This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cross-ownership as a structural explanation for rising correlations in crisis times

Nils Bertschinger Axel A. Araneda Institute of Financial Complex Systems, Faculty of Economics and Administration, Masaryk University; 602 00 Brno, Czech Republic.
Abstract

In this paper, we examine the interlinkages among firms through a financial network where cross-holdings on both equity and debt are allowed. We relate mathematically the correlation among equities with the unconditional correlation of the assets, the values of their business assets and the sensitivity of the network, particularly the Δ\Delta-Greek. We noticed also this relation is independent of the Equities level. Besides, for the two-firms case, we analytically demonstrate that the equities correlation is always higher than the correlation of the assets; showing this issue by numerical illustrations. Finally, we study the relation between equity correlations and asset prices, where the model arrives to an increase in the former due to a fall in the assets.

1 Introduction

The famous \citeAmerton1974pricing model relates debt and equity of a firm with European put and call options respectively. Since then it has been developed into an industry standard for structural credit risk modeling and management. However, the increasingly complex interlinkages between financial institutions are at odds with an individual and separate valuation of risk (see \citeAde2000systemic for an early survey of systemic risk). Especially, the latest financial crisis has painfully revealed the danger of contagion throughout the financial system and spurred a wealth of interest in theoretical models of systemic risk. In this regard, the model of \citeAeisenberg2001systemic and its “clearing payment vector” insight have been identified as the seminal contribution in the field, forming the basis for numerous studies of financial contagion arising from cross-ownership of debt Cifuentes \BOthers. (\APACyear2005); Gai \BBA Kapadia (\APACyear2010); Elliott \BOthers. (\APACyear2014). See \citeAcaccioli2018network and \citeAsasidevan2019systemic for recent surveys of the network approach into systemic risk.

An interesting and alternative viewpoint is provided by \citeAsuzuki2002valuing. While the model can be interpreted as an extension of the \citeAeisenberg2001systemic model, it is better seen as an extension of the Merton model allowing for multiple firms with cross-ownerwhip of debt as well as equity. Thereby, considering financial contagion as a problem of firm valuation where debt and equity have to be assessed in a self-consistent fashion, e.g. solving a fixed point via Picard iteration Hain \BBA Fischer (\APACyear2015). Furthermore, Suzuki explicitly solves the valuation problem in case of two financial institutions , conditional on the values of the business assets where banks are solvent or in default (Suzuki areas). For three or more banks a formal solution can still be written down, but requires a case distinction between exponentially many solvency regions and can no longer be visualized in two dimensions. Further developments on the Suzuki model extend it to debts of multiple seniorities Fischer (\APACyear2014), address the (joint) default probabilities under this model Karl \BBA Fischer (\APACyear2014) or compute analytic bounds assuming comonotonic asset endowments Banerjee \BBA Feinstein (\APACyear2021).

On the empirical side, it is an established “stylized fact” that correlations rise during bear markets and crises times Longin \BBA Solnik (\APACyear2001); Ang \BBA Chen (\APACyear2002); Kalkbrener \BBA Packham (\APACyear2015). Indeed, \citeABaig1999 found that during the Asian crisis, correlations in stock markets, interest rates, exchange rates and sovereign spreads rose significantly as compared to tranquil times. \citeAonnela2003dynamics investigated the empirical distribution of pairwise stock correlation coefficients of stocks traded at NYSE, estimating correlations in a rolling window fashion, finding a substantial increase of their mean value around the Black Monday of Oct 1987. \citeApreis2012quantifying analyzed, with the time-varying correlations among the 30 stocks composing the DJIA index and demonstrate a linear relationship with market stress. Instead, \citeAadams2017correlations argue, based on econometric consideration, that correlations change in a step-like fashion due to particular financial events (structural breaks). Similar arguments are put forward line in more recent works of \citeAchoi2019self and \citeAdemetrescu2019testing.

In terms of modeling, the works of \citeAcizeau2001correlation,lillo2000symmetry,kyle2001contagion have addressed the correlation issue from a structural perspective. Another interesting approach in this line is provided by \citeAcont2013running who evaluate how fire sales lead to endogoneous correlations in a simple multi-period model,. However, to our knowledge, it has not been approached in the context of cross-holding networks. Here, we show that network models readily explain the correlation stylized fact. In particular, we depart from a simply specification of the Suzuki model, and proof that it exhibits structural changes in the correlation between firm equity values depending on solvency conditions. Furthermore, we seek to understand and quantify the precise influence of different model parameters on the observed correlation structure.

The remainder of the paper is structured as follows: First, we lay out the general network valuation model following \citeAsuzuki2002valuing. Then, we interpret values of firm equity and debt as derivative contracts, i.e. extending the Merton model to multiple firms, and link the correlation between these derivatives with the Δ\Delta sensitivities, the asset prices, and the leverage. In turn, concentrating on the two-firms case, we proof that the correlation among the two firm equities never falls below their unconditional asset correlation. Finally, we illustrate our results through numerical simulations, showing in particular that correlations tend to rise when equity prices drop. Thereby, providing a novel structural explanation of this well-known stylized fact.

2 Model

2.1 Notation and mathematical preliminaries

Here we quickly summarize the mathematical notation employed in this paper. We write vectors 𝒙,𝒚n\bm{x},\bm{y}\in\mathbb{R}^{n} with bold lower case and matrices 𝑨,𝑩m×n\bm{A},\bm{B}\in\mathbb{R}^{m\times n} with bold upper case letters. Individual entries of vectors and matrices are written as xi,Aijx_{i},A_{ij}. diag(𝒙)\operatorname{diag}(\bm{x}) denotes the n×nn\times n diagonal matrix 𝑫\bm{D} with entries Dii=xiD_{ii}=x_{i} along its diagonal. The transpose of a matrix is denoted as 𝑨T\bm{A}^{T}. All products containing vectors and matrices are understood as standard matrix products, e.g. 𝑨𝑩\bm{A}\bm{B} denotes the matrix product of 𝑨\bm{A} and 𝑩\bm{B}, 𝒙𝒙\bm{x}\bm{x} is undefined whereas 𝒙T𝒙\bm{x}^{T}\bm{x} is the scalar product of 𝒙\bm{x} with itself. Row- and column-wise stacking of vectors or matrices is denoted by (𝒙;𝒚)(\bm{x};\bm{y}) and (𝒙,𝒚)(\bm{x},\bm{y}) respectively, i.e. (𝒙;𝒚)(\bm{x};\bm{y}) is a 2n2n-dimensional vector whereas (𝒙,𝒚)(\bm{x},\bm{y}) is a n×2n\times 2 matrix.

Random variables X,YX,Y are written as upper case letters with individual outcomes x,yx,y denoted in lower case. Expectations are denoted as 𝔼[f(X)]\mathbb{E}[f(X)] and understood with respect to the (joint) distribution of random variables within the brackets. Sometimes we use 𝔼t\mathbb{E}_{t}^{\mathbb{Q}} to denote that the expectation is taken over the risk-neutral measure \mathbb{Q}, implicitly conditioned on the information filtration t\mathcal{F}_{t} up to time tt.

2.2 Network valuation

\citeA

merton1974pricing has shown that equity and firm debt can be considered as call and put options on the firm’s value respectively. In this model, a single firm is holding externally priced assets aa and zero-coupon debt with nominal amount dd due at a single, fixed maturity TT. Then, at time TT the value of equity ss and the recovery value of debt rr are given as

s\displaystyle s =max{0,ad}=(ad)+,\displaystyle=\max\{0,a-d\}=(a-d)^{+}, (1)
r\displaystyle r =min{d,a}=d(da)+\displaystyle=\min\{d,a\}=d-(d-a)^{+} (2)

corresponding to an implicit call and put option respectively.

\citeA

suzuki2002valuing and others Elsinger (\APACyear2009); Fischer (\APACyear2014) have since generalized this model to multiple firms with equity and debt cross-holdings. In this paper we consider nn firms. Each firm i=1,,ni=1,\ldots,n holds an external asset ai>0a_{i}>0 as well as a fraction MijsM_{ij}^{s} of firm jj’s equity and debt MijdM_{ij}^{d}. Here, the investment fractions MijsM_{ij}^{s} and MijdM_{ij}^{d} are bounded between 0 and 11, i.e. 0Mijs,d10\leq M_{ij}^{s,d}\leq 1, and the actual value invested in the equity of counterparty jj is given as MijssjM_{ij}^{s}s_{j}. In the following we require:

Assumption 1.

There are no self-holdings, i.e. Miis=Miid=0M_{ii}^{s}=M_{ii}^{d}=0 for all i=1,,ni=1,\ldots,n, nor short positions, i.e. Mijs,Mijd0M_{ij}^{s},M_{ij}^{d}\geq 0 for all i,j=1,,ni,j=1,\ldots,n. Moreover, we require that the total fractions equity and debt held by any counterparty cannot exceed unity. In addition, we assume that some of each firms equity and debt are held externally, i.e. for all j=1,,nj=1,\ldots,n it holds that

iMijs<1andiMijd<1.\displaystyle\sum_{i}M_{ij}^{s}<1\quad\mbox{and}\quad\sum_{i}M_{ij}^{d}<1\,. (3)

That is, 𝑴s\bm{M}^{s} and 𝑴d\bm{M}^{d} are strictly (left) sub-stochastic matrices. Alternatively, we can express this as 𝑴d1,𝑴s1<1\left\lVert\bm{M}^{d}\right\rVert_{1},\left\lVert\bm{M}^{s}\right\rVert_{1}<1.

Now, the value of all assets viv_{i} held by firm ii is given by

vi\displaystyle v_{i} =ai+j=1nMijssj+j=1nMijdrj.\displaystyle=a_{i}+\sum_{j=1}^{n}M_{ij}^{s}s_{j}+\sum_{j=1}^{n}M_{ij}^{d}r_{j}\,. (4)

Correspondingly, the firm’s equity and recovery value of debt are given by

si\displaystyle s_{i} =max{0,ai+jMijssj+jMijdrjdi},\displaystyle=\max\left\{0,a_{i}+\sum_{j}M_{ij}^{s}s_{j}+\sum_{j}M_{ij}^{d}r_{j}-d_{i}\right\}, (5)
ri\displaystyle r_{i} =min{di,ai+jMijssj+Mijdrj}.\displaystyle=\min\left\{d_{i},a_{i}+\sum_{j}M_{ij}^{s}s_{j}+M_{ij}^{d}r_{j}\right\}\,. (6)

In matrix notation, i.e. collecting equity and debt values into vectors 𝒔=(s1,,sn)T\bm{s}=(s_{1},\ldots,s_{n})^{T} and 𝒓=(r1,,rn)T\bm{r}=(r_{1},\ldots,r_{n})^{T} respectively, this can be rewritten as

𝒔\displaystyle\bm{s} =max{𝟎,𝒂+𝑴s𝒔+𝑴d𝒓𝒅},\displaystyle=\max\left\{\bm{0},\bm{a}+\bm{M}^{s}\bm{s}+\bm{M}^{d}\bm{r}-\bm{d}\right\}, (7)
𝒓\displaystyle\bm{r} =min{𝒅,𝒂+𝑴s𝒔+𝑴d𝒓}\displaystyle=\min\left\{\bm{d},\bm{a}+\bm{M}^{s}\bm{s}+\bm{M}^{d}\bm{r}\right\} (8)

Thus, the firms’ equity and debt values are endogenously defined as the solution of a fixed point. This is readily seen when collecting equity and debt row-wise into a single vector 𝒙=(𝒔;𝒓)\bm{x}=(\bm{s};\bm{r}), i.e. 𝒔=𝒙1:n\bm{s}=\bm{x}_{1:n} and 𝒓=𝒙(n+1):2n\bm{r}=\bm{x}_{(n+1):2n}, and writing

𝒙=𝒈(𝒂,𝒙)\displaystyle\bm{x}=\bm{g}(\bm{a},\bm{x}) (9)

with the vector valued function 𝒈=(g1s,,gns,g1r,,gnr)T\bm{g}=(g_{1}^{s},\ldots,g_{n}^{s},g_{1}^{r},\ldots,g_{n}^{r})^{T} where for i=1,,ni=1,\ldots,n

gis(𝒂,𝒙)\displaystyle g_{i}^{s}(\bm{a},\bm{x}) =max{0,ai+jMijsxj+jMijdxn+jdi},\displaystyle=\max\left\{0,a_{i}+\sum_{j}M_{ij}^{s}x_{j}+\sum_{j}M_{ij}^{d}x_{n+j}-d_{i}\right\}, (10)
gir(𝒂,𝒙)\displaystyle g_{i}^{r}(\bm{a},\bm{x}) =min{di,ai+jMijsxj+jMijdxn+j}.\displaystyle=\min\left\{d_{i},a_{i}+\sum_{j}M_{ij}^{s}x_{j}+\sum_{j}M_{ij}^{d}x_{n+j}\right\}\,. (11)

Each of the functions gisg_{i}^{s} and girg_{i}^{r} is continuous and increasing in 𝒂\bm{a} and 𝒙\bm{x}. Together with assumption 1 it follows that the fixed point of (9) is positive and unique.

Theorem 1.

Suppose that assumption 1 holds. Then, for each value of external assets 𝐚>𝟎\bm{a}>\bm{0} there is a positive and unique 𝐱\bm{x} solving (9).

Proof.

Our model is a special case of the one considered by Fischer (\APACyear2014) with k=1k=1 and 𝒅𝒓1,𝒓01𝒅\bm{d}_{\bm{r}^{1},\bm{r}^{0}}^{1}\equiv\bm{d}. Furthermore, Fischer’s assumption 3.1 holds by assumption 1 and assumptions 3.6 and 3.7 are trivial as our nominal debt vector 𝒅\bm{d} is constant. The result then follows by his theorem 3.8 (iv). ∎

3 Risk-neutral valuation

The celebrated Merton model exploits the connection of Eq. 9 with option prices to obtain the ex-ante market prices at time t<Tt<T as

st\displaystyle s_{t} =𝔼tQ[erτST]=𝔼tQ[erτ(ATd)+]\displaystyle=\mathbb{E}_{t}^{Q}[e^{-r\tau}S_{T}]=\mathbb{E}_{t}^{Q}[e^{-r\tau}(A_{T}-d)^{+}] rt=𝔼tQ[erτRT]=𝔼tQ[erτ(d(dAT)+)]\displaystyle r_{t}=\mathbb{E}_{t}^{Q}[e^{-r\tau}R_{T}]=\mathbb{E}_{t}^{Q}[e^{-r\tau}(d-(d-A_{T})^{+})] (13)

respectively. Furthermore, assuming a geometric Brownian motion for the price of the external assets, i.e.

dAt\displaystyle dA_{t} =rAtdt+σaAtdWtQ\displaystyle=rA_{t}\,dt+\sigma_{a}A_{t}\,dW_{t}^{Q} (14)

the corresponding stochastic differential equation for sts_{t} can be obtained via Ito’s lemma as

dSt\displaystyle dS_{t} =(stt+statrAt+122stat2σa2At2)dt+statσaAtdWtQ.\displaystyle=\left(\frac{\partial s_{t}}{\partial t}+\frac{\partial s_{t}}{\partial a_{t}}rA_{t}+\frac{1}{2}\frac{\partial^{2}s_{t}}{\partial a_{t}^{2}}\sigma_{a}^{2}A_{t}^{2}\right)\,dt+\frac{\partial s_{t}}{\partial a_{t}}\sigma_{a}A_{t}\,dW_{t}^{Q}\;. (15)

Matching the volatility with σsSt\sigma_{s}S_{t} one obtains the well known relation

σs\displaystyle\sigma_{s} =statσaatst=σaΔλ\displaystyle=\frac{\partial s_{t}}{\partial a_{t}}\sigma_{a}\frac{a_{t}}{s_{t}}=\sigma_{a}\Delta\lambda (16)

between equity and asset volatility. Here, Δ=stat\Delta=\frac{\partial s_{t}}{\partial a_{t}} is the option Delta and λ=AtSt\lambda=\frac{A_{t}}{S_{t}} its leverage.

3.1 Network valuation

Denoting the unique solution of equation (9) by 𝒙(𝒂)\bm{x}^{*}(\bm{a}), we can consider the corresponding value of equity and debt claims as derivative contracts on the underlying 𝒂\bm{a}. Accordingly, the ex-ante market price at time t<Tt<T is given as

𝒙t=𝔼tQ[erτ𝒙(𝑨T)]\displaystyle\bm{x}_{t}=\mathbb{E}_{t}^{Q}[e^{-r\tau}\bm{x}^{*}(\bm{A}_{T})] (17)

with the risk-less interest rate rr and time to maturity τ=Tt\tau=T-t. The expectation is taken with respect to the risk-neutral measure QQ of external asset values 𝒂\bm{a} at maturity TT. In the following, we assume that the risk-neutral asset values follow a multi-variate geometric Brownian motion, i.e.

d𝑨t\displaystyle d\bm{A}_{t} =r𝑨tdt+diag(𝝈)diag(𝑨t)d𝑾tQ\displaystyle=r\bm{A}_{t}\,dt+\operatorname{diag}(\bm{\sigma})\operatorname{diag}(\bm{A}_{t})\,d\bm{W}_{t}^{Q} (18)

with possibly correlated Wiener processes 𝑾tQ\bm{W}_{t}^{Q}, i.e. 𝔼[dWi,tQdWj,tQ]=ρijdt\mathbb{E}[\,dW_{i,t}^{Q}\,dW_{j,t}^{Q}]=\rho_{ij}\,dt with ρii=1\rho_{ii}=1.

The well-known solution of equation (18) is given by

𝑨t\displaystyle\bm{A}_{t} =𝒂0e(r12diag(𝝈2))t+diag(𝝈)𝑾t\displaystyle=\bm{a}_{0}e^{\left(r-\frac{1}{2}\operatorname{diag}(\bm{\sigma}^{2})\right)t+\operatorname{diag}(\bm{\sigma})\bm{W}_{t}} (19)

where 𝒂0>0\bm{a}_{0}>0 denotes the initial value and 𝑾t\bm{W}_{t} is multivariate normal distributed with mean 𝟎\bm{0} and covariance matrix t𝑪t\bm{C} with entries Cij=ρijC_{ij}=\rho_{ij}.

As before, via the multi-variate Ito formula we obtain

dXi,t\displaystyle dX_{i,t} =(xi,tt+r(xi,t𝒂t)T𝑨t+12Tr(diag(𝑨t)Tdiag(𝝈)T2xi,t𝒂t𝒂tdiag(𝝈)diag(𝑨t)))dt\displaystyle=\left(\frac{\partial x_{i,t}}{\partial t}+r\left(\frac{\partial x_{i,t}}{\partial\bm{a}_{t}}\right)^{T}\bm{A}_{t}+\frac{1}{2}\operatorname{Tr}\left(\operatorname{diag}(\bm{A}_{t})^{T}\operatorname{diag}(\bm{\sigma})^{T}\frac{\partial^{2}x_{i,t}}{\partial\bm{a}_{t}\partial\bm{a}_{t}}\operatorname{diag}(\bm{\sigma})\operatorname{diag}(\bm{A}_{t})\right)\right)\,dt
+(xi,t𝒂t)Tdiag(𝝈)diag(𝑨t)d𝑾tQ.\displaystyle+\left(\frac{\partial x_{i,t}}{\partial\bm{a}_{t}}\right)^{T}\operatorname{diag}(\bm{\sigma})\operatorname{diag}(\bm{A}_{t})\,d\bm{W}_{t}^{Q}\;. (20)

Then, again matching the volatility with 𝝈i,xxi,t\bm{\sigma}_{i,x}x_{i,t} we compute the equity and debt volatilities

𝝈i,x\displaystyle\bm{\sigma}_{i,x} =1xi,t(xi,t𝒂t)Tdiag(𝝈)diag(𝒂t)\displaystyle=\frac{1}{x_{i,t}}\left(\frac{\partial x_{i,t}}{\partial\bm{a}_{t}}\right)^{T}\operatorname{diag}(\bm{\sigma})\operatorname{diag}(\bm{a}_{t}) (21)

or collecting all terms into a volatility matrix

𝑳x\displaystyle\bm{L}_{x} =diag(𝒙t)1(𝒙t𝒂t)Tdiag(𝝈)diag(𝒂t).\displaystyle=\operatorname{diag}(\bm{x}_{t})^{-1}\left(\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}\right)^{T}\operatorname{diag}(\bm{\sigma})\operatorname{diag}(\bm{a}_{t})\;. (22)

Note that the instantaneous covariance matrix of 𝒙t\bm{x}_{t} at time tt is then given by

𝚺x\displaystyle\bm{\Sigma}_{x} =𝑳xt𝑪𝑳xT\displaystyle=\bm{L}_{x}t\bm{C}\bm{L}_{x}^{T} (23)
=diag(𝒙t)1(𝒙t𝒂t)Tdiag(𝝈)diag(𝒂t)t𝑪diag(𝒂t)diag(𝝈)(𝒙t𝒂t)diag(𝒙t)1\displaystyle=\operatorname{diag}(\bm{x}_{t})^{-1}\left(\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}\right)^{T}\operatorname{diag}(\bm{\sigma})\operatorname{diag}(\bm{a}_{t})t\bm{C}\operatorname{diag}(\bm{a}_{t})\operatorname{diag}(\bm{\sigma})\left(\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}\right)\operatorname{diag}(\bm{x}_{t})^{-1} (24)
=diag(𝒙t)1(𝒙t𝒂t)Tdiag(𝒂t)𝚺adiag(𝒂t)(𝒙t𝒂t)diag(𝒙t)1\displaystyle=\operatorname{diag}(\bm{x}_{t})^{-1}\left(\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}\right)^{T}diag(\bm{a}_{t})\bm{\Sigma}_{a}\operatorname{diag}(\bm{a}_{t})\left(\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}\right)\operatorname{diag}(\bm{x}_{t})^{-1} (25)

where 𝚺a=diag(𝝈)t𝑪diag(𝝈)T\bm{\Sigma}_{a}=\operatorname{diag}(\bm{\sigma})t\bm{C}\operatorname{diag}(\bm{\sigma})^{T} denotes the instantaneous asset covariance at time tt. This generalizes equation (16) with the Delta matrix 𝚫x=𝒙t𝒂t\bm{\Delta}_{x}=\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}} and diag(𝒙t)1,diag(𝒂t)\operatorname{diag}(\bm{x}_{t})^{-1},\operatorname{diag}(\bm{a}_{t}) acting as leverage. In contrast, to the uni-variate case these cannot be collected into a leverage matrix as diag(𝒙t)1\operatorname{diag}(\bm{x}_{t})^{-1} is multiplied from the left, i.e. acts on the rows, whereas diag(𝒂t)\operatorname{diag}(\bm{a}_{t}) is multiplied from the right, acts on the columns.

4 Two bank case

For two banks, i.e. i=1,2i=1,2, the fixed point equations 10 for equity and debt can be solved explicitly. In particular, \citeAsuzuki2002valuing has shown that the value of the equity and debt, at maturity, depends on the solvency conditions of the firms. Here, firm ii is solvent (insolvent) if its total value 4 exceeds (falls short of) its nominal debt, i.e. vi,T(<)div_{i,T}\geq(<)d_{i}. Following Suzuki, we define four regions (Suzuki areas) which consider the combinatory of solvency or default condition at maturity \citeAsuzuki2002valuing,karl2014cross:

Ξss={(a1,T,a2,T)+2:v1,Td1v2,Td2}\Xi_{ss}=\left\{\left(a_{1,T},a_{2,T}\right)\in\mathbb{R}_{+}^{2}:v_{1,T}\geq d_{1}\land v_{2,T}\geq d_{2}\right\}
Ξsd={(a1,T,a2,T)+2:v1,Td1v2,T<d2}\Xi_{sd}=\left\{\left(a_{1,T},a_{2,T}\right)\in\mathbb{R}_{+}^{2}:v_{1,T}\geq d_{1}\land v_{2,T}<d_{2}\right\}
Ξds={(a1,T,a2,T)+2:v1,T<d1v2,Td2}\Xi_{ds}=\left\{\left(a_{1,T},a_{2,T}\right)\in\mathbb{R}_{+}^{2}:v_{1,T}<d_{1}\land v_{2,T}\geq d_{2}\right\}
Ξdd={(a1,T,a2,T)+2:v1,T<d1v2,T<d2}\Xi_{dd}=\left\{\left(a_{1,T},a_{2,T}\right)\in\mathbb{R}_{+}^{2}:v_{1,T}<d_{1}\land v_{2,T}<d_{2}\right\}

After that, and using simply assumptions \citeAsuzuki2002valuing, we have a fix-point-solution for the system 5-6 conditional to each Suzuki area, given by:

s1,T={a1,Td1+M12rd2+M12s(a2,Td2+M21rd1)1M12sM21s,(a1,T,a2,T)Ξssa1,Td1+M12rd2+M12r(a2,Td2+M21rd1)1M12rM21s,(a1,T,a2,T)Ξsd0,(a1,T,a2,T)Ξds0,(a1,T,a2,T)Ξdds_{1,T}=\begin{cases}\frac{a_{1,T}-d_{1}+M_{12}^{r}d_{2}+M_{12}^{s}\left(a_{2,T}-d_{2}+M_{21}^{r}d_{1}\right)}{1-M_{12}^{s}M_{21}^{s}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ss}\\ \frac{a_{1,T}-d_{1}+M_{12}^{r}d_{2}+M_{12}^{r}\left(a_{2,T}-d_{2}+M_{21}^{r}d_{1}\right)}{1-M_{12}^{r}M_{21}^{s}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{sd}\\ 0&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ds}\\ 0&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{dd}\end{cases} (26)
s2,T={a2,Td2+M21rd1+M21s(a1,Td1+M12rd2)1M12sM21s,(a1,T,a2,T)Ξss0,(a1,T,a2,T)Ξsda2,Td2+M21rd1+M21r(a1,Td1+M12rd2)1M12sM21d,(a1,T,a2,T)Ξds0,(a1,T,a2,T)Ξdds_{2,T}=\begin{cases}\frac{a_{2,T}-d_{2}+M_{21}^{r}d_{1}+M_{21}^{s}\left(a_{1,T}-d_{1}+M_{12}^{r}d_{2}\right)}{1-M_{12}^{s}M_{21}^{s}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ss}\\ 0&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{sd}\\ \frac{a_{2,T}-d_{2}+M_{21}^{r}d_{1}+M_{21}^{r}\left(a_{1,T}-d_{1}+M_{12}^{r}d_{2}\right)}{1-M_{12}^{s}M_{21}^{d}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ds}\\ 0&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{dd}\end{cases} (27)
r1,T={d1,(a1,T,a2,T)Ξssd1,(a1,T,a2,T)Ξsda1,T+M12rd2+M12s(a2,Td2)1M12sM21r,(a1,T,a2,T)Ξdsa1,T+M12ra2,T1M12rM21r,(a1,T,a2,T)Ξddr_{1,T}=\begin{cases}d_{1}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ss}\\ d_{1}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{sd}\\ \frac{a_{1,T}+M_{12}^{r}d_{2}+M_{12}^{s}\left(a_{2,T}-d_{2}\right)}{1-M_{12}^{s}M_{21}^{r}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ds}\\ \frac{a_{1,T}+M_{12}^{r}a_{2,T}}{1-M_{12}^{r}M_{21}^{r}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{dd}\end{cases} (28)
r2,T={d2,(a1,T,a2,T)Ξssa2,T+M21rd1+M21s(a1,Td1)1M21sM12r,(a1,T,a2,T)Ξsdd2,(a1,T,a2,T)Ξdsa2,T+M21ra1,T1M12rM21r,(a1,T,a2,T)Ξddr_{2,T}=\begin{cases}d_{2}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ss}\\ \frac{a_{2,T}+M_{21}^{r}d_{1}+M_{21}^{s}\left(a_{1,T}-d_{1}\right)}{1-M_{21}^{s}M_{12}^{r}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{sd}\\ d_{2}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{ds}\\ \frac{a_{2,T}+M_{21}^{r}a_{1,T}}{1-M_{12}^{r}M_{21}^{r}}&,\,\left(a_{1,T},a_{2,T}\right)\in\Xi_{dd}\end{cases} (29)

4.1 Computing correlations

Consider two assets with covariance matrix

Σ=(σ12σ1σ2ρσ1σ2ρσ22),\Sigma=\left(\begin{array}[]{cc}\sigma_{1}^{2}&\sigma_{1}\sigma_{2}\rho\\ \sigma_{1}\sigma_{2}\rho&\sigma_{2}^{2}\end{array}\right)\;,

i.e. with volatilities σ1,σ2\sigma_{1},\sigma_{2} and correlation ρ\rho.

The Cholesky factor 𝑳\bm{L} with Σ=𝑳𝑳T\Sigma=\bm{L}\bm{L}^{T} is then given by

𝑳=(σ10σ2ρσ21ρ2)=(l110l21l22).\bm{L}=\left(\begin{array}[]{cc}\sigma_{1}&0\\ \sigma_{2}\rho&\sigma_{2}\sqrt{1-\rho^{2}}\end{array}\right)=\left(\begin{array}[]{cc}l_{11}&0\\ l_{21}&l_{22}\end{array}\right)\;. (30)

In particular, the correlation coefficient can be expressed directly in terms of the Cholesky coefficients as

ρ=l21l212+l222=11+(l22l21)2.\rho=\frac{l_{21}}{\sqrt{l_{21}^{2}+l_{22}^{2}}}=\frac{1}{\sqrt{1+\left(\frac{l_{22}}{l_{21}}\right)^{2}}}\;. (31)

Furthermore, for the factor of the equity covariances we obtain

Ls=diag(𝒔)1𝒔𝒂diag(𝒂)𝑳L^{s}=\mathrm{diag}(\bm{s})^{-1}\frac{\partial\bm{s}}{\partial\bm{a}}\mathrm{diag}(\bm{a})\bm{L}

or explicitly

lijs=kΔikaksilkjl_{ij}^{s}=\sum_{k}\frac{\Delta_{ik}a_{k}}{s_{i}}l_{kj} (32)

where Δij=siaj\Delta_{ij}=\frac{\partial s_{i}}{\partial a_{j}}. Note that this is not a Cholesky factor, as it will not be lower triangular in general. Nevertheless, we have Σs=𝑳s(𝑳s)T\Sigma^{s}=\bm{L}^{s}(\bm{L}^{s})^{T} or explicitly

σijs\displaystyle\sigma_{ij}^{s} =kliksljks\displaystyle=\sum_{k}l_{ik}^{s}l_{jk}^{s}

and therefore for the correlation coefficient

ρs\displaystyle\rho^{s} =σ12sσ11sσ22s\displaystyle=\frac{\sigma_{12}^{s}}{\sqrt{\sigma_{11}^{s}\sigma_{22}^{s}}}
=l11sl21s+l12sl22s((l11s)2+(l12s)2)((l21s)2+(l22s)2)\displaystyle=\frac{l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s}}{\sqrt{((l_{11}^{s})^{2}+(l_{12}^{s})^{2})((l_{21}^{s})^{2}+(l_{22}^{s})^{2})}}
=sign(l11sl21s+l12sl22s)(l11sl21s)2+2l11sl21sl12sl22s+(l12sl22s)2(l11sl21s)2+(l11sl22s)2+(l12sl21s)2+(l12sl22s)2.\displaystyle=\mathrm{sign}(l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s})\sqrt{\frac{(l_{11}^{s}l_{21}^{s})^{2}+2l_{11}^{s}l_{21}^{s}l_{12}^{s}l_{22}^{s}+(l_{12}^{s}l_{22}^{s})^{2}}{(l_{11}^{s}l_{21}^{s})^{2}+(l_{11}^{s}l_{22}^{s})^{2}+(l_{12}^{s}l_{21}^{s})^{2}+(l_{12}^{s}l_{22}^{s})^{2}}}\;.

Assuming that l11sl21s+l12sl22sl_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s} is nonzero, we can rewrite the above equation using a quadratic extension as

ρs\displaystyle\rho^{s} =sign(l11sl21s+l12sl22s)(l11sl21s)2+2l11sl21sl12sl22s+(l12sl22s)2(l11sl21s)2+2l11sl21sl12sl22s2l11sl21sl12sl22s+(l11sl22s)2+(l12sl21s)2+(l12sl22s)2\displaystyle=\mathrm{sign}(l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s})\sqrt{\frac{(l_{11}^{s}l_{21}^{s})^{2}+2l_{11}^{s}l_{21}^{s}l_{12}^{s}l_{22}^{s}+(l_{12}^{s}l_{22}^{s})^{2}}{(l_{11}^{s}l_{21}^{s})^{2}+2l_{11}^{s}l_{21}^{s}l_{12}^{s}l_{22}^{s}-2l_{11}^{s}l_{21}^{s}l_{12}^{s}l_{22}^{s}+(l_{11}^{s}l_{22}^{s})^{2}+(l_{12}^{s}l_{21}^{s})^{2}+(l_{12}^{s}l_{22}^{s})^{2}}}
=sign(l11sl21s+l12sl22s)(l11sl21s)2+2l11sl21sl12sl22s+(l12sl22s)2(l11sl21s)2+2l11sl21sl12sl22s+(l11sl22sl12sl21s)2+(l12sl22s)2\displaystyle=\mathrm{sign}(l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s})\sqrt{\frac{(l_{11}^{s}l_{21}^{s})^{2}+2l_{11}^{s}l_{21}^{s}l_{12}^{s}l_{22}^{s}+(l_{12}^{s}l_{22}^{s})^{2}}{(l_{11}^{s}l_{21}^{s})^{2}+2l_{11}^{s}l_{21}^{s}l_{12}^{s}l_{22}^{s}+(l_{11}^{s}l_{22}^{s}-l_{12}^{s}l_{21}^{s})^{2}+(l_{12}^{s}l_{22}^{s})^{2}}}
=sign(l11sl21s+l12sl22s)11+(l11sl22sl12sl21sl11sl21s+l12sl22s)2\displaystyle=\mathrm{sign}(l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s})\sqrt{\frac{1}{1+\left(\frac{l_{11}^{s}l_{22}^{s}-l_{12}^{s}l_{21}^{s}}{l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s}}\right)^{2}}} (33)

To compute the correlation coefficient we start with equation (32) and obtain

l11s\displaystyle l_{11}^{s} =1s1(Δ11a1l11+Δ12a2l21)\displaystyle=\frac{1}{s_{1}}(\Delta_{11}a_{1}l_{11}+\Delta_{12}a_{2}l_{21}) =1s1(Δ11a1σ1+Δ12a2σ2ρ)\displaystyle=\frac{1}{s_{1}}(\Delta_{11}a_{1}\sigma_{1}+\Delta_{12}a_{2}\sigma_{2}\rho)
l12s\displaystyle l_{12}^{s} =1s1(Δ11a1l12+Δ12a2l22)\displaystyle=\frac{1}{s_{1}}(\Delta_{11}a_{1}l_{12}+\Delta_{12}a_{2}l_{22}) =1s1Δ12a2σ21ρ2\displaystyle=\frac{1}{s_{1}}\Delta_{12}a_{2}\sigma_{2}\sqrt{1-\rho^{2}}
l21s\displaystyle l_{21}^{s} =1s2(Δ21a1l11+Δ22a2l21)\displaystyle=\frac{1}{s_{2}}(\Delta_{21}a_{1}l_{11}+\Delta_{22}a_{2}l_{21}) =1s2(Δ21a1σ1+Δ22a2σ2ρ)\displaystyle=\frac{1}{s_{2}}(\Delta_{21}a_{1}\sigma_{1}+\Delta_{22}a_{2}\sigma_{2}\rho)
l22s\displaystyle l_{22}^{s} =1s2(Δ21a1l12+Δ22a2l22)\displaystyle=\frac{1}{s_{2}}(\Delta_{21}a_{1}l_{12}+\Delta_{22}a_{2}l_{22}) =1s2Δ22a2σ21ρ2\displaystyle=\frac{1}{s_{2}}\Delta_{22}a_{2}\sigma_{2}\sqrt{1-\rho^{2}}

where the simplified expressions follow from l12=0l_{12}=0.

Overall, we obtain for the relevant terms

l11sl22s\displaystyle l_{11}^{s}l_{22}^{s} =1s1s2(Δ11a1σ1+Δ12a2σ2ρ)Δ22a2σ21ρ2\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\sigma_{1}+\Delta_{12}a_{2}\sigma_{2}\rho)\Delta_{22}a_{2}\sigma_{2}\sqrt{1-\rho^{2}}
=1s1s2(Δ11a1Δ22a2σ1σ21ρ2+Δ12a2Δ22a2σ22ρ1ρ2)\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\Delta_{22}a_{2}\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}\rho\sqrt{1-\rho^{2}})
l12sl21s\displaystyle l_{12}^{s}l_{21}^{s} =1s1s2Δ12a2σ21ρ2(Δ21a1σ1+Δ22a2σ2ρ)\displaystyle=\frac{1}{s_{1}s_{2}}\Delta_{12}a_{2}\sigma_{2}\sqrt{1-\rho^{2}}(\Delta_{21}a_{1}\sigma_{1}+\Delta_{22}a_{2}\sigma_{2}\rho)
=1s1s2(Δ12a2Δ21a1σ1σ21ρ2+Δ12a2Δ22a2σ22ρ1ρ2)\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{12}a_{2}\Delta_{21}a_{1}\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}\rho\sqrt{1-\rho^{2}})
l11sl22sl12sl21s\displaystyle l_{11}^{s}l_{22}^{s}-l_{12}^{s}l_{21}^{s} =1s1s2(Δ11a1Δ22a2Δ12a2Δ21a1)σ1σ21ρ2\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\Delta_{22}a_{2}-\Delta_{12}a_{2}\Delta_{21}a_{1})\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}} (34)
l11sl21s\displaystyle l_{11}^{s}l_{21}^{s} =1s1s2(Δ11a1σ1+Δ12a2σ2ρ)(Δ21a1σ1+Δ22a2σ2ρ)\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\sigma_{1}+\Delta_{12}a_{2}\sigma_{2}\rho)(\Delta_{21}a_{1}\sigma_{1}+\Delta_{22}a_{2}\sigma_{2}\rho)
=1s1s2(Δ11a1Δ21a1σ12+Δ11a1Δ22a2σ1σ2ρ+Δ12a2Δ21a1σ1σ2ρ+Δ12a2Δ22a2σ22ρ2)\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\Delta_{21}a_{1}\sigma_{1}^{2}+\Delta_{11}a_{1}\Delta_{22}a_{2}\sigma_{1}\sigma_{2}\rho+\Delta_{12}a_{2}\Delta_{21}a_{1}\sigma_{1}\sigma_{2}\rho+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}\rho^{2})
l12sl22s\displaystyle l_{12}^{s}l_{22}^{s} =1s1s2Δ12a2Δ22a2σ22(1ρ2)\displaystyle=\frac{1}{s_{1}s_{2}}\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}(1-\rho^{2})
l11sl21s+l12sl22s\displaystyle l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s} =1s1s2(Δ11a1Δ21a1σ12+(Δ11a1Δ22a2+Δ12a2Δ21a1)σ1σ2ρ+Δ12a2Δ22a2σ22)\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\Delta_{21}a_{1}\sigma_{1}^{2}+(\Delta_{11}a_{1}\Delta_{22}a_{2}+\Delta_{12}a_{2}\Delta_{21}a_{1})\sigma_{1}\sigma_{2}\rho+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}) (35)

and therefore

1(ρs)2\displaystyle\frac{1}{(\rho^{s})^{2}} =1+((Δ11a1Δ22a2Δ12a2Δ21a1)σ1σ21ρ2Δ11a1Δ21a1σ12+(Δ11a1Δ22a2+Δ12a2Δ21a1)σ1σ2ρ+Δ12a2Δ22a2σ22)2\displaystyle=1+\left(\frac{(\Delta_{11}a_{1}\Delta_{22}a_{2}-\Delta_{12}a_{2}\Delta_{21}a_{1})\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}{\Delta_{11}a_{1}\Delta_{21}a_{1}\sigma_{1}^{2}+(\Delta_{11}a_{1}\Delta_{22}a_{2}+\Delta_{12}a_{2}\Delta_{21}a_{1})\sigma_{1}\sigma_{2}\rho+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}}\right)^{2}
=1+((1Δ12Δ21Δ11Δ22)1ρ2Δ21a1σ1Δ22a2σ2+(1+Δ12Δ21Δ11Δ22)ρ+Δ12a2σ2Δ11a1σ1)2\displaystyle=1+\left(\frac{(1-\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\sqrt{1-\rho^{2}}}{\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+(1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\rho+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}}}\right)^{2} (36)

where we have used that Δ11,Δ22,a1,a2,σ1,σ2>0\Delta_{11},\Delta_{22},a_{1},a_{2},\sigma_{1},\sigma_{2}>0. As before, the sign of the correlation coefficient is given by the sign of l11sl21s+l12sl22sl_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s}.

Finally, the equity Δ\Delta’s are given as (see appendix A for a detail computation):

Δ11\displaystyle\Delta_{11} =𝔼Q[11M12sM21sA1,Ta1𝟙Ξss+11M12dM21sA1,Ta1𝟙Ξsd]\displaystyle=\mathbb{E}^{Q}\left[\frac{1}{1-M_{12}^{s}M_{21}^{s}}\frac{A_{1,T}}{a_{1}}\mathbbm{1}_{\Xi_{ss}}+\frac{1}{1-M_{12}^{d}M_{21}^{s}}\frac{A_{1,T}}{a_{1}}\mathbbm{1}_{\Xi_{sd}}\right] (37)
=πss11M12sM21s𝔼Q[A1,Ta1|Ξss]+πsd11M12dM21s𝔼Q[A1,Ta1|Ξsd]\displaystyle=\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]+\pi_{sd}\frac{1}{1-M_{12}^{d}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{sd}\right] (38)
Δ12\displaystyle\Delta_{12} =𝔼Q[11M12sM21sM12sA2,Ta2𝟙Ξss+11M12dM21sM12dA2,Ta2𝟙Ξsd]\displaystyle=\mathbb{E}^{Q}\left[\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{12}^{s}\frac{A_{2,T}}{a_{2}}\mathbbm{1}_{\Xi_{ss}}+\frac{1}{1-M_{12}^{d}M_{21}^{s}}M_{12}^{d}\frac{A_{2,T}}{a_{2}}\mathbbm{1}_{\Xi_{sd}}\right] (39)
=πss11M12sM21sM12s𝔼Q[A2,Ta2|Ξss]+πsd11M12dM21sM12d𝔼Q[A2,Ta2|Ξsd]\displaystyle=\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{12}^{s}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]+\pi_{sd}\frac{1}{1-M_{12}^{d}M_{21}^{s}}M_{12}^{d}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{sd}\right] (40)
Δ21\displaystyle\Delta_{21} =𝔼Q[11M12sM21sM21sA1,Ta1𝟙Ξss+11M12sM21dM21dA1,Ta1𝟙Ξds]\displaystyle=\mathbb{E}^{Q}\left[\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{21}^{s}\frac{A_{1,T}}{a_{1}}\mathbbm{1}_{\Xi_{ss}}+\frac{1}{1-M_{12}^{s}M_{21}^{d}}M_{21}^{d}\frac{A_{1,T}}{a_{1}}\mathbbm{1}_{\Xi_{ds}}\right] (41)
=πss11M12sM21sM21s𝔼Q[A1,Ta1|Ξss]+πds11M12sM21dM21d𝔼Q[A1,Ta1|Ξds]\displaystyle=\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{21}^{s}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]+\pi_{ds}\frac{1}{1-M_{12}^{s}M_{21}^{d}}M_{21}^{d}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ds}\right] (42)
Δ22\displaystyle\Delta_{22} =𝔼Q[11M12sM21sA2,Ta2𝟙Ξss+11M12sM21dA2,Ta2𝟙Ξds]\displaystyle=\mathbb{E}^{Q}\left[\frac{1}{1-M_{12}^{s}M_{21}^{s}}\frac{A_{2,T}}{a_{2}}\mathbbm{1}_{\Xi_{ss}}+\frac{1}{1-M_{12}^{s}M_{21}^{d}}\frac{A_{2,T}}{a_{2}}\mathbbm{1}_{\Xi_{ds}}\right] (43)
=πss11M12sM21s𝔼Q[A2,Ta2|Ξss]+πds11M12sM21d𝔼Q[A2,Ta2|Ξds].\displaystyle=\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]+\pi_{ds}\frac{1}{1-M_{12}^{s}M_{21}^{d}}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ds}\right]\;. (44)

4.2 Special cases and theorems

Theorem 2.

The equity correlation ρs\rho^{s} exceeds the asset correlation ρ\rho, i.e. ρsρ\rho^{s}\geq\rho.

Proof.

Here, we consider several cases.

ρ=0:\rho=0:

Then, by equation (35)

l11sl21s+l12sl22s\displaystyle l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s} =1s1s2(Δ11a1Δ21a1σ12+Δ12a2Δ22a2σ22)0\displaystyle=\frac{1}{s_{1}s_{2}}(\Delta_{11}a_{1}\Delta_{21}a_{1}\sigma_{1}^{2}+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2})\geq 0

and therefore ρs0\rho^{s}\geq 0 as well.

ρ>0\rho>0:

Then, by equation (35) we find that l11sl21s+l12sl22s>0l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s}>0 as well and therefore from 33 ρs>0\rho^{s}>0. Furthermore, we compute

ρs\displaystyle\rho^{s} ρ\displaystyle\geq\rho
\displaystyle\Leftrightarrow\quad 1(ρs)2\displaystyle\frac{1}{(\rho^{s})^{2}} 1ρ2\displaystyle\leq\frac{1}{\rho^{2}}
\displaystyle\Leftrightarrow\quad 1+(xy)2\displaystyle 1+\left(\frac{x}{y}\right)^{2} 1ρ2\displaystyle\leq\frac{1}{\rho^{2}}
\displaystyle\Leftrightarrow\quad (xy)2\displaystyle\left(\frac{x}{y}\right)^{2} 1ρ21\displaystyle\leq\frac{1}{\rho^{2}}-1
\displaystyle\Leftrightarrow\quad (xy)2\displaystyle\left(\frac{x}{y}\right)^{2} 1ρ2ρ2\displaystyle\leq\frac{1-\rho^{2}}{\rho^{2}}

where x=(1Δ12Δ21Δ11Δ22)1ρ2x=(1-\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\sqrt{1-\rho^{2}} and y=Δ21a1σ1Δ22a2σ2+(1+Δ12Δ21Δ11Δ22)ρ+Δ12a2σ2Δ11a1σ1y=\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+(1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\rho+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}}. Continuing, we reason

x2y2\displaystyle\frac{x^{2}}{y^{2}} =(1Δ12Δ21Δ11Δ22)2(1ρ2)(Δ21a1σ1Δ22a2σ2+(1+Δ12Δ21Δ11Δ22)ρ+Δ12a2σ2Δ11a1σ1)2\displaystyle=\frac{(1-\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})^{2}(1-\rho^{2})}{\left(\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+(1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\rho+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}}\right)^{2}}
(1Δ12Δ21Δ11Δ22)2(1+Δ12Δ21Δ11Δ22)21ρ2ρ2\displaystyle\leq\frac{(1-\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})^{2}}{(1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})^{2}}\cdot\frac{1-\rho^{2}}{\rho^{2}}
1ρ2ρ2\displaystyle\leq\frac{1-\rho^{2}}{\rho^{2}}

as required.

ρ<0\rho<0:

In this case, whenever l11sl21s+l12sl22s0l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s}\geq 0 we clearly have ρs0>ρ\rho^{s}\geq 0>\rho. Thus, we assume that

l11sl21s+l12sl22s\displaystyle l_{11}^{s}l_{21}^{s}+l_{12}^{s}l_{22}^{s} <0\displaystyle<0
\displaystyle\Leftrightarrow\quad Δ11a1Δ21a1σ12+(Δ11a1Δ22a2+Δ12a2Δ21a1)σ1σ2ρ+Δ12a2Δ22a2σ22\displaystyle\Delta_{11}a_{1}\Delta_{21}a_{1}\sigma_{1}^{2}+(\Delta_{11}a_{1}\Delta_{22}a_{2}+\Delta_{12}a_{2}\Delta_{21}a_{1})\sigma_{1}\sigma_{2}\rho+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2} <0\displaystyle<0
\displaystyle\Leftrightarrow\quad Δ11a1Δ21a1σ12+Δ12a2Δ22a2σ22(Δ11a1Δ22a2+Δ12a2Δ21a1)σ1σ2\displaystyle\frac{\Delta_{11}a_{1}\Delta_{21}a_{1}\sigma_{1}^{2}+\Delta_{12}a_{2}\Delta_{22}a_{2}\sigma_{2}^{2}}{(\Delta_{11}a_{1}\Delta_{22}a_{2}+\Delta_{12}a_{2}\Delta_{21}a_{1})\sigma_{1}\sigma_{2}} <ρ\displaystyle<-\rho
\displaystyle\Leftrightarrow\quad Δ21a1σ1Δ22a2σ2+Δ12a2σ2Δ11a1σ11+Δ12Δ21Δ11Δ22\displaystyle\frac{\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}}}{1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}}} <ρ.\displaystyle<-\rho\;.

Now, defining x=Δ12Δ21Δ11Δ22x=\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}} and y=Δ21a1σ1Δ22a2σ2+Δ12a2σ2Δ11a1σ1y=\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}} the above equation reads

y1+x<ρy\displaystyle\frac{y}{1+x}<-\rho\quad\Leftrightarrow\quad y <ρ(1+x).\displaystyle<-\rho(1+x)\;. (45)

The desired result ρsρ\rho^{s}\geq\rho than follows if we can show that

1(ρs)2\displaystyle\frac{1}{(\rho^{s})^{2}} =1+(1x)2(1ρ2)(y+(1+x)ρ)2\displaystyle=1+\frac{(1-x)^{2}(1-\rho^{2})}{(y+(1+x)\rho)^{2}} 1ρ2\displaystyle\geq\frac{1}{\rho^{2}}
\displaystyle\Leftrightarrow\quad (1x)2(1ρ2)(y+(1+x)ρ)2\displaystyle\frac{(1-x)^{2}(1-\rho^{2})}{\left(y+(1+x)\rho\right)^{2}} 1ρ2ρ2\displaystyle\geq\frac{1-\rho^{2}}{\rho^{2}}
\displaystyle\Leftrightarrow\quad (y+(1+x)ρ)2\displaystyle\left(y+(1+x)\rho\right)^{2} (1x)2ρ2\displaystyle\leq(1-x)^{2}\rho^{2}
\displaystyle\Leftrightarrow\quad y2+2y(1+x)ρ+ρ2(1(1x)2)\displaystyle y^{2}+2y(1+x)\rho+\rho^{2}\left(1-(1-x)^{2}\right) 0.\displaystyle\leq 0\>.

From equation (45) we have that

y2+2y(1+x)ρ+ρ2(1(1x)2)\displaystyle y^{2}+2y(1+x)\rho+\rho^{2}\left(1-(1-x)^{2}\right) <ρ2(1+x)22(1+x)ρ(1+x)ρ+ρ2(1(1x)2)\displaystyle<\rho^{2}(1+x)^{2}-2(1+x)\rho(1+x)\rho+\rho^{2}\left(1-(1-x)^{2}\right)
=ρ2(1(1x)2(1+x)2)\displaystyle=\rho^{2}\left(1-(1-x)^{2}-(1+x)^{2}\right)
=ρ2(1+2x2)\displaystyle=-\rho^{2}(1+2x^{2})

which is obviously negative and thereby completes the proof.

Higher

values: Consider the limit a1,a2a_{1},a_{2}\to\infty. Then,

Δ12Δ11\displaystyle\frac{\Delta_{12}}{\Delta_{11}} =πss11M12sM21sM12s𝔼Q[A2,Ta2|Ξss]+πsd11M12dM21sM12d𝔼Q[A2,Ta2|Ξsd]πss11M12sM21s𝔼Q[A1,Ta1|Ξss]+πsd11M12dM21s𝔼Q[A1,Ta1|Ξsd]\displaystyle=\frac{\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{12}^{s}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]+\pi_{sd}\frac{1}{1-M_{12}^{d}M_{21}^{s}}M_{12}^{d}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{sd}\right]}{\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]+\pi_{sd}\frac{1}{1-M_{12}^{d}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{sd}\right]}
=11M12sM21sM12s𝔼Q[A2,Ta2|Ξss]+πsdπss11M12dM21sM12d𝔼Q[A2,Ta2|Ξsd]11M12sM21s𝔼Q[A1,Ta1|Ξss]+πsdπss11M12dM21s𝔼Q[A1,Ta1|Ξsd]\displaystyle=\frac{\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{12}^{s}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]+\frac{\pi_{sd}}{\pi_{ss}}\frac{1}{1-M_{12}^{d}M_{21}^{s}}M_{12}^{d}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{sd}\right]}{\frac{1}{1-M_{12}^{s}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]+\frac{\pi_{sd}}{\pi_{ss}}\frac{1}{1-M_{12}^{d}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{sd}\right]}
a1,a2M12s𝔼Q[A2,Ta2|Ξss]𝔼Q[A1,Ta1|Ξss]\displaystyle\xrightarrow[a_{1},a_{2}\to\infty]{}M_{12}^{s}\frac{\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]}{\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]} (46)

as πsd0,πss1\pi_{sd}\to 0,\pi_{ss}\to 1 for a1,a2a_{1},a_{2}\to\infty and the conditional expectations 𝔼Q[A1,Ta1|Ξss],𝔼Q[A2,Ta2|Ξss]\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right],\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right] are constants which do not depend on a1,a2a_{1},a_{2}.

Similarly,

Δ21Δ22\displaystyle\frac{\Delta_{21}}{\Delta_{22}} =πss11M12sM21sM21s𝔼Q[A1,Ta1|Ξss]+πds11M12sM21dM21d𝔼Q[A1,Ta1|Ξds]πss11M12sM21s𝔼Q[A2,Ta2|Ξss]+πds11M12sM21d𝔼Q[A2,Ta2|Ξds]\displaystyle=\frac{\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}M_{21}^{s}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]+\pi_{ds}\frac{1}{1-M_{12}^{s}M_{21}^{d}}M_{21}^{d}\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ds}\right]}{\pi_{ss}\frac{1}{1-M_{12}^{s}M_{21}^{s}}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]+\pi_{ds}\frac{1}{1-M_{12}^{s}M_{21}^{d}}\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ds}\right]}
a1,a2M21s𝔼Q[A1,Ta1|Ξss]𝔼Q[A2,Ta2|Ξss].\displaystyle\xrightarrow[a_{1},a_{2}\to\infty]{}M_{21}^{s}\frac{\mathbb{E}^{Q}\left[\frac{A_{1,T}}{a_{1}}\bigm{|}\Xi_{ss}\right]}{\mathbb{E}^{Q}\left[\frac{A_{2,T}}{a_{2}}\bigm{|}\Xi_{ss}\right]}\;. (47)

Yet, in general, the limit of ρs\rho^{s} does not exist as it depends explicitly on a1a2\frac{a_{1}}{a_{2}} and thereby on the specific path along which a1,a2a_{1},a_{2} are taken to infinity.

4.2.1 Debt cross-holdings only

Assuming debt cross-holdings only, i.e. 𝑴s𝟎\bm{M}^{s}\equiv\bm{0}, we obtain the following proposition.

Proposition 1.

Assuming debt cross-holdings only, we have

ρsa1,a2ρ.\rho^{s}\xrightarrow[a_{1},a_{2}\to\infty]{}\rho\;.
Proof.

First we show that in the limit a1,a2a_{1},a_{2}\to\infty we have (ρs)2a1,a2ρ2(\rho^{s})^{2}\xrightarrow[a_{1},a_{2}\to\infty]{}\rho^{2}. For this note that from the considerations above (equation (46) and equation (47)),

Δ12Δ11\displaystyle\frac{\Delta_{12}}{\Delta_{11}} a1,a20\displaystyle\xrightarrow[a_{1},a_{2}\to\infty]{}0
Δ21Δ22\displaystyle\frac{\Delta_{21}}{\Delta_{22}} a1,a20\displaystyle\xrightarrow[a_{1},a_{2}\to\infty]{}0

and thus

1(ρs)2\displaystyle\frac{1}{(\rho^{s})^{2}} =1+((1Δ12Δ21Δ11Δ22)1ρ2Δ21a1σ1Δ22a2σ2+(1+Δ12Δ21Δ11Δ22)ρ+Δ12a2σ2Δ11a1σ1)2\displaystyle=1+\left(\frac{(1-\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\sqrt{1-\rho^{2}}}{\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+(1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\rho+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}}}\right)^{2}
a1,a21+(1ρ20+ρ+0)2\displaystyle\xrightarrow[a_{1},a_{2}\to\infty]{}1+\left(\frac{\sqrt{1-\rho^{2}}}{0+\rho+0}\right)^{2}
=ρ2+1ρ2ρ2=1ρ2\displaystyle=\frac{\rho^{2}+1-\rho^{2}}{\rho^{2}}=\frac{1}{\rho^{2}}

along any path at which a1a2\frac{a_{1}}{a_{2}} and a2a1\frac{a_{2}}{a_{1}} stay bounded.

Furthermore, by the same argument Δ21a1σ1Δ22a2σ2+(1+Δ12Δ21Δ11Δ22)ρ+Δ12a2σ2Δ11a1σ1a1,a2ρ\frac{\Delta_{21}a_{1}\sigma_{1}}{\Delta_{22}a_{2}\sigma_{2}}+(1+\frac{\Delta_{12}\Delta_{21}}{\Delta_{11}\Delta_{22}})\rho+\frac{\Delta_{12}a_{2}\sigma_{2}}{\Delta_{11}a_{1}\sigma_{1}}\xrightarrow[a_{1},a_{2}\to\infty]{}\rho meaning that the signs of ρs\rho^{s} and ρ\rho eventually agree and we conclude that ρsρ\rho^{s}\to\rho. ∎

4.2.2 Merton model

Sanity check of special cases

  • No network; i.e., 𝑴s=𝑴d𝟎\bm{M}^{s}=\bm{M}^{d}\equiv\bm{0}. Then,

    l22sl21s\displaystyle\frac{l_{22}^{s}}{l_{21}^{s}} =(πss𝔼Q[A2,T|Ξss]+πds𝔼Q[A2,T|Ξds])σ21ρ2(πss𝔼Q[A2,T|Ξss]+πds𝔼Q[A2,T|Ξds])σ2ρ=1ρ2ρ\displaystyle=\frac{\left(\pi_{ss}\mathbb{E}^{Q}[A_{2,T}|\Xi_{ss}]+\pi_{ds}\mathbb{E}^{Q}[A_{2,T}|\Xi_{ds}]\right)\sigma_{2}\sqrt{1-\rho^{2}}}{\left(\pi_{ss}\mathbb{E}^{Q}[A_{2,T}|\Xi_{ss}]+\pi_{ds}\mathbb{E}^{Q}[A_{2,T}|\Xi_{ds}]\right)\sigma_{2}\rho}=\frac{\sqrt{1-\rho^{2}}}{\rho}
    ρs\displaystyle\rho^{s} =11+(1ρ2ρ2)=ρ\displaystyle=\frac{1}{\sqrt{1+\left(\frac{1-\rho^{2}}{\rho^{2}}\right)}}=\rho
  • Volatility and the Merton model. According to equation (30) we have σ1=l11\sigma_{1}=l_{11} and therefore using equation (32) again

    σ1s\displaystyle\sigma_{1}^{s} =l11s=Δ11a1s1l11+Δ12a2s1l21\displaystyle=l_{11}^{s}=\frac{\Delta_{11}a_{1}}{s_{1}}l_{11}+\frac{\Delta_{12}a_{2}}{s_{1}}l_{21}
    =(πss𝔼Q[A1,T|Ξss]1M12sM21s+πsd𝔼Q[A1,T|Ξsd]1M12dM21s)σ1+(πssM12s𝔼Q[A2,T|Ξss]1M12sM21s+πsdM12d𝔼Q[A2,T|Ξsd]1M12dM21s)σ2ρπss𝔼Q[A1,T|Ξss]d1+M12dd2+M12s(𝔼Q[A2,T|Ξss]d2+M21dd1)1M12sM21s+πsd𝔼Q[A1,T|Ξsd]d1+M12dd2+M12d(𝔼Q[A2,T|Ξsd]d2+M21dd1)1M12dM21s\displaystyle=\frac{\left(\pi_{ss}\frac{\mathbb{E}^{Q}[A_{1,T}|\Xi_{ss}]}{1-M_{12}^{s}M_{21}^{s}}+\pi_{sd}\frac{\mathbb{E}^{Q}[A_{1,T}|\Xi_{sd}]}{1-M_{12}^{d}M_{21}^{s}}\right)\sigma_{1}+\left(\pi_{ss}\frac{M_{12}^{s}\mathbb{E}^{Q}[A_{2,T}|\Xi_{ss}]}{1-M_{12}^{s}M_{21}^{s}}+\pi_{sd}\frac{M_{12}^{d}\mathbb{E}^{Q}[A_{2,T}|\Xi_{sd}]}{1-M_{12}^{d}M_{21}^{s}}\right)\sigma_{2}\rho}{\pi_{ss}\frac{\mathbb{E}^{Q}[A_{1,T}|\Xi_{ss}]-d_{1}+M_{12}^{d}d_{2}+M_{12}^{s}(\mathbb{E}^{Q}[A_{2,T}|\Xi_{ss}]-d_{2}+M_{21}^{d}d_{1})}{1-M_{12}^{s}M_{21}^{s}}+\pi_{sd}\frac{\mathbb{E}^{Q}[A_{1,T}|\Xi_{sd}]-d_{1}+M_{12}^{d}d_{2}+M_{12}^{d}(\mathbb{E}^{Q}[A_{2,T}|\Xi_{sd}]-d_{2}+M_{21}^{d}d_{1})}{1-M_{12}^{d}M_{21}^{s}}}

    which should reduce to the standard Merton model formulas without a network:

    σ1s\displaystyle\sigma_{1}^{s} =(πss𝔼Q[A1,T|Ξss]+πsd𝔼Q[A1,T|Ξsd])σ1πss(𝔼Q[A1,T|Ξss]d1)+πsd(𝔼Q[A1,T|Ξsd]d1)\displaystyle=\frac{\left(\pi_{ss}\mathbb{E}^{Q}[A_{1,T}|\Xi_{ss}]+\pi_{sd}\mathbb{E}^{Q}[A_{1,T}|\Xi_{sd}]\right)\sigma_{1}}{\pi_{ss}(\mathbb{E}^{Q}[A_{1,T}|\Xi_{ss}]-d_{1})+\pi_{sd}(\mathbb{E}^{Q}[A_{1,T}|\Xi_{sd}]-d_{1})}
    =πs𝔼Q[A1,T|As]πs𝔼Q[A1,T|As]πsd1σ1=σ11d1𝔼Q[A1,T|As].\displaystyle=\frac{\pi_{s\cdot}\mathbb{E}^{Q}[A_{1,T}|A_{s\cdot}]}{\pi_{s\cdot}\mathbb{E}^{Q}[A_{1,T}|A_{s\cdot}]-\pi_{s\cdot}d_{1}}\sigma_{1}=\frac{\sigma_{1}}{1-\frac{d_{1}}{\mathbb{E}^{Q}[A_{1,T}|A_{s\cdot}]}}\;.

    Translating to more standard notation, i.e. AT=A1,TA_{T}=A_{1,T} and K=d1K=d_{1}, and using that the conditional expectation 𝔼Q[AT|ATK]\mathbb{E}^{Q}[A_{T}|A_{T}\geq K] can be computed as

    𝔼Q[AT|ATK]\displaystyle\mathbb{E}^{Q}[A_{T}|A_{T}\geq K] =eμBS+σBS22Φ(μBS+σBS2lnKσBS)Φ(μBSlnKσBS)\displaystyle=e^{\mu_{BS}+\frac{\sigma_{BS}^{2}}{2}}\frac{\Phi(\frac{\mu_{BS}+\sigma_{BS}^{2}-\ln K}{\sigma_{BS}})}{\Phi(\frac{\mu_{BS}-\ln K}{\sigma_{BS}})}
    =ater(Tt)Φ(d+)Φ(d)\displaystyle=a_{t}e^{r(T-t)}\frac{\Phi(d_{+})}{\Phi(d_{-})}

where μBS=(rσ22)(Tt)+lnat\mu_{BS}=(r-\frac{\sigma^{2}}{2})(T-t)+\ln a_{t} and σBS=σTt\sigma_{BS}=\sigma\sqrt{T-t}. Further, d±d_{\pm} denotes the familiar terms

d±=lnatK+(r±σ22)(Tt)σTtd_{\pm}=\frac{\ln\frac{a_{t}}{K}+(r\pm\frac{\sigma^{2}}{2})(T-t)}{\sigma\sqrt{T-t}}

and Φ\Phi the cumulative distribution function of a standard normal. Thus, plugging everything together we obtain the standard result

σs\displaystyle\sigma^{s} =σ1d1𝔼Q[A1,T|As]\displaystyle=\frac{\sigma}{1-\frac{d_{1}}{\mathbb{E}^{Q}[A_{1,T}|A_{s\cdot}]}}
=σ1KΦ(d)ater(Tt)Φ(d+)\displaystyle=\frac{\sigma}{1-\frac{K\Phi(d_{-})}{a_{t}e^{r(T-t)}\Phi(d_{+})}}
=atΦ(d+)atΦ(d+)er(Tt)KΦ(d)σ\displaystyle=\frac{a_{t}\Phi(d_{+})}{a_{t}\Phi(d_{+})-e^{-r(T-t)}K\Phi(d_{-})}\sigma
=ΔBSatcBSσ\displaystyle=\Delta_{BS}\frac{a_{t}}{c_{BS}}\sigma

with the Black-Scholes Delta ΔBS=Φ(d+)\Delta_{BS}=\Phi(d_{+}) and call price cBS=atΦ(d+)er(Tt)KΦ(d)c_{BS}=a_{t}\Phi(d_{+})-e^{-r(T-t)}K\Phi(d_{-}).

4.3 Numerical illustrations

4.3.1 Equity correlation as function of the network parameters

One of the central results of this paper is given by the Theorem 2; i.e., ρsρ\rho^{s}\geq\rho for two firms. Here, we illustrate it numerically by plotting the equity correlation for different values of asset correlations, initial prices, volatilities and cross-holding fractions. For the sake of simplicity, we consider cross-holdings of debt only (𝑴s=𝟎\bm{M}^{s}=\bm{0}) and symmetric initial conditions for the assets111Thus, the both firms assets have the same spot value, but are still log-normally distributed at maturity. The case of comonotonic asset endowments as considered by Banerjee \BBA Feinstein (\APACyear2021) corresponds to the trivial case of fully correlated assets, i.e., ρ=1\rho=1, and thus ρs=1\rho_{s}=1 as well., i.e., σ1=σ2=σ\sigma_{1}=\sigma_{2}=\sigma and a1,0=a2,0=a1,2a_{\text{1,0}}=a_{2,0}=a_{1,2}. Figure 1 show the resulting equity correlation as a function of firm 1’s equity222 Note that by symmetry of the setup, the corresponding figure for firm 2’s equity is just the mirror image, i.e., obtained by exchanging M12dM_{12}^{d} and M21dM_{21}^{d}., for different debt cross-holding fractions, asset correlations and volatilities. Here, the subplots correspond to cross-holding fractions of M12d=0,0.2,,0.8M_{12}^{d}=0,0.2,\ldots,0.8 (vertical) and M21d=0,0.2,,0.8M_{21}^{d}=0,0.2,\ldots,0.8 (horizontal). Furthermore, solid lines represent an asset volatility value of 0.20.2 while dotted lines a volatility value of 0.4. The colors correspond to different values of asset correlations ρa={0.4,0,0.4,0.8}\rho_{a}=\left\{-0.4,0,0.4,0.8\right\}. As proved above (page 4.2.2), in case of no cross-holdings (left and upper subplot) we find ρs=ρ\rho^{s}=\rho. In contrast, with cross-holdings the equity correlation shows a marked increase above the asset correlations until the equity reaches essentially zero. Most notable, even for anti-correlated business asset (ρa=0.4\rho_{a}=-0.4) the firm’s equities exhibit positive correlations for sufficiently large cross-holding fractions and stressed firm equities, i.e., during crises times with correspondingly low asset values. Similar effects are also observed for asymmetric asset values and with additional equity cross-holdings (as shown in appendix B).

Refer to caption
Figure 1: Equity correlations as function of firm 1’s equity value s1,0s_{1,0}, for different debt cross-holding fractions, asset correlations and volatilities.

5 Summary

We have used a financial network with cross-holdings to model the complex interlinkages around the financial firms and we put the accent in the study of the correlation of their derivatives. In fact, we uncover the capabilities of the Suzuki model to address the non-constant behavior of the correlation observed in the equity market; even from constant values of the business asset correlations. We shown mathematically, that the correlation among equities depends on the structure of the financial networks. Furthermore, we demonstrate analytically for the two firms case, the equity correlation is never lower than the unconditional correlation of the asset returns. Besides, the numerical simulations shows the power of the network approach too explain structurally the increase in correlation under crisis.

Acknowledgement

This work has been supported by DFG BE 7225/1–1.

References

  • Adams \BOthers. (\APACyear2017) \APACinsertmetastaradams2017correlations{APACrefauthors}Adams, Z., Füss, R.\BCBL \BBA Glück, T.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleAre correlations constant? Empirical and theoretical results on popular correlation models in finance Are correlations constant? Empirical and theoretical results on popular correlation models in finance.\BBCQ \APACjournalVolNumPagesJournal of Banking & Finance849–24. \PrintBackRefs\CurrentBib
  • Ang \BBA Chen (\APACyear2002) \APACinsertmetastarang2002asymmetric{APACrefauthors}Ang, A.\BCBT \BBA Chen, J.  \APACrefYearMonthDay2002. \BBOQ\APACrefatitleAsymmetric correlations of equity portfolios Asymmetric correlations of equity portfolios.\BBCQ \APACjournalVolNumPagesJournal of Financial Economics633443–494. \PrintBackRefs\CurrentBib
  • Baig \BBA Goldfajn (\APACyear1999) \APACinsertmetastarBaig1999{APACrefauthors}Baig, T.\BCBT \BBA Goldfajn, I.  \APACrefYearMonthDay1999Jun01. \BBOQ\APACrefatitleFinancial Market Contagion in the Asian Crisis Financial market contagion in the Asian crisis.\BBCQ \APACjournalVolNumPagesIMF Staff Papers462167–195. {APACrefDOI} \doi10.2307/3867666 \PrintBackRefs\CurrentBib
  • Banerjee \BBA Feinstein (\APACyear2021) \APACinsertmetastarfeinstein2021{APACrefauthors}Banerjee, T.\BCBT \BBA Feinstein, Z.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePricing of debt and equity in a financial network with comonotonic endowments Pricing of debt and equity in a financial network with comonotonic endowments.\BBCQ \APACjournalVolNumPagesarXiv:1810.01372. \PrintBackRefs\CurrentBib
  • Broadie \BBA Glasserman (\APACyear1996) \APACinsertmetastarbroadie1996estimating{APACrefauthors}Broadie, M.\BCBT \BBA Glasserman, P.  \APACrefYearMonthDay1996. \BBOQ\APACrefatitleEstimating security price derivatives using simulation Estimating security price derivatives using simulation.\BBCQ \APACjournalVolNumPagesManagement Science422269–285. \PrintBackRefs\CurrentBib
  • Caccioli \BOthers. (\APACyear2018) \APACinsertmetastarcaccioli2018network{APACrefauthors}Caccioli, F., Barucca, P.\BCBL \BBA Kobayashi, T.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleNetwork models of financial systemic risk: A review Network models of financial systemic risk: A review.\BBCQ \APACjournalVolNumPagesJournal of Computational Social Science1181–114. \PrintBackRefs\CurrentBib
  • Choi \BBA Shin (\APACyear2019) \APACinsertmetastarchoi2019self{APACrefauthors}Choi, J\BHBIE.\BCBT \BBA Shin, D\BPBIW.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleA self-normalization test for correlation change A self-normalization test for correlation change.\BBCQ \APACjournalVolNumPagesEconomics Letters. \PrintBackRefs\CurrentBib
  • Cifuentes \BOthers. (\APACyear2005) \APACinsertmetastarcifuentes2005liquidity{APACrefauthors}Cifuentes, R., Ferrucci, G.\BCBL \BBA Shin, H\BPBIS.  \APACrefYearMonthDay2005. \BBOQ\APACrefatitleLiquidity risk and contagion Liquidity risk and contagion.\BBCQ \APACjournalVolNumPagesJournal of the European Economic Association32-3556–566. \PrintBackRefs\CurrentBib
  • Cizeau \BOthers. (\APACyear2001) \APACinsertmetastarcizeau2001correlation{APACrefauthors}Cizeau, P., Potters, M.\BCBL \BBA Bouchaud, J\BHBIP.  \APACrefYearMonthDay2001. \BBOQ\APACrefatitleCorrelation structure of extreme stock returns Correlation structure of extreme stock returns.\BBCQ \APACjournalVolNumPagesQuantitative Finance12217–222. \PrintBackRefs\CurrentBib
  • Cont \BBA Wagalath (\APACyear2013) \APACinsertmetastarcont2013running{APACrefauthors}Cont, R.\BCBT \BBA Wagalath, L.  \APACrefYearMonthDay2013. \BBOQ\APACrefatitleRunning for the exit: distressed selling and endogenous correlation in financial markets Running for the exit: distressed selling and endogenous correlation in financial markets.\BBCQ \APACjournalVolNumPagesMathematical Finance234718–741. \PrintBackRefs\CurrentBib
  • De Bandt \BBA Hartmann (\APACyear2000) \APACinsertmetastarde2000systemic{APACrefauthors}De Bandt, O.\BCBT \BBA Hartmann, P.  \APACrefYearMonthDay2000. \APACrefbtitleSystemic risk: A survey Systemic risk: A survey \APACbVolEdTRWorking Paper \BNUM 35. \APACaddressInstitutionFrankfurt am MainEuropean Central Bank. \PrintBackRefs\CurrentBib
  • Demetrescu \BBA Wied (\APACyear2019) \APACinsertmetastardemetrescu2019testing{APACrefauthors}Demetrescu, M.\BCBT \BBA Wied, D.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTesting for constant correlation of filtered series under structural change Testing for constant correlation of filtered series under structural change.\BBCQ \APACjournalVolNumPagesThe Econometrics Journal22110–33. \PrintBackRefs\CurrentBib
  • Eisenberg \BBA Noe (\APACyear2001) \APACinsertmetastareisenberg2001systemic{APACrefauthors}Eisenberg, L.\BCBT \BBA Noe, T\BPBIH.  \APACrefYearMonthDay2001. \BBOQ\APACrefatitleSystemic risk in financial systems Systemic risk in financial systems.\BBCQ \APACjournalVolNumPagesManagement Science472236–249. \PrintBackRefs\CurrentBib
  • Elliott \BOthers. (\APACyear2014) \APACinsertmetastarelliott2014financial{APACrefauthors}Elliott, M., Golub, B.\BCBL \BBA Jackson, M.  \APACrefYearMonthDay2014. \BBOQ\APACrefatitleFinancial networks and contagion Financial networks and contagion.\BBCQ \APACjournalVolNumPagesAmerican Economic Review104103115–53. \PrintBackRefs\CurrentBib
  • Elsinger (\APACyear2009) \APACinsertmetastarelsinger2009financial{APACrefauthors}Elsinger, H.  \APACrefYearMonthDay2009. \APACrefbtitleFinancial Networks, Cross Holdings, and Limited Liability Financial Networks, Cross Holdings, and Limited Liability \APACbVolEdTRWorking Paper \BNUM 156. \APACaddressInstitutionOesterreichische Nationalbank. \PrintBackRefs\CurrentBib
  • Fischer (\APACyear2014) \APACinsertmetastarfischer2014no{APACrefauthors}Fischer, T.  \APACrefYearMonthDay2014. \BBOQ\APACrefatitleNo-Arbitrage Pricing Under Systemic Risk: Accounting for Cross-Ownership No-arbitrage pricing under systemic risk: Accounting for cross-ownership.\BBCQ \APACjournalVolNumPagesMathematical Finance24197–124. \PrintBackRefs\CurrentBib
  • Gai \BBA Kapadia (\APACyear2010) \APACinsertmetastargai2010contagion{APACrefauthors}Gai, P.\BCBT \BBA Kapadia, S.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleContagion in financial networks Contagion in financial networks.\BBCQ \APACjournalVolNumPagesProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences46621202401–2423. \PrintBackRefs\CurrentBib
  • Hain \BBA Fischer (\APACyear2015) \APACinsertmetastarHain2015{APACrefauthors}Hain, J.\BCBT \BBA Fischer, T.  \APACrefYearMonthDay2015. \BBOQ\APACrefatitleValuation algorithms for structural models of financial interconnectedness Valuation algorithms for structural models of financial interconnectedness.\BBCQ \APACjournalVolNumPagesarXiv:1501.07402. \PrintBackRefs\CurrentBib
  • Halkin (\APACyear1974) \APACinsertmetastarhalkin1974implicit{APACrefauthors}Halkin, H.  \APACrefYearMonthDay1974. \BBOQ\APACrefatitleImplicit functions and optimization problems without continuous differentiability of the data Implicit functions and optimization problems without continuous differentiability of the data.\BBCQ \APACjournalVolNumPagesSIAM Journal on Control122229–236. \PrintBackRefs\CurrentBib
  • Kalkbrener \BBA Packham (\APACyear2015) \APACinsertmetastarkalkbrener2015correlation{APACrefauthors}Kalkbrener, M.\BCBT \BBA Packham, N.  \APACrefYearMonthDay2015. \BBOQ\APACrefatitleCorrelation under stress in normal variance mixture models Correlation under stress in normal variance mixture models.\BBCQ \APACjournalVolNumPagesMathematical Finance252426–456. \PrintBackRefs\CurrentBib
  • Karl \BBA Fischer (\APACyear2014) \APACinsertmetastarkarl2014cross{APACrefauthors}Karl, S.\BCBT \BBA Fischer, T.  \APACrefYearMonthDay2014. \BBOQ\APACrefatitleCross-ownership as a structural explanation for over-and underestimation of default probability Cross-ownership as a structural explanation for over-and underestimation of default probability.\BBCQ \APACjournalVolNumPagesQuantitative Finance1461031–1046. \PrintBackRefs\CurrentBib
  • Kyle \BBA Xiong (\APACyear2001) \APACinsertmetastarkyle2001contagion{APACrefauthors}Kyle, A\BPBIS.\BCBT \BBA Xiong, W.  \APACrefYearMonthDay2001. \BBOQ\APACrefatitleContagion as a wealth effect Contagion as a wealth effect.\BBCQ \APACjournalVolNumPagesThe Journal of Finance5641401–1440. \PrintBackRefs\CurrentBib
  • Lillo \BBA Mantegna (\APACyear2000) \APACinsertmetastarlillo2000symmetry{APACrefauthors}Lillo, F.\BCBT \BBA Mantegna, R\BPBIN.  \APACrefYearMonthDay2000. \BBOQ\APACrefatitleSymmetry alteration of ensemble return distribution in crash and rally days of financial markets Symmetry alteration of ensemble return distribution in crash and rally days of financial markets.\BBCQ \APACjournalVolNumPagesThe European Physical Journal B-Condensed Matter and Complex Systems154603–606. \PrintBackRefs\CurrentBib
  • Longin \BBA Solnik (\APACyear2001) \APACinsertmetastarlongin2001extreme{APACrefauthors}Longin, F.\BCBT \BBA Solnik, B.  \APACrefYearMonthDay2001. \BBOQ\APACrefatitleExtreme correlation of international equity markets Extreme correlation of international equity markets.\BBCQ \APACjournalVolNumPagesThe Journal of Finance562649–676. \PrintBackRefs\CurrentBib
  • Merton (\APACyear1974) \APACinsertmetastarmerton1974pricing{APACrefauthors}Merton, R\BPBIC.  \APACrefYearMonthDay1974. \BBOQ\APACrefatitleOn the pricing of corporate debt: The risk structure of interest rates On the pricing of corporate debt: The risk structure of interest rates.\BBCQ \APACjournalVolNumPagesThe Journal of Finance292449–470. \PrintBackRefs\CurrentBib
  • Onnela \BOthers. (\APACyear2003) \APACinsertmetastaronnela2003dynamics{APACrefauthors}Onnela, J\BHBIP., Chakraborti, A., Kaski, K., Kertesz, J.\BCBL \BBA Kanto, A.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleDynamics of market correlations: Taxonomy and portfolio analysis Dynamics of market correlations: Taxonomy and portfolio analysis.\BBCQ \APACjournalVolNumPagesPhysical Review E685056110. \PrintBackRefs\CurrentBib
  • Preis \BOthers. (\APACyear2012) \APACinsertmetastarpreis2012quantifying{APACrefauthors}Preis, T., Kenett, D\BPBIY., Stanley, H\BPBIE., Helbing, D.\BCBL \BBA Ben-Jacob, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleQuantifying the behavior of stock correlations under market stress Quantifying the behavior of stock correlations under market stress.\BBCQ \APACjournalVolNumPagesScientific Reports2752. \PrintBackRefs\CurrentBib
  • Sasidevan \BBA Bertschinger (\APACyear2019) \APACinsertmetastarsasidevan2019systemic{APACrefauthors}Sasidevan, V.\BCBT \BBA Bertschinger, N.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleSystemic risk: Fire-walling financial systems using network-based approaches Systemic risk: Fire-walling financial systems using network-based approaches.\BBCQ \BIn A\BPBIS. Chakrabarti, L. Pichl\BCBL \BBA T. Kaizoji (\BEDS), \APACrefbtitleNetwork Theory and Agent-Based Modeling in Economics and Finance Network Theory and Agent-Based Modeling in Economics and Finance (\BPGS 313–330). \APACaddressPublisherSpringer. \PrintBackRefs\CurrentBib
  • Suzuki (\APACyear2002) \APACinsertmetastarsuzuki2002valuing{APACrefauthors}Suzuki, T.  \APACrefYearMonthDay2002. \BBOQ\APACrefatitleValuing corporate debt: The effect of cross-holdings of stock and debt Valuing corporate debt: The effect of cross-holdings of stock and debt.\BBCQ \APACjournalVolNumPagesJournal of the Operations Research Society of Japan452123–144. \PrintBackRefs\CurrentBib

Appendix A Computing the Greeks

The Greeks quantify the sensitivities of derivative prices to changes in underlying parameters. Here, we consider first-order Greeks only. In particular, we compute the sensitivities of equity and debt prices accounting for cross-holdings with respect to current asset values Δ=𝒙t𝒂t\Delta=\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}.

First, we recall the solution 𝑨t\bm{A}_{t} of equation (18) as

𝑨t\displaystyle\bm{A}_{t} =𝒂0e(r12diag(𝝈2))t+diag(𝝈)𝑾t\displaystyle=\bm{a}_{0}e^{\left(r-\frac{1}{2}\operatorname{diag}(\bm{\sigma}^{2})\right)t+\operatorname{diag}(\bm{\sigma})\bm{W}_{t}} (48)

where 𝒂0>0\bm{a}_{0}>0 denotes the initial value and 𝑾t\bm{W}_{t} is multivariate normal distributed with mean 𝟎\bm{0} and covariance matrix t𝑪t\bm{C}. Note that 𝑾t\bm{W}_{t} can be obtained from independent standard normal variates 𝒁𝒩(𝟎,𝑰n×n)\bm{Z}\sim\mathcal{N}(\bm{0},\bm{I}_{n\times n}) as 𝑾t=t𝑳𝒁\bm{W}_{t}=\sqrt{t}\bm{L}\bm{Z} with 𝑳T𝑳=𝑪\bm{L}^{T}\bm{L}=\bm{C}. We will use this representation in the next section to express the risk-neutral market value of equity and debt contracts as

𝒙t=𝔼tQ[erτ𝒙(𝒂T(𝒁))]=𝔼tQ[erτ𝒙(𝒂te(r12𝝈2)τ+τdiag(𝝈)𝑳𝒁)].\displaystyle\bm{x}_{t}=\mathbb{E}_{t}^{Q}[e^{-r\tau}\bm{x}^{*}\left(\bm{a}_{T}(\bm{Z})\right)]=\mathbb{E}_{t}^{Q}\left[e^{-r\tau}\bm{x}^{*}\left(\bm{a}_{t}e^{\left(r-\frac{1}{2}\bm{\sigma}^{2}\right)\tau+\sqrt{\tau}\operatorname{diag}(\bm{\sigma})\bm{L}\bm{Z}}\right)\right]\,. (49)

A.1 Formal solution

Denoting all parameters of interest by 𝜽=(𝒂t,𝝈,r,τ)T\bm{\theta}=(\bm{a}_{t},\bm{\sigma},r,\tau)^{T} and considering that the asset value 𝒂τ(Z;θ)\bm{a}_{\tau}(Z;\theta) depends on the random variate ZZ and these parameters, we need to compute the following derivatives

𝜽𝒙t\displaystyle\frac{\partial}{\partial\bm{\theta}}\bm{x}_{t} =𝜽𝔼tQ[erτ𝒙(𝒂T(Z;θ))]\displaystyle=\frac{\partial}{\partial\bm{\theta}}\mathbb{E}_{t}^{Q}[e^{-r\tau}\bm{x}^{*}(\bm{a}_{T}(Z;\theta))]
=𝔼tQ[(𝜽erτ)𝒙(𝒂T(Z;θ))+erτ(𝜽𝒙(𝒂T(Z;θ)))]\displaystyle=\mathbb{E}_{t}^{Q}\left[\left(\frac{\partial}{\partial\bm{\theta}}e^{-r\tau}\right)\bm{x}^{*}(\bm{a}_{T}(Z;\theta))+e^{-r\tau}\left(\frac{\partial}{\partial\bm{\theta}}\bm{x}^{*}(\bm{a}_{T}(Z;\theta))\right)\right] (50)

where we have used pathwise differentiation. Exchanging integration and differentiation requires some continuity conditions on 𝒙\bm{x}^{*}. In particular, \citeA[proposition 1]broadie1996estimating prove that pathwise differentiation is applicable for Lipschitz continuous functions.

Lemma 1.

The function 𝐱(𝐚)\bm{x}^{*}(\bm{a}) is Lipschitz continuous with Lipschitz constant

L=(1max𝝃𝑲𝝃1)1\displaystyle L^{*}=(1-\max_{\bm{\xi}}\left\lVert\bm{K}_{\bm{\xi}}\right\rVert_{1})^{-1}

where

𝑲𝝃\displaystyle\bm{K}_{\bm{\xi}} =(diag(𝝃)𝑴sdiag(𝝃)𝑴ddiag(𝟏𝝃)𝑴sdiag(𝟏𝝃)𝑴d).\displaystyle=\left(\begin{array}[]{cc}\operatorname{diag}(\bm{\xi})\bm{M}^{s}&\operatorname{diag}(\bm{\xi})\bm{M}^{d}\\ \operatorname{diag}(\bm{1}-\bm{\xi})\bm{M}^{s}&\operatorname{diag}(\bm{1}-\bm{\xi})\bm{M}^{d}\end{array}\right)\,.
Proof.

First, we observe that 𝒈\bm{g} is continuous and piecewise linear. In particular, we have

𝒈(𝒂1,𝒙)𝒈(𝒂2,𝒙)1\displaystyle\left\lVert\bm{g}(\bm{a}_{1},\bm{x})-\bm{g}(\bm{a}_{2},\bm{x})\right\rVert_{1} 𝒂1𝒂21\displaystyle\leq\left\lVert\bm{a}_{1}-\bm{a}_{2}\right\rVert_{1}
𝒈(𝒂,𝒙1)𝒈(𝒂,𝒙2)1\displaystyle\left\lVert\bm{g}(\bm{a},\bm{x}_{1})-\bm{g}(\bm{a},\bm{x}_{2})\right\rVert_{1} max𝝃𝑲𝝃1𝒙1𝒙21\displaystyle\leq\max_{\bm{\xi}}\left\lVert\bm{K}_{\bm{\xi}}\right\rVert_{1}\left\lVert\bm{x}_{1}-\bm{x}_{2}\right\rVert_{1}

showing that 𝒈\bm{g} is Lipschitz continuous with respect to 𝒂\bm{a} and 𝒙\bm{x}.

Note that by assumption 11, we have 𝑴s1,𝑴d1<1\left\lVert\bm{M}^{s}\right\rVert_{1},\left\lVert\bm{M}^{d}\right\rVert_{1}<1. Furthermore, the solvency indicator is either ξi=1\xi_{i}=1 if bank ii is solvent or ξi=0\xi_{i}=0 otherwise. Thus, it holds that 𝑲𝝃1<1,𝝃{0,1}N\left\lVert\bm{K}_{\bm{\xi}}\right\rVert_{1}<1,\forall\bm{\xi}\in\{0,1\}^{N}.

Then, we compute

𝒙(𝒂1)𝒙(𝒂2)1\displaystyle\left\lVert\bm{x}^{*}(\bm{a}_{1})-\bm{x}^{*}(\bm{a}_{2})\right\rVert_{1} =𝒈(𝒂1,𝒙(𝒂1))𝒈(𝒂2,𝒙(𝒂2))1\displaystyle=\left\lVert\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{1}))-\bm{g}(\bm{a}_{2},\bm{x}^{*}(\bm{a}_{2}))\right\rVert_{1}
=𝒈(𝒂1,𝒙(𝒂1))𝒈(𝒂1,𝒙(𝒂2))+𝒈(𝒂1,𝒙(𝒂2))𝒈(𝒂2,𝒙(𝒂2))1\displaystyle=\left\lVert\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{1}))-\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{2}))+\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{2}))-\bm{g}(\bm{a}_{2},\bm{x}^{*}(\bm{a}_{2}))\right\rVert_{1}
𝒈(𝒂1,𝒙(𝒂1))𝒈(𝒂1,𝒙(𝒂2))1+𝒈(𝒂1,𝒙(𝒂2))𝒈(𝒂2,𝒙(𝒂2))1\displaystyle\leq\left\lVert\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{1}))-\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{2}))\right\rVert_{1}+\left\lVert\bm{g}(\bm{a}_{1},\bm{x}^{*}(\bm{a}_{2}))-\bm{g}(\bm{a}_{2},\bm{x}^{*}(\bm{a}_{2}))\right\rVert_{1}
max𝝃𝑲𝝃1𝒙(𝒂1))𝒙(𝒂2))1+𝒂1𝒂21\displaystyle\leq\max_{\bm{\xi}}\left\lVert\bm{K}_{\bm{\xi}}\right\rVert_{1}\left\lVert\bm{x}^{*}(\bm{a}_{1}))-\bm{x}^{*}(\bm{a}_{2}))\right\rVert_{1}+\left\lVert\bm{a}_{1}-\bm{a}_{2}\right\rVert_{1}
𝒙(𝒂1)𝒙(𝒂2)1\displaystyle\implies\left\lVert\bm{x}^{*}(\bm{a}_{1})-\bm{x}^{*}(\bm{a}_{2})\right\rVert_{1} (1max𝝃𝑲𝝃1)1𝒂1𝒂21.\displaystyle\leq(1-\max_{\bm{\xi}}\left\lVert\bm{K}_{\bm{\xi}}\right\rVert_{1})^{-1}\left\lVert\bm{a}_{1}-\bm{a}_{2}\right\rVert_{1}\;.

By the chain rule of differentiation we obtain

𝜽𝒙(𝒂τ(Z;θ))\displaystyle\frac{\partial}{\partial\bm{\theta}}\bm{x}^{*}(\bm{a}_{\tau}(Z;\theta)) =𝒂𝒙(𝒂)𝒂=𝒂τ(Z;θ)𝜽𝒂τ(Z;θ).\displaystyle=\frac{\partial}{\partial\bm{a}}\bm{x}^{*}(\bm{a})\mid_{\bm{a}=\bm{a}_{\tau}(Z;\theta)}\frac{\partial}{\partial\bm{\theta}}\bm{a}_{\tau}(Z;\theta)\,. (51)

Note that 𝒂𝒙(𝒂)\frac{\partial}{\partial\bm{a}}\bm{x}^{*}(\bm{a}) is the derivative of the fixed point solving (9). In order to compute it, we make use of the implicit function theorem. A version of the theorem by \citeAhalkin1974implicit is adopted to our notation:

Theorem 3.

Let Um,VnU\subset\mathbb{R}^{m},V\subset\mathbb{R}^{n} and 𝐟:U×Vn\bm{f}:U\times V\to\mathbb{R}^{n} a continuously differentiable function. Suppose that

𝒇(𝒙,𝒚)=𝟎\displaystyle\bm{f}(\bm{x}^{*},\bm{y}^{*})=\bm{0} (52)

at a point (𝐱,𝐲)U×V(\bm{x}^{*},\bm{y}^{*})\in U\times V and that the Jacobian matrices 𝐉𝐟,𝐱𝐟(𝐱,𝐲),𝐉𝐟,𝐲𝐟(𝐱,𝐲)\bm{J}_{\bm{f},\bm{x}}\bm{f}(\bm{x},\bm{y}),\bm{J}_{\bm{f},\bm{y}}\bm{f}(\bm{x},\bm{y}) of partial derivatives exist at (𝐱,𝐲)(\bm{x}^{*},\bm{y}^{*}). Further, 𝐉𝐟,𝐲\bm{J}_{\bm{f},\bm{y}} is invertible at this point. Then, there exists a neighborhood UUU^{*}\subset U and a continuously differentiable function 𝐡:Un\bm{h}:U^{*}\to\mathbb{R}^{n} with

𝒉(𝒙)\displaystyle\bm{h}(\bm{x}^{*}) =𝒚\displaystyle=\bm{y}^{*} (53)

and

𝒇(𝒙,𝒉(𝒙))=𝟎𝒙U.\displaystyle\bm{f}(\bm{x},\bm{h}(\bm{x}))=\bm{0}\quad\forall\bm{x}\in U^{*}\,. (54)

Moreover, the partial derivatives of 𝐡\bm{h} with respect to 𝐱U\bm{x}\in U^{*} are given as

𝒙𝒉(𝒙)\displaystyle\frac{\partial}{\partial\bm{x}}\bm{h}(\bm{x}) =[𝑱𝒇,𝒚𝒇(𝒙,𝒉(𝒙))]n×n1[𝒙𝒇(𝒙,𝒉(𝒙))]n×m\displaystyle=-\left[\bm{J}_{\bm{f},\bm{y}}\bm{f}(\bm{x},\bm{h}(\bm{x}))\right]_{n\times n}^{-1}\left[\frac{\partial}{\partial\bm{x}}\bm{f}(\bm{x},\bm{h}(\bm{x}))\right]_{n\times m} (55)

As the function 𝒈(𝒂,𝒙)\bm{g}(\bm{a},\bm{x}) defined in equation (10) is Lipschitz continuous, it is almost everywhere differentiable. The partial derivatives are given by

sjgis(𝒂,𝒙)\displaystyle\frac{\partial}{\partial s_{j}}g_{i}^{s}(\bm{a},\bm{x}) ={Mijsif firm i is solvent0otherwise\displaystyle=\left\{\begin{array}[]{rp{1cm}lcccc}M_{ij}^{s}&&\mbox{if firm $i$ is solvent}\\ 0&&\mbox{otherwise}\end{array}\right. (58)
sjgir(𝒂,𝒙)\displaystyle\frac{\partial}{\partial s_{j}}g_{i}^{r}(\bm{a},\bm{x}) ={0if firm i is solventMijsotherwise\displaystyle=\left\{\begin{array}[]{rp{1cm}lcccc}0&&\mbox{if firm $i$ is solvent}\\ M_{ij}^{s}&&\mbox{otherwise}\end{array}\right. (61)
rjgis(𝒂,𝒙)\displaystyle\frac{\partial}{\partial r_{j}}g_{i}^{s}(\bm{a},\bm{x}) ={Mijdif firm i is solvent0otherwise\displaystyle=\left\{\begin{array}[]{rp{1cm}lcccc}M_{ij}^{d}&&\mbox{if firm $i$ is solvent}\\ 0&&\mbox{otherwise}\end{array}\right. (64)
rjgir(𝒂,𝒙)\displaystyle\frac{\partial}{\partial r_{j}}g_{i}^{r}(\bm{a},\bm{x}) ={0if firm i is solventMijdotherwise\displaystyle=\left\{\begin{array}[]{rp{1cm}lcccc}0&&\mbox{if firm $i$ is solvent}\\ M_{ij}^{d}&&\mbox{otherwise}\end{array}\right. (67)
ajgis(𝒂,𝒙)\displaystyle\frac{\partial}{\partial a_{j}}g_{i}^{s}(\bm{a},\bm{x}) ={1if i=j and firm i is solvent0otherwise\displaystyle=\left\{\begin{array}[]{rp{1cm}lcccc}\phantom{M}1&&\mbox{if $i=j$ and firm $i$ is solvent}\\ 0&&\mbox{otherwise}\end{array}\right. (70)
ajgir(𝒂,𝒙)\displaystyle\frac{\partial}{\partial a_{j}}g_{i}^{r}(\bm{a},\bm{x}) ={0if i=j and firm i is solvent1otherwise.\displaystyle=\left\{\begin{array}[]{rp{1cm}lcccc}\phantom{M}0&&\mbox{if $i=j$ and firm $i$ is solvent}\\ 1&&\mbox{otherwise}\end{array}\right.\,. (73)

Here, a firm ii is solvent if its asset value viv_{i} is sufficient to repay its nominal debt did_{i}, i.e. vi=ai+j=1nMijssj+j=1nMijdrj>div_{i}=a_{i}+\sum_{j=1}^{n}M_{ij}^{s}s_{j}+\sum_{j=1}^{n}M_{ij}^{d}r_{j}>d_{i}. The derivatives of 𝒈\bm{g} exist everywhere except for the boundary case vi=div_{i}=d_{i}. Defining the solvency vector 𝝃=(𝟙vi>d1(v1),,𝟙vn>dn(vn))\bm{\xi}=(\mathbbm{1}_{v_{i}>d_{1}}(v_{1}),\ldots,\mathbbm{1}_{v_{n}>d_{n}}(v_{n})), the partial derivatives of 𝒈\bm{g} with respect to 𝒙\bm{x} can be collected in a matrix as follows

𝒙𝒈(𝒂,𝒙)\displaystyle\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x}) =[diag(𝝃)𝑴sdiag(𝝃)𝑴ddiag(𝟏n𝝃)𝑴sdiag(𝟏n𝝃)𝑴d]\displaystyle=\left[\begin{array}[]{ccc}\operatorname{diag}(\bm{\xi})\bm{M}^{s}&&\operatorname{diag}(\bm{\xi})\bm{M}^{d}\\ \\ \operatorname{diag}(\bm{1}_{n}-\bm{\xi})\bm{M}^{s}&&\operatorname{diag}(\bm{1}_{n}-\bm{\xi})\bm{M}^{d}\end{array}\right] (77)
=diag((𝝃;𝟏n𝝃))[𝑴s𝑴d𝑴s𝑴d]\displaystyle=\operatorname{diag}\left((\bm{\xi};\bm{1}_{n}-\bm{\xi})\right)\left[\begin{array}[]{ccc}\bm{M}^{s}&&\bm{M}^{d}\\ \\ \bm{M}^{s}&&\bm{M}^{d}\end{array}\right] (81)

Thus, defining 𝒇(𝒂,𝒙)=𝒙𝒈(𝒂,𝒙)\bm{f}(\bm{a},\bm{x})=\bm{x}-\bm{g}(\bm{a},\bm{x}) we obtain by the implicit function theorem 3

Corollary 1.

The partial derivatives of 𝐱(𝐚)\bm{x}^{*}(\bm{a}) are given by

𝒂𝒙(𝒂)\displaystyle\frac{\partial}{\partial\bm{a}}\bm{x}^{*}(\bm{a}) =[𝑰2n×2n𝒙𝒈(𝒂,𝒙)]1[diag(𝝃)diag(𝟏n𝝃)]\displaystyle=\left[\bm{I}_{2n\times 2n}-\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x})\right]^{-1}\left[\begin{array}[]{c}\operatorname{diag}(\bm{\xi})\\ \\ \operatorname{diag}(\bm{1}_{n}-\bm{\xi})\end{array}\right] (85)
Proof.

Use that 𝒙𝒇(𝒂,𝒙)=𝑰2n×2n𝒙𝒈(𝒂,𝒙)\frac{\partial}{\partial\bm{x}}\bm{f}(\bm{a},\bm{x})=\bm{I}_{2n\times 2n}-\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x}) and 𝒂𝒇(𝒂,𝒙)=𝒂𝒈(𝒂,𝒙)\frac{\partial}{\partial\bm{a}}\bm{f}(\bm{a},\bm{x})=-\frac{\partial}{\partial\bm{a}}\bm{g}(\bm{a},\bm{x}). Then, the result follows from theorem 3 and 𝒂𝒈(𝒂,𝒙)=[diag(𝝃)diag(𝟏n𝝃)]\frac{\partial}{\partial\bm{a}}\bm{g}(\bm{a},\bm{x})=\left[\begin{array}[]{c}\operatorname{diag}(\bm{\xi})\\ \operatorname{diag}(\bm{1}_{n}-\bm{\xi})\end{array}\right]. As explained below, assumption 1 ensures that 𝒙𝒇(𝒂,𝒙)\frac{\partial}{\partial\bm{x}}\bm{f}(\bm{a},\bm{x}) is invertible as required. ∎

Finally, combining equation (50) and (51) with corollary 1 we formally compute the network Greeks as

𝜽𝒙t\displaystyle\frac{\partial}{\partial\bm{\theta}}\bm{x}_{t} =𝔼tQ[(𝜽erτ)𝒙(𝒂T(Z;θ))\displaystyle=\mathbb{E}_{t}^{Q}\left[\left(\frac{\partial}{\partial\bm{\theta}}e^{-r\tau}\right)\bm{x}^{*}(\bm{a}_{T}(Z;\theta))\right.
+erτ[𝑰2n×2n𝒙𝒈(𝒂,𝒙)]1[diag(𝝃)diag(𝟏n𝝃)]𝜽𝒂T(Z;θ)]\displaystyle\phantom{=}\left.+e^{-r\tau}\left[\bm{I}_{2n\times 2n}-\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x})\right]^{-1}\left[\begin{array}[]{c}\operatorname{diag}(\bm{\xi})\\ \\ \operatorname{diag}(\bm{1}_{n}-\bm{\xi})\end{array}\right]\frac{\partial}{\partial\bm{\theta}}\bm{a}_{T}(Z;\theta)\right] (89)

where the expectation is well-defined as the derivatives exist almost everywhere, i.e. except for a set of measure zero.

A.2 Two bank Delta

In case of two banks, the network Delta, i.e. 𝚫=𝒙t𝒂t\bm{\Delta}=\frac{\partial\bm{x}_{t}}{\partial\bm{a}_{t}}, can be computed explicitly. First, we drop the time index tt to ease notation and denote firm values (of equity and debt) and asset prices at time tt as 𝒙=(s1,s2,r1,r2)\bm{x}=(s_{1},s_{2},r_{1},r_{2}) and 𝒂=(a1,a2)\bm{a}=(a_{1},a_{2}) respectively. Then, using that 𝒂erτ=𝟎\frac{\partial}{\partial\bm{a}}e^{-r\tau}=\bm{0} and

𝒂𝑨T\displaystyle\frac{\partial}{\partial\bm{a}}\bm{A}_{T} =𝒂𝒂e(r12diag(𝝈2))(Tt)+diag(𝝈)𝑾T\displaystyle=\frac{\partial}{\partial\bm{a}}\bm{a}\;e^{\left(r-\frac{1}{2}\operatorname{diag}(\bm{\sigma}^{2})\right)(T-t)+\operatorname{diag}(\bm{\sigma})\bm{W}_{T}}
=𝑰e(r12diag(𝝈2))(Tt)+diag(𝝈)𝑾T\displaystyle=\bm{I}\;e^{\left(r-\frac{1}{2}\operatorname{diag}(\bm{\sigma}^{2})\right)(T-t)+\operatorname{diag}(\bm{\sigma})\bm{W}_{T}} =(A1,Ta100A2,Ta2)\displaystyle=\left(\begin{array}[]{cc}\frac{A_{1,T}}{a_{1}}&0\\ 0&\frac{A_{2,T}}{a_{2}}\end{array}\right)

from equation (19) with suitably shifted time indices, equation (89) simplifies to

𝒂𝒙t\displaystyle\frac{\partial}{\partial\bm{a}}\bm{x}_{t} =𝔼tQ[erτ[𝑰4×4𝒙𝒈(𝒂,𝒙)]1[diag(𝝃)diag(𝟏𝝃)](A1,Ta100A2,Ta2)]\displaystyle=\mathbb{E}_{t}^{Q}\left[e^{-r\tau}\left[\bm{I}_{4\times 4}-\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x})\right]^{-1}\left[\begin{array}[]{c}\operatorname{diag}(\bm{\xi})\\ \\ \operatorname{diag}(\bm{1}-\bm{\xi})\end{array}\right]\left(\begin{array}[]{cc}\frac{A_{1,T}}{a_{1}}&0\\ 0&\frac{A_{2,T}}{a_{2}}\end{array}\right)\right]

Furthermore, we find from equation (77) that

𝑰4×4𝒙𝒈(𝒂,𝒙)\displaystyle\bm{I}_{4\times 4}-\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x}) =(1ξ1M12s0ξ1M12dξ2M21s1ξ2M21d00(1ξ1)M12s1(1ξ1)M12d(1ξ2)M21s0(1ξ2)M21d1)\displaystyle=\left(\begin{array}[]{cccc}1&-\xi_{1}M^{s}_{12}&0&-\xi_{1}M^{d}_{12}\\ -\xi_{2}M^{s}_{21}&1&-\xi_{2}M^{d}_{21}&0\\ 0&-(1-\xi_{1})M^{s}_{12}&1&-(1-\xi_{1})M^{d}_{12}\\ -(1-\xi_{2})M^{s}_{21}&0&-(1-\xi_{2})M^{d}_{21}&1\end{array}\right)

Thus, the matrix is piecewise constant on each solvency region and 𝚫\bm{\Delta} can be found in all four cases. For illustration, we detail the case ξ1=ξ2=1\xi_{1}=\xi_{2}=1, i.e. both banks solvent:

[𝑰4×4𝒙𝒈(𝒂,𝒙)]1[diag(𝝃)diag(𝟏𝝃)](A1,Ta100A2,Ta2)\displaystyle\left[\bm{I}_{4\times 4}-\frac{\partial}{\partial\bm{x}}\bm{g}(\bm{a},\bm{x})\right]^{-1}\left[\begin{array}[]{c}\operatorname{diag}(\bm{\xi})\\ \\ \operatorname{diag}(\bm{1}-\bm{\xi})\end{array}\right]\left(\begin{array}[]{cc}\frac{A_{1,T}}{a_{1}}&0\\ 0&\frac{A_{2,T}}{a_{2}}\end{array}\right) =(1M12s0M12dM21s1M21d000100001)1(10010000)(A1,Ta100A2,Ta2)\displaystyle=\left(\begin{array}[]{cccc}1&-M^{s}_{12}&0&-M^{d}_{12}\\ -M^{s}_{21}&1&-M^{d}_{21}&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)^{-1}\left(\begin{array}[]{cc}1&0\\ 0&1\\ 0&0\\ 0&0\end{array}\right)\left(\begin{array}[]{cc}\frac{A_{1,T}}{a_{1}}&0\\ 0&\frac{A_{2,T}}{a_{2}}\end{array}\right)
=(11M12sM22sM12s1M12sM22s00M21s1M12sM22s11M12sM22s0000100001)(10010000)(A1,Ta100A2,Ta2)\displaystyle=\left(\begin{array}[]{cccc}\frac{1}{1-M^{s}_{12}M^{s}_{22}}&\frac{M^{s}_{12}}{1-M^{s}_{12}M^{s}_{22}}&0&0\\ \frac{M^{s}_{21}}{1-M^{s}_{12}M^{s}_{22}}&\frac{1}{1-M^{s}_{12}M^{s}_{22}}&0&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)\left(\begin{array}[]{cc}1&0\\ 0&1\\ 0&0\\ 0&0\end{array}\right)\left(\begin{array}[]{cc}\frac{A_{1,T}}{a_{1}}&0\\ 0&\frac{A_{2,T}}{a_{2}}\end{array}\right)
=(11M12sM22sA1,Ta1M12s1M12sM22sA2,Ta2M21s1M12sM22sA1,Ta111M12sM22sA2,Ta20000)\displaystyle=\left(\begin{array}[]{cc}\frac{1}{1-M^{s}_{12}M^{s}_{22}}\frac{A_{1,T}}{a_{1}}&\frac{M^{s}_{12}}{1-M^{s}_{12}M^{s}_{22}}\frac{A_{2,T}}{a_{2}}\\ \frac{M^{s}_{21}}{1-M^{s}_{12}M^{s}_{22}}\frac{A_{1,T}}{a_{1}}&\frac{1}{1-M^{s}_{12}M^{s}_{22}}\frac{A_{2,T}}{a_{2}}\\ 0&0\\ 0&0\end{array}\right)

containing the Δ\Delta’s for equity (top) and debt (bottom) respectively. Note that the equity Δ\Delta’s correspond to the terms for solvency region Ξss\Xi_{ss} in equations (37) – (43).

Here, we have used that the inverse of a block matrix can be expressed via the Schur complement as

(𝑩11𝑩12𝑩21𝑩22)1\displaystyle\left(\begin{array}[]{cc}\bm{B}_{11}&\bm{B}_{12}\\ \bm{B}_{21}&\bm{B}_{22}\end{array}\right)^{-1} =(𝑰𝟎𝑩221𝑩21𝑰)((𝑩11𝑩12𝑩221𝑩21)1𝟎𝟎𝑩221)(𝑰𝑩12𝑩221𝟎𝑰).\displaystyle=\left(\begin{array}[]{cc}\bm{I}&\bm{0}\\ -\bm{B}_{22}^{-1}\bm{B}_{21}&\bm{I}\end{array}\right)\left(\begin{array}[]{cc}(\bm{B}_{11}-\bm{B}_{12}\bm{B}_{22}^{-1}\bm{B}_{21})^{-1}&\bm{0}\\ \bm{0}&\bm{B}_{22}^{-1}\end{array}\right)\left(\begin{array}[]{cc}\bm{I}&-\bm{B}_{12}\bm{B}_{22}^{-1}\\ \bm{0}&\bm{I}\end{array}\right)\;.

As in our case, 𝑩11=𝑰𝑴s,𝑩12=𝑴d,𝑩21=𝟎\bm{B}_{11}=\bm{I}-\bm{M}^{s},\bm{B}_{12}=\bm{M}^{d},\bm{B}_{21}=\bm{0} and 𝑩22=𝑰\bm{B}_{22}=\bm{I}, we obtain

(𝑰𝟎𝟎𝑰)((𝑰𝑴s)1𝟎𝟎𝑰)(𝑰𝑴d𝑰𝟎𝑰)\displaystyle\left(\begin{array}[]{cc}\bm{I}&\bm{0}\\ \bm{0}&\bm{I}\end{array}\right)\left(\begin{array}[]{cc}(\bm{I}-\bm{M}^{s})^{-1}&\bm{0}\\ \bm{0}&\bm{I}\end{array}\right)\left(\begin{array}[]{cc}\bm{I}&-\bm{M}^{d}\bm{I}\\ \bm{0}&\bm{I}\end{array}\right) =((𝑰𝑴s)1𝟎𝟎𝑰)\displaystyle=\left(\begin{array}[]{cc}(\bm{I}-\bm{M}^{s})^{-1}&\bm{0}\\ \bm{0}&\bm{I}\end{array}\right)

and the above results follows from

(1M12sM21s1)1\displaystyle\left(\begin{array}[]{cc}1&-M^{s}_{12}\\ -M^{s}_{21}&1\end{array}\right)^{-1} =11M12sM22s(1M12sM21s1).\displaystyle=\frac{1}{1-M^{s}_{12}M^{s}_{22}}\left(\begin{array}[]{cc}1&M^{s}_{12}\\ M^{s}_{21}&1\end{array}\right)\;.

The Δ\Delta’s on the other three solvency regions can be found analogously and are ommitted for brevity.

Appendix B Additional figures

Markedly rising equity correlations at sufficiently low asset values are also observed with additional equity cross-holdings of 10% (figure 2) and asymmetric asset values (figure 3). As the figure is no longer symmetric with respect to the firms equity values, we show the initial values of a1a_{1} and a2a_{2} (in log-scale) instead. The Suzuki areas, i.e., default boundaries, are indicated by grey lines and the equity correlations are color coded. Again, at sufficiently large debt cross-holding fractions a marked increase in equity correlations is observed, especially in the Ξdd\Xi_{dd} Suzuki area, i.e., during crisis.

Refer to caption
Figure 2: Same as figure 1, but with additional equity cross-holdings of M12s=M21s=0.1M_{12}^{s}=M_{21}^{s}=0.1.
Refer to caption
Figure 3: Suzuki areas and equity correlations as a function of asset values a1a_{1} and a2a_{2}. Here, the asset correlation is fixed at ρ=0\rho=0.