This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cross Ratio Geometry
Advances for Four Co-Linear Points in the
Desargues Affine Plane-Skew Field

Orgest ZAKA Orgest ZAKA: Department of Mathematics-Informatics, Faculty of Economy and Agribusiness, Agricultural University of Tirana, Tirana, Albania ozaka@ubt.edu.al, gertizaka@yahoo.com, ozaka@risat.org  and  James F. Peters James F. PETERS: Department of Electrical & Computer Engineering, University of Manitoba, WPG, MB, R3T 5V6, Canada and Department of Mathematics, Faculty of Arts and Sciences, Adiyaman University, 02040 Adiyaman, Turkey James.Peters3@umanitoba.ca Dedicated to Girard Desargues and Karl G. C. von Staudt
Abstract.

This paper introduces advances in the geometry of the cross ratio of four co-linear points in in the Desargues affine plane. The cross-ratio of co-linear points of a skew field in the Desargues affine plane. The results given here have a clean rendition, based on Desargues affine plane axiomatics, skew field properties and the addition and multiplication of planar co-linear points.

Key words and phrases:
Co-Linear Points, Cross Ratio, Skew Field, Desargues Affine Plane
2010 Mathematics Subject Classification:
51-XX; 51Axx; 51A30; 51E15, 51N25, 30C20, 30F40
The research has been supported by the Natural Sciences & Engineering Research Council of Canada (NSERC) discovery grant 185986, Instituto Nazionale di Alta Matematica (INdAM) Francesco Severi, Gruppo Nazionale per le Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific and Technological Research Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BIDEB) under grant no: 2221-1059B211301223.

1. Introduction and Preliminaries

In the advancement of our research in the connections of axiomatic geometry and algebraic structures, we have achieved some results which we have presented in this paper. More recently, results are given about the association of algebraic structures in affine planes and in Desargues affine plane, and vice versa in [21, 22, 6, 19, 20, 18, 27, 28, 26, 25, 23]. The foundations for the study of the connections between axiomatic geometry and algebraic structures were set forth by D. Hilbert [9]. And some classic research results in this context are given, for example, by E. Artin [1], D.R. Huges and F.C. Piper  [10], H. S. M Coxeter  [5]. Marcel Berger in [3], Robin Hartshorne in [7].

In this paper, we advance in study regarding the cross ratio of 4-points, in a line of the Desargues affine plane. We study and discuses the properties and results related to the cross ratio for four points, also we see the points of line as a elements of a skew field which constructed over this line on Desargues affine plane.

We use skew field properties for the proof of our results, since the cross-ratio sketch is very confusing (even with the Euclidean interpretation).

Earlier, we study the ratio of 2 and 3 points in a line on Desargues affine plane (see [23], [24], [24]), also we have shown that on each line on Desargues affine plane, we can construct a skew-field simply and constructively, using simple elements of elementary geometry, and only the basic axioms of Desargues affine plane (see [22], [6], [18], [27] ).

In this paper, we utilize a method that is naive and direct, without requiring the concept of coordinates. We bases only in Desargues affine plane axiomatic and in skew field properties (the points in a line on Desargues affine plane, we think of them as elements of skew fields, which is a construct over this line).

1.1. Desargues Affine Plane

Let 𝒫\mathcal{P} be a nonempty space, \mathcal{L} a nonempty subset of 𝒫\mathcal{P}. The elements pp of 𝒫\mathcal{P} are points and an element \ell of \mathcal{L} is a line.

Definition 1.

The incidence structure 𝒜=(𝒫,,)\mathcal{A}=(\mathcal{P},\mathcal{L},\mathcal{I}), called affine plane, where satisfies the above axioms:

  1. 1o

    For each points {P,Q}𝒫\left\{P,Q\right\}\in\mathcal{P}, there is exactly one line \ell\in\mathcal{L} such that {P,Q}\left\{P,Q\right\}\in\ell.

  2. 2o

    For each point P𝒫,,PP\in\mathcal{P},\ell\in\mathcal{L},P\not\in\ell, there is exactly one line \ell^{\prime}\in\mathcal{L} such that PP\in\ell^{\prime} and =\ell\cap\ell^{\prime}=\emptyset (Playfair Parallel Axiom [14]). Put another way, if the point PP\not\in\ell, then there is a unique line \ell^{\prime} on PP missing \ell [15].

  3. 3o

    There is a 3-subset of points {P,Q,R}𝒫\left\{P,Q,R\right\}\in\mathcal{P}, which is not a subset of any \ell in the plane. Put another way, there exist three non-collinear points 𝒫\mathcal{P} [15].

Desargues’ Axiom, circa 1630 [11, §3.9, pp. 60-61] [17]. Let A,B,C,A,B,C𝒫A,B,C,A^{\prime},B^{\prime},C^{\prime}\in\mathcal{P} and let pairwise distinct lines AA1,BB,CC,AC,AC\ell^{AA_{1}},\ell^{BB^{\prime}},\ell^{CC^{\prime}},\ell^{AC},\ell^{A^{\prime}C^{\prime}}\in\mathcal{L} such that

AA1BBCC(Fig. 1(a))\displaystyle\ell^{AA_{1}}\parallel\ell^{BB^{\prime}}\parallel\ell^{CC^{\prime}}\ \mbox{(Fig.~\ref{fig:DesarguesAxiom}(a))} orAA1BBCC=P.(Fig. 1(b) )\displaystyle\ \mbox{{or}}\ \ell^{AA_{1}}\cap\ell^{BB^{\prime}}\cap\ell^{CC^{\prime}}=P.\mbox{(Fig.~\ref{fig:DesarguesAxiom}(b) )}
andABAB\displaystyle\mbox{and}\ \ell^{AB}\parallel\ell^{A^{\prime}B^{\prime}}\ andBCBC.\displaystyle\ \mbox{and}\ \ell^{BC}\parallel\ell^{B^{\prime}C^{\prime}}.
A,BAB,ABAB,\displaystyle A,B\in\ell^{AB},A^{\prime}B^{\prime}\in\ell^{A^{\prime}B^{\prime}}, andB,CBC,BCBC.\displaystyle\ \mbox{and}\ B,C\in\ell^{BC},B^{\prime}C^{\prime}\in\ell^{B^{\prime}C^{\prime}}.
AC,AC,\displaystyle A\neq C,A^{\prime}\neq C^{\prime}, andABAB,BCBC.\displaystyle\ \mbox{and}\ \ell^{AB}\neq\ell^{A^{\prime}B^{\prime}},\ell^{BC}\neq\ell^{B^{\prime}C^{\prime}}.
Refer to caption
Figure 1. Desargues Axioms: (a) For parallel lines AA1BBCC\ell^{AA_{1}}\parallel\ell^{BB^{\prime}}\parallel\ell^{CC^{\prime}}; (b) For lines which are cutting in a single point PP, AA1BBCC=P\ell^{AA_{1}}\cap\ell^{BB^{\prime}}\cap\ell^{CC^{\prime}}=P.

Then 𝑨𝑪𝑨𝑪\boldsymbol{\ell^{AC}\parallel\ell^{A^{\prime}C^{\prime}}}.   \blacksquare

Example 1.

In Euclidean plane, three vertexes ABCABC and ABCA^{\prime}B^{\prime}C^{\prime}, are similar (in (a) are equivalent-triangle and in (b) are homothetical-triangle) the parallel lines, AC,AC\ell^{AC},\ell^{A^{\prime}C^{\prime}}\in\mathcal{L} in Desargues’ Axiom are represented in Fig. 1. In other words, the side ACAC of the triangle of ABC\bigtriangleup ABC is parallel with the side ACA^{\prime}C^{\prime} of the triangle ABC\bigtriangleup A^{\prime}B^{\prime}C^{\prime}, provided the restrictions on the points and lines in Desargues’ Axiom are satisfied.   \blacksquare

A Desargues affine plane is an affine plane that satisfies Desargues’ Axiom.

Notation 1.

Three vertexes ABCABC and ABCA^{\prime}B^{\prime}C^{\prime}, which, fulfilling the conditions of the Desargues Axiom, we call ’Desarguesian’.

1.2. Addition and Multiplication of points in a line of Desargues affine plane


Addition of points in a line of affine plane: In an Desargues affine plane 𝒜𝒟=(𝒫,,)\mathcal{A_{D}}=(\mathcal{P},\mathcal{L},\mathcal{I}) we fix two different points O,I𝒫,O,I\in\mathcal{P}, which, according to Axiom 1, determine a line OI.\ell^{OI}\in\mathcal{L}. Let AA and BB be two arbitrary points of a line OI\ell^{OI}. In plane 𝒜𝒟\mathcal{A_{D}} we choose a point B1B_{1} not incident with OI\ell^{OI}: B1OIB_{1}\notin\ell^{OI} (we call the auxiliary point). Construct line OIB1,\ell_{OI}^{B_{1}}, which is only according to the Axiom 2. Then construct line OB1A,\ell_{OB_{1}}^{A}, which also is the only according to the Axiom 2. Marking their intersection P1=OIB1OB1A.P_{1}=\ell_{OI}^{B_{1}}\cap\ell_{OB_{1}}^{A}. Finally construct line BB1P1.\ell_{BB_{1}}^{P_{1}}. For as much as BB1\ell^{BB_{1}} cuts the line OI\ell^{OI} in point BB, then this line, parallel with BB1\ell^{BB_{1}}, cuts the line OI\ell^{OI} in a single point CC, this point we called the addition of points AA with point BB (Figure 2 (a)).

Multiplication of points in a line in affine plane. Choose in the plane 𝒜𝒟\mathcal{A_{D}} one point B1B_{1} not incident with lines OI,\ell^{OI}, and construct the line IB1\ell^{IB_{1}}. Construct the line IB1A,\ell_{IB_{1}}^{A}, which is the only accoding to the Axiom 2 and cutting the line OB1\ell^{OB_{1}}. Marking their intersection with P1=IB1AOB1.P_{1}=\ell_{IB_{1}}^{A}\cap OB_{1}. Finally, construct the line BB1P1.\ell_{BB_{1}}^{P_{1}}. Since BB1\ell^{BB_{1}} cuts the line OI\ell^{OI} in a single point BB, then this line, parallel with BB1\ell^{BB_{1}}, cuts the line OI\ell^{OI} in one single point CC, this point we called the multiplication of points AA with point BB (Figure 2 (b)).

The process of construct the points CC for adition and multiplication of points in OI\ell^{OI}-line in affine plane, is presented in the tow algorithm form

Addition Algorithm

Step.1:

B1OIB_{1}\notin\ell^{OI}

Step.2:

OIB1OB1A=P1\ell_{OI}^{B_{1}}\cap\ell_{OB_{1}}^{A}=P_{1}

Step.3:

BB1P1OI=C(=A+B)\ell_{BB_{1}}^{P_{1}}\cap\ell^{OI}=C(=A+B)

Multiplication Algorithm

Step.1:

B1OIB_{1}\notin\ell^{OI}

Step.2:

IB1AOB1=P1\ell_{IB_{1}}^{A}\cap\ell^{OB_{1}}=P_{1}

Step.3:

BB1P1OI=C(=AB)\ell_{BB_{1}}^{P_{1}}\cap\ell^{OI}=C(=A\cdot B)

Refer to caption
Figure 2. (a) Addition of points in a line in affine plane, (b) Multiplication of points in a line in affine plane

In [18] and [6], we have prove that (OI,+,)(\ell^{OI},+,\cdot) is a skew field in Desargues affine plane, and is field (commutative skew field) in the Papus affine plane.

1.3. Some algebraic properties of Skew Fields

I n this section KK will denote a skew field [8] and z[K]z[K] its center, where is the set KK such that

z[K]={kK|ak=ka,aK}z[K]=\left\{k\in K\quad|\quad ak=ka,\quad\forall a\in K\right\}
Proposition 1.

z[K]z[K] is a commutative subfield of a skew field KK.

Let now pKp\in K be a fixed element of the skew field KK. We will denote zK(p)z_{K}(p) the centralizer in KK of the element pp, where is the set,

zK(p)={kK|pk=kp,}.z_{K}(p)=\left\{k\in K|pk=kp,\right\}.

zK(p)z_{K}(p) is sub skew field of K, but, in general, it is not commutative.

Let KK be a skew field, pKp\in K, and let us denote by [pK][p_{K}] the conjugacy class of pp:

[pK]={q1pq|qK{0}}[p_{K}]=\left\{q^{-1}pq\quad|\quad q\in K\setminus\{0\}\right\}

If, pz[K]p\in z[K], for all qKq\in K we have that q1pq=p.q^{-1}pq=p.

1.4. Ratio of two and three points

In the paper [23], we have done a detailed study, related to the ratio of two and three points in a line of Desargues affine plane. Below we are listing some of the results for ratio of two and three points.

Definition 2.

[23] Lets have two different points A,BOIA,B\in\ell^{OI}-line, and BOB\neq O, in Desargues affine plane. We define as ratio of this tow points, a point ROIR\in\ell^{OI}, such that,

R=B1A, we mark this, with,R=r(A:B)=B1AR=B^{-1}A,\qquad\text{ we mark this, with,}\qquad R=r(A:B)=B^{-1}A

For a ’ratio-point’ ROIR\in\ell^{OI}, and for point BOB\neq O in line OI\ell^{OI}, is a unique defined point, AOIA\in\ell^{OI}, such that R=B1A=r(A:B)R=B^{-1}A=r(A:B).

Refer to caption
Figure 3. Ilustrate the Ratio-Point, of 2-Points in a line of Desargues affine plane R=r(A:B)=B1AR=r(A:B)=B^{-1}A.

Some results for Ratio of 2-points in Desargues affine plane (see [23]).

  • If have two different points A,BOIA,B\in\ell^{OI}-line, and BOB\neq O, in Desargues affine plane, then, r1(A:B)=r(B:A)r^{-1}(A:B)=r(B:A).

  • For three collinear point A,B,CA,B,C and COC\neq O, in OI\ell^{OI}-line, have,

    r(A+B:C)=r(A:C)+r(B:C).r(A+B:C)=r(A:C)+r(B:C).
  • For three collinear point A,B,CA,B,C and COC\neq O, in OI\ell^{OI}-line, have,

    1. (1)

      r(AB:C)=r(A:C)B.r(A\cdot B:C)=r(A:C)\cdot B.

    2. (2)

      r(A:BC)=C1r(A:C).r(A:B\cdot C)=C^{-1}r(A:C).

  • Let’s have the points A,BOIA,B\in\ell^{OI}-line where BOB\neq O. Then have that,

    r(A:B)=r(B:A)A=B.r(A:B)=r(B:A)\Leftrightarrow A=B.
  • This ratio-map, rB:OIOIr_{B}:\ell^{OI}\to\ell^{OI} is a bijection in OI\ell^{OI}-line in Desargues affine plane.

  • The ratio-maps-set 2={rB(X)|XOI}\mathcal{R}_{2}=\{r_{B}(X)|\forall X\in\ell^{OI}\}, for a fixed point BB in OI\ell^{OI}-line, forms a skew-field with ’addition and multiplication’ of points. This, skew field (2,+,)(\mathcal{R}_{2},+,\cdot) is sub-skew field of the skew field (OI,+,)(\ell^{OI},+,\cdot).

Ratio of three points in a line on Desargues affine plane. (see [23])

Definition 3.

If A,B,CA,B,C are three points on a line OI\ell^{OI} (collinear) in Desargues affine plane, then we define their ratio to be a point ROIR\in\ell^{OI}, such that:

(BC)R=AC,conciselyR=(BC)1(AC),(B-C)\cdot R=A-C,\quad\mbox{concisely}\quad R=(B-C)^{-1}(A-C),

and we mark this with r(A,B;C)=(BC)1(AC)r(A,B;C)=(B-C)^{-1}(A-C).

Refer to caption
Figure 4. Ratio of 3-Points in a line of Desargues affine plane R=r(A,B;C)R=r(A,B;C).

Some Results for Ratio of 3-points in Desargues affine plane ([23]).

  • For 3-points A,B,CA,B,C in a line OI\ell^{OI} of Desargues affine plane, we have that,

    r(A,B;C)=r(A,B;C).r(-A,-B;-C)=r(A,B;C).
  • For 3-points A,B,CA,B,C in a line OI\ell^{OI} in the Desargues affine plane, have

    r1(A,B;C)=r(B,A;C).r^{-1}(A,B;C)=r(B,A;C).
  • If A,B,CA,B,C, are three different points, and different from point OO, in a line OI\ell^{OI} on Desargues affine plane, then

    r(A1,B1;C1)=B[r(A,B;C)]A1.r(A^{-1},B^{-1};C^{-1})=B[r(A,B;C)]A^{-1}.
  • In the Pappus affine plane, for three point different from point OO, in OI\ell^{OI}-line, we have r(A1,B1;C1)=r(A,B;C)r(B,A;O).r(A^{-1},B^{-1};C^{-1})=r(A,B;C)\cdot r(B,A;O).

  • This ratio-map, rBC:OIOIr_{BC}:\ell^{OI}\to\ell^{OI} is a bijection in OI\ell^{OI}-line in Desargues affine plane.

  • The ratio-maps-set 3={rBC(X)|XOI}\mathcal{R}_{3}=\{r_{BC}(X)|\forall X\in\ell^{OI}\}, for a different fixed points B,CB,C in OI\ell^{OI}-line, forms a skew-field with ’addition and multiplication’ of points in OI\ell^{OI}-line. This, skew field (3,+,)(\mathcal{R}_{3},+,\cdot) is sub-skew field of the skew field (OI,+,)(\ell^{OI},+,\cdot).

2. Cross-Ratio for Fuor points in a line of Desargues affine plane

This section culminates in a main result in this paper. We consider the cross-ratio of co-linear points in Desargues affine planes, utilizing a method that is naive and direct without requiring planar coordinates. We define the cross-ratio of four co-linear points in a line on Desargues affine plane as a point in this line. This work carries forward earlier results that reveal the close connection between lines in the Desargues affine planes and corresponding skew fields. Skew fields properties in our proofs. Mainly, we rely on our results regarding the addition and multiplication of co-linear points in the Desargues affine plane, and the fact that a line (set of points), with addition and multiplication, forms a skew field (for more about this, see [18], [22], [6], [20], [19], [21], [27], [28], [24]).

The classical definition of the cross-ratio (see [13, 9, 2, 3]) for 4-points, is given as a product of tow ratio of lengths. So, for example, for four co-linear points A,B,C,DA,B,C,D,

cr(A,B;C,D)=ACBCBDAD,c_{r}(A,B;C,D)=\frac{AC}{BC}\cdot\frac{BD}{AD},

where AC,BC,BD,ADAC,BC,BD,AD are the lengths of segments [AB],[BC],[BD].[AD][AB],[BC],[BD].[AD], respectively.

Since we will not use coordinates and metrics, our definitions are rely solely on the algebra and axiomatics for the Desargues affine plane.

Let us have the line OI\ell^{OI} in Desargues affine plane 𝒜𝒟\mathcal{A_{D}}, and four points, A,B,C,DOIA,B,C,D\in\ell^{OI}

Definition 4.

If A,B,C,DA,B,C,D are four points on a line OI\ell^{OI} in Desarges affine plane 𝒜𝒟\mathcal{A_{D}}, no three of them equal, then we define their cross ratio to be a point:

cr(A,B;C,D)=[(AD)1(BD)][(BC)1(AC)]c_{r}(A,B;C,D)=\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right]
Remark 1.

Similar to ’ratio’, we can define it, the cross-ratio, also as

cr(A,B;C,D)=[(BD)(AD)1][(AC)(BC)1],c_{r}(A,B;C,D)=[(B-D)(A-D)^{-1}][(A-C)(B-C)^{-1}],

or

cr(A,B;C,D)=[(BD)(AC)][(AD)1(BC)1],c_{r}(A,B;C,D)=[(B-D)(A-C)][(A-D)^{-1}(B-C)^{-1}],

(or all combination of product of this 4-factors) the results would be similar, but the obtained point will always be different for each case. In OI\ell^{OI}-line, in Desargues affine planes, these are a different point from that of our definition, since:

[(BD)(AD)1][(AC)(BC)1][(AD)1(BD)][(BC)1(AC)].[(B-D)(A-D)^{-1}][(A-C)(B-C)^{-1}]\neq\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right].

and

[(BD)(AC)][(AD)1(BC)1][(AD)1(BD)][(BC)1(AC)].[(B-D)(A-C)][(A-D)^{-1}(B-C)^{-1}]\neq\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right].

also for the other cases, we would have a difference for each pair, found for the cross ratio, according to any definition we take. We are keeping our definition.

Definition 5.

If the line OI\ell^{OI} in Desargues affine plane, is a infinite line (number of points in this line is ++\infty), we define as follows:

cr(,B;C,D)\displaystyle c_{r}(\infty,B;C,D) =(BD)(BC)1\displaystyle=(B-D)(B-C)^{-1}
cr(A,;C,D)\displaystyle c_{r}(A,\infty;C,D) =(AD)1(AC)\displaystyle=(A-D)^{-1}(A-C)
cr(A,B;,D)\displaystyle c_{r}(A,B;\infty,D) =(AD)1(BD)\displaystyle=(A-D)^{-1}(B-D)
cr(A,B;C,)\displaystyle c_{r}(A,B;C,\infty) =(BC)1(AC)\displaystyle=(B-C)^{-1}(A-C)

From this definition and from ratio definition 3 we have that,

  • cr(A,B;C,D)=[(AD)1(BD)][(BC)1(AC)]c_{r}(A,B;C,D)=\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right], so

    cr(A,B;C,D)=r(B,A;D)r(A,B;C).c_{r}(A,B;C,D)=r(B,A;D)\cdot r(A,B;C).
  • cr(,B;C,D)=(BD)(BC)1=[(DB)1(CB)]1c_{r}(\infty,B;C,D)=(B-D)(B-C)^{-1}=[(D-B)^{-1}(C-B)]^{-1}, so,

    cr(,B;C,D)=r1(C,D;B).c_{r}(\infty,B;C,D)=r^{-1}(C,D;B).
  • cr(A,;C,D)=(AD)1(AC)=(DA)1(CA)c_{r}(A,\infty;C,D)=(A-D)^{-1}(A-C)=(D-A)^{-1}(C-A), so,

    cr(A,;C,D)=r(C,D;A).c_{r}(A,\infty;C,D)=r(C,D;A).
  • cr(A,B;,D)=(AD)1(BD)c_{r}(A,B;\infty,D)=(A-D)^{-1}(B-D), so

    cr(A,B;,D)=r(A,B;D).c_{r}(A,B;\infty,D)=r(A,B;D).
  • cr(A,B;C,)=(BC)1(AC)c_{r}(A,B;C,\infty)=(B-C)^{-1}(A-C), so,

    cr(A,B;C,)=r(A,B;C).c_{r}(A,B;C,\infty)=r(A,B;C).

Some simple properties of Cross-Ratios, which derive directly from the definition, related to the position of the points A,B,C,DA,B,C,D in OI\ell^{OI}-line in Desargues affine plane.

  • If A=BA=B, then

    cr(A,B;C,D)\displaystyle c_{r}(A,B;C,D) =cr(A,A;C,D)\displaystyle=c_{r}(A,A;C,D)
    =[(AD)1(AD)][(AC)1(AC)]\displaystyle=[(A-D)^{-1}(A-D)][(A-C)^{-1}(A-C)]
    =[I][I]\displaystyle=[I][I]
    =I.\displaystyle=I.
  • If A=CA=C, then

    cr(A,B;C,D)\displaystyle c_{r}(A,B;C,D) =cr(A,B;A,D)\displaystyle=c_{r}(A,B;A,D)
    =[(AD)1(BD)][(BA)1(AA)]\displaystyle=[(A-D)^{-1}(B-D)][(B-A)^{-1}(A-A)]
    =[(AD)1(BD)][(BA)1O]\displaystyle=[(A-D)^{-1}(B-D)][(B-A)^{-1}\cdot O]
    =O.\displaystyle=O.
  • If A=DA=D, then

    cr(A,B;C,D)\displaystyle c_{r}(A,B;C,D) =cr(A,B;C,A)\displaystyle=c_{r}(A,B;C,A)
    =[(AA)1(BA)][(BC)1(AC)]\displaystyle=[(A-A)^{-1}(B-A)][(B-C)^{-1}(A-C)]
    =[O1(BA)][(BC)1(AC)]\displaystyle=[O^{-1}(B-A)][(B-C)^{-1}(A-C)]
    (think that O1=O^{-1}=\infty(point in infinity))
    =.\displaystyle=\infty.
  • If B=CB=C, then

    cr(A,B;C,D)\displaystyle c_{r}(A,B;C,D) =cr(A,B;B,D)\displaystyle=c_{r}(A,B;B,D)
    =[(AD)1(BD)][(BB)1(AB)]\displaystyle=[(A-D)^{-1}(B-D)][(B-B)^{-1}(A-B)]
    =[(AD)1(BD)][O1(AB)]\displaystyle=[(A-D)^{-1}(B-D)][O^{-1}(A-B)]
    (think that O1=O^{-1}=\infty(point in infinity))
    =.\displaystyle=\infty.
  • If B=DB=D, then

    cr(A,B;C,D)\displaystyle c_{r}(A,B;C,D) =cr(A,B;C,B)\displaystyle=c_{r}(A,B;C,B)
    =[(AB)1(BB)][(BC)1(AC)]\displaystyle=[(A-B)^{-1}(B-B)][(B-C)^{-1}(A-C)]
    =[(AB)1O][(BC)1(AC)]\displaystyle=[(A-B)^{-1}\cdot O][(B-C)^{-1}(A-C)]
    =O.\displaystyle=O.
  • If C=DC=D, then

    cr(A,B;C,D)\displaystyle c_{r}(A,B;C,D) =cr(A,B;C,C)\displaystyle=c_{r}(A,B;C,C)
    =[(AC)1(BC)][(BC)1(AC)]\displaystyle=[(A-C)^{-1}(B-C)][(B-C)^{-1}(A-C)]
    =(AC)1[(BC)(BC)1](AC)\displaystyle=(A-C)^{-1}[(B-C)(B-C)^{-1}](A-C)
    =(AC)1I(AC)\displaystyle=(A-C)^{-1}\cdot I\cdot(A-C)
    =(AC)1(AC)\displaystyle=(A-C)^{-1}(A-C)
    =I.\displaystyle=I.
Theorem 1.

Let ROIR\in\ell^{OI}, such that ROR\neq O and RIR\neq I. If A,B,COIA,B,C\in\ell^{OI} are three different points, then exist a single point DOID\in\ell^{OI}, such that cr(A,B;C,D)=R.c_{r}(A,B;C,D)=R.

Proof.

Suppose that exist tow different points DD an DD^{\prime} in OI\ell^{OI}-line, such that

cr(A,B;C,D)=cr(A,B;C,D)c_{r}(A,B;C,D)=c_{r}(A,B;C,D^{\prime})

We rewrite them, cross ratios, as products of ’ratios’, and we have,

cr(A,B;C,D)=[(AD)1(BD)][(BC)1(AC)]=r(B,A;D)r(A,B;C)c_{r}(A,B;C,D)=\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right]=r(B,A;D)\cdot r(A,B;C)

and

cr(A,B;C,D)=[(AD)1(BD)][(BC)1(AC)]=r(B,A;D)r(A,B;C)c_{r}(A,B;C,D^{\prime})=\left[(A-D^{\prime})^{-1}(B-D^{\prime})\right]\left[(B-C)^{-1}(A-C)\right]=r(B,A;D^{\prime})\cdot r(A,B;C)

So, have,

r(B,A;D)r(A,B;C)=r(B,A;D)r(A,B;C)r(B,A;D)\cdot r(A,B;C)=r(B,A;D^{\prime})\cdot r(A,B;C)

we mark r(B,A;D)=R1;r(A,B;C)=R2,r(B,A;D)=R3r(B,A;D)=R_{1};r(A,B;C)=R_{2},r(B,A;D^{\prime})=R_{3}, remember that these are points of the line OI\ell^{OI}, so they are elements of the skew-fields (OI,+,)(\ell^{OI},+,\cdot), and have

R=R1R2andR=R3R2R=R_{1}\cdot R_{2}\quad\text{and}\quad R=R_{3}\cdot R_{2}

Thus, for it, we have

R1R2=R3R2R1R2R3R2=O(R1R3)R2=OR_{1}\cdot R_{2}=R_{3}\cdot R_{2}\Rightarrow R_{1}\cdot R_{2}-R_{3}\cdot R_{2}=O\Rightarrow(R_{1}-R_{3})\cdot R_{2}=O

But the points, R1,R2,R3R_{1},R_{2},R_{3}, are points of OI\ell^{OI}-line in Desargues affine plane, therefore, they are elements of skew-fields K=(OI,+,)K=(\ell^{OI},+,\cdot). We also know the fact that ’a skew field does not have a divisor of zero’ (more on skew fields, see [4], [8], [16], [12])

R1R3=OorR2=O,butR2OR1R3=OR_{1}-R_{3}=O\quad\text{or}\quad R_{2}=O,\quad\text{but}\quad R_{2}\neq O\Rightarrow R_{1}-R_{3}=O

so,

R1=R3r(B,A;D)=r(B,A;D)R_{1}=R_{3}\Rightarrow r(B,A;D)=r(B,A;D^{\prime})

and from the uniqueness of the definition for ’ratio’, we have,

D=DD=D^{\prime}

Theorem 2.

If A,B,C,DA,B,C,D are distinct points in a OI\ell^{OI}-line, in Desargues affine plane, then

cr(A,B;C,D)=cr(A,B;D,C)c_{r}(-A,-B;-C,-D)=c_{r}(A,B;D,C)
Proof.

From cross-ratio definition 4, we have

cr(A,B;C,D)\displaystyle c_{r}(-A,-B;-C,-D) =[(A(C))1(B(C))][(B(D))1(A(D))]\displaystyle=[(-A-(-C))^{-1}(-B-(-C))][(-B-(-D))^{-1}(-A-(-D))]
=[(A+C)1(B+C)][(B+D)1(A+D)]\displaystyle=[(-A+C)^{-1}(-B+C)][(-B+D)^{-1}(-A+D)]
=[([I](AC))1[I](BC)][([I](BD))1[I](AD)]\displaystyle=[([-I](A-C))^{-1}[-I](B-C)][([-I](B-D))^{-1}[-I](A-D)]
=[(AC)1[I]1[I](BC)][(BD)1[I]1[I](AD)]\displaystyle=[(A-C)^{-1}[-I]^{-1}[-I](B-C)][(B-D)^{-1}[-I]^{-1}[-I](A-D)]
=[(AC)1[I][I](BC)][(BD)1[I][I](AD)]\displaystyle=[(A-C)^{-1}[-I][-I](B-C)][(B-D)^{-1}[-I][-I](A-D)]
=[(AC)1(BC)][(BD)1(AD)]\displaystyle=[(A-C)^{-1}(B-C)][(B-D)^{-1}(A-D)]
=cr(A,B;D,C)\displaystyle=c_{r}(A,B;D,C)

From skew fields properties we have that (ab)1=b1a1(ab)^{-1}=b^{-1}a^{-1}and abbaab\neq ba, [I]1=I[-I]^{-1}=-I, and [I][I]=I.[-I][-I]=I.

Theorem 3.

If A,B,C,DA,B,C,D are distinct points in a line, in Desargues affine plane, then

cr1(A,B;C,D)=cr(A,B;D,C)c_{r}^{-1}(A,B;C,D)=c_{r}(A,B;D,C)
Proof.

From cross-ratio Definition 4, have

cr1(A,B;C,D)\displaystyle c_{r}^{-1}(A,B;C,D) ={[(AD)1(BD)][(BC)1(AC)]}1\displaystyle=\left\{\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right]\right\}^{-1}
=[(BC)1(AC)]1[(AD)1(BD)]1\displaystyle=\left[(B-C)^{-1}(A-C)\right]^{-1}\left[(A-D)^{-1}(B-D)\right]^{-1}
=[(AC)1(BC)][(BD)1(AD)]\displaystyle=[(A-C)^{-1}(B-C)][(B-D)^{-1}(A-D)]
=cr(A,B;D,C)\displaystyle=c_{r}(A,B;D,C)

Theorem 4.

For 4 co-linear points A,B,C,DA,B,C,D in a line OI\ell^{OI} in the Desargues affine plane, the cross-ratio satisfies the equation,

cr(A,B;C,D)=[(AB)1(AD)1][(AB)1(AC)1]1c_{r}(A,B;C,D)=\left[(A-B)^{-1}-(A-D)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}
Proof.

From the definition 4 we have cr(A,B;C,D)=[(AD)1(BD)][(BC)1(AC)]c_{r}(A,B;C,D)=\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right], and the points of this line forms a skew-field, therefore, we have association property:

R\displaystyle R =cr(A,B;C,D)\displaystyle=c_{r}(A,B;C,D)
=[(AD)1(BD)][(BC)1(AC)]\displaystyle=[(A-D)^{-1}(B-D)][(B-C)^{-1}(A-C)]
(since this factor are elements of skew field, so have the associative property)
=[(AD)1(BD)(BC)1](AC)\displaystyle=\left[(A-D)^{-1}(B-D)(B-C)^{-1}\right](A-C)

So, the point RR, is,

R=[(AD)1(BD)(BC)1](AC)R=\left[(A-D)^{-1}(B-D)(B-C)^{-1}\right](A-C)

multiply in the right side by side with (AC)1(A-C)^{-1}, and have

R(AC)1=(AD)1(BD)(BC)1R\cdot(A-C)^{-1}=(A-D)^{-1}(B-D)(B-C)^{-1}

now multiply in the right side by side with (BC)(B-C), and have

(AD)1(BD)=(R(AC)1)(BC)(A-D)^{-1}(B-D)=\left(R\cdot(A-C)^{-1}\right)(B-C)

multiply side by side with (AB)1(A-B)^{-1}, and have,

[(AD)1(BD)](AB)1=[R(AC)1(BC)](AB)1\left[(A-D)^{-1}(B-D)\right](A-B)^{-1}=\left[R\cdot(A-C)^{-1}(B-C)\right](A-B)^{-1}

Transform the left side of this equation as

[(AD)1(BD)](AB)1\displaystyle\left[(A-D)^{-1}(B-D)\right](A-B)^{-1} =[(AD)1(B+AAD)](AB)1\displaystyle=\left[(A-D)^{-1}(B+A-A-D)\right](A-B)^{-1}
=[(AD)1([AD][AB])](AB)1\displaystyle=\left[(A-D)^{-1}([A-D]-[A-B])\right](A-B)^{-1}

rewrite it, and have

[(AD)1(BD)](AB)1\displaystyle\left[(A-D)^{-1}(B-D)\right](A-B)^{-1} =[(AD)1([AD][AB])](AB)1\displaystyle=[(A-D)^{-1}([A-D]-[A-B])](A-B)^{-1}
=[(AD)1[AD](AD)1[AB]](AB)1\displaystyle=[(A-D)^{-1}[A-D]-(A-D)^{-1}[A-B]](A-B)^{-1}
=[I(AD)1[AB]](AB)1\displaystyle=[I-(A-D)^{-1}[A-B]](A-B)^{-1}
=(AB)1(AD)1[AB](AB)1\displaystyle=(A-B)^{-1}-(A-D)^{-1}[A-B](A-B)^{-1}
=(AB)1(AD)1\displaystyle=(A-B)^{-1}-(A-D)^{-1}

So, have

(AB)1(AD)1=[R(AC)1(BC)](AB)1(A-B)^{-1}-(A-D)^{-1}=\left[R(A-C)^{-1}(B-C)\right](A-B)^{-1}

In the same way as above, (always bearing in mind that the points of a line of Desargues affine planes form a skew-field related to the addition and multiplication of the points, on this line, and the properties that satisfy a skew-field) we do the following transformations.

First we have the associative property for the multiplication of points on a line,

[R(AC)1(BC)](AB)1=R[(AC)1(BC)(AB)1]\left[R(A-C)^{-1}(B-C)\right](A-B)^{-1}=R\left[(A-C)^{-1}(B-C)(A-B)^{-1}\right]

Now we transform the expression

[(AC)1(BC)(AB)1]\displaystyle\left[(A-C)^{-1}(B-C)(A-B)^{-1}\right] =[(AC)1(B+AAC)(AB)1]\displaystyle=\left[(A-C)^{-1}(B+A-A-C)(A-B)^{-1}\right]
=[(AC)1([AC][AB])(AB)1]\displaystyle=\left[(A-C)^{-1}([A-C]-[A-B])(A-B)^{-1}\right]
=[I(AC)1[AB]](AB)1\displaystyle=[I-(A-C)^{-1}[A-B]](A-B)^{-1}
=(AB)1(AC)1[AB](AB)1\displaystyle=(A-B)^{-1}-(A-C)^{-1}[A-B](A-B)^{-1}
=(AB)1(AC)1\displaystyle=(A-B)^{-1}-(A-C)^{-1}

So, have

(AB)1(AD)1=R[(AB)1(AC)1](A-B)^{-1}-(A-D)^{-1}=R\left[(A-B)^{-1}-(A-C)^{-1}\right]

Hence

R=[(AB)1(AD)1][(AB)1(AC)1]1R=\left[(A-B)^{-1}-(A-D)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}

so,

cr(A,B;C,D)=[(AB)1(AD)1][(AB)1(AC)1]1.c_{r}(A,B;C,D)=\left[(A-B)^{-1}-(A-D)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}.

Theorem 5.

If A,B,C,DA,B,C,D are distinct points in a line, in Desargues affine plane and II is unital point for multiplications of points in same line, then

Icr(A,B;C,D)=cr(A,C;B,D)I-c_{r}(A,B;C,D)=c_{r}(A,C;B,D)
Proof.

Let’s start the calculations, using the result of the theorem

I[(AB)1(AD)1][(AB)1(AC)1]1=I-\left[(A-B)^{-1}-(A-D)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}=
={(AC)1(AD)1}[{(AC)1(AB)1}]1=\left\{(A-C)^{-1}-(A-D)^{-1}\right\}\left[\left\{(A-C)^{-1}-(A-B)^{-1}\right\}\right]^{-1}

write,

I=[(AB)1(AC)1][(AB)1(AC)1]1I=\left[(A-B)^{-1}-(A-C)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}

so,

Icr(A,B;C,D)\displaystyle I-c_{r}(A,B;C,D) =I[(AB)1(AD)1][(AB)1(AC)1]1\displaystyle=I-\left[(A-B)^{-1}-(A-D)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}
=[(AB)1(AC)1][(AB)1(AC)1]1\displaystyle=\left[(A-B)^{-1}-(A-C)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}
[(AB)1(AD)1][(AB)1(AC)1]1\displaystyle-\left[(A-B)^{-1}-(A-D)^{-1}\right]\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}
={[(AB)1(AC)1][(AB)1(AD)1]}\displaystyle=\left\{\left[(A-B)^{-1}-(A-C)^{-1}\right]-\left[(A-B)^{-1}-(A-D)^{-1}\right]\right\}
[(AB)1(AC)1]1\displaystyle\cdot\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}
={(AC)1+(AD)1}[(AB)1(AC)1]1\displaystyle=\left\{-(A-C)^{-1}+(A-D)^{-1}\right\}\left[(A-B)^{-1}-(A-C)^{-1}\right]^{-1}
=(I){(AC)1(AD)1}[(I){(AC)1(AB)1}]1\displaystyle=(-I)\left\{(A-C)^{-1}-(A-D)^{-1}\right\}\left[(-I)\left\{(A-C)^{-1}-(A-B)^{-1}\right\}\right]^{-1}
=(I){(AC)1(AD)1}[{(AC)1(AB)1}]1(I)1\displaystyle=(-I)\left\{(A-C)^{-1}-(A-D)^{-1}\right\}\left[\left\{(A-C)^{-1}-(A-B)^{-1}\right\}\right]^{-1}(-I)^{-1}
={(AC)1(AD)1}[{(AC)1(AB)1}]1\displaystyle=\left\{(A-C)^{-1}-(A-D)^{-1}\right\}\left[\left\{(A-C)^{-1}-(A-B)^{-1}\right\}\right]^{-1}
=cr(A,C;B,D)\displaystyle=c_{r}(A,C;B,D)

from skew-field properties, we have (I)1=I(-I)^{-1}=-I and (I)(I)=I(-I)(-I)=I

Theorem 6.

If A,B,C,DA,B,C,D are distinct points in a line, in Desargues affine plane and II is unitary point for multiplications of points in same line, then,

(a):

cr(A,D;B,C)=Icr1(A,B;C,D)c_{r}(A,D;B,C)=I-c_{r}^{-1}(A,B;C,D)

(b):

cr(A,C;D,B)=[Icr(A,B;C,D)]1c_{r}(A,C;D,B)=[I-c_{r}(A,B;C,D)]^{-1}

(c):

cr(A,D;C,B)=[cr(A,B;C,D)I]1cr(A,B;C,D)c_{r}(A,D;C,B)=[c_{r}(A,B;C,D)-I]^{-1}c_{r}(A,B;C,D)

Proof.

(a) In theorem 3 we have prove that cr1(A,B;C,D)=cr(A,B;D,C)c_{r}^{-1}(A,B;C,D)=c_{r}(A,B;D,C), and from theorem 5, have that Icr(A,B;D,C)=cr(A,D;B,C)I-c_{r}(A,B;D,C)=c_{r}(A,D;B,C). So, we have prove that

Icr1(A,B;C,D)=Icr(A,B;D,C)=cr(A,D;B,C).I-c_{r}^{-1}(A,B;C,D)=I-c_{r}(A,B;D,C)=c_{r}(A,D;B,C).

(b) From theorem 5, we have that, Icr(A,B;C,D)=cr(A,C;B,D)I-c_{r}(A,B;C,D)=c_{r}(A,C;B,D), and from theorem 3 have that [cr(A,C;B,D)]1=cr(A,C;D,B)[c_{r}(A,C;B,D)]^{-1}=c_{r}(A,C;D,B), so have that

cr(A,C;D,B)=[cr(A,C;B,D)]1=[Icr(A,B;C,D)]1.c_{r}(A,C;D,B)=[c_{r}(A,C;B,D)]^{-1}=[I-c_{r}(A,B;C,D)]^{-1}.

(c) At this point we will prove that: cr(A,D;C,B)=[cr(A,B;C,D)I]1cr(A,B;C,D)c_{r}(A,D;C,B)=[c_{r}(A,B;C,D)-I]^{-1}c_{r}(A,B;C,D).

From point (a), we prove that cr(A,D;C,B)=Icr1(A,B;C,D),c_{r}(A,D;C,B)=I-c_{r}^{-1}(A,B;C,D), and from theorem 3 have that cr(A,D;C,B)=cr1(A,D;B,C)c_{r}(A,D;C,B)=c_{r}^{-1}(A,D;B,C). So, we have that

cr(A,D;C,B)=[Icr1(A,B;C,D)]1c_{r}(A,D;C,B)=[I-c_{r}^{-1}(A,B;C,D)]^{-1}

Mark the cross-ratios point R=cr(A,B;C,D)R=c_{r}(A,B;C,D), and rewrite. So we have to prove that the equation holds,

[IR1]1=[RI]1R,[I-R^{-1}]^{-1}=[R-I]^{-1}R,

remember that the points are points of OI\ell^{OI}-line, in Desargues affine planes, and can also be thought of as elements of skew-fields K=(OI,+,)K=(\ell^{OI},+,\cdot), therefore, we can make algebraic transformations, allowed for skew-fields, and we have

[IR1]1\displaystyle\left[I-R^{-1}\right]^{-1} =[RI]1R\displaystyle=[R-I]^{-1}R
(multiply from the right with R1R^{-1})
[IR1]1R1\displaystyle[I-R^{-1}]^{-1}\cdot R^{-1} =[RI]1RR1\displaystyle=[R-I]^{-1}R\cdot R^{-1}
(from skew field property have that p1q1=(qp)1p^{-1}q^{-1}=(qp)^{-1})
[R(IR1)]1\displaystyle[R(I-R^{-1})]^{-1} =[RI]1[RR1]\displaystyle=[R-I]^{-1}[R\cdot R^{-1}]
[RIRR1]1\displaystyle[R\cdot I-R\cdot R^{-1}]^{-1} =[RI]1I\displaystyle=[R-I]^{-1}\cdot I
[RI]1\displaystyle[R-I]^{-1} =[RI]1\displaystyle=[R-I]^{-1}

Theorem 7.

If A,B,C,DA,B,C,D are distinct points, and different from zero-point OO, in a line, in Desargues affine plane and II is unitary point for multiplications of points in same line, have,

cr(A1,B1;C1,D1)=Acr(A,B;C,D)A1c_{r}(A^{-1},B^{-1};C^{-1},D^{-1})=A\cdot c_{r}(A,B;C,D)\cdot A^{-1}
Proof.

From cross-ratio definition 4, we have,

cr(A1,B1;C1,D1)=[(A1D1)1(B1D1)][(B1C1)(A1C1)]c_{r}(A^{-1},B^{-1};C^{-1},D^{-1})=[(A^{-1}-D^{-1})^{-1}(B^{-1}-D^{-1})][(B^{-1}-C^{-1})(A^{-1}-C^{-1})]

Points A,B,C,DA,B,C,D and A1,B1,C1,D1A^{-1},B^{-1},C^{-1},D^{-1}, are points of OI\ell^{OI}-line in Desargues affine plane, so are and elements of the skew field K=(OI,+,)K=(\ell^{OI},+,\cdot). First we prove that, for tow elements X,YX,Y in a skew field KK, we have that X1Y1=Y1(YX)X1X^{-1}-Y^{-1}=Y^{-1}(Y-X)X^{-1}. Indeed

Y1(YX)X1\displaystyle Y^{-1}(Y-X)X^{-1} =[Y1(YX)]X1\displaystyle=[Y^{-1}(Y-X)]X^{-1}
=(Y1YY1X)X1\displaystyle=(Y^{-1}Y-Y^{-1}X)X^{-1}
=(IY1X)X1\displaystyle=(I-Y^{-1}X)X^{-1}
=IX1Y1(XX1)\displaystyle=IX^{-1}-Y^{-1}(XX^{-1})
=X1Y1I\displaystyle=X^{-1}-Y^{-1}I
=X1Y1.\displaystyle=X^{-1}-Y^{-1}.

We use this result in the calculation of cr(A1,B1;C1,D1)c_{r}(A^{-1},B^{-1};C^{-1},D^{-1}), and have

cr(A1,B1;C1,D1)\displaystyle c_{r}(A^{-1},B^{-1};C^{-1},D^{-1}) =[(A1D1)1(B1D1)]\displaystyle=[(A^{-1}-D^{-1})^{-1}(B^{-1}-D^{-1})]
[(B1C1)(A1C1)]\displaystyle\cdot[(B^{-1}-C^{-1})(A^{-1}-C^{-1})]
=[(D1(DA)A1)1(D1(DB)B1)]\displaystyle=[(D^{-1}(D-A)A^{-1})^{-1}(D^{-1}(D-B)B^{-1})]
[(C1(CB)B1)(C1(CA)A1)]\displaystyle\cdot[(C^{-1}(C-B)B^{-1})(C^{-1}(C-A)A^{-1})]
=[(A(DA)1D)(D1(DB)B1)]\displaystyle=[(A(D-A)^{-1}D)(D^{-1}(D-B)B^{-1})]
[(B(CB)1C)(C1(CA)A1)]\displaystyle\cdot[(B(C-B)^{-1}C)(C^{-1}(C-A)A^{-1})]
(from skew field properties (abc)1=c1b1a1(abc)^{-1}=c^{-1}b^{-1}a^{-1})
=[A(DA)1(DD1)(DB)B1]\displaystyle=[A(D-A)^{-1}(DD^{-1})(D-B)B^{-1}]
[B(CB)1(CC1)(CA)A1]\displaystyle\cdot[B(C-B)^{-1}(CC^{-1})(C-A)A^{-1}]
(from associative properties for multiplication)
=[A(DA)1(I)(DB)B1][B(CB)1(I)(CA)A1]\displaystyle=[A(D-A)^{-1}(I)(D-B)B^{-1}][B(C-B)^{-1}(I)(C-A)A^{-1}]
=[A(DA)1(DB)B1][B(CB)1(CA)A1]\displaystyle=[A(D-A)^{-1}(D-B)B^{-1}][B(C-B)^{-1}(C-A)A^{-1}]
=A[(DA)1(DB)B1][B(CB)1(CA)]A1\displaystyle=A[(D-A)^{-1}(D-B)B^{-1}][B(C-B)^{-1}(C-A)]A^{-1}
=A{[(DA)1(DB)B1][B(CB)1(CA)]}A1\displaystyle=A\left\{[(D-A)^{-1}(D-B)B^{-1}][B(C-B)^{-1}(C-A)]\right\}A^{-1}
=Acr(A,C;B,D)A1.\displaystyle=A\cdot c_{r}(A,C;B,D)\cdot A^{-1}.

therefore, we can say that the points, cr(A,C;B,D)c_{r}(A,C;B,D) and cr(A1,B1;C1,D1)c_{r}(A^{-1},B^{-1};C^{-1},D^{-1}) are conjugatet-points in a line of Desargues affine plane. ∎

Corollary 1.

If the point Az[K]A\in z[K] (center of skew field K=(OI,+,)K=(\ell^{OI},+,\cdot)), then,

cr(A,C;B,D)=cr(A1,B1;C1,D1).c_{r}(A,C;B,D)=c_{r}(A^{-1},B^{-1};C^{-1},D^{-1}).
Proof.

If Az[K]A\in z[K] then, AX=XA,XKAX=XA,\forall X\in K, so AXA1=X,XKAXA^{-1}=X,\forall X\in K. So, for Az[K]A\in z[K], we have that,

Acr(A,C;B,D)A1=cr(A,C;B,D).A\cdot c_{r}(A,C;B,D)\cdot A^{-1}=c_{r}(A,C;B,D).

Hence

cr(A1,B1;C1,D1)=cr(A,C;B,D)if Az[K]c_{r}(A^{-1},B^{-1};C^{-1},D^{-1})=c_{r}(A,C;B,D)\Leftrightarrow\text{if $A\in z[K]$}

Corollary 2.

In Papus affine plane, cr(A,C;B,D)=cr(A1,B1;C1,D1)c_{r}(A,C;B,D)=c_{r}(A^{-1},B^{-1};C^{-1},D^{-1}).

Theorem 8.

If A,B,C,DA,B,C,D are distinct points in a line, in Desargues affine plane and II is unitary point for multiplications of points in same line, have,

cr(A,B;C,D)cr(B,A;D,C)c_{r}(A,B;C,D)\neq c_{r}(B,A;D,C)

so, cr(A,B;C,D)c_{r}(A,B;C,D) is different point from cr(B,A;D,C)c_{r}(B,A;D,C).

Proof.

From Definition of Cross-Ratio we have,

cr(A,B;C,D)=[(AD)1(BD)][(BC)1(AC)]=r(B,A;D)r(A,B;C)c_{r}(A,B;C,D)=\left[(A-D)^{-1}(B-D)\right]\left[(B-C)^{-1}(A-C)\right]=r(B,A;D)\cdot r(A,B;C)

and

cr(B,A;D,C)=[(BC)1(AC)][(AD)1(BD)]=r(A,B;C)r(B,A;D)c_{r}(B,A;D,C)=\left[(B-C)^{-1}(A-C)\right]\left[(A-D)^{-1}(B-D)\right]=r(A,B;C)\cdot r(B,A;D)

We mark the points, like below

R1=r(A,B;C)andR2=r(B,A;D)R_{1}=r(A,B;C)\quad\text{and}\quad R_{2}=r(B,A;D)

so

cr(A,B;C,D)=R2R1andcr(B,A;D,C)=R1R2c_{r}(A,B;C,D)=R_{2}\cdot R_{1}\quad\text{and}\quad c_{r}(B,A;D,C)=R_{1}\cdot R_{2}

This points are in OI\ell^{OI}--line in Desargues affine plane, so are elements of the skew fields K=(OI,+,)K=(\ell^{OI},+,\cdot), which are constructet over this line, so E,F,G,HKE,F,G,H\in K. So we have,

R2R1R1R2cr(A,B;C,D)cr(B,A;D,C)R_{2}\cdot R_{1}\neq R_{1}\cdot R_{2}\Rightarrow c_{r}(A,B;C,D)\neq c_{r}(B,A;D,C)

Corollary 3.

If A,B,C,DOIA,B,C,D\in\ell^{OI} are distinct points in a line, in Pappus affine plane and II is unital point for multiplications, then

cr(A,B;C,D)=cr(B,A;D,C)c_{r}(A,B;C,D)=c_{r}(B,A;D,C)
Proof.

If affine plane is Pappian plane, then the skew-field (OI,+,)(\ell^{OI},+,\cdot) is commutative, then is a Field. ∎

We marked with K=(OI,+,)K=(\ell^{OI},+,\cdot) the skew field over OI\ell^{OI}-line in Desargues affine plane, we know that the center of the skew field z[K]z[K], is a sub-skew field of KK, moreover, z[K]z[K] it is also commutative.

Theorem 9.

If A,B,C,DOIA,B,C,D\in\ell^{OI} are distinct points in a line, in Desargues affine plane and II is unital point for multiplications of points in same line, then equation

cr(A,B;C,D)=cr(B,A;D,C)c_{r}(A,B;C,D)=c_{r}(B,A;D,C)

it’s true, if

(a):

points A,B,C,DA,B,C,D are in ’center of skew-field’ z[K]z[K];

(b):

ratio-points r(A,B;C)r(A,B;C) are in ’center of skew-field’;

(c):

ratio-point r(B,A;D)r(B,A;D) are in ’center of skew-field’;

(d):

ratio-point r(A,B;D)r(A,B;D) is in centaralizer of point r(A,B;C)r(A,B;C), or vice versa.

Proof.

(a) If points A,B,C,Dz[K]A,B,C,D\in z[K], we have that,

AD,BD,BC,ACz[K]A-D,B-D,B-C,A-C\in z[K]

and

(AD)1,(BD)1,(BC)1,(AC)1z[K](A-D)^{-1},(B-D)^{-1},(B-C)^{-1},(A-C)^{-1}\in z[K]

also the production is commutative. Hence,

[(AD)1(BD)][(BC)1(AC)]=[(BC)1(AC)][(AD)1(BD)][(A-D)^{-1}(B-D)]\cdot[(B-C)^{-1}(A-C)]=[(B-C)^{-1}(A-C)]\cdot[(A-D)^{-1}(B-D)]

so,

cr(A,B;C,D)=cr(B,A;D,C).c_{r}(A,B;C,D)=c_{r}(B,A;D,C).

(b) If ratio-points r(A,B;C)r(A,B;C) are in ’center of skew-field’, we have that,

Xr(A,B;C)=r(A,B;C)X,XK(so for all points XOI)X\cdot r(A,B;C)=r(A,B;C)\cdot X,\quad\forall X\in K\text{(so for all points $X\in\ell^{OI}$)}

so the equation is also true for the ratio-point r(B,A;D)r(B,A;D), and have,

r(A,B;C)r(B,A;D)\displaystyle r(A,B;C)\cdot r(B,A;D) =r(B,A;D)r(A,B;C)\displaystyle=r(B,A;D)\cdot r(A,B;C)
[(BC)1(AC)][(AD)1(BD)]\displaystyle[(B-C)^{-1}(A-C)]\cdot[(A-D)^{-1}(B-D)] =[(AD)1(BD)][(BC)1(AC)]\displaystyle=[(A-D)^{-1}(B-D)]\cdot[(B-C)^{-1}(A-C)]
cr(B,A;D,C)\displaystyle c_{r}(B,A;D,C) =cr(A,B;C,D).\displaystyle=c_{r}(A,B;C,D).

(c) in the same way, as in case (b).

(d) The Centralizer 𝒞K(r(A,B;C))={YK|Yr(A,B;C)=r(A,B;C)Y}\mathcal{C}_{K}(r(A,B;C))=\{Y\in K|Y\cdot r(A,B;C)=r(A,B;C)\cdot Y\}, and we have that, r(B,A;D)𝒞K(r(A,B;C))r(B,A;D)\in\mathcal{C}_{K}(r(A,B;C)), so we have,

r(B,A;D)r(A,B;C)=r(A,B;C)r(B,A;D)r(B,A;D)\cdot r(A,B;C)=r(A,B;C)\cdot r(B,A;D)

so,

cr(A,B;C,D)=cr(B,A;D,C),c_{r}(A,B;C,D)=c_{r}(B,A;D,C),

in the same way, it is proved that if r(A,B;C)𝒞K(r(B,A;D))r(A,B;C)\in\mathcal{C}_{K}(r(B,A;D)), then cr(A,B;C,D)=cr(B,A;D,C).c_{r}(A,B;C,D)=c_{r}(B,A;D,C).

References

  • [1] Emil Artin, Geometric algebra, Intersci. Tracts Pure Appl. Math., vol. 3, Interscience Publishers, New York, NY, 1957 (English).
  • [2] M. Berger, Geometry revealed, Springer, Heidelberg, 2010, xvi+831 pp., ISBN: 978-3-540-70996-1, MR2724440.
  • [3] Marcel Berger, Geometry. I, II. Transl. from the French by M. Cole and S. Levy, corrected 4th printing ed., Universitext, Berlin: Springer, 2009 (English).
  • [4] P. M. Cohn, Skew fields. Theory of general division rings., paperback reprint of the hardback edition 1995 ed., Encycl. Math. Appl., vol. 57, Cambridge: Cambridge University Press, 2008.
  • [5] H. S. M. Coxeter, Introduction to geometry, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1969, xvii+469 pp., MR0123930, MR0346644.
  • [6] K. Filipi, O. Zaka, and A. Jusufi, The construction of a corp in the set of points in a line of desargues affine plane, Matematicki Bilten 43 (2019), no. 01, 1–23, ISSN 0351-336X (print), ISSN 1857–9914 (online).
  • [7] R. Hartshorne, Foundations of projective geometry, New York: W.A. Benjamin, Inc. 1967. VII, 167 p. (1967)., 1967.
  • [8] I.N. Herstein, Topics in algebra, 2nd ed., Xerox College Publishing, Lexington, Mass., 1975, xi+388 pp., MR0356988; first edition in 1964, MR0171801 (detailed review).
  • [9] D. Hilbert, The foundations of geometry, The Open Court Publishing Co., La Salle, Ill., 1959, vii+143 pp., MR0116216.
  • [10] D.R. Hughes and F.C. Piper, Projective planes, graduate texts in mathematics, vol. 6, Spnnger-Verlag, Berlin, New York, 1973, x+291 pp., MR0333959.
  • [11] A. Kryftis, A constructive approach to affine and projective planes, Ph.D. thesis, University of Cambridge, Trinity College and Department of Pure Mathematics and Mathematical Statistics, 2015, supervisor: M. Hyland, v+170pp.,arXiv 1601.04998v1 19 Jan. 2016.
  • [12] T. Y. Lam, A first course in noncommutative rings., 2nd ed. ed., Grad. Texts Math., vol. 131, New York, NY: Springer, 2001 (English).
  • [13] J. J. Milne, An elementary treatise on cross-ratio geometry, with historical notes., Cambridge: University Press. XXII u. 288 S. 88^{\circ} (1911)., 1911 (English).
  • [14] G. Pickert, Affine planes: An example of research on geometric structures, The Mathematical Gazette 57 (2004), no. 402, 278–291, MR0474017.
  • [15] M. Prażmowska, A proof of the projective Desargues axiom in the Desarguesian affine plane, Demonstratio Mathematica 37 (2004), no. 4, 921–924, MR2103894.
  • [16] Joseph J. Rotman, Advanced modern algebra. Part 1, 3rd edition ed., Grad. Stud. Math., vol. 165, Providence, RI: American Mathematical Society (AMS), 2015 (English).
  • [17] W. Szmielew, Od geometrii afinicznej do euklidesowej (polish) [from affine geometry to euclidean geometry] rozwa?ania nad aksjomatyk? [an approach through axiomatics], Biblioteka Matematyczna [Mathematics Library], Warsaw, 1981, 172 pp., ISBN: 83-01-01374-5, MR0664205.
  • [18] O. Zaka, Contribution to reports of some algebraic structures with affine plane geometry and applications, Ph.D. thesis, Polytechnic University of Tirana,Tirana, Albania, Department of Mathematical Engineering, 2016, supervisor: K. Filipi, vii+113pp.
  • [19] by same author, A description of collineations-groups of an affine plane, Libertas Mathematica (N.S.) 37 (2017), no. 2, 81–96, ISSN print: 0278 – 5307, ISSN online: 2182 – 567X, MR3828328.
  • [20] by same author, Three vertex and parallelograms in the affine plane: Similarity and addition abelian groups of similarly nn-vertexes in the Desargues affine plane, Mathematical Modelling and Applications 3 (2018), no. 1, 9–15, http://doi:10.11648/j.mma.20180301.12.
  • [21] by same author, Dilations of line in itself as the automorphism of the skew-field constructed over in the same line in desargues affine plane, Applied Mathematical Sciences 13 (2019), no. 5, 231–237.
  • [22] O. Zaka and K. Filipi, The transform of a line of Desargues affine plane in an additive group of its points, Int. J. of Current Research 8 (2016), no. 07, 34983–34990.
  • [23] O. Zaka and J.F. Peters, Advances in the geometry of the ratio of linear points in the Desargues affine plane skew field, corr abs/2208.12745 (2022), arXiv:2208.12745.
  • [24] by same author, Progress in invariant and preserving transforms for the ratio of co-linear points in the desargues affine plane skew field, corr abs/2209.02636 (2022), arXiv:2209.02636.
  • [25] Orgest Zaka and Mohanad A. Mohammed, The endomorphisms algebra of translations group and associative unitary ring of trace-preserving endomorphisms in affine plane, Proyecciones 39 (2020), no. 4, 821–834 (English).
  • [26] by same author, Skew-field of trace-preserving endomorphisms, of translation group in affine plane, Proyecciones 39 (2020), no. 4, 835–850 (English).
  • [27] Orgest Zaka and James F. Peters, Isomorphic-dilations of the skew-fields constructed over parallel lines in the Desargues affine plane, Balkan J. Geom. Appl. 25 (2020), no. 1, 141–157 (English).
  • [28] Orgest Zaka and James Francis Peters, Ordered line and skew-fields in the Desargues affine plane, Balkan J. Geom. Appl. 26 (2021), no. 1, 141–156 (English).