This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cylinders’ percolation: decoupling and applications

Caio Alves Alfréd Rényi Institute of Mathematics, Budapest, 1053 Hungary.    Augusto Teixeira IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ - Brazil
Abstract

In this paper we establish a strong decoupling inequality for the cylinder’s percolation process introduced by Tykesson and Windisch in [18]. This model features a very strong dependency structure, making it difficult to study, and this is why such decoupling inequalities are desirable. It is important to notice that the type of dependencies featured by cylinder’s percolation is particularly intricate, given that the cylinders have infinite range (unlike some models like Boolean percolation) while at the same time being rigid bodies (unlike processes such as Random Interlacements). Our work introduces a new notion of fast decoupling, proves that it holds for the model in question and finishes with an application. More precisely, we prove that for a small enough density of cylinders, a random walk on a connected component of the vacant set is transient for all dimensions d3d\geq 3.


Keywords and phrases. MSC 2010: 60K35; 82B43.

1 Introduction

The Cylinder’s Percolation model, introduced by Tykesson and Windisch in [18] by suggestion of Itai Benjamini, consists of a random cloud of cylinders in d\mathbb{R}^{d}, for d3d\geq 3. While the width of these cylinders is fixed to be one, their central axes are randomly distributed according to a Poisson Point process in the space of lines. This Poisson process has intensity proportional to the Haar measure, which is the unique (up to multiplication constants) measure on the space of lines, which is invariant with respect to both rotations and translations of d\mathbb{R}^{d}. See Subsection 2.1 for a precise definition of the model and Figure 1 for an illustration. The intensity of the model is governed by a multiplicative constant uu, that modulates how many cylinders are present in the picture.

Refer to caption
Refer to caption
Figure 1: Simulations of the occupied (u=0.07u=0.07) and vacant (u=0.07u=0.07) sets of the Poisson cylinder process intersected with a ball of radius 2424.

In the original work [18], the authors proved that the vacant set left after removing the cylinders undergoes a percolative phase transition for d4d\geq 4. More precisely, for any dimensions d3d\geq 3 and for large enough intensity uu, they prove that the vacant set does not percolate, while for d4d\geq 4 and uu small enough there is an unbounded connected component on the vacant set. The existence of a percolative phase for the vacant set in d=3d=3 has been established in [9].

The above cited works make careful use of the weak decoupling inequalities that provide a polynomial decay of correlations present in the model. More precisely, in Lemma 3.3 of [18], the authors prove that for any functions ff and gg that only depend on the configuration of the cylinder set inside balls B(x,r)B(x,r) and B(y,r)B(y,r) respectively, we have

|𝔼u(fg)𝔼u(f)𝔼(g)|cu((r+1)2|xy|)d1.\big{|}\mathbb{E}^{u}(fg)-\mathbb{E}^{u}(f)\mathbb{E}(g)\big{|}\leq cu\Big{(}\frac{(r+1)^{2}}{|x-y|}\Big{)}^{d-1}. (1.1)

The main weakness of the decoupling inequality (1.1) is its slow decay of covariance which is related to the probability that the same cylinder hits the two balls B1B_{1} and B2B_{2}.

Although [18] and [9] have successfully employed the above polynomial decay to establish the existence of a phase transition for the model (through detailed constructions), such weak decoupling does not allow us to prove more refined properties of the model as the ones we present in Sections 6 and 7.

For other dependent percolation models such as Random Interlacements, better decorrelation bounds have been obtained that decay stretched exponentially, see [14]. These bounds use a small sprinkling in the intensity of the process in order to blur (and effectively dominate) the dependence induced by objects that touch both balls. In this article we employ a similar technique, but due to the rigidity of cylinders, we need to employ sprinklings both on the density of cylinders and in their radii, so that we are able to prove a decay that is faster than polynomial, see Theorem 1.1 below.


In order to state precisely our result, we have to introduce a notation for the cylinder set at intensity uu and radius ρ\rho. As mentioned earlier, the cylinder’s process is governed by a Poisson Point Process on the space of lines in d\mathbb{R}^{d}. This process has an intensity u0u\geq 0 and can be written as ω=i0δli\omega=\sum_{i\geq 0}\delta_{l_{i}} where lil_{i} are lines in d\mathbb{R}^{d}, see (2.2) for more details. Given this point measure, we define the cylinder’s set with radius ρ\rho as

𝒞uρ=𝒞uρ(ω)=i0B(li,ρ),\mathcal{C}^{\rho}_{u}=\mathcal{C}^{\rho}_{u}(\omega)=\bigcup_{i\geq 0}B(l_{i},\rho), (1.2)

where B(A,r)B(A,r) stands for the set of points within distance at most ρ\rho of the line lil_{i}.

Given two balls B1(x1,L)B_{1}(x_{1},L) and B2(x2,L)B_{2}(x_{2},L), our main Theorem 1.1 below can be understood as controlling the dependence between what happens with the cylinder process at B1B_{1} and B2B_{2}. For this we will make a sprinkling in the intensity of the cylinders (uu+δu\to u+\delta) and on their radii (ρρ+ε\rho\to\rho+\varepsilon).

Theorem 1.1.

There exists a constant c3>0c_{\textnormal{\tiny\ref{c:2boxdec}}}>0 depending only on the dimension dd such that, for any ε,δ,α(0,1)\varepsilon,\delta,\alpha\in(0,1) and ρ[1,4]\rho\in[1,4], and any pair of increasing functions

fi:Ω[0,1], measurable with respect to σ(𝒞uρBi), for i=1,2,f_{i}:\Omega\to[0,1],\text{ measurable with respect to $\sigma(\mathcal{C}^{\rho}_{u}\cap B_{i})$},\text{ for~{}$i=1,2$}, (1.3)

if |x1x2|L2+α/ε|x_{1}-x_{2}|\geq L^{2+\alpha}/\varepsilon we have

𝔼[f1(𝒞ρu)f2(𝒞ρu)]𝔼[f1(𝒞ρ+εu)]𝔼[f2(𝒞ρ+εu+δ)]+c21exp{c3δεd1Lα(d1)}.\mathbb{E}\big{[}f_{1}\big{(}\mathcal{C}^{u}_{\rho}\big{)}f_{2}\big{(}\mathcal{C}^{u}_{\rho}\big{)}\big{]}\leq\;\mathbb{E}\big{[}f_{1}\big{(}\mathcal{C}^{u}_{\rho+\varepsilon}\big{)}\big{]}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{C}^{u+\delta}_{\rho+\varepsilon}\big{)}\big{]}+c_{2}^{-1}\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}. (1.4)

An analogous result for non-increasing functions also holds, see Theorem 3.1.

Remark 1.

This is a good point to make a few observations.

  1.   a)

    The upper bound presented in Theorem 1.1 is the most relevant part of the decoupling, since the corresponding lower bound holds trivially without any error due to the FKG inequality.

  2.   b)

    Note that unlike (1.1), we have a control over the dependencies that decays as a stretched exponential, instead of as a polynomial.

  3.   c)

    Inequalities that are very similar to the one presented in Theorem 1.1 have been previously established for models such as Random Interlacements [14], Gaussian Free Field [13] and Random Walk Loop Soup [1]. And although such results have proven themselves to be very useful in studying the underlying models [15, 5, 16, 7, 6], the techniques developed so far could not be adapted to cylinders’ percolation due to the rigidity of cylinder’s themselves.

  4.   d)

    Note that all of the above mentioned decoupling inequalities (in [14, 13, 6]) involve a sprinkling uu+δu\to u+\delta, similar to the one we employ in our main result. However, in the current article we also employ a second sprinkling (with respect to the radii of the cylinders from ρρ+ε\rho\to\rho+\varepsilon) which is crucial to deal with the rigidity of these objects.

  5.   e)

    As an indication of how heavy the dependencies induced by the Poisson Cylinder’s model are, it is instructive to observe the effect of conditioning the process on its trace inside a box. In this case, one would be able to extrapolate indefinitely the cylinders that touch the box, effectively obtaining an infinite-range information about the process on the remainder of d\mathbb{R}^{d}.


Although the above remark mentions that decoupling inequalities have proved themselves useful in the study of other models, we felt that presenting Theorem 1.1 without any applications would feel too abstract for the readers. For this reason we have decided to include one interesting application of Theorem 1.1 to the study of a random walk on the vacant set left by this soup of cylinders.

We denote the vacant set left by random cylinders by 𝒱uρ=d𝒞uρ\mathcal{V}^{\rho}_{u}=\mathbb{R}^{d}\setminus\mathcal{C}^{\rho}_{u}. As mentioned previously, this set undergoes a percolation phase transition as we vary uu, in particular for small enough values of u>0u>0, 𝒱uρ\mathcal{V}^{\rho}_{u} contains almost surely an unbounded connected component. This result has been specially difficult to establish for d=3d=3, requiring a separate article [9] and the proof strongly relies on planarity arguments, since the infinite connected component is constructed inside a two-dimensional surface.

Given the above difficulties, we have decided to focus this article in a question that is inherently non-planar. More precisely whether a random walk on the infinite component of 𝒱u1\mathcal{V}^{1}_{u} is transient or not. This is the content of the following theorem.

Theorem 1.2.

For any d3d\geq 3, one endows the set d\mathbb{Z}^{d} with nearest neighbor edges ={{x,y};|xy|=1}\mathcal{E}=\big{\{}\{x,y\};|x-y|=1\big{\}} and consider the random subset of edges

:={{x,y};the whole line segment connecting x to y is contained in 𝒱u1}.\mathcal{E}^{\prime}:=\bigg{\{}\begin{aligned} \{x,y\}\in\mathcal{E};&\text{the whole line segment connecting $x$ to $y$ }\\ &\text{is contained in $\mathcal{V}^{1}_{u}$}\end{aligned}\bigg{\}}.

Then for uu small enough depending only on the dimension, the graph (d,)(\mathbb{Z}^{d},\mathcal{E}^{\prime}) contains a connected component that is transient for the simple random walk.

Remark 2.

Observe that the above result gives in particular the existence of an unbounded connected component of 𝒱u1\mathcal{V}^{1}_{u}, as previously proved in [9].

Theorem 1.2 is stated in terms of a random walk (instead of a diffusion) to avoid technicalities involved in the construction and analysis of the Brownian Motion in the presence of potentially complex boundaries, see Remark 5.

It is also interesting to note that the transience of the simple random walk is an intrinsically non-planar property. This is the reason why we have chosen to present this result that does not rely on planarity as [9].

Previous results on the model

As mentioned earlier, the Poisson Cylinder’s process was introduced in [18], where a phase transition for the percolation of its vacant set was proved for all d4d\geq 4. Later in [9] the phase transition for d=3d=3 was established in a slab. Since then, the model has been studied and extended in various directions.

The connectivity of the occupied set was proved in [4], while a shape theorem was obtained in [10]. Cylinder models have been constructed in the hyperbolic space [3] and with axes that are parallel to the Euclidean basis [11, 12]. A fractal version of the cylinder’s percolation model was presented in [2]. Also the intersection of cylinder’s percolation with a plane gives rise to a random collection of stretched ellipses, whose more in depth exploration was done in [17].

Overview of the proofs

Let us now give a brief description of the proof of Theorem 1.1. Observe first that one can focus on the cylinders that intersect both boxes B1B_{1} and B2B_{2}, since these are the cylinders that can carry dependence between them.

Roughly speaking, we will “perturb” each such cylinder B(li,ρ)B(l_{i},\rho), by first making them slightly thicker B(li,ρ+ϵ)B(l_{i},\rho+\epsilon), as in the statement of Theorem 1.1. The most important observation at this point is that this thickening allows us to change slightly the original cylinder’s direction (say from B(li,ρ)B(l_{i},\rho) to B(li,ρ)B(l^{\prime}_{i},\rho)), while still guaranteeing that B(li,ρ)B1B(li,ρ+ϵ)B(l_{i}^{\prime},\rho)\cap B_{1}\subseteq B(l_{i},\rho+\epsilon).

This directional perturbation (together with the fact that the two boxes are well separated) is sufficient to make sure that the landing point of B(li,ρ)B(l^{\prime}_{i},\rho) in B2B_{2} is very delocalized. Therefore, the process of “perturbed” cylinders viewed from B2B_{2} looks indistinguishable from an independent cloud of random cylinders. At this point we sprinkle the intensity uu of the process in order to dominate this cloud in B2B_{2}, finishing the proof of Theorem 1.1.

The proof of Theorem 1.2 follows a classical argument by Thompson, that provides a systematic way to prove transience of a simple random walk on a graph by building a finite energy flow from the origin to infinity. The construction of this flow follows a multi-scale argument, since this technique is very well suited to the decoupling inequalities that we established before.

It is important to notice that Theorem 1.1 is not strong enough to be used in the renormalization schemes that we employ in our applications. Therefore we prove a slightly strengthened version of Theorem 1.1 in Section 4, see Theorem 4.1.

Open problems

We believe that several questions for percolation of cylinders have been left unanswered because of a lack of a fast decoupling inequality like the one presented in Theorem 1.1.

For this reason we list here some of the directions for which research in this model may now advance in the form of a list of open questions, all concerning the phase u>0u>0 small enough:

  1.   a)

    Is there a unique unbounded component for the vacant set left by cylinders?

  2.   b)

    Can we control on the radius of C0C_{0} (the cluster of 𝒱u1\mathcal{V}^{1}_{u} containing the origin)? More precisely, can one prove a decay for [C0B(0,r),C0 bounded]\mathbb{P}[C_{0}\not\subset B(0,r),C_{0}\text{ bounded}]?

  3.   c)

    Can one establish quantitative bounds for the time constant of the first passage percolation on 𝒱u1\mathcal{V}^{1}_{u}?

  4.   d)

    Does a Functional Central Limit Theorem hold for the Brownian motion on 𝒱u1\mathcal{V}^{1}_{u}?

  5.   e)

    Is it true that the phase transition for percolation on the Poisson Cylinder’s model is sharp? This has been established for strongly dependent percolation models such as level sets of the Gaussian Free Field [7] and Random Interlacements [8].

Although all of the above problems require new ideas and techniques to be solved, we believe that the present work will make these questions more approachable and appealing for future works.

Organization of the paper

This paper is organized as follows. In Section 2, we introduce the basic notation and the definition of the Poisson Cylinder’s model, finishing with proofs for some of its basic properties. Our main decoupling inequality Theorem 1.1 is re-stated and proved it Section 3. Section 4 is dedicated to extending our main theorem to three boxes, which is surprisingly necessary in order to prove our main applications. Finally, Sections 5, 6 and 7 respectively: presents our main renormalization scheme, constructs the paths and builds the flows that culminate in the proof of Theorem 1.2.

A word about constants

Throughout the text, the unnumbered letter cc will denote a positive constant depending only on the dimension, its value could change from line to line. Numbered letters c0,c1c_{0},c_{1}\dots are also positive constants, but their values are fixed on their first use in the text.

Acknowledgments

During this research, AT has been supported by grants “Projeto Universal” (406250/2016-2) and “Produtividade em Pesquisa” (304437/2018-2) from CNPq and “Jovem Cientista do Nosso Estado”, (202.716/2018) from FAPERJ. CA was supported by the FAPESP grant 2013/24928, the Noise-Sensitivity Everywhere ERC Consolidator Grant 772466, and the DFG Grant SA 3465/1-1.

2 Preliminaries

We begin this section with the basic notation that will be used throughout this paper. We write \mathbb{N} for the set {0,1,2,}\{0,1,2,\dots\}. Let d3d\geq 3 be a fixed integer. We let |||\cdot| denote the Euclidean norm on d\mathbb{R}^{d}. Given r>0r>0 and xdx\in\mathbb{R}^{d}, we define B(x,r)B(x,r) as the closed Euclidean ball of radius rr centered at xx and B(x,r)B_{\infty}(x,r) as the closed ball in the ll_{\infty}-norm with same center and radius. Given A,BdA,B\subset\mathbb{R}^{d} we define

dist(A,B):=inf{|xy|:xA,yB},\operatorname{dist}(A,B):=\inf\{|x-y|:x\in A,y\in B\},

the Euclidean distance between AA and BB, and

B(A,r):=xAB(x,r),B(A,r):=\bigcup_{x\in A}B(x,r),

the set of all points with distance at most rr from AA.

2.1 The Poisson cylinder process

Regarding k\mathbb{R}^{k}, for some k0k\geq 0, we denote its canonical basis by 𝐞1,,𝐞k{\bf e}_{1},\dots,{\bf e}_{k}, its typical element by (x1,,xk)(x_{1},\dots,x_{k}), its Borel σ\sigma-algebra by (k)\mathcal{B}(\mathbb{R}^{k}) and its Lebesgue measure by dvk\mathrm{d}v_{k}. We let ν\nu denote the unique normalized Haar measure of SOdSO_{d}, the topological group of rigid rotations of d\mathbb{R}^{d}.

Let us now give a overview of the definition of the Poisson cylinder percolation process on d\mathbb{R}^{d} (defined in Section 22 of [18]), a more detailed description will be presented later. Define the set 𝕃\mathbb{L} of lines (or affine Grassmanian of 11-dimensional affine spaces) of d\mathbb{R}^{d}. We start with a Poisson point process in that plane d1×{0}d\mathbb{R}^{d-1}\times\{0\}\subsetneq\mathbb{R}^{d} with intensity udvd1u\mathrm{d}v_{d-1}, where uu is a positive real number. Through each of the points of the process we draw a line orthogonal to the plane. We then sample an element of SOdSO_{d} according to ν\nu independently for each line. Finally, to each line we apply its associated random rotation around the origin of d\mathbb{R}^{d}. The resulting random subset of 𝕃\mathbb{L} is stationary under translations and rotations of d\mathbb{R}^{d}. By considering this set of lines as a subset of d\mathbb{R}^{d}, and then viewing each line as the axis of a cylinder with radius 11, we arrive at the definition of the cylinder set.

In more rigorous terms, given xd1x\in\mathbb{R}^{d-1}, we let

τx:d1d1 defined through τx(y)=x+y\tau_{x}:\mathbb{R}^{d-1}\to\mathbb{R}^{d-1}\text{ defined through }\tau_{x}(y)=x+y

denote the translation by xx in d1\mathbb{R}^{d-1}. We identify d1\mathbb{R}^{d-1} with d1×{0}\mathbb{R}^{d-1}\times\{0\} and consider SOdSO_{d} endowed with its natural topology. We then consider the function

λ:d1×SOd𝕃 that takes (x,Γ) and maps to Γ(τx({t𝐞d:t})),\lambda:\mathbb{R}^{d-1}\times SO_{d}\to\mathbb{L}\text{ that takes }(x,\Gamma)\text{ and maps to }\Gamma(\tau_{x}(\{t{\bf e}_{d}:t\in\mathbb{R}\})), (2.1)

and the finest topology on 𝕃\mathbb{L} that makes λ\lambda continuous. We construct from this topology the σ\sigma-algebra (𝕃)\mathcal{B}(\mathbb{L}) of borelian sets of 𝕃\mathbb{L}. We also use the pushforward λ\lambda_{*} associated to λ\lambda to define the measure

μ=λ(dvd1ν)\mu=\lambda_{*}(\mathrm{d}v_{d-1}\otimes\nu) (2.2)

on (𝕃,(𝕃))(\mathbb{L},\mathcal{B}(\mathbb{L})). We introduce the space of locally finite point measures on 𝕃×+\mathbb{L}\times\mathbb{R}_{+}:

Ω={i0δ(li,ui);(li,ui)𝕃×+ and i0δ(li,ui)(A)<, for every compact A(𝕃×+)},\Omega=\Bigg{\{}\sum_{i\geq 0}\delta_{(l_{i},u_{i})};\begin{array}[]{c}\;(l_{i},u_{i})\in\mathbb{L}\times\mathbb{R}_{+}\text{ and }\sum_{i\geq 0}\delta_{(l_{i},u_{i})}(A)<\infty,\\ \text{ for every compact $A\in\mathcal{B}(\mathbb{L}\times\mathbb{R}_{+})$}\end{array}\Bigg{\}}, (2.3)

endowed with the σ\sigma-algebra \mathcal{E} generated by the evaluation maps

φA:i0δ(li,ui)Ωi0δ(li,ui)(A).\varphi_{A}:\sum_{i\geq 0}\delta_{(l_{i},u_{i})}\in\Omega\mapsto\sum_{i\geq 0}\delta_{(l_{i},u_{i})}(A)\in\mathbb{Z}.

We are now able to construct the space (Ω,,)(\Omega,\mathcal{E},\mathbb{P}) of the Poisson point process on 𝕃×+\mathbb{L}\times\mathbb{R}_{+} with intensity measure μdv1\mu\otimes\mathrm{d}v_{1}, where dv1\mathrm{d}v_{1} denotes the Lebesgue measure on +\mathbb{R}_{+}. In particular, for u0u\geq 0, we consider the restriction of said Poisson point process to Ω×[0,u]\Omega\times[0,u], denoting its distribution as PLP(uμ)\mathrm{PLP}(u\mu). In what follows we let ω\omega be distributed according to PLP(uμ)\mathrm{PLP}(u\mu), and we will frequently identify ω\omega with its associated unlabeled set of lines in 𝕃\mathbb{L}. The cylinder set (with radius 11 and intensity uu) is then defined as

𝒞u=𝒞u(ω):=i;uiuB(li,1).\mathcal{C}_{u}=\mathcal{C}_{u}(\omega):=\bigcup_{i;u_{i}\leq u}B(l_{i},1). (2.4)

The corresponding vacant set is defined as

𝒱u=𝒱u(ω):=d𝒞u.\mathcal{V}_{u}=\mathcal{V}_{u}(\omega):=\mathbb{R}^{d}\setminus\mathcal{C}_{u}. (2.5)

It will be important for us to define cylinder sets with different radii. Given ρ>0\rho>0, we define

𝒞uρ=𝒞uρ(ω):=liωB(li,ρ),\mathcal{C}_{u}^{\rho}=\mathcal{C}_{u}^{\rho}(\omega):=\bigcup_{l_{i}\in\omega}B(l_{i},\rho), (2.6)

the cylinder set with intensity uu and radius ρ\rho. The complementary vacant set is defined analogously:

𝒱uρ:=d𝒞uρ.\mathcal{V}_{u}^{\rho}:=\mathbb{R}^{d}\setminus\mathcal{C}_{u}^{\rho}. (2.7)

The probability measure and expectation associated with these random sets will be denoted by uρ\mathbb{P}_{u}^{\rho} and 𝔼uρ\mathbb{E}_{u}^{\rho}, respectively. When the intensity of the process and radius of the cylinders are clear from the context, or when speaking of the measure which couples all the processes together on 𝕃×+\mathbb{L}\times\mathbb{R}_{+}, we will drop the indexes, using simply \mathbb{P} and 𝔼\mathbb{E}.

Given a bounded measurable set AdA\subset\mathbb{R}^{d}, let 𝒩Au,ρ\mathcal{N}_{A}^{u,\rho} denote the number of cylinders of 𝒞uρ\mathcal{C}_{u}^{\rho} intersecting AA. We write

Au,ρ(ω):=(𝒞uρ(ω)A,𝒩Au,ρ(ω))\mathcal{M}_{A}^{u,\rho}(\omega):=\left(\mathcal{C}_{u}^{\rho}(\omega)\cap A,\mathcal{N}_{A}^{u,\rho}(\omega)\right) (2.8)

for the variable enconding both the cylinder set intersected with AA and the number of cylinders intersecting AA. Given (A)×\mathcal{B}(A)\times\mathbb{N}, the set of Borelian subsets of AA times \mathbb{N}, we consider the partial order \preceq which, for B,B(A)B,B^{\prime}\in\mathcal{B}(A) and m,mm,m^{\prime}\in\mathbb{N}, yields

(B,m)(B,m)BB and mm.(B,m)\preceq(B^{\prime},m^{\prime})\iff B\subseteq B^{\prime}\text{ and }m\leq m^{\prime}.

We say that a variable ff, measurable with respect to

σ({Au,ρ(ω);u,ρ+}),\sigma(\{\mathcal{M}_{A}^{u,\rho}(\omega);u,\rho\in\mathbb{R}_{+}\}),

is increasing if for u,u,ρ,ρ+u,u^{\prime},\rho,\rho^{\prime}\in\mathbb{R}_{+} and for different realizations ω,ω\omega,\omega^{\prime} of the Poisson line process such that Au,ρ(ω)Au,ρ(ω)\mathcal{M}_{A}^{u,\rho}(\omega)\preceq\mathcal{M}_{A}^{u^{\prime},\rho^{\prime}}(\omega^{\prime}), we have f(Au,ρ(ω))f(Au,ρ(ω))f(\mathcal{M}_{A}^{u,\rho}(\omega))\leq f(\mathcal{M}_{A}^{u^{\prime},\rho^{\prime}}(\omega^{\prime})). We say gg is decreasing if g-g is increasing.

Though certainly useful, this previous characterization of the Poisson cylinder process will not satisfy our needs completely. It will be crucial to have a characterization that explicitly gives the intersection point of each cylinder axis in 𝕃\mathbb{L} with a given hyperplane, as well as the direction of each axis when viewed from its associated intersection point. With this in mind, we define the set of lines of 𝕃\mathbb{L} which are not contained in any of the planes parallel to d1×{0}\mathbb{R}^{d-1}\times\{0\},

𝕃:=𝕃z{l𝕃:ld1×{z}},\mathbb{L}^{*}:=\mathbb{L}\setminus\bigcup_{z\in\mathbb{R}}\left\{l\in\mathbb{L}:l\subset\mathbb{R}^{d-1}\times\{z\}\right\},

which has total μ\mu-measure. We also define the “northern hemisphere” of Sd1S^{d-1}:

𝔻:={wd:|w|=1,w,𝐞d>0}.\mathbb{D}:=\left\{w\in\mathbb{R}^{d}:|w|=1,\langle w,{\bf e}_{d}\rangle>0\right\}.

We can unequivocally associate to each line l𝕃l\in\mathbb{L}^{*} its intersection point with d1×{0}\mathbb{R}^{d-1}\times\{0\}, denoted by p(l)p(l), and its direction d(l)𝔻d(l)\in\mathbb{D} when viewed from p(l)p(l). The function

ξ:𝕃(d1×{0})×𝔻 defined through ξ(l)=(p(l),d(l))\xi:\mathbb{L}^{*}\to(\mathbb{R}^{d-1}\times\{0\})\times\mathbb{D}\text{ defined through }\xi(l)=(p(l),d(l)) (2.9)

is clearly a bijection. Using the underlying measure structure inherited from d\mathbb{R}^{d}, we introduce in 𝔻\mathbb{D} the probability measure χ\chi defined by

χ(A):=c2.9Aw,𝐞dσ(dw),\chi(A):=c_{\textnormal{\tiny\ref{c:phi}}}\int_{A}\langle w,{\bf e}_{d}\rangle\sigma(\mathrm{d}w), (2.10)

for every measurable set A𝔻A\subseteq\mathbb{D}, where c2.9>0c_{\textnormal{\tiny\ref{c:phi}}}>0 is a normalizing constant and σ\sigma is the Lebesgue measure on the sphere Sd1𝔻S^{d-1}\supset\mathbb{D}. We can then use the bijection ξ\xi to construct a new probability measure on 𝕃\mathbb{L}^{*}:

μ~:=ξ1(dvd1χ).\tilde{\mu}:=\xi^{-1}_{*}(\mathrm{d}v_{d-1}\otimes\chi).

Since μ~(𝕃𝕃)=0\tilde{\mu}(\mathbb{L}\setminus\mathbb{L}^{*})=0, we can extend the measure μ~\tilde{\mu} to the whole set 𝕃\mathbb{L} without any trouble. Using Proposition 2.2.12.2.1 of [19] we can then see that, up to a constant factor, μ\mu and μ~\tilde{\mu} are equal: there exists a constant c2.9>0c_{\textnormal{\tiny\ref{c:mu}}}>0 such that

μ=c2.9μ~.\mu=c_{\ref{c:mu}}\tilde{\mu}. (2.11)

Then by basic properties of the Poisson point process, we have

Lemma 2.1.

We can regard any ω=dPLP(uμ)\omega\stackrel{{\scriptstyle d}}{{=}}\mathrm{PLP}(u\mu) as being sampled in the following way:

  • (i)

    Sample a Poisson point process iδxi\sum_{i}\delta_{x_{i}} in d1×{0}\mathbb{R}^{d-1}\times\{0\} with intensity measure given by uc2.9dvd1uc_{\ref{c:mu}}\mathrm{d}v_{d-1}

  • (ii)

    Independently for each point xix_{i} sampled by the above process, sample a vector di𝔻d_{i}\in\mathbb{D} according to the measure χ\chi.

  • (iii)

    For each xix_{i}, consider the line passing through xix_{i} with direction did_{i} relative to the plane d1×{0}\mathbb{R}^{d-1}\times\{0\}.

  • (iv)

    The resulting collection of lines will have the desired distribution.

Given a compact set AdA\subset\mathbb{R}^{d}, we denote by 𝕃A\mathbb{L}_{A} the set of lines in 𝕃\mathbb{L} that intersect AA. For BdB\subset\mathbb{R}^{d} also compact, we also write 𝕃A,B:=𝕃A𝕃B\mathbb{L}_{A,B}:=\mathbb{L}_{A}\cap\mathbb{L}_{B}, the set of lines that intersect both AA and BB.

3 Decoupling inequalities

In this section we will establish a decoupling inequality for the cylinder percolation process, one of the main results of our paper, and also necessary for the subsequent investigations here present. Heuristically we will show that, after a sprinkling of both the Poisson process intensity and the cylinders’ radii, the correlation between the states of the process in two distant boxes becomes stretched exponentially small in the distance, at least when considering monotone functions of said states.

We start with the basic notation needed. Fix the box radius L>0L>0 and three numbers: α(0,1)\alpha\in(0,1), related to the distance between the boxes, the radius-sprinkling value ε(0,1)\varepsilon\in(0,1) and the initial cylinder radius ρ[1,4]\rho\in[1,4].

Given these values we can define the boxes

B1:=B(0,L)andB2:=B1+(2L+L2+αε1)𝐞d,B_{1}:=B_{\infty}(0,L)\qquad\text{and}\qquad B_{2}:=B_{1}+(2L+L^{2+\alpha}\varepsilon^{-1})\cdot{\bf e}_{d}, (3.1)

so that the distance between B1B_{1} and B2B_{2} equals L2+αε1L^{2+\alpha}\varepsilon^{-1}.

The main result of this section states:

Theorem 3.1.

There exists a constant c3>0c_{\textnormal{\tiny\ref{c:2boxdec}}}>0 depending only on the dimension dd such that, for any δ>0\delta>0α,ε(0,1)\alpha,\varepsilon\in(0,1)ρ[1,4]\rho\in[1,4], and any increasing variables

fi:Ω[0,1], measurable with respect to σ({Biu,ρ(ω);u,ρ+})f_{i}:\Omega\to[0,1],\text{ measurable with respect to $\sigma(\{\mathcal{M}_{B_{i}}^{u,\rho}(\omega);u,\rho\in\mathbb{R}_{+}\})$} (3.2)

for i=1,2i=1,2, we have

𝔼[f1(B1u,ρ(ω))f2(B2u,ρ(ω))]𝔼[f1(B1u,ρ+ε(ω))]𝔼[f2(B2u+δ,ρ+ε(ω))]+c21exp{c3δεd1Lα(d1)}.\begin{split}\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}\big{]}\leq\;&\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}(\omega)\big{)}\big{]}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}(\omega)\big{)}\big{]}\\ &+c_{2}^{-1}\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}.\end{split} (3.3)

Analogously, if

gi:Ω[0,1] are measurable with respect to {Biu,ρ(ω);u,ρ+}g_{i}:\Omega\to[0,1]\text{ are measurable with respect to }\{\mathcal{M}_{B_{i}}^{u,\rho}(\omega);u,\rho\in\mathbb{R}_{+}\} (3.4)

and decreasing variables for i=1,2i=1,2, then we have

𝔼[g1(B1u,ρ(ω))g2(B2u,ρ(ω))]𝔼[g1(B1u,ρε(ω))]𝔼[g2(B2uδ,ρε(ω))]+c21exp{c3δεd1Lα(d1)}.\begin{split}\mathbb{E}\big{[}g_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}g_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}\big{]}\leq\;&\mathbb{E}\big{[}g_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho-\varepsilon}(\omega)\big{)}\big{]}\mathbb{E}\big{[}g_{2}\big{(}\mathcal{M}_{B_{2}}^{u-\delta,\rho-\varepsilon}(\omega)\big{)}\big{]}\\ &+c_{2}^{-1}\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}.\end{split} (3.5)
Remark 3.

We should emphasize that the dependecy present between B1u,ρ(ω)\mathcal{M}_{B_{1}}^{u,\rho}(\omega) and B2u,ρ(ω))\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)} comes exactly from the cylinders which are able to intersect both boxes B1B_{1} and B2B_{2}. In fact, inequality (1.1) from [18] comes from a bound on the intensity measure of such cylinders.

What follows is a (very) heuristic roadmap explaining how we will obtain inequality (3.3) (inequality (3.5) is obtained in an analogous way).

Roadmap for the 2-box decoupling inequality

  • (i)

    We notice that, for large LL, the radii of the boxes B1B_{1} and B2B_{2} are much smaller than their mutual distance. Therefore, the lines that touch both boxes (which are the ones that may carry information between them) are those whose directions are closely aligned to 𝐞d{\bf e}_{d}. During the proof, we make small perturbations to the directions of these “problematic” lines which are “close” to intersecting both boxes B1B_{1} and B2B_{2}. These perturbations being done independently for each line and for each box;

  • (ii)

    We show that inside B1B_{1}, the “problematic” cylinders are still covered by their perturbed versions, so long as the perturbed cylinders have a slightly enlarged thickness;

  • (iii)

    Finally, we study the influence that the enlarged cylinder set intersecting B1B_{1} has on the respective set intersecting B2B_{2}. We show, using a poissonization argument, that this influence can be dominated by a sprinkling of the parameter uu, at least when we exclude an event with vanishingly small probability.

In order to rigorously implement the above plan we will need additional definitions. We consider Π1:=d1×{L}\Pi_{1}:=\mathbb{R}^{d-1}\times\{L\}, and Π2=d1×{L+L2+αε1}\Pi_{2}=\mathbb{R}^{d-1}\times\{L+L^{2+\alpha}\varepsilon^{-1}\}, so that Π1\Pi_{1} and Π2\Pi_{2} contain opposing faces of the hypercubes B1B_{1} and B2B_{2}.

Refer to caption
Refer to caption
Figure 2: Two images showing representations of some of the sets involved in the decoupling inequality.

The sets Π1\Pi_{1} and Π2\Pi_{2} allow us to consider two different parametrizations of the lines in 𝕃\mathbb{L}^{*}. For i=1,2i=1,2, we characterize a line l𝕃l\in\mathbb{L}^{*} by pi(l)p_{i}(l), its intersection point with Πi\Pi_{i}, and its direction di(l)𝔻d_{i}(l)\in\mathbb{D}, in an analogous manner to that of (2.9). We note that d1(l)=d2(l)=d(l)d_{1}(l)=d_{2}(l)=d(l), and that, by translation invariance of μ\mu, we can sample PLP(uμ)\mathrm{PLP}(u\mu) in the manner of Lemma 2.1, starting with a Poisson point process in either Π1\Pi_{1} or Π2\Pi_{2} instead of d1×{0}\mathbb{R}^{d-1}\times\{0\}.

It is important to consider the subsets of Πi\Pi_{i} where the “problematic” lines start:

S1:=[2L,2L]d1×{L}Π1,S2:=[2L,2L]d1×{L+L2+αε1}Π2.\begin{array}[]{cclcl}S_{1}&:=&[-2L,2L]^{d-1}\times\{L\}&\subset&\Pi_{1},\\ S_{2}&:=&[-2L,2L]^{d-1}\times\{L+L^{2+\alpha}\varepsilon^{-1}\}&\subset&\Pi_{2}.\end{array} (3.6)

Since we are going to perturb these lines, it is also important to consider a larger version of the above sets

S1:=[2L1+α,2L1+α]d1×{L}Π1,S2:=[2L1+α,2L1+α]d1×{L+L2+αε1}Π2.\begin{array}[]{cclcl}S_{1}^{\prime}&:=&[-2L^{1+\alpha},2L^{1+\alpha}]^{d-1}\times\{L\}&\subset&\Pi_{1},\\ S_{2}^{\prime}&:=&[-2L^{1+\alpha},2L^{1+\alpha}]^{d-1}\times\{L+L^{2+\alpha}\varepsilon^{-1}\}&\subset&\Pi_{2}.\end{array} (3.7)

The (d1)(d-1)-dimensional squares S1,S2S_{1}^{\prime},S_{2}^{\prime} are the sets which will tell us if a line is “close” to B1,B2B_{1},B_{2}, respectively, in the context of item (i) of our Roadmap. Note that S1S1S_{1}\subset S_{1}^{\prime} and S2S2S_{2}\subset S_{2}^{\prime}, see Figure 2.

As we mentioned in the proof overview, the “problematic” lines are those aligned with the vertical direction. It is therefore natural to define the spherical cap centered at the “north pole” 𝐞d{\bf e}_{d} with (Euclidean metric) diameter ε/(8L)\varepsilon/(8L):

Dε,L:={x𝔻;dist(x,𝐞d)<ε(8L)1}.D_{\varepsilon,L}:=\left\{x\in\mathbb{D};\operatorname{dist}(x,{\bf e}_{d})<\varepsilon(8L)^{-1}\right\}. (3.8)

Define also B~i:=B(Bi,ρ(1+ε))\tilde{B}_{i}:=B(B_{i},\rho(1+\varepsilon)), i=1,2i=1,2, and note that if a line does not intersect this open neighborhood of BiB_{i}, then the associated cylinder of radius ρ+ε\rho+\varepsilon does not intersect BiB_{i}. We note that, for sufficiently large LL,

in order for a line with direction in Dε,L to intersect ~Bi, it has also to intersect Si, for =i1,2. \begin{array}[]{c}\parbox[c]{433.62pt}{\centering in order for a line with direction in~{}$D_{\varepsilon,L}$ to intersect~{}$\tilde{B}_{i}$,\\ it has also to intersect~{}$S_{i}$, for~{}$i=1,2$.\@add@centering}\end{array} (3.9)

The final ingredient in our proof is a decomposition of our point measure into independent processes, distinguishing the lines depending on their directions and the sets they intersect. This decomposition will make it clear why the vertically aligned lines are the source of dependence between B1B_{1} and B2B_{2}.

Let us decompose the lines from

ωi0,uiuδ(li,ui)=dPLP(uμ),\omega\equiv\sum_{i\geq 0,u_{i}\leq u}\delta_{(l_{i},u_{i})}\stackrel{{\scriptstyle d}}{{=}}\mathrm{PLP}(u\mu),

intersecting B~i\tilde{B}_{i} into separate (but not necessarily disjoint) point measures. As we mentioned, the first two are not troublesome, as they are unable to carry information from the cylinder state inside one box to the other. On the other hand, controlling the dependencies associated to the third point measure is the main focus of this section. Consider

η10:=i;uiuδ(li,ui)𝟏{liB~1;d1(li)Dε,L},η20:=i;uiuδ(li,ui)𝟏{liB~2;d2(li)Dε,L},η:=i;uiuδ(li,ui)𝟏{d(li)Dε,L and either p1(l)S1 or p2(l)S2}.\begin{split}\eta_{1}^{0}&:=\sum_{i;\;u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{l_{i}\cap\tilde{B}_{1}\neq\varnothing;d_{1}(l_{i})\notin D_{\varepsilon,L}\},\\ \eta_{2}^{0}&:=\sum_{i;\;u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{l_{i}\cap\tilde{B}_{2}\neq\varnothing;d_{2}(l_{i})\notin D_{\varepsilon,L}\},\\ \eta&:=\sum_{i;\;u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{d(l_{i})\in D_{\varepsilon,L}\text{ and either }p_{1}(l)\in S_{1}^{\prime}\text{ or }p_{2}(l)\in S_{2}^{\prime}\}.\end{split} (3.10)

We note that, by elementary trigonometry, for large enough LL the lines of η10\eta_{1}^{0} do not intersect B~2\tilde{B}_{2}, and the same holds changing the places of the indices 11 and 22.

We can now define the way in which we will perturb the directions of the cylinders’ axes inside each box, as previewed in item (i) of the Roadmap. We will define two stochastic operations that essentially re-sample the direction di(l)Dε,Ld_{i}(l)\in D_{\varepsilon,L} of each line lηl\in\eta while fixing the intersection point pi(l)p_{i}(l) of ll with SiS_{i}^{\prime}. Denote by χ¯ε,L\bar{\chi}_{\varepsilon,L} the probability measure χ\chi defined in (2.10) conditioned on sampling a point in Dε,LD_{\varepsilon,L}. For i=1,2i=1,2 we define the stochastic operation

Γi:ηΓi(η)(pi(l),di(l))(pi(l),di(l)),\begin{array}[]{cclc}\Gamma_{i}:&\eta&\to&\Gamma_{i}(\eta)\\ &(p_{i}(l),d_{i}(l))&\mapsto&(p_{i}(l),d_{i}^{\prime}(l)),\end{array} (3.11)

where di(l)d_{i}^{\prime}(l) is defined to be either a random vector in Dε,LD_{\varepsilon,L} sampled according to χ¯ε,L\bar{\chi}_{\varepsilon,L} independently for each lηl\in\eta if pi(l)Sip_{i}(l)\in S_{i}^{\prime}, or simply equal to di(l)d_{i}(l) otherwise. See Figure 3 for an illustration of these stochastic operations.

Refer to caption
Figure 3: The potentially problematic lines of η\eta, together with its perturbed versions, Γ1(η)\Gamma_{1}(\eta) and Γ2(η)\Gamma_{2}(\eta). The stochastic operation Γi\Gamma_{i} consists in fixing the intersection point of a line with the plane Πi\Pi_{i} and resampling its direction, conditioned on it being “problematic”.

Crucially, by elementary properties of the Poisson process, we get that Γi\Gamma_{i} are reversible. More precisely, they satisfy the detailed balance conditions

(η,Γi(η))=d(Γi(η),η),\big{(}\eta,\Gamma_{i}(\eta)\big{)}\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma_{i}(\eta),\eta\big{)}, (3.12)

for i=1,2i=1,2.

We can now rigorously state and prove step (ii) of the Roadmap. The lemma below is a deterministic statement which, informally speaking, says that the wiggling introduced by the Γi\Gamma_{i} operators can be dominated by slight thickening of the cylinders’ radii. For an illustration showing this domination, see Figure 4.

Refer to caption
Figure 4: By enlarging the radii of the perturbed cylinders, we will have the required domination between the cylinder processes: indeed the intersection of the smaller cylinders with the box B!B_{!} will be contained in the intersection of the larger cylinders with the same box.
Lemma 3.2.

With the notation above developed we have, for i=1,2i=1,2, and sufficiently large LL,

Biu,ρε(Γi(η)+ηi0)Biu,ρ(η+ηi0)Biu,ρ+ε(Γi(η)+ηi0).\mathcal{M}_{B_{i}}^{u,\rho-\varepsilon}\big{(}\Gamma_{i}(\eta)+\eta_{i}^{0}\big{)}\preceq\mathcal{M}_{B_{i}}^{u,\rho}\big{(}\eta+\eta_{i}^{0}\big{)}\preceq\mathcal{M}_{B_{i}}^{u,\rho+\varepsilon}\big{(}\Gamma_{i}(\eta)+\eta_{i}^{0}\big{)}. (3.13)
Proof.

We will focus on the case i=1i=1 since the other follows analogously. Fix v,v′′Dε,Lv^{\prime},v^{\prime\prime}\in D_{\varepsilon,L}, and denote respectively by vd,vd′′v^{\prime}_{d},v^{\prime\prime}_{d}\in\mathbb{R} their dd-th coordinates. Let then p=(p1,,pd1,L)Π1p=(p_{1},\dots,p_{d-1},L)\in\Pi_{1}, and consider the lines

l={vt+p;t} and l′′={v′′s+p;s}.l^{\prime}=\{v^{\prime}t+p;t\in\mathbb{R}\}\quad\text{ and }\quad l^{\prime\prime}=\{v^{\prime\prime}s+p;s\in\mathbb{R}\}.

For z0[L,L]z_{0}\in[-L,L], we show that

for large enough L, the distance between the points (×R-d1{z0})l and (×R-d1{z0})l′′ is smaller than /3ε4, \begin{array}[]{c}\parbox[c]{433.62pt}{\centering for large enough $L$, the distance between the points\\ $(\mathbb{R}^{d-1}\times\{z_{0}\})\cap l^{\prime}$ and $(\mathbb{R}^{d-1}\times\{z_{0}\})\cap l^{\prime\prime}$ is smaller than~{}$3\varepsilon/4$,\@add@centering}\end{array} (3.14)

which will prove the result. Write t0:=(z0L)(vd)1t_{0}:=(z_{0}-L)(v_{d}^{\prime})^{-1} and s0:=(z0L)(vd′′)1s_{0}:=(z_{0}-L)(v_{d}^{\prime\prime})^{-1}. We have

(d1×{z0})l=p+t0v and (d1×{z0})l′′=p+s0v′′.(\mathbb{R}^{d-1}\times\{z_{0}\})\cap l^{\prime}=p+t_{0}v^{\prime}\quad\text{ and }\quad(\mathbb{R}^{d-1}\times\{z_{0}\})\cap l^{\prime\prime}=p+s_{0}v^{\prime\prime}.

Notice that by the Law of cosines,

1ε2128L2vd,vd′′1.1-\frac{\varepsilon^{2}}{128L^{2}}\leq v_{d}^{\prime},v_{d}^{\prime\prime}\leq 1.

We can then show, for sufficiently large LL,

|p+t0vps0v′′|=|t0||vs0t0v′′||t0|(|vv′′|+|v′′s0t0v′′|)|z0Lvd|(ε4L+|1s0t0|)2L(1+ε264L2)(ε4L+1(1+ε264L2))34ε,\begin{split}\left|p+t_{0}v^{\prime}-p-s_{0}v^{\prime\prime}\right|&=|t_{0}|\left|v^{\prime}-\frac{s_{0}}{t_{0}}v^{\prime\prime}\right|\leq|t_{0}|\left(\left|v^{\prime}-v^{\prime\prime}\right|+\left|v^{\prime\prime}-\frac{s_{0}}{t_{0}}v^{\prime\prime}\right|\right)\\ &\leq\left|\frac{z_{0}-L}{v_{d}^{\prime}}\right|\left(\frac{\varepsilon}{4L}+\left|1-\frac{s_{0}}{t_{0}}\right|\right)\\ &\leq 2L\left(1+\frac{\varepsilon^{2}}{64L^{2}}\right)\left(\frac{\varepsilon}{4L}+1-\left(1+\frac{\varepsilon^{2}}{64L^{2}}\right)\right)\leq\frac{3}{4}\varepsilon,\end{split} (3.15)

where in the last two inequalities, we used the fact that ε/L\varepsilon/L was sufficiently small. This proves (3.14) and consequently the result. ∎

Our next objective is to show how a slight change in the intensity of the process can be used to dominate the negative information that we may have obtained by looking at the other box.

We first split the random point measure Γ1(η)\Gamma_{1}(\eta) into two measures taking into account whether their constituent lines intersect S1S_{1} or not. First define

ηS1:=(li,ui)ηδ(li,ui)𝟏{p1(li)S1;d1(li)Dε,L};ηS1S1:=ηηS1.\begin{split}\eta_{S_{1}}&:=\sum_{(l_{i},u_{i})\in\eta}\delta_{(l_{i},u_{i})}{\bf 1}\{p_{1}(l_{i})\in S_{1};d_{1}(l_{i})\in D_{\varepsilon,L}\};\\ \eta_{S_{1}^{\prime}\setminus S_{1}}&:=\eta-\eta_{S_{1}}.\end{split} (3.16)

We then define the images of the above point measures after applying the stochastic operation Γ1\Gamma_{1},

Γ1(ηS1):=(li,ui)Γ1(η)δ(li,ui)𝟏{p1(li)S1;d1(li)Dε,L};Γ1(ηS1S1):=Γ1(η)Γ1(ηS1).\begin{split}\Gamma_{1}(\eta_{S_{1}})&:=\sum_{(l_{i},u_{i})\in\Gamma_{1}(\eta)}\delta_{(l_{i},u_{i})}{\bf 1}\{p_{1}(l_{i})\in S_{1};d_{1}^{\prime}(l_{i})\in D_{\varepsilon,L}\};\\ \Gamma_{1}(\eta_{S_{1}^{\prime}\setminus S_{1}})&:=\Gamma_{1}(\eta)-\Gamma_{1}(\eta_{S_{1}}).\end{split} (3.17)

Recall that, for sufficiently large LL, in order for a line with direction in Dε,LD_{\varepsilon,L} to intersect B~1\tilde{B}_{1}, it has also to intersect S1S_{1}. Therefore, between the two measures above, Γ1(ηS1)\Gamma_{1}(\eta_{S_{1}}) is the only one that can actually influence the cylinder set inside B1B_{1}.

The following proposition rigorously states the first part of item (iii) of the Roadmap. It provides us with a quantitative statement concerning the influence of Γ1(ηS1)\Gamma_{1}(\eta_{S_{1}}) on the cylinder set intersected with B2B_{2}, and it will be the kernel of the proof of Theorem 3.1.

Proposition 3.3.

There exists a constant c3>0c_{\textnormal{\tiny\ref{c:2boxdec}}}>0 depending only on the dimension dd such that, for δ>0\delta>0α,ε(0,1)\alpha,\varepsilon\in(0,1) and any increasing variable

f2:Ω[0,1], measurable with respect to σ({B2u,ρ(ω);u,ρ+})f_{2}:\Omega\to[0,1],\text{ measurable with respect to $\sigma(\{\mathcal{M}_{B_{2}}^{u,\rho}(\omega);u,\rho\in\mathbb{R}_{+}\})$} (3.18)

we have,

𝔼[f2(B2u,ρ+ε(Γ2(η)+η20))|Γ1(ηS1)]𝔼[f2(B2u+δ,ρ+ε(Γ2(η)+η20))]+𝟏{ηS1A}\begin{split}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{|}\Gamma_{1}(\eta_{S_{1}})\big{]}\leq&\;\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{]}\\ &+{\bf 1}\{\eta_{S_{1}}\in A\}\end{split} (3.19)

where the event AA satisfies

[ηS1A]exp{c3δεd1Lα(d1)}.\mathbb{P}[\eta_{S_{1}}\in A]\leq\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}. (3.20)

Furthermore, if

g2:Ω[0,1], measurable with respect to σ({B2u,ρ(ω);u,ρ+})g_{2}:\Omega\to[0,1],\text{ measurable with respect to $\sigma(\{\mathcal{M}_{B_{2}}^{u,\rho}(\omega);u,\rho\in\mathbb{R}_{+}\})$} (3.21)

is a decreasing variable, then for δ(0,u)\delta\in(0,u) and ε(0,ρ)\varepsilon\in(0,\rho), we have

𝔼[g2(B2u,ρε(Γ2(η)+η20))|Γ1(ηS1)]𝔼[g2(B2uδ,ρε(Γ2(η)+η20))]+𝟏{ηS1B}\begin{split}\mathbb{E}\big{[}g_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho-\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{|}\Gamma_{1}(\eta_{S_{1}})\big{]}\leq&\;\mathbb{E}\big{[}g_{2}\big{(}\mathcal{M}_{B_{2}}^{u-\delta,\rho-\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{]}+{\bf 1}\{\eta_{S_{1}}\in B\}\end{split} (3.22)

where

[ηS1B]exp{c3δεd1Lα(d1)}.\mathbb{P}[\eta_{S_{1}}\in B]\leq\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}. (3.23)

The above proposition is the heart of the proof of our main theorem. We thus postpone its proof to the end of the Section and show now that it is enough to establish Theorem 3.1.

Proof of Theorem 3.1.

Using Lemma 3.2, Proposition 3.3, the fact that the lines in Γ1(ηS1S1)\Gamma_{1}(\eta_{S_{1}^{\prime}\setminus S_{1}}) do not intersect B~1\tilde{B}_{1}, and the fact that f1,f2f_{1},f_{2} are increasing functions, we obtain

𝔼uρ[f1(B1u,ρ(ω))f2(B2u,ρ(ω))]=𝔼[f1(B1u,ρ(η+η10))f2(B2u,ρ(η+η20))]Lemma3.2𝔼[f1(B1u,ρ+ε(Γ1(η)+η10))f2(B2u,ρ+ε(Γ2(η)+η20))]=𝔼[f1(B1u,ρ+ε(Γ1(ηS1)+η10))f2(B2u,ρ+ε(Γ2(η)+η20))]=𝔼[f1(B1u,ρ+ε(Γ1(ηS1)+η10))𝔼[f2(B2u,ρ+ε(Γ2(η)+η20))|Γ1(ηS1),η10]].\begin{split}\mathbb{E}_{u}^{\rho}&\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}\big{]}=\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}\big{(}\eta+\eta_{1}^{0}\big{)}\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}\big{(}\eta+\eta_{2}^{0}\big{)}\big{)}\big{]}\\ &\!\!\!\!\!\!\!\!\!\stackrel{{\scriptstyle\mathrm{Lemma}~{}\ref{l:bend}}}{{\leq}}\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\Gamma_{1}(\eta)+\eta_{1}^{0}\big{)}\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{]}\\ &=\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\Gamma_{1}(\eta_{S_{1}})+\eta_{1}^{0}\big{)}\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{]}\\ &=\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\Gamma_{1}(\eta_{S_{1}})+\eta_{1}^{0}\big{)}\big{)}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{|}\Gamma_{1}(\eta_{S_{1}}),\eta_{1}^{0}\big{]}\big{]}.\end{split} (3.24)

Furthermore, using Proposition 3.3, the fact Γ2(η)\Gamma_{2}(\eta) and η20\eta_{2}^{0} are both independent from η10\eta_{1}^{0}, and that f1,f21\|f_{1}\|_{\infty},\|f_{2}\|_{\infty}\leq 1, we get

𝔼uρ[f1(B1u,ρ(ω))f2(B2u,ρ(ω))]𝔼[f1(B1u,ρ+ε(Γ1(ηS1)+η10))]𝔼[f2(B2u+δ,ρ+ε(Γ2(η)+η20))]+exp{c3δεd1Lα(d1)}\begin{split}\mathbb{E}_{u}^{\rho}&\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}\big{]}\\ \leq&\;\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\Gamma_{1}(\eta_{S_{1}})+\eta_{1}^{0}\big{)}\big{)}\big{]}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{]}\\ &+\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}\end{split} (3.25)

and since B1u,ρ+ε(Γ1(ηS1)+η10)\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\Gamma_{1}(\eta_{S_{1}})+\eta_{1}^{0}\big{)} has the same distribution as B1u,ρ+ε(ω)\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\omega\big{)},

=𝔼[f1(B1u,ρ+ε(ω))]𝔼[f2(B2u+δ,ρ+ε(ω))]+exp{c3δεd1Lα(d1)}\begin{split}=&\;\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\omega\big{)}\big{)}\big{]}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}\big{(}\omega\big{)}\big{)}\big{]}+\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}\end{split} (3.26)

Equation (3.5) follows by an analogous argument. ∎

Now that we have demonstrated how Proposition 3.3 can be used to derive our main result, let us turn to the proof of this proposition.

We start by considering the main expectation appearing in the proposition. Using that η=ηS1+ηS1S1\eta=\eta_{S_{1}}+\eta_{S_{1}^{\prime}\setminus S_{1}} and the fact that Γ2\Gamma_{2} acts independently in each line, we can write

𝔼[f2(B2u,ρ+ε(Γ2(ηS1)+Γ2(ηS1S1)+η20))|Γ1(ηS1)].\mathbb{E}\Big{[}f_{2}\Big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta_{S_{1}})+\Gamma_{2}(\eta_{S_{1}^{\prime}\setminus S_{1}})+\eta_{2}^{0}\big{)}\Big{)}\Big{|}\Gamma_{1}(\eta_{S_{1}})\Big{]}. (3.27)

Observing now that ηS1,ηS1S1\eta_{S_{1}},\eta_{S_{1}^{\prime}\setminus S_{1}} and η20\eta^{0}_{2} are independent, we see that the only information obtained by the conditioning is contained in the term ηS1\eta_{S_{1}}.

Note that, the detailed balance conditions in (3.12) are also valid for the corresponding restrictions to S1S_{1} and S1S1S_{1}^{\prime}\setminus S_{1}, that is

(ηS1,Γ1(ηS1))=d(Γ(ηS1),ηS1)and(ηS1S1,Γ1(ηS1S1))=d(Γ(ηS1S1),ηS1S1).\begin{array}[]{c}\big{(}\eta_{S_{1}},\Gamma_{1}(\eta_{S_{1}})\big{)}\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma(\eta_{S_{1}}),\eta_{S_{1}}\big{)}\quad\text{and}\quad\big{(}\eta_{S_{1}^{\prime}\setminus S_{1}},\Gamma_{1}(\eta_{S_{1}^{\prime}\setminus S_{1}})\big{)}\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma(\eta_{S_{1}^{\prime}\setminus S_{1}}),\eta_{S_{1}^{\prime}\setminus S_{1}}\big{)}.\end{array} (3.28)

Therefore, we can rewrite (3.27) as

𝔼[f2(B2u,ρ+ε(Γ2(Γ1(ηS1))+Γ2(ηS1S1)+η20))|ηS1].\mathbb{E}\Big{[}f_{2}\Big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta_{S_{1}}))+\Gamma_{2}(\eta_{S_{1}^{\prime}\setminus S_{1}})+\eta_{2}^{0}\big{)}\Big{)}\Big{|}\eta_{S_{1}}\Big{]}. (3.29)

Based on the above calculations, the next step in our proof is to reduce Proposition 3.3 to a simpler statement.

Proposition 3.4.

There exists an event AA such that

[ηS1A]exp{c3δεd1Lα(d1)},\mathbb{P}[\eta_{S_{1}}\in A]\leq\exp\big{\{}-c_{\textnormal{\tiny\ref{c:2boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}, (3.30)

and moreover, in the event ηS1A\eta_{S_{1}}\notin A,

Γ2(Γ1(ηS1)) is stochastically dominated by ηδ; where ηδ is distributed as PLP(δμ), and is independent from ηS1,η20, and Γ2(ηS1S1).\begin{array}[]{c}\Gamma_{2}\big{(}\Gamma_{1}(\eta_{S_{1}})\big{)}\text{ is stochastically dominated by }\eta_{\delta};\text{ where }\eta_{\delta}\text{ is distributed as }PLP(\delta\mu),\\ \text{ and is independent from }\eta_{S_{1}},\,\eta_{2}^{0},\text{ and }\Gamma_{2}(\eta_{S_{1}^{\prime}\setminus S_{1}}).\end{array} (3.31)

Assuming the validity of the above, we can jump to the following.

Proof of Proposition 3.3.

We will prove (3.3), since (3.5) has essentially the same proof, with the difference being that the sprinkling term δ\delta clearly cannot be larger than the parameter uu.

We use (3.27) and (3.29) to write the main expectation as:

𝔼[f2(B2u,ρ+ε(Γ2(η)+η20))|Γ1(ηS1)]=𝔼[f2(B2u,ρ+ε(Γ2(Γ1(ηS1))+Γ2(ηS1S1)+η20))|ηS1]=(3.28)𝔼[f2(B2u,ρ+ε(Γ2(Γ1(ηS1))+ηS1S1+η20))|ηS1]=(3.30)𝔼[f2(B2u,ρ+ε(Γ2(Γ1(ηS1))+ηS1S1+η20))𝟏A|ηS1]+𝟏{ηS1A}(3.31)𝔼[f2(B2u,ρ+ε(ηδ+ηS1S1+η20))|ηS1]+𝟏{ηS1A}𝔼[f2(B2u+δ,ρ+ε(Γ2(η)+η20))]+𝟏{ηS1A},\begin{split}\mathbb{E}\big{[}&f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{|}\Gamma_{1}(\eta_{S_{1}})\big{]}\\ &\begin{array}[]{e}\hfil&=&\mathbb{E}\Big{[}f_{2}\Big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta_{S_{1}}))+\Gamma_{2}(\eta_{S_{1}^{\prime}\setminus S_{1}})+\eta_{2}^{0}\big{)}\Big{)}\Big{|}\eta_{S_{1}}\Big{]}\\ \hfil&\overset{\eqref{e:etasgetaeqd}}{=}&\mathbb{E}\Big{[}f_{2}\Big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta_{S_{1}}))+\eta_{S_{1}^{\prime}\setminus S_{1}}+\eta_{2}^{0}\big{)}\Big{)}\Big{|}\eta_{S_{1}}\Big{]}\\ \hfil&\overset{\eqref{e:prob_A}}{=}&\mathbb{E}\Big{[}f_{2}\Big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta_{S_{1}}))+\eta_{S_{1}^{\prime}\setminus S_{1}}+\eta_{2}^{0}\big{)}\Big{)}{\bf 1}_{A}\Big{|}\eta_{S_{1}}\Big{]}+{\bf 1}\{\eta_{S_{1}}\in A\}\\ \hfil&\overset{\eqref{e:wiggle_dominates}}{\leq}&\mathbb{E}\Big{[}f_{2}\Big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\eta_{\delta}+\eta_{S_{1}^{\prime}\setminus S_{1}}+\eta_{2}^{0}\big{)}\Big{)}\Big{|}\eta_{S_{1}}\Big{]}+{\bf 1}\{\eta_{S_{1}}\in A\}\\ \hfil&\leq&\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{]}+{\bf 1}\{\eta_{S_{1}}\in A\},\end{array}\end{split} (3.32)

as desired. ∎

We are now left with the proof of Proposition 3.4, which in turn will be based on a comparison of the intensities of Poisson Point Processes. Therefore it is natural to start with the estimate of the measure of Si×Dε,LS_{i}\times D_{\varepsilon,L} below.

Lemma 3.5.

There exists a constant c3>0c_{\textnormal{\tiny\ref{c:s1s2intens}}}>0 such that for i=1,2i=1,2,

μ~(Si×Dε,L)=c3εd1(1ε2256L2)d12.\tilde{\mu}\left(S_{i}\times D_{\varepsilon,L}\right)=c_{\textnormal{\tiny\ref{c:s1s2intens}}}\varepsilon^{d-1}\Big{(}1-\frac{\varepsilon^{2}}{256L^{2}}\Big{)}^{\frac{d-1}{2}}. (3.33)
Proof.

We know by the definition of μ~\tilde{\mu} that

μ~(Si×Dε,L)=4d1Ld1χ(Dε,L),\tilde{\mu}\left(S_{i}\times D_{\varepsilon,L}\right)=4^{d-1}L^{d-1}\chi(D_{\varepsilon,L}),

so that we need only to properly estimate χ(Dε,L)\chi(D_{\varepsilon,L}) in order to prove the result. Using the Law of cosines and spherical coordinates with 𝐞d{\bf e}_{d} as the north pole, we can parametrize Dε,LD_{\varepsilon,L} as

Dε,L:={r=1,(ϕ1,,ϕd2)[0,π]d2,ψ[0,2π];ϕ1arccos(1ε2128L2)}.D_{\varepsilon,L}:=\left\{\begin{array}[]{c}r=1,(\phi_{1},\dots,\phi_{d-2})\in[0,\pi]^{d-2},\psi\in[0,2\pi];\\ \phi_{1}\leq\arccos\left(1-\frac{\varepsilon^{2}}{128L^{2}}\right)\end{array}\right\}. (3.34)

Equation (2.10) then implies

χ(Dε,L)=c2.9[0,2π][0,π]d3(0arccos(1ε2/128L2)cos(ϕ1)sind2(ϕ1)dϕ1)×sind3(ϕ2)sin(ϕd2)dϕ2dϕd2dψ=csind1(arccos(1ε2/128L2))=cεd1Ld1(1ε2256L2)d12,\begin{split}\chi(D_{\varepsilon,L})&=c_{\textnormal{\tiny\ref{c:phi}}}\int_{[0,2\pi]}\int_{[0,\pi]^{d-3}}\left(\int_{0}^{\arccos(1-\varepsilon^{2}/128L^{2})}\!\!\!\!\cos(\phi_{1})\sin^{d-2}(\phi_{1})\mathrm{d}\phi_{1}\right)\\ &\phantom{*************}\times\sin^{d-3}(\phi_{2})\dots\sin(\phi_{d-2})\mathrm{d}\phi_{2}\dots\mathrm{d}\phi_{d-2}\mathrm{d}\psi\\ &=c\sin^{d-1}\left(\arccos(1-\varepsilon^{2}/128L^{2})\right)=c\frac{\varepsilon^{d-1}}{L^{d-1}}\Big{(}1-\frac{\varepsilon^{2}}{256L^{2}}\Big{)}^{\frac{d-1}{2}},\end{split} (3.35)

which finishes the proof of the lemma. ∎

For the proof Proposition 3.4 we will need a lemma quantifying the influence that each line of ηS1\eta_{S_{1}} has on Γ2(Γ1(η))\Gamma_{2}(\Gamma_{1}(\eta)). Consider a line lηS1l\in\eta_{S_{1}} with parameters (p1(l),d1(l))(p_{1}(l),d_{1}(l)). We first apply Γ1\Gamma_{1} to it in order to obtain a line with parameterization (p1(l),d1(l))(p_{1}(l),d_{1}^{\prime}(l)) belonging to Γ(ηS1)\Gamma(\eta_{S_{1}}). Note that this stochastic operation changes the intersection point of ll with Π2\Pi_{2}. We then apply Γ2\Gamma_{2} to the resulting line. We denote this stochastic operation by Γ2Γ1\Gamma_{2}\circ\Gamma_{1}. Informally, the next lemma shows that this operation greatly dilutes the information carried by conditioning on ll.

Lemma 3.6.

Consider lηS1l\in\eta_{S_{1}}. Denote by Γ2Γ1(l)\Gamma_{2}\circ\Gamma_{1}(l) the line in Γ2(Γ1(η))\Gamma_{2}(\Gamma_{1}(\eta)) corresponding to ll in ηS1\eta_{S_{1}}, and by χ¯ε,L\bar{\chi}_{\varepsilon,L} the distribution χ\chi conditioned on sampling from Dε,LD_{\varepsilon,L}. There exists a constant c3.5>0c_{\textnormal{\tiny\ref{c:intersecdens}}}>0 such that for every pΠ1p\in\Pi_{1}dDε,Ld\in D_{\varepsilon,L} and sufficiently large LL,

(p2(Γ2Γ1(l))A,d2(Γ2Γ1(l))B|p1(l)=p,d1(l)=d)c3.5L(1+α)(d1)𝟏Advd1χ¯ε,L(B),\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l))\in A,d_{2}(\Gamma_{2}\circ\Gamma_{1}(l))\in B\middle|p_{1}(l)=p,d_{1}(l)=d\right)$\mbox{}\hfil\phantom{****************}\\ &\leq c_{\textnormal{\tiny\ref{c:intersecdens}}}L^{-(1+\alpha)(d-1)}\int{\bf 1}_{A}\mathrm{d}v_{d-1}\cdot\bar{\chi}_{\varepsilon,L}(B),\end{split} (3.36)

for every Borelian subsets AΠ2A\subseteq\Pi_{2}, BDε,LB\subseteq D_{\varepsilon,L}.

Proof.

Consider the projection

πp,𝔻:Π2𝔻 taking x and mapping to xp|xp|,\pi_{p,\mathbb{D}}:\Pi_{2}\to\mathbb{D}\text{ taking }x\text{ and mapping to }\frac{x-p}{|x-p|}, (3.37)

and notice that it is actually a bijection.

Refer to caption
Figure 5: The figure shows schematically how Γ1\Gamma_{1} acts on a line ll.

Writing

x=(x1,,xd1,L+L2+αε1),p=(p1,,pd1,L),x=(x_{1},\dots,x_{d-1},L+L^{2+\alpha}\varepsilon^{-1}),\quad\quad p=(p_{1},\dots,p_{d-1},L),

we can compute the partial derivative of πp,𝔻\pi_{p,\mathbb{D}} in the jj-th direction: for j=1,,d1j=1,\dots,d-1,

jπp,𝔻(x)=𝐞i|xp|(xp)(xjpj)|xp|3.\begin{split}\partial_{j}\pi_{p,\mathbb{D}}(x)&=\frac{{\bf e}_{i}}{|x-p|}-\frac{(x-p)(x_{j}-p_{j})}{|x-p|^{3}}.\end{split} (3.38)

In particular, since |xp|L2+αε1|x-p|\geq L^{2+\alpha}\varepsilon^{-1}, each coordinate of jπp,𝔻\partial_{j}\pi_{p,\mathbb{D}} is bounded from above in absolute value by 2L(2+α)ε2L^{-(2+\alpha)}\varepsilon for large enough LL, which yields

|detdπp,𝔻|cL(d1)(2+α)εd1.|\det\mathrm{d}\pi_{p,\mathbb{D}}|\leq cL^{-(d-1)(2+\alpha)}\varepsilon^{d-1}. (3.39)

Conditioned on the fact that p1(l)=pS1p_{1}(l)=p\in S_{1}, p2(Γ1(l))p_{2}(\Gamma_{1}(l)) takes value on πp,𝔻1(Dε,L)\pi_{p,\mathbb{D}}^{-1}(D_{\varepsilon,L}), and, by construction, its direction d1(Γ1(l))=d2(Γ1(l))d_{1}(\Gamma_{1}(l))=d_{2}(\Gamma_{1}(l)) is independent from d1(l)d_{1}(l). Furthermore, πp,𝔻(p2(Γ1(l)))\pi_{p,\mathbb{D}}(p_{2}(\Gamma_{1}(l))) is distributed according to χ¯ε,L\bar{\chi}_{\varepsilon,L}. We then have, by the change of variables formula, Equations (2.10), (3.35), (3.39), and the definition of χ¯ε,L\bar{\chi}_{\varepsilon,L}, for some Borelian set Aπp,𝔻1(Dε,L)A\subset\pi_{p,\mathbb{D}}^{-1}(D_{\varepsilon,L}),

(p2(Γ1(l))A|p1(l)=p,d1(l)=d)=c2.9χ(Dε,L)πp,𝔻(A)w,𝐞dσ(dw)=c2.9χ(Dε,L)Aπp,𝔻(x),𝐞d|detdπp,𝔻|dvd1(x)cL(d1)(1+α)𝟏Advd1.\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle\mathbb{P}\left(p_{2}(\Gamma_{1}(l))\in A\middle|p_{1}(l)=p,d_{1}^{\prime}(l)=d\right)$\mbox{}\hfil\phantom{**************}\\ &=\frac{c_{\textnormal{\tiny\ref{c:phi}}}}{\chi(D_{\varepsilon,L})}\int_{\pi_{p,\mathbb{D}}(A)}\langle w,{\bf e}_{d}\rangle\sigma(\mathrm{d}w)\\ &=\frac{c_{\textnormal{\tiny\ref{c:phi}}}}{\chi(D_{\varepsilon,L})}\int_{A}\langle\pi_{p,\mathbb{D}}(x),{\bf e}_{d}\rangle|\det\mathrm{d}\pi_{p,\mathbb{D}}|\mathrm{d}v_{d-1}(x)\\ &\leq cL^{-(d-1)(1+\alpha)}\int{\bf 1}_{A}\mathrm{d}v_{d-1}.\end{split} (3.40)

We note that, by definition,

p2(Γ2Γ1(l))=p2(Γ1(l)).p_{2}(\Gamma_{2}\circ\Gamma_{1}(l))=p_{2}(\Gamma_{1}(l)).

Also, by the definition of the sets S1S_{1} and S2S_{2}^{\prime}, as well as elementary trigonometry, we must have p2(Γ1(l))S2p_{2}(\Gamma_{1}(l))\in S_{2}^{\prime} for sufficiently large LL. This implies, by the construction of Γ2\Gamma_{2}, that d2(Γ2Γ1(l))d_{2}(\Gamma_{2}\circ\Gamma_{1}(l)) is independent from these random elements and distributed according to χ¯ε,L\bar{\chi}_{\varepsilon,L}. ∎

We can now prove Proposition 3.4.

Proof of Proposition 3.4.

Let (lk)k=1𝒩(ηS1)(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})} denote the collection of lines of ηS1\eta_{S_{1}}. We have

𝔼[f2(B2u,ρ+ε(Γ2(Γ1(η))+η20))|ηS1]=𝔼[f2(B2u,ρ+ε(Γ2(Γ1(η))+η20))|(lk)k=1𝒩(ηS1)].\begin{split}{\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta))+\eta_{2}^{0}\big{)}\big{)}\big{|}\eta_{S_{1}}\big{]}}=\mathbb{E}\left[f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta))+\eta_{2}^{0}\big{)}\big{)}\big{|}(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}\right].\end{split} (3.41)

Note that Γ2Γ1\Gamma_{2}\circ\Gamma_{1} acts independently on each line of (lk)k=1𝒩(ηS1)(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})} by construction, and that by Lemma 3.5, the variable 𝒩(ηS1)\mathcal{N}(\eta_{S_{1}}) denoting the number of lines in ηS1\eta_{S_{1}} has Poisson distribution with parameter bounded from above by c3uεd1c_{\ref{c:s1s2intens}}u\varepsilon^{d-1}. Let GNG_{N} denote the event where 𝒩(ηS1)N\mathcal{N}(\eta_{S_{1}})\leq N\in\mathbb{N}. By Lemma 3.5, Equations (3.41) and the fact that

B2u,ρ+ε(Γ2(Γ1(η))+η20)=dB2u,ρ+ε(ω),\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}(\Gamma_{2}(\Gamma_{1}(\eta))+\eta_{2}^{0})\stackrel{{\scriptstyle d}}{{=}}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}(\omega),

and that f21\|f_{2}\|_{\infty}\leq 1, we obtain

𝔼[f2(B2u,ρ+ε(Γ2(Γ1(η))+η20))|(lk)k=1𝒩(ηS1)]uρ+ε(GNC)+𝔼[𝟏GN𝔼[f2(B2u,ρ+ε(Γ2(Γ1(η))+η20))|(lk)k=1𝒩(ηS1)]]cexp{c3εd1N}+𝔼[𝟏GN𝔼[f2(B2u,ρ+ε(Γ2(Γ1(η))+η20))|(lk)k=1𝒩(ηS1)]].\begin{split}\hbox to0.0pt{$\displaystyle\mathbb{E}\left[f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta))+\eta_{2}^{0}\big{)}\big{)}\big{|}(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}\right]$\hss}\phantom{****}\\ &\leq\mathbb{P}_{u}^{\rho+\varepsilon}\left(G_{N}^{C}\right)+\mathbb{E}\left[{\bf 1}_{G_{N}}\mathbb{E}\left[f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta))+\eta_{2}^{0}\big{)}\big{)}\big{|}(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}\right]\right]\\ &\leq c\exp\left\{-c_{\textnormal{\tiny\ref{c:s1s2intens}}}\varepsilon^{d-1}N\right\}+\mathbb{E}\left[{\bf 1}_{G_{N}}\mathbb{E}\left[f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\Gamma_{1}(\eta))+\eta_{2}^{0}\big{)}\big{)}\big{|}(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}\right]\right].\end{split} (3.42)

We aim to show that, on GNG_{N}, with a suitably chosen NN, the subset of lines of Γ2Γ1((lk)k=1𝒩(ηS1))\Gamma_{2}\circ\Gamma_{1}((l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}) that actually intersect S2S_{2} can be dominated by a Poisson point process of lines with distribution PLP(δμ)\mathrm{PLP}(\delta\mu). The idea is based on a “poissonization” argument: we use a Poisson process to stochastically dominate the binomial process of lines that Γ2(Γ1(ηS1))\Gamma_{2}(\Gamma_{1}(\eta_{S_{1}})) conditioned on ηS1\eta_{S_{1}} generates on Γ2(η)\Gamma_{2}(\eta). We do this in order to simplify the computations and to make the later comparison to the process with the distribution PLP(δμ)\mathrm{PLP}(\delta\mu) straightforward.

As in Lemma 3.6, we write Γ2Γ1(lk)\Gamma_{2}\circ\Gamma_{1}(l_{k}) to denote the resulting line after Γ2Γ1\Gamma_{2}\circ\Gamma_{1} acts on lkηS1l_{k}\in\eta_{S_{1}}. Lemma 3.6 implies

(p2(Γ2Γ1(lk))S2|lk)4d1c3.5Lα(d1),\begin{split}\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)\leq 4^{d-1}c_{\textnormal{\tiny\ref{c:intersecdens}}}L^{-\alpha(d-1)},\end{split} (3.43)

and therefore, for sufficiently large LL,

(p2(Γ2Γ1(lk))S2|lk)1exp{2(p2(Γ2Γ1(lk))S2|lk)}.\begin{split}\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)\leq 1-\exp\left\{-2\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)\right\}.\end{split} (3.44)

Consider the random measure lk\mathbb{P}^{l_{k}} such that for AS2A\subset S_{2}, BDε,LB\subset D_{\varepsilon,L},

lk(A×B)=(p2(Γ2Γ1(lk))A,d2(Γ2Γ1(lk))B|lk).\mathbb{P}^{l_{k}}(A\times B)=\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in A,d_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in B\middle|l_{k}\right).

Considering each line l𝕃l\in\mathbb{L} to be parametrized by their intersection point with p2(l)Π2p_{2}(l)\in\Pi_{2} and their direction d2(l)Dd_{2}(l)\in D, we can construct a Poisson point process ηlk\eta_{l_{k}} in 𝕃S2\mathbb{L}_{S_{2}} with intensity measure 2lk2\mathbb{P}^{l_{k}}. Furthermore, by (3.44), we can consider ηlk\eta_{l_{k}} to be coupled to Γ2Γ1(lk)\Gamma_{2}\circ\Gamma_{1}(l_{k}) so that whenever Γ2Γ1(lk)\Gamma_{2}\circ\Gamma_{1}(l_{k}) intersects S2S_{2}, Γ2Γ1(lk)\Gamma_{2}\circ\Gamma_{1}(l_{k}) is a line in ηlk\eta_{l_{k}}. To see this, note that a line in ηlk\eta_{l_{k}}, if one such line exists, has the same distribution as Γ2Γ1(lk)\Gamma_{2}\circ\Gamma_{1}(l_{k}) conditioned on intersecting S2S_{2}. One can then sample Γ2Γ1(lk)𝕃S2\Gamma_{2}\circ\Gamma_{1}(l_{k})\cap\mathbb{L}_{S_{2}} by first sampling ηlk\eta_{l_{k}}, then, on the event where ηlk\eta_{l_{k}}\neq\varnothing, selecting a line ll_{*} in the support of ηlk\eta_{l_{k}} uniformly at random and letting

Γ2Γ1(lk)𝕃S2={l with probability (p2(Γ2Γ1(lk))S2|lk)1exp{2(p2(Γ2Γ1(lk))S2|lk)}; with probability 1(p2(Γ2Γ1(lk))S2|lk)1exp{2(p2(Γ2Γ1(lk))S2|lk)}.\begin{split}\Gamma_{2}\circ\Gamma_{1}(l_{k})\cap\mathbb{L}_{S_{2}}=\left\{\begin{array}[]{l}l_{*}\text{ with probability }\frac{\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)}{1-\exp\left\{-2\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)\right\}};\\ \varnothing\text{ with probability }1-\frac{\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)}{1-\exp\left\{-2\mathbb{P}\left(p_{2}(\Gamma_{2}\circ\Gamma_{1}(l_{k}))\in S_{2}\middle|l_{k}\right)\right\}}.\end{array}\right.\end{split}

If Γ2Γ1(lk)𝕃S2=\Gamma_{2}\circ\Gamma_{1}(l_{k})\cap\mathbb{L}_{S_{2}}=\varnothing, we sample Γ2Γ1(lk)\Gamma_{2}\circ\Gamma_{1}(l_{k}) independently from ηlk\eta_{l_{k}} conditioned on intersecting 𝕃Π2S2\mathbb{L}_{\Pi_{2}\setminus S_{2}}. We note that we can construct the above coupling independently for each lkΓ1(ηS1)l_{k}\in\Gamma_{1}(\eta_{S_{1}}).

By (3.35) and (3.36), we obtain that uniformly over all possible collections (lk)k=1𝒩(ηS1)(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}, the intensity measure of the process

k=1𝒩(ηS1)ηlk\sum_{k=1}^{\mathcal{N}(\eta_{S_{1}})}\eta_{l_{k}}

is bounded from above in GNG_{N} by

c~NLα(d1)vd1χ¯ε,L,\tilde{c}NL^{-\alpha(d-1)}\cdot v_{d-1}\otimes\bar{\chi}_{\varepsilon,L},

for some c~>0\tilde{c}>0, where we consider vd1v_{d-1} to be the Lebesgue measure on the plane Π2\Pi_{2}. Let N:=c2.9c~1δLα(d1)N:=\lfloor c_{\textnormal{\tiny\ref{c:mu}}}\tilde{c}^{-1}\delta L^{\alpha(d-1)}\rfloor. Using Lemma 2.1 and elementary properties of the Poisson process, we can construct a process ω~δ\tilde{\omega}_{\delta} with distribution PLP(δμ)\mathrm{PLP}(\delta\mu) such that,on GNG_{N},

(Γ2Γ1(lk))l=1𝒩(ηS1)ω~δ and (lk)l=1𝒩(ηS1)ω~δ.(\Gamma_{2}\circ\Gamma_{1}(l_{k}))_{l=1}^{\mathcal{N}(\eta_{S_{1}})}\subset\tilde{\omega}_{\delta}\quad\text{ and }\quad(l_{k})_{l=1}^{\mathcal{N}(\eta_{S_{1}})}\perp\tilde{\omega}_{\delta}.

Given B,BB2B,B^{\prime}\subset B_{2} and m,mm,m^{\prime}\in\mathbb{N}, we define

(B,m)(B,m):=(BB,m+m).(B,m)\oplus(B^{\prime},m^{\prime}):=(B\cup B,m+m^{\prime}).

We then obtain from (3.42),

𝔼[f2(B2u,ρ+ε(Γ2(η)+η20))|(lk)k=1𝒩(ηS1)]cexp{cεd1δLα(d1)}+𝔼[f2(B2u,ρ+ε(Γ2(η)+η20)B2δ,ρ+ε(ω~δ))]cexp{cεd1δLα(d1)}+𝔼[f2(B2u+δ,ρ+ε(ω))],\begin{split}\hbox to0.0pt{$\displaystyle\mathbb{E}\left[f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\big{)}\big{|}(l_{k})_{k=1}^{\mathcal{N}(\eta_{S_{1}})}\right]$\hss}\phantom{*}\\ &\leq c\exp\left\{-c^{\prime}\varepsilon^{d-1}\delta L^{\alpha(d-1)}\right\}+\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho+\varepsilon}\big{(}\Gamma_{2}(\eta)+\eta_{2}^{0}\big{)}\oplus\mathcal{M}_{B_{2}}^{\delta,\rho+\varepsilon}\big{(}\tilde{\omega}_{\delta}\big{)}\big{)}\big{]}\\ &\leq c\exp\left\{-c^{\prime}\varepsilon^{d-1}\delta L^{\alpha(d-1)}\right\}+\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}\big{(}\omega\big{)}\big{)}\big{]},\end{split} (3.45)

finishing the proof of the result. ∎

4 3-Box decoupling

Theorem 3.1 is unfortunately not strong enough for our (and possible future) applications: it requires too large a distance between the two boxes in order to be useful in multi-scale arguments.

For illustrative purposes, imagine a standard multi-scale proof with a sequence of scales (Lk)k0(L_{k})_{k\geq 0}, where the occurrence of a bad event in a box at the (k+1)(k+1)-th scale implies the occurrence of two analogous events at the kk-th scale in two boxes far away from each other. Denoting by pkp_{k} the probability of the bad event at scale kk, one gets the general inequality after ignoring the sprinkling terms:

pk+1(combinatorialcomplexity)k+1(pk2+(decouplingerror)k+1).p_{k+1}\leq({\rm combinatorial}\,{\rm complexity})_{k+1}\left(p_{k}^{2}+({\rm decoupling}\,{\rm error})_{k+1}\right).

The problem is, in order to use Theorem 3.1, the scales must grow very fast: we must have Lk+1Lk2+αL_{k+1}\gg L_{k}^{2+\alpha}. This fast growth makes the combinatorial complexity too large, outweighing the influence of the exponent 22 in the term pk2p_{k}^{2}. We will therefore need a stronger decoupling result relating three boxes. More than that, we shall see that we will need three sufficiently unaligned boxes in order to translate the arguments in Theorem 3.1 into this new context. This is the subject of our next result.

Theorem 4.1.

For α,ε(0,1)\alpha,\varepsilon\in(0,1) and L+L\in\mathbb{R}_{+} sufficiently large, let x1,x2,x3dx_{1},x_{2},x_{3}\in\mathbb{R}^{d} that are sufficiently “far apart”:

|x1x2|,|x1x3|,|x2x3|ε1L2+α,|x_{1}-x_{2}|,|x_{1}-x_{3}|,|x_{2}-x_{3}|\geq\varepsilon^{-1}L^{2+\alpha}, (4.1)

and “unaligned”:

2dist(x1x2|x1x2|,x1x3|x1x3|)30dεL.\sqrt{2}\geq\operatorname{dist}\left(\frac{x_{1}-x_{2}}{|x_{1}-x_{2}|},\frac{x_{1}-x_{3}}{|x_{1}-x_{3}|}\right)\geq 30\sqrt{d}\frac{\varepsilon}{L}. (4.2)

Define  Bi:=B(xi,L)B_{i}:=B_{\infty}(x_{i},L), for i=1,2,3i=1,2,3. Then there exists a constant c4.1>0c_{\textnormal{\tiny\ref{c:3boxdec}}}>0 depending only on the dimension dd such that, for δ>0\delta>0 and increasing functions

fi:Ω[0,1], measurable with respect to σ({Biu,ρ(ω);u,ρ+})f_{i}:\Omega\to[0,1],\text{ measurable with respect to $\sigma(\{\mathcal{M}_{B_{i}}^{u,\rho}(\omega);u,\rho\in\mathbb{R}_{+}\})$}

for i=1,2,3i=1,2,3, we have

𝔼[f1(B1u,ρ(ω))f2(B2u,ρ(ω))f3(B3u,ρ(ω))]𝔼[f1(B1u+δ,ρ+ε(ω))]𝔼[f2(B2u+δ,ρ+ε(ω))]𝔼[f3(B3u+δ,ρ+ε(ω))]+c4.11exp{c4.1δεd1Lα(d1)}.\begin{split}\mathbb{E}\big{[}f_{1}&\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}f_{3}\big{(}\mathcal{M}_{B_{3}}^{u,\rho}(\omega)\big{)}\big{]}\\ &\leq\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u+\delta,\rho+\varepsilon}(\omega)\big{)}\big{]}\mathbb{E}\big{[}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u+\delta,\rho+\varepsilon}(\omega)\big{)}\big{]}\mathbb{E}\big{[}f_{3}\big{(}\mathcal{M}_{B_{3}}^{u+\delta,\rho+\varepsilon}(\omega)\big{)}\big{]}\\ &\quad+c_{\textnormal{\tiny\ref{c:3boxdec}}}^{-1}\exp\big{\{}-c_{\textnormal{\tiny\ref{c:3boxdec}}}\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}.\end{split} (4.3)

An analogous theorem is also valid for decreasing events.

Remark 4.

The 2\sqrt{2} upper bound in (4.2) is not too restricting: in the triangle formed by the points x1,x2,x3x_{1},x_{2},x_{3} there exists at least one acute angle.

In order to prove the above result, we will show that conditions (4.1) and (4.2) imply the existence of two pairs of boxes, one covering B1B_{1} and B2B_{2}, the other covering B1B_{1} and B3B_{3}, such that a coupling construction analogous to the one in Proposition 3.3 works, and such that the line sets involved in this construction are disjoint, which makes the associated Poisson line processes independent, see Figure 7.

From now on we will assume x1,x2,x3dx_{1},x_{2},x_{3}\in\mathbb{R}^{d} fixed and satisfying (4.1) and (4.2). Define the unit vectors

v12:=x2x1|x2x1|,v13:=x3x1|x3x1|.v_{12}:=\frac{x_{2}-x_{1}}{|x_{2}-x_{1}|},\quad v_{13}:=\frac{x_{3}-x_{1}}{|x_{3}-x_{1}|}. (4.4)

These vectors will play the role which the “north pole” 𝐞d{\bf e}_{d} played in Section 3. With that in mind, we fix two rotations 12\mathcal{R}_{12} and 13\mathcal{R}_{13} which bring 𝐞d{\bf e}_{d} to v12v_{12} and v13v_{13} respectively. Letting τx\tau_{x} denote the translation by xdx\in\mathbb{R}^{d} in d\mathbb{R}^{d}, we define the rotated boxes

B12:=τx112τx11(B(x1,2dL)),B13:=τx113τx11(B(x1,2dL)),B22:=τx212τx21(B(x2,2dL)),B33:=τx313τx31(B(x3,2dL)),\begin{split}B_{12}:=\tau_{x_{1}}\mathcal{R}_{12}\tau_{x_{1}}^{-1}(B_{\infty}(x_{1},2\sqrt{d}L)),&\quad B_{13}:=\tau_{x_{1}}\mathcal{R}_{13}\tau_{x_{1}}^{-1}(B_{\infty}(x_{1},2\sqrt{d}L)),\\ B_{22}:=\tau_{x_{2}}\mathcal{R}_{12}\tau_{x_{2}}^{-1}(B_{\infty}(x_{2},2\sqrt{d}L)),&\quad B_{33}:=\tau_{x_{3}}\mathcal{R}_{13}\tau_{x_{3}}^{-1}(B_{\infty}(x_{3},2\sqrt{d}L)),\end{split} (4.5)

and we note that

B12B1,B13B1,B22B2andB33B3.B_{12}\supset B_{1},\quad B_{13}\supset B_{1},\quad B_{22}\supset B_{2}\quad\text{and}\quad B_{33}\supset B_{3}. (4.6)
Refer to caption
Figure 6: An illustration (not to scale) showing various sets defined for the proof of Theorem 4.1.

Denote by Π12\Pi_{12} and Π22\Pi_{22} the hyperplanes orthogonal to v12v_{12} containing the respective hyperfaces of B12B_{12} and B22B_{22} which are closest to each other, denote these faces by S~12\tilde{S}_{12} and S~22\tilde{S}_{22} respectively. Define S12S_{12}^{\prime} and S22S_{22}^{\prime}, as (d1)(d-1)-dimensional \ell_{\infty}-boxes with radii 6dL1+α6\sqrt{d}L^{1+\alpha} containing respectively S~12\tilde{S}_{12} and S~22\tilde{S}_{22}, and having also the same respective barycenters. Denote also by S12S_{12} and S22S_{22} the (d1)(d-1)-dimensional \ell_{\infty}-boxes with radii 4dL4\sqrt{d}L containing respectively S~12\tilde{S}_{12} and S~22\tilde{S}_{22} and also with same centers of mass. Analogously define Π13\Pi_{13} and Π33\Pi_{33}, S~13\tilde{S}_{13} and S~33\tilde{S}_{33}, S13S_{13}^{\prime} and S33S_{33}^{\prime}, and S13S_{13} and S33S_{33}. For λ{12,13,22,33}\lambda\in\{12,13,22,33\}, we have

S~λSλSλΠλ.\begin{split}\tilde{S}_{\lambda}\subset S_{\lambda}\subset S_{\lambda}^{\prime}\subset\Pi_{\lambda}.\end{split} (4.7)

We refer to Figure 6 for clarification. We also define the rotated spherical caps

𝔻22=𝔻12:=12(𝔻),𝔻33=𝔻13:=13(𝔻).\begin{split}\mathbb{D}_{22}=\mathbb{D}_{12}:=\mathcal{R}_{12}(\mathbb{D}),\quad\mathbb{D}_{33}=\mathbb{D}_{13}:=\mathcal{R}_{13}(\mathbb{D}).\end{split} (4.8)

Since the radii of the boxes considered was increased, the size of the “north pole neighborhoods” must be decreased so that a result analogous to Lemma 3.2 may hold. With that in mind, we define

D~ε,L:={x𝔻;dist(x,𝐞d)<ε(16dL)1},\tilde{D}_{\varepsilon,L}:=\left\{x\in\mathbb{D};\operatorname{dist}(x,{\bf e}_{d})<\varepsilon(16\sqrt{d}L)^{-1}\right\}, (4.9)

as well as

Dε,L12=Dε,L12:=12(D~ε,L),Dε,L13=Dε,L13:=13(D~ε,L).\begin{split}D_{\varepsilon,L}^{12}=D_{\varepsilon,L}^{12}:=\mathcal{R}_{12}(\tilde{D}_{\varepsilon,L}),\quad D_{\varepsilon,L}^{13}=D_{\varepsilon,L}^{13}:=\mathcal{R}_{13}(\tilde{D}_{\varepsilon,L}).\end{split} (4.10)
Refer to caption
Figure 7: A schematic showing the sets involved in the proof of Theorem 4.1.

For λ=12,13,22,33\lambda=12,13,22,33, we now characterize (except in a zero μ\mu-measure set) a line l𝕃l\in\mathbb{L} by pλ(l)p_{\lambda}(l), its intersection point with Πλ\Pi_{\lambda}, and its direction dλ(l)𝔻λd_{\lambda}(l)\in\mathbb{D}_{\lambda}. Again, a result in the manner of Lemma 2.1 holds, where we can sample PLP(uμ)\mathrm{PLP}(u\mu) starting with a Poisson point process in the above planes instead of in d1×{0}\mathbb{R}^{d-1}\times\{0\}.

We define the “harmless” Poisson line processes

η10=i0,uiuδ(li,ui)𝟏{liS1;d12(li)Dε,L12;d13(li)Dε,L13},η20=i0,uiuδ(li,ui)𝟏{liS2;d12(li)Dε,L12},η30=i0,uiuδ(li,ui)𝟏{liS3;d13(li)Dε,L13},\begin{split}\eta_{1}^{0}&=\sum_{i\geq 0,u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{l_{i}\cap S_{1}\neq\varnothing;d_{12}(l_{i})\notin D_{\varepsilon,L}^{12};d_{13}(l_{i})\notin D_{\varepsilon,L}^{13}\},\\ \eta_{2}^{0}&=\sum_{i\geq 0,u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{l_{i}\cap S_{2}\neq\varnothing;d_{12}(l_{i})\notin D_{\varepsilon,L}^{12}\},\\ \eta_{3}^{0}&=\sum_{i\geq 0,u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{l_{i}\cap S_{3}\neq\varnothing;d_{13}(l_{i})\notin D_{\varepsilon,L}^{13}\},\end{split} (4.11)

as well as the processes which can “carry information” between the pairs of boxes

η12=i0,uiuδ(li,ui)𝟏{d12(li)Dε,L12 and either p12(l)S12 or p2(l)S2},η13=i0,uiuδ(li,ui)𝟏{d13(li)Dε,L13 and either p13(l)S13 or p3(l)S3},\begin{split}\eta^{12}&=\sum_{i\geq 0,u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{d_{12}(l_{i})\in D_{\varepsilon,L}^{12}\text{ and either }p_{12}(l)\in S_{12}^{\prime}\text{ or }p_{2}(l)\in S_{2}^{\prime}\},\\ \eta^{13}&=\sum_{i\geq 0,u_{i}\leq u}\delta_{(l_{i},u_{i})}{\bf 1}\{d_{13}(l_{i})\in D_{\varepsilon,L}^{13}\text{ and either }p_{13}(l)\in S_{13}^{\prime}\text{ or }p_{3}(l)\in S_{3}^{\prime}\},\end{split} (4.12)

see Figure 7 for an illustration depicting the two last point measures. What is crucial for the proof of Theorem 4.1 is the already advertised fact that η13\eta^{13} and η12\eta^{12} are independent line processes, and therefore a coupling construction like the one of Proposition 3.3 can be done simultaneously for the two processes. The next lemma rigorously states this result.

Lemma 4.2.

Using the notation above defined, we have that, for sufficiently large LL, η13\eta^{13} and η12\eta^{12} are independent Poisson line processes.

Proof.

We will show that lines intersecting both S13S_{13}^{\prime} and S33S_{33}^{\prime} cannot have its direction in Dε,L12D_{\varepsilon,L}^{12}, which will show the result by elementary properties of the Poisson process. With that in mind, consider y3S33y_{3}\in S_{33}^{\prime} and y1S13y_{1}\in S_{13}^{\prime}. By the Pythagorean Theorem, we have that, for large enough LL, there exist vectors w1,w3dw_{1},w_{3}\in\mathbb{R}^{d} such that

y1=x1+w1,y3=x3+w3, and |w1|,|w3|7dL1+α.\begin{split}y_{1}=x_{1}+w_{1},\,y_{3}=x_{3}+w_{3},\text{ and }|w_{1}|,|w_{3}|\leq 7\sqrt{d}L^{1+\alpha}.\end{split} (4.13)

We then have

y3y1|y3y1|=(x3x1|x3x1|+w3w1|x3x1|)(|x3x1+w3w1||x3x1|)1,\begin{split}\frac{y_{3}-y_{1}}{|y_{3}-y_{1}|}&=\left(\frac{x_{3}-x_{1}}{|x_{3}-x_{1}|}+\frac{w_{3}-w_{1}}{|x_{3}-x_{1}|}\right)\left(\frac{|x_{3}-x_{1}+w_{3}-w_{1}|}{|x_{3}-x_{1}|}\right)^{-1},\end{split} (4.14)

and for large enough LL, by the triangle inequality,

|x3x1|x3x1|(|x3x1+w3w1||x3x1|)1x3x1|x3x1||=|1(|x3x1+w3w1||x3x1|)1|15dεL.\begin{split}\Big{|}\frac{x_{3}-x_{1}}{|x_{3}-x_{1}|}&\left(\frac{|x_{3}-x_{1}+w_{3}-w_{1}|}{|x_{3}-x_{1}|}\right)^{-1}-\frac{x_{3}-x_{1}}{|x_{3}-x_{1}|}\Big{|}=\Big{|}1-\left(\frac{|x_{3}-x_{1}+w_{3}-w_{1}|}{|x_{3}-x_{1}|}\right)^{-1}\Big{|}\\ &\leq 15\sqrt{d}\frac{\varepsilon}{L}.\end{split} (4.15)

Using again the triangular inequality and Equation (4.14), we obtain, for large enough LL,

|y3y1|y3y1|x3x1|x3x1||15dεL+14dεL(|x3x1+w3w1||x3x1|)1<30dεL.\begin{split}\left|\frac{y_{3}-y_{1}}{|y_{3}-y_{1}|}-\frac{x_{3}-x_{1}}{|x_{3}-x_{1}|}\right|&\leq 15\sqrt{d}\frac{\varepsilon}{L}+14\sqrt{d}\frac{\varepsilon}{L}\left(\frac{|x_{3}-x_{1}+w_{3}-w_{1}|}{|x_{3}-x_{1}|}\right)^{-1}<30\sqrt{d}\frac{\varepsilon}{L}.\end{split} (4.16)

Now, the definition of Dε,LD_{\varepsilon,L} in (3.8), the definition of Dε,L12D_{\varepsilon,L}^{12} in (4.8), the hypothesis (4.2), and the triangular inequality show that

y3y1|y3y1|Dε,L12,\begin{split}\frac{y_{3}-y_{1}}{|y_{3}-y_{1}|}\notin D_{\varepsilon,L}^{12},\end{split} (4.17)

finishing the proof of the result. ∎

Let χ~ε,L\tilde{\chi}_{\varepsilon,L} denote the measure χε,L\chi_{\varepsilon,L} conditioned on selecting a direction in D~ε,L\tilde{D}_{\varepsilon,L}, and let χ¯ε,L12\bar{\chi}_{\varepsilon,L}^{12} and χ¯ε,L13\bar{\chi}_{\varepsilon,L}^{13} denote respectively the pushforward of the measure χ~ε,L\tilde{\chi}_{\varepsilon,L} by the rotations 12\mathcal{R}_{12} and 13\mathcal{R}_{13}. For λ=12,22\lambda=12,22, we define direction re-sampling operations in the same manner of (3.11):

Γλ12:η12Γλ12(η12)(pλ(l),dλ(l))(pλ(l),dλ(l)),\begin{array}[]{cclc}\Gamma_{\lambda}^{12}:&\eta^{12}&\to&\Gamma_{\lambda}^{12}(\eta^{12})\\ &(p_{\lambda}(l),d_{\lambda}(l))&\mapsto&(p_{\lambda}(l),d_{\lambda}^{\prime}(l)),\end{array} (4.18)

where dλ(l)d_{\lambda}^{\prime}(l) is defined to be either a random vector in Dε,L12D_{\varepsilon,L}^{12} sampled according to χ¯ε,L12\bar{\chi}_{\varepsilon,L}^{12} independently for each lη12l\in\eta^{12} if pλ(l)Sλp_{\lambda}(l)\in S_{\lambda}^{\prime}, or simply equal to dλ(l)d_{\lambda}(l) otherwise. We analogously define Γ1313\Gamma_{13}^{13} and Γ3313\Gamma_{33}^{13}.

In the manner of (3.16) and (3.17) we define, for i=2,3i=2,3,

ηS1i1i:=(lj,uj)η1iδ(lj,uj)𝟏{p1i(lj)S1i;d1i(lj)Dε,L};ηS1iS1i1i:=η1iηS1i1i,\begin{split}\eta^{1i}_{S_{1i}}&:=\sum_{(l_{j},u_{j})\in\eta^{1i}}\delta_{(l_{j},u_{j})}{\bf 1}\{p_{1i}(l_{j})\in S_{1i};d_{1i}(l_{j})\in D_{\varepsilon,L}\};\\ \eta^{1i}_{S_{1i}^{\prime}\setminus S_{1i}}&:=\eta^{1i}-\eta^{1i}_{S_{1i}},\end{split} (4.19)

as well as

Γ1i1i(ηS1i1i):=(lj,uj)Γ1i1i(η1i)δ(lj,uj)𝟏{p1i(lj)S1i;d1i(lj)Dε,L};Γ1i1i(ηS1iS1i1i):=Γ1i1i(η1i)Γ1i1i(ηS1i1i).\begin{split}\Gamma^{1i}_{1i}(\eta^{1i}_{S_{1i}})&:=\sum_{(l_{j},u_{j})\in\Gamma^{1i}_{1i}(\eta^{1i})}\delta_{(l_{j},u_{j})}{\bf 1}\{p_{1i}(l_{j})\in S_{1i};d_{1i}^{\prime}(l_{j})\in D_{\varepsilon,L}\};\\ \Gamma^{1i}_{1i}(\eta^{1i}_{S_{1i}^{\prime}\setminus S_{1i}})&:=\Gamma^{1i}_{1i}(\eta^{1i})-\Gamma^{1i}_{1i}(\eta^{1i}_{S_{1i}}).\end{split} (4.20)

As in (3.12), we have, by definition, detailed balance equations for these stochasic operations:

(η12,Γλ12(η12))=d(Γλ12(η12),η12),(η12,Γλ22(η12))=d(Γλ22(η12),η12),(η13,Γλ13(η13))=d(Γλ13(η13),η13),(η13,Γλ33(η13))=d(Γλ33(η13),η13).\begin{split}\big{(}\eta^{12},\Gamma_{\lambda}^{12}(\eta^{12})\big{)}&\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma_{\lambda}^{12}(\eta^{12}),\eta^{12}\big{)},\qquad\big{(}\eta^{12},\Gamma_{\lambda}^{22}(\eta^{12})\big{)}\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma_{\lambda}^{22}(\eta^{12}),\eta^{12}\big{)},\\ \big{(}\eta^{13},\Gamma_{\lambda}^{13}(\eta^{13})\big{)}&\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma_{\lambda}^{13}(\eta^{13}),\eta^{13}\big{)},\qquad\big{(}\eta^{13},\Gamma_{\lambda}^{33}(\eta^{13})\big{)}\stackrel{{\scriptstyle d}}{{=}}\big{(}\Gamma_{\lambda}^{33}(\eta^{13}),\eta^{13}\big{)}.\end{split} (4.21)

The following lemmas are analogous to lemmas 3.2, 3.5, and 3.6, and they are proved in the same way.

Lemma 4.3.

With the notation above developed we have, for large LL,

B12u,ρε(Γ1212(η12)+η10)B12u,ρ(η12+η10)B12u,ρ+ε(Γ1212(η12)+η10),B13u,ρε(Γ1313(η13)+η10)B13u,ρ(η13+η10)B13u,ρ+ε(Γ1313(η13)+η10),B22u,ρε(Γ2212(η12)+η20)B22u,ρ(η12+η20)B22u,ρ+ε(Γ2212(η12)+η20),B33u,ρε(Γ3313(η13)+η30)B33u,ρ(η13+η30)B33u,ρ+ε(Γ3313(η13)+η30).\begin{split}&\mathcal{M}_{B_{12}}^{u,\rho-\varepsilon}\big{(}\Gamma^{12}_{12}(\eta^{12})+\eta_{1}^{0}\big{)}\preceq\mathcal{M}_{B_{12}}^{u,\rho}\big{(}\eta^{12}+\eta_{1}^{0}\big{)}\preceq\mathcal{M}_{B_{12}}^{u,\rho+\varepsilon}\big{(}\Gamma^{12}_{12}(\eta^{12})+\eta_{1}^{0}\big{)},\\ &\mathcal{M}_{B_{13}}^{u,\rho-\varepsilon}\big{(}\Gamma^{13}_{13}(\eta^{13})+\eta_{1}^{0}\big{)}\preceq\mathcal{M}_{B_{13}}^{u,\rho}\big{(}\eta^{13}+\eta_{1}^{0}\big{)}\preceq\mathcal{M}_{B_{13}}^{u,\rho+\varepsilon}\big{(}\Gamma^{13}_{13}(\eta^{13})+\eta_{1}^{0}\big{)},\\ &\mathcal{M}_{B_{22}}^{u,\rho-\varepsilon}\big{(}\Gamma^{12}_{22}(\eta^{12})+\eta_{2}^{0}\big{)}\preceq\mathcal{M}_{B_{22}}^{u,\rho}\big{(}\eta^{12}+\eta_{2}^{0}\big{)}\preceq\mathcal{M}_{B_{22}}^{u,\rho+\varepsilon}\big{(}\Gamma^{12}_{22}(\eta^{12})+\eta_{2}^{0}\big{)},\\ &\mathcal{M}_{B_{33}}^{u,\rho-\varepsilon}\big{(}\Gamma^{13}_{33}(\eta^{13})+\eta_{3}^{0}\big{)}\preceq\mathcal{M}_{B_{33}}^{u,\rho}\big{(}\eta^{13}+\eta_{3}^{0}\big{)}\preceq\mathcal{M}_{B_{33}}^{u,\rho+\varepsilon}\big{(}\Gamma^{13}_{33}(\eta^{13})+\eta_{3}^{0}\big{)}.\end{split}
Lemma 4.4.

Denote by μ~12\tilde{\mu}^{12} and μ~13\tilde{\mu}^{13} the pushforward of the measure μ~\tilde{\mu} by the rotations 12\mathcal{R}_{12} and 13\mathcal{R}_{13} respectively. There exists a constant c4.3>0c_{\textnormal{\tiny\ref{c:s1s2intens3box}}}>0 such that, for i=2,3i=2,3,

μ~1i(S1i×Dε,L1i)=c4.3εd1(1ε2256L2)d12.\tilde{\mu}^{1i}\left(S_{1i}\times D_{\varepsilon,L}^{1i}\right)=c_{\textnormal{\tiny\ref{c:s1s2intens3box}}}\varepsilon^{d-1}\Big{(}1-\frac{\varepsilon^{2}}{256L^{2}}\Big{)}^{\frac{d-1}{2}}. (4.22)
Lemma 4.5.

For i=2,3i=2,3, consider lηS1i1il\in\eta^{1i}_{S_{1i}}. Denote by Γii1iΓ1i1i(l)\Gamma_{ii}^{1i}\circ\Gamma_{1i}^{1i}(l) the line in Γii1i(η1i)\Gamma_{ii}^{1i}(\eta^{1i}) corresponding to Γ1i1i(l)\Gamma_{1i}^{1i}(l) in ηS1i1i\eta_{S_{1i}}^{1i}. There exists a constant c4.4>0c_{\textnormal{\tiny\ref{c:intersecdens3box}}}>0 such that for every pΠ1ip\in\Pi_{1i}dDε,L1id\in D_{\varepsilon,L}^{1i} and sufficiently large LL,

(pii(Γii1iΓ1i1i(l))A,dii(Γii1iΓ1i1i(l))B|p1i(l)=p,d1i(l)=d)c4.4L(1+α)(d1)𝟏Advd1χ¯ε,L1i(B),\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle\mathbb{P}\left(p_{ii}(\Gamma_{ii}^{1i}\circ\Gamma_{1i}^{1i}(l))\in A,d_{ii}(\Gamma_{ii}^{1i}\circ\Gamma_{1i}^{1i}(l))\in B\middle|p_{1i}(l)=p,d_{1i}^{\prime}(l)=d\right)$\mbox{}\hfil\phantom{****************}\phantom{************}\\ &\leq c_{\textnormal{\tiny\ref{c:intersecdens3box}}}L^{-(1+\alpha)(d-1)}\int{\bf 1}_{A}\mathrm{d}v_{d-1}\cdot\bar{\chi}_{\varepsilon,L}^{1i}(B),\end{split}

for every Borelian subsets AΠiiA\subseteq\Pi_{ii}, BDε,L1iB\subseteq D_{\varepsilon,L}^{1i}.

Proof of Theorem 4.1.

Note that, for LL large enough and i=2,3i=2,3, in order for a line with direction in Dε,L1iD_{\varepsilon,L}^{1i} to intersect B1B_{1}, it has to intersect also S1iS_{1i}. We obtain, in the manner of (3.24), using Lemma 4.3 and the monotonicity of the functions being considered,

𝔼[f1(B1u,ρ(ω))f2(B2u,ρ(ω))f3(B3u,ρ(ω))]\displaystyle\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}f_{3}\big{(}\mathcal{M}_{B_{3}}^{u,\rho}(\omega)\big{)}\big{]} (4.23)
𝔼[f1(B1u,ρ+ε(Γ1212(ηS1212)+Γ1313(ηS1313)+η10))×𝔼[f2(B22u,ρ+ε(Γ2212(η12)+η20))×f3(B33u,ρ+ε(Γ3313(η13)+η30))|Γ1212(ηS1212),Γ1313(ηS1313),η10]].\displaystyle\leq\mathbb{E}\left[\begin{array}[]{l}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}\big{(}\Gamma_{12}^{12}(\eta^{12}_{S_{12}})+\Gamma_{13}^{13}(\eta^{13}_{S_{13}})+\eta_{1}^{0}\big{)}\big{)}\\ \quad\times\mathbb{E}\left[\begin{array}[]{l}f_{2}\big{(}\mathcal{M}_{B_{22}}^{u,\rho+\varepsilon}\big{(}\Gamma_{22}^{12}(\eta^{12})+\eta_{2}^{0}\big{)}\big{)}\\ \quad\times f_{3}\big{(}\mathcal{M}_{B_{33}}^{u,\rho+\varepsilon}\big{(}\Gamma_{33}^{13}(\eta^{13})+\eta_{3}^{0}\big{)}\big{)}\end{array}\middle|\Gamma_{12}^{12}(\eta^{12}_{S_{12}}),\Gamma_{13}^{13}(\eta^{13}_{S_{13}}),\eta_{1}^{0}\right]\end{array}\right]. (4.28)

Using lemmas 4.2 and 4.5, we can construct two couplings, analogous to the one in Proposition 3.3, simultaneously and independently. In this way we obtain a coupling between Γ2212Γ1212(ηS1212)\Gamma^{12}_{22}\circ\Gamma^{12}_{12}(\eta^{12}_{S_{12}}) conditioned on ηS1212\eta^{12}_{S_{12}}, Γ3313Γ1313(ηS1313)\Gamma^{13}_{33}\circ\Gamma^{13}_{13}(\eta^{13}_{S_{13}}) conditioned on ηS1313\eta^{13}_{S_{13}}, and a process ωδ=dPLP(δμ)\omega_{\delta}\stackrel{{\scriptstyle d}}{{=}}\mathrm{PLP}(\delta\mu) independent from ηS1212\eta^{12}_{S_{12}} and ηS1313\eta^{13}_{S_{13}} such that, whenever the number of lines in ηS1212\eta^{12}_{S_{12}} and ηS1313\eta^{13}_{S_{13}} is not too large,

(Γ2212Γ1212(ηS1212))(Γ3313Γ1313(ηS1313))ωδ,\left(\Gamma^{12}_{22}\circ\Gamma^{12}_{12}(\eta^{12}_{S_{12}})\right)\cup\left(\Gamma^{13}_{33}\circ\Gamma^{13}_{13}(\eta^{13}_{S_{13}})\right)\subseteq\omega_{\delta},

where we identified the point measures with their supports in 𝕃\mathbb{L}. This implies, by the same reasoning as in (3.42) and (3.45), as well as the reversibility equations in (4.21),

𝔼[f1(B1u,ρ(ω))f2(B2u,ρ(ω))f3(B3u,ρ(ω))]𝔼[f1((B1u,ρ+ε(ω))]𝔼[f2((B22u+δ,ρ+ε(ω))f3(B33u+δ,ρ+ε(ω))]+c1exp{cδεd1Lα(d1)}.\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle\mathbb{E}\big{[}f_{1}\big{(}\mathcal{M}_{B_{1}}^{u,\rho}(\omega)\big{)}f_{2}\big{(}\mathcal{M}_{B_{2}}^{u,\rho}(\omega)\big{)}f_{3}\big{(}\mathcal{M}_{B_{3}}^{u,\rho}(\omega)\big{)}\big{]}$\mbox{}\hfil\phantom{******}\\ &\leq\mathbb{E}\big{[}f_{1}\big{(}(\mathcal{M}_{B_{1}}^{u,\rho+\varepsilon}(\omega)\big{)}\big{]}\mathbb{E}\big{[}f_{2}\big{(}(\mathcal{M}_{B_{22}}^{u+\delta,\rho+\varepsilon}(\omega)\big{)}f_{3}\big{(}\mathcal{M}_{B_{33}}^{u+\delta,\rho+\varepsilon}(\omega)\big{)}\big{]}\\ &\quad+c^{-1}\exp\big{\{}-c\delta\varepsilon^{d-1}L^{\alpha(d-1)}\big{\}}.\end{split} (4.29)

Now applying Theorem 3.3 to the expectation of the product in the above right hand side, considering slightly larger boxes in order for them to be parallel, we obtain (4.3) after substituting 2ε2\varepsilon by ε\varepsilon and 2δ2\delta by δ\delta. ∎

5 Renormalization strategy

In this section we describe how one can use the decoupling inequality obtained in Theorem 4.1 in order to prove results about the vacant set of the cylinder percolation process for small intensities of the parameter uu. The idea is to use multi-scale renormalization to prove that with high probability there exists a fractal-like ‘carpet’ where the percolation process is well behaved. We start with the necessary definitions of scales in our renormalization scheme.

Throughout the next sections, the 0-th scale, denoted by L0L_{0}, will play an important role: we will need to choose it to be sufficiently large in order for the statements that follow to hold. We will therefore consider a constant 𝖢~0>0\tilde{\mathsf{C}}_{0}>0, which will ultimately depend only on the dimension dd, but whose value will be updated as needed in (5.8,5.11,5.13,6.14,6.16,7.2)(\ref{eq:0boxdecay},\ref{e:L_k_large},\ref{e:khole2},\ref{eq:mathsfGnonempty},\ref{eq:0scale_path_isop},\ref{eq:flow0_1}), and we will take L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0}. We let

α(1γ2(d1),1)\alpha\in\left(1-\frac{\gamma}{2(d-1)},1\right) (5.1)

and β(0,1α)\beta\in(0,1-\alpha). We then define the sequence of growing scales

Lk:=17(k22Lk12Lk1α+β+Lk1),L_{k}:=17\left(k^{2}\cdot 2L_{k-1}^{2}\lceil L_{k-1}^{\alpha+\beta}\rceil+L_{k-1}\right), (5.2)

for kk\in\mathbb{N}.

Despite the above definition looking involved, it is a simple choice that guarantees that the scales LkL_{k} will satisfy the following properties:

  1. 1.

    Lk17L_{k}\in 17\mathbb{N} for every kk\in\mathbb{N}, as some of our arguments divide boxes B(xk,Lk)B(x_{k},L_{k}) into boxes of radius 171Lk17^{-1}L_{k};

  2. 2.

    LkL_{k} is roughly of order Lk1α+β+2L_{k-1}^{\alpha+\beta+2};

  3. 3.

    LkL_{k} is divisible by Lk1L_{k-1}, but is not divisible by 2Lk12L_{k-1}, which we will need in order to partition the faces of boxes at scale kk into faces of boxes at scale k1k-1.

Having defined the scales, we introduce, for each kk\in\mathbb{N}, the coarse-grained lattices

𝕄k=𝕄k(L0):=2Lkd×{k}.\mathbb{M}_{k}=\mathbb{M}_{k}(L_{0}):=2L_{k}\mathbb{Z}^{d}\times\{k\}. (5.3)

If m=(x,k)𝕄km=(x,k)\in\mathbb{M}_{k}, we write

Bm:=B(x,Lk),B_{m}:=B_{\infty}\left(x,L_{k}\right), (5.4)

and we call BmB_{m} a box of the kk-th scale. We will sometimes abuse the notation and refer to mm directly as a box. It will be crucial for us that the boxes (Bm)m𝕄k(B_{m})_{m\in\mathbb{M}_{k}} for a gien k0k\geq 0 are not disjoint, the box BmB_{m} will share faces with its neighboring boxes of the same scale.

During the renormalization argument, both the intensity of the cylinder’s process, as well as the radius of our cylinders will vary from scale to scale. This will allow us to use our decoupling result when relating probabilities of bad events in different scales.

To introduce these sequences, fix some γ(0,1/5)\gamma\in(0,1/5). Given L0L_{0} as above, we define the initial intensity u~\tilde{u} and radius ρ~\tilde{\rho} as

u~=u~(γ,L0):=1L0d1γ2,ρ~:=2.\tilde{u}=\tilde{u}(\gamma,L_{0}):=\frac{1}{L_{0}^{d-1-\frac{\gamma}{2}}},\quad\tilde{\rho}:=2. (5.5)

The denisity u~\tilde{u} is chosen such that w.h.p. at most L0γL_{0}^{\gamma} cylinders actually intersect the boxes at the 0-th scale, as we will see in (5.8). For kk\in\mathbb{N}, we then define

uk=uk(γ,L0):=u~(11k+2),ρk:=2(11k+2).u_{k}=u_{k}(\gamma,L_{0}):=\tilde{u}\cdot\left(1-\frac{1}{k+2}\right),\quad\rho_{k}:=2\left(1-\frac{1}{k+2}\right). (5.6)

We can now define good and bad boxes in different scales. For the first scale, we simply control the number of cylinders intersecting the box:

Definition 5.1.

Given m𝕄0m\in\mathbb{M}_{0}, we say that the box BmB_{m} is (u,ρ,0)(u,\rho,0)-bad (or simply bad) for ω\omega if the number of cylinders of radius ρ\rho at level uu of ω\omega intersecting BmB_{m} is larger than L0γL_{0}^{\gamma}.

For other values of scale kk we will introduce the notion of bad box inductively. Roughly speaking, we will say that a box is bad if it has at least three bad sub-boxes that are well separated and not aligned. The requirements are inspired by the decoupling of three boxes introduced in Section 4.

Definition 5.2.

Given kk\in\mathbb{N} and m𝕄km\in\mathbb{M}_{k}, we say that the box BmB_{m} is (u,ρ,k)(u,\rho,k)-bad (or simply bad) for ω\omega if there exist m1,m2,m3𝕄k1m_{1},m_{2},m_{3}\in\mathbb{M}_{k-1}, represented respectively by (x1,k),(x2,k),(x3,k)(x_{1},k),(x_{2},k),(x_{3},k) such that

  • (i)

    BmiBmB_{m_{i}}\subset B_{m} for i=1,2,3i=1,2,3;

  • (ii)

    |x1x2|,|x1x3|,|x2x3|k2Lk12+α\displaystyle|x_{1}-x_{2}|,|x_{1}-x_{3}|,|x_{2}-x_{3}|\geq k^{2}\cdot L_{k-1}^{2+\alpha};

  • (iii)

    2dist(x1x2|x1x2|,x1x3|x1x3|)30d1k2Lk1\displaystyle\sqrt{2}\geq\operatorname{dist}\left(\frac{x_{1}-x_{2}}{|x_{1}-x_{2}|},\frac{x_{1}-x_{3}}{|x_{1}-x_{3}|}\right)\geq 30\sqrt{d}\frac{1}{k^{2}L_{k-1}}.

  • (iv)

    Bm1,Bm2,Bm3B_{m_{1}},B_{m_{2}},B_{m_{3}} are (u,ρ,k1)(u,\rho,k-1)-bad for ω\omega.

Given m𝕄km\in\mathbb{M}_{k}, we say that mm is (u,ρ,k)(u,\rho,k)-good (or simply good) if it is not (u,ρ,k)(u,\rho,k)-bad. We note that the event where mm is bad for ω\omega is increasing.


In what follows we will show that for appropriate choices of parameters, the probability that a box is bad decays fast with the scale. First consider the probabilities

pk(u,ρ):=supm=(x,k)𝕄k[(x,k) is (u,ρ,k)-bad]=[(0,k) is (u,ρ,k)-bad].p_{k}(u,\rho):=\sup_{m=(x,k)\in\mathbb{M}_{k}}\mathbb{P}\left[(x,k)\text{ is }(u,\rho,k)\text{-bad}\right]=\mathbb{P}\left[(0,k)\text{ is }(u,\rho,k)\text{-bad}\right]. (5.7)

We want to estimate the probabilities pk(uk,ρk)p_{k}(u_{k},\rho_{k}), starting from the initial scale. Note that the boxes at smaller scales will use uku_{k} and ρk\rho_{k} as parameters. For example, pk(uk,ρk)p_{k}(u_{k},\rho_{k}) heuristically is the probability that there are three well separated and unaligned boxes at scale kk which are (uk,ρk,k1)(u_{k},\rho_{k},k-1)-bad and contained in a specific box at scale kk.

By Lemma (2.2)(2.2) of [18], the number of cylinders of radius 22 intersecting a 0-box is Poisson distributed with parameter bounded from above by c5.2u(L0+2)d1c_{\ref{c:capacity}}u(L_{0}+2)^{d-1}. For 𝖢~0\tilde{\mathsf{C}}_{0} large depending on dd,  L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0}, and (x,0)𝕄0(x,0)\in\mathbb{M}_{0}, we obtain, using the definition of u0u_{0} and of the Poisson distribution,

p0(u0,ρ0)exp{c5.2L0γ},p_{0}(u_{0},\rho_{0})\leq\exp\left\{-c_{\ref{c:capacity}}\cdot L_{0}^{\gamma}\right\}, (5.8)

where in the last equality we used the translation invariance of the cylinder’s process.

We turn now to the estimate of pkp_{k} for every kk, which is obtained by induction. First we use the decoupling of three boxes provided by Theorem 4.1 and the stationarity of the cylinder process under translations, to obtain, for kk\in\mathbb{N},

pk(uk,ρk)m1,m2,m3𝕄k1,Bm1,Bm2,Bm3satisfy(i,ii,iii) in Definition 5.2((mi,k1) is (uk,ρk,k1)-bad for i=1,2,3)(LkLk1)3d(pk1(uk1,ρk1)3+cexp{cu~k2k2(d1)Lk1α(d1)})ck6dLk1(1+α+β)3d(pk1(uk1,ρk1)3+cexp{c1L0d1γ2k2dLk1α(d1)})ck6dLk1(1+α+β)3d(pk1(uk1,ρk1)3+cexp{ck2dLk1γ2(d1)(1α)})\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle p_{k}(u_{k},\rho_{k})$\mbox{}\hfil\,\\ &\leq\!\!\!\!\!\!\!\!\!\!\bigcup_{\begin{subarray}{c}m_{1},m_{2},m_{3}\in\mathbb{M}_{k-1},\\ B_{m_{1}},B_{m_{2}},B_{m_{3}}\text{satisfy}\\ \text{(i,ii,iii) in Definition \ref{def:kbadbox}}\end{subarray}}\!\!\!\!\!\!\!\!\!\!\!\mathbb{P}\left((m_{i},k-1)\text{ is }(u_{k},\rho_{k},k-1)\text{-bad}\text{ for }i=1,2,3\right)\\ &\leq\left(\frac{L_{k}}{L_{k-1}}\right)^{3d}\left(p_{k-1}(u_{k-1},\rho_{k-1})^{3}+c\exp\big{\{}-c\tilde{u}k^{-2}\cdot k^{-2(d-1)}\cdot L_{k-1}^{\alpha(d-1)}\big{\}}\right)\\ &\leq ck^{6d}L^{(1+\alpha+\beta)3d}_{k-1}\left(p_{k-1}(u_{k-1},\rho_{k-1})^{3}+c\exp\left\{-c\frac{1}{L_{0}^{d-1-\frac{\gamma}{2}}}\cdot k^{-2d}\cdot L_{k-1}^{\alpha(d-1)}\right\}\right)\\ &\leq ck^{6d}L^{(1+\alpha+\beta)3d}_{k-1}\left(p_{k-1}(u_{k-1},\rho_{k-1})^{3}+c\exp\left\{-c\cdot k^{-2d}\cdot L_{k-1}^{\frac{\gamma}{2}-(d-1)(1-\alpha)}\right\}\right)\end{split} (5.9)

These equations allow us to prove our next result.

Proposition 5.3.

There exists δ>0\delta>0 such that, for L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0}, with the notation above introduced, we have, for every k0k\geq 0,

pk(uk,ρk)exp{(logLk)1+δ}.\begin{split}p_{k}(u_{k},\rho_{k})\leq\exp\left\{-(\log L_{k})^{1+\delta}\right\}.\end{split} (5.10)
Proof.

We prove Equation (5.10) by induction, as it is usual in such arguments. We note that the base case k=0k=0 follows as a direct consequence of (5.8). Assume then that (5.10) is valid for k1k-1, with kk\in\mathbb{N}. Since (Lk)k0(L_{k})_{k\geq 0} grows faster than an exponential sequence with base L0L_{0}, we obtain from the definition of α\alpha in (5.1) that, after possibly increasing 𝖢~0\tilde{\mathsf{C}}_{0}, for all kk\in\mathbb{N},

exp{3(logLk1)1+δ}cexp{ck2dLk1γ2(d1)(1α)}\exp\left\{-3(\log L_{k-1})^{1+\delta}\right\}\geq c\exp\left\{-c\cdot k^{-2d}\cdot L_{k-1}^{\frac{\gamma}{2}-(d-1)(1-\alpha)}\right\} (5.11)

Equation (5.9) then implies

pk(uk,ρk)exp{(logLk)1+δ}exp{((2+α+β)logLk1+2logk+c)1+δ3(logLk1)1+δ}ck6dLk13d(1+α+β),\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle p_{k}(u_{k},\rho_{k})\exp\left\{(\log L_{k})^{1+\delta}\right\}$\mbox{}\hfil\\ &\leq\exp\left\{((2+\alpha+\beta)\log L_{k-1}+2\log k+c^{\prime})^{1+\delta}-3(\log L_{k-1})^{1+\delta}\right\}ck^{6d}L^{3d(1+\alpha+\beta)}_{k-1},\end{split}

which, by the definition of α\alpha and β\beta, is smaller than 11 for sufficiently small δ\delta and every L0L_{0} sufficiently large. Note that δ\delta does not depend on L0L_{0}, as long as 𝖢~0\tilde{\mathsf{C}}_{0} is sufficiently large. This finishes the induction argument, and the proof of the result. ∎

We now show that whenever a box of the kk-th scale is good, it will contain a fractal-like structure of boxes of all smaller scales. This structure will have nice connectivity properties we will explore in the upcoming sections. We first introduce a new notation to encode where the possible “defects” inside a good box may lie, and then state and prove a related geometric lemma.

Definition 5.4.

Given m𝕄km\in\mathbb{M}_{k} with kk\in\mathbb{N} and 𝕃\ell\in\mathbb{L}, we define 𝒟m()\mathcal{D}_{m}(\ell) to be the set of boxes m𝕄k1m^{\prime}\in\mathbb{M}_{k-1} such that

  • (i)

    BmBm\displaystyle B_{m^{\prime}}\subset B_{m};

  • (ii)

    dist(Bm,)2k2Lk12+α\displaystyle\operatorname{dist}(B_{m^{\prime}},\ell)\leq 2k^{2}L_{k-1}^{2+\alpha}.

We call 𝒟m()\mathcal{D}_{m}(\ell) the kk-defect associated to mm and \ell.

Lemma 5.5.

If m𝕄km\in\mathbb{M}_{k} is (u,ρ,k)(u,\rho,k)-good, with kk\in\mathbb{N}, then for L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0} there exists 𝕃\ell\in\mathbb{L} such that every m𝕄k1m^{\prime}\in\mathbb{M}_{k-1} satisfying

BmBm;Bm𝒟m()B_{m^{\prime}}\subset B_{m};\quad\quad B_{m^{\prime}}\notin\mathcal{D}_{m}(\ell) (5.12)

is (u,ρ,k1)(u,\rho,k-1)-good.

Proof.

Assume mm is (u,ρ,k)(u,\rho,k)-good. We refer to Figure 8 to help the reader visualize the argument that follows. If all the boxes of the scale k1k-1 contained in mm are (u,ρ,k1)(u,\rho,k-1)-good, we can just choose \ell arbitrarily and there is nothing to prove.

Assume there exists a (u,ρ,k1)(u,\rho,k-1)-bad box m1=(x1,k1)m_{1}=(x_{1},k-1) such that Bm1BmB_{m_{1}}\subset B_{m}. If there is no (u,ρ,k1)(u,\rho,k-1)-bad box contained in BmB_{m} and intersecting the complement of an Euclidean ball with center at x1x_{1} and radius 2k2Lk12+α2k^{2}L_{k-1}^{2+\alpha}, we can choose \ell arbitrarily containing x1x_{1} and there is nothing more to prove. If, however, there exists such a (u,ρ,k1)(u,\rho,k-1)-bad box m2=(x2,k1)m_{2}=(x_{2},k-1), we choose \ell as the line passing through x1x_{1} and x2x_{2}.

Finally, take m1,m2m_{1},m_{2} and \ell as above and assume moreover that there exists a (u,ρ,k1)(u,\rho,k-1)-bad box m3=(x3,k1)m_{3}=(x_{3},k-1) contained in BmB_{m} such that Bm3𝒟m()B_{m_{3}}\notin\mathcal{D}_{m}(\ell). We already know that m1m_{1}, m2m_{2} and m3m_{3} satisfy the conditions (i), (ii) and (iv) of Definition 5.2. We will show that they also satisfy condition (iii), contradicting the hypothesis of mm being (u,ρ,k)(u,\rho,k)-good.

Refer to caption
Figure 8: A bad box BmB_{m}. The existence of the unaligned boxes Bm1B_{m_{1}}, Bm2B_{m_{2}} and Bm3B_{m_{3}} makes an application of Theorem 4.1 possible.

Consider the triangle formed by the vertices x1x_{1}, x2x_{2} and x3x_{3}. Either the angle corresponding to x2x_{2} or x1x_{1} must be acute. Without loss of generality, assume the latter holds, and denote this angle by θ\theta. After a rigid motion of d\mathbb{R}^{d}, we may consider x1x_{1} as being the origin and the line \ell as being the axis {t𝐞d;t}\{t\cdot{\bf e}_{d};t\in\mathbb{R}\}. Let t3t_{3} denote the dd-th coordinate of x3x_{3} after this rigid motion, and d3d_{3} the distance between x3x_{3} and \ell. Since θ<π/2\theta<\pi/2, we have t3>0t_{3}>0, and therefore, after possibly increasing 𝖢~0\tilde{\mathsf{C}}_{0},

θ=arctan(d3t3)arctan(ck2Lk12+αk2Lk1α+βLk12)arctan(cLk1β)cLk1β.\begin{split}\theta=\arctan\left(\frac{d_{3}}{t_{3}}\right)\geq\arctan\left(\frac{ck^{2}L_{k-1}^{2+\alpha}}{k^{2}L_{k-1}^{\alpha+\beta}L_{k-1}^{2}}\right)\geq\arctan\left(\frac{c}{L_{k-1}^{\beta}}\right)\geq\frac{c}{L_{k-1}^{\beta}}.\end{split} (5.13)

Now for sufficiently large L0L_{0} this implies condition (iii) of Definition 5.2, finishing the proof of the result. ∎

6 Efficient unoccupied paths

In this section we will lay the groundwork for the study of the energy of a flow in a discretized version of the vacant set 𝒱uρ\mathcal{V}_{u}^{\rho} using the renormalization results proved in Section 5. This study will be completed in Section 7, where we will use the discrete paths constructed in the present section in order to show the existence of a discrete finite energy flow. We start with the necessary definitions.

For x,ydx,y\in\mathbb{Z}^{d}, we let 𝐥𝐢𝐧𝐞(x,y){\bf line}(x,y) denote the closed line segment connecting xx to yy in d\mathbb{R}^{d}. We then define the set of points in d\mathbb{Z}^{d} whose line segments associated to their nearest neighbors do not intersect the cylinder set:

𝖵ρu=𝖵ρu(ω):={xd;(j=1d𝐥𝐢𝐧𝐞(x,x+𝐞j)𝐥𝐢𝐧𝐞(x,x𝐞j))𝒞ρu(ω)=}.\mathsf{V}^{u}_{\rho}=\mathsf{V}^{u}_{\rho}(\omega):=\left\{x\in\mathbb{Z}^{d};\,\right(\bigcup_{j=1}^{d}{\bf line}(x,x+{\bf e}_{j})\cup{\bf line}(x,x-{\bf e}_{j})\left)\cap\mathcal{C}^{u}_{\rho}(\omega)=\emptyset\right\}. (6.1)

We consider in the discrete vacant set 𝖵ρu\mathsf{V}^{u}_{\rho} the graph structure inherited from the nearest-neighbors graph of d\mathbb{Z}^{d}.

Remark 5.

The reason why we consider the discrete set 𝖵u\mathsf{V}^{u} instead of its continuous counterpart is for technical simplification of the arguments, specially comparing the random walk on 𝖵u\mathsf{V}^{u} instead of the Brownian Motion on 𝒱u\mathcal{V}^{u}. But we are confident that these results can be extended to analogous ones for the continuous setting.

The flow we want to define using the carpet from Section 5 will be constructed from paths which will be defined in a hierarchical fashion at each scale. From a “coarse” path at scale kk, we will construct a finer path with of boxes at scale k1k-1 and so on. We do so in order for these paths to avoid the defects present at every scale, so that they navigate through boxes where the cylinder set is well behaved.

For each good box mm we will now introduce the notion of the hole 𝖧m\mathsf{H}_{m} which roughly speaking will represent a region in mm to be avoided. For the precise definition, we need to consider the cases m𝕄0m\in\mathbb{M}_{0} in separate.

For m𝕄0m\in\mathbb{M}_{0}, the hole 𝖧m\mathsf{H}_{m} will correspond exactly to the closed sites in BmB_{m} or more precisely 𝖧m(ω):=(Bmd)𝖵ρu\mathsf{H}_{m}(\omega):=(B_{m}\cap\mathbb{Z}^{d})\setminus\mathsf{V}^{u}_{\rho}. For k1k\geq 1 and a good box m𝕄km\in\mathbb{M}_{k} with associated kk-defect 𝒟m()\mathcal{D}_{m}(\ell), we define the hole of mm as

𝖧m=𝖧m(ω):=m𝒟m()Bmd.\mathsf{H}_{m}=\mathsf{H}_{m}(\omega):=\bigcup_{m^{\prime}\in\mathcal{D}_{m}(\ell)}B_{m^{\prime}}\cap\mathbb{Z}^{d}. (6.2)

We define the set of unit vectors parallel to the cordinate axes

𝖴:={𝐞1,,𝐞d,𝐞1,,𝐞d}\mathsf{U}:=\{{\bf e}_{1},\dots,{\bf e}_{d},-{\bf e}_{1},\dots,-{\bf e}_{d}\} (6.3)

Given m=(x,k)𝕄km=(x,k)\in\mathbb{M}_{k}, with k0k\geq 0, and some 𝐯𝖴{\bf v}\in\mathsf{U}, we define the face of mm associated to 𝐯{\bf v}

𝖥m,𝐯:={yBmd;yx,𝐯=Lk}.\mathsf{F}_{m,{\bf v}}:=\big{\{}y\in B_{m}\cap\mathbb{Z}^{d};\,\langle y-x,{\bf v}\rangle=L_{k}\big{\}}. (6.4)

In order to transfer flow from one box to the adjacent one, we will first define a suitable collection of points and squares along their interfaces. This is illustrated in Figure 9 and it is rigorously defined below.

Refer to caption
Figure 9: The collection of boxes 𝖡m,𝐞1\mathsf{B}_{m,{\bf e}_{1}} in the case m𝕄0m\in\mathbb{M}_{0} and m𝕄km\in\mathbb{M}_{k}. In the first case, the discrete (d1)(d-1)-dimensional boxes have radius 41L07104^{-1}L_{0}^{\frac{7}{10}}, in the second, radius 171Lk17^{-1}L_{k}.

We start at scale zero. More precisely, for m=(x,0)𝕄0m=(x,0)\in\mathbb{M}_{0} and j=1,,dj=1,\dots,d we define the vertex collection

𝖥˙m,𝐞j:={x+L0𝐞j+ijaiL0710𝐞i;ai=(21L0310,21L0310)i=1,,j1,j+1,,d},\dot{\mathsf{F}}_{m,{\bf e}_{j}}:=\left\{\begin{split}\smash{x+L_{0}{\bf e}_{j}+\sum_{i\neq j}a_{i}\Big{\lfloor}L_{0}^{\frac{7}{10}}\Big{\rfloor}{\bf e}_{i};}\;&a_{i}=\Big{(}-2^{-1}L_{0}^{\frac{3}{10}},2^{-1}L_{0}^{\frac{3}{10}}\Big{)}\cap\mathbb{Z}\\ &i=1,\dots,j-1,j+1,\dots,d\end{split}\right\}, (6.5)

which is composed of lattice points on the face 𝖥m,𝐞j\mathsf{F}_{m,{\bf e}_{j}}, with inter-spacing L07/10\lfloor L_{0}^{7/10}\rfloor and spanning a square with half the width of the box BmB_{m}, see Figure 9.

To each y𝖥˙m,𝐞jy\in\dot{\mathsf{F}}_{m,{\bf e}_{j}} we associate a (d1)(d-1)-dimensional “small face”

Bm,𝐞j(y):=B(y,41L0710)𝖥m,𝐞jB_{m,{\bf e}_{j}}(y):=B_{\infty}\Big{(}y,4^{-1}L_{0}^{\frac{7}{10}}\Big{)}\cap\mathsf{F}_{m,{\bf e}_{j}} (6.6)

We also define the whole collection of such small faces

𝖡m,𝐞j:={B(y,41L0710)𝖥m,𝐞j;y𝖥˙m,𝐞j},\mathsf{B}_{m,{\bf e}_{j}}:=\left\{B_{\infty}\Big{(}y,4^{-1}L_{0}^{\frac{7}{10}}\Big{)}\cap\mathsf{F}_{m,{\bf e}_{j}};\,y\in\dot{\mathsf{F}}_{m,{\bf e}_{j}}\right\}, (6.7)

defining analogously the collections 𝖥˙m,𝐞j\dot{\mathsf{F}}_{m,-{\bf e}_{j}} and 𝖡m,𝐞j\mathsf{B}_{m,-{\bf e}_{j}}. At scale 0, we will use these small faces such as Bm,𝐞j(y)B_{m,{\bf e}_{j}}(y) as bases of long prisms contained inside BmB_{m}. Good prisms will evade the hole 𝖧m\mathsf{H}_{m}, and we will use isoperimetric properties of d\mathbb{Z}^{d} in order to connect good prisms inside BmB_{m} using paths of vacant vertices – these will be the good paths at scale 0.

We are now ready to treat the case m=(x,k)𝕄km=(x,k)\in\mathbb{M}_{k} with k1k\geq 1, which will have a different choice of sizes:

𝖥˙m,𝐞j:={x+Lk𝐞j+ij171Lkai𝐞i;ai takes value in{8,6,4,2,0,2,4,6,8}},\dot{\mathsf{F}}_{m,{\bf e}_{j}}:=\left\{\begin{split}\smash{x+L_{k}{\bf e}_{j}+\sum_{i\neq j}17^{-1}L_{k}a_{i}{\bf e}_{i};\;}&a_{i}\text{ takes value in}\\ &\{-8,-6,-4,-2,0,2,4,6,8\}\end{split}\right\}, (6.8)

and

𝖡m,𝐞j:={B(y,171Lk)𝖥m,𝐞j;y𝖥˙m,𝐞j},\mathsf{B}_{m,{\bf e}_{j}}:=\left\{B_{\infty}\Big{(}y,17^{-1}L_{k}\Big{)}\cap\mathsf{F}_{m,{\bf e}_{j}};\,y\in\dot{\mathsf{F}}_{m,{\bf e}_{j}}\right\}, (6.9)

again defining analogously the collections 𝖥˙m,𝐞j\dot{\mathsf{F}}_{m,-{\bf e}_{j}} and 𝖡m,𝐞j\mathsf{B}_{m,-{\bf e}_{j}}. In general, we will denote the element of 𝖡m,𝐞j\mathsf{B}_{m,{\bf e}_{j}} associated to y𝖥˙m,𝐞jy\in\dot{\mathsf{F}}_{m,{\bf e}_{j}} by Bm,𝐞j(y)B_{m,{\bf e}_{j}}(y). Note that the smaller faces at scale k1k\geq 1 have size of the same order as LkL_{k}, which was not the case for scale 0.

Given m=(x,k)𝕄km=(x,k)\in\mathbb{M}_{k}, we consider a graph structure in BmB_{m} isomorphic to the finite lattice box with radius 88, B(0,8)dB(0,8)\cap\mathbb{Z}^{d}. Recall that Lk17L_{k}\in 17\mathbb{N} and define the collection of points

m:={x+i=1daiLk17𝐞i;ai takes value in{16,14,,2,0,2,,14,16}},\mathcal{B}_{m}:=\left\{\begin{split}\smash{x+\sum_{i=1}^{d}a_{i}\frac{L_{k}}{17}{\bf e}_{i};\;}&a_{i}\text{ takes value in}\\ &\{-16,-14,\dots,-2,0,2,\dots,14,16\}\end{split}\right\}, (6.10)

and notice that m𝕄k1\mathcal{B}_{m}\subset\mathbb{M}_{k-1}. Fixed some m𝕄km\in\mathbb{M}_{k} for k1k\geq 1 and any given y𝖥˙m,𝐞y\in\dot{\mathsf{F}}_{m,{\bf e}}, there exists ymy^{\prime}\in\mathcal{B}_{m} such that Bm,𝐞j(y)B(y,171Lk)B_{m,{\bf e}_{j}}(y)\subset B_{\infty}(y^{\prime},17^{-1}L_{k}). In fact, the (d1)(d-1)-dimensional box Bm,𝐞j(y)B_{m,{\bf e}_{j}}(y) is contained in one of the faces of B(y,171Lk)B_{\infty}(y^{\prime},17^{-1}L_{k}).

We will use this finite lattice m\mathcal{B}_{m} inside BmB_{m} in order to construct collections of coarse-grained paths at the kk-th scale which avoid the hole 𝖧m\mathsf{H}_{m} and which behave well in our hierarchical construction. Since for k1k\geq 1 the problematic region 𝖧m\mathsf{H}_{m} is quite small, we can avoid it more easily than at scale 0. Again, we will use prisms whose bases are faces in 𝖡m,𝐞j\mathsf{B}_{m,{\bf e}_{j}}. Figure 10 shows such a prism.

In order to be able to concatenate good paths from adjacent boxes, it will be necessary to introduce more notation related to the face shared by such boxes. For k0k\geq 0, if m=(x,k)m=(x,k) and m=(x+2Lk𝐞j,k)m^{\prime}=(x+2L_{k}{\bf e}_{j},k), we have

𝖥m,𝐞j=𝖥m,𝐞j.\mathsf{F}_{m,{\bf e}_{j}}=\mathsf{F}_{m^{\prime},-{\bf e}_{j}}. (6.11)

If the boxes associated to mm and mm^{\prime} are both good, we say that the face 𝖥m,𝐞j\mathsf{F}_{m,{\bf e}_{j}} is good. In this case we also define the projections of the holes 𝖧m\mathsf{H}_{m} and 𝖧m\mathsf{H}_{m^{\prime}} onto 𝖥m,𝐞j\mathsf{F}_{m,{\bf e}_{j}}:

𝖧m,𝐞jd1:={(y1,,yd)𝖥m,𝐞j;(x1,,xd)𝖧(x,k)𝖧(x+2Lk𝐞j,k) such that xi=yi for ij},\mathsf{H}_{m,{\bf e}_{j}}^{d-1}:=\left\{\begin{split}(y_{1},\dots,y_{d})\in\mathsf{F}_{m,{\bf e}_{j}};\;&\exists(x_{1},\dots,x_{d})\in\mathsf{H}_{(x,k)}\cup\mathsf{H}_{(x+2L_{k}{\bf e}_{j},k)}\\ &\text{ such that }x_{i}=y_{i}\text{ for }i\neq j\end{split}\right\}, (6.12)

see Figure 10.

Refer to caption
Figure 10: Sets associated to a good face 𝖥m,𝐞1\mathsf{F}_{m,{\bf e}_{1}}, when m𝕄km\in\mathbb{M}_{k}, and kk\in\mathbb{N}. When k=0k=0, an analogous picture holds place, this time the boxes Bm,𝐞1(y)B_{m,{\bf e}_{1}}(y) having mesoscopic radius 41L07104^{-1}L_{0}^{\frac{7}{10}}.

We then define,

𝖦m,𝐞j𝖦m,𝐞j:={y𝖥˙m,𝐞j;Bm,𝐞j(y)𝖧m,𝐞jd1=},\mathsf{G}_{m,{\bf e}_{j}}\equiv\mathsf{G}_{m^{\prime},-{\bf e}_{j}}:=\left\{y\in\dot{\mathsf{F}}_{m,{\bf e}_{j}};\,B_{m,{\bf e}_{j}}(y)\cap\mathsf{H}_{m,{\bf e}_{j}}^{d-1}=\emptyset\right\}, (6.13)

the sets of points in 𝖥˙m,𝐞j\dot{\mathsf{F}}_{m,{\bf e}_{j}} which are centers of (d1)(d-1)-dimensional boxes in 𝖡m,𝐞j\mathsf{B}_{m,{\bf e}_{j}}, and whose associated boxes do not intersect the (d1)(d-1)-dimensional defect 𝖧m,𝐞jd1\mathsf{H}_{m,{\bf e}_{j}}^{d-1}. We define 𝖯m,𝐞j(y)\mathsf{P}_{m,{\bf e}_{j}}(y), the prism of y𝖦m,𝐞jy\in\mathsf{G}_{m,{\bf e}_{j}}, as the set of points in BmdB_{m}\cap\mathbb{Z}^{d} whose orthogonal projection onto 𝖥m,𝐞j\mathsf{F}_{m,{\bf e}_{j}} belongs to Bm,𝐞j(y)B_{m,{\bf e}_{j}}(y). We have that, after possibly increasing the value of 𝖢~0\tilde{\mathsf{C}}_{0}:

As long as the face 𝖥m,𝐞j is good, the set 𝖦m,𝐞j is non-empty.\begin{array}[]{c}\parbox[c]{433.62pt}{\centering As long as the face~{}$\mathsf{F}_{m,{\bf e}_{j}}$ is good, the set~{}$\mathsf{G}_{m,{\bf e}_{j}}$ is non-empty.\@add@centering}\end{array} (6.14)

This can be seen using an elementary counting argument for L0L_{0} sufficiently large. We refer to Figure 10.

We now start the construction of the collections of efficient paths: paths of unoccupied vertices that traverse long Euclidean distances without spending too much “time” in any one given box, and which do not intersect each other too much. This will later be used in order to construct a low energy flow. We start by proving a lemma which starts this construction in the 0-th scale, where we may allow some inefficiency. For xdx\in\mathbb{R}^{d} and r>0r>0 we let int(B(x,r))\mathrm{int}(B_{\infty}(x,r)) denote the interior of the box B(x,r)B_{\infty}(x,r), that is, the box B(x,r)B_{\infty}(x,r) minus its faces.

Lemma 6.1.

Consider m𝕄0m\in\mathbb{M}_{0}, L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0}, and 𝐯,𝐰𝖴{\bf v},{\bf w}\in\mathsf{U}, 𝐯𝐰{\bf v}\neq{\bf w}. Then in the event where both 𝖥m,𝐯\mathsf{F}_{m,{\bf v}} and 𝖥m,𝐰\mathsf{F}_{m,{\bf w}} are good, given y𝐯𝖦m,𝐯y_{\bf v}\in\mathsf{G}_{m,{\bf v}} and y𝐰𝖦m,𝐰y_{\bf w}\in\mathsf{G}_{m,{\bf w}}, there exists a path of neighboring vertices in 𝖵ρuBm\mathsf{V}^{u}_{\rho}\cap B_{m} connecting y𝐯y_{\bf v} to y𝐰y_{\bf w} of length at most (2L0+1)d(2L_{0}+1)^{d} which only intersects the faces of BmB_{m} at y𝐯y_{\bf v} and y𝐰y_{\bf w}.

Remark 6.

Note the inefficiency that we allow ourselves in bounding the length of the path by the volume of the box. This is not problematic at scale zero, since it only contributes to the energy of flows by a multiplicative constant depending on L0L_{0}.

Proof.

If such path exists, it must have length at most (2L0+1)d(2L_{0}+1)^{d} simply because this is the cardinality of the discrete box BmdB_{m}\cap\mathbb{Z}^{d}. To show the existence of the path with the required properties, we note that

𝖯m,𝐯(y𝐯),𝖯m,𝐰(y𝐰)𝖵ρuBm.\mathsf{P}_{m,{\bf v}}(y_{\bf v}),\mathsf{P}_{m,{\bf w}}(y_{\bf w})\subset\mathsf{V}^{u}_{\rho}\cap B_{m}. (6.15)

Furthermore, for sufficiently large L0L_{0}, the cardinality of both these prisms intersected with int(Bm)\mathrm{int}(B_{m}) is larger than

8(d1)L07(d1)10+1,8^{-(d-1)}\cdot L_{0}^{\frac{7(d-1)}{10}+1},

while the cardinality of 𝖧m\mathsf{H}_{m} is smaller than cρd1L01+γc\rho^{d-1}L_{0}^{1+\gamma}. Since γ<1/5\gamma<1/5 and d3d\geq 3, the fraction

|𝖧mint(Bm)||𝖯m,𝐯(y𝐯)int(Bm)|d1d\frac{|\mathsf{H}_{m}\cap\mathrm{int}(B_{m})|}{|\mathsf{P}_{m,{\bf v}}(y_{\bf v})\cap\mathrm{int}(B_{m})|^{\frac{d-1}{d}}} (6.16)

can be made arbitrarily small by increasing L0L_{0}. Since the discrete box int(Bm)d\mathrm{int}(B_{m})\cap\mathbb{Z}^{d} inherits the isoperimetric inequality of d\mathbb{Z}^{d} with a smaller constant depending on the dimension, there must exist, after possibly increasing 𝖢~0\tilde{\mathsf{C}}_{0} and requiring L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0}, a path from 𝖯m,𝐯(y𝐯)\mathsf{P}_{m,{\bf v}}(y_{\bf v}) to 𝖯m,𝐰(y𝐰)\mathsf{P}_{m,{\bf w}}(y_{\bf w}) which does not intersect 𝖧m\mathsf{H}_{m}, nor the faces of BmB_{m}. This finishes the proof of the lemma. ∎

The next lemma is the first step in the construction of a collection of efficient paths at a scale kk\in\mathbb{N}. We construct coarse paths in m\mathcal{B}_{m}, which will later in lemmas 6.3 and 6.4 serve as guides to construct paths at scale k1k-1. We denote by 𝖵ρu,k1\mathsf{V}^{u,k-1}_{\rho} the set of vertices x2Lk1dx\in 2L_{k-1}\mathbb{Z}^{d} whose associated boxes (x,k1)𝕄k1(x,k-1)\in\mathbb{M}_{k-1} are (u,ρ,k1)(u,\rho,k-1)-good. If m𝕄km\in\mathbb{M}_{k}, we let Bmk1B_{m}^{k-1} denote the set of vertices of 2Lk1d2L_{k-1}\mathbb{Z}^{d} whose associated boxes are contained in BmB_{m}. Similarly, if y𝖦m,𝐞jy\in\mathsf{G}_{m,{\bf e}_{j}}, we denote by 𝖯m,𝐞jk1(y)\mathsf{P}_{m,{\bf e}_{j}}^{k-1}(y) the set of vertices of 2Lk1d2L_{k-1}\mathbb{Z}^{d} whose associated boxes are contained in 𝖯m,𝐞j(y)\mathsf{P}_{m,{\bf e}_{j}}(y). We also define Bm,𝐞jk1(y)B_{m,{\bf e}_{j}}^{k-1}(y) as the set of points of Bm,𝐞j(y)B_{m,{\bf e}_{j}}(y) contained in 2Lk1d+Lk1𝐞j2L_{k-1}\mathbb{Z}^{d}+L_{k-1}{\bf e}_{j}, that is, points of the (d1)(d-1)-dimensional box associated to yy which are translations by Lk𝐞jL_{k}{\bf e}_{j} of points from the (k1)(k-1)-th scale. We will also utilize analogous notation when considering 𝐞j-{\bf e}_{j} instead of 𝐞j{\bf e}_{j}. Given m𝕄km\in\mathbb{M}_{k}, we consider in m\mathcal{B}_{m} the nearest-neighbor graph structure, so that we may talk about adjacent points and paths in m\mathcal{B}_{m}.

Lemma 6.2.

Consider m𝕄km\in\mathbb{M}_{k}, with kk\in\mathbb{N}, 𝐯,𝐰𝖴{\bf v},{\bf w}\in\mathsf{U}, 𝐯𝐰{\bf v}\neq{\bf w}, and assume the occurrence of the event where both 𝖥m,𝐯\mathsf{F}_{m,{\bf v}} and 𝖥m,𝐰\mathsf{F}_{m,{\bf w}} are good. Then, given y𝐯𝖦m,𝐯y_{\bf v}\in\mathsf{G}_{m,{\bf v}} and y𝐰𝖦m,𝐰y_{\bf w}\in\mathsf{G}_{m,{\bf w}}, there exists a simple path z1,,znz_{1},\dots,z_{n} of neighboring vertices in m\mathcal{B}_{m}, with n17dn\leq 17^{d}, such that Bm(y𝐯)B(z1,171Lk)B_{m}(y_{\bf v})\subset B_{\infty}(z_{1},17^{-1}L_{k}), Bm(y𝐰)B(zn,171Lk)B_{m}(y_{\bf w})\subset B_{\infty}(z_{n},17^{-1}L_{k}), and every box (x,k1)𝕄k1(x,k-1)\in\mathbb{M}_{k-1} such that xB(zi,171Lk)x\in B_{\infty}(z_{i},17^{-1}L_{k}), i=1,,ni=1,\dots,n, is good.

Proof.

Since 17d17^{d} is the cardinality of m\mathcal{B}_{m}, if a suitable path exists, its length automatically satisfies the requested upper bound. Furthermore, we can focus on the case when 𝐯𝐰{\bf v}\neq-{\bf w}, that is, when the faces considered are adjacent. Indeed, If 𝐯=𝐰{\bf v}=-{\bf w}, we can choose an 𝐮𝖴{\bf u}\in\mathsf{U} orthogonal to 𝐯{\bf v}, and if we can construct simple paths connecting 𝐮{\bf u} to 𝐯{\bf v} and 𝐮{\bf u} to 𝐯-{\bf v}, we can also construct a simple path between 𝐯{\bf v} and 𝐯-{\bf v}.

We notice that, since y𝐯𝖦m,𝐯y_{\bf v}\in\mathsf{G}_{m,{\bf v}} and y𝐰𝖦m,𝐰y_{\bf w}\in\mathsf{G}_{m,{\bf w}}𝖯m,𝐯k1(y𝐯)\mathsf{P}_{m,{\bf v}}^{k-1}(y_{\bf v}) and 𝖯m,𝐰k1(y𝐰)\mathsf{P}_{m,{\bf w}}^{k-1}(y_{\bf w}) are contained in 𝖵ρu,k1\mathsf{V}^{u,k-1}_{\rho}, the set of vertices whose associated boxes are (k1)(k-1)-good. Furthermore, each of these prisms is the union of 1717 boxes with center in m\mathcal{B}_{m} and radius 171Lk17^{-1}L_{k}, these boxes sharing faces in the prism’s corresponding directions. That is, the prisms already contain a long path of boxes with centers in m\mathcal{B}_{m} and radius 171Lk17^{-1}L_{k} whose vertices of the (k1)(k-1)-th scale are contained in 𝖵ρu,k1\mathsf{V}^{u,k-1}_{\rho}. We will show now how to join these paths while avoiding the hole 𝖧m2Lk1d\mathsf{H}_{m}\cap 2L_{k-1}\mathbb{Z}^{d}.

Refer to caption
Refer to caption
Refer to caption
Figure 11: 33-dimensional representation of the construction present in the proof of Lemma 6.2. We want to join the two prisms above by boxes of m\mathcal{B}_{m} that do not meet the cylinder-like defect 𝒟m\mathcal{D}_{m}. We construct from the prisms two parallel “sheets” of boxes that do not intersect the defect. There exists at least 4d14^{d-1} rectilinear paths connecting the two sheets, and the defect cannot block them all. In this way, the desired path of boxes can be constructed.

Without loss of generality, we assume 𝐯=𝐞1{\bf v}={\bf e}_{1} and 𝐰=𝐞2{\bf w}={\bf e}_{2}. In what follows we consider m\mathcal{B}_{m} as a subgraph of the dd-dimensional hypercubic lattice (2Lk/17)d(2L_{k}/17)\mathbb{Z}^{d} – specifically, as a box with side-length 1717. In this way, we can regard the prism

𝖯1:=𝖯m,𝐞1k1(y𝐞1)\mathsf{P}_{1}:=\mathsf{P}_{m,{\bf e}_{1}}^{k-1}(y_{{\bf e}_{1}})

as a union of 1717 aligned “box-vertices”, doing the same for

𝖯1:=𝖯m,𝐞2k1(y𝐞2).\mathsf{P}_{1}^{\prime}:=\mathsf{P}_{m,{\bf e}_{2}}^{k-1}(y_{{\bf e}_{2}}).

The Lemma will be proved once we show that there exists a path of boxes inside m\mathcal{B}_{m} from 𝖯1\mathsf{P}_{1} to 𝖯1\mathsf{P}_{1}^{\prime} which avoids boxes intersecting the defect 𝒟m\mathcal{D}_{m}. We refer to Figure 11 for an overview of the construction.

We consider the translations of 𝖯1\mathsf{P}_{1} by integer multiples of (2Lk/17)𝐞2(2L_{k}/17){\bf e}_{2}. By definiton of the defect 𝒟m\mathcal{D}_{m}, it can either intersect translations of 𝖯1\mathsf{P}_{1} by positive integer multiples of (2Lk/17)𝐞2(2L_{k}/17){\bf e}_{2}, or by negative integer multiples, but not both. If it does not intersect the positive translations, we define

𝖯2:=Bmi0(𝖯1+(2Lk/17)i𝐞2),\mathsf{P}_{2}:=B_{m}\cap\bigcup_{i\geq 0}\big{(}\mathsf{P}_{1}+(2L_{k}/17)i\cdot{\bf e}_{2}\big{)},

otherwise, we let

𝖯2:=Bmi0(𝖯1(2Lk/17)i𝐞2).\mathsf{P}_{2}:=B_{m}\cap\bigcup_{i\geq 0}\big{(}\mathsf{P}_{1}-(2L_{k}/17)i\cdot{\bf e}_{2}\big{)}.

We then continue this process for each vector 𝐞n{\bf e}_{n}, with n=2,,d1n=2,\dots,d-1, considering translations of 𝖯n1\mathsf{P}_{n-1} by positive and negative integer multiples of (2Lk/17)𝐞n(2L_{k}/17){\bf e}_{n}, and defining

𝖯n:=Bmi0(𝖯n1±(2Lk/17)i𝐞n),\mathsf{P}_{n}:=B_{m}\cap\bigcup_{i\geq 0}\big{(}\mathsf{P}_{n-1}\pm(2L_{k}/17)i\cdot{\bf e}_{n}\big{)},

choosing the sign in the ±\pm symbol above so that 𝖯n\mathsf{P}_{n} does not intersect the defect associated to the box. We thus obtain a “(d1)(d-1)-dimensional” sheet of boxes 𝖯d1\mathsf{P}_{d-1}. We perform the same construction starting with 𝖯1\mathsf{P}_{1}^{\prime} and enlarging this set by uniting it with successive translations by multiples of the vectors 𝐞1,𝐞3,𝐞4,,𝐞d1{\bf e}_{1},{\bf e}_{3},{\bf e}_{4},\dots,{\bf e}_{d-1}, selecting the sign appropriately so they also do not intersect the defect, finally obtaining another sheet 𝖯d1\mathsf{P}_{d-1}^{\prime}.

The sheets 𝖯d1\mathsf{P}_{d-1} and 𝖯d1\mathsf{P}_{d-1}^{\prime} are parallel by construction: they both have thickness consisting of one box in the direction 𝐞d{\bf e}_{d}. Also, by construction, the projections of these sheets onto the (d1)(d-1)-dimensional sublattice (2Lk/17)d1×{0}(2L_{k}/17)\mathbb{Z}^{d-1}\times\{0\} intersect in a (d1)(d-1)-dimensional box of side-length at least 44. This implies the existence of 4d14^{d-1} disjoint linear paths of boxes on m\mathcal{B}_{m} from 𝖯d1\mathsf{P}_{d-1} to 𝖯d1\mathsf{P}_{d-1}^{\prime}, these path being parallel to 𝐞d{\bf e}_{d}. By the definition of the defect 𝒟m\mathcal{D}_{m}, it cannot intersect all of these paths, and we obtain the desired result. ∎

We now continue with the second step of the hierarchical construction of good paths: we prove a very elementary lemma showing how to construct good paths at scale k1k-1 inside a box of m\mathcal{B}_{m}, m𝕄km\in\mathbb{M}_{k}, which is completely vacant at scale k1k-1. The recipe will later be used in Lemma 6.4 to concatenate paths at scale k1k-1 inside boxes of the kk-th scale.

Refer to caption
Figure 12: The points in the image represent the set Fm,𝐞1k1(z)F^{k-1}_{m,{\bf e}_{1}}(z), a subset of the box B(z,171Lk)B_{\infty}(z,17^{-1}L_{k}).

We will consider in 𝖵ρu,k1\mathsf{V}^{u,k-1}_{\rho} the nearest-neighbor graph structure and define, for m𝕄km\in\mathbb{M}_{k}, kk\in\mathbb{N}, zmz\in\mathcal{B}_{m}, and 𝐯𝖴{\bf v}\in\mathsf{U}, the set Fm,𝐯k1(z)F^{k-1}_{m,{\bf v}}(z) as the points of 2Lk1d+Lk1𝐯2L_{k-1}\mathbb{Z}^{d}+L_{k-1}{\bf v} belonging to the face of the box B(z,171Lk)B_{\infty}(z,17^{-1}L_{k}) associated to 𝐯{\bf v}:

Fm,𝐯k1(z):={yB(z,171Lk)d;yz,𝐯=171Lk,y(2Lk1d+Lk1𝐯)}.\begin{split}F^{k-1}_{m,{\bf v}}(z)&:=\left\{\begin{array}[]{c}y\in B_{\infty}(z,17^{-1}L_{k})\cap\mathbb{Z}^{d};\,\langle y-z,{\bf v}\rangle=17^{-1}L_{k},\\ y\in(2L_{k-1}\mathbb{Z}^{d}+L_{k-1}{\bf v})\end{array}\right\}.\end{split} (6.17)

Note that, since LkL_{k} is divisible by Lk1L_{k-1} and not by 2Lk12L_{k-1}, the points of 2Lk1d2L_{k-1}\mathbb{Z}^{d} do not belong to faces of boxes associated to m\mathcal{B}_{m}. We refer to Figure 12.

Lemma 6.3.

Given m𝕄km\in\mathbb{M}_{k}, kk\in\mathbb{N}, and zmz\in\mathcal{B}_{m}, assume that the box

B(z,171Lk)2Lk1dB_{\infty}(z,17^{-1}L_{k})\cap 2L_{k-1}\mathbb{Z}^{d}

is contained in 𝖵ρu,k1\mathsf{V}^{u,k-1}_{\rho}. Then, given the sets Fm,𝐯k1(z),Fm,𝐰k1(z)F^{k-1}_{m,{\bf v}}(z),F^{k-1}_{m,{\bf w}}(z) associated respectively to two distinct unit vectors 𝐯,𝐰𝖴{\bf v},{\bf w}\in\mathsf{U}, there exists a collection 𝒯(𝐯,𝐰,z,k1)\mathcal{T}({\bf v},{\bf w},z,k-1) of vertex-disjoint nearest-neighbor paths of B(z,171Lk)2Lk1dB_{\infty}(z,17^{-1}L_{k})\cap 2L_{k-1}\mathbb{Z}^{d} such that for every x0Fm,𝐯k1(z)x_{0}\in F^{k-1}_{m,{\bf v}}(z) there exists

(z0,z1,,zn)𝒯(y𝐯,y𝐰,k1)(z_{0},z_{1},\dots,z_{n})\in\mathcal{T}(y_{\bf v},y_{\bf w},k-1)

such that n4171LkLk11n\leq 4\cdot 17^{-1}L_{k}L_{k-1}^{-1}, x0=z0+Lk1𝐯x_{0}=z_{0}+L_{k-1}{\bf v}, zn+Lk1𝐰z_{n}+L_{k-1}{\bf w} is in Fm,𝐰k1(z)F^{k-1}_{m,{\bf w}}(z), and

z0,z1,,zn𝖵ρu,k1.z_{0},z_{1},\dots,z_{n}\in\mathsf{V}^{u,k-1}_{\rho}.
Proof.

Since B(z,171Lk)2Lk1d𝖵ρu,k1B_{\infty}(z,17^{-1}L_{k})\cap 2L_{k-1}\mathbb{Z}^{d}\subset\mathsf{V}^{u,k-1}_{\rho}, we need only to construct this collection as a bundle of non-intersecting paths matching the vertices of the associated faces in orderly fashion, as shown in Figure 13.

If 𝐯=𝐰{\bf v}=-{\bf w}, that is, if the faces are opposite to one another, we simply take 𝒯(𝐯,𝐰,z,k1)\mathcal{T}({\bf v},{\bf w},z,k-1) to be the collection of discrete straight lines in 2Lk1d2L_{k-1}\mathbb{Z}^{d} parallel to 𝐰{\bf w} that bring each point z0z_{0} in Fm,𝐯k1(z)Lk1𝐯F^{k-1}_{m,{\bf v}}(z)-L_{k-1}{\bf v} to z0+((2/17)LkLk1)𝐯z_{0}+((2/17)L_{k}-L_{k-1}){\bf v} in Fm,𝐰k1(z)Lk1𝐰F^{k-1}_{m,{\bf w}}(z)-L_{k-1}{\bf w}.

If not, without loss of generality we assume that z=0z=0, 𝐯=𝐞1{\bf v}={\bf e}_{1}, and 𝐰=𝐞2{\bf w}={\bf e}_{2}. Then, for

x0=(171Lk)𝐞1+a2𝐞2++ad𝐞dFm,𝐯k1(z),\begin{split}x_{0}=(17^{-1}L_{k}){\bf e}_{1}+a_{2}{\bf e}_{2}+\dots+a_{d}{\bf e}_{d}\in F^{k-1}_{m,{\bf v}}(z),\end{split} (6.18)
Refer to caption
Figure 13: A two-dimensional representation of the collection of paths constructed in Lemma 6.3.

we consider in 𝒯(𝐞1,𝐞2,z,k1)\mathcal{T}({\bf e}_{1},{\bf e}_{2},z,k-1) the path of vertices of 2Lk1d2L_{k-1}\mathbb{Z}^{d} which starts at x0Lk1𝐞1x_{0}-L_{k-1}{\bf e}_{1}, goes to the discrete hyperplane

{(y1,,yd)2Lk1d;y1=y2}\left\{(y_{1},\dots,y_{d})\in 2L_{k-1}\mathbb{Z}^{d};\,y_{1}=y_{2}\right\}

as a discrete straight line in 2Lk1d2L_{k-1}\mathbb{Z}^{d} parallel to 𝐞1{\bf e}_{1}, reaching the point

x=a2𝐞1+a2𝐞2++ad𝐞d,x^{\prime}=a_{2}{\bf e}_{1}+a_{2}{\bf e}_{2}+\dots+a_{d}{\bf e}_{d},

and then goes to

x′′=a2𝐞1+(171LkLk1)𝐞2++ad𝐞dFm,𝐞2k1(z),x^{\prime\prime}=a_{2}{\bf e}_{1}+(17^{-1}L_{k}-L_{k-1}){\bf e}_{2}+\dots+a_{d}{\bf e}_{d}\in F^{k-1}_{m,{\bf e}_{2}}(z),

as a discrete straight line in 2Lk1d2L_{k-1}\mathbb{Z}^{d} parallel to 𝐞2-{\bf e}_{2}. If x0Lk1𝐞1=x=x′′x_{0}-L_{k-1}{\bf e}_{1}=x^{\prime}=x^{\prime\prime}, we take the path to be simply comprised of one point {x}\{x^{\prime}\}. This collection of paths satisfies the required properties by elementary geometric considerations. We refer to Figure 13. ∎

Refer to caption
Figure 14: A two-dimensional representation of the collection of paths constructed in Lemma 6.4.

We can now finally state and prove the main result of this section, which shows the existence of a collection of efficient paths in 𝖵ρu,k1\mathsf{V}^{u,k-1}_{\rho} joining subsets of good faces of a good box of the kk-th scale.

Lemma 6.4.

Consider m𝕄km\in\mathbb{M}_{k}, with kk\in\mathbb{N}, and 𝐯,𝐰𝖴{\bf v},{\bf w}\in\mathsf{U}, 𝐯𝐰{\bf v}\neq{\bf w}. Assume the occurrence of the event where both 𝖥m,𝐯\mathsf{F}_{m,{\bf v}} and 𝖥m,𝐰\mathsf{F}_{m,{\bf w}} are good. Then, given y𝐯𝖦m,𝐯y_{\bf v}\in\mathsf{G}_{m,{\bf v}} and y𝐰𝖦m,𝐰y_{\bf w}\in\mathsf{G}_{m,{\bf w}}, there exists a collection 𝒯(y𝐯,y𝐰,k1)\mathcal{T}(y_{\bf v},y_{\bf w},k-1) of vertex-disjoint nearest-neighbor paths of Bmk1B_{m}^{k-1} such that for every x0Bm,𝐯k1(y𝐯)x_{0}\in B_{m,{\bf v}}^{k-1}(y_{\bf v}) there exists (z0,z1,,zn)𝒯(y𝐯,y𝐰,k1)(z_{0},z_{1},\dots,z_{n})\in\mathcal{T}(y_{\bf v},y_{\bf w},k-1) such that n417d1LkLk11n\leq 4\cdot 17^{d-1}L_{k}\cdot L_{k-1}^{-1}, x0=z0+Lk1𝐯x_{0}=z_{0}+L_{k-1}{\bf v}, zn+Lk1𝐰z_{n}+L_{k-1}{\bf w} is in Bm,𝐰k1(y𝐰)B_{m,{\bf w}}^{k-1}(y_{\bf w}), and z0,z1,,zn𝖵ρu,k1z_{0},z_{1},\dots,z_{n}\in\mathsf{V}^{u,k-1}_{\rho}.

Proof.

Lemma 6.2 implies the existence of a nearest neighbor path (z1,,zl)(z_{1},\dots,z_{l}) of points in m\mathcal{B}_{m} whose associated boxes of radius 171Lk17^{-1}L_{k} share faces, such that the length ll is smaller than 17d17^{d} and such that Bm,𝐯k1(y𝐯)B_{m,{\bf v}}^{k-1}(y_{\bf v}) and Bm,𝐰k1(y𝐰)B_{m,{\bf w}}^{k-1}(y_{\bf w}) are faces of

B(z1,171Lk)(2Lk1d+Lk1𝐯) and B(zl,171Lk)(2Lk1d+Lk1𝐰)B_{\infty}(z_{1},17^{-1}L_{k})\cap(2L_{k-1}\mathbb{Z}^{d}+L_{k-1}{\bf v})\text{ and }B_{\infty}(z_{l},17^{-1}L_{k})\cap(2L_{k-1}\mathbb{Z}^{d}+L_{k-1}{\bf w})

respectively. Lemma 6.3 provides a construction of paths between vertices of consecutive faces in this path of boxes. In order to construct 𝒯(y𝐯,y𝐰,k1)\mathcal{T}(y_{\bf v},y_{\bf w},k-1) one connects the paths in these collections, connecting the end of one path in one of the boxes to the nearest starting point of a path in the next box. Here we note that adjacent boxes share a face and a set of the form 𝖦m,𝐯\mathsf{G}_{m^{\prime},{\bf v}^{\prime}} defined in 6.13. Take e.g. zi1,zi,zi+1,zi+2z_{i-1},z_{i},z_{i+1},z_{i+2} consecutive points in the nearest neighbor path of m\mathcal{B}_{m}. Given the unit vectors

𝐯=zizi1|zizi1|,𝐯′′=zi+1zi|zi+1zi|, and 𝐯′′′=zi+2zi+1|zi+2zi+1|{\bf v}^{\prime}=\frac{z_{i}-z_{i-1}}{|z_{i}-z_{i-1}|},\quad{\bf v}^{\prime\prime}=\frac{z_{i+1}-z_{i}}{|z_{i+1}-z_{i}|},\quad\text{ and }\quad{\bf v}^{\prime\prime\prime}=\frac{z_{i+2}-z_{i+1}}{|z_{i+2}-z_{i+1}|}

we connect the endpoint xx of a path in 𝒯(𝐯,𝐯′′,zi,k1)\mathcal{T}({\bf v}^{\prime},{\bf v}^{\prime\prime},z_{i},k-1) to the starting point x+2Lk1𝐯′′x+2L_{k-1}{\bf v}^{\prime\prime} of a path in 𝒯(𝐯′′,𝐯′′′,zi+1,k1)\mathcal{T}({\bf v}^{\prime\prime},{\bf v}^{\prime\prime\prime},z_{i+1},k-1). Using the fact that Bm,𝐯k1(y𝐯)=Fm,𝐯k1(z1)B_{m,{\bf v}}^{k-1}(y_{\bf v})=F^{k-1}_{m,{\bf v}}(z_{1}) and Bm,𝐰k1(y𝐰)=Fm,𝐰k1(zl)B_{m,{\bf w}}^{k-1}(y_{\bf w})=F^{k-1}_{m,{\bf w}}(z_{l}), as well as the bound on the length of paths given by Lemma 6.3, we finish the proof of the result. We refer to Figure 14. ∎

7 Finite energy flows

In this section we will finally construct the discrete finite energy flows, using the groundwork and notation from the previous sections. We start with the definition of kk-fractals, which are hierarchical sets contained on good faces at the kk-th scale, these sets avoid defects of all previous scales, and from them we will be able to construct finite energy flows in a hierarchical fashion.

Definition 7.1.

Given a (u,ρ,0)(u,\rho,0)-good box m𝕄0m\in\mathbb{M}_{0} and a unit vector 𝐯𝖴{\bf v}\in\mathsf{U} assume the occurrence of the event where 𝖥m,𝐯\mathsf{F}_{m,{\bf v}} is good. Then, given y𝖦m,𝐯y\in\mathsf{G}_{m,{\bf v}}, we say that (m,𝐯,y)Bm,𝐯(y)d\mathcal{F}(m,{\bf v},y)\equiv B_{m,{\bf v}}(y)\subset\mathbb{Z}^{d} is a 0-fractal.

Definition 7.2.

Given a (u,ρ,k)(u,\rho,k)-good box m𝕄km\in\mathbb{M}_{k}, with kk\in\mathbb{N}, and a unit vector 𝐯𝖴{\bf v}\in\mathsf{U}, assume the occurrence of the event where 𝖥m,𝐯\mathsf{F}_{m,{\bf v}} is good. Then, given y𝖦m,𝐯y\in\mathsf{G}_{m,{\bf v}}, we say that (m,𝐯,y)d\mathcal{F}(m,{\bf v},y)\subset\mathbb{Z}^{d} is a kk-fractal if

  • (m,𝐯,y)\mathcal{F}(m,{\bf v},y) is contained in Bm,𝐯(y)B_{m,{\bf v}}(y);

  • for every m𝕄k1m^{\prime}\in\mathbb{M}_{k-1} such that BmBmB_{m^{\prime}}\subset B_{m} and 𝖥m,𝐯Bm,𝐯(y)\mathsf{F}_{m^{\prime},{\bf v}}\subset B_{m,{\bf v}}(y), there exists ym𝖦m,𝐯y_{m^{\prime}}\in\mathsf{G}_{m^{\prime},{\bf v}} so that (m,𝐯,y)\mathcal{F}(m,{\bf v},y) is the union of the (k1)(k-1)-fractals associated to such points ymy_{m^{\prime}} and the unit vector 𝐯{\bf v}, that is,

    (m,𝐯,y)=m𝕄k1,BmBm𝖥m,𝐯Bm,𝐯(y)(m,𝐯,ym).\mathcal{F}(m,{\bf v},y)=\bigcup_{\begin{subarray}{c}m^{\prime}\in\mathbb{M}_{k-1},\,B_{m^{\prime}}\subset B_{m}\\ \mathsf{F}_{m^{\prime},{\bf v}}\subset B_{m,{\bf v}}(y)\end{subarray}}\mathcal{F}(m^{\prime},{\bf v},y_{m^{\prime}}).

We note that for every m𝕄k1m^{\prime}\in\mathbb{M}_{k-1} such that 𝖥m,𝐯Bm,𝐯(y)\mathsf{F}_{m^{\prime},{\bf v}}\subset B_{m,{\bf v}}(y) we have that 𝖥m,𝐯\mathsf{F}_{m^{\prime},{\bf v}} is good, by definition of the set 𝖦m,𝐯\mathsf{G}_{m,{\bf v}}.

The next result shows that it is possible to construct a flow between sources and sinks supported on the kk-fractals of distinct good faces of a good box of the kk-th scale such that the flow’s energy decays as a polynomial of LkL_{k}.

Proposition 7.3.

Let L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0}, and consider kk\in\mathbb{N} and two kk-fractals (m,𝐯,y𝐯)\mathcal{F}(m,{\bf v},y_{{\bf v}}) and (m,𝐰,y𝐰)\mathcal{F}(m,{\bf w},y_{{\bf w}}) associated to the faces of a good box mm of the kk-th scale, these faces being in turn associated to two vectors 𝐯,𝐰𝖴{\bf v},{\bf w}\in\mathsf{U}. There exists a discrete flow θ𝐯,𝐰m\theta_{{\bf v},{\bf w}}^{m} on the edges of 𝖵ρu\mathsf{V}^{u}_{\rho} such that, for any J(0,1)J\in(0,1),

  • (i)

    div(θ𝐯,𝐰m)=1|(m,𝐯,y𝐯)|𝟏(m,𝐯,y𝐯)1|(m,𝐰,y𝐰)|𝟏(m,𝐰,y𝐰)\displaystyle\mathrm{div}(\theta_{{\bf v},{\bf w}}^{m})=\frac{1}{\left|\mathcal{F}(m,{\bf v},y_{{\bf v}})\right|}{\bf 1}_{\mathcal{F}(m,{\bf v},y_{{\bf v}})}-\frac{1}{\left|\mathcal{F}(m,{\bf w},y_{{\bf w}})\right|}{\bf 1}_{\mathcal{F}(m,{\bf w},y_{{\bf w}})};

  • (ii)

    θ𝐯,𝐰m(e)0\displaystyle\theta_{{\bf v},{\bf w}}^{m}(e)\neq 0 only when at least one of the endpoints of the edge ee belongs to int(Bm)\mathrm{int}(B_{m});

  • (ii)

    Energy(θ𝐯,𝐰m)=e an edgefrom 𝖵ρuθ𝐯,𝐰m(e)2L03dLkJ\displaystyle\mathrm{Energy}(\theta_{{\bf v},{\bf w}}^{m})=\sum_{\begin{subarray}{c}e\text{ an edge}\\ \text{from }\mathsf{V}^{u}_{\rho}\end{subarray}}\theta_{{\bf v},{\bf w}}^{m}(e)^{2}\leq\cdot L_{0}^{3d}\cdot L_{k}^{-J} .

Proof.

We prove the result by induction in kk. Assume first that k=0k=0, and consider a bijection φ0\varphi^{0} between the vertices of Bm,𝐯(y𝐯)B_{m,{\bf v}}(y_{\bf v}) and Bm,𝐰(y𝐰)B_{m,{\bf w}}(y_{\bf w}). From Lemma 6.1, we know the existence of a directed path between y𝐯y_{\bf v} and y𝐰y_{\bf w} contained in 𝖵ρuBm\mathsf{V}^{u}_{\rho}\cap B_{m} which only intersects the faces of BmB_{m} at y𝐯y_{\bf v} and y𝐰y_{\bf w}. Since

𝖯m,𝐯(y𝐯)𝖯m,𝐰(y𝐰)𝖵ρuBm,\mathsf{P}_{m,{\bf v}}(y_{\bf v})\cup\mathsf{P}_{m,{\bf w}}(y_{\bf w})\subset\mathsf{V}^{u}_{\rho}\cap B_{m},

there also exists such a discrete vacant path between y𝐯𝐯y_{\bf v}-{\bf v} and y𝐰𝐰y_{\bf w}-{\bf w}, and therefore one can find a directed path path0(x,φ0(x))\textbf{path}^{0}(x,\varphi_{0}(x)) starting at xBm,𝐯(y𝐯)x\in B_{m,{\bf v}}(y_{\bf v}) and ending at φ0(x)Bm,𝐰(y𝐰)\varphi_{0}(x)\in B_{m,{\bf w}}(y_{\bf w}) which only intersects the faces of BmB_{m} at xx and φ0(x)\varphi_{0}(x). For each such xx we construct the flow θx\theta_{x} which associates to each directed edge ee in the nearest-neighbor graph of 𝖵ρu\mathsf{V}^{u}_{\rho} the value 11 if ee is traversed by path0(x,φ0(x))\textbf{path}^{0}(x,\varphi_{0}(x)), 1-1 if e-e is the edge being traversed, or 0 otherwise. We then define

θ𝐯,𝐰m:=xBm,𝐯(y𝐯)θx,\theta_{{\bf v},{\bf w}}^{m}:=\sum_{x\in B_{m,{\bf v}}(y_{\bf v})}\theta_{x}, (7.1)

and it is immediate that this flow satisfies item (i)(i) of the Proposition. Since J<1J<1, |Bm,𝐯(y𝐯)|cL07(d1)/10|B_{m,{\bf v}}(y_{\bf v})|\leq cL_{0}^{7(d-1)/10}, and the maximal length of a path in BmB_{m} is smaller than L0dL_{0}^{d}, we obtain, after possibly increasing 𝖢~0\tilde{\mathsf{C}}_{0} and requiring L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0},

Energy(θ𝐯,𝐰m)cL07(d1)/5L0dL03dL0J,\mathrm{Energy}(\theta_{{\bf v},{\bf w}}^{m})\leq c\cdot L_{0}^{7(d-1)/5}\cdot L_{0}^{d}\leq L_{0}^{3d}\cdot L_{0}^{-J}, (7.2)

and the base case of induction is proved.

Assume now that we already proved the result for k1k-1\in\mathbb{N}, and let us prove it for kk. We know by Lemma 6.4 that there exists a collection 𝒯(y𝐯,y𝐰,k1)\mathcal{T}(y_{\bf v},y_{\bf w},k-1) of vertex-disjoint nearest-neighbor paths of Bmk1𝖵ρu,k1B_{m}^{k-1}\cap\mathsf{V}^{u,k-1}_{\rho} of length at most 417d1LkLk114\cdot 17^{d-1}L_{k}\cdot L_{k-1}^{-1}, such that for each xBm,𝐯k1(y𝐯)x\in B_{m,{\bf v}}^{k-1}(y_{\bf v}), there exists a point φk(x)Bm,𝐰k1(y𝐰)\varphi_{k}(x)\in B_{m,{\bf w}}^{k-1}(y_{\bf w}) and a path

(z1,,znx)=pathk(x,φk(x))𝒯(y𝐯,y𝐰,k1)(z_{1},\dots,z_{n_{x}})=\textbf{path}^{k}(x,\varphi_{k}(x))\in\mathcal{T}(y_{\bf v},y_{\bf w},k-1)

starting at xLk1𝐯=z1x-L_{k-1}{\bf v}=z_{1} and ending at φk(x)Lk1𝐰=znx\varphi_{k}(x)-L_{k-1}{\bf w}=z_{n_{x}}. Since the associated boxes are all (u,ρ,k1)(u,\rho,k-1)-good, the faces between the boxes associated to two adjacent vertices in this path must be good. For i=1,,nxi=1,\dots,{n_{x}}, we let mi=(zi,k1)m_{i}=(z_{i},k-1). We know by the definition of the kk-fractal that there must exist two (k1)(k-1)-fractals

(z1,𝐯,yz1)Fm1,𝐯and(znx,𝐰,yznx)Fmnx,𝐰\begin{split}\mathcal{F}(z_{1},{\bf v},y_{z_{1}})\subset F_{m_{1},{\bf v}}\qquad\text{and}\qquad\mathcal{F}(z_{n_{x}},{\bf w},y_{z_{n_{x}}})\subset F_{m_{n_{x}},{\bf w}}\end{split} (7.3)

such that

(z1,𝐯,yz1)(m,𝐯,y𝐯) and (znx,𝐰,yznx)(m,𝐰,y𝐰),\begin{split}\mathcal{F}(z_{1},{\bf v},y_{z_{1}})\subset\mathcal{F}(m,{\bf v},y_{{\bf v}})\quad\text{ and }\quad\mathcal{F}(z_{n_{x}},{\bf w},y_{z_{n_{x}}})\subset\mathcal{F}(m,{\bf w},y_{{\bf w}}),\end{split} (7.4)

and by the goodness of the boxes m1,,mnxm_{1},\dots,m_{n_{x}}, we know the existence of (k1)(k-1)-fractals

(zi,𝐯i,yi)Fmi,𝐯i\begin{split}\mathcal{F}(z_{i},{\bf v}_{i},y_{i})&\subset F_{m_{i},{\bf v}_{i}}\end{split} (7.5)

contained in each face given by the intersection of two consecutive boxes BmiB_{m_{i}} and Bmi+1B_{m_{i+1}}. Using the induction hypothesis, we obtain nx1{n_{x}}-1 flows θ1x,,θnx1x\theta_{1}^{x},\dots,\theta_{{n_{x}}-1}^{x} between (zi,𝐯i,yi)\mathcal{F}(z_{i},{\bf v}_{i},y_{i}) and (zi+1,𝐯i+1,yi+1)\mathcal{F}(z_{i+1},{\bf v}_{i+1},y_{i+1}), as well as flows θ0x\theta_{0}^{x} and θnxx\theta_{n_{x}}^{x}, the first between (z1,𝐯,yz1)\mathcal{F}(z_{1},{\bf v},y_{z_{1}}) and (z1,𝐯1,y1)\mathcal{F}(z_{1},{\bf v}_{1},y_{1}), and the latter between (znx,𝐯n,ynx)\mathcal{F}(z_{n_{x}},{\bf v}_{n},y_{{n_{x}}}) and (znx,𝐰,yznx)\mathcal{F}(z_{n_{x}},{\bf w},y_{z_{n_{x}}}), each one these flows satisfying properties (i), (ii) and (iii). Letting then

θx:=|(z1,𝐯,yz1)||(m,𝐯,y𝐯)|i=0nxθix,\begin{split}\theta_{x}:=\frac{\left|\mathcal{F}(z_{1},{\bf v},y_{z_{1}})\right|}{\left|\mathcal{F}(m,{\bf v},y_{{\bf v}})\right|}\sum_{i=0}^{n_{x}}\theta_{i}^{x},\end{split} (7.6)

we can define

θ𝐯,𝐰m:=xBm,𝐯k1(y𝐯)θx.\begin{split}\theta_{{\bf v},{\bf w}}^{m}:=\sum_{x\in B_{m,{\bf v}}^{k-1}(y_{\bf v})}\theta_{x}.\end{split} (7.7)

The flow θ𝐯,𝐰m\theta_{{\bf v},{\bf w}}^{m} automatically satisfies properties (i) an (ii). To verify property (iii), we first notice that the set of edges which each of the flows in the set {θx;xBm,𝐯k1(y𝐯)}\{\theta^{x};\,x\in B_{m,{\bf v}}^{k-1}(y_{\bf v})\} traverses are disjoint. Moreover, for a given xBm,𝐯k1(y𝐯)x\in B_{m,{\bf v}}^{k-1}(y_{\bf v}), the set of edges through which each of the flows in {θix;i=1,,n}\{\theta_{i}^{x};\,i=1,\dots,n\} passes is also disjoint. We also note that, by the definition of a kk-fractal, kk-fractals have always the same cardinality, and the ratio between the cardinalities of a (k1)(k-1)-fractal and a kk-fractal is smaller than (Lk1/Lk)d1(L_{k-1}/L_{k})^{d-1}. This implies, together with the induction hypothesis and the bound on the size of pathk(x,φk(x))\textbf{path}^{k}(x,\varphi_{k}(x)),

Energy(θ𝐯,𝐰m)xBm,𝐯k1(y𝐯)Energy(θx)(Lk1Lk)2(d1)xBm,𝐯k1(y𝐯)i=0nxEnergy(θix)c(Lk1Lk)2(d1)(LkLk1)d1(LkLk1)L03dLk1JcL03dLk1J(Lk1Lk)d2.\begin{split}\mathrm{Energy}(\theta_{{\bf v},{\bf w}}^{m})&\leq\sum_{x\in B_{m,{\bf v}}^{k-1}(y_{\bf v})}\mathrm{Energy}(\theta_{x})\leq\left(\frac{L_{k-1}}{L_{k}}\right)^{2(d-1)}\!\!\!\!\!\!\!\!\sum_{x\in B_{m,{\bf v}}^{k-1}(y_{\bf v})}\sum_{i=0}^{n_{x}}\mathrm{Energy}(\theta^{x}_{i})\\ &\leq c\left(\frac{L_{k-1}}{L_{k}}\right)^{2(d-1)}\left(\frac{L_{k}}{L_{k-1}}\right)^{d-1}\left(\frac{L_{k}}{L_{k-1}}\right)L_{0}^{3d}L_{k-1}^{-J}\leq cL_{0}^{3d}L_{k-1}^{-J}\left(\frac{L_{k-1}}{L_{k}}\right)^{d-2}.\end{split} (7.8)

This in turn implies, again after possible increasing 𝖢~0\tilde{\mathsf{C}}_{0},

Energy(θ𝐯,𝐰m)L03dLkJc(Lk1Lk)d2J<1,\begin{split}\mathrm{Energy}(\theta_{{\bf v},{\bf w}}^{m})L_{0}^{-3d}L_{k}^{J}\leq c\left(\frac{L_{k-1}}{L_{k}}\right)^{d-2-J}<1,\end{split} (7.9)

finishing the proof of the induction, and, consequently, of the result. ∎

Finally, we use the above result in order to show the existence, with high probability for sufficiently large L0L_{0}, of a flow of finite energy in 𝖵ρu\mathsf{V}^{u}_{\rho} from the origin to infinity. We define A0u,ρA_{0}^{u,\rho} to be the event where the discretized box of the 0-th scale B(0,0)dB_{(0,0)}\cap\mathbb{Z}^{d} containing the origin is contained in 𝖵ρu\mathsf{V}^{u}_{\rho}. We recall the definition of uku_{k} and ρk\rho_{k} in (5.6). For k1k\geq 1, we define AkA_{k} as the event where every box of the (k1)(k-1)-th scale contained in B(0,k)B_{(0,k)} is (uk1,ρk1,k1)(u_{k-1},\rho_{k-1},k-1)-good. We also write

A¯:=A0u,ρk=1Ak.\bar{A}:=A_{0}^{u,\rho}\cap\bigcap_{k=1}^{\infty}A_{k}.

On the event A¯\bar{A} we will construct the aforementioned flow in 𝖵1u\mathsf{V}^{u}_{1}.

The next lemma shows that this event has probability close to 11 for sufficiently large L0L_{0} and small uu.

Lemma 7.4.

With the notation introduced above, we have, for L0>𝖢~0L_{0}>\tilde{\mathsf{C}}_{0} and uu~u\leq\tilde{u} defined in (5.5),

(A¯C)(1exp{cuL0d1})+cexp{(logL0)δ/2},\begin{split}\mathbb{P}\left(\bar{A}^{C}\right)\leq\left(1-\exp\left\{-cuL_{0}^{d-1}\right\}\right)+c\exp\left\{-(\log L_{0})^{\delta/2}\right\},\end{split} (7.10)

and note that, by choosing L0L_{0} sufficiently large, and then choosing uu sufficiently small, we can make the above right hand side as small as we want.

Proof.

By the definition of the event A¯\bar{A}, Proposition 5.3, monotonicity in uu, the stationarity of the cylinder process under translations, and the union bound, we obtain

(A¯)((A0u,ρ)C)+i=1(LkLk1)dexp{(logLk1)1+δ}\begin{split}\mathbb{P}\left(\bar{A}\right)&\leq\mathbb{P}\left((A_{0}^{u,\rho})^{C}\right)+\sum_{i=1}^{\infty}\left(\frac{L_{k}}{L_{k-1}}\right)^{d}\exp\left\{-(\log L_{k-1})^{1+\delta}\right\}\end{split} (7.11)

Recalling that, by Lemma (2.2)(2.2) of [18], the number of cylinders of radius 11 intersecting B(0,2L0)B_{\infty}(0,2L_{0}) is Poisson distributed with parameter bounded from above by cuL0d1cuL_{0}^{d-1}, we obtain

(A¯)(1exp{cuL0d1})+exp{(logL0)δ/2}i=1(LkLk1)dexp{(logLk)1+δ/2}(1exp{cuL0d1})+cexp{(logL0)δ/2},\begin{split}\mathbb{P}\left(\bar{A}\right)&\leq\left(1-\exp\left\{-cuL_{0}^{d-1}\right\}\right)+\exp\left\{-(\log L_{0})^{\delta/2}\right\}\sum_{i=1}^{\infty}\left(\frac{L_{k}}{L_{k-1}}\right)^{d}\exp\left\{-(\log L_{k})^{1+\delta/2}\right\}\\ &\leq\left(1-\exp\left\{-cuL_{0}^{d-1}\right\}\right)+c\exp\left\{-(\log L_{0})^{\delta/2}\right\},\end{split} (7.12)

finishing the proof of the result. ∎

Recall that 𝐥𝐢𝐧𝐞(x,y){\bf line}(x,y) denotes the closed line segment connecting points x,ydx,y\in\mathbb{R}^{d} to each other. In the following definitions, we assume the occurrence of the event A¯\bar{A}. In A¯\bar{A}, the boxes B(0,k)B_{(0,k)} and B(2Lk𝐞1,k)B_{(2L_{k}{\bf e}_{1},k)} are all simultaneously (uk,ρk,k)(u_{k},\rho_{k},k)-good for every kk\in\mathbb{N}. We can therefore choose, for each kk\in\mathbb{N}, points yk0𝖦(0,k),𝐞1y_{k}^{0}\in\mathsf{G}_{(0,k),{\bf e}_{1}}. Define then, for kk\in\mathbb{N}, the cone set of the kk-th scale

𝐂𝐨𝐧𝐞k:={x2LkdB(0,k+1);there exists a point zB(0,k+1),𝐞1(yk+10)such that 𝐥𝐢𝐧𝐞(2Lk𝐞1,z)B(x,k)}.\begin{split}{\bf Cone}_{k}&:=\left\{\begin{array}[]{c}x\in 2L_{k}\mathbb{Z}^{d}\cap B_{(0,k+1)};\,\text{there exists a point }z\in B_{(0,k+1),{\bf e}_{1}}(y_{k+1}^{0})\\ \text{such that }{\bf line}(2L_{k}{\bf e}_{1},z)\cap B_{(x,k)}\neq\emptyset\end{array}\right\}.\end{split} (7.13)

In A¯\bar{A}, we have that 𝐂𝐨𝐧𝐞k𝖵ρkuk,k{\bf Cone}_{k}\subset\mathsf{V}^{u_{k},k}_{\rho_{k}}, and we can consider in this discrete set a graph structure inherited from 2Lkd2L_{k}\mathbb{Z}^{d}. Moreover, we can consider the dual graph 𝐂𝐨𝐧𝐞k{\bf Cone}_{k}^{*}, whose vertex- and edge-set are respectively defined by

V(𝐂𝐨𝐧𝐞k):={x+Lk𝐯;x𝐂𝐨𝐧𝐞k,𝐯𝖴},E(𝐂𝐨𝐧𝐞k):={(x+Lk𝐯,x+Lk𝐰);x𝐂𝐨𝐧𝐞k,𝐯𝐰,𝐯,𝐰𝖴}.\begin{split}V({\bf Cone}_{k}^{*})&:=\left\{\begin{array}[]{c}x+L_{k}{\bf v};\,x\in{\bf Cone}_{k},\,{\bf v}\in\mathsf{U}\end{array}\right\},\\ E({\bf Cone}_{k}^{*})&:=\left\{\begin{array}[]{c}(x+L_{k}{\bf v},x+L_{k}{\bf w});\,x\in{\bf Cone}_{k},\,{\bf v}\neq{\bf w},\,{\bf v},{\bf w}\in\mathsf{U}\end{array}\right\}.\end{split} (7.14)

The vertices of 𝐂𝐨𝐧𝐞k{\bf Cone}_{k}^{*} can be identified with the faces of the boxes of the kk-th scale with center in 𝐂𝐨𝐧𝐞k{\bf Cone}_{k}, and two faces are neighbors when they are the faces of the same box.

Refer to caption
Figure 15: Some of the sets involved in the construction of the flow θ𝐂𝐨𝐧𝐞k\theta_{{\bf Cone}_{k}^{*}}.

In order to simplify the notation, we denote the set B(0,k+1),𝐞1k(yk+10)𝐂𝐨𝐧𝐞kB_{(0,k+1),{\bf e}_{1}}^{k}(y_{k+1}^{0})\subset{\bf Cone}_{k}^{*} by 𝐛𝐚𝐬𝐢𝐬k{\bf basis}_{k}^{*}. We construct a flow θ𝐂𝐨𝐧𝐞k\theta_{{\bf Cone}_{k}^{*}} in 𝐂𝐨𝐧𝐞k{\bf Cone}_{k}^{*} in the following manner:

  1. (i)

    Select a uniformly chosen random point Z𝐛𝐚𝐬𝐢𝐬kZ\in{\bf basis}_{k}^{*};

  2. (ii)

    Consider the line segment 𝐥𝐢𝐧𝐞(Lk𝐞1,Z){\bf line}(L_{k}{\bf e}_{1},Z), and choose in some predetermined arbitrary way a directed path 𝐩𝐚𝐭𝐡(𝐂𝐨𝐧𝐞k){\bf path}^{*}({\bf Cone}_{k}^{*}) in 𝐂𝐨𝐧𝐞k{\bf Cone}_{k}^{*} starting at Lk𝐞1L_{k}{\bf e}_{1}, ending at ZZ, and minimizing supx𝐩𝐚𝐭𝐡(𝐂𝐨𝐧𝐞k)dist(x,𝐥𝐢𝐧𝐞(Lk𝐞1,Z))\sup_{x\in{\bf path}^{*}({\bf Cone}_{k}^{*})}\operatorname{dist}(x,{\bf line}(L_{k}{\bf e}_{1},Z));

  3. (iii)

    Let θZk,\theta_{Z}^{k,*} be the flow assigning 11 to a directed edge ee if 𝐩𝐚𝐭𝐡(𝐂𝐨𝐧𝐞k){\bf path}^{*}({\bf Cone}_{k}^{*}) traverses ee, 1-1 if this path traverses e-e, and 0 otherwise;

  4. (iv)

    Define θ𝐂𝐨𝐧𝐞k(e)\theta_{{\bf Cone}_{k}^{*}}(e) as 𝔼[θZk,(e)]\mathbb{E}[\theta_{Z}^{k,*}(e)] for every edge eE(𝐂𝐨𝐧𝐞k)e\in E({\bf Cone}_{k}^{*}), where the expectation is taken with respect to the random point ZZ.

The flow θ𝐂𝐨𝐧𝐞k(e)\theta_{{\bf Cone}_{k}^{*}}(e) will be part of the multi-scale construction of the finite-energy flow in 𝖵1u\mathsf{V}^{u}_{1}. For this construction, we will need the properties proved in the next lemma.

Lemma 7.5.

In the event A¯\bar{A}, the flow θ𝐂𝐨𝐧𝐞k\theta_{{\bf Cone}_{k}^{*}} above constructed has the following properties:

  1. (i)

    div(θ𝐂𝐨𝐧𝐞k)=𝟏Lk𝐞11|𝐛𝐚𝐬𝐢𝐬k|𝟏𝐛𝐚𝐬𝐢𝐬k\displaystyle\mathrm{div}(\theta_{{\bf Cone}_{k}^{*}})={\bf 1}_{L_{k}{\bf e}_{1}}-\frac{1}{\left|{\bf basis}_{k}^{*}\right|}{\bf 1}_{{\bf basis}_{k}^{*}};

  2. (ii)

    There exists c>0c>0 such that, given x𝐂𝐨𝐧𝐞kx\in{\bf Cone}_{k} and an edge exE(𝐂𝐨𝐧𝐞k)e_{x}\in E({\bf Cone}_{k}^{*}) between faces of xx, |θ𝐂𝐨𝐧𝐞k(x)|min{cLkd1x,𝐞1(d1),1}\displaystyle|\theta_{{\bf Cone}_{k}^{*}}(x)|\leq\min\{cL_{k}^{d-1}\langle x,{\bf e}_{1}\rangle^{-(d-1)},1\}.

Proof.

To prove (i)(i), we note that, conditioned on the random point Z𝐛𝐚𝐬𝐢𝐬kZ\in{\bf basis}_{k}^{*}, the flow θZk,\theta_{Z}^{k,*} is such that

div(θZk,)=𝟏Lk𝐞1𝟏Z.\mathrm{div}(\theta_{Z}^{k,*})={\bf 1}_{L_{k}{\bf e}_{1}}-{\bf 1}_{Z}.

By the linearity of the divergent, averaging the above equation over the possible values of ZZ yields property (i). Now, in order for θZk,(ex)\theta_{Z}^{k,*}(e_{x}) to be different from 0, we must have 𝐥𝐢𝐧𝐞(Lk𝐞1,Z)B(x,4Lk){\bf line}(L_{k}{\bf e}_{1},Z)\cap B(x,4L_{k})\neq\emptyset. Let 𝒵x\mathcal{Z}_{x} denote the set of vertices z𝐛𝐚𝐬𝐢𝐬kz\in{\bf basis}_{k}^{*} such that 𝐥𝐢𝐧𝐞(Lk𝐞1,z)B(x,4Lk){\bf line}(L_{k}{\bf e}_{1},z)\cap B(x,4L_{k})\neq\emptyset. Then, elementary trigonometry implies

(x,𝐞1Lk+1)d1cLkd1|𝒵x|,\left(\frac{\langle x,{\bf e}_{1}\rangle}{L_{k+1}}\right)^{d-1}\leq c\frac{L_{k}^{d-1}}{|\mathcal{Z}_{x}|}, (7.15)

and therefore,

(Z𝒵x)cmin{(Lkx,𝐞1)d1,1}\mathbb{P}(Z\in\mathcal{Z}_{x})\leq c\min\left\{\left(\frac{L_{k}}{\langle x,{\bf e}_{1}\rangle}\right)^{d-1},1\right\} (7.16)

We then obtain

θ𝐂𝐨𝐧𝐞k(ex)=𝔼[θZk,(ex)](Z𝒵x)cmin{(Lkx,𝐞1)d1,1},\theta_{{\bf Cone}_{k}^{*}}(e_{x})=\mathbb{E}\left[\theta_{Z}^{k,*}(e_{x})\right]\leq\mathbb{P}(Z\in\mathcal{Z}_{x})\leq c\min\left\{\left(\frac{L_{k}}{\langle x,{\bf e}_{1}\rangle}\right)^{d-1},1\right\}, (7.17)

finishing the proof of the result. ∎

We can finally construct the promised finite energy flow. In the event A¯\bar{A}, for each kk\in\mathbb{N}, each x𝐂𝐨𝐧𝐞kx\in{\bf Cone}_{k}, and each 𝐯𝖴{\bf v}\in\mathsf{U}, we recall that the box (x,k)(x,k) is (uk,ρk,k)(u_{k},\rho_{k},k)-good, that, by definition, the faces associated to points of 𝐛𝐚𝐬𝐢𝐬k{\bf basis}_{k}^{*} are good, and therefore there exists a kk-fractal ((x,k),𝐯,y(x,k),𝐯)\mathcal{F}((x,k),{\bf v},y_{(x,k),{\bf v}}) contained in F(x,k),𝐯F_{(x,k),{\bf v}}. Furthermore, since (uk)k0(u_{k})_{k\geq 0} and (ρk)k0(\rho_{k})_{k\geq 0} are increasing, and ρk1\rho_{k}\geq 1, for sufficiently small uu these fractals all exist simultaneously in 𝖵1u\mathsf{V}^{u}_{1}. We choose a sub-collection of these fractals requiring

((x,k),𝐯,y(x,k),𝐯)=((x+2Lk𝐯,k),𝐯,y(x+2Lk𝐯,k),𝐯)\mathcal{F}((x,k),{\bf v},y_{(x,k),{\bf v}})=\mathcal{F}((x+2L_{k}{\bf v},k),-{\bf v},y_{(x+2L_{k}{\bf v},k),-{\bf v}})

whenever the above equation is well defined. In other words, we ask that the fractals in a face shared by neighboring boxes agree. We obtain the following result, which implies 1.2 by the classical argument by Thompson,

Theorem 7.6.

There exists an event A¯\bar{A} such that, for every ε>0\varepsilon>0 there exists u>0u>0 such that u(A¯)>1ε\mathbb{P}_{u}(\bar{A})>1-\varepsilon, and, in A¯\bar{A}, there exists a flow θ\theta of finite energy in 𝖵1u\mathsf{V}^{u}_{1} from the origin to infinity, that is, such that div(θ)=𝟏0\mathrm{div}(\theta)={\bf 1}_{0}.

Proof.

Assume the occurrence of the event A¯\bar{A} from Lemma 7.4. Consider the flows of the dual lattice (θ𝐂𝐨𝐧𝐞k)k0(\theta_{{\bf Cone}_{k}^{*}})_{k\geq 0}. For each kk\in\mathbb{N}, we will construct in 𝖵1u\mathsf{V}^{u}_{1}, with uinfkuku\leq\inf_{k}u_{k}, a flow θk\theta_{k} such that

div(θk)=1|((0,k),𝐞1,y(0,k),𝐞1)|𝟏((0,k),𝐞1,y(0,k),𝐞1)1|((0,k+1),𝐞1,y(0,k+1),𝐞1)|𝟏((0,k+1),𝐞1,y(0,k+1),𝐞1),\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle\mathrm{div}(\theta_{k})=\frac{1}{\left|\mathcal{F}((0,k),{\bf e}_{1},y_{(0,k),{\bf e}_{1}})\right|}{\bf 1}_{\mathcal{F}((0,k),{\bf e}_{1},y_{(0,k),{\bf e}_{1}})}$\mbox{}\hfil\phantom{****}\\ &\phantom{****}-\frac{1}{\left|\mathcal{F}((0,k+1),{\bf e}_{1},y_{(0,k+1),{\bf e}_{1}})\right|}{\bf 1}_{\mathcal{F}((0,k+1),{\bf e}_{1},y_{(0,k+1),{\bf e}_{1}})},\end{split} (7.18)

that is, this flow has a source on a kk-fractal on a face of B(0,2Lk)dB(0,2L_{k})\cap\mathbb{Z}^{d} and a sink on a (k+1)(k+1)-fractal on a face of B(0,2Lk+1)dB(0,2L_{k+1})\cap\mathbb{Z}^{d}. For every x𝐂𝐨𝐧𝐞kx\in{\bf Cone}_{k} and 𝐯,𝐰𝖴{\bf v},{\bf w}\in\mathsf{U}, we consider the flow θ𝐂𝐨𝐧𝐞k(x)\theta_{{\bf Cone}_{k}^{*}}(x) evaluated on the directed edge between x+Lk𝐯x+L_{k}{\bf v} and x+Lk𝐰x+L_{k}{\bf w}, that is

θ𝐂𝐨𝐧𝐞k(x+Lk𝐯,x+Lk𝐰).\theta_{{\bf Cone}_{k}^{*}}(x+L_{k}{\bf v},x+L_{k}{\bf w}).

We also consider the flow θ𝐯,𝐰(x,k)\theta_{{\bf v},{\bf w}}^{(x,k)} on 𝖵1u\mathsf{V}^{u}_{1} constructed in Proposition 7.3. We define then the flow in B(x,Lk)dB(x,L_{k})\cap\mathbb{Z}^{d}:

θxk:=𝐯,𝐰θ𝐂𝐨𝐧𝐞k(x+Lk𝐯,x+Lk𝐰)θ𝐯,𝐰(x,k).\begin{split}\theta_{x}^{k}:=\sum_{{\bf v},{\bf w}}\theta_{{\bf Cone}_{k}^{*}}(x+L_{k}{\bf v},x+L_{k}{\bf w})\theta_{{\bf v},{\bf w}}^{(x,k)}.\end{split} (7.19)

We can then define

θk:=x𝐂𝐨𝐧𝐞kθxk,\begin{split}\theta_{k}:=\sum_{x\in{\bf Cone}_{k}}\theta_{x}^{k},\end{split} (7.20)

and by Lemma 7.5 and Proposition 7.3, (7.18) holds. The same results also imply

Energy(θk)=x𝐂𝐨𝐧𝐞kEnergy(θxk)cL03dx𝐂𝐨𝐧𝐞kmin{(Lkx,𝐞1)d1,1}2Lk2JcL03dLk2Jj=1jd1j2(d1)cL03dLk2J.\begin{split}\mathrm{Energy}(\theta_{k})&=\sum_{x\in{\bf Cone}_{k}}\mathrm{Energy}(\theta_{x}^{k})\leq cL_{0}^{3d}\sum_{x\in{\bf Cone}_{k}}\min\left\{\left(\frac{L_{k}}{\langle x,{\bf e}_{1}\rangle}\right)^{d-1},1\right\}^{2}L_{k}^{-2J}\\ &\leq cL_{0}^{3d}L_{k}^{-2J}\sum_{j=1}^{\infty}j^{d-1}j^{-2(d-1)}\leq cL_{0}^{3d}L_{k}^{-2J}.\end{split} (7.21)

Letting θorigin\theta_{\mathrm{origin}} denote a flow with finite support, with source at the origin, and sink uniformly distributed over ((0,0),𝐞1,y(0,0),𝐞1)\mathcal{F}((0,0),{\bf e}_{1},y_{(0,0),{\bf e}_{1}}), we can define

θ:=θorigin+k0θk,\theta:=\theta_{\mathrm{origin}}+\sum_{k\geq 0}\theta_{k}, (7.22)

which yields a finite energy flow with the required properties. The result follows after using Lemma (7.4). ∎

References

  • [1] Caio Alves and Artem Sapozhnikov. Decoupling inequalities and supercritical percolation for the vacant set of random walk loop soup. Electron. J. Probab., 24:1–34, 2019.
  • [2] Erik Broman, Olof Elias, Filipe Mussini, and Johan Tykesson. The fractal cylinder process: existence and connectivity phase transition. arXiv preprint arXiv:2001.10302, 2020.
  • [3] Erik Broman and Johan Tykesson. Poisson cylinders in hyperbolic space. Electronic Journal of Probability, 20(none):1 – 25, 2015.
  • [4] Erik I. Broman and Johan Tykesson. Connectedness of Poisson cylinders in Euclidean space. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 52(1):102 – 126, 2016.
  • [5] Alexander Drewitz, Balazs Rath, and Artem Sapozhnikov. Local percolative properties of the vacant set of random interlacements with small intensity. Preprint.
  • [6] Alexander Drewitz, Balázs Ráth, and Artëm Sapozhnikov. On chemical distances and shape theorems in percolation models with long-range correlations. Journal of Mathematical Physics, 55(8):083307, 2014.
  • [7] Hugo Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, and Franco Severo. Equality of critical parameters for percolation of gaussian free field level-sets. arXiv preprint arXiv:2002.07735, 2020.
  • [8] H. Duminil-Copin, S. Goswami, P.F. Rodrigues, F. Severo and A. Teixeira. Sharpness of the phase transition for the vacant set of random walk and random interlacements. Work in progress.
  • [9] M. R. Hilário, V. Sidoravicius, and A. Teixeira. Cylinders’ percolation in three dimensions. Probab. Theory Related Fields, 163(3-4):613–642, 2015.
  • [10] Marcelo Hilario, Xinyi Li, and Petr Panov. Shape theorem and surface fluctuation for poisson cylinders. Electronic Journal of Probability, 24:1–16, 2019.
  • [11] Marcelo R Hilário. Coordinate percolation on Z3. PhD thesis, PhD thesis, IMPA, 2011.
  • [12] Marcelo R Hilário and Vladas Sidoravicius. Bernoulli line percolation. Stochastic Processes and their Applications, 129(12):5037–5072, 2019.
  • [13] Serguei Popov and Balázs Ráth. On decoupling inequalities and percolation of excursion sets of the gaussian free field. Journal of Statistical Physics, 159(2):312–320, 2015.
  • [14] Serguei Popov and Augusto Teixeira. Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. (JEMS), 17(10):2545–2593, 2015.
  • [15] Balázs Ráth and Artëm Sapozhnikov. On the transience of random interlacements. Electron. Commun. Probab., 16:379–391, 2011.
  • [16] Augusto Teixeira. On the size of a finite vacant cluster of random interlacements with small intensity. Probab. Theory Related Fields, 150(3-4):529–574, 2011.
  • [17] Augusto Teixeira and Daniel Ungaretti. Ellipses percolation. Journal of Statistical Physics, 168(2):369–393, 2017.
  • [18] Johan Tykesson and David Windisch. Percolation in the vacant set of Poisson cylinders. Probab. Theory Related Fields, 154(1-2):165–191, 2012.
  • [19] Daniel Ungaretti. Planar continuum percolation: heavy tails and scale invariance. PhD thesis, PhD thesis, IMPA, 2017.