This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Curves with few bad primes
over cyclotomic \mathbb{Z}_{\ell}-extensions

Samir Siksek Mathematics Institute
University of Warwick
CV4 7AL
United Kingdom
s.siksek@warwick.ac.uk
 and  Robin Visser Mathematics Institute
University of Warwick
CV4 7AL
United Kingdom
Robin.Visser@warwick.ac.uk
Abstract.

Let KK be a number field, and SS a finite set of non-archimedean places of KK, and write 𝒪S×\mathcal{O}_{S}^{\times} for the group of SS-units of KK. A famous theorem of Siegel asserts that the SS-unit equation ε+δ=1\varepsilon+\delta=1, with ε\varepsilon, δ𝒪S×\delta\in\mathcal{O}_{S}^{\times}, has only finitely many solutions. A famous theorem of Shafarevich asserts that there are only finitely many isomorphism classes of elliptic curves over KK with good reduction outside SS. Now instead of a number field, let K=,K=\mathbb{Q}_{\infty,\ell} which denotes the \mathbb{Z}_{\ell}-cyclotomic extension of \mathbb{Q}. We show that the SS-unit equation ε+δ=1\varepsilon+\delta=1, with ε\varepsilon, δ𝒪S×\delta\in\mathcal{O}_{S}^{\times}, has infinitely many solutions for {2,3,5,7}\ell\in\{2,3,5,7\}, where SS consists only of the totally ramified prime above \ell. Moreover, for every prime \ell, we construct infinitely many elliptic or hyperelliptic curves defined over KK with good reduction away from 22 and \ell. For certain primes \ell we show that the Jacobians of these curves in fact belong to infinitely many distinct isogeny classes.

Key words and phrases:
Shafarevich conjecture, Abelian varieties, cyclic fields, cyclotomic fields, integral points
2010 Mathematics Subject Classification:
Primary 11G10, Secondary 11G05
Siksek is supported by the EPSRC grant Moduli of Elliptic curves and Classical Diophantine Problems (EP/S031537/1). Visser is supported by an EPSRC studentship (EP/V520226/1)

1. Introduction

Let \ell be a rational prime and rr a positive integer. Write r,\mathbb{Q}_{r,\ell} for the unique degree r\ell^{r} totally real subfield of n=1(μn)\cup_{n=1}^{\infty}\mathbb{Q}(\mu_{n}), where μn\mu_{n} denotes the set of n\ell^{n}-th roots of 11. We let ,=rr,\mathbb{Q}_{\infty,\ell}=\cup_{r}\mathbb{Q}_{r,\ell}; this is the \mathbb{Z}_{\ell}-cyclotomic extension of \mathbb{Q}, and r,\mathbb{Q}_{r,\ell} is called the rr-th layer of ,\mathbb{Q}_{\infty,\ell}. Now let KK be a number field, and write K,=K,K_{\infty,\ell}=K\cdot\mathbb{Q}_{\infty,\ell} and Kr,=Kr,K_{r,\ell}=K\cdot\mathbb{Q}_{r,\ell}. To ease notation we shall sometimes write KK_{\infty} for K,K_{\infty,\ell}. We write 𝒪\mathcal{O}_{\infty} (or 𝒪,\mathcal{O}_{\infty,\ell}) for the integers in KK_{\infty} (i.e. the integral closure of \mathbb{Z} in KK_{\infty}), and write 𝒪r\mathcal{O}_{r} (or 𝒪r,)\mathcal{O}_{r,\ell}) for the integers of Kr,K_{r,\ell}. Clearly 𝒪,=r𝒪r,\mathcal{O}_{\infty,\ell}=\cup_{r}\mathcal{O}_{r,\ell}. The motivation for the present paper is a series of conjectures and theorems that suggest that the arithmetic of curves (respectively abelian varieties) over KK_{\infty} is similar to the arithmetic of curves (respectively abelian varieties) over KK. One of these is the following conjecture of Mazur [10], which in essence says that the Mordell–Weil theorem continues to hold over KK_{\infty}.

Conjecture (Mazur).

Let A/KA/K_{\infty} be an abelian variety. Then A(K)A(K_{\infty}) is finitely generated.

Another is a conjecture of Parshin and Zarhin [24, page 91] which is the analogue of Faltings’ theorem (Mordell conjecture) over KK_{\infty}.

Conjecture (Parshin and Zarhin).

Let X/KX/K_{\infty} be a curve of genus 2\geq 2. Then X(K)X(K_{\infty}) is finite.

A third is the following theorem of Zarhin [25, Corollary 4.2], which asserts that the Tate homomorphism conjecture (also a theorem of Faltings [5] over number fields) continues to hold over KK_{\infty}.

Theorem (Zarhin).

Let AA, BB be abelian varieties defined over K,K_{\infty,\ell}, and denote their respective \ell-adic Tate modules by T(A)T_{\ell}(A), T(B)T_{\ell}(B). Then the natural embedding

HomK(A,B)HomGal(K¯/K)(T(A),T(B))\operatorname{Hom}_{K_{\infty}}(A,B)\otimes\mathbb{Z}_{\ell}\hookrightarrow\operatorname{Hom}_{\operatorname{Gal}(\overline{K_{\infty}}/K_{\infty})}(T_{\ell}(A),T_{\ell}(B))

is a bijection.

Mazur’s conjecture is now known to hold for certain elliptic curves. For example, if EE is an elliptic curve defined over \mathbb{Q} then E()E(\mathbb{Q}_{\infty}) is finitely generated thanks to theorems of Kato, Ribet and Rohrlich [7, Theorem 1.5]. From this one can deduce [7, Theorem 1.24] that X()X(\mathbb{Q}_{\infty}) is finite for curves X/X/\mathbb{Q} of genus 2\geq 2 equipped with a non-constant morphism to an elliptic curve XEX\rightarrow E defined over \mathbb{Q}. We also note that the conjecture of Parshin and Zarhin follows easily from Mazur’s conjecture and Faltings’ theorem. Indeed, using the Abel-Jacobi map we can deduce from Mazur’s conjecture that X(K)=X(Kr)X(K_{\infty})=X(K_{r}) for suitably large rr, and we know that X(Kr)X(K_{r}) is finite by Faltings’ theorem.


It is natural to wonder whether other standard conjectures and theorems concerning the arithmetic of curves and abelian varieties over number fields continue to hold over KK_{\infty}. The purpose of this paper is to give counterexamples to potential generalizations of certain theorems of Siegel and Shafarevich to KK_{\infty}. A theorem of Siegel (e.g. [1, Theorem 0.2.8]) asserts that (1{0,1,})(𝒪K,S)(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}_{K,S}) is finite for any number field KK and any finite set of primes SS. We show that the corresponding statement over ,\mathbb{Q}_{\infty,\ell} is false, at least for =2\ell=2, 33, 55, 77. We denote by υ\upsilon_{\ell} the totally ramified prime of ,\mathbb{Q}_{\infty,\ell} above \ell (the precise meaning of primes in infinite extensions of \mathbb{Q} is clarified in Section 2).

Theorem 1.

Let =2\ell=2, 33, 55 or 77. Let

(1) S={{υ}if =257if =3.S\;=\;\begin{cases}\{\upsilon_{\ell}\}&\text{if $\ell=2$, $5$, $7$}\\ \emptyset&\text{if $\ell=3$}.\end{cases}

Let 𝒪S\mathcal{O}_{S} denote the SS-integers of ,\mathbb{Q}_{\infty,\ell}. Then (1{0,1,})(𝒪S)(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}_{S}) is infinite.

Remarks.

  • If S=S=\emptyset then 𝒪S=𝒪\mathcal{O}_{S}=\mathcal{O}_{\infty} is the set of integers of ,\mathbb{Q}_{\infty,\ell}. In [6] it is shown that (1{0,1,})(𝒪)=(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}_{\infty})=\emptyset for 3\ell\neq 3. The obstruction given in [6] for 3\ell\neq 3 is local in nature. In essence, Theorem 1 complements this result, showing that we can obtain infinitely many integral or SS-integral points in the absence of the local obstruction. The proof of Theorem 1 is constructive.

  • Theorem 1 strongly suggests that the conjecture of Parshin and Zarhin does not admit a straightforward generalization to the broader context of integral points on hyperbolic curves. We also remark that there is a critical difference over KK_{\infty} between complete curves XX of genus 2\geq 2 and 1{0,1,}\mathbb{P}^{1}-\{0,1,\infty\}. For the former, the group of KK_{\infty}-points of the Jacobian is expected to be finitely generated by Mazur’s conjecture. For the latter, the analogue of the Jacobian is the generalized Jacobian which is 𝔾m×𝔾m\mathbb{G}_{m}\times\mathbb{G}_{m}, and its group of KK_{\infty}-points is (𝔾m×𝔾m)(K)=𝒪××𝒪×(\mathbb{G}_{m}\times\mathbb{G}_{m})(K_{\infty})=\mathcal{O}_{\infty}^{\times}\times\mathcal{O}_{\infty}^{\times}, which is infinitely generated.

Variants of the proof of Theorem 1 give the following.

Theorem 2.

Let =2,3\ell=2,3 or 55. Let S={υ}S=\{\upsilon_{\ell}\} and write 𝒪S\mathcal{O}_{S} for the SS-integers of ,\mathbb{Q}_{\infty,\ell}. Let

k{{1,2,3,4,5,6,7,8,10,12,24}if =2,3,{1,2,4}if =5.k\;\in\;\begin{cases}\{1,2,3,4,5,6,7,8,10,12,24\}&\text{if $\ell=2,3$},\\ \{1,2,4\}&\text{if $\ell=5$}.\end{cases}

Then (1{0,k,})(𝒪S)(\mathbb{P}^{1}-\{0,k,\infty\})(\mathcal{O}_{S}) is infinite.


Shafarevich’s conjecture asserts that for a number field KK, a dimension nn, a degree dd, and a finite set of places SS, there are only finitely many isomorphism classes of polarized abelian varieties defined over KK of dimension nn with degree dd polarization and with good reduction away from SS. This conjecture was proved by Shafarevich for elliptic curves (i.e. n=1n=1) and by Faltings [5] in complete generality. If we replace KK by ,\mathbb{Q}_{\infty,\ell} then the Shafarevich conjecture no longer holds. For example, consider

Eε:εY2=X3XE_{\varepsilon}\;:\;\varepsilon Y^{2}=X^{3}-X

where ε𝒪×\varepsilon\in\mathcal{O}_{\infty}^{\times}. This elliptic curve has good reduction away from the primes above 22. Moreover, EεE_{\varepsilon}, EδE_{\delta} are isomorphic over \mathbb{Q}_{\infty} if and only if ε/δ\varepsilon/\delta is a square in 𝒪×\mathcal{O}_{\infty}^{\times}. As 𝒪×/(𝒪×)2\mathcal{O}_{\infty}^{\times}/(\mathcal{O}_{\infty}^{\times})^{2} is infinite, we deduce that there are infinitely many isomorphism classes of elliptic curves over \mathbb{Q}_{\infty} with good reduction away from the primes above 22. It is however natural to wonder if a sufficiently weakened version of the Shafarevich conjecture continues to hold over \mathbb{Q}_{\infty}. Indeed, the curves EεE_{\varepsilon} in the above construction form a single ¯\overline{\mathbb{Q}}-isomorphism class. This it is natural to ask if, for suitable \ell and finite set of primes SS, does the set of elliptic curves over \mathbb{Q}_{\infty} with good reduction outside SS form infinitely many ¯\overline{\mathbb{Q}}-isomorphism classes?

Theorem 3.

Let =2\ell=2, 33, 55, or 77. Let SS be given by (1) and let S=S{υ2}S^{\prime}=S\cup\{\upsilon_{2}\} where υ2\upsilon_{2} is the unique prime of ,\mathbb{Q}_{\infty,\ell} above 22. Then, there are infinitely many ¯\overline{\mathbb{Q}}-isomorphism classes of elliptic curves defined over ,\mathbb{Q}_{\infty,\ell} with good reduction away from SS^{\prime} and with full 2-torsion in ,\mathbb{Q}_{\infty,\ell}. Moreover, these elliptic curves form infinitely many distinct ,\mathbb{Q}_{\infty,\ell}-isogeny classes.

Remarks

  • By [6, Lemma 2.1], a rational prime pp\neq\ell is inert in ,\mathbb{Q}_{\infty,\ell} if and only if p11(mod2)p^{\ell-1}\not\equiv 1\pmod{\ell^{2}}. It follows from this that 22 is inert in ,\mathbb{Q}_{\infty,\ell} for =3\ell=3, 55, 77 and 1111.

  • Faltings’ proof [5] of the Mordell conjecture can be considered to have three major steps. In the first step, Faltings proves the Tate homomorphism conjecture. In the second step, Faltings derives the Shafarevich conjecture from the Tate homomorphism conjecture, and in the final step Faltings uses the ‘Parshin trick’ to deduce the Mordell conjecture from the Shafarevich conjecture. Although Zarhin has extended the Tate homomorphism conjecture to KK_{\infty}, Theorem 3 suggests that there is no plausible strategy for proving the conjecture of Parshin and Zarhin by mimicking Faltings’ proof of the Mordell conjecture.


It is natural to wonder if the isogeny classes appearing in the proof of Theorem 3 are finite or infinite. Rather reassuringly they turn out to be finite.

Theorem 4.

Let EE be an elliptic curve over ,\mathbb{Q}_{\infty,\ell} without potential complex multiplication. Then the ,\mathbb{Q}_{\infty,\ell}-isogeny class of EE is finite.


The original version of Shafarevich’s conjecture [20], (also proved by Faltings [5, Korollar 1]) states that for a given number field KK, a genus gg and a finite set of places SS, there are only finitely many isomorphism classes of genus gg curves C/KC/K with good reduction away from SS. Again this statement becomes false if we replace KK by ,\mathbb{Q}_{\infty,\ell}, for any prime \ell.

Theorem 5.

Let g2g\geq 2 and let =3\ell=3, 55, 77, 1111 or 1313. There are infinitely many ¯\overline{\mathbb{Q}}-isomorphism classes of genus gg hyperelliptic curves over ,\mathbb{Q}_{\infty,\ell} with good reduction away from {υ2,υ}\{\upsilon_{2},\upsilon_{\ell}\}.

Theorem 6.

Let 11\ell\geq 11 be an odd prime and let g=34g=\lfloor\frac{\ell-3}{4}\rfloor. There are infinitely many ¯\overline{\mathbb{Q}}-isomorphism classes of genus gg hyperelliptic curves over ,\mathbb{Q}_{\infty,\ell} with good reduction away from {υ2,υ}\{\upsilon_{2},\upsilon_{\ell}\}. Moreover, if

{11,23,59,107,167,263,347,359},\ell\in\{11,23,59,107,167,263,347,359\},

then the Jacobians of these curves form infinitely many distinct ,\mathbb{Q}_{\infty,\ell}-isogeny classes.


The paper is structured as follows. In Section 2 we recall basic results on units and SS-units of the cyclotomic field (ζn)\mathbb{Q}(\zeta_{\ell^{n}}). In Sections 36 we employ identities between cyclotomic polynomials to give constructive proofs of Theorems 1 and 2. Section 7 gives a proof of Theorem 4, making use of a deep theorem of Kato to control the ,\mathbb{Q}_{\infty,\ell}-points on certain modular curves. Section 8 uses the integral and SS-integral points on 1{0,1,}\mathbb{P}^{1}-\{0,1,\infty\} furnished by Theorem 1 to construct infinite families of elliptic curves over ,\mathbb{Q}_{\infty,\ell} for =2\ell=2, 33, 55, 77, with good reduction away from {υ2,υ}\{\upsilon_{2},\upsilon_{\ell}\}, which are used to give a proof of Theorem 3. Sections 9 and 10 give proofs of Theorems 5 and 6, making use of the relation, due to Kummer, between the class number of (ζn)+\mathbb{Q}(\zeta_{\ell^{n}})^{+}, and the index of cyclotomic units in the full group of units.


We are grateful to Minhyong Kim for drawing our attention to the conjecture of Parshin and Zarhin, and to Alain Kraus and David Loeffler for useful discussions.

2. Units and SS-units of (ζ)\mathbb{Q}(\zeta)

Let KK be a subfield of ¯\overline{\mathbb{Q}}. We denote the integers of KK (i.e. the integral closure of \mathbb{Z} in KK) by 𝒪(K)\mathcal{O}(K). Let pp be a rational prime. By a prime of KK above pp we mean a map υ:K{}\upsilon:K\rightarrow\mathbb{Q}\cup\{\infty\} satisfying the following

  • υ(p)=1\upsilon(p)=1, υ(0)=\upsilon(0)=\infty;

  • υ|K×:K×\upsilon|_{K^{\times}}:K^{\times}\rightarrow\mathbb{Q} is a homomorphism;

  • υ(1+b)=0\upsilon(1+b)=0 whenever υ(b)>0\upsilon(b)>0.

Suppose K=KnK=\cup K_{n} where K0K1K2K_{0}\subset K_{1}\subset K_{2}\subset\cdots is a tower of number fields (i.e. finite extensions of \mathbb{Q}), with K0=K_{0}=\mathbb{Q}. One sees that the primes of KK above pp are in 1111 correspondence with sequences {𝔭n}\{\mathfrak{p}_{n}\} where

  • 𝔭n\mathfrak{p}_{n} is a prime ideal of 𝒪(Kn)\mathcal{O}(K_{n});

  • 𝔭n+1𝔭n𝒪(Kn+1)\mathfrak{p}_{n+1}\mid\mathfrak{p}_{n}\mathcal{O}(K_{n+1});

  • 𝔭0=p\mathfrak{p}_{0}=p\mathbb{Z}.

Indeed, from υ\upsilon one obtains the corresponding sequence {𝔭n}\{\mathfrak{p}_{n}\} via the formula 𝔭n={α𝒪(Kn):υ(α)>0}\mathfrak{p}_{n}=\{\alpha\in\mathcal{O}(K_{n})\;:\;\upsilon(\alpha)>0\}. Given a sequence {𝔭n}\{\mathfrak{p}_{n}\}, we can recover the corresponding υ\upsilon by letting

υ(α)=ord𝔭n(α)/ord𝔭n(p)\upsilon(\alpha)=\operatorname{ord}_{\mathfrak{p}_{n}}(\alpha)/\operatorname{ord}_{\mathfrak{p}_{n}}(p)

whenever αKn×\alpha\in K_{n}^{\times}. Given a finite set of primes SS of KK, we define the SS-integers of KK to be the set 𝒪(K,S)\mathcal{O}(K,S) of all αK\alpha\in K such that υ(α)0\upsilon(\alpha)\geq 0 for every prime υS\upsilon\notin S. We let 𝒪(K,S)×\mathcal{O}(K,S)^{\times} be the unit group of 𝒪(K,S)\mathcal{O}(K,S); this is precisely the set of αK×\alpha\in K^{\times} such that υ(α)=0\upsilon(\alpha)=0 for every prime υS\upsilon\notin S. If S=S=\emptyset then 𝒪(K,S)=𝒪(K)\mathcal{O}(K,S)=\mathcal{O}(K) are the integers of KK and 𝒪(K,S)×=𝒪(K)×\mathcal{O}(K,S)^{\times}=\mathcal{O}(K)^{\times} are the units of KK.


Fix a rational prime \ell. For a positive integer nn, let ζn\zeta_{\ell^{n}} denote a primitive n\ell^{n}-th root of 11 which is chosen so that

ζn+1=ζn.\zeta_{\ell^{n+1}}^{\ell}=\zeta_{\ell^{n}}.

Let Ωn,=(ζn)\Omega_{n,\ell}=\mathbb{Q}(\zeta_{\ell^{n}}); this has degree φ(n)\varphi(\ell^{n}) where φ\varphi is Euler totient function. Let

Ω,=n=1Ωn,.\Omega_{\infty,\ell}=\bigcup_{n=1}^{\infty}\Omega_{n,\ell}.

The prime \ell is totally ramified in each Ωn,\Omega_{n,\ell}, and we denote by λn\lambda_{n} the unique prime ideal of 𝒪(Ωn,)\mathcal{O}({\Omega_{n,\ell}}) above \ell. Thus

(2) 𝒪(Ωn,)=λnφ(n).\ell\cdot\mathcal{O}({\Omega_{n,\ell}})\,=\,\lambda_{n}^{\varphi(\ell^{n})}.

We write υ\upsilon_{\ell} for the unique prime of Ω,\Omega_{\infty,\ell} above \ell. For now fix n1n\geq 1 if 2\ell\neq 2 and n2n\geq 2 if =2\ell=2. We recall that λn=(1ζn)𝒪(Ωn,)\lambda_{n}=(1-\zeta_{\ell^{n}})\cdot\mathcal{O}({\Omega_{n,\ell}}). If s\ell\nmid s then (1ζns)𝒪(Ωn,)=λn(1-\zeta_{\ell^{n}}^{s})\cdot\mathcal{O}({\Omega_{n,\ell}})=\lambda_{n}; we can see this by applying the automorphism ζnζns\zeta_{\ell^{n}}\mapsto\zeta_{\ell^{n}}^{s} to (2).

Lemma 7.

Let ss be an integer and let t=ord(s)t=\operatorname{ord}_{\ell}(s). Suppose t<nt<n. Then

(1ζns)𝒪(Ωn,)=λnt.(1-\zeta_{\ell^{n}}^{s})\cdot\mathcal{O}({\Omega_{n,\ell}})\;=\;\lambda_{n}^{\ell^{t}}.

Moreover,

υ(1ζns)=1n1t(1).\upsilon_{\ell}(1-\zeta_{\ell^{n}}^{s})=\frac{1}{\ell^{n-1-t}(\ell-1)}.
Proof.

Write ζ=ζn\zeta=\zeta_{\ell^{n}}. Note that ζs\zeta^{s} is a primitive nt\ell^{n-t}-th root of 11. Thus

(1ζs)𝒪(Ωnt,)=λnt.(1-\zeta^{s})\cdot\mathcal{O}(\Omega_{n-t,\ell})\;=\;\lambda_{n-t}.

As \ell is totally ramified in Ωn,\Omega_{n,\ell}, we have

(1ζs)𝒪(Ωn,)=λn[Ωn,:Ωnt,]=λnt.(1-\zeta^{s})\cdot\mathcal{O}(\Omega_{n,\ell})\;=\;\lambda_{n}^{[\Omega_{n,\ell}\,:\,\Omega_{n-t,\ell}]}\;=\;\lambda_{n}^{\ell^{t}}.

For the final part of the lemma,

υ(1ζs)=ordλn(1ζs)ordλn()=tφ(n)=1n1t(1).\upsilon_{\ell}(1-\zeta^{s})=\frac{\operatorname{ord}_{\lambda_{n}}(1-\zeta^{s})}{\operatorname{ord}_{\lambda_{n}}(\ell)}=\frac{\ell^{t}}{\varphi(\ell^{n})}=\frac{1}{\ell^{n-1-t}(\ell-1)}.

Cyclotomic units and SS-units

Write VnV_{n} for the subgroup of 𝒪(Ωn,{υ})×\mathcal{O}(\Omega_{n},\{\upsilon_{\ell}\})^{\times} generated by

{±ζn,1ζnk: 1k<n}\left\{\pm\zeta_{\ell^{n}},\quad 1-\zeta_{\ell^{n}}^{k}\;:\;1\leq k<\ell^{n}\right\}

and let

Cn=Vn𝒪(Ωn)×.C_{n}=V_{n}\cap\mathcal{O}(\Omega_{n})^{\times}.

The group CnC_{n} is called [22, Chapter 8] the group of cyclotomic units in Ωn\Omega_{n}. We will often find it more convenient to work with group VnV_{n}.

Lemma 8.

The abelian group Vn/±ζnV_{n}/\langle\pm\zeta_{\ell}^{n}\rangle is free with basis

(3) {1ζnk: 1k<n/2,k}.\left\{1-\zeta_{\ell^{n}}^{k}\;:\;1\leq k<\ell^{n}/2,\quad\ell\nmid k\right\}.
Proof.

The torsion subgroup of VnV_{n} is the torsion subgroup of Ωn×\Omega_{n}^{\times} which is ±ζn\langle\pm\zeta_{\ell^{n}}\rangle. Thus Vn/±ζnV_{n}/\langle\pm\zeta_{\ell^{n}}\rangle is torsion free. By definition of VnV_{n}, the group Vn/±ζnV_{n}/\langle\pm\zeta_{\ell^{n}}\rangle is generated by 1ζnk1-\zeta_{\ell^{n}}^{k} with nk\ell^{n}\nmid k. Write k=rdk=\ell^{r}d with d\ell\nmid d; thus r<nr<n. Suppose r1r\geq 1. Then,

1ζnk=1ζnrd=i=0r1(1ζndζri)using1Xr=i=0r1(1ζriX)=i=01(1ζnd+inr).\begin{split}1-\zeta_{\ell^{n}}^{k}&=1-\zeta_{\ell^{n}}^{\ell^{r}d}\\ &=\prod_{i=0}^{\ell^{r}-1}(1-\zeta_{\ell^{n}}^{d}\zeta_{\ell^{r}}^{i})\qquad\text{using}\quad 1-X^{\ell^{r}}=\prod_{i=0}^{\ell^{r}-1}(1-\zeta_{\ell^{r}}^{i}X)\\ &=\prod_{i=0}^{\ell-1}(1-\zeta_{\ell^{n}}^{d+i\ell^{n-r}}).\end{split}

It follows that Vn/±ζnV_{n}/\langle\pm\zeta_{\ell^{n}}\rangle is generated by 1ζnk1-\zeta_{\ell^{n}}^{k} with k\ell\nmid k. If n/2<k<n\ell^{n}/2<k<\ell^{n} and k\ell\nmid k then

(4) 1ζnk=ζnk(1ζnnk).1-\zeta_{\ell^{n}}^{k}=-\zeta_{\ell^{n}}^{k}(1-\zeta_{\ell^{n}}^{\ell^{n}-k}).

Thus (3) certainly generates Vn/±ζnV_{n}/\langle\pm\zeta_{\ell}^{n}\rangle. Note that (3) has cardinality φ(n)/2\varphi(\ell^{n})/2 where φ\varphi is the Euler totient function. It therefore suffices to show that VnV_{n} has rank φ(n)/2\varphi(\ell^{n})/2. A well-known theorem [22, Theorem 8.3] states that CnC_{n} has finite index in 𝒪(Ωn)×\mathcal{O}(\Omega_{n})^{\times} and thus, by Dirichlet’s unit theorem, CnC_{n} has rank 1+φ(n)/2-1+\varphi(\ell^{n})/2. We note that CnC_{n} is the kernel of the surjective homomorphism VnV_{n}\rightarrow\mathbb{Z}, sending μ\mu to ordλn(μ)\operatorname{ord}_{\lambda_{n}}(\mu). Thus VnV_{n} has rank φ(n)/2\varphi(\ell^{n})/2 completing the proof. ∎

Lemma 9.

Let n2n\geq 2 if 2\ell\neq 2 and n3n\geq 3 if =2\ell=2. Then Vn1VnV_{n-1}\subset V_{n}. Moreover,

1k<n/2k(1ζnk)ck±ζn,Vn1\prod_{\begin{subarray}{c}1\leq k<\ell^{n}/2\\ \ell\nmid k\end{subarray}}(1-\zeta_{\ell^{n}}^{k})^{c_{k}}\;\in\;\langle\pm\zeta_{\ell^{n}},\,V_{n-1}\rangle

if and only if ck=cmc_{k}=c_{m} whenever km(modn1)k\equiv m\pmod{\ell^{n-1}}.

Proof.

The group Vn1V_{n-1} is generated, modulo roots of unity, by 1ζn1d1-\zeta_{\ell^{n-1}}^{d} with d\ell\nmid d. By the proof of Lemma 8,

1ζn1d=1ζnd=i=01(1ζnd+in1).\begin{split}1-\zeta_{\ell^{n-1}}^{d}=1-\zeta_{\ell^{n}}^{\ell d}=\prod_{i=0}^{\ell-1}(1-\zeta_{\ell^{n}}^{d+i\ell^{n-1}}).\end{split}

The lemma follows from Lemma 8. ∎

Given aa\in\mathbb{Z}_{\ell}, it makes sense to reduce aa modulo n\ell^{n} and therefore it makes sense to write ζna\zeta_{\ell^{n}}^{a}. We write {a}n\{a\}_{n} for the unique integer satisfying

0{a}n<n/2,{a}n±a(modn).0\leq\{a\}_{n}<\ell^{n}/2,\qquad\{a\}_{n}\equiv\pm a\pmod{\ell^{n}}.
Lemma 10.

Let a1,,ara_{1},\dotsc,a_{r}\in\mathbb{Z}_{\ell} and c1,,crc_{1},\dotsc,c_{r}\in\mathbb{Z}. Suppose

  1. (i)

    c10c_{1}\neq 0.

  2. (ii)

    a10(mod)a_{1}\not\equiv 0\pmod{\ell}.

  3. (iii)

    a1±a2,±a3,±ar(modn)a_{1}\neq\pm a_{2},\pm a_{3},\cdots\pm a_{r}\pmod{\ell^{n}}.

Write

(5) εn=1ir(1ζnai)ci.\varepsilon_{n}\;=\;\prod_{1\leq i\leq r}(1-\zeta_{\ell^{n}}^{a_{i}})^{c_{i}}.

Then, εn±ζn,Vn1\varepsilon_{n}\notin\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle for all sufficiently large nn.

Proof.

If aj0(mod)a_{j}\equiv 0\pmod{\ell} then (1ζnaj)Vn1(1-\zeta_{\ell^{n}}^{a_{j}})\in V_{n-1}. We may therefore suppose aj0(mod)a_{j}\not\equiv 0\pmod{\ell} for all jj. Write

δn=1ir(1ζn{ai}n)ci.\delta_{n}\;=\;\prod_{1\leq i\leq r}\left(1-\zeta_{\ell^{n}}^{\{a_{i}\}_{n}}\right)^{c_{i}}.

In view of the identity (4) it will be sufficient to show that δn±ζn,Vn1\delta_{n}\notin\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle for nn sufficiently large. Also, in view of Lemma 9, it is sufficient to show for sufficiently large nn that {a1}n{aj}n(modn)\{a_{1}\}_{n}\not\equiv\{a_{j}\}_{n}\pmod{\ell^{n}} for all 2jn2\leq j\leq n. This is equivalent to a1±aja_{1}\neq\pm a_{j} for 2jn2\leq j\leq n which is hypothesis (iii). This completes the proof. ∎

The following corollary easily follows from Lemma 10.

Corollary 11.

Let a1,,ara_{1},\dotsc,a_{r}\in\mathbb{Z}_{\ell} and c1,,crc_{1},\dotsc,c_{r}\in\mathbb{Z}. Suppose

  1. (i)

    c11(mod2)c_{1}\equiv 1\pmod{2}.

  2. (ii)

    a10(mod)a_{1}\not\equiv 0\pmod{\ell}.

  3. (iii)

    a1±a2,±a3,±ar(modn)a_{1}\neq\pm a_{2},\pm a_{3},\cdots\pm a_{r}\pmod{\ell^{n}}.

Let εn\varepsilon_{n} be as in (5). Then, εn±ζn,Vn1,Vn2\varepsilon_{n}\notin\langle\pm\zeta_{\ell^{n}},V_{n-1},V_{n}^{2}\rangle for all sufficiently large nn.

Units and SS-units from cyclotomic polynomials

For m1m\geq 1, let Φm(X)[X]\Phi_{m}(X)\in\mathbb{Z}[X] be the mm-th cyclotomic polynomial defined by

Φm(X)=1im(i,m)=1(Xζmi).\Phi_{m}(X)=\prod_{\begin{subarray}{c}1\leq i\leq m\\ (i,m)=1\end{subarray}}(X-\zeta_{m}^{i}).

These satisfy the identity [22, Chapter 2]

(6) Xm1=dmΦd(X).X^{m}-1=\prod_{d\mid m}\Phi_{d}(X).

It follows from the Möbius inversion formula that

(7) Φm(X)=dm(Xd1)μ(m/d)\Phi_{m}(X)=\prod_{d\mid m}(X^{d}-1)^{\mu(m/d)}

where μ\mu denotes the Möbius function.

Lemma 12.

Let \ell be a prime and n1n\geq 1. Let m1m\geq 1, and suppose nm\ell^{n}\nmid m.

  1. (a)

    Φm(ζn)Vn𝒪(Ωn,,S)×\Phi_{m}(\zeta_{\ell^{n}})\in V_{n}\subseteq\mathcal{O}(\Omega_{n,\ell},S)^{\times}, where S={υ}S=\{\upsilon_{\ell}\}.

  2. (b)

    If mum\neq\ell^{u} for all u0u\geq 0, then Φm(ζn)Cn𝒪(Ωn,)×\Phi_{m}(\zeta_{\ell^{n}})\in C_{n}\subseteq\mathcal{O}(\Omega_{n,\ell})^{\times}.

Moreover,

υ(Φt(ζn))={1n1(1)t=01nt1tn1.\upsilon_{\ell}(\Phi_{\ell^{t}}(\zeta_{\ell^{n}}))\;=\;\begin{cases}\frac{1}{\ell^{n-1}(\ell-1)}&t=0\\ \frac{1}{\ell^{n-t}}&1\leq t\leq n-1.\\ \end{cases}
Proof.

Let t=ord(m)<nt=\operatorname{ord}_{\ell}(m)<n. Observe that Φm(X)(Xm1)\Phi_{m}(X)\mid(X^{m}-1). Hence Φm(ζn)𝒪(Ωn,)\Phi_{m}(\zeta_{\ell^{n}})\cdot\mathcal{O}(\Omega_{n,\ell}) divides (1ζnm)𝒪(Ωn,)(1-\zeta_{\ell^{n}}^{m})\cdot\mathcal{O}(\Omega_{n,\ell}). By Lemma 7 we have (1ζnm)𝒪(Ωn,)=λnt(1-\zeta_{\ell^{n}}^{m})\cdot\mathcal{O}(\Omega_{n,\ell})\,=\,\lambda_{n}^{\ell^{t}}, giving (a).

For (b), write m=tkm=\ell^{t}k where k>1k>1. Then Φm(X)\Phi_{m}(X) divides the polynomial (Xm1)/(Xt1)(X^{m}-1)/(X^{\ell^{t}}-1). Therefore Φm(ζ)𝒪(Ωn,)\Phi_{m}(\zeta)\cdot\mathcal{O}(\Omega_{n,\ell}) divides

(1ζnm)(1ζnt)𝒪(Ωn,)=λntλnt=1𝒪(Ωn,).\frac{(1-\zeta_{\ell^{n}}^{m})}{(1-\zeta_{\ell^{n}}^{\ell^{t}})}\cdot\mathcal{O}(\Omega_{n,\ell})=\frac{\lambda_{n}^{\ell^{t}}}{\lambda_{n}^{\ell^{t}}}=1\cdot\mathcal{O}(\Omega_{n,\ell}).

Thus Φm(ζ)\Phi_{m}(\zeta) is a unit, giving (b).

The final part of the Lemma follows from Lemma 7, and the formulae

Φt(X)={X1t=0(Xt1)/(Xt11)t1.\Phi_{\ell^{t}}(X)=\begin{cases}X-1&t=0\\ (X^{\ell^{t}}-1)/(X^{\ell^{t-1}}-1)&t\geq 1.\end{cases}

Lemma 13.

Let n2n\geq 2 if 2\ell\neq 2 and n3n\geq 3 if =2\ell=2. Then Vn/±ζnV_{n}/\langle\pm\zeta_{\ell^{n}}\rangle is free with basis

{Φm(ζn): 1m<n/2,m}.\{\Phi_{m}(\zeta_{\ell^{n}})\;:\;1\leq m<\ell^{n}/2,\;\ell\nmid m\}.
Proof.

This follows from Lemma 8 thanks to identities (6) and (7). ∎

3. The SS-unit equation over (ζn)+\mathbb{Q}(\zeta_{\ell^{n}})^{+}

We continue with the notation of the previous section. In particular, let KK be a subfield of ¯\overline{\mathbb{Q}} and SS be a finite set of primes of KK. Let kk be a non-zero rational integer. We shall make frequent use of the correspondence between elements of (1{0,k,})(𝒪(K,S))(\mathbb{P}^{1}-\{0,k,\infty\})(\mathcal{O}(K,S)) and the set of solutions to the SS-unit equation

ε+δ=k,ε,δ𝒪(K,S)×,\varepsilon+\delta=k,\qquad\varepsilon,~{}\delta\in\mathcal{O}(K,S)^{\times},

sending ε(1{0,k,})(𝒪(K,S))\varepsilon\in(\mathbb{P}^{1}-\{0,k,\infty\})(\mathcal{O}(K,S)) to (ε,δ)=(ε,kε)(\varepsilon,\delta)=(\varepsilon,k-\varepsilon).

Now, as before let \ell be a rational prime, nn is a positive integer. If =2\ell=2 suppose n2n\geq 2. Write ζ=ζn\zeta=\zeta_{\ell^{n}}. We write Ωn,+=(ζ+1/ζ)\Omega_{n,\ell}^{+}=\mathbb{Q}(\zeta+1/\zeta) for the index 22 totally real subfield of Ωn,\Omega_{n,\ell}. We write

Ω,+=n=1Ωn,+.\Omega_{\infty,\ell}^{+}=\bigcup_{n=1}^{\infty}\Omega_{n,\ell}^{+}.

In this section, for suitable SS, we produce solutions to the SS-unit equations over Ω,+\Omega_{\infty,\ell}^{+}.

As before, Φm\Phi_{m} denotes the mm-cyclotomic polynomial. It is convenient to record the first few Φm\Phi_{m}:

Φ1=X1,Φ2=X+1,Φ3=X2+X+1,\displaystyle\Phi_{1}=X-1,\qquad\Phi_{2}=X+1,\qquad\Phi_{3}=X^{2}+X+1,
Φ4=X2+1,Φ5=X4+X3+X2+X+1,\displaystyle\Phi_{4}=X^{2}+1,\qquad\Phi_{5}=X^{4}+X^{3}+X^{2}+X+1,
Φ6=X2X+1,Φ7=X6+X5+X4+X3+X2+X+1,\displaystyle\Phi_{6}=X^{2}-X+1,\qquad\Phi_{7}=X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1,
Φ8=X4+1,Φ9=X6+X3+1,Φ10=X4X3+X2X+1.\displaystyle\Phi_{8}=X^{4}+1,\qquad\Phi_{9}=X^{6}+X^{3}+1,\qquad\Phi_{10}=X^{4}-X^{3}+X^{2}-X+1.

We shall call a polynomial F[X]F\in\mathbb{Z}[X] super-cyclotomic if it is of the form Xmf1f2fkX^{m}f_{1}f_{2}\cdots f_{k} where each fi(X)f_{i}(X) is a cyclotomic polynomial. We know, thanks to Lemma 12, that if FF is super-cyclotomic and \ell is a prime, then F(ζn)𝒪(Ωn,{υ})×F(\zeta_{\ell^{n}})\in\mathcal{O}(\Omega_{n},\{\upsilon_{\ell}\})^{\times} for nn sufficiently large. We wrote a short computer program that lists all super-cyclotomic polynomials of degree at most 2020 and searches for ternary relations of the form FG=kHF-G=kH with FF, GG, HH super-cyclotomic, gcd(F,G,H)=1\gcd(F,G,H)=1 and kk is a positive integer. Note that any such relation FG=kHF-G=kH gives points εn=F(ζn)/H(ζn)(1{0,k,})(𝒪(Ωn,{υ}))\varepsilon_{n}=F(\zeta_{\ell^{n}})/H(\zeta_{\ell^{n}})\in(\mathbb{P}^{1}-\{0,k,\infty\})(\mathcal{O}(\Omega_{n},\{\upsilon_{\ell}\})), for nn sufficiently large. We found the following ternary relations between super-cyclotomic polynomials.

(8) Φ2(X)2Φ3(X)=X;\displaystyle\Phi_{2}(X)^{2}-\Phi_{3}(X)\;=\;X;
(9) Φ2(X)2Φ4(X)= 2X;\displaystyle\Phi_{2}(X)^{2}-\Phi_{4}(X)\;=\;2X;
(10) Φ2(X)2Φ6(X)= 3X;\displaystyle\Phi_{2}(X)^{2}-\Phi_{6}(X)\;=\;3X;
(11) Φ2(X)2Φ1(X)2= 4X;\displaystyle\Phi_{2}(X)^{2}-\Phi_{1}(X)^{2}\;=\;4X;
(12) Φ2(X)4Φ10(X)= 5XΦ3(X);\displaystyle\Phi_{2}(X)^{4}-\Phi_{10}(X)\;=\;5X\Phi_{3}(X);
(13) Φ22(X)Φ3(X)Φ1(X)2Φ6(X)= 6XΦ4(X);\displaystyle\Phi_{2}^{2}(X)\Phi_{3}(X)-\Phi_{1}(X)^{2}\Phi_{6}(X)\;=\;6X\Phi_{4}(X);
(14) Φ7(X)Φ1(X)6= 7XΦ6(X)2;\displaystyle\Phi_{7}(X)-\Phi_{1}(X)^{6}\;=\;7X\Phi_{6}(X)^{2};
(15) Φ2(X)4Φ1(X)4= 8XΦ4(X);\displaystyle\Phi_{2}(X)^{4}-\Phi_{1}(X)^{4}\;=\;8X\Phi_{4}(X);
(16) Φ2(X)4Φ5(X)Φ1(X)4Φ10(X)= 10XΦ4(X)3.\displaystyle\Phi_{2}(X)^{4}\Phi_{5}(X)-\Phi_{1}(X)^{4}\Phi_{10}(X)\;=\;10X\Phi_{4}(X)^{3}.

From the identities (6) and (7) one easily sees that F(Xk)F(X^{k}) is super-cyclotomic for any super-cyclotomic polynomial FF and any positive integer kk, thus each of the nine identities above in fact yields an infinite family of identities. We pose the following open problems:

  • Are there ternary linear relations between super-cyclotomic polynomials that are outside these nine families?

  • Classify all ternary linear relations between super-cyclotomic polynomials.

Lemma 14.

Let c:ΩΩc:\Omega_{\ell}\rightarrow\Omega_{\ell} denote complex conjugation. Let n1n\geq 1 and let ζ=ζn\zeta=\zeta_{\ell^{n}} be an n\ell^{n}-th root of 11. Let m1m\geq 1 and suppose nm\ell^{n}\nmid m. Then

Φm(ζ)cΦm(ζ)={ζφ(m)m2ζ1m=1.\frac{\Phi_{m}(\zeta)^{c}}{\Phi_{m}(\zeta)}\;=\;\begin{cases}\zeta^{-\varphi(m)}&m\geq 2\\ -\zeta^{-1}&m=1.\end{cases}
Proof.

Note that ζc=ζ1\zeta^{c}=\zeta^{-1}. So

Φ1(ζ)cΦ1(ζ)=ζ11ζ1=ζ1,Φ2(ζ)cΦ2(ζ)=ζ1+1ζ+1=ζ1.\frac{\Phi_{1}(\zeta)^{c}}{\Phi_{1}(\zeta)}=\frac{\zeta^{-1}-1}{\zeta-1}=-\zeta^{-1},\qquad\frac{\Phi_{2}(\zeta)^{c}}{\Phi_{2}(\zeta)}=\frac{\zeta^{-1}+1}{\zeta+1}=\zeta^{-1}.

Let m3m\geq 3. The polynomial Φm\Phi_{m} is monic of degree φ(m)\varphi(m), and its roots are the primitive mm-th roots of 11 which come in distinct pairs η\eta, η1\eta^{-1}. Thus the trailing coefficient is 11. It follows that Xφ(m)Φm(X1)X^{\varphi(m)}\Phi_{m}(X^{-1}) is monic and has the same roots as Φm\Phi_{m}, therefore

Φm(X)=Xφ(m)Φm(X1).\Phi_{m}(X)=X^{\varphi(m)}\Phi_{m}(X^{-1}).

Hence

Φm(ζ)cΦm(ζ)=Φm(ζ1)Φm(ζ)=ζφ(m).\frac{\Phi_{m}(\zeta)^{c}}{\Phi_{m}(\zeta)}=\frac{\Phi_{m}(\zeta^{-1})}{\Phi_{m}(\zeta)}=\zeta^{-\varphi(m)}.

Lemma 15.

Let S={υ}S=\{\upsilon_{\ell}\}. Let

k{1,2,3,4,5,6,7,8,10}.k\in\{1,2,3,4,5,6,7,8,10\}.

Then (1{0,k,})(𝒪(Ω,+,S))(\mathbb{P}^{1}-\{0,k,\infty\})(\mathcal{O}(\Omega_{\infty,\ell}^{+},S)) is infinite.

Proof.

The proof makes use of identities (8)–(16). We prove the lemma for k=10k=10 using the identity (16); the other cases are similar. Let n3n\geq 3 and let ζ=ζn\zeta=\zeta_{\ell^{n}}. Let

ε=Φ2(ζ)4Φ5(ζ)ζΦ4(ζ)3,δ=Φ1(ζ)4Φ10(ζ)ζΦ4(ζ)3.\varepsilon=\frac{\Phi_{2}(\zeta)^{4}\Phi_{5}(\zeta)}{\zeta\Phi_{4}(\zeta)^{3}},\qquad\delta=\frac{-\Phi_{1}(\zeta)^{4}\Phi_{10}(\zeta)}{\zeta\Phi_{4}(\zeta)^{3}}.

By the identity, ε+δ=10\varepsilon+\delta=10. By Lemma 12 we know that ε\varepsilon, δ\delta are SS-units. A priori, ε\varepsilon, δ\delta belong to Ω,\Omega_{\infty,\ell}. However, an easy application of Lemma 14 shows that εc=ε\varepsilon^{c}=\varepsilon and δc=δ\delta^{c}=\delta, so ε\varepsilon, δΩ,+\delta\in\Omega_{\infty,\ell}^{+}. It follows that ε\varepsilon is an 𝒪(Ω,+,S)\mathcal{O}(\Omega_{\infty,\ell}^{+},S)-point on 1{0,10,}\mathbb{P}^{1}-\{0,10,\infty\}. This point depends on ζ=ζn\zeta=\zeta_{\ell^{n}}. Let us make sure that we really obtain infinitely many such points as we vary nn. Write

εn=Φ2(ζn)4Φ5(ζn)ζnΦ4(ζn)3=(1ζn2)7(1ζn5)ζn(1ζn)5(1ζn4)3Vn.\varepsilon_{n}\;=\;\frac{\Phi_{2}(\zeta_{\ell^{n}})^{4}\Phi_{5}(\zeta_{\ell^{n}})}{\zeta_{\ell^{n}}\Phi_{4}(\zeta_{\ell^{n}})^{3}}\;=\;\frac{(1-\zeta_{\ell^{n}}^{2})^{7}(1-\zeta_{\ell^{n}}^{5})}{\zeta_{\ell^{n}}(1-\zeta_{\ell^{n}})^{5}(1-\zeta_{\ell^{n}}^{4})^{3}}\in V_{n}.

To show that we obtain infinitely many distinct εn\varepsilon_{n} it is enough to show that εnVn1\varepsilon_{n}\notin V_{n-1} for nn sufficiently large. This follows by an easy application of Lemma 9; to illustrate this let =5\ell=5 and suppose εnVn1\varepsilon_{n}\in V_{n-1}. Note that 1ζ5n5Vn11-\zeta_{5^{n}}^{5}\in V_{n-1}. It follows that

(1ζ5n)5(1ζ5n2)7(1ζ5n4)3±ζn,Vn1.(1-\zeta_{5^{n}})^{-5}(1-\zeta_{5^{n}}^{2})^{7}(1-\zeta_{5^{n}}^{4})^{-3}\;\in\;\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle.

Now in the product on the left the exponent of 1ζ5n1-\zeta_{5^{n}} is 5-5 whereas the exponent of 1ζ5n1+5n11-\zeta_{5^{n}}^{1+5^{n-1}} is 0, contradicting Lemma 9. The proof is similar for =2\ell=2, and for 2\ell\neq 2, 55. It follows that we have infinitely many 𝒪(Ω,+,S)\mathcal{O}(\Omega_{\infty,\ell}^{+},S)-points on 1{0,10,}\mathbb{P}^{1}-\{0,10,\infty\}. ∎

Proof of Theorem 2 for =2\ell=2 and 33

For =2\ell=2, 33, we have Ω,+=,\Omega_{\infty,\ell}^{+}=\mathbb{Q}_{\infty,\ell}. Indeed, if =2\ell=2 then n,2=Ωn+2,2+\mathbb{Q}_{n,2}=\Omega_{n+2,2}^{+} and if =3\ell=3 then n,3=Ωn+1,3+\mathbb{Q}_{n,3}=\Omega_{n+1,3}^{+}. Therefore Theorem 2 with =2\ell=2 and 33 follows immediately from Lemma 15 for k{1,2,3,4,5,6,7,8,10}k\in\{1,2,3,4,5,6,7,8,10\}.

Also, if =2\ell=2, then the infinitely many solutions ε+δ=6\varepsilon+\delta=6 yields infinitely many solutions for 2ε+2δ=122\varepsilon+2\delta=12 and 4ε+4δ=244\varepsilon+4\delta=24. And if =3\ell=3, then the infinitely many solutions ε+δ=4\varepsilon+\delta=4 yields infinitely many solutions 3ε+3δ=123\varepsilon+3\delta=12, and similarly infinitely many solutions ε+δ=8\varepsilon+\delta=8 yields infinitely many solutions 3ε+3δ=243\varepsilon+3\delta=24. This proves Theorem 2 for =2\ell=2, 33 and k{12,24}k\in\{12,24\}. ∎

Proof of Theorem 1 for =2\ell=2

Theorem 1 for =2\ell=2 is simply a special case of Theorem 2.∎

4. The unit equation over (ζn)+\mathbb{Q}(\zeta_{\ell^{n}})^{+}

For roots of unity α\alpha, β\beta, we let

E(α,β)\displaystyle E(\alpha,\beta) =α2+α2(αβ1+α1β)(αβ+α1β1)=Φ8(α)Φ4(αβ)Φ4(α/β),\displaystyle=\frac{\alpha^{2}+\alpha^{-2}}{\left(\alpha\beta^{-1}+\alpha^{-1}\beta\right)(\alpha\beta+\alpha^{-1}\beta^{-1})}=\frac{\Phi_{8}(\alpha)}{\Phi_{4}(\alpha\beta)\Phi_{4}(\alpha/\beta)},
F(α,β)\displaystyle F(\alpha,\beta) =β2+β2(αβ1+α1β)(αβ+α1β1)=Φ8(β)Φ4(αβ)Φ4(β/α).\displaystyle=\frac{\beta^{2}+\beta^{-2}}{\left(\alpha\beta^{-1}+\alpha^{-1}\beta\right)(\alpha\beta+\alpha^{-1}\beta^{-1})}=\frac{\Phi_{8}(\beta)}{\Phi_{4}(\alpha\beta)\Phi_{4}(\beta/\alpha)}.

We easily check that

(17) E(α,β)+F(α,β)=1.E(\alpha,\beta)+F(\alpha,\beta)=1.
Lemma 16.

Suppose \ell is odd and n1n\geq 1. Let ζ=ζn\zeta=\zeta_{\ell^{n}}. Let ii, jj be integers satisfying ii, jj, i+ji+j, ij0(modn)i-j\not\equiv 0\pmod{\ell^{n}}. Then E(ζi,ζj)E(\zeta^{i},\zeta^{j}), F(ζi,ζj)𝒪(Ωn,+)×F(\zeta^{i},\zeta^{j})\in\mathcal{O}(\Omega_{n,\ell}^{+})^{\times}, and satisfy the unit equation

(18) ε+δ=1,ε,δ𝒪(Ωn,+)×.\varepsilon+\delta=1,\qquad\varepsilon,~{}\delta\in\mathcal{O}(\Omega_{n,\ell}^{+})^{\times}.

Moreover,

(19) υ(E(ζi,ζj)F(ζi,ζj))=ord(i+j)+ord(ij)n1(1)\upsilon_{\ell}(E(\zeta^{i},\zeta^{j})-F(\zeta^{i},\zeta^{j}))=\frac{\ell^{\operatorname{ord}_{\ell}(i+j)}+\ell^{\operatorname{ord}_{\ell}(i-j)}}{\ell^{n-1}(\ell-1)}
Proof.

It is clear that E(ζi,ζj)E(\zeta^{i},\zeta^{j}), F(ζi,ζj)F(\zeta^{i},\zeta^{j}) are fixed by complex conjugation ζζ1\zeta\mapsto\zeta^{-1} and so belong to Ωn,+\Omega_{n,\ell}^{+}. By Lemma 12, E(ζi,ζj)E(\zeta^{i},\zeta^{j}) and F(ζi,ζj)F(\zeta^{i},\zeta^{j}) are units. It remains to check (19). We observe

E(ζi,ζj)F(ζi,ζj)=(ζijζji)(ζi+jζij)(ζij+ζji)(ζi+j+ζij)=(ζ2(ij)1)(ζ2(i+j)1)Φ4(ζij)Φ4(ζi+j).E(\zeta^{i},\zeta^{j})-F(\zeta^{i},\zeta^{j})=\frac{(\zeta^{i-j}-\zeta^{j-i})(\zeta^{i+j}-\zeta^{-i-j})}{(\zeta^{i-j}+\zeta^{j-i})(\zeta^{i+j}+\zeta^{-i-j})}=\frac{(\zeta^{2(i-j)}-1)(\zeta^{2(i+j)}-1)}{\Phi_{4}(\zeta^{i-j})\Phi_{4}(\zeta^{i+j})}.

The denominator is a unit by Lemma 12. Now (19) follows from Lemma 7. ∎

Lemma 17.

Let \ell be an odd prime. Then (1{0,1,})(𝒪(Ω,+))(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}(\Omega_{\infty,\ell}^{+})) is infinite.

Proof.

We deduce this from Lemma 16. Let us take for example i=2i=2 and j=1j=1. Let n2n\geq 2 and let

εn=E(ζn2,ζn),δn=F(ζn2,ζn).\varepsilon_{n}=E(\zeta_{\ell^{n}}^{2},\zeta_{\ell^{n}}),\qquad\delta_{n}=F(\zeta_{\ell^{n}}^{2},\zeta_{\ell^{n}}).

By Lemma 16, εn\varepsilon_{n}, δn𝒪(Ω,+)×\delta_{n}\in\mathcal{O}(\Omega_{\infty,\ell}^{+})^{\times} and satisfy εn+δn=1\varepsilon_{n}+\delta_{n}=1. Thus εn(1{0,1,})(𝒪(Ω,+))\varepsilon_{n}\in(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}(\Omega_{\infty,\ell}^{+})). Moreover,

υ(2εn1)=υ(εnδn)={2n1(1)>323n1=3,\upsilon_{\ell}(2\varepsilon_{n}-1)=\upsilon_{\ell}(\varepsilon_{n}-\delta_{n})=\begin{cases}\frac{2}{\ell^{n-1}(\ell-1)}&\ell>3\\ \frac{2}{3^{n-1}}&\ell=3,\end{cases}

by (19). Thus εnεm\varepsilon_{n}\neq\varepsilon_{m} whenever nmn\neq m. Hence (1{0,1,})(𝒪(Ω,+))(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}(\Omega_{\infty,\ell}^{+})) is infinite. ∎

Remark. Lemma 17 applies only for \ell odd; for =2\ell=2 it is easy to show that the statement is false. Indeed, and let ηn\eta_{n} be the prime ideal of 𝒪(Ωn,2+)\mathcal{O}(\Omega_{n,2}^{+}) above 22. Then 𝒪(Ωn,2+)/ηn𝔽2\mathcal{O}(\Omega_{n,2}^{+})/\eta_{n}\cong\mathbb{F}_{2}, and a solution to ε+δ=1\varepsilon+\delta=1 with ε\varepsilon, δ𝒪(Ωn,2\plus)×\delta\in\mathcal{O}(\Omega_{n,2}^{\plus})^{\times} reduced modulo ηn\eta_{n} gives 1+11(mod2)1+1\equiv 1\pmod{2} which is impossible.

Proof of Theorem 1 for =3\ell=3

We recall that ,3=Ω,3+\mathbb{Q}_{\infty,3}=\Omega_{\infty,3}^{+}. Therefore Theorem 1 for =3\ell=3 follows immediately from Lemma 17. ∎

5. The SS-unit equation over ,5\mathbb{Q}_{\infty,5}

The purpose of the is section is to prove Theorems 1 and 2 for =5\ell=5. These in fact follow immediately from the following lemma.

Lemma 18.

Let υ5\upsilon_{5} be the unique prime of ,5\mathbb{Q}_{\infty,5} above 55, and write S={υ5}S=\{\upsilon_{5}\}. Then

  1. (i)

    (1{0,k,})(𝒪(,5,S))(\mathbb{P}^{1}-\{0,k,\infty\})(\mathcal{O}(\mathbb{Q}_{\infty,5},S)) is infinite for k=1k=1, 44;

  2. (ii)

    (1{0,2,})(𝒪(,5))(\mathbb{P}^{1}-\{0,2,\infty\})(\mathcal{O}(\mathbb{Q}_{\infty,5})) is infinite.

Proof.

Let a5×a\in\mathbb{Z}_{5}^{\times} be the element satisfying

a2=1,a2(mod5);a^{2}=-1,\qquad a\equiv 2\pmod{5};

such an element exists and is unique by Hensel’s Lemma. Let σ:Ω,5Ω,5\sigma:\Omega_{\infty,5}\rightarrow\Omega_{\infty,5} be the field automorphism satisfying

σ(ζ5n)=ζ5na\sigma(\zeta_{5^{n}})\;=\;\zeta_{5^{n}}^{a}

for n1n\geq 1. Note that σ\sigma is an automorphism of order 44, and fixes a subfield of Ω,5\Omega_{\infty,5} of index 44. This subfield is precisely ,5\mathbb{Q}_{\infty,5}.

Let

F=(x1x22+x3x42)(x12x4+x2x32),G=(x12x2+x32x4)(x1x42+x22x3),H=(x1x3)(x2x4)(x1x2x3x4)(x1x4x2x3).\begin{gathered}F=(x_{1}x_{2}^{2}+x_{3}x_{4}^{2})(x_{1}^{2}x_{4}+x_{2}x_{3}^{2}),\\ G=(x_{1}^{2}x_{2}+x_{3}^{2}x_{4})(x_{1}x_{4}^{2}+x_{2}^{2}x_{3}),\\ H=(x_{1}-x_{3})(x_{2}-x_{4})(x_{1}x_{2}-x_{3}x_{4})(x_{1}x_{4}-x_{2}x_{3}).\end{gathered}

Observe FF, GG, HH are invariant under the 44-cycle (x1,x2,x3,x4)(x_{1},x_{2},x_{3},x_{4}). One can check that FG=HF-G=H. Let n2n\geq 2 and write ζ=ζ5n\zeta=\zeta_{5^{n}}. Let

εn=F(ζ,ζa,ζa2,ζa3)H(ζ,ζa,ζa2,ζa3),δn=G(ζ,ζa,ζa2,ζa3)H(ζ,ζa,ζa2,ζa3).\varepsilon_{n}=\frac{F(\zeta,\zeta^{a},\zeta^{a^{2}},\zeta^{a^{3}})}{H(\zeta,\zeta^{a},\zeta^{a^{2}},\zeta^{a^{3}})},\qquad\delta_{n}=-\frac{G(\zeta,\zeta^{a},\zeta^{a^{2}},\zeta^{a^{3}})}{H(\zeta,\zeta^{a},\zeta^{a^{2}},\zeta^{a^{3}})}.

From the identity FG=HF-G=H we have εn+δn=1\varepsilon_{n}+\delta_{n}=1. We shall show that εn\varepsilon_{n}, δn𝒪(,5,S)×\delta_{n}\in\mathcal{O}(\mathbb{Q}_{\infty,5},S)^{\times}.

Since σ\sigma cyclically permutes ζ,ζa,ζ1,ζa\zeta,\zeta^{a},\zeta^{-1},\zeta^{-a} we conclude that f(ζ,ζa,ζ1,ζa),5f(\zeta,\zeta^{a},\zeta^{-1},\zeta^{-a})\in\mathbb{Q}_{\infty,5} for f=Ff=F, GG, HH. Thus εn\varepsilon_{n}, δn,5\delta_{n}\in\mathbb{Q}_{\infty,5}. Moreover,

F=x2x33x42Φ2(x1x22/x3x42)Φ2(x12x4/x2x32),\displaystyle F\;=\;x_{2}x_{3}^{3}x_{4}^{2}\cdot\Phi_{2}(x_{1}x_{2}^{2}/x_{3}x_{4}^{2})\Phi_{2}(x_{1}^{2}x_{4}/x_{2}x_{3}^{2}),
G=x22x33x4Φ2(x12x2/x32x4)Φ2(x1x42/x22x3),\displaystyle G\;=\;x_{2}^{2}x_{3}^{3}x_{4}\cdot\Phi_{2}(x_{1}^{2}x_{2}/x_{3}^{2}x_{4})\Phi_{2}(x_{1}x_{4}^{2}/x_{2}^{2}x_{3}),
H=x2x33x42Φ1(x1/x3)Φ1(x2/x4)Φ1(x1x2/x3x4)Φ1(x1x4/x2x3).\displaystyle H\;=\;x_{2}x_{3}^{3}x_{4}^{2}\cdot\Phi_{1}(x_{1}/x_{3})\cdot\Phi_{1}(x_{2}/x_{4})\cdot\Phi_{1}(x_{1}x_{2}/x_{3}x_{4})\cdot\Phi_{1}(x_{1}x_{4}/x_{2}x_{3}).

Hence

εn=Φ2(ζ2+4a)Φ2(ζ42a)Φ1(ζ2)Φ1(ζ2a)Φ1(ζ2+2a)Φ1(ζ22a)=(1ζ4+8a)(1ζ84a)(1ζ2)(1ζ2a)(1ζ2+2a)(1ζ22a)(1ζ2+4a)(1ζ42a).\begin{split}\varepsilon_{n}&=\frac{\Phi_{2}(\zeta^{2+4a})\Phi_{2}(\zeta^{4-2a})}{\Phi_{1}(\zeta^{2})\Phi_{1}(\zeta^{2a})\Phi_{1}(\zeta^{2+2a})\Phi_{1}(\zeta^{2-2a})}\\ &=\frac{(1-\zeta^{4+8a})(1-\zeta^{8-4a})}{(1-\zeta^{2})(1-\zeta^{2a})(1-\zeta^{2+2a})(1-\zeta^{2-2a})(1-\zeta^{2+4a})(1-\zeta^{4-2a})}.\end{split}

and

δn=ζ2aΦ2(ζ4+2a)Φ2(ζ24a)Φ1(ζ2)Φ1(ζ2a)Φ1(ζ2+2a)Φ1(ζ22a)=ζ2a(1ζ8+4a)(1ζ48a)(1ζ2)(1ζ2a)(1ζ2+2a)(1ζ22a)(1ζ4+2a)(1ζ24a).\begin{split}\delta_{n}&=\frac{-\zeta^{2a}\Phi_{2}(\zeta^{4+2a})\Phi_{2}(\zeta^{2-4a})}{\Phi_{1}(\zeta^{2})\Phi_{1}(\zeta^{2a})\Phi_{1}(\zeta^{2+2a})\Phi_{1}(\zeta^{2-2a})}\\ &=\frac{-\zeta^{2a}(1-\zeta^{8+4a})(1-\zeta^{4-8a})}{(1-\zeta^{2})(1-\zeta^{2a})(1-\zeta^{2+2a})(1-\zeta^{2-2a})(1-\zeta^{4+2a})(1-\zeta^{2-4a})}.\end{split}

We checked, using the fact that a7(mod25)a\equiv 7\pmod{25}, that the exponents of ζ\zeta in the above expressions for εn\varepsilon_{n} and δn\delta_{n} all have 55-adic valuation 0 or 11. It follows from this that εn\varepsilon_{n}, δnVn𝒪(Ωn,S)×\delta_{n}\in V_{n}\subseteq\mathcal{O}(\Omega_{n},S)^{\times} for n2n\geq 2. Hence εn\varepsilon_{n}, δn,5𝒪(Ωn,S)×=𝒪(,5,S)×\delta_{n}\in\mathbb{Q}_{\infty,5}\cap\mathcal{O}(\Omega_{n},S)^{\times}=\mathcal{O}(\mathbb{Q}_{\infty,5},S)^{\times} for n2n\geq 2. To complete the proof of the lemma for k=1k=1 it is enough to show that εnεm\varepsilon_{n}\neq\varepsilon_{m} for n>mn>m, and for this it is enough to show that εn±ζ5n,Vn1\varepsilon_{n}\notin\langle\pm\zeta_{5^{n}},V_{n-1}\rangle for n2n\geq 2. Since a7(mod25)a\equiv 7\pmod{25} we see that

4+8a10,84a5,2+4a5,42a15(mod25).4+8a\equiv 10,\qquad 8-4a\equiv 5,\qquad 2+4a\equiv 5,\qquad 4-2a\equiv 15\pmod{25}.

Thus the factors

1ζ4+8a,1ζ84a,1ζ2+4a,1ζ42a1-\zeta^{4+8a},\qquad 1-\zeta^{8-4a},\qquad 1-\zeta^{2+4a},\qquad 1-\zeta^{4-2a}

all belong to Vn1V_{n-1}. Hence it is enough to show that

(20) (1ζ2)(1ζ2a)(1ζ2+2a)(1ζ22a)(1-\zeta^{2})(1-\zeta^{2a})(1-\zeta^{2+2a})(1-\zeta^{2-2a})

does not belong to ±ζ5n,Vn1\langle\pm\zeta_{5^{n}},V_{n-1}\rangle. However, the exponents 22, 2a2a, 2+2a2+2a, 22a2-2a are respectively 22, 44, 11, 33 modulo 55, and hence certainly distinct modulo 5n15^{n-1}. It follows from Lemma 9 that the product (20) does not belong to ±ζ5n,Vn1\langle\pm\zeta_{5^{n}},V_{n-1}\rangle completing the proof for k=1k=1.

The proof for k=2k=2 is similar, and is based on the identity FG=2HF-G=2H where

F=(x12+x1x3+x32)(x22+x2x4+x42)=x32x42Φ3(x1/x3)Φ3(x2/x4),G=(x12x1x3+x32)(x22x2x4+x42)=x32x42Φ6(x1/x3)Φ6(x2/x4),H=(x1x4+x2x3)(x1x2+x3x4)=x2x32x4Φ2(x1x4/x2x3)Φ2(x1x2/x3x4),\begin{gathered}F\;=\;(x_{1}^{2}+x_{1}x_{3}+x_{3}^{2})(x_{2}^{2}+x_{2}x_{4}+x_{4}^{2})\;=\;x_{3}^{2}x_{4}^{2}\cdot\Phi_{3}(x_{1}/x_{3})\cdot\Phi_{3}(x_{2}/x_{4}),\\ G\;=\;(x_{1}^{2}-x_{1}x_{3}+x_{3}^{2})(x_{2}^{2}-x_{2}x_{4}+x_{4}^{2})\;=\;x_{3}^{2}x_{4}^{2}\cdot\Phi_{6}(x_{1}/x_{3})\cdot\Phi_{6}(x_{2}/x_{4}),\\ H\;=\;(x_{1}x_{4}+x_{2}x_{3})(x_{1}x_{2}+x_{3}x_{4})\;=\;x_{2}x_{3}^{2}x_{4}\cdot\Phi_{2}(x_{1}x_{4}/x_{2}x_{3})\cdot\Phi_{2}(x_{1}x_{2}/x_{3}x_{4}),\end{gathered}

and likewise the proof for k=4k=4 is based on the identity FG=4HF-G=4H where

F=(x1+x3)2(x2+x4)2=x32x42Φ2(x1/x3)2Φ2(x2/x4)2,G=(x1x3)2(x2x4)2=x32x42Φ1(x1/x3)2Φ1(x2/x4)2,H=(x1x2+x3x4)(x1x4+x2x3)=x2x32x4Φ2(x1x2/x3x4)Φ2(x1x4/x2x3).\begin{gathered}F\;=\;(x_{1}+x_{3})^{2}(x_{2}+x_{4})^{2}=x_{3}^{2}x_{4}^{2}\cdot\Phi_{2}(x_{1}/x_{3})^{2}\Phi_{2}(x_{2}/x_{4})^{2},\\ G\;=\;(x_{1}-x_{3})^{2}(x_{2}-x_{4})^{2}=x_{3}^{2}x_{4}^{2}\cdot\Phi_{1}(x_{1}/x_{3})^{2}\Phi_{1}(x_{2}/x_{4})^{2},\\ H\;=\;(x_{1}x_{2}+x_{3}x_{4})(x_{1}x_{4}+x_{2}x_{3})=x_{2}x_{3}^{2}x_{4}\cdot\Phi_{2}(x_{1}x_{2}/x_{3}x_{4})\Phi_{2}(x_{1}x_{4}/x_{2}x_{3}).\end{gathered}

Remark. It is appropriate to remark on how the identities in the above proof were found. Write

Ψm(X,Y)=Yφ(m)Φm(X/Y){\Psi}_{m}(X,Y)=Y^{\varphi(m)}\Phi_{m}(X/Y)

for the homogenization of the mm-th cyclotomic polynomial. Now consider

f(x1,x2,x3,x4)=Ψm(u,v)f(x_{1},x_{2},x_{3},x_{4})=\Psi_{m}(u,v)

where uu, vv are monomials in variables x1,x2,x3,x4x_{1},x_{2},x_{3},x_{4}. Let \ell be a prime. We see that evaluating any such ff at (ζα,ζβ,ζγ,ζδ)(\zeta^{\alpha},\zeta^{\beta},\zeta^{\gamma},\zeta^{\delta}) gives an element of VnV_{n} (provided that it does not vanish). We considered products of such ff of total degree up to 2020 and picked out ones that are invariant under the 44-cycle (x1,x2,x3,x4)(x_{1},x_{2},x_{3},x_{4}), and searched for ternary relations between them. This yielded the identities used in the above proof.

Proof of Theorems 1 and 2 for =5\ell=5.

Theorems 1 and 2 for =5\ell=5 follow immediately from Lemma 18. ∎

6. The SS-unit equation over ,7\mathbb{Q}_{\infty,7}

Lemma 19.

Let υ7\upsilon_{7} be the unique prime of ,7\mathbb{Q}_{\infty,7} above 77, and write S={υ7}S=\{\upsilon_{7}\}. Then (1{0,1,})(𝒪(,7,S))(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}(\mathbb{Q}_{\infty,7},S)) is infinite.

Proof.

In view of the proof of Lemma 18, it would be natural to seek polynomials FF, GG, HH in variables x1,,x6x_{1},\dotsc,x_{6} satisfying the following properties

  • F±G=HF\pm G=H;

  • FF, GG, HH are invariant under the 66-cycle (x1,x2,,x6)(x_{1},x_{2},\dotsc,x_{6});

  • each is a product of polynomials

    f(x1,x2,,x6)=Ψm(u,v)f(x_{1},x_{2},\dotsc,x_{6})=\Psi_{m}(u,v)

    with uu, vv monomials in x1,,x6x_{1},\dotsc,x_{6}.

Unfortunately, an extensive search has failed to produce any such triple of polynomials. We therefore need to proceed a little differently.

Let a7a\in\mathbb{Z}_{7} be the element satisfying

a2+a+1=0,a2(mod7);a^{2}+a+1=0,\qquad a\equiv 2\pmod{7};

such an element exists and is unique by Hensel’s Lemma. Let σ\sigma, c:Ω,7Ω,7c:\Omega_{\infty,7}\rightarrow\Omega_{\infty,7} be the field automorphisms satisfying

σ(ζ7n)=ζ7na,c(ζ7n)=ζ7n1\sigma(\zeta_{7^{n}})\;=\;\zeta_{7^{n}}^{a},\qquad c(\zeta_{7^{n}})\;=\;\zeta_{7^{n}}^{-1}

for n1n\geq 1. Then ,7\mathbb{Q}_{\infty,7} is the field fixed by the subgroup of Gal(Ω,7/)\operatorname{Gal}(\Omega_{\infty,7}/\mathbb{Q}) generated by σ\sigma and cc. We work with polynomials in variables x1x_{1}, x2x_{2}, x3x_{3}. Let

F=(x1x22+x33)(x2x32+x13)(x3x12+x23)G=(x1x2)(x2x3)(x3x1)(x1x2x32)(x2x3x12)(x3x1x22)H=(x12x2+x33)(x22x3+x13)(x32x1+x23).\begin{gathered}F\;=\;(x_{1}x_{2}^{2}+x_{3}^{3})(x_{2}x_{3}^{2}+x_{1}^{3})(x_{3}x_{1}^{2}+x_{2}^{3})\\ G\;=\;(x_{1}-x_{2})(x_{2}-x_{3})(x_{3}-x_{1})(x_{1}x_{2}-x_{3}^{2})(x_{2}x_{3}-x_{1}^{2})(x_{3}x_{1}-x_{2}^{2})\\ H\;=\;(x_{1}^{2}x_{2}+x_{3}^{3})(x_{2}^{2}x_{3}+x_{1}^{3})(x_{3}^{2}x_{1}+x_{2}^{3}).\\ \end{gathered}

These satisfy the identity FG=HF-G=H. Moreover, they are invariant under the 33-cycle (x1,x2,x3)(x_{1},x_{2},x_{3}) and all the factors are of the form Ψm(u,v)\Psi_{m}(u,v) where m=1m=1 or 22, and where uu, vv are suitable monomials in x1x_{1}, x2x_{2}, x3x_{3}. Evaluating any of FF, GG, HH at (ζ,ζa,ζa2)(\zeta,\zeta^{a},\zeta^{a^{2}}) yields an SS-unit belonging to Ωn,7σ\Omega_{n,7}^{\langle\sigma\rangle}. Now we let

F=F(x12,x22,x32)x16x26x36,G=G(x12,x22,x32)x16x26x36,H=H(x12,x22,x32)x16x26x36.F^{\prime}=\frac{F(x_{1}^{2},x_{2}^{2},x_{3}^{2})}{x_{1}^{6}x_{2}^{6}x_{3}^{6}},\qquad G^{\prime}=\frac{G(x_{1}^{2},x_{2}^{2},x_{3}^{2})}{x_{1}^{6}x_{2}^{6}x_{3}^{6}},\qquad H^{\prime}=\frac{H(x_{1}^{2},x_{2}^{2},x_{3}^{2})}{x_{1}^{6}x_{2}^{6}x_{3}^{6}}.

Observe that the rational functions FF^{\prime}, GG^{\prime}, HH^{\prime} satisfy FG=HF^{\prime}-G^{\prime}=H^{\prime} and are moreover invariant under the 33-cycle (x1,x2,x3)(x_{1},x_{2},x_{3}). Moreover, FF^{\prime}, GG^{\prime}, HH^{\prime} evaluated at (ζ,ζa,ζa2)(\zeta,\zeta^{a},\zeta^{a^{2}}) yield SS-units belonging to Ωn,7σ\Omega_{n,7}^{\langle\sigma\rangle}. We need to check that these in fact belong to n1,7=Ωn,7σ,c\mathbb{Q}_{n-1,7}=\Omega_{n,7}^{\langle\sigma,c\rangle} and so we need to check that these expressions are invariant under cc. This follows immediately on observing that FF^{\prime}, GG^{\prime}, HH^{\prime} may be rewritten as

F=(x1x22x33+x33x1x22)(x2x32x13+x13x2x32)(x3x12x23+x23x3x12)G=(x1x2x2x1)(x2x3x3x2)(x3x1x1x3)(x1x2x32x32x1x2)(x2x3x12x12x2x3)(x3x1x22x22x3x1)H=(x12x2x33+x33x12x2)(x22x3x13+x13x22x3)(x32x1x23+x23x33x1).\begin{gathered}F^{\prime}\;=\;\left(\frac{x_{1}x_{2}^{2}}{x_{3}^{3}}+\frac{x_{3}^{3}}{x_{1}x_{2}^{2}}\right)\left(\frac{x_{2}x_{3}^{2}}{x_{1}^{3}}+\frac{x_{1}^{3}}{x_{2}x_{3}^{2}}\right)\left(\frac{x_{3}x_{1}^{2}}{x_{2}^{3}}+\frac{x_{2}^{3}}{x_{3}x_{1}^{2}}\right)\\ G^{\prime}\;=\;\left(\frac{x_{1}}{x_{2}}-\frac{x_{2}}{x_{1}}\right)\left(\frac{x_{2}}{x_{3}}-\frac{x_{3}}{x_{2}}\right)\left(\frac{x_{3}}{x_{1}}-\frac{x_{1}}{x_{3}}\right)\left(\frac{x_{1}x_{2}}{x_{3}^{2}}-\frac{x_{3}^{2}}{x_{1}x_{2}}\right)\left(\frac{x_{2}x_{3}}{x_{1}^{2}}-\frac{x_{1}^{2}}{x_{2}x_{3}}\right)\left(\frac{x_{3}x_{1}}{x_{2}^{2}}-\frac{x_{2}^{2}}{x_{3}x_{1}}\right)\\ H^{\prime}\;=\;\left(\frac{x_{1}^{2}x_{2}}{x_{3}^{3}}+\frac{x_{3}^{3}}{x_{1}^{2}x_{2}}\right)\left(\frac{x_{2}^{2}x_{3}}{x_{1}^{3}}+\frac{x_{1}^{3}}{x_{2}^{2}x_{3}}\right)\left(\frac{x_{3}^{2}x_{1}}{x_{2}^{3}}+\frac{x_{2}^{3}}{x_{3}^{3}x_{1}}\right).\\ \end{gathered}

Thus FF^{\prime}, GG^{\prime}, HH^{\prime} evaluated at (ζ,ζa,ζa2)(\zeta,\zeta^{a},\zeta^{a^{2}}) yield elements of 𝒪(,7,S)×\mathcal{O}(\mathbb{Q}_{\infty,7},S)^{\times}. We write

εn=F(ζ,ζa,ζa2)H(ζ,ζa,ζa2),δn=G(ζ,ζa,ζa2)H(ζ,ζa,ζa2).\varepsilon_{n}=\frac{F^{\prime}(\zeta,\zeta^{a},\zeta^{a^{2}})}{H^{\prime}(\zeta,\zeta^{a},\zeta^{a^{2}})},\qquad\delta_{n}=-\frac{G^{\prime}(\zeta,\zeta^{a},\zeta^{a^{2}})}{H^{\prime}(\zeta,\zeta^{a},\zeta^{a^{2}})}.

Then εn\varepsilon_{n}, δn\delta_{n} belong to 𝒪(,7,S)×\mathcal{O}(\mathbb{Q}_{\infty,7},S)^{\times} and satisfy εn+δn=1\varepsilon_{n}+\delta_{n}=1. In fact it is straightforward to check that εn±ζ7n,Vn1\varepsilon_{n}\notin\langle\pm\zeta_{7^{n}},V_{n-1}\rangle, from which it follows that εnεm\varepsilon_{n}\neq\varepsilon_{m} for n>mn>m. The details are similar to those of the proof of Lemma 18 and we omit them. ∎

7. Isogeny classes of elliptic curves over ,\mathbb{Q}_{\infty,\ell}

The purpose of this section is to prove Theorem 4. Since isogenous elliptic curves share the same set of bad primes, the corresponding theorem over number fields is an immediate consequence of Shafarevich’s theorem. However, as we intend to show in the following section, Shafarevich’s theorem does not generalize to elliptic curves over ,\mathbb{Q}_{\infty,\ell}. We shall instead rely on a theorem of Kato to control ,\mathbb{Q}_{\infty,\ell}-points on certain modular Jacobians.


Our first lemma shows that there are only finitely many primes that can divide the degree of a cyclic isogeny of EE.

Lemma 20.

Let \ell be a prime and let E/,E/\mathbb{Q}_{\infty,\ell} be an elliptic curve without potential complex multiplication. Then there is a constant BB, depending on EE, such that for primes pBp\geq B, the elliptic curve EE has no pp-isogenies defined over ,\mathbb{Q}_{\infty,\ell}.

Proof.

Let nn be the least positive integer such that EE admits a model defined over n,\mathbb{Q}_{n,\ell}. By a famous theorem of Serre [14], there is a constant BB, depending on EE, such that for pBp\geq B the mod pp representation

ρ¯E,p:Gal(¯/n,)GL2(𝔽p)\overline{\rho}_{E,p}\;:\;\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}_{n,\ell})\rightarrow\operatorname{GL}_{2}(\mathbb{F}_{p})

is surjective. We may suppose that B5B\geq 5. Thus, for pBp\geq B, the Galois group Gal(n,(E[p])/n,)\operatorname{Gal}(\mathbb{Q}_{n,\ell}(E[p])/\mathbb{Q}_{n,\ell}) is isomorphic to GL2(𝔽p)\operatorname{GL}_{2}(\mathbb{F}_{p}) which is non-solvable. We will show that EE has no pp-isogeny defined over ,\mathbb{Q}_{\infty,\ell}. Suppose otherwise. Then such an isogeny is in fact defined over m,\mathbb{Q}_{m,\ell} for some mnm\geq n. It follows that the extension m,(E[p])/m,\mathbb{Q}_{m,\ell}(E[p])/\mathbb{Q}_{m,\ell} has Galois group isomorphic to a subgroup of a Borel subgroup of GL2(𝔽p)\operatorname{GL}_{2}(\mathbb{F}_{p}), with is solvable. As the extension m,/n,\mathbb{Q}_{m,\ell}/\mathbb{Q}_{n,\ell} is cyclic, we conclude that m,(E[p])/n,\mathbb{Q}_{m,\ell}(E[p])/\mathbb{Q}_{n,\ell} is solvable. However, this contains the non-solvable subextension n,(E[p])/n,\mathbb{Q}_{n,\ell}(E[p])/\mathbb{Q}_{n,\ell}, giving a contradiction. ∎

We shall make use of the following theorem of Kato [9, Theorem 14.4] building on work of Rohrlich [11].

Theorem 21 (Kato).

Let \ell be a prime. Let AA be an abelian variety defined over \mathbb{Q} and admitting a surjective map J1(N)AJ_{1}(N)\rightarrow A for some N1N\geq 1. Then A(,)A(\mathbb{Q}_{\infty,\ell}) is finitely generated.

Lemma 22.

Let pp, \ell be primes. Let EE be an elliptic curve defined over ,\mathbb{Q}_{\infty,\ell} without potential complex multiplication. Then, for mm sufficiently large, EE has no pmp^{m}-isogenies defined over ,\mathbb{Q}_{\infty,\ell}.

Proof.

Let rr be the least positive integer such that the modular curve X=X0(pr)X=X_{0}(p^{r}) has genus at least 22, and write J=J0(pr)J=J_{0}(p^{r}) for the corresponding modular Jacobian. It follows from Kato’s theorem that J(,)J(\mathbb{Q}_{\infty,\ell}) is finitely generated, and therefore that J(,)=J(n,)J(\mathbb{Q}_{\infty,\ell})=J(\mathbb{Q}_{n,\ell}) for some n1n\geq 1. Consider the Abel-Jacobi map

XJ,P[P]X\hookrightarrow J,\qquad P\mapsto[P-\infty]

where X()\infty\in X(\mathbb{Q}) denotes the infinity cusp. It follows from this embedding that X(,)=X(n,)X(\mathbb{Q}_{\infty,\ell})=X(\mathbb{Q}_{n,\ell}). By Faltings’ theorem, this set is finite.

Let k=#X(,)k=\#X(\mathbb{Q}_{\infty,\ell}) and let s=krs=kr. To prove the lemma we in fact show that EE has no cyclic isogenies of degree psp^{s} defined over ,\mathbb{Q}_{\infty,\ell}. Suppose otherwise, and let ψ:EE\psi:E\rightarrow E^{\prime} be a cyclic isogeny of degree psp^{s} defined over ,\mathbb{Q}_{\infty,\ell}. Then, we may factor ψ\psi into a sequence of cyclic isogenies defined over ,\mathbb{Q}_{\infty,\ell}

E=E0ψ1E1ψ2E2ψkEk=EE=E_{0}\;\xrightarrow{\psi_{1}}\;E_{1}\;\xrightarrow{\psi_{2}}\;E_{2}\;\cdots\xrightarrow{\psi_{k}}\;E_{k}=E^{\prime}

where ψi\psi_{i} is degree prp^{r}. Note that EiE_{i} and EjE_{j} are non-isomorphic over ¯\overline{\mathbb{Q}} for iji\neq j; indeed they are related by a cyclic isogeny and EE does not have potential complex multiplication. Thus the elliptic curves E0,E1,,EkE_{0},E_{1},\dotsc,E_{k} support distinct ,\mathbb{Q}_{\infty,\ell}-points on X=X0(pr)X=X_{0}(p^{r}). This contradicts the fact that #X(,)=k\#X(\mathbb{Q}_{\infty,\ell})=k. ∎

Remark. A famous theorem of Serre [13, Section 2.1] asserts that the pp-adic Tate module of a non-CM elliptic curve defined over a number field is irreducible. It is in fact possible to deduce Lemma 22 from Serre’s theorem for p\ell\neq p, but we have been unable to do this for =p\ell=p.

Proof of Theorem 4.

Let EE^{\prime} belong to the ,\mathbb{Q}_{\infty,\ell}-isogeny class of EE. Let ψ:EE\psi:E\rightarrow E^{\prime} be an isogeny defined over ,\mathbb{Q}_{\infty,\ell}. This has kernel of the form /a×/ab\mathbb{Z}/a\times\mathbb{Z}/ab where aa, bb are positive integers, and so it can be factored into a composition

EE/E[a]EEE\rightarrow E/E[a]\cong E\rightarrow E^{\prime}

where the final morphism is cyclic of degree bb. Thus to prove the proposition, it is enough to show that EE has finitely many cyclic isogenies defined over ,\mathbb{Q}_{\infty,\ell}. The degree of any such isogeny is divisible by primes p<Bp<B where BB is as in Lemma 20. Also, for any p<Bp<B, we know the exponent of pp in the degree of a cyclic isogeny EEE\rightarrow E^{\prime} is bounded by Lemma 22. Thus there are finitely many cyclic isogenies of EE defined over ,\mathbb{Q}_{\infty,\ell}. ∎

8. From SS-unit equations to elliptic curves

The aim of this section is to prove Theorem 3. We start by recalling a few facts about Legendre elliptic curves (Proposition III.1.7 of [17] and its proof). Let KK be a field of characteristic 2\neq 2 and let λ(1{0,1,})(K)\lambda\in(\mathbb{P}^{1}-\{0,1,\infty\})(K). Associated to λ\lambda is the Legendre elliptic curve

Eλ:Y2=X(X1)(Xλ).E_{\lambda}\;:\;Y^{2}=X(X-1)(X-\lambda).

This model respectively has discriminant and jj-invariant

(21) Δ=16λ2(1λ)2,j=64(λ2λ+1)3λ2(1λ)2.\Delta=16\lambda^{2}(1-\lambda)^{2},\qquad j=\frac{64(\lambda^{2}-\lambda+1)^{3}}{\lambda^{2}(1-\lambda)^{2}}.

Moreover, for λ\lambda, μ(1{0,1,})(K)\mu\in(\mathbb{P}^{1}-\{0,1,\infty\})(K), the Legendre elliptic curves EλE_{\lambda} and EμE_{\mu} are isomorphic over KK (or over K¯\overline{K}) if and only if

μ{λ,1λ, 1λ,11λ,λλ1,λ1λ}.\mu\;\in\;\left\{\lambda,\,\frac{1}{\lambda},\,1-\lambda,\,\frac{1}{1-\lambda},\,\frac{\lambda}{\lambda-1},\,\frac{\lambda-1}{\lambda}\right\}.

Now let KK be a number field and SS a finite set of non-archimedean places. We let SS^{\prime} be the set of non-archimedean places which are either in SS or above 22. We let λ(1{0,1,})(𝒪(K,S))\lambda\in(\mathbb{P}^{1}-\{0,1,\infty\})(\mathcal{O}(K,S)). Then λ\lambda, 1λ𝒪(K,S)×1-\lambda\in\mathcal{O}(K,S)^{\times}. It follows from the expression for the discriminant that EλE_{\lambda} has good reduction away for SS^{\prime}.

Proof of Theorem 3

Let =2\ell=2, 33, 55 or 77. Let SS be given by (1) and let S=S{υ2}S^{\prime}=S\cup\{\upsilon_{2}\} as in the statement of Theorem 3. In proving Theorem 1 we constructed, for each positive integer nn, elements εn\varepsilon_{n}, δn=1εn\delta_{n}=1-\varepsilon_{n}, belonging ,Vn𝒪(,,S)×\mathbb{Q}_{\infty,\ell}\cap V_{n}\subseteq\mathcal{O}(\mathbb{Q}_{\infty,\ell},S)^{\times}, and moreover verified, for n2n\geq 2, that εnζn,Vn1\varepsilon_{n}\notin\langle\zeta_{\ell^{n}},V_{n-1}\rangle. We let

En:Y2=X(X1)(Xεn).E_{n}\;:\;Y^{2}=X(X-1)(X-\varepsilon_{n}).

Then EnE_{n} is defined over ,\mathbb{Q}_{\infty,\ell} and has good reduction away from SS^{\prime}. We claim, for n>mn>m, that EnE_{n} and EmE_{m} are not isomorphic, even over ¯\overline{\mathbb{Q}}. To see this, suppose EnE_{n} and EmE_{m} are isomorphic. Then εn\varepsilon_{n} equals one of εm±1\varepsilon_{m}^{\pm 1}, δm±1\delta_{m}^{\pm 1}, (εmδm)±1(-\varepsilon_{m}\delta_{m})^{\pm 1}. This gives a contradiction as all of these belong to ±ζn,Vn1\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle. This proves the claim.

It remains to show that the EnE_{n} form infinitely many isogeny classes over ,\mathbb{Q}_{\infty,\ell}. However, this immediately follows from Theorem 4 and the following lemma. ∎

Lemma 23.

For nn sufficiently large, EnE_{n} does not have potential complex multiplication.

Proof.

Suppose EnE_{n} has potential complex multiplication by an order RR in an imaginary quadratic field KK. Write j=j(En)j=j(E_{n}). By standard CM theory [16, Theorem 5.7], we know that Gal(K(j)/K)Pic(R)\operatorname{Gal}(K(j)/K)\cong\operatorname{Pic}(R) and [(j):]=[K(j):K][\mathbb{Q}(j):\mathbb{Q}]=[K(j):K]. Since in our case (j)/\mathbb{Q}(j)/\mathbb{Q} is Galois, Gal((j)/)Gal(K(j)/K)Pic(R)\operatorname{Gal}(\mathbb{Q}(j)/\mathbb{Q})\cong\operatorname{Gal}(K(j)/K)\cong\operatorname{Pic}(R). However, (j),\mathbb{Q}(j)\subset\mathbb{Q}_{\infty,\ell} is totally real. It follows [16, page 124] that Pic(R)\operatorname{Pic}(R) is an elementary abelian 22-group. Since (j),\mathbb{Q}(j)\subset\mathbb{Q}_{\infty,\ell}, the Galois group of (j)/\mathbb{Q}(j)/\mathbb{Q} is cyclic of order n\ell^{n} for some nn. Thus, jj\in\mathbb{Q} if 2\ell\neq 2, and j1,2=(2)j\in\mathbb{Q}_{1,2}=\mathbb{Q}(\sqrt{2}) if =2\ell=2. However, from the expression for jj in (21) we know that [(εn):(j)]6[\mathbb{Q}(\varepsilon_{n}):\mathbb{Q}(j)]\leq 6. Thus εn\varepsilon_{n} belongs to a subfield of ,\mathbb{Q}_{\infty,\ell} of degree at most 1212. The lemma follows since, by Siegel’s theorem, the SS-unit equation has only finitely many solutions in any number field. ∎

9. Hyperelliptic curves over ,\mathbb{Q}_{\infty,\ell} with few bad primes

Let \ell be an odd prime. Let g2g\geq 2 be an integer satisfying

(22) {g(3)/4 or 1(mod(1)/2) if 3(mod4)g1(mod(1)/4) if 1(mod4).\begin{cases}\text{$g\equiv(\ell-3)/4\,$ or $\,-1\pmod{(\ell-1)/2}$}&\text{ if $\ell\equiv 3\pmod{4}$}\\ \text{$g\equiv-1\pmod{(\ell-1)/4}$}&\text{ if $\ell\equiv 1\pmod{4}$}.\end{cases}

Then there is a positive integer kk such that

(23) k(12)={2g+1 or 2g+2if 3(mod4)2g+2if 1(mod4).k\cdot\left(\frac{\ell-1}{2}\right)\;=\;\begin{cases}\text{$2g+1$ or $2g+2$}&\text{if $\ell\equiv 3\pmod{4}$}\\ 2g+2&\text{if $\ell\equiv 1\pmod{4}$}.\end{cases}

Let n2n\geq 2 be a positive integer satisfying

(24) n1k.\ell^{n-1}\;\geq\;k.

In this section we construct a hyperelliptic DnD_{n} curve of genus gg defined over n1,\mathbb{Q}_{n-1,\ell} with good reduction away from the primes above 22, \ell.

Write

𝒵n={ζΩn,:ζn=1,ζi1 if i<n}\mathcal{Z}_{n}=\{\zeta\in\Omega_{n,\ell}\quad:\quad\zeta^{\ell^{n}}=1,\quad\zeta^{\ell^{i}}\neq 1\textrm{ if }i<n\}

for the set of primitive n\ell^{n}-th roots of 11. Write

𝒵n+={ζ+ζ1:ζ𝒵n}Ωn,+.\mathcal{Z}_{n}^{+}\;=\;\{\zeta+\zeta^{-1}\;:\;\zeta\in\mathcal{Z}_{n}\}\;\subset\;\Omega_{n,\ell}^{+}.

We note that any element of 𝒵n+\mathcal{Z}_{n}^{+} generates Ωn,+\Omega_{n,\ell}^{+}.

Lemma 24.

#𝒵n+=n1(1)/2\displaystyle\#\mathcal{Z}_{n}^{+}=\ell^{n-1}(\ell-1)/2.

Proof.

We note that #𝒵n=φ(n)=n1(1)\#\mathcal{Z}_{n}=\varphi(\ell^{n})=\ell^{n-1}(\ell-1). Suppose α\alpha, β𝒵n\beta\in\mathcal{Z}_{n}. Then

(25) (α+α1)(β+β1)=α1(1αβ)(1αβ1).(\alpha+\alpha^{-1})-(\beta+\beta^{-1})\;=\;\alpha^{-1}\cdot(1-\alpha\beta)\cdot(1-\alpha\beta^{-1}).

Thus α+α1=β+β1\alpha+\alpha^{-1}=\beta+\beta^{-1} if and only if α=β\alpha=\beta or α=β1\alpha=\beta^{-1}. The lemma follows. ∎

Write

Gn=Gal(Ωn,+/n1,),Hn=Gal(Ωn,+/Ωn1,+).G_{n}=\operatorname{Gal}(\Omega_{n,\ell}^{+}/\mathbb{Q}_{n-1,\ell}),\qquad H_{n}=\operatorname{Gal}(\Omega_{n,\ell}^{+}/\Omega_{n-1,\ell}^{+}).

We note that these are both cyclic subgroups of Gal(Ωn,+/)\operatorname{Gal}(\Omega_{n,\ell}^{+}/\mathbb{Q}) having orders

#Gn=(1)/2,#Hn=.\#G_{n}=(\ell-1)/2,\qquad\#H_{n}=\ell.
Lemma 25.

Fix ζ𝒵n\zeta\in\mathcal{Z}_{n}. Let

(26) ηi=ζ1+n1(i1)+ζ1n1(i1),1i.\eta_{i}\;=\;\zeta^{1+\ell^{n-1}(i-1)}+\zeta^{-1-\ell^{n-1}(i-1)},\qquad 1\leq i\leq\ell.

Then η1,,η𝒵n+\eta_{1},\dotsc,\eta_{\ell}\in\mathcal{Z}_{n}^{+} form a single orbit under the action of HnH_{n}, but have pairwise disjoint orbits under the action of GnG_{n}.

Proof.

Let κGal(Ωn,/)\kappa\in\operatorname{Gal}(\Omega_{n,\ell}/\mathbb{Q}) be given by κ(ζ)=ζ1+n1\kappa(\zeta)=\zeta^{1+\ell^{n-1}}. We note that κ\kappa has order \ell and fixes Ωn1,\Omega_{n-1,\ell}. We denote the restriction of κ\kappa to Ωn,+\Omega_{n,\ell}^{+} by τ\tau; this is a cyclic generator of HnH_{n}. Note that

ηi=τi1(ζ+ζ1),1i.\eta_{i}=\tau^{i-1}(\zeta+\zeta^{-1}),\qquad 1\leq i\leq\ell.

Let σ1\sigma_{1}, σ2Gn\sigma_{2}\in G_{n}. Let 1i<j1\leq i<j\leq\ell and suppose σ1(ηi)=σ2(ηj)\sigma_{1}(\eta_{i})=\sigma_{2}(\eta_{j}). Thus σ1τi1(η1)=σ2τj1(η1)\sigma_{1}\tau^{i-1}(\eta_{1})=\sigma_{2}\tau^{j-1}(\eta_{1}), so τ1jσ21σ1τi1\tau^{1-j}\sigma_{2}^{-1}\sigma_{1}\tau^{i-1} fixes η1\eta_{1}. As η1\eta_{1} generates Ωn,+\Omega_{n,\ell}^{+}, we have τ1jσ21σ1τi1=1\tau^{1-j}\sigma_{2}^{-1}\sigma_{1}\tau^{i-1}=1 is the identity element in Gal(Ωn,+/)\operatorname{Gal}(\Omega_{n,\ell}^{+}/\mathbb{Q}). However, Gal(Ωn,+/)\operatorname{Gal}(\Omega_{n,\ell}^{+}/\mathbb{Q}) is abelian, so

τij=σ11σ2GnHn={1}.\tau^{i-j}=\sigma_{1}^{-1}\sigma_{2}\in G_{n}\cap H_{n}=\{1\}.

Since 1ij1\leq i\leq j\leq\ell and τ\tau has order \ell we have i=ji=j. ∎

The Galois group GnG_{n} acts faithfully on 𝒵n+\mathcal{Z}_{n}^{+}. This action has n1\ell^{n-1} orbits. Assumption (24) ensures that the number of orbits is at least kk. If k>k>\ell, then we extend the list η1,,η𝒵n+\eta_{1},\dotsc,\eta_{\ell}\in\mathcal{Z}_{n}^{+} to η1,,ηk𝒵n+\eta_{1},\dotsc,\eta_{k}\in\mathcal{Z}_{n}^{+}, so that the ηi\eta_{i} continue to have disjoint orbits under the action of GnG_{n}; if =3\ell=3 the choice of η4\eta_{4} will be important later, and we choose η4=ζ2+ζ2\eta_{4}=\zeta^{2}+\zeta^{-2}. Consider the curve

(27) Dn:Y2=j=1kσGn(Xηjσ).D_{n}\;:\;Y^{2}=\prod_{j=1}^{k}\prod_{\sigma\in G_{n}}(X-\eta_{j}^{\sigma}).
Lemma 26.

The curve DnD_{n} is hyperelliptic of genus gg, is defined over n1,\mathbb{Q}_{n-1,\ell}, and has good reduction away from the primes above 22 and \ell.

Proof.

Our assumption on the orbits ensures that the polynomial on the right hand-side of (27) is separable. By (23), the degree of the polynomial is either 2g+12g+1 or 2g+22g+2. Thus DnD_{n} is a hyperelliptic curve of genus gg. A priori, DnD_{n} is defined over Ωn,+\Omega_{n,\ell}^{+}. However, the roots of the hyperelliptic polynomial are permuted by the action of Gn=Gal(Ωn,+/n1,)G_{n}=\operatorname{Gal}(\Omega_{n,\ell}^{+}/\mathbb{Q}_{n-1,\ell}) and so the polynomial belongs to n1,[X]\mathbb{Q}_{n-1,\ell}[X]. Hence DnD_{n} is defined over n1,\mathbb{Q}_{n-1,\ell}.

Let u1,,udu_{1},\dotsc,u_{d} be the roots of the hyperelliptic polynomial. Then the discriminant of hyperelliptic polynomial is

1i<jd(uiuj)2.\prod_{1\leq i<j\leq d}(u_{i}-u_{j})^{2}.

However, uiu_{i}, uju_{j} are distinct elements of 𝒵n+\mathcal{Z}_{n}^{+}. Thus there are α\alpha, β𝒵n\beta\in\mathcal{Z}_{n} with αβ\alpha\neq\beta, β1\beta^{-1} such that ui=α+α1u_{i}=\alpha+\alpha^{-1}, uj=β+β1u_{j}=\beta+\beta^{-1}. From the identity (25),

uiuj=α1(1αβ1)(1αβ).u_{i}-u_{j}\;=\;\alpha^{-1}(1-\alpha\beta^{-1})(1-\alpha\beta).

Since αβ\alpha\beta and αβ1\alpha\beta^{-1} are non-trivial \ell-power roots of 11, we see that uiuju_{i}-u_{j} is a {υ}\{\upsilon_{\ell}\}-unit, and hence the discriminant of the hyperelliptic polynomial of DnD_{n} is a {υ}\{\upsilon_{\ell}\}-unit. ∎

Given four pairwise distinct elements z1z_{1}, z2z_{2}, z3z_{3}, z4z_{4} of a field KK, we shall employ the notation (z1,z2;z3,z4)(z_{1},z_{2}\,;\,z_{3},z_{4}) to denote the cross ratio

(z1,z2;z3,z4)=(z1z3)(z2z4)(z1z4)(z2z3).(z_{1},z_{2}\,;\,z_{3},z_{4})\;=\;\frac{(z_{1}-z_{3})(z_{2}-z_{4})}{(z_{1}-z_{4})(z_{2}-z_{3})}.

We extend the cross ratio to four distinct elements z1,z2,z3,z4z_{1},z_{2},z_{3},z_{4} of 1(K)\mathbb{P}^{1}(K) in the usual way. We let GL2(K)\operatorname{GL}_{2}(K) act on 1(K)\mathbb{P}^{1}(K) via fractional linear transformations

γ(z)=az+bcz+d,γ=(abcd).\gamma(z)=\frac{az+b}{cz+d},\qquad\gamma=\begin{pmatrix}a&b\\ c&d\end{pmatrix}.

It is well-known and easy to check that these fractional linear transformations leave the cross ratio unchanged:

(γ(z1),γ(z2);γ(z3),γ(z4))=(z1,z2;z3,z4).(\gamma(z_{1}),\gamma(z_{2})\,;\,\gamma(z_{3}),\gamma(z_{4}))\;=\;(z_{1},z_{2}\,;\,z_{3},z_{4}).
Lemma 27.

Let K¯\overline{K} be an algebraically closed field of characteristic 0. Let

D:Y2=i=1d(Xai),D:Y2=i=1d(Xbi),D\;:\;Y^{2}=\prod_{i=1}^{d}(X-a_{i}),\qquad D^{\prime}\;:\;Y^{2}=\prod_{i=1}^{d}(X-b_{i}),

be genus gg curves defined over K¯\overline{K} where the polynomials on the right are separable. If DD, DD^{\prime} are isomorphic then there is some permutation μSd\mu\in S_{d} such that for all quadruples of pairwise distinct indices 1r,s,t,ud1\leq r,s,t,u\leq d

(ar,as;at,au)=(bμ(r),bμ(s);bμ(t),bμ(u)).(a_{r},a_{s}\,;\,a_{t},a_{u})\;=\;(b_{\mu(r)},b_{\mu(s)}\,;\,b_{\mu(t)},b_{\mu(u)}).
Proof.

We shall make use of the following standard description (e.g. [2, Proposition 6.11]) of isomorphisms of hyperelliptic curves: every isomorphism π:DD\pi\;:\;D\rightarrow D^{\prime} is of the form

π(X,Y)=(aX+bcX+d,eY(cX+d)g+1)\pi(X,Y)\;=\;\left(\frac{aX+b}{cX+d},\frac{eY}{(cX+d)^{g+1}}\right)

for some

γ=(abcd)GL2(K¯),eK¯×.\gamma=\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\operatorname{GL}_{2}(\overline{K}),\qquad e\in\overline{K}^{\times}.

Observe that π(ai,0)\pi(a_{i},0) has YY-coordinate 0; thus

{γ(a1),,γ(ad)}={b1,,bd}.\{\gamma(a_{1}),\dotsc,\gamma(a_{d})\}\;=\;\{b_{1},\dotsc,b_{d}\}.

Hence there is a permutation μSd\mu\in S_{d} such that γ(ai)=bμ(i)\gamma(a_{i})=b_{\mu(i)}. The lemma follows from the invariance of the cross ratio under the action of GL2(K¯)\operatorname{GL}_{2}(\overline{K}). ∎

Lemma 28.

Let 11\ell\geq 11 be prime. Then there is some a×a\in\mathbb{Z}_{\ell}^{\times} of order 1\ell-1 such that

(28) 1+a2 0,±(1a2),±(a+a3),±(aa3),±(1+a3),±(1a3),±(a+a2),±(aa2)(mod).1+a^{2}\;\not\equiv\;0,\;\pm(1-a^{2}),\,\pm(a+a^{3}),\,\pm(a-a^{3}),\\ \pm(1+a^{3}),\,\pm(1-a^{3}),\,\pm(a+a^{2}),\,\pm(a-a^{2})\pmod{\ell}.
Proof.

Making use of the fact that a polynomial of degree nn has at most nn roots, we see that the number of a𝔽a\in\mathbb{F}_{\ell} that do not satisfy (28) is (very crudely) bounded by 3737. An element a×a\in\mathbb{Z}_{\ell}^{\times} of order 1\ell-1 is the unique Hensel lift of an element a𝔽×a\in\mathbb{F}_{\ell}^{\times} of order 1\ell-1. There are precisely φ(1)\varphi(\ell-1) elements of order 1\ell-1 in 𝔽×\mathbb{F}_{\ell}^{\times}. A theorem of Shapiro [15, page 23], asserts that φ(n)>nlog2/log3\varphi(n)>n^{\log{2}/\log{3}} for n30n\geq 30. We note that if 317\ell\geq 317 then φ(1)316log2/log337.8\varphi(\ell-1)\geq 316^{\log{2}/\log{3}}\approx 37.8, and so the lemma holds for 317\ell\geq 317. For the range 1131711\leq\ell\leq 317 we checked the lemma by brute force computer enumeration. ∎

Lemma 29.

Let n>mn>m be sufficiently large. Then DnD_{n} and DmD_{m} are non-isomorphic, even over ¯\overline{\mathbb{Q}}.

Proof.

Note that all roots of the hyperelliptic polynomial for DnD_{n} in (27) belong to 𝒵n+\mathcal{Z}_{n}^{+}. It follows from (25) that the cross ratio of any four of them belongs to VnV_{n}. Suppose DnD_{n} and DmD_{m} are isomorphic. Let u1,u2,u3,u4u_{1},u_{2},u_{3},u_{4} be any distinct roots of the hyperelliptic polynomial for DnD_{n} given in (27). Then, by Lemma 27,

(u1,u2;u3,u4)VmVn1.(u_{1},u_{2}\,;\,u_{3},u_{4})\;\in V_{m}\subseteq V_{n-1}.

We shall obtain a contradiction through a careful choice of the four roots u1,,u4u_{1},\dotsc,u_{4}.

We first suppose that k2k\geq 2 and 5\ell\geq 5. Let ζ=ζn\zeta=\zeta_{\ell^{n}} and b=1+n1b=1+\ell^{n-1}. Then, by Lemma 25, η1=ζ+ζ1\eta_{1}=\zeta+\zeta^{-1} and η2=ζb+ζb\eta_{2}=\zeta^{b}+\zeta^{-b}. Let a×a\in\mathbb{Z}_{\ell}^{\times} have order 1\ell-1. Let κGal(Ωn,/n1,)\kappa\in\operatorname{Gal}(\Omega_{n,\ell}/\mathbb{Q}_{n-1,\ell}) be given by κ(ζ)=ζa\kappa(\zeta)=\zeta^{a}. Then κ\kappa is a cyclic generator for Gal(Ωn,/n1,)\operatorname{Gal}(\Omega_{n,\ell}/\mathbb{Q}_{n-1,\ell}). We shall denote the restriction of κ\kappa to Ωn,+\Omega_{n,\ell}^{+} by μ\mu. Then μ\mu is a cyclic generator for Gn=Gal(Ωn,+/n1,)G_{n}=\operatorname{Gal}(\Omega_{n,\ell}^{+}/\mathbb{Q}_{n-1,\ell}) having order (1)/2(\ell-1)/2. We shall take

u1\displaystyle u_{1} =η1=ζ+ζ1,\displaystyle=\eta_{1}=\zeta+\zeta^{-1}, u2\displaystyle\quad u_{2} =μ(η1)=ζa+ζa,\displaystyle=\mu(\eta_{1})=\zeta^{a}+\zeta^{-a},
u3\displaystyle\quad u_{3} =η2=ζb+ζb,\displaystyle=\eta_{2}=\zeta^{b}+\zeta^{-b}, u4\displaystyle\quad u_{4} =μ(η2)=ζab+ζab.\displaystyle=\mu(\eta_{2})=\zeta^{ab}+\zeta^{-ab}.

We compute the cross ratio with the help of identity (25), finding

(u1,u2;u3,u4)=(1ζ1+b)(1ζ1b)(1ζa+ab)(1ζaab)(1ζ1+ab)(1ζ1ab)(1ζa+b)(1ζab).(u_{1},u_{2}\,;\,u_{3},u_{4})\;=\;\frac{(1-\zeta^{1+b})(1-\zeta^{1-b})(1-\zeta^{a+ab})(1-\zeta^{a-ab})}{(1-\zeta^{1+ab})(1-\zeta^{1-ab})(1-\zeta^{a+b})(1-\zeta^{a-b})}.

As b1(mod)b\equiv 1\pmod{\ell}, and clearly a±1(mod)a\not\equiv\pm 1\pmod{\ell}, it is easy to check that 1+b1+b is the only one out of the eight exponents of ζ\zeta above that is ±2(mod)\pm 2\pmod{\ell}. Therefore by Lemma 10, the cross ratio is not an element of ±ζn,Vn1\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle for nn sufficiently large, giving a contradiction for the case k2k\geq 2 and 5\ell\geq 5.

Next we suppose that k=1k=1. It follows from (23) that 11\ell\geq 11. We choose a×a\in\mathbb{Z}_{\ell}^{\times} as in Lemma 28, and, as above, take μ\mu to be the corresponding generator of GnG_{n} of order (1)/25(\ell-1)/2\geq 5. We take

ui=μi1(η1)=ζai1+ζai1,1i4;u_{i}=\mu^{i-1}(\eta_{1})=\zeta^{a^{i-1}}+\zeta^{-a^{i-1}},\qquad 1\leq i\leq 4;

observe that these are four roots of the hyperelliptic polynomial of DnD_{n} given in (27). The assumption that 11\ell\geq 11 ensures that aa has order 10\geq 10 and so u1,u2,u3,u4u_{1},u_{2},u_{3},u_{4} are indeed pairwise distinct. We compute the cross ratio with the help of identity (25), finding

(u1,u2;u3,u4)=(1ζ1+a2)(1ζ1a2)(1ζa+a3)(1ζaa3)(1ζ1+a3)(1ζ1a3)(1ζa+a2)(1ζaa2).(u_{1},u_{2}\,;\,u_{3},u_{4})\;=\;\frac{(1-\zeta^{1+a^{2}})(1-\zeta^{1-a^{2}})(1-\zeta^{a+a^{3}})(1-\zeta^{a-a^{3}})}{(1-\zeta^{1+a^{3}})(1-\zeta^{1-a^{3}})(1-\zeta^{a+a^{2}})(1-\zeta^{a-a^{2}})}.

Using Lemma 9 and our choice of aa given by Lemma 28 we conclude that this cross ratio does not belong to ±ζn,Vn1\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle for nn sufficiently large. This gives a contradiction for the case k=1k=1.

Finally, we consider =3\ell=3. It follows from (23) that k5k\geq 5. Recall our choices of η1\eta_{1}, η2\eta_{2}, η3\eta_{3} in Lemma 25, and our choice of η4=ζ2+ζ2\eta_{4}=\zeta^{2}+\zeta^{-2} in the particular case =3\ell=3. We choose the four roots ui=ηiu_{i}=\eta_{i} for i=1,,4i=1,\dotsc,4, and obtain,

(u1,u2;u3,u4)=(1ζ2+2×3n1)(1ζ2×3n1)(1ζ3+3n1)(1ζ1+3n1)(1ζ3)(1ζ1)(1ζ2)(1ζ3n1).(u_{1},u_{2}\,;\,u_{3},u_{4})\;=\;\frac{(1-\zeta^{2+2\times 3^{n-1}})(1-\zeta^{-2\times 3^{n-1}})(1-\zeta^{3+3^{n-1}})(1-\zeta^{-1+3^{n-1}})}{(1-\zeta^{3})(1-\zeta^{-1})(1-\zeta^{2})(1-\zeta^{-3^{n-1}})}.

As before, with the help of Lemma 10, we easily verify that the cross ratio is not an element of ±ζn,Vn1\langle\pm\zeta_{\ell^{n}},V_{n-1}\rangle for nn sufficiently large. This completes the proof. ∎

Proof of Theorem 5

If =3\ell=3 or 55 then (22) does not impose any restriction on the genus. Therefore we obtain, as above, for every genus g2g\geq 2, infinitely many ¯\overline{\mathbb{Q}}-isomorphism classes of genus gg hyperelliptic curves, defined over ,\mathbb{Q}_{\infty,\ell}, with good reduction away from {υ2,υ}\{\upsilon_{2},\upsilon_{\ell}\}.

It remains to deal with =7\ell=7, 1111 and 1313. Here, (22) imposes the restriction

g{1 or 2mod3if =72 or 4mod5if =112mod3if =13.g\equiv\begin{cases}\text{$1$ or $2\bmod{3}$}&\text{if $\ell=7$}\\ \text{$2$ or $4\bmod{5}$}&\text{if $\ell=11$}\\ \text{$2\bmod{3}$}&\text{if $\ell=13$}.\end{cases}

We very briefly sketch how to remove the restriction. Instead of DnD_{n} defined as in (27), we consider the more general

Dn:Y2=h(X)j=1kσGn(Xηjσ)D_{n}\;:\;Y^{2}=h(X)\cdot\prod_{j=1}^{k}\prod_{\sigma\in G_{n}}(X-\eta_{j}^{\sigma})

where

  • hh is a monic divisor of X(X1)(X+1)X(X-1)(X+1);

  • kk and hh are chosen to obtain the desired genus;

  • ηj𝒵n+\eta_{j}\in\mathcal{Z}_{n}^{+} are chosen as before.

These DnD_{n} are clearly defined over n1,\mathbb{Q}_{n-1,\ell}. To check that they have good reduction away from S={υ2,υ}S^{\prime}=\{\upsilon_{2},\upsilon_{\ell}\}, we need to verify that the difference of any two distinct roots uu, vv of the hyperelliptic polynomial belongs to 𝒪(Ωn,S)×\mathcal{O}(\Omega_{n},S^{\prime})^{\times}. The proof of Lemma 26 shows this if uu, v𝒵n+v\in\mathcal{Z}_{n}^{+}. For the remaining possible differences it is enough to note that

α+α1=α1Φ4(α),α+α1+1=α1Φ3(α),α+α11=α1Φ6(α)\alpha+\alpha^{-1}=\alpha^{-1}\Phi_{4}(\alpha),\qquad\alpha+\alpha^{-1}+1=\alpha^{-1}\Phi_{3}(\alpha),\qquad\alpha+\alpha^{-1}-1=\alpha^{-1}\Phi_{6}(\alpha)

which are all units by Lemma 12. We omit the remaining details. ∎

10. Isogeny classes of hyperelliptic curves over ,\mathbb{Q}_{\infty,\ell}

A beautiful theorem of Kummer asserts that the index of the cyclotomic units CnC_{n} in the full unit group 𝒪(Ωn,)×\mathcal{O}(\Omega_{n,\ell})^{\times} equals the class number hn+h_{n}^{+} of Ωn,+\Omega_{n,\ell}^{+}. In this section, with the help of Kummer’s theorem, we prove for certain primes \ell the existence of infinitely many isogeny classes of hyperelliptic Jacobians over ,\mathbb{Q}_{\infty,\ell} with good reduction away from \ell. We first prove a few elementary lemmas.

Lemma 30.

Let KK be a field of characteristic not 22, and let L=K(α1,,αr)L=K(\sqrt{\alpha_{1}},\dots,\sqrt{\alpha_{r}}) where αiK×\alpha_{i}\in K^{\times}. Then for any xKx\in K such that xL\sqrt{x}\in L, we have

x=α1e1αrerq2x\;=\;\alpha_{1}^{e_{1}}\cdots\alpha_{r}^{e_{r}}q^{2}

for some integers eie_{i}\in\mathbb{Z} and qKq\in K.

Proof.

Let MM be a field of characteristic not 22, and let dMd\in M be a non-square. Let xMx\in M and suppose xM(d)\sqrt{x}\in M(\sqrt{d}). Then x=y+zd\sqrt{x}=y+z\sqrt{d} for some yy, zMz\in M. Squaring, we deduce that yz=0yz=0. Thus x=y2x=y^{2} or x=dz2x=dz^{2}.

We now prove the lemma by induction on rr. The above establishes the case r=1r=1. Let r2r\geq 2, and let xKx\in K satisfy xL\sqrt{x}\in L. Letting M=K(α1,,αr1)M=K(\sqrt{\alpha_{1}},\dotsc,\sqrt{\alpha_{r-1}}) we see that xMx\in M and xM(αr)\sqrt{x}\in M(\sqrt{\alpha_{r}}). Thus, by the above, xM\sqrt{x}\in M or xαrM\sqrt{x\alpha_{r}}\in M. In other words,

xαreM=K(α1,,αr1)\sqrt{x\cdot\alpha_{r}^{e}}\;\in\;M=K(\sqrt{\alpha_{1}},\dotsc,\sqrt{\alpha_{r-1}})

for some e{0,1}e\in\{0,1\}. By the inductive hypothesis, there are e1,,er1e_{1},\dotsc,e_{r-1}\in\mathbb{Z} and qKq\in K such that

xαre=α1e1αr1er1q2.x\cdot\alpha_{r}^{e}\;=\;\alpha_{1}^{e_{1}}\cdots\alpha_{r-1}^{e_{r-1}}q^{2}.

The proof is complete on taking er=ee_{r}=-e. ∎

Lemma 31.

Let \ell be an odd prime. Let qΩ,q\in\Omega_{\infty,\ell} satisfy q2Vnq^{2}\in V_{n}. If the class number hn+h_{n}^{+} of Ωn,+\Omega_{n,\ell}^{+} is odd, then qVnq\in V_{n}.

Proof.

Let qΩ,q\in\Omega_{\infty,\ell} satisfy q2VnΩn,q^{2}\in V_{n}\subset\Omega_{n,\ell}. As the extension Ω,/Ωn,\Omega_{\infty,\ell}/\Omega_{n,\ell} is pro-\ell, we conclude that qΩn,q\in\Omega_{n,\ell}. However, Vn𝒪(Ωn,,{υ})×V_{n}\subseteq\mathcal{O}(\Omega_{n,\ell},\{\upsilon_{\ell}\})^{\times}, where, as usual, υ\upsilon_{\ell} denotes the prime above \ell. Thus q𝒪(Ωn,,{υ})×q\in\mathcal{O}(\Omega_{n,\ell},\{\upsilon_{\ell}\})^{\times}. We claim that

[𝒪(Ωn,,{υ})×:Vn]=hn\plus.[\mathcal{O}(\Omega_{n,\ell},\{\upsilon_{\ell}\})^{\times}:V_{n}]\;=\;h_{n}^{\plus}.

The lemma follows immediately from the claim. To prove the claim, consider the commutative diagram with exact rows

1{1}Cn{C_{n}}Vn{V_{n}}{\mathbb{Z}}1{1}1{1}𝒪(Ωn,)×{\mathcal{O}(\Omega_{n,\ell})^{\times}}𝒪(Ωn,,{υ})×{\mathcal{O}(\Omega_{n,\ell},\{\upsilon_{\ell}\})^{\times}}{\mathbb{Z}}1{1}κ\scriptstyle{\kappa}κ\scriptstyle{\kappa}

where κ(α)=ord(1ζ)(α)\kappa(\alpha)=\operatorname{ord}_{(1-\zeta)}(\alpha). By the snake lemma,

𝒪(Ωn,,{υ})×/Vn𝒪(Ωn,)×/Cn.\mathcal{O}(\Omega_{n,\ell},\{\upsilon_{\ell}\})^{\times}/V_{n}\;\cong\;\mathcal{O}(\Omega_{n,\ell})^{\times}/C_{n}.

Write Cn+=CnΩn,+C_{n}^{+}=C_{n}\cap\Omega_{n,\ell}^{+}. The aforementioned theorem of Kummer asserts that

[𝒪(Ωn,)×:Cn]=[𝒪(Ωn,\plus)×:Cn\plus]=hn\plus;[\mathcal{O}(\Omega_{n,\ell})^{\times}:C_{n}]\;=\;[\mathcal{O}(\Omega_{n,\ell}^{\plus})^{\times}:C_{n}^{\plus}]\;=\;h_{n}^{\plus};

see, for example, [22, Exercise 8.5] for the first equality, and [22, Theorem 8.2] for the second. This proves the claim. ∎

Lemma 32.

Let KK be a field of characteristic 2\neq 2. Let fK[X]f\in K[X] be a monic separable polynomial of odd degree d5d\geq 5. Write f=i=1d(Xαi)f=\prod_{i=1}^{d}(X-\alpha_{i}) with αiK¯\alpha_{i}\in\overline{K}. Let C/KC/K be a hyperelliptic curve given by Y2=f(X)Y^{2}=f(X) with Jacobian JJ. Then

K(J[2])=K(α1,,αd),K(J[4])=K(J[2])({αiαj}1i,jd).K(J[2])=K(\alpha_{1},\dotsc,\alpha_{d}),\qquad K(J[4])=K(J[2])\left(\big{\{}\sqrt{\alpha_{i}-\alpha_{j}}\big{\}}_{1\leq i,j\leq d}\right).
Proof.

Write \infty for the point at infinity on the given model for CC. The expression given for K(J[2])K(J[2]) is well-known; it may be seen by observing (see, for example [12]) that the classes of the classes of degree 0 divisors [(αi,0)][(\alpha_{i},0)-\infty] with i=1,,di=1,\dotsc,d generate J[2]J[2].

Yelton [23, Theorem 1.2.2] gives a high-powered proof of the given expression for K(J[4])K(J[4]). For the convenience of the reader we give a more elementary argument. Let L=K(J[2])L=K(J[2]). The theory of 22-descent on hyperelliptic Jacobians furnishes, for any field MLM\supseteq L, an injective homomorphism [12], [19]

J(M)/2J(M)i=1dM/(M)2J(M)/2J(M)\;\hookrightarrow\;\prod_{i=1}^{d}M^{*}/(M^{*})^{2}

known as the XΘX-\Theta-map. This in particular sends the 22-torsion point [(αi,0)][(\alpha_{i},0)-\infty] to

((αiα1),,(αiαi1),ji(αiαj),(αiαi+1),,(αiαd)).\left((\alpha_{i}-\alpha_{1})\,,\dotsc\,,\,(\alpha_{i}-\alpha_{i-1})\,,\,\prod_{j\neq i}(\alpha_{i}-\alpha_{j})\,,\,(\alpha_{i}-\alpha_{i+1})\,,\,\dotsc\,,\,(\alpha_{i}-\alpha_{d})\right).

The field K(J[4])K(J[4]) is the smallest extension of MM of LL such that all the images of the 22-torsion generators [(αi,0)][(\alpha_{i},0)-\infty] are trivial in i=1dM/(M)2\prod_{i=1}^{d}M^{*}/(M^{*})^{2}. This is plainly the extension

M=L({αiαj}1i,jd).M=L\left(\big{\{}\sqrt{\alpha_{i}-\alpha_{j}}\big{\}}_{1\leq i,j\leq d}\right).

Lemma 33.

Let pp be a prime for which 22 is a primitive root (i.e. 22 is a generator for 𝔽p×\mathbb{F}_{p}^{\times}). Let GG be a cyclic group of order pp, and let VV be an 𝔽2[G]\mathbb{F}_{2}[G]-module with dim𝔽2(V)=p1\dim_{\mathbb{F}_{2}}(V)=p-1. Suppose that the action of GG on V{0}V-\{0\} is free. Then VV is irreducible.

Proof.

Let WW be a 𝔽2[G]\mathbb{F}_{2}[G]-submodule of VV, and write d=dim𝔽2(W)d=\dim_{\mathbb{F}_{2}}(W). Since the action of GG on V{0}V-\{0\} is free, the set W{0}W-\{0\} consists of GG-orbits, all having size pp. However, #(W{0})=2d1\#(W-\{0\})=2^{d}-1, and so p(2d1)p\mid(2^{d}-1). By assumption, 22 is a primitive root modulo pp, therefore (p1)d(p-1)\mid d. Since WW is an 𝔽2\mathbb{F}_{2}-subspace of VV which has dimension p1p-1, we see that W=0W=0 or W=VW=V. ∎

Lemma 34.

Let =2p+1\ell=2p+1, where \ell and pp are odd primes. Suppose 22 is a primitive root modulo pp. Let g=(3)/4g=(\ell-3)/4. Let n2n\geq 2 and let Dn/n1,D_{n}/\mathbb{Q}_{n-1,\ell} be the hyperelliptic curve defined in Section 9. Let A/,A/\mathbb{Q}_{\infty,\ell} be an abelian variety and let ϕ:J(Dn)A\phi:J(D_{n})\rightarrow A be an isogeny defined over ,\mathbb{Q}_{\infty,\ell}. Then ϕ=2rϕodd\phi=2^{r}\phi_{\mathrm{odd}} where ϕodd:J(Dn)A\phi_{\mathrm{odd}}:J(D_{n})\rightarrow A is an isogeny of odd degree.

We remark if \ell and pp are primes with =2p+1\ell=2p+1 then pp is called a Sophie-Germain prime, and \ell is called as safe prime.

Proof of Lemma 34.

Note that, in the notation of Section 9, k=1k=1, and the hyperelliptic polynomial for DnD_{n} has odd degree 2g+1=(1)/2=p2g+1=(\ell-1)/2=p, and consists of a single orbit under action of Gn=Gal(Ωn+/n1,)G_{n}=\operatorname{Gal}(\Omega_{n}^{+}/\mathbb{Q}_{n-1,\ell}):

Dn:y2=σGn(Xη1σ),η1=ζn+ζn1.D_{n}\;:\;y^{2}\;=\;\prod_{\sigma\in G_{n}}(X-\eta_{1}^{\sigma}),\qquad\eta_{1}=\zeta_{\ell^{n}}+\zeta_{\ell^{n}}^{-1}.

In particular, the hyperelliptic polynomial is irreducible over ,\mathbb{Q}_{\infty,\ell}. It follows from this (e.g. [19, Lemma 4.3]) that J(,)[2]=0J(\mathbb{Q}_{\infty,\ell})[2]=0, where JJ denotes J(Dn)J(D_{n}) for convenience. We note, by Lemma 32, that ,(J[2])=,(η1)=Ω,+\mathbb{Q}_{\infty,\ell}(J[2])=\mathbb{Q}_{\infty,\ell}(\eta_{1})=\Omega_{\infty,\ell}^{+}. We consider the action of G:=Gal(Ω,+/,)G_{\infty}:=\operatorname{Gal}(\Omega_{\infty,\ell}^{+}/\mathbb{Q}_{\infty,\ell}) on J[2]J[2]. The group GG_{\infty} is cyclic of order (1)/2=p(\ell-1)/2=p. Any element fixed by this action belongs to J(,)[2]=0J(\mathbb{Q}_{\infty,\ell})[2]=0. Thus GG_{\infty} acts freely on V{0}V-\{0\}, where V:=J[2]V:=J[2].

Now let ϕ:JA\phi:J\rightarrow A be an isogeny defined over ,\mathbb{Q}_{\infty,\ell}. Then W:=ker(ϕ)J[2]W:=\ker(\phi)\cap J[2] is a subgroup of VV stable under the action of GG_{\infty}, and therefore an 𝔽2[G]\mathbb{F}_{2}[G_{\infty}]-submodule of the 𝔽2[G]\mathbb{F}_{2}[G_{\infty}]-module VV. Observe that dim𝔽2(V)=2g=p1\dim_{\mathbb{F}_{2}}(V)=2g=p-1. By hypothesis, 22 is a primitive root modulo pp. We apply Lemma 33 to deduce that W=0W=0 or W=VW=V. Therefore, either ϕ\phi already has odd degree, or J[2]ker(ϕ)J[2]\subseteq\ker(\phi). In the latter case, observe that ϕ=2ϕ\phi=2\phi^{\prime} where ϕ:JA\phi^{\prime}:J\rightarrow A is an isogeny defined over ,\mathbb{Q}_{\infty,\ell} of degree deg(ϕ)/22g\deg(\phi)/2^{2g}. As ϕ\phi has finite degree, by repeating the argument we eventually arrive at ϕ=2rϕodd\phi=2^{r}\phi_{\mathrm{odd}}. ∎

Lemma 35.

Let =2p+1\ell=2p+1, where \ell and pp are odd primes. Suppose 22 is a primitive root modulo pp. Suppose that the class number hn+h_{n}^{+} of Ωn,+\Omega_{n,\ell}^{+} is odd for all nn. Let g=(3)/4g=(\ell-3)/4. For n2n\geq 2 let Dn/n1,D_{n}/\mathbb{Q}_{n-1,\ell} be the genus gg hyperelliptic curve defined in Section 9. Let n>mn>m be sufficiently large. Then there are no isogenies J(Dn)J(Dm)J(D_{n})\to J(D_{m}) defined over ,\mathbb{Q}_{\infty,\ell}.

The assumption that hn+h_{n}^{+} is odd for all nn may seem at first sight very restrictive. However, it is conjectured [3] that hn+1+=hn+h_{n+1}^{+}=h_{n}^{+} for all but finitely many pairs (,n)(\ell,n). Moreover, Washington [21] has shown that ordp(hn)\operatorname{ord}_{p}(h_{n}) remains bounded as nn\rightarrow\infty, for any fixed prime pp.

Proof of Lemma 35.

Write JnJ_{n} for J(Dn)J(D_{n}). Suppose there is an isogeny ϕ:JnJm\phi:J_{n}\rightarrow J_{m} defined over ,\mathbb{Q}_{\infty,\ell}. By Lemma 34 we may suppose that ϕ\phi has odd degree, and so ker(ϕ)Jn[4]=0\ker(\phi)\cap J_{n}[4]=0. Thus ϕ\phi restricted to Jn[4]J_{n}[4] induces an isomorphism of Gal(¯/,)\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}_{\infty,\ell})-modules Jn[4]Jm[4]J_{n}[4]\cong J_{m}[4]. In particular, ,(Jn[4])=,(Jm[4])\mathbb{Q}_{\infty,\ell}(J_{n}[4])=\mathbb{Q}_{\infty,\ell}(J_{m}[4]). As in the proof of Lemma 34 we have ,(Jn[2])=,(Jm[2])=Ω,+\mathbb{Q}_{\infty,\ell}(J_{n}[2])=\mathbb{Q}_{\infty,\ell}(J_{m}[2])=\Omega_{\infty,\ell}^{+}. Thus, by Lemma 32, the equality ,(Jn[4])=,(Jm[4])\mathbb{Q}_{\infty,\ell}(J_{n}[4])=\mathbb{Q}_{\infty,\ell}(J_{m}[4]) may be rewritten as

Ω,+({ϑn,iϑn,j}1i,j(1)/2)=Ω,+({ϑm,iϑm,j}1i,j(1)/2)\Omega_{\infty,\ell}^{+}\Big{(}\big{\{}\sqrt{\vartheta_{n,i}-\vartheta_{n,j}}\big{\}}_{1\leq i,j\leq(\ell-1)/2}\Big{)}\;=\;\Omega_{\infty,\ell}^{+}\Big{(}\big{\{}\sqrt{\vartheta_{m,i}-\vartheta_{m,j}}\big{\}}_{1\leq i,j\leq(\ell-1)/2}\Big{)}

where ϑr,i:=μri1(ζr+ζr1)\vartheta_{r,i}:=\mu_{r}^{i-1}(\zeta_{\ell^{r}}+\zeta_{\ell^{r}}^{-1}) where μr\mu_{r} is a cyclic generator of GrG_{r}. This, in particular, implies that

ϑn,2ϑn,1Ω,+({ϑm,iϑm,j}1i,j(1)/2)\sqrt{\vartheta_{n,2}-\vartheta_{n,1}}\;\in\;\Omega_{\infty,\ell}^{+}\Big{(}\big{\{}\sqrt{\vartheta_{m,i}-\vartheta_{m,j}}\big{\}}_{1\leq i,j\leq(\ell-1)/2}\Big{)}

We apply Lemma 30 to obtain

ϑn,2ϑn,1=±\displaystyle\vartheta_{n,2}-\vartheta_{n,1}=\pm 1i<j12(ϑm,iϑm,j)ei,jq2\displaystyle\prod_{1\leq i<j\leq\frac{\ell-1}{2}}(\vartheta_{m,i}-\vartheta_{m,j})^{e_{i,j}}\cdot q^{2}

for some integers ei,je_{i,j}\in\mathbb{Z} and qΩ,+q\in\Omega_{\infty,\ell}^{+}. By Lemma 31, we have qVnq\in V_{n}. The generator μn\mu_{n} of GnG_{n} is given by μn(ζn+ζn1)=ζna+ζna\mu_{n}(\zeta_{\ell^{n}}+\zeta_{\ell^{n}}^{-1})=\zeta_{\ell^{n}}^{a}+\zeta_{\ell^{n}}^{-a} where a×a\in\mathbb{Z}_{\ell}^{\times} has order (1)(\ell-1). Note

ϑn,2ϑn,1=ζna+ζnaζnζn1=ζna(1ζna+1)(1ζna1).\vartheta_{n,2}-\vartheta_{n,1}\;=\;\zeta_{\ell^{n}}^{a}+\zeta_{\ell^{n}}^{-a}-\zeta_{\ell^{n}}-\zeta_{\ell^{n}}^{-1}\;=\;\zeta_{\ell^{n}}^{-a}(1-\zeta_{\ell^{n}}^{a+1})(1-\zeta_{\ell^{n}}^{a-1}).

Thus,

(1ζna+1)(1ζna1)±ζn,Vm,Vn2.(1-\zeta_{\ell^{n}}^{a+1})(1-\zeta_{\ell^{n}}^{a-1})\;\in\;\langle\pm\zeta_{\ell^{n}},V_{m},V_{n}^{2}\rangle.

However, (a+1)±(a1)(mod)(a+1)\not\equiv\pm(a-1)\pmod{\ell}. Now Corollary 11 gives a contradiction. ∎

Proof of Theorem 6

Let 11\ell\geq 11. Let

g=(3)/4={(3)/43(mod4)(5)/41(mod4).g\;=\;\lfloor(\ell-3)/4\rfloor\;=\;\begin{cases}(\ell-3)/4&\text{$\ell\equiv 3\pmod{4}$}\\ (\ell-5)/4&\text{$\ell\equiv 1\pmod{4}$}.\end{cases}

Thus gg satisfies (22). Let DnD_{n} be as in Section 9. By Lemma 26, the hyperelliptic curve Dn/n1,D_{n}/\mathbb{Q}_{n-1,\ell} has genus gg, and good reduction away from {υ2,υ}\{\upsilon_{2},\upsilon_{\ell}\}. Moreover, by Lemma 29, we have DnD_{n} and DmD_{m} are non-isomorphic, even over ¯\overline{\mathbb{Q}}, for n>mn>m sufficiently large.

Now suppose

  1. (i)

    =2p+1\ell=2p+1 where pp is also an odd prime;

  2. (ii)

    22 as a primitive root modulo pp.

It then follows from Lemma 35 that J(Dn)J(D_{n}) and J(Dm)J(D_{m}) are non-isogenous over ,\mathbb{Q}_{\infty,\ell} provided hn+h_{n}^{+} is odd for all nn, where hn+h_{n}^{+} denotes the class number of Ωn,+\Omega_{n,\ell}^{+}. Write hnh_{n} for the class number of Ωn,\Omega_{n,\ell}. It is known thanks to the work of Estes [4] that h1h_{1} is odd for all primes \ell satisfying (i) and (ii) (a simplified proof of this result is given Stevenhagen [18, Corollary 2.3]). Moreover, Ichimura and Nakajima [8] show, for primes 509\ell\leq 509, that the ratio hn/h1h_{n}/h_{1} is odd for all nn. The primes 1150911\leq\ell\leq 509 satisfying both (i) and (ii) are 1111, 2323, 5959, 107107, 167167, 263263, 347347, 359359. Thus for these primes hnh_{n} is odd for all nn. As hn+hnh_{n}^{+}\mid h_{n} (see for example [22, Theorem 4.10]), we know for these primes that hn+h_{n}^{+} is odd for all nn. This completes the proof. ∎


Remark.

  • A key step in our proof of Theorem 6 is showing that J(Dn)[2]J(D_{n})[2] is irreducible as an 𝔽2[G]\mathbb{F}_{2}[G_{\infty}]-module whenever =2p+1\ell=2p+1 where pp is a prime having 22 as a primitive root. It can be shown for all other \ell that the 𝔽2[G]\mathbb{F}_{2}[G_{\infty}]-module J(Dn)[2]J(D_{n})[2] is in fact reducible.

  • Another key step is the argument in the proof of Lemma 35 showing that for n>mn>m sufficiently large, the Jacobians J(Dn)J(D_{n}) and J(Dm)J(D_{m}) are not related via odd degree isogenies defined over ,\mathbb{Q}_{\infty,\ell}. This step can be made to work, with very minor modifications to the argument, for all 11\ell\geq 11, and all choices of genus gg given in (22).

References

  • [1] D. Abramovich. Birational geometry for number theorists. In Arithmetic geometry, volume 8 of Clay Math. Proc., pages 335–373. Amer. Math. Soc., Providence, RI, 2009.
  • [2] M. H. Baker, E. González-Jiménez, J. González, and B. Poonen. Finiteness results for modular curves of genus at least 22. Amer. J. Math., 127(6):1325–1387, 2005.
  • [3] J. Buhler, C. Pomerance, and L. Robertson. Heuristics for class numbers of prime-power real cyclotomic fields. In High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, volume 41 of Fields Inst. Commun., pages 149–157. Amer. Math. Soc., Providence, RI, 2004.
  • [4] D. R. Estes. On the parity of the class number of the field of qqth roots of unity. volume 19, pages 675–682. 1989. Quadratic forms and real algebraic geometry (Corvallis, OR, 1986).
  • [5] G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73(3):349–366, 1983.
  • [6] N. Freitas, A. Kraus, and S. Siksek. On asymptotic Fermat over p\mathbb{Z}_{p}-extensions of \mathbb{Q}. Algebra Number Theory, 14(9):2571–2574, 2020.
  • [7] R. Greenberg. Introduction to Iwasawa theory for elliptic curves. In Arithmetic algebraic geometry (Park City, UT, 1999), volume 9 of IAS/Park City Math. Ser., pages 407–464. Amer. Math. Soc., Providence, RI, 2001.
  • [8] H. Ichimura and S. Nakajima. On the 2-part of the class numbers of cyclotomic fields of prime power conductors. J. Math. Soc. Japan, 64(1):317–342, 2012.
  • [9] K. Kato. pp-adic Hodge theory and values of zeta functions of modular forms. Number 295, pages ix, 117–290. 2004. Cohomologies pp-adiques et applications arithmétiques. III.
  • [10] B. Mazur. Rational points of abelian varieties with values in towers of number fields. Invent. Math., 18:183–266, 1972.
  • [11] D. E. Rohrlich. On LL-functions of elliptic curves and cyclotomic towers. Invent. Math., 75(3):409–423, 1984.
  • [12] E. F. Schaefer. 22-descent on the Jacobians of hyperelliptic curves. J. Number Theory, 51(2):219–232, 1995.
  • [13] J.-P. Serre. Abelian ll-adic representations and elliptic curves. W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute.
  • [14] J.-P. Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math., 15(4):259–331, 1972.
  • [15] H. Shapiro. An arithmetic function arising from the ϕ\phi function. Amer. Math. Monthly, 50:18–30, 1943.
  • [16] G. Shimura. Introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Publications of the Mathematical Society of Japan, No. 11.
  • [17] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986.
  • [18] P. Stevenhagen. Class number parity for the ppth cyclotomic field. Math. Comp., 63(208):773–784, 1994.
  • [19] M. Stoll. Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith., 98(3):245–277, 2001.
  • [20] I. R. Šafarevič. Algebraic number fields. In Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pages 163–176. Inst. Mittag-Leffler, Djursholm, 1963.
  • [21] L. C. Washington. The non-pp-part of the class number in a cyclotomic 𝐙p{\bf Z}_{p}-extension. Invent. Math., 49(1):87–97, 1978.
  • [22] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.
  • [23] J. S. Yelton. Hyperelliptic Jacobians and their associated l-adic Galois representations. ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–The Pennsylvania State University.
  • [24] Y. G. Zarhin and A. N. Parshin. Finiteness problems in Diophantine geometry, 2009.
  • [25] Y. G. Zarkhin. Endomorphisms of abelian varieties, cyclotomic extensions, and Lie algebras. Mat. Sb., 201(12):93–102, 2010.