This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dark Matter CMB Constraints and Likelihoods
for Poor Particle Physicists

James M. Cline jcline@physics.mcgill.ca Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, Canada H3A 2T8    Pat Scott patscott@physics.mcgill.ca Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, Canada H3A 2T8
Abstract

The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass mχm_{\chi}, for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (“PPPC4DMID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection”), namely ee, μ\mu, τ\tau, VeV\to e, VμV\to\mu, VτV\to\tau, uu, dd ss, cc, bb, tt, γ\gamma, gg, WW, ZZ and hh. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels.

The temperature and polarization fluctuations of the cosmic microwave background (CMB) are well known to be sensitive to the redshift of recombination, z1100z\approx 1100, as this determines the surface of last scattering. If dark matter annihilation or decay deposits electromagnetic energy in the primordial plasma after z1100z\approx 1100, it can delay recombination and/or contribute to reionization, leading to distortions in the CMB Dodelson:1991bz ; Scott91 ; Hansen:2003yj ; Chen:2003gz ; Padmanabhan:2005es ; Mapelli:2006ej ; Zhang:2007zzh ; Natarajan:2009bm ; Galli:2009zc ; Slatyer:2009yq ; Galli:2011rz ; Cirelli:2009bb ; Hutsi:2011vx ; Finkbeiner:2011dx ; Natarajan:2012ry ; Giesen:2012rp ; Slatyer:2012yq ; Frey:2013wh ; Weniger:2013hja . This is especially constraining for light dark matter χ\chi with mass mχm_{\chi}\lesssim 10 GeV (as its number density is greater than that of heavier dark matter), and if annihilation or decay is into electrons; in that case the current limit on the annihilation cross section is close to the standard relic density value σv=3×1026\langle\sigma v\rangle=3\times 10^{-26} cm3/s. Apart from the special case of monochromatic photons, constraints are generically weaker for annihilations or decays into other particles, as those channels all involve substantial eventual yields into neutrinos and/or hadrons, neither of which efficiently transfer energy to the primordial gas (neutrinos because they are weakly-interacting, hadrons because they are strongly penetrating Chen:2003gz ).

Recent progress has been made in refining and systematizing the CMB bounds on dark matter annihilation and decay Finkbeiner:2011dx ; Slatyer:2012yq . A key quantity for determining the constraint on a given model is the efficiency f(z)f(z) for producing ionizing radiation, as a function of redshift zz. For annihilations, f(z)f(z) is defined in terms of the electromagnetic power injected per unit volume,

dEdtdV=f(z)σvmχΩDM2ρc2c2(1+z)6,{dE\over dt\,dV}=f(z){\langle\sigma v\rangle\over m_{\chi}}\,\Omega_{\rm DM}^{2}\,\rho_{c}^{2}\,c^{2}\,(1+z)^{6}, (1)

where ρc\rho_{c} is the critical mass density of the universe today and ΩDM\Omega_{\rm DM} is the fraction in dark matter. For perfect efficiency, f=1f=1, this is just twice the the DM mass times the annihilation rate per unit volume. Note that no factors of two remain in (1), as the annihilation rate itself contains a factor of one half for annihilation of identical particles Gondolo:2004sc , which cancels the factor of two from the release of twice the DM rest mass in each annihilation event. Here we assume Majorana DM; were the DM not its own antiparticle, (1) would need to be divided by a further factor of two, and ΩDM\Omega_{\rm DM} interpreted as the total mass fraction of DM ++ anti-DM particles.

Ref. Slatyer:2012yq has provided transfer functions Ti(z,z,E)T_{i}(z^{\prime},z,E)111Available at http://nebel.rc.fas.harvard.edu/epsilon/ that determine the contribution to f(z)f(z) from particles i=γi=\gamma or e±e^{\pm} pairs injected at redshift zz^{\prime} with energy EE. The injected γ\gamma or e±e^{\pm} may be primary products of dark matter annihilation or decay, or they may be secondary particles arising from the showering and decay of the primary ones. If ϕi=dNi/dE\phi_{i}=dN_{i}/dE is the electron/photon spectrum of state ii, normalized such that 𝑑EEϕi\int dE\,E\,\phi_{i} is the fraction of initial dark matter mass converted into energy in that state, then222Our T~i\tilde{T}_{i} is related to TiT_{i} of Slatyer:2012yq by T~i=H(z)H(z)1(1+z)n(1+z)(n+1)Ti\tilde{T}_{i}=H(z)H(z^{\prime})^{-1}(1+z^{\prime})^{n}(1+z)^{-(n+1)}T_{i}, where n=2n=2 for annihilations and n=1n=-1 for decays.

f(z)=i=γ,e±𝑑z𝑑EET~i(z,z,E)ϕi(E).f(z)=\sum_{i=\gamma,\,e^{\pm}}\int dz^{\prime}\int dE\,E\,\tilde{T}_{i}(z^{\prime},z,E)\,\phi_{i}(E). (2)

The departure from perfect efficiency, f=1f=1, is due to the fraction of initial energy that ends up in neutrinos (or possibly more exotic invisible final states, which we do not explicitly consider here).

mχm_{\chi}\to 10 30 100 300 1000 10 30 100 300 1000
channel WMAP7 fefff_{\rm eff} Planck fefff_{\rm eff}
ee 0.74 0.65 0.59 0.56 0.56 0.79 0.70 0.63 0.59 0.59
μ\mu 0.28 0.25 0.23 0.21 0.21 0.30 0.27 0.25 0.23 0.22
τ\tau 0.22 0.21 0.19 0.19 0.18 0.24 0.23 0.21 0.20 0.20
VeV\to e 0.77 0.69 0.62 0.56 0.56 0.83 0.74 0.66 0.60 0.60
VμV\to\mu 0.28 0.26 0.23 0.21 0.20 0.30 0.28 0.25 0.23 0.21
VτV\to\tau 0.22 0.22 0.20 0.18 0.18 0.24 0.23 0.21 0.20 0.19
q(u,d,s)q(u,d,s) 0.33 0.31 0.30 0.28 0.27 0.35 0.33 0.32 0.30 0.29
cc 0.33 0.32 0.30 0.28 0.27 0.36 0.34 0.32 0.30 0.29
bb 0.34 0.32 0.31 0.29 0.27 0.36 0.34 0.33 0.31 0.29
tt - - - 0.27 0.26 - - - 0.29 0.28
γ\gamma 0.58 0.50 0.59 0.56 0.55 0.62 0.54 0.62 0.60 0.58
gg 0.33 0.32 0.30 0.28 0.27 0.35 0.34 0.32 0.30 0.29
WW - - 0.26 0.25 0.24 - - 0.28 0.26 0.25
ZZ - - 0.25 0.23 0.22 - - 0.27 0.25 0.24
hh - - - 0.28 0.26 - - - 0.30 0.28
mχm_{\chi}\to 40 50 60 70 80 40 50 60 70 80
γ\gamma 0.48 0.46 0.44 0.49 0.526 0.51 0.49 0.49 0.52 0.56
Table 1: fefff_{\rm eff} values as a function of WIMP mass mχm_{\chi} (in GeV) and primary annihilation channel (for example “ee” denotes χχee¯\chi\chi\to e\bar{e}, while “VeV\to e” denotes χχVV\chi\chi\to VV, followed by Vee¯V\to e\bar{e}), for computing WMAP7 (left) and projected Planck (right) constraints. Null entries indicate that mχm_{\chi} is below threshold. Bottom row covers extra range of masses where χχγγ\chi\chi\to\gamma\gamma constraints undergo a transition in fig. 2.

Refer to caption

Figure 1: First three principal components for annihilating dark matter, from http://nebel.rc.fas.harvard.edu/epsilon/. Solid curves are for WMAP7 and dashed for anticipated Planck data.

Refer to caption Refer to caption

Figure 2: 95% confidence level (CL) limits on cross section σv\langle\sigma v\rangle for annihilation into the 15 channels indicated, for WMAP7 (left, corresponding to (6)) and anticipated Planck results (right), for 14 months of observing time. As indicated by the numerals, the limiting curves fall into nearly-coinciding groups (1,4), 11, (7,8,9,12,10,15), (13,14), (2,5), (3,6), according to the channel-numbering key indicated on the figures. Horizontal line shows the nominal thermal relic density cross section, σv=3×1026\langle\sigma v\rangle=3\times 10^{-26}cm3/s.

To find the spectra ϕi\phi_{i}, Monte Carlo computations using an event generator such as PYTHIA Bengtsson:1987kr ; Sjostrand:2007gs or HERWIG Corcella:2000bw are required. These simulations are numerically intensive, but the results have been carried out and made available for a range of primary annihilation and decay channels in ref. Cirelli:2010xx . The spectra obtained from PYTHIA 8.135 and HERWIG 6.510 generally agree to within about 20% for most primary annihilation/decay channels, except for gg (gluons), where the choice of event generator results in up to a factor of two uncertainty in electron and photon yields. At lower energies PYTHIA also gives substantially larger photon yields for leptonic and gauge boson channels, a consequence of the omission of (QED) lepton final state radiation and fermion pair production in HERWIG. We therefore exclusively employ the PYTHIA results of ref. Cirelli:2010xx , which have the additional benefit of also including electroweak corrections Ciafaloni .

The purpose of the present note is to provide a set of results that can be easily interpolated to find CMB constraints and likelihood functions for dark matter models that annihilate or decay to arbitrary final states with a constant cross-section or decay rate. We first carry out the computation of (2) for a full range of dark matter masses and annihilation and decay channels, and then translate each result into a single number that encodes the energy injection history for that mass and final state. For annihilation we use fefff_{\rm eff}, the effective efficiency of energy injection, whereas for decays we define an alternative quantity η\eta. We then detail how likelihoods and corresponding constraints are obtained as a function of fefff_{\rm eff} or η\eta, including a simple prescription for combining results from multiple channels.

Here we explicitly build upon existing public datasets Finkbeiner:2011dx ; Slatyer:2012yq ; Cirelli:2010xx , adding the necessary final steps for earlier results to be immediately implemented in, for example, multi-messenger dark matter analyses Pato:2009fn and global fits to beyond the Standard Model particle theories Bechtle:2012zk ; Buchmueller:2012hv ; Strege:2012bt . This complements and extends recent efforts to construct public likelihood functions from Fermi-LAT Scott:2009jn , HESS Ripken:2010ja and IceCube Scott:2012mq searches for dark matter annihilation.

Annihilating dark matter. We will first consider the case of dark matter annihilating into standard model particles. Bounds on annihilation cross sections can be encoded in an integral involving f(z)f(z) and a set of principal component basis functions ei(z)e_{i}(z) that should be optimized for annihilations, and which depend somewhat upon which experiment is being considered since they are eigenvectors of the Fisher matrix. As discussed in Finkbeiner:2011dx ; Slatyer:2012yq , f(z)f(z) can be expanded as

εf(z)=i=1εiei(z)\varepsilon\,f(z)=\sum_{i=1}^{\infty}{\varepsilon_{i}}e_{i}(z) (3)

where εσv/mχ\varepsilon\equiv\langle\sigma v\rangle/m_{\chi} and εi=εf(z)ei(z)/ei(z)ei(z)\varepsilon_{i}=\varepsilon\,f(z)\!\cdot\!\,e_{i}(z)/e_{i}(z)\!\cdot\!\,e_{i}(z). The inner product is the integral over zz using the integration limits z1=86.83z_{1}=86.83, z2=1258.2z_{2}=1258.2. For annihilating dark matter, these basis functions are chosen to maximize sensitivity to a general expected zz-dependence for energy injection from annihilating dark matter, (based upon the energy density (1+z)3ΩDMρcc2(1+z)^{3}\Omega_{\rm DM}\rho_{c}c^{2} of the dark matter itself) in the sense that the most important contributions to the observable energy deposition are described by the lowest components. The first three ei(z)e_{i}(z) are plotted in fig. 1.

In fact, the contribution of the first component has been demonstrated to dominate, especially in the case of WMAP data, in the computation of the likelihood function that is relevant for constraining annihilating dark matter models. Under the approximation of a Gaussian likelihood, and that the response of the CMB to the energy injection is linear, the chi-squared is given by Finkbeiner:2011dx ; Slatyer:2012yq

Δχ2=iλiεi2/ε¯2\Delta\chi^{2}=\sum_{i}\lambda_{i}\varepsilon_{i}^{2}/\bar{\varepsilon}^{2} (4)

where λi\lambda_{i} is the eigenvalue of the Fisher matrix corresponding to eie_{i}, for the relevant CMB experiment, and ε¯\bar{\varepsilon} is a fiducial value, taken to be 2×10272\times 10^{-27} cm3{}^{3}\,s1{}^{-1}\,GeV-1. For WMAP7, λ1=0.279\lambda_{1}=0.279, while for Planck, λi=3.16, 0.691, 0.162\lambda_{i}=3.16,\,0.691,\,0.162\dots, and the inclusion of contributions from the first three principal components is justified. Then, for example, the 2σ2\sigma upper limit on the cross section is given by

σv<2mχε¯iλi((fei)/(eiei))2\langle\sigma v\rangle<{2m_{\chi}\bar{\varepsilon}\over\sqrt{\sum_{i}\lambda_{i}((f\cdot e_{i})/(e_{i}\cdot e_{i}))^{2}}} (5)

The numerical value of the numerator in (5) (as well as that of (6) below) is correlated with the choice of normalization of the ei(z)e_{i}(z)’s. We use the functions shown in fig. 1, which are normalized such that (eiei)=23.9(e_{i}\cdot e_{i})=23.9.

However, it was observed in ref. Finkbeiner:2011dx that the approximation of linear response is not yet very accurate for the magnitudes of εi\varepsilon_{i} that are allowed by the WMAP7 data; instead one should perform a full likelihood analysis using CosmoMC Lewis:2002ah (and it is found that only the first principal component is required). This gives a somewhat weaker constraint than (5); the 95% c.l. upper bound is

σv<1.2×1026cm3sGeVmχ(fe1)/(e1e1)\langle\sigma v\rangle<1.2\times 10^{-26}{{\rm cm}^{3}\over{\rm s\cdot GeV}}\,{m_{\chi}\over(f\cdot e_{1})/(e_{1}\cdot e_{1})} (6)

(Throughout this paper, we use “95% c.l.” to mean 2σ2\sigma, which is in fact 95.45% c.l..)

In either (5) or (6), we see that the constraints can be expressed in terms of a single number involving integrals of f(z)f(z). To make contact with the earlier literature Slatyer:2009yq , we find it useful to consider a quantity fefff_{\rm eff} defined in terms of a “universal WIMP annihilation” curve eW(z)e_{\scriptscriptstyle\rm W}(z) Finkbeiner:2011dx , feff(feW)/(eWeW)f_{\rm eff}\sim(f\cdot e_{\scriptscriptstyle\rm W})/(e_{\scriptscriptstyle\rm W}\cdot e_{\scriptscriptstyle\rm W}), which has the interpretation that feff<1f_{\rm eff}<1 denotes the average efficiency of energy injection for the annihilation channel of interest. It can be compared to the fmeanf_{\rm mean} values tabulated in ref. Slatyer:2009yq (column 2, table I). Here instead of defining fefff_{\rm eff} directly in terms of eWe_{\scriptscriptstyle\rm W}, we use the expansion eW=icieie_{\scriptscriptstyle\rm W}=\sum_{i}c_{i}e_{i}, and the observation that using just the first term in the expansion gives a good approximation. Thus for WMAP7 we define

feff(fe1)c1(e1e1)(WMAP)f_{\rm eff}\equiv{(f\cdot e_{1})\over c_{1}(e_{1}\cdot e_{1})}\qquad{\rm(WMAP)} (7)

where numerically c1=4.64c_{1}=4.64. Then (6) can be expressed as

σv<0.26×1026cm3s1GeV1mχ/feff.\langle\sigma v\rangle<0.26\times 10^{-26}\,{\rm cm}^{3}\,{\rm s}^{-1}\,{\rm GeV}^{-1}m_{\chi}/f_{\rm eff}. (8)

The analogous definition for Planck, which makes use of the contributions from the first three principal components, is

feff1λ1c1[iλi(feieiei)2]1/2(Planck)f_{\rm eff}\equiv{1\over\sqrt{\lambda_{1}}c_{1}}\left[\sum_{i}\lambda_{i}\left({f\cdot e_{i}\over e_{i}\cdot e_{i}}\right)^{2}\right]^{1/2}\quad({\rm Planck}) (9)

where we must use the λi\lambda_{i} and eie_{i} appropriate to Planck. Then the 2σ\sigma projected constraint from Planck takes the form σv<0.48×1027cm3s1GeV1mχ/feff\langle\sigma v\rangle<0.48\times 10^{-27}\,{\rm cm}^{3}\,{\rm s}^{-1}\,{\rm GeV}^{-1}m_{\chi}/f_{\rm eff}. For annihilation into several channels ii with branching fractions rir_{i}, the total fefff_{\rm eff} is

feff=irifeff,i.f_{\rm eff}=\sum_{i}r_{i}f_{{\rm eff},i}. (10)

We present the 95% CL constraints as a function of mχm_{\chi} for a range of annihilation channels in fig. 2, interpolating from table 1. The final states are pairs of ee, μ\mu, τ\tau, Ve,V\to e,333VXV\to X denotes χχVV\chi\chi\to VV followed by VXX¯V\to X\bar{X} with mV=1m_{V}=1 GeV for X=eX=e or μ\mu and mV=5m_{V}=5 GeV for X=τX=\tau. VμV\to\mu, VτV\to\tau, qq (light quarks: u,du,d or ss), cc, bb, tt, WW, ZZ, gg (gluons), γ\gamma, or hh (Higgs). The limits from WMAP7 and projected constraints from Planck based on 14 months of observation time Planck:2006aa are shown in the figure. Our 95% C.L. WMAP7 limits perfectly match those for ee and μ\mu found in present benchmark results (e.g. at mχ=100m_{\chi}=100 GeV, σv<4×1025\langle\sigma v\rangle<4\times 10^{-25} cm3 s-1 for e+ee^{+}e^{-}, σv<1×1024\langle\sigma v\rangle<1\times 10^{-24} cm3 s-1 for μ+μ\mu^{+}\mu^{-} Galli:2011rz ; Finkbeiner:2011dx ). We see approximately a factor of 6 improvement between WMAP7 and Planck, in agreement with the results of Hutsi:2011vx but slightly less than the factor of 8 reported by Galli:2011rz .

Limits are strongest on the channels [e,Ve][e,\,V\to e] (which in fact coincide) and γ\gamma, which also coincides with the former at masses 100\gtrsim 100 GeV. The γγ\gamma\gamma final state limit has a different shape from the others because of the monochromatic nature of the photons and the complex dependence of the efficiency of photon energy deposition on redshift and injection energy. This is encoded in the transfer function T~γ\tilde{T}_{\gamma}, and can be seen for example in fig. 1 of Slatyer:2012yq and fig. 2 of Chen:2003gz . At redshifts of z600z\sim 600, where the first principal component of fig. 1 is peaked, the Universe is approximately transparent to photons with energies E50E\lesssim 50\,GeV, but rapidly transitions to completely opaque for E100E\gtrsim 100\,GeV, due to scattering and pair production on CMB photons Chen:2003gz . This causes the γγ\gamma\gamma curve to track the electron curve above 100 GeV, as in both cases essentially all of the annihilation energy goes into heating the primordial gas. The γγ\gamma\gamma channel is the only one in which photons dominate over electrons in the final state spectra, and the only one to produce monochromatic photons – so it is the only one to show this complicated behaviour in the limits.

The next strongest constraints are on the channels involving quarks, gluons and Higgs. These all coincide with each other (except that the top quark and Higgs have a higher mass threshold). The next weakest constraints are on [W,Z][W,\,Z], followed by [μ,Vμ][\mu,\,V\to\mu] and finally [τ,Vτ][\tau,\,V\to\tau]. These tendencies are indicative of the greater fraction of energy ending up in neutrinos for the least constrained channels.

We stress that our results do not depend in any intrinsic way upon the somewhat arbitrary definitions (7,9). Any quantity proportional to fe1f\cdot e_{1} in the case of WMAP or (iλi(fei/eiei)2)1/2(\sum_{i}\lambda_{i}(f\cdot e_{i}/e_{i}\cdot e_{i})^{2})^{1/2} in the case of Planck would suffice to encode the necessary information for recovering the constraints. To this end, we list fefff_{\rm eff} values for both WMAP and Planck in table 1, for the annihilation channels mentioned above and for the WIMP masses mχ=10, 30, 100, 300, 1000m_{\chi}=10,\,30,\,100,\,300,\,1000 GeV. They are in reasonable agreement with the fmeanf_{\rm mean} values tabulated in ref. Slatyer:2009yq in the cases that overlap.

To determine constraints at an arbitrary confidence level, one would like to know the likelihood function for the annihilation cross section, assuming branching fractions rir_{i} to channel ii. For Planck, this is given by

ln(σv|mχ,ri)=12feff2(mχ,ri)λ1c12(σv2×1027cm3s1)2(GeVmχ)2.\begin{split}\ln\,&\mathcal{L}(\langle\sigma v\rangle|m_{\chi},r_{i})=\\ &-\frac{1}{2}f_{\rm eff}^{2}(m_{\chi},r_{i})\lambda_{1}c_{1}^{2}\,\left(\frac{\langle\sigma v\rangle}{2\times 10^{-27}{\rm cm}^{3}{\rm s}^{-1}}\right)^{2}\,\left(\frac{\rm GeV}{m_{\chi}}\right)^{2}.\\ \end{split} (11)

from (5) and (9). As mentioned above, this expression, which assumes linear response of the CMB to the deposited energy, is not accurate for WMAP. This can be corrected by making the replacement 2×10273.2×10272\times 10^{-27}\to 3.2\times 10^{-27} in (LABEL:loglike2) (and one must also use the appropriate value λ1=0.279\lambda_{1}=0.279 for WMAP). Similarly, caution should be exercised if (LABEL:loglike2) is used to compute WMAP likelihoods far from 95% c.l.  as the Gaussian approximation was observed to be poor for WMAP likelihoods in ref. Finkbeiner:2011dx . The WMAP 7-year limits can also be improved by \sim15% if ACT data are added to the CosmoMC fit Galli:2011rz , and presumably slightly more than this if SPT data are added.

Refer to caption

Figure 3: First three principal components for decaying dark matter, from http://nebel.rc.fas.harvard.edu/epsilon/. Solid curves are for WMAP7 and dashed for anticipated Planck data.

Refer to caption


Figure 4: 95% c.l. constraints on δΩ/ΩDM\delta\Omega/\Omega_{\rm DM} versus τ\tau for χμμ¯\chi\to\mu\bar{\mu} decays, with mχ=10,100,1000m_{\chi}=10,100,1000 GeV (solid, dashed, dotted lines respectively), from WMAP7 (upper curves) or Planck (lower curves).

Refer to captionRefer to caption

Figure 5: 95% c.l. lower bounds on the lifetime of decaying DM that accounts for the total DM density, from WMAP7 (left) or projected Planck data (right). The numbering of the final state channels is the same as in fig. 3: 1:ee, 2:μ\mu, 3:τ\tau, 4:(Ve)(V\to e), 5:(Vμ)(V\to\mu), 6:(Vτ)(V\to\tau), 7:(q=u,d,s)(q=u,d,s), 8:cc, 9:bb, 10:tt, 11:γ\gamma, 12:gg, 13:WW, 14:ZZ, 15:hh.

Decaying dark matter. A similar procedure can be used to constrain the fractional mass abundance δΩ\delta\Omega of some metastable species present at the time of recombination, which decays into the same set of final states as we assumed above for annihilations. If the decaying species originally contributes Ωi\Omega_{i} to the mass density of the universe relative to ρc\rho_{c}, and if the decay of a particle of that species converts a fraction ϕ\phi of its rest mass to standard model particles (and a fraction 1ϕ1-\phi to some lighter dark species), then δΩ=ϕΩi\delta\Omega=\phi\Omega_{i}. The injected electromagnetic power density goes as

dEdtdV=f(z)τet/τδΩρcc2(1+z)3.{dE\over dt\,dV}={f(z)\over\tau}\,e^{-t/\tau}\,\delta\Omega\,\rho_{c}\,c^{2}\,(1+z)^{3}. (12)

The factor of (1+z)3nχ(1+z)^{3}\sim n_{\chi} as opposed to (1+z)6nχ2(1+z)^{6}\sim n_{\chi}^{2} for annihilations is the reason for the different powers of (1+z)(1+z) appearing in footnote 2. Unlike the case of annihilation, where the cross section appears only as a prefactor, here we have dependence upon the lifetime τ\tau not only in the prefactor, but also in the zz-dependent function et(z)/τe^{-t(z)/\tau}, which is not present in (1). This makes the analysis of decays more cumbersome than that of annihilations, because the transfer functions T~i(z,z,E)\tilde{T}_{i}(z^{\prime},z,E) now also depend upon τ\tau. We therefore need to compute (2) not only for all masses and final states, but for a grid of lifetimes as well.

Note that this form of analysis allows us to not only constrain the lifetime and abundance of decaying dark matter candidates, but also the initial abundance of other metastable species, with such short lifetimes that they would not contribute to the current-day abundance of dark matter. For lifetimes less than \sim101710^{17}101810^{18} s the particles we refer to are therefore not dark matter in the usual sense, but rather some generic metastable particles.

In the approximation of linear response to the injected energy, the chi-squared is most conveniently written in the form Slatyer:2012yq

Δχ2=(δΩΩDMτ)2η2,\Delta\chi^{2}=\left(\delta\Omega\over\Omega_{\rm DM}\tau\right)^{2}\eta^{2}, (13)

where we define

η=[i((fei)(eiei)σi)2]1/2\eta=\left[\sum_{i}\left({(f\cdot e_{i})\over(e_{i}\cdot e_{i})\,\sigma_{i}}\right)^{2}\right]^{1/2} (14)

to be the single number that encapsulates the energy injection history for a given mass, lifetime and final state (as fefff_{\rm eff} does for annihilation). The likelihood is then simply

ln(τ|mχ,ri)=12(δΩΩDMτ)2η2(τ,mχ,ri).\ln\,\mathcal{L}(\tau|m_{\chi},r_{i})=-\frac{1}{2}\left(\delta\Omega\over\Omega_{\rm DM}\tau\right)^{2}\eta^{2}(\tau,m_{\chi},r_{i}). (15)

The principal components ei(z)e_{i}(z) in η\eta are now specialized to the case of decays, as well as depending upon the experiment. In contrast to annihilations, the first three components are needed for good accuracy, even for WMAP. We plot them for both experiments in fig. 3. The variances are given by σi=(5.3, 6.4, 9.5)×1025\sigma_{i}=(5.3,\,6.4,\,9.5\dots)\times 10^{-25}\,s-1 for WMAP7 and (1.2, 1.6, 2.3)×1025(1.2,\,1.6,\,2.3\dots)\times 10^{-25}\,s-1 for Planck Slatyer:2012yq . The limits of integration appearing in feif\cdot e_{i} are z1=10z_{1}=10, z2=1258.2z_{2}=1258.2, because nχn_{\chi} redshifts slower than nχ2n_{\chi}^{2}, so lower redshifts are needed than in the case of annihilations. The inner products (and therefore the limits of integration) are now defined in terms of integrals over lnz\ln z rather than zz, with normalization (eiei)=0.0543(e_{i}\cdot e_{i})=0.0543.

Like fefff_{\rm eff}, η\eta can be easily obtained for arbitrary branching fractions rir_{i} into multiple final states by taking the appropriate linear combination of values for single channels ηi\eta_{i}

η=iriηi.\eta=\sum_{i}r_{i}\eta_{i}. (16)

We have computed η\eta for each of the 15 final states that were considered as annihilation channels in the previous section, over a grid of metastable particle masses 10,30,100,300,100010,30,100,300,1000 GeV as before (we augment this selection in the γ\gamma, tt, WW, ZZ and hh channels where it would otherwise be too sparse), and a grid of 15 lifetimes. The results are given in table 2. For the bb channel, our results extend only as low as mχ=12m_{\chi}=12 GeV, as all yields of Cirelli:2010xx for the bb channel go to zero as the energies of the the decay products approach 5 GeV (presumably because the bb mass was approximated to 5 GeV in the calculations of Cirelli:2010xx ).

Our lifetime grid is sufficiently dense to show the structure of the limit on δΩ\delta\Omega as a function of τ\tau. For longer lifetimes, η\eta is the same as the values we give for τ=1017\tau=10^{17}, allowing constraints and likelihoods to be extended to arbitrarily long lifetimes. An example of the resulting constraints is given in fig. 4 for the χμμ¯\chi\to\mu\bar{\mu} channel. Our results for other channels agree with those presented by Slatyer Slatyer:2012yq (as expected, given that we adopt her transfer functions here). In fig. 5 we plot the lower limit on the lifetime of a dark matter species decaying into any of the channels under consideration, assuming that it constitutes the entire presently-observed DM density.

We again added extra points to the mass grid for the γ\gamma channel, in order to resolve the somewhat sharp feature seen in the region 100mχ300100\lesssim m_{\chi}\lesssim 300 GeV, as discussed previously in the results for annihilating dark matter. Note here that the mass range of the transition is approximately a factor of two larger than seen in annihilation (as decays produce photons with energies equal to half the DM mass), but that this factor is not exact because the redshifts of importance differ in the two cases, so the energy above which the Universe is opaque to photons injected at relevant redshifts differs slightly.

Our results for decaying species are based on the Fisher-matrix analysis of Finkbeiner:2011dx ; Slatyer:2012yq , which assumes that the linear approximation for the response of the CMB to energy injection at high redshift holds. Given the small ionization fraction at the redshifts most important for decay (at least when the lifetime is long) we do not expect nonlinear corrections to be crucial. In principle though, this assumption needs to be verified, for example with explicit CosmoMC calculations, as was done for annihilation.

It is also worth noting that the principal components ei(z)e_{i}(z) that we use for decay have been optimized for long decay lifetimes, leading to large leading contributions at relatively low redshift (fig. 3). In principle the ei(z)e_{i}(z) could also be optimized for different decay lifetimes, such that the optimal components for shorter lifetimes would probably begin to resemble those for annihilation to some degree (fig. 1), potentially allowing the limits we give here to be improved for the shortest lifetimes.

With tables 1 and 2, and eqs. LABEL:loglike2 and 15, we have provided a fast and easy means for implementing CMB constraints and likelihoods in future analyses of annihilating and decaying dark matter models, as well as some models with metastable particles that do not constitute dark matter. Our results can be interpolated to provide likelihood functions and limits for arbitrary particle masses, and arbitrary annihilation and decay final state mixtures.

logτ\log\tau 12 1214\frac{1}{4} 1212\frac{1}{2} 1234\frac{3}{4} 13 1314\frac{1}{4} 1312\frac{1}{2} 1334\frac{3}{4} 14 1414\frac{1}{4} 1412\frac{1}{2} 1434\frac{3}{4} 15 16 17 12 1214\frac{1}{4} 1212\frac{1}{2} 1234\frac{3}{4} 13 1314\frac{1}{4} 1312\frac{1}{2} 1334\frac{3}{4} 14 1414\frac{1}{4} 1412\frac{1}{2} 1434\frac{3}{4} 15 16 17
ch mχm_{\chi} WMAP7 η\eta Planck η\eta
1 10 5.74 4.51 3.47 2.59 1.93 1.47 1.15 0.93 0.79 0.69 0.63 0.59 0.56 0.51 0.51 5.19 3.95 2.90 2.01 1.34 0.86 0.53 0.29 0.13 0.02 -.05 -.09 -.12 -.17 -.17
30 5.49 4.29 3.32 2.54 1.96 1.55 1.27 1.07 0.94 0.85 0.80 0.76 0.74 0.70 0.69 4.92 3.72 2.75 1.96 1.36 0.94 0.64 0.43 0.28 0.19 0.12 0.08 0.06 0.02 0.01
100 5.39 4.20 3.26 2.53 2.00 1.63 1.37 1.20 1.09 1.02 0.97 0.94 0.92 0.89 0.89 4.82 3.63 2.68 1.94 1.40 1.02 0.75 0.56 0.44 0.36 0.30 0.27 0.25 0.22 0.21
300 5.38 4.18 3.24 2.54 2.04 1.69 1.46 1.31 1.21 1.15 1.11 1.09 1.07 1.05 1.05 4.81 3.60 2.66 1.95 1.44 1.08 0.84 0.67 0.56 0.49 0.45 0.42 0.40 0.38 0.38
10310^{3} 5.38 4.18 3.25 2.54 2.04 1.70 1.47 1.33 1.23 1.18 1.14 1.12 1.11 1.10 1.10 4.81 3.61 2.67 1.95 1.44 1.09 0.85 0.69 0.59 0.53 0.49 0.47 0.46 0.44 0.44
2 10 6.56 5.24 4.09 3.10 2.38 1.89 1.55 1.32 1.17 1.07 1.01 0.96 0.93 0.88 0.86 6.01 4.69 3.52 2.53 1.79 1.29 0.93 0.68 0.52 0.40 0.33 0.28 0.25 0.20 0.19
30 6.06 4.85 3.85 3.01 2.38 1.94 1.63 1.42 1.28 1.18 1.12 1.08 1.06 1.01 1.01 5.50 4.29 3.28 2.43 1.79 1.33 1.01 0.78 0.62 0.52 0.45 0.40 0.37 0.33 0.33
100 5.90 4.70 3.74 2.98 2.42 2.02 1.75 1.56 1.43 1.35 1.30 1.26 1.24 1.21 1.20 5.33 4.13 3.16 2.39 1.82 1.41 1.12 0.92 0.78 0.69 0.63 0.59 0.56 0.53 0.52
300 5.82 4.63 3.69 2.97 2.45 2.08 1.84 1.67 1.56 1.49 1.44 1.42 1.40 1.37 1.37 5.26 4.05 3.11 2.38 1.85 1.47 1.21 1.03 0.91 0.83 0.78 0.75 0.72 0.70 0.69
10310^{3} 5.81 4.61 3.68 2.98 2.47 2.13 1.90 1.74 1.65 1.59 1.55 1.53 1.52 1.50 1.50 5.24 4.04 3.10 2.38 1.87 1.51 1.27 1.11 1.01 0.94 0.89 0.87 0.85 0.83 0.83
3 10 6.18 4.96 3.95 3.11 2.47 2.03 1.72 1.50 1.36 1.26 1.20 1.16 1.13 1.06 1.04 5.61 4.39 3.37 2.53 1.88 1.42 1.10 0.86 0.71 0.60 0.53 0.48 0.44 0.39 0.37
30 6.07 4.85 3.87 3.07 2.47 2.05 1.76 1.55 1.42 1.33 1.27 1.24 1.21 1.17 1.16 5.51 4.29 3.29 2.49 1.88 1.44 1.13 0.92 0.77 0.67 0.60 0.56 0.53 0.49 0.48
100 5.93 4.73 3.78 3.04 2.49 2.11 1.84 1.65 1.53 1.45 1.40 1.37 1.34 1.31 1.31 5.36 4.16 3.20 2.45 1.90 1.50 1.21 1.01 0.88 0.79 0.73 0.69 0.67 0.63 0.63
300 5.90 4.70 3.76 3.04 2.52 2.16 1.91 1.75 1.64 1.57 1.52 1.49 1.48 1.45 1.45 5.33 4.12 3.18 2.45 1.92 1.55 1.29 1.11 0.99 0.91 0.86 0.83 0.80 0.78 0.77
10310^{3} 5.88 4.68 3.75 3.03 2.52 2.17 1.94 1.78 1.69 1.62 1.59 1.56 1.55 1.53 1.53 5.31 4.11 3.16 2.44 1.92 1.56 1.32 1.15 1.04 0.97 0.93 0.90 0.89 0.87 0.86
4 10 5.98 4.70 3.58 2.63 1.93 1.45 1.12 0.89 0.74 0.64 0.58 0.53 0.50 0.45 0.44 5.42 4.14 3.02 2.06 1.34 0.84 0.49 0.25 0.09 -.03 -.10 -.15 -.18 -.23 -.23
30 5.56 4.36 3.37 2.56 1.94 1.51 1.21 1.00 0.87 0.77 0.72 0.68 0.65 0.61 0.60 5.00 3.79 2.80 1.98 1.35 0.90 0.59 0.36 0.21 0.11 0.04 -.00 -.03 -.07 -.08
100 5.44 4.24 3.29 2.54 1.98 1.59 1.33 1.14 1.02 0.94 0.89 0.86 0.84 0.81 0.80 4.87 3.67 2.71 1.95 1.39 0.99 0.70 0.50 0.37 0.28 0.22 0.18 0.16 0.13 0.12
300 5.38 4.18 3.25 2.54 2.02 1.66 1.42 1.26 1.15 1.08 1.04 1.01 1.00 0.97 0.97 4.81 3.61 2.67 1.95 1.42 1.05 0.80 0.62 0.50 0.43 0.38 0.34 0.33 0.30 0.30
10310^{3} 5.38 4.18 3.25 2.54 2.04 1.70 1.47 1.32 1.23 1.17 1.13 1.11 1.10 1.08 1.08 4.81 3.61 2.66 1.95 1.44 1.08 0.85 0.69 0.58 0.52 0.48 0.45 0.44 0.42 0.42
5 10 6.82 5.41 4.18 3.14 2.39 1.89 1.54 1.31 1.15 1.05 0.98 0.93 0.90 0.83 0.81 6.28 4.87 3.62 2.57 1.81 1.29 0.92 0.67 0.50 0.38 0.30 0.25 0.21 0.16 0.14
30 6.22 4.99 3.95 3.06 2.38 1.92 1.60 1.38 1.23 1.13 1.07 1.03 1.00 0.95 0.94 5.66 4.43 3.37 2.48 1.80 1.32 0.98 0.74 0.58 0.47 0.39 0.35 0.32 0.27 0.26
100 5.97 4.77 3.79 3.01 2.41 1.99 1.70 1.51 1.37 1.29 1.23 1.19 1.17 1.13 1.12 5.40 4.20 3.22 2.42 1.82 1.39 1.08 0.87 0.72 0.62 0.55 0.51 0.48 0.44 0.44
300 5.87 4.67 3.73 2.99 2.44 2.07 1.80 1.63 1.51 1.43 1.38 1.35 1.33 1.30 1.30 5.30 4.10 3.15 2.40 1.85 1.46 1.18 0.99 0.86 0.77 0.71 0.68 0.65 0.62 0.62
10310^{3} 5.84 4.64 3.70 2.99 2.48 2.13 1.89 1.73 1.63 1.57 1.53 1.50 1.49 1.46 1.46 5.27 4.06 3.12 2.40 1.88 1.52 1.27 1.10 0.98 0.91 0.86 0.84 0.82 0.79 0.79
6 10 6.17 4.96 3.96 3.12 2.47 2.02 1.70 1.48 1.34 1.24 1.17 1.12 1.08 1.00 0.97 5.61 4.39 3.38 2.53 1.88 1.42 1.08 0.85 0.68 0.57 0.49 0.44 0.40 0.33 0.31
30 6.15 4.93 3.92 3.10 2.47 2.03 1.73 1.52 1.38 1.29 1.23 1.19 1.16 1.11 1.09 5.59 4.36 3.35 2.52 1.88 1.43 1.11 0.88 0.73 0.63 0.56 0.51 0.48 0.43 0.42
100 5.99 4.79 3.83 3.06 2.48 2.08 1.79 1.60 1.47 1.39 1.33 1.30 1.27 1.23 1.23 5.43 4.22 3.25 2.47 1.89 1.47 1.17 0.96 0.82 0.72 0.66 0.62 0.59 0.55 0.55
300 5.92 4.72 3.78 3.05 2.51 2.14 1.88 1.70 1.58 1.51 1.46 1.43 1.41 1.38 1.37 5.35 4.14 3.20 2.46 1.91 1.53 1.25 1.06 0.93 0.85 0.79 0.75 0.73 0.70 0.70
10310^{3} 5.90 4.70 3.76 3.05 2.53 2.18 1.94 1.78 1.68 1.61 1.57 1.54 1.53 1.51 1.51 5.33 4.13 3.18 2.46 1.93 1.57 1.32 1.15 1.03 0.96 0.91 0.88 0.86 0.84 0.83
7 10 5.87 4.67 3.69 2.90 2.29 1.86 1.56 1.35 1.21 1.11 1.05 1.00 0.96 0.87 0.84 5.30 4.10 3.11 2.31 1.69 1.25 0.94 0.71 0.55 0.44 0.37 0.31 0.28 0.20 0.18
30 5.89 4.68 3.70 2.91 2.30 1.88 1.59 1.38 1.25 1.16 1.09 1.05 1.02 0.95 0.93 5.32 4.11 3.12 2.32 1.71 1.28 0.97 0.75 0.59 0.49 0.42 0.37 0.34 0.28 0.26
100 5.84 4.64 3.67 2.90 2.32 1.91 1.63 1.43 1.30 1.21 1.16 1.12 1.09 1.04 1.03 5.28 4.06 3.09 2.31 1.73 1.31 1.01 0.79 0.65 0.55 0.49 0.44 0.41 0.37 0.36
300 5.79 4.59 3.64 2.90 2.34 1.95 1.68 1.49 1.37 1.29 1.23 1.20 1.18 1.14 1.13 5.23 4.02 3.06 2.31 1.74 1.34 1.06 0.85 0.72 0.63 0.56 0.52 0.50 0.46 0.45
10310^{3} 5.77 4.56 3.62 2.89 2.36 1.98 1.73 1.55 1.44 1.36 1.32 1.29 1.27 1.23 1.23 5.20 3.99 3.04 2.30 1.76 1.38 1.11 0.92 0.79 0.70 0.65 0.61 0.59 0.56 0.55
8 10 5.85 4.65 3.68 2.88 2.28 1.85 1.55 1.34 1.20 1.11 1.04 0.99 0.96 0.86 0.84 5.29 4.08 3.10 2.30 1.68 1.25 0.93 0.71 0.55 0.44 0.36 0.31 0.27 0.20 0.18
30 5.88 4.67 3.69 2.90 2.30 1.87 1.58 1.38 1.24 1.15 1.09 1.05 1.02 0.95 0.93 5.31 4.09 3.11 2.31 1.70 1.27 0.96 0.74 0.59 0.49 0.42 0.37 0.34 0.28 0.26
100 5.83 4.62 3.66 2.89 2.31 1.91 1.62 1.43 1.30 1.21 1.16 1.12 1.09 1.04 1.03 5.26 4.05 3.08 2.31 1.72 1.30 1.00 0.79 0.65 0.55 0.48 0.44 0.41 0.36 0.36
300 5.79 4.58 3.63 2.89 2.33 1.94 1.67 1.49 1.37 1.28 1.23 1.20 1.17 1.13 1.13 5.22 4.01 3.05 2.30 1.74 1.34 1.05 0.85 0.71 0.62 0.56 0.52 0.50 0.46 0.45
10310^{3} 5.76 4.56 3.62 2.89 2.35 1.98 1.72 1.55 1.43 1.36 1.31 1.28 1.26 1.23 1.23 5.19 3.98 3.03 2.30 1.75 1.37 1.10 0.91 0.79 0.70 0.65 0.61 0.59 0.56 0.55
9 12 5.91 4.71 3.72 2.91 2.28 1.84 1.53 1.32 1.17 1.07 0.99 0.94 0.90 0.80 0.77 5.35 4.14 3.15 2.32 1.69 1.24 0.91 0.68 0.51 0.40 0.32 0.26 0.22 0.13 0.11
30 5.91 4.70 3.72 2.91 2.30 1.87 1.56 1.36 1.21 1.12 1.05 1.01 0.98 0.90 0.88 5.34 4.13 3.14 2.33 1.70 1.26 0.94 0.72 0.56 0.45 0.38 0.33 0.29 0.23 0.21
100 5.88 4.67 3.69 2.91 2.31 1.89 1.60 1.40 1.27 1.18 1.12 1.08 1.05 1.00 0.99 5.31 4.10 3.11 2.32 1.72 1.29 0.98 0.76 0.62 0.52 0.45 0.40 0.37 0.32 0.31
300 5.81 4.61 3.65 2.89 2.32 1.93 1.65 1.46 1.33 1.25 1.20 1.16 1.14 1.09 1.09 5.25 4.03 3.07 2.31 1.73 1.32 1.03 0.82 0.68 0.59 0.52 0.48 0.46 0.42 0.41
10310^{3} 5.76 4.56 3.62 2.89 2.35 1.97 1.71 1.54 1.42 1.34 1.29 1.26 1.24 1.21 1.20 5.20 3.99 3.04 2.30 1.75 1.36 1.09 0.90 0.77 0.68 0.62 0.59 0.56 0.53 0.52
10 360 5.85 4.64 3.68 2.93 2.36 1.96 1.68 1.49 1.37 1.28 1.23 1.19 1.17 1.13 1.12 5.28 4.07 3.10 2.34 1.76 1.35 1.06 0.86 0.72 0.62 0.56 0.52 0.49 0.45 0.44
400 5.83 4.63 3.67 2.92 2.36 1.97 1.70 1.51 1.39 1.30 1.25 1.22 1.19 1.15 1.15 5.27 4.06 3.09 2.34 1.77 1.36 1.07 0.87 0.73 0.64 0.58 0.54 0.51 0.47 0.47
600 5.81 4.61 3.66 2.92 2.37 1.99 1.72 1.54 1.42 1.34 1.29 1.26 1.23 1.20 1.19 5.24 4.03 3.08 2.33 1.78 1.38 1.10 0.90 0.77 0.68 0.62 0.58 0.56 0.52 0.52
10310^{3} 5.80 4.60 3.65 2.92 2.38 2.00 1.73 1.55 1.43 1.36 1.31 1.27 1.25 1.22 1.21 5.24 4.03 3.07 2.33 1.78 1.39 1.11 0.92 0.78 0.70 0.64 0.60 0.58 0.54 0.54
11 10 5.40 4.19 3.25 2.53 2.02 1.67 1.43 1.28 1.19 1.13 1.09 1.07 1.06 1.04 1.04 4.84 3.62 2.67 1.94 1.42 1.06 0.81 0.65 0.54 0.48 0.44 0.41 0.40 0.38 0.38
30 5.28 4.10 3.20 2.53 2.05 1.73 1.51 1.37 1.28 1.23 1.20 1.18 1.16 1.15 1.15 4.71 3.52 2.61 1.93 1.45 1.11 0.89 0.74 0.64 0.58 0.54 0.52 0.51 0.49 0.49
100 5.43 4.23 3.29 2.60 2.12 1.80 1.60 1.47 1.39 1.34 1.31 1.29 1.28 1.27 1.27 4.86 3.65 2.71 2.01 1.52 1.19 0.98 0.84 0.75 0.70 0.66 0.64 0.63 0.62 0.62
140 5.37 4.18 3.25 2.53 2.01 1.65 1.40 1.24 1.13 1.06 1.01 0.99 0.97 0.94 0.94 4.81 3.61 2.66 1.94 1.41 1.04 0.78 0.60 0.48 0.40 0.35 0.32 0.30 0.27 0.27
180 5.37 4.17 3.24 2.53 2.02 1.66 1.42 1.26 1.16 1.09 1.05 1.02 1.00 0.98 0.98 4.80 3.60 2.66 1.94 1.42 1.05 0.80 0.62 0.51 0.43 0.38 0.35 0.33 0.31 0.31
220 5.37 4.17 3.24 2.53 2.03 1.68 1.44 1.28 1.18 1.11 1.07 1.05 1.03 1.01 1.01 4.80 3.60 2.66 1.94 1.43 1.07 0.82 0.64 0.53 0.46 0.41 0.38 0.36 0.34 0.34
260 5.37 4.17 3.24 2.54 2.03 1.69 1.45 1.30 1.20 1.13 1.09 1.07 1.05 1.03 1.03 4.81 3.60 2.66 1.95 1.43 1.07 0.83 0.66 0.55 0.48 0.43 0.40 0.38 0.36 0.36
300 5.38 4.18 3.24 2.54 2.04 1.69 1.46 1.31 1.21 1.15 1.11 1.09 1.07 1.05 1.05 4.81 3.60 2.66 1.95 1.44 1.08 0.84 0.67 0.56 0.49 0.45 0.42 0.40 0.38 0.38
10310^{3} 5.38 4.18 3.25 2.55 2.05 1.71 1.48 1.33 1.24 1.18 1.15 1.13 1.11 1.10 1.10 4.81 3.61 2.67 1.96 1.45 1.10 0.86 0.70 0.60 0.53 0.49 0.47 0.45 0.44 0.43
12 10 5.85 4.65 3.68 2.88 2.28 1.85 1.56 1.35 1.21 1.11 1.05 1.00 0.96 0.87 0.85 5.28 4.08 3.10 2.30 1.69 1.25 0.93 0.71 0.55 0.44 0.37 0.32 0.28 0.20 0.19
30 5.87 4.66 3.69 2.90 2.30 1.88 1.59 1.38 1.25 1.16 1.09 1.05 1.02 0.95 0.94 5.31 4.09 3.11 2.31 1.70 1.27 0.96 0.74 0.59 0.49 0.42 0.37 0.34 0.28 0.27
100 5.83 4.62 3.66 2.89 2.31 1.91 1.63 1.43 1.30 1.22 1.16 1.12 1.10 1.04 1.03 5.26 4.05 3.08 2.31 1.72 1.30 1.00 0.79 0.65 0.55 0.49 0.44 0.42 0.37 0.36
300 5.79 4.58 3.63 2.89 2.34 1.95 1.68 1.49 1.37 1.29 1.23 1.20 1.18 1.14 1.13 5.22 4.01 3.05 2.30 1.74 1.34 1.05 0.85 0.72 0.63 0.57 0.53 0.50 0.46 0.45
10310^{3} 5.76 4.56 3.62 2.89 2.35 1.98 1.72 1.55 1.44 1.36 1.31 1.28 1.26 1.23 1.23 5.19 3.98 3.03 2.30 1.75 1.37 1.10 0.91 0.79 0.70 0.65 0.61 0.59 0.56 0.55
13 200 5.88 4.67 3.71 2.95 2.38 1.98 1.70 1.51 1.38 1.30 1.24 1.21 1.18 1.14 1.13 5.31 4.10 3.13 2.37 1.79 1.37 1.08 0.87 0.73 0.64 0.57 0.53 0.50 0.46 0.45
300 5.85 4.65 3.70 2.95 2.39 2.00 1.73 1.54 1.42 1.34 1.29 1.25 1.23 1.19 1.18 5.29 4.08 3.12 2.36 1.80 1.39 1.11 0.91 0.77 0.68 0.62 0.58 0.55 0.51 0.51
10310^{3} 5.81 4.61 3.67 2.94 2.41 2.04 1.79 1.62 1.51 1.43 1.39 1.36 1.34 1.31 1.31 5.24 4.03 3.09 2.35 1.81 1.43 1.17 0.98 0.86 0.78 0.72 0.69 0.67 0.64 0.63
14 200 5.92 4.71 3.75 2.98 2.40 2.00 1.72 1.52 1.39 1.31 1.25 1.22 1.19 1.14 1.13 5.35 4.14 3.17 2.40 1.81 1.39 1.10 0.89 0.74 0.65 0.58 0.54 0.51 0.46 0.46
300 5.89 4.69 3.73 2.98 2.42 2.02 1.75 1.56 1.43 1.35 1.29 1.26 1.23 1.19 1.18 5.33 4.11 3.15 2.39 1.82 1.41 1.12 0.92 0.78 0.69 0.62 0.58 0.56 0.52 0.51
10310^{3} 5.84 4.64 3.70 2.97 2.44 2.07 1.81 1.64 1.52 1.45 1.40 1.37 1.35 1.32 1.32 5.28 4.07 3.12 2.38 1.84 1.46 1.19 1.00 0.87 0.79 0.73 0.70 0.68 0.64 0.64
15 300 5.86 4.65 3.69 2.92 2.34 1.94 1.65 1.46 1.33 1.24 1.19 1.15 1.13 1.08 1.07 5.30 4.08 3.11 2.33 1.75 1.33 1.03 0.82 0.68 0.58 0.52 0.47 0.45 0.40 0.39
600 5.82 4.61 3.66 2.91 2.36 1.97 1.70 1.51 1.39 1.31 1.25 1.22 1.20 1.16 1.15 5.25 4.04 3.08 2.33 1.76 1.36 1.07 0.87 0.74 0.65 0.59 0.55 0.52 0.48 0.48
10310^{3} 5.79 4.59 3.65 2.91 2.37 1.99 1.73 1.55 1.43 1.35 1.30 1.27 1.25 1.22 1.21 5.23 4.02 3.06 2.32 1.77 1.38 1.10 0.91 0.78 0.69 0.63 0.60 0.57 0.54 0.53
Table 2: Values of log10η=log10[i((fei)/(σi(eiei))2]1/2-\log_{10}\eta=-\log_{10}[\sum_{i}((f\cdot e_{i})/(\sigma_{i}(e_{i}\cdot e_{i}))^{2}]^{1/2} (where σi\sigma_{i} is in units of 102510^{-25}s-1) as a function of log10τ\log_{10}\tau (with τ\tau in seconds) and mχm_{\chi} in GeV, for each of the 15 decay channels whose numbering corresponds to the key in figs. 2 or 5. Figures on left for WMAP7 and on right for Planck. Values for longer lifetimes are the same as for log10τ=17\log_{10}\tau=17.

Acknowledgements. We thank Marco Cirelli, Tongyan Lin, Tracy Slatyer and Christoph Weniger for very helpful clarifications and explanations, and Jasper Hasenkamp for pointing out an inconsistency in earlier versions of this work. J.C. is supported by the Natural Science and Engineering Research Council of Canada (NSERC). P.S. is supported by the Banting program, administered by NSERC.

References

  • (1) D. Scott, M. J. Rees, D. W. Sciama, Astron. Astrophys. 250, 295, (1991).
  • (2) S. Dodelson and J. M. Jubas, Phys. Rev. D 45, 1076 (1992).
  • (3) S. H. Hansen and Z. Haiman, Astrophys. J.  600, 26 (2004) [astro-ph/0305126].
  • (4) X. -L. Chen and M. Kamionkowski, Phys. Rev. D 70, 043502 (2004) [astro-ph/0310473].
  • (5) N. Padmanabhan and D. P. Finkbeiner, Phys. Rev. D 72, 023508 (2005) [astro-ph/0503486].
  • (6) M. Mapelli, A. Ferrara and E. Pierpaoli, Mon. Not. Roy. Astron. Soc.  369, 1719 (2006) [astro-ph/0603237].
  • (7) L. Zhang, X. Chen, M. Kamionkowski, Z. Si and Z. Zheng, Phys. Rev. D 76, 061301 (2007) [arXiv:0704.2444].
  • (8) A. Natarajan and D. J. Schwarz, Phys. Rev. D 80, 043529 (2009) [arXiv:0903.4485].
  • (9) S. Galli, F. Iocco, G. Bertone and A. Melchiorri, Phys. Rev. D 80, 023505 (2009) [arXiv:0905.0003].
  • (10) T. R. Slatyer, N. Padmanabhan and D. P. Finkbeiner, Phys. Rev. D 80, 043526 (2009) [arXiv:0906.1197].
  • (11) M. Cirelli, F. Iocco and P. Panci, JCAP 0910 (2009) 009 [arXiv:0907.0719].
  • (12) G. Hutsi, J. Chluba, A. Hektor and M. Raidal, Astron. Astrophys.  535, A26 (2011) [arXiv:1103.2766].
  • (13) S. Galli, F. Iocco, G. Bertone and A. Melchiorri, Phys. Rev. D 84, 027302 (2011) [arXiv:1106.1528].
  • (14) D. P. Finkbeiner, S. Galli, T. Lin and T. R. Slatyer, Phys. Rev. D 85, 043522 (2012) [arXiv:1109.6322].
  • (15) A. Natarajan, Phys. Rev. D 85, 083517 (2012) [arXiv:1201.3939].
  • (16) G. Giesen, J. Lesgourgues, B. Audren and Y. Ali-Haimoud, JCAP 1212, 008 (2012) [arXiv:1209.0247].
  • (17) T. R. Slatyer, arXiv:1211.0283.
  • (18) A. R. Frey and N. B. Reid, arXiv:1301.0819.
  • (19) C. Weniger, P. D. Serpico, F. Iocco and G. Bertone, arXiv:1303.0942.
  • (20) P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E. A. Baltz, JCAP 0407, 008 (2004) [astro-ph/0406204].
  • (21) H. -U. Bengtsson and T. Sjostrand, Comput. Phys. Commun.  46, 43 (1987).
  • (22) T. Sjostrand, S. Mrenna and P. Z. Skands, Comput. Phys. Commun.  178, 852 (2008) [arXiv:0710.3820].
  • (23) G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour and B. R. Webber, JHEP 0101, 010 (2001) [hep-ph/0011363].
  • (24) M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal and F. Sala et al., JCAP 1103, 051 (2011) [Erratum-ibid.  1210, E01 (2012)] [arXiv:1012.4515].
  • (25) P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia, A. Urbano, JCAP 1103, 019 (2011) [arXiv:1009.0224]
  • (26) M. Pato, L. Pieri and G. Bertone, Phys. Rev. D 80, 103510 (2009) [arXiv:0905.0372].
  • (27) P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer, C. Hensel, M. Kramer and N. Nguyen et al., JHEP 1206, 098 (2012) [arXiv:1204.4199].
  • (28) O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. J. Dolan, J. R. Ellis, H. Flacher and S. Heinemeyer et al., Eur. Phys. J. C 72, 2243 (2012) [arXiv:1207.7315].
  • (29) C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. R. de Austri and R. Trotta, arXiv:1212.2636.
  • (30) P. Scott, J. Conrad, J. Edsjo, L. Bergstrom, C. Farnier and Y. Akrami, JCAP 1001, 031 (2010) [arXiv:0909.3300].
  • (31) J. Ripken, J. Conrad and P. Scott, JCAP 1111, 004 (2011) [arXiv:1012.3939].
  • (32) P. Scott et al. [IceCube Collaboration], JCAP 1211, 057 (2012) [arXiv:1207.0810].
  • (33) A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002) [astro-ph/0205436].
  • (34) [Planck Collaboration], astro-ph/0604069.