}.

Most of the properties we showed for Ent𝒰\operatorname{Ent}^{\mathcal{U}} adapt to the relative version with the same method of proof. For instance, it satisfies the analog of the variational principle (Proposition 4.6) and monotonicity under pushforward (4.7). Thus, given 𝒜𝒩\mathcal{A}\subseteq\mathcal{N}\subseteq\mathcal{M} and an embedding α:𝒜𝒬\alpha:\mathcal{A}\to\mathcal{Q}, we can define Ent𝒰(𝒩:α)\operatorname{Ent}^{\mathcal{U}}(\mathcal{N}:\mathcal{M}\mid\alpha) as the supremum of Ent𝒰(tp,α(𝐗))\operatorname{Ent}^{\mathcal{U}}(\operatorname{tp}^{\mathcal{M},\alpha}(\mathbf{X})) for tuples 𝐗\mathbf{X} from 𝒩\mathcal{N}. Analogously to Lemma 4.14, if Ent𝒰(α)0\operatorname{Ent}^{\mathcal{U}}(\mathcal{M}\mid\alpha)\geq 0, then there is an embedding of 𝒩\mathcal{N} into 𝒬\mathcal{Q} that restricts to α\alpha on 𝒜\mathcal{A} and extends to an elementary embedding of \mathcal{M}. The quantifier-free and existential version of conditional entropy are defined in a similar way, and the relationship between them works the same way as it does for the unconditional version.

References

  • [1] Scott Atkinson, Isaac Goldbring, and Srivatsav Kunnawalkam Elayavalli. Factorial relative commutants and the generalized jung property for ii1 factors. Advances in Mathematics, 396:108107, 2022.
  • [2] Scott Atkinson and Srivatsav Kunnawalkam Elayavalli. On ultraproduct embeddings and amenability for tracial von neumann algebras. International Mathematics Research Notices, 2021(4):2882–2918, 10 2020.
  • [3] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov. Model theory for metric structures. In Z. Chatzidakis et al., editor, Model Theory with Applications to Algebra and Analysis, Vol. II, volume 350 of London Mathematical Society Lecture Notes Series, pages 315–427. Cambridge University Press, 2008.
  • [4] Itaiï Ben Yaacov and Alexander Usvyatsov. Continuous first order logic and local stability. Transactions of the American Mathematical Society, 362(10):5213–5259, 10 2010.
  • [5] Bruce Blackadar. Operator Algebras: Theory of C{C}^{*}-algebras and von Neumann algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, Heidelberg, 2006.
  • [6] Jacques Dixmier. Les C{C}^{*}-algèbres et leurs représentations, volume 29 of Cahiers Scientifiques. Gauthier-Villars, Paris, 2 edition, 1969. Reprinted by Editions Jacques Gabay, Paris, 1996. Translated as C{C}^{*}-algebras, North-Holland, Amsterdam, 1977. First Edi- tion 1964.
  • [7] Ilias Farah, Bradd Hart, and David Sherman. Model theory of operator algebras I: stability. Bulletin of the London Mathematical Society, 45(4):825–838, 2013.
  • [8] Ilias Farah, Bradd Hart, and David Sherman. Model theory of operator algebras II: model theory. Israel Journal of Mathematics, 201(1):477–505, 2014.
  • [9] Ilias Farah, Bradd Hart, and David Sherman. Model theory of operator algebras III: elementary equivalence and II1\mathrm{II}_{1} factors. Bulletin of the London Mathematical Society, 46(3):609–628, 2014.
  • [10] A. Galatan and S. Popa. Smooth bimodules and cohomology of II1\mathrm{II}_{1} factors. J. Inst. Math. Jussieu, pages 1–33, 2015.
  • [11] Weichen Gao. Relative embeddability of von neumann algebras and amalgamated free products. With an appendix by Weichen Gao and Marius Junge. arXiv:2012.07940, 2020.
  • [12] Liming Ge. Applications of free entropy to finite von Neumann algebras. II. Ann. of Math. (2), 147(1):143–157, 1998.
  • [13] Isaac Goldbring. Non-embeddable II1\mathrm{II}_{1} factors resembling the hyperfinite II1\mathrm{II}_{1} factor. Preprint arXiv:2101.10467.
  • [14] Isaac Goldbring. On Popa’s factorial commutant embedding problem. Proc. Amer. Math. Soc., 148:5007–5012, 2020.
  • [15] Isaac Goldbring. Enforceable operator algebras. Journal of the Institute of Mathematics of Jussieu, 20:31–63, 2021.
  • [16] Ben Hayes. 1-bounded entropy and regularity problems in von Neumann algebras. International Mathematics Research Notices, 1(3):57–137, 2018.
  • [17] Ben Hayes, David Jekel, and Srivatsav Kunnawalkam Elayavalli. Property (T) and strong 11-boundedness for von Neumann algebras. Preprint, arXiv:2107.03278.
  • [18] Ben Hayes, David Jekel, Brent Nelson, and Thomas Sinclair. A random matrix approach to absorption theorems for free products. International Mathematics Research Notices, 2021(3):1919–1979, 2021.
  • [19] Neil Hindman and Dona Strauss. Algebra in the Stone-Čech Compactification: Theory and Applications. De Gruyter, Berlin, Boston, 2011.
  • [20] Adrian Ioana and Pieter Spaas. II1\mathrm{II}_{1} factors with exotic central sequence algebras. Journal of the Institute of Mathematics of Jussieu, 20(5):1671–1696, 2021.
  • [21] Ioan M. James. Introduction to Uniform Spaces, volume 144 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1990.
  • [22] David Jekel. Evolution equations in non-commutative probability. PhD thesis, University of California, Los Angeles, 2020.
  • [23] David Jekel. Free probability and model theory of tracial W\mathrm{W}^{*}-algebras. preprint, arXiv:2208.13867, to appear in Model Theory of Operator Algebras, ed. I. Goldbring, published by DeGruyter, 2022.
  • [24] Kenley Jung. Amenability, tubularity, and embeddings into ω\mathcal{R}^{\omega}. Math. Ann., 338(1):241–248, 2007.
  • [25] Kenley Jung. Strongly 11-bounded von Neumann algebras. Geom. Funct. Anal., 17(4):1180–1200, 2007.
  • [26] Richard V. Kadison and John R. Ringrose. Fundamentals of the Theory of Operator Algebras I, volume 15 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 1983.
  • [27] Irving Kaplansky. Modules over operator algebras. American Journal of Mathematics, 75:839–858, 1953.
  • [28] Sorin Popa. Asymptotic orthogonalization of subalgebras in II1\mathrm{II}_{1} 1 factors. Publ. Res. Inst. Math. Sci., 55(4):795–809, 2019.
  • [29] Shôichirô Sakai. C\mathrm{C}^{*}-algebras and W\mathrm{W}^{*}-algebras, volume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin Heidelberg, 1971.
  • [30] Dimitri Shlyakhtenko. Lower estimates on microstates free entropy dimension. Analysis & PDE, 2(2):119–146, 2009.
  • [31] Masamichi Takesaki. Theory of Operator Algebras I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin Heidelberg, 2002.
  • [32] Dan-Virgil Voiculescu. The analogues of entropy and of Fisher’s information in free probability, II. Inventiones Mathematicae, 118:411–440, 1994.
  • [33] Dan-Virgil Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability, III: Absence of Cartan subalgebras. Geometric and Functional Analysis, 6:172–199, 1996.
  • [34] Kehe Zhu. An Introduction to Operator Algebras. Studies in Advanced Mathematics. CRC Press, Ann Arbor, 1993.