This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

 
Dark matter, electroweak phase transition and gravitational wave in the type-II two-Higgs-doublet model with a singlet scalar field

Xiao-Fang Han1, Lei Wang1, Yang Zhang2,3 1 Department of Physics, Yantai University, Yantai 264005, P. R. China
2 School of Physics, Zhengzhou University, ZhengZhou 450001, P. R. China
3 ARC Centre of Excellence for Particle Physics at the Tera-scale, School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
Abstract

In the framework of type-II two-Higgs-doublet model with a singlet scalar dark matter SS, we study the dark matter observables, the electroweak phase transition, and the gravitational wave signals by such strongly first order phase transition after imposing the constraints of the LHC Higgs data. We take the heavy CP-even Higgs HH as the only portal between the dark matter and SM sectors, and find the LHC Higgs data and dark matter observables require mSm_{S} and mHm_{H} to be larger than 130 GeV and 360 GeV for mA=600m_{A}=600 GeV in the case of the 125 GeV Higgs with the SM-like coupling. Next, we carve out some parameter space where a strongly first order electroweak phase transition can be achieved, and find benchmark points for which the amplitudes of gravitational wave spectra reach the sensitivities of the future gravitational wave detectors.

I Introduction

The weakly interacting massive particle is a primary candidate for dark matter (DM) in the present Universe. Many extensions of SM have been proposed to provide a candidate of DM, and one simple extension is to add a singlet scalar DM to the type-II two-Higgs-doublet model (2HDM) 2hdm ; i-1 ; ii-2 . The type-II 2HDM (2HDMIID) contains two CP-even states, hh and HH, one neutral pseudoscalar AA, two charged scalars H±H^{\pm}, and one CP-even singlet scalar SS as the candidate of DM 2hisos-0 ; 2hisos-1 ; 2hisos-2 ; 2hisos-3 ; 2hisos-4 ; 2hisos-6 ; dmbu ; 1708.06882 ; 1608.00421 ; 1801.08317 ; 1808.02667 .

In the type-II 2HDM model, the Yukawa couplings of the down-type quark and lepton can be both enhanced by a factor of tanβ\tan\beta. Therefore, the flavor observables and the LHC searches for Higgs can impose strong constraints on type-II 2HDM model. In the 2HDMIID, the two CP-even states hh and HH may be portals between the DM and SM sectors, and there are plentiful parameter space satisfying the direct and indirect experimental constraints of DM. The scalar potential of 2HDMIID contains the original one of type-II 2HDM and one including DM. For appropriate Higgs mass spectrum and coupling constants, the type-II 2HDM can trigger a strong first-order electroweak phase transition (SFOEWPT) in the early universe PT_2HDM1 ; PT_2HDM1.5 ; PT_2HDM2 ; PT_2HDM3 , which is required by a successful explanation of the observed baryon asymmetry of the universe (BAU) Sakharov:1967dj and can produce primordial gravitational wave (GW) signals PT_GW .

In this paper, we first examine the parameter space of the 2HDMIID using the recent LHC Higgs data and DM observables. After imposing various theroretial and experimental constraints, we analyze whether a SFOEWPT is achievable in the 2HDMIID, and discuss the resultant GW signals and its detectability at the future GW detectors, such as LISA lisa , Taiji taiji , TianQin tianqin , Big Bang Observer (BBO) bbodecigo , DECi-hertz Interferometer GW Observatory (DECIGO) bbodecigo and Ultimate- DECIGO udecigo .

Our work is organized as follows. In Sec. II we will give a brief introduction on the 2HDMIID. In Sec. III and Sec. IV, we show the allowed parameter space after imposing the limits of the LHC Higgs data and DM observables. In Sec. V, we examine the parameter space leading to a SFOEWPT and the corresponding GW signal. Finally, we give our conclusion in Sec. VI.

II Type-II two-Higgs-doublet model with a scalar dark matter

The scalar potential of 2HDMIID is given as 2h-poten

𝒱tree\displaystyle\mathcal{V}_{tree} =\displaystyle= m112(Φ1Φ1)+m222(Φ2Φ2)[m122(Φ1Φ2+h.c.)]\displaystyle m_{11}^{2}(\Phi_{1}^{\dagger}\Phi_{1})+m_{22}^{2}(\Phi_{2}^{\dagger}\Phi_{2})-\left[m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2}+\rm h.c.)\right] (1)
+λ12(Φ1Φ1)2+λ22(Φ2Φ2)2+λ3(Φ1Φ1)(Φ2Φ2)+λ4(Φ1Φ2)(Φ2Φ1)\displaystyle+\frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2}+\frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2}+\lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2})+\lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})
+[λ52(Φ1Φ2)2+h.c.]\displaystyle+\left[\frac{\lambda_{5}}{2}(\Phi_{1}^{\dagger}\Phi_{2})^{2}+\rm h.c.\right]
+12S2(κ1Φ1Φ1+κ2Φ2Φ2)+m022S2+λS4!S4.\displaystyle+{1\over 2}S^{2}(\kappa_{1}\Phi_{1}^{\dagger}\Phi_{1}+\kappa_{2}\Phi_{2}^{\dagger}\Phi_{2})+{m_{0}^{2}\over 2}S^{2}+{\lambda_{S}\over 4!}S^{4}.

Here we discuss the CP-conserving model in which all λi\lambda_{i}, κi\kappa_{i} and m122m_{12}^{2} are real. The SS is a real singlet scalar field, and Φ1\Phi_{1} and Φ2\Phi_{2} are complex Higgs doublets with hypercharge Y=1Y=1:

Φ1=(ϕ1+12(v1+ϕ10+ia1)),Φ2=(ϕ2+12(v2+ϕ20+ia2)).\Phi_{1}=\left(\begin{array}[]{c}\phi_{1}^{+}\\ \frac{1}{\sqrt{2}}\,(v_{1}+\phi_{1}^{0}+ia_{1})\end{array}\right)\,,\ \ \ \Phi_{2}=\left(\begin{array}[]{c}\phi_{2}^{+}\\ \frac{1}{\sqrt{2}}\,(v_{2}+\phi_{2}^{0}+ia_{2})\end{array}\right). (2)

Where v1v_{1} and v2v_{2} are the electroweak vacuum expectation values (VEVs) with v2=v12+v22=(246GeV)2v^{2}=v^{2}_{1}+v^{2}_{2}=(246~{}\rm GeV)^{2}, and the ratio of the two VEVs is defined as tanβ=v2/v1\tan\beta=v_{2}/v_{1}. The linear and cubic terms of the SS field are forbidden by a Z2Z^{\prime}_{2} symmetry, under which SSS\rightarrow-S. The SS is a possible DM candidate since it does not acquire a VEV. After spontaneous electroweak symmetry breaking, the remaining physical states are three neutral CP-even states hh, HH, and SS, one neutral pseudoscalar AA, and two charged scalars H±H^{\pm}.

We can obtain the DM mass and the cubic interactions with the neutral Higgses from Eq. (1),

mS2\displaystyle m_{S}^{2} =\displaystyle= m02+12κ1v2cos2β+12κ2v2sin2β,\displaystyle m_{0}^{2}+\frac{1}{2}\kappa_{1}v^{2}\cos^{2}\beta+\frac{1}{2}\kappa_{2}v^{2}\sin^{2}\beta,
λhvS2h/2\displaystyle-\lambda_{h}vS^{2}h/2 \displaystyle\equiv (κ1sinαcosβ+κ2cosαsinβ)vS2h/2,\displaystyle-(-\kappa_{1}\sin\alpha\cos\beta+\kappa_{2}\cos\alpha\sin\beta)vS^{2}h/2,
λHvS2H/2\displaystyle-\lambda_{H}vS^{2}H/2 \displaystyle\equiv (κ1cosαcosβ+κ2sinαsinβ)vS2H/2,\displaystyle-(\kappa_{1}\cos\alpha\cos\beta+\kappa_{2}\sin\alpha\sin\beta)vS^{2}H/2, (3)

with α\alpha being the mixing angle of hh and HH.

The Yukawa interactions are written as

\displaystyle-{\cal L} =\displaystyle= Yu2Q¯LΦ~2uR+Yd1Q¯LΦ1dR+Y1L¯LΦ1eR+h.c.,\displaystyle Y_{u2}\,\overline{Q}_{L}\,\tilde{{\Phi}}_{2}\,u_{R}+\,Y_{d1}\,\overline{Q}_{L}\,{\Phi}_{1}\,d_{R}\,+\,Y_{\ell 1}\,\overline{L}_{L}\,{\Phi}_{1}\,e_{R}+\,\mbox{h.c.}\,, (4)

where QLT=(uL,dL)Q_{L}^{T}=(u_{L}\,,d_{L}), LLT=(νL,lL)L_{L}^{T}=(\nu_{L}\,,l_{L}), Φ~1,2=iτ2Φ1,2\widetilde{\Phi}_{1,2}=i\tau_{2}\Phi_{1,2}^{*}, and Yu2Y_{u2}, Yd1Y_{d1} and Y1Y_{\ell 1} are 3×33\times 3 matrices in family space.

The Yukawa couplings of the neutral Higgs bosons normalized to the SM are given by

yhfi=[sin(βα)+cos(βα)κf],\displaystyle y_{h}^{f_{i}}=\left[\sin(\beta-\alpha)+\cos(\beta-\alpha)\kappa_{f}\right],
yHfi=[cos(βα)sin(βα)κf],\displaystyle y_{H}^{f_{i}}=\left[\cos(\beta-\alpha)-\sin(\beta-\alpha)\kappa_{f}\right],
yAfi=iκf(foru),yAfi=iκf(ford,),\displaystyle y_{A}^{f_{i}}=-i\kappa_{f}~{}{\rm(for~{}u)},~{}~{}~{}~{}y_{A}^{f_{i}}=i\kappa_{f}~{}{\rm(for~{}d,~{}\ell)},
withκd=κtanβ,κu1/tanβ.\displaystyle{\rm with}~{}\kappa_{d}=\kappa_{\ell}\equiv-\tan\beta,~{}~{}~{}\kappa_{u}\equiv 1/\tan\beta. (5)

The charged Higgs has the following Yukawa interactions,

Y\displaystyle\mathcal{L}_{Y} =2vH+{u¯i[κd(VCKM)ijmdjPRκumui(VCKM)ijPL]dj+κν¯mPR}+h.c.,\displaystyle=-\frac{\sqrt{2}}{v}\,H^{+}\,\Big{\{}\bar{u}_{i}\left[\kappa_{d}\,(V_{CKM})_{ij}~{}m_{dj}P_{R}-\kappa_{u}\,m_{ui}~{}(V_{CKM})_{ij}~{}P_{L}\right]d_{j}+\kappa_{\ell}\,\bar{\nu}m_{\ell}P_{R}\ell\Big{\}}+h.c., (6)

where i,j=1,2,3i,j=1,2,3.

The neutral Higgs boson couplings with the gauge bosons normalized to the SM are given by

yhV=sin(βα),yHV=cos(βα),y^{V}_{h}=\sin(\beta-\alpha),~{}~{}~{}y^{V}_{H}=\cos(\beta-\alpha), (7)

where VV denotes ZZ or WW. In the type-II 2HDM, the 125 GeV Higgs is allowed to have the SM-like coupling and wrong sign Yukawa coupling,

yhfi×yhV>0forSMlikecoupling,\displaystyle y_{h}^{f_{i}}~{}\times~{}y^{V}_{h}>0~{}{\rm for~{}SM-like~{}coupling},~{}~{}~{}
yhfi×yhV<0forwrongsignYukawacoupling.\displaystyle y_{h}^{f_{i}}~{}\times~{}y^{V}_{h}<0~{}{\rm for~{}wrong~{}sign~{}Yukawa~{}coupling}. (8)

III The experimental constraints of the Higgs data at the LHC

III.1 Numerical calculations

We take the light CP-even Higgs boson hh as the SM-like Higgs, mh=125m_{h}=125 GeV. The measurement of the branching fraction of bsγb\to s\gamma gives the stringent constraints on the charged Higgs mass of the type-II 2HDM, mH±>570m_{H^{\pm}}>570 GeV bsr570 . If the 125 GeV Higgs boson is the portal between the DM and SM sectors, it is favored to have wrong sign Yukawa coupling which can realize the isospin-violating DM interactions with nucleons and relax the bounds of direct detection of DM. However, Ref. PT_2HDM2 shows the the wrong sign Yukwa coupling region of type-II 2HDM is strongly restricted by the requirement of SFOEWPT. Therefore, in this paper we take the heavy CP-even Higgs HH as the only portal between the DM and SM sectors, and focus on the case of the 125 GeV with the SM-like couping. The SS, TT, and UU oblique parameters give the stringent constraints on the mass spectrum of Higgses of type-II 2HDM 1604.01406 ; 1701.02678 ; 2003.06170 . One of mAm_{A} and mHm_{H} is around 600 GeV, and another is allowed to have a wide mass range including low mass 1701.02678 ; 2003.06170 . Therefore, we fix mA=600m_{A}=600 GeV to make the portal HH to have a wide mass range.

In our calculation, we consider the following observables and constraints:

  • (1)

    Theoretical constraints. The scalar potential of the model contains one of the type-II 2HDM and one of the DM sector. The vacuum stability, perturbativity, and tree-level unitarity impose constraints on the relevant parameters, which are discussed in detail in Refs. 2hisos-4 ; 2hisos-6 . Here we employ the formulas in 2hisos-4 ; 2hisos-6 to implement the theoretical constraints. Compared to Refs. 2hisos-4 ; 2hisos-6 , there are additional factors of 12\frac{1}{2} in the κ1\kappa_{1} term and the κ2\kappa_{2} term of this paper. In addition, we require that the potential has a global minimum at the point of (<h1>=v1<h_{1}>=v_{1}, <h2>=v2<h_{2}>=v_{2}, <S1>=0<S_{1}>=0).

  • (2)

    The oblique parameters. The SS, TT, UU parameters can impose stringent constraints on the mass spectrum of Higgses of 2HDM. We use 2HDMC 2hc-1 to calculate the SS, TT, UU parameters. Taking the recent fit results of Ref. pdg2018 , we use the following values of SS, TT, UU,

    S=0.02±0.10,T=0.07±0.12,U=0.00±0.09.S=0.02\pm 0.10,~{}~{}T=0.07\pm 0.12,~{}~{}U=0.00\pm 0.09. (9)

    The correlation coefficients are

    ρST=0.89,ρSU=0.54,ρTU=0.83.\rho_{ST}=0.89,~{}~{}\rho_{SU}=-0.54,~{}~{}\rho_{TU}=-0.83. (10)
  • (3)

    The flavor observables and RbR_{b}. We employ SuperIso-3.4 spriso to calculate Br(BXsγ)Br(B\to X_{s}\gamma), and ΔmBs\Delta m_{B_{s}} is calculated following the formulas in deltmq . Besides, we include the constraints of bottom quarks produced in ZZ decays, RbR_{b}, which is calculated following the formulas in rb1 ; rb2 .

    Channel Experiment Mass range [GeV] Luminosity
    gg/bb¯H/Aτ+τgg/b\bar{b}\to H/A\to\tau^{+}\tau^{-} ATLAS 8 TeV 47Aad:2014vgg 90-1000 19.5-20.3 fb-1
    gg/bb¯H/Aτ+τgg/b\bar{b}\to H/A\to\tau^{+}\tau^{-} CMS 8 TeV 48CMS:2015mca 90-1000 19.7 fb-1
    gg/bb¯H/Aτ+τgg/b\bar{b}\to H/A\to\tau^{+}\tau^{-} CMS 13 TeV add-hig-16-037 90-3200 12.9 fb-1
    gg/bb¯H/Aτ+τgg/b\bar{b}\to H/A\to\tau^{+}\tau^{-} CMS 13 TeV 1709.07242 200-2250 36.1 fb-1
    bb¯H/Aτ+τb\bar{b}\to H/A\to\tau^{+}\tau^{-} CMS 8 TeV 1511.03610 25-80 19.7 fb-1
    gg/bb¯H/Aτ+τgg/b\bar{b}\to H/A\to\tau^{+}\tau^{-} ATLAS 13 TeV 2002.12223 200-2500 139 fb-1
    bb¯H/Aμ+μb\bar{b}\to H/A\to\mu^{+}\mu^{-} CMS 8 TeV CMS-HIG-15-009 25-60 19.7 fb-1
    ppH/Aγγpp\to H/A\to\gamma\gamma ATLAS 13 TeV 80lenzi 200-2400 15.4 fb-1
    ggH/Aγγgg\to H/A\to\gamma\gamma CMS 8+13 TeV 81rovelli 500-4000 12.9 fb-1
    ggH/Aγγgg\to H/A\to\gamma\gamma + tt¯H/A(H/Aγγ)t\bar{t}H/A~{}(H/A\to\gamma\gamma) CMS 8 TeV HIG-17-013-pas 80-110 19.7 fb-1
    ggH/Aγγgg\to H/A\to\gamma\gamma + tt¯H/A(H/Aγγ)t\bar{t}H/A~{}(H/A\to\gamma\gamma) CMS 13 TeV HIG-17-013-pas 70-110 35.9 fb-1
    VVHγγVV\to H\to\gamma\gamma + VH(Hγγ)VH~{}(H\to\gamma\gamma) CMS 8 TeV HIG-17-013-pas 80-110 19.7 fb-1
    VVHγγVV\to H\to\gamma\gamma + VH(Hγγ)VH~{}(H\to\gamma\gamma) CMS 13 TeV HIG-17-013-pas 70-110 35.9 fb-1
    gg/VVHW+Wgg/VV\to H\to W^{+}W^{-} ATLAS 8 TeV 55Aad:2015agg 300-1500 20.3 fb-1
    gg/VVHW+W(νν)gg/VV\to H\to W^{+}W^{-}~{}(\ell\nu\ell\nu) ATLAS 13 TeV 77atlasww13 300-3000 13.2 fb-1
    ggHW+W(νqq)gg\to H\to W^{+}W^{-}~{}(\ell\nu qq) ATLAS 13 TeV 78atlasww13lvqq 500-3000 13.2 fb-1
    gg/VVHW+W(νqq)gg/VV\to H\to W^{+}W^{-}~{}(\ell\nu qq) ATLAS 13 TeV 1710.07235 200-3000 36.1 fb-1
    gg/VVHW+W(eνμν)gg/VV\to H\to W^{+}W^{-}~{}(e\nu\mu\nu) ATLAS 13 TeV 1710.01123 200-3000 36.1 fb-1
    gg/VVHW+Wgg/VV\to H\to W^{+}W^{-} CMS 13 TeV 1912.01594 200-3000 35.9 fb-1
    gg/VVHZZgg/VV\to H\to ZZ ATLAS 8 TeV 57Aad:2015kna 160-1000 20.3 fb-1
    ggHZZ(νν)gg\to H\to ZZ(\ell\ell\nu\nu) ATLAS 13 TeV 74koeneke4 300-1000 13.3 fb-1
    ggHZZ(ννqq)gg\to H\to ZZ(\nu\nu qq) ATLAS 13 TeV 75koeneke5 300-3000 13.2 fb-1
    gg/VVHZZ(qq)gg/VV\to H\to ZZ(\ell\ell qq) ATLAS 13 TeV 75koeneke5 300-3000 13.2 fb-1
    gg/VVHZZ()gg/VV\to H\to ZZ(\ell\ell\ell\ell) ATLAS 13 TeV 76koeneke3 200-3000 14.8 fb-1
    gg/VVHZZ(+νν)gg/VV\to H\to ZZ(\ell\ell\ell\ell+\ell\ell\nu\nu) ATLAS 13 TeV 1712.06386 200-2000 36.1 fb-1
    gg/VVHZZ(ννqq+qq)gg/VV\to H\to ZZ(\nu\nu qq+\ell\ell qq) ATLAS 13 TeV 1708.09638 300-5000 36.1 fb-1
    Table 1: The upper limits at 95% C.L. on the production cross-section times branching ratio of τ+τ\tau^{+}\tau^{-}, μ+μ\mu^{+}\mu^{-}, γγ\gamma\gamma, WWWW, and ZZZZ considered in the HH and AA searches at the LHC.
    Channel Experiment Mass range [GeV] Luminosity
    ggHhh(γγ)(bb¯)gg\to H\to hh\to(\gamma\gamma)(b\bar{b}) CMS 8 TeV 64Khachatryan:2016sey 250-1100 19.7 fb-1
    ggHhh(bb¯)(bb¯)gg\to H\to hh\to(b\bar{b})(b\bar{b}) CMS 8 TeV 65Khachatryan:2015yea 270-1100 17.9 fb-1
    ggHhh(bb¯)(τ+τ)gg\to H\to hh\to(b\bar{b})(\tau^{+}\tau^{-}) CMS 8 TeV 66Khachatryan:2015tha 260-350 19.7 fb-1
    ggHhhbb¯bb¯gg\to H\to hh\to b\bar{b}b\bar{b} ATLAS 13 TeV 84varol 300-3000 13.3 fb-1
    ggHhhbb¯bb¯gg\to H\to hh\to b\bar{b}b\bar{b} CMS 13 TeV 1710.04960 750-3000 35.9 fb-1
    ggHhh(bb¯)(τ+τ)gg\to H\to hh\to(b\bar{b})(\tau^{+}\tau^{-}) CMS 13 TeV 1707.02909 250-900 35.9 fb-1
    ppHhhpp\to H\to hh CMS 13 TeV 1811.09689 250-3000 35.9 fb-1
    ggHhhbb¯ZZgg\to H\to hh\to b\bar{b}ZZ CMS 13 TeV 2006.06391 260-1000 35.9 fb-1
    ggHhhbb¯τ+τgg\to H\to hh\to b\bar{b}\tau^{+}\tau^{-} CMS 13 TeV 2007.14811 1000-3000 139 fb-1
    ggAhZ(τ+τ)()gg\to A\to hZ\to(\tau^{+}\tau^{-})(\ell\ell) CMS 8 TeV 66Khachatryan:2015tha 220-350 19.7 fb-1
    ggAhZ(bb¯)()gg\to A\to hZ\to(b\bar{b})(\ell\ell) CMS 8 TeV 67Khachatryan:2015lba 225-600 19.7 fb-1
    ggAhZ(τ+τ)Zgg\to A\to hZ\to(\tau^{+}\tau^{-})Z ATLAS 8 TeV 68Aad:2015wra 220-1000 20.3 fb-1
    ggAhZ(bb¯)Zgg\to A\to hZ\to(b\bar{b})Z ATLAS 8 TeV 68Aad:2015wra 220-1000 20.3 fb-1
    gg/bb¯AhZ(bb¯)Zgg/b\bar{b}\to A\to hZ\to(b\bar{b})Z ATLAS 13 TeV 1712.06518 200-2000 36.1 fb-1
    gg/bb¯AhZ(bb¯)Zgg/b\bar{b}\to A\to hZ\to(b\bar{b})Z CMS 13 TeV 1903.00941 225-1000 35.9 fb-1
    ggAhZ(τ+τ)()gg\to A\to hZ\to(\tau^{+}\tau^{-})(\ell\ell) CMS 13 TeV 1910.11634 220-400 35.9 fb-1
    gghAAτ+ττ+τgg\to h\to AA\to\tau^{+}\tau^{-}\tau^{+}\tau^{-} ATLAS 8 TeV 1505.01609 4-50 20.3 fb-1
    pphAAτ+ττ+τpp\to h\to AA\to\tau^{+}\tau^{-}\tau^{+}\tau^{-} CMS 8 TeV 1701.02032 5-15 19.7 fb-1
    pphAA(μ+μ)(bb¯)pp\to h\to AA\to(\mu^{+}\mu^{-})(b\bar{b}) CMS 8 TeV 1701.02032 25-62.5 19.7 fb-1
    pphAA(μ+μ)(τ+τ)pp\to h\to AA\to(\mu^{+}\mu^{-})(\tau^{+}\tau^{-}) CMS 8 TeV 1701.02032 15-62.5 19.7 fb-1
    pphAA(bb¯)(τ+τ)pp\to h\to AA\to(b\bar{b})(\tau^{+}\tau^{-}) CMS 13 TeV 1805.10191 15-60 35.9 fb-1
    pphAAτ+ττ+τpp\to h\to AA\to\tau^{+}\tau^{-}\tau^{+}\tau^{-} CMS 13 TeV 1907.07235 4-15 35.9 fb-1
    pphAAμ+μτ+τpp\to h\to AA\to\mu^{+}\mu^{-}\tau^{+}\tau^{-} CMS 13 TeV 2005.08694 3.6-21 35.9 fb-1
    ggA(H)H(A)Z(bb¯)()gg\to A(H)\to H(A)Z\to(b\bar{b})(\ell\ell) CMS 8 TeV 160302991 40-1000 19.8 fb-1
    ggA(H)H(A)Z(τ+τ)()gg\to A(H)\to H(A)Z\to(\tau^{+}\tau^{-})(\ell\ell) CMS 8 TeV 160302991 20-1000 19.8 fb-1
    gg/bb¯A(H)H(A)Z(bb¯)()gg/b\bar{b}\to A(H)\to H(A)Z\to(b\bar{b})(\ell\ell) ATLAS 13 TeV 1804.01126 130-800 36.1 fb-1
    ggA(H)H(A)Z(bb¯)()gg\to A(H)\to H(A)Z\to(b\bar{b})(\ell\ell) CMS 13 TeV 1911.03781 30-1000 35.9 fb-1
    Table 2: The upper limits at 95% C.L. on the production cross-section times branching ratio for the channels of Higgs-pair and a Higgs production in association with ZZ at the LHC.
  • (4)

    The global fit to the 125 GeV Higgs signal data. The version 2.0 of Lilith lilith is used to perform the χ2\chi^{2} calculation for the signal strengths of the 125 GeV Higgs combining the LHC run-I and run-II data (up to datasets of 36 fb-1). We pay particular attention to the surviving samples with χ2χmin26.18\chi^{2}-\chi^{2}_{\rm min}\leq 6.18, where χmin2\chi^{2}_{\rm min} denotes the minimum of χ2\chi^{2}. These samples correspond to be within the 2σ2\sigma range in any two-dimension plane of the model parameters when explaining the Higgs data.

  • (5)

    The exclusion limits of searches for additional Higgs bosons. We use HiggsBounds-4.3.1 hb1 ; hb2 to implement the exclusion constraints from the neutral and charged Higgs searches at LEP at 95% confidence level.

    Because the bb-quark loop and top quark loop have destructive interference contributions to ggAgg\to A production in the type-II 2HDM, the cross section decreases with an increase of tanβ\tan\beta, reaches the minimum value for the moderate tanβ\tan\beta, and is dominated by the bb-quark loop for enough large tanβ\tan\beta. In addition to tanβ\tan\beta and mHm_{H}, the cross section of ggHgg\to H depends on sin(βα)\sin(\beta-\alpha). We employ SusHi to compute the cross sections for HH and AA in the gluon fusion and bb¯b\bar{b}-associated production at NNLO in QCD sushi . The cross sections of HH via vector boson fusion process are deduced from results of the LHC Higgs Cross Section Working Group higgswg . We employ 2HDMC to calculate the branching ratios of the various decay modes of HH and AA. The searches for the additional Higgs considered by us are listed in Tables 1 and 2. The LHC searches for H±H^{\pm} can not impose any constraints on the model for mH±>500m_{H^{\pm}}>500 GeV and 1 tanβ25\leq\tan\beta\leq 25 mhp500 . Therefore, we do not consider the constraints from the searches for the heavy charged Higgs.

III.2 Results and discussions

In Fig. 1, we show sin(βα)\sin(\beta-\alpha) and tanβ\tan\beta allowed by the 125 GeV Higgs signal data at the LHC. From Fig. 1, we see that tanβ\tan\beta and sin(βα)\sin(\beta-\alpha) have strong correlation due to the constraints of the 125 GeV Higgs data, especially for the case of the wrong sign Yukawa coupling. The wrong sign Yukawa coupling can be achieved only for sin(βα)>0\sin(\beta-\alpha)>0, and tanβ\tan\beta is restricted to be in a very narrow range for a given sin(βα)\sin(\beta-\alpha). For the case of the SM-like coupling, sin(βα)\sin(\beta-\alpha) is required to be in two very narrow ranges of 1.00.99993-1.0\sim-0.99993 and 0.9941.00.994\sim 1.0. The tanβ\tan\beta is allowed to be as low as 1.0, and its upper bound increases with sin(βα)\mid\sin(\beta-\alpha)\mid in the case of the the SM-like Higgs coupling.

Now we examine the parameter space of 2HDMIID using the exclusion limits of searches for additional Higgses at the LHC. In the 2HDMIID, we take the heavy CP-even Higgs HH as only portal between DM and SM sectors, and the decay HSSH\to SS opens for 2mS<mH2m_{S}<m_{H}. The decay mode possibly affects the allowed parameter space, but the constraints of the DM observables have to be simultaneously considered. Here we temporarily assume 2mS>mH2m_{S}>m_{H}, and close the HSSH\to SS decay mode. In the next section, the effects of HSSH\to SS will be considered by combining the DM observables.

Refer to caption
Refer to caption
Figure 1: Scatter plots of sin(βα)\sin(\beta-\alpha) and tanβ\tan\beta satisfying the constraints of the 125 GeV Higgs signal data.
Refer to caption
Refer to caption
Figure 2: The surviving samples with the SM-like coupling projected on the planes of mHm_{H} versus tanβ\tan\beta and mHm_{H} versus sin(βα)\mid\sin(\beta-\alpha)\mid. All the samples are allowed by the constraints of pre-LHC and the 125 GeV Higgs signal data. The triangles (sky blue), circles (royal blue), squares (black), inverted triangles (purple), and pluses (red) are respectively excluded by the H/Aτ+τH/A\to\tau^{+}\tau^{-}, HWW,ZZ,γγH\to WW,~{}ZZ,\gamma\gamma, HhhH\to hh, AHZA\to HZ, and AhZA\to hZ channels at the LHC. The bullets (green) are allowed by various LHC direct searches.

In Fig. 2, we project the surviving samples with the SM-like coupling on the planes of mHm_{H} versus tanβ\tan\beta and mHm_{H} versus sin(βα)\mid\sin(\beta-\alpha)\mid after imposing the constraints of pre-LHC (denoting theoretical constraints, electroweak precision data, the flavor observables, RbR_{b}, the exclusion limits from searches for Higgs at LEP), the 125 GeV Higgs signal data, and the searches for additional Higgses at the LHC. Note that in the region of sin(βα)<0\sin(\beta-\alpha)<0, the signal data of the 125 GeV Higgs require sin(βα)\sin(\beta-\alpha) to nearly equal to -1.0, as shown in right panel of Fig. 1. For such case, the couplings of HH and AA are almost the same as those in the case of sin(βα)=1.0\sin(\beta-\alpha)=1.0. Therefore, we do not distinguish the sign of sin(βα)\sin(\beta-\alpha) when discussing the constraints on mHm_{H} and mAm_{A} from the LHC direct searches.

From Fig. 2, we find the joint constraints of H/Aτ+τH/A\to\tau^{+}\tau^{-}, AHZA\to HZ, HWW,ZZ,γγH\to WW,~{}ZZ,~{}\gamma\gamma, and HhhH\to hh exclude the whole region of mH<360m_{H}<360 GeV. The H/Aτ+τH/A\to\tau^{+}\tau^{-} channels impose upper bound on tanβ\tan\beta in the whole range of mHm_{H}, and allow mHm_{H} to vary from 150 GeV to 800 GeV for appropriate values of tanβ\tan\beta and sin(βα)\sin(\beta-\alpha). The AHZA\to HZ channel does not constrain the parameter space of mH>m_{H}> 360 GeV since the branching ratio of AHZA\to HZ rapidly decreases with an increase of mHm_{H}. The limits of AHZA\to HZ channel can be relaxed by a small sin(βα)\mid\sin(\beta-\alpha)\mid which suppresses the AHZAHZ coupling.

The HWW,ZZ,γγ,hhH\to WW,~{}ZZ,~{}\gamma\gamma,~{}hh and AhZA\to hZ channels impose strong constraints on the regions with small values of sin(βα)\mid\sin(\beta-\alpha)\mid and tanβ\tan\beta since the couplings of HWW,HZZ,HhhHWW,~{}HZZ,~{}Hhh and AhZAhZ increase with decreasing of sin(βα)\mid\sin(\beta-\alpha)\mid, and σ(ggH/A)\sigma(gg\to H/A) is enhanced by the top quark loop for a small tanβ\tan\beta. In addition, the Fig. 1 shows that the 125 GeV Higgs signal data favor a small tanβ\tan\beta for a small sin(βα)\mid\sin(\beta-\alpha)\mid in the case of the SM-like coupling. With an increase of mHm_{H}, the Htt¯H\to t\bar{t} channel opens and enhances the total width of HH sizably, so that the constraints from HWW,ZZ,γγ,hhH\to WW,~{}ZZ,~{}\gamma\gamma,~{}hh channels are relaxed. Different from other channels, the AhZAhZ channel gives the constraints on the region with a large mHm_{H}. This is because the width of AHZA\to HZ decreases with an increase of mHm_{H}, and thus Br(AhZ)Br(A\to hZ) increases with mHm_{H}.

IV The dark matter observables

We use FeynRules feyrule to generate the model file, which is called by micrOMEGAs micomega to calculate the relic density. In our scenario, the elastic scattering of SS on a nucleon receives the contributions of the process with tt-channel exchange of HH, and the spin-independent cross section between DM and nucleons is given by sigis

σp(n)=μp(n)24πmS2[fp(n)]2,\sigma_{p(n)}=\frac{\mu_{p(n)}^{2}}{4\pi m_{S}^{2}}\left[f^{p(n)}\right]^{2}, (11)

where μp(n)=mSmp(n)mS+mp(n)\mu_{p(n)}=\frac{m_{S}m_{p(n)}}{m_{S}+m_{p(n)}},

fp(n)=q=u,d,sfqp(n)𝒞Sqmp(n)mq+227fgp(n)q=c,b,t𝒞Sqmp(n)mq,f^{p(n)}=\sum_{q=u,d,s}f_{q}^{p(n)}\mathcal{C}_{Sq}\frac{m_{p(n)}}{m_{q}}+\frac{2}{27}f_{g}^{p(n)}\sum_{q=c,b,t}\mathcal{C}_{Sq}\frac{m_{p(n)}}{m_{q}}, (12)

with 𝒞Sq=λHmH2mqyHq\mathcal{C}_{Sq}=\frac{\lambda_{H}}{m_{H}^{2}}m_{q}y_{H}^{q}. The values of the form factors fqp,nf_{q}^{p,n} and fgp,nf_{g}^{p,n} are extracted from micrOMEGAs micomega .

The Planck collaboration reported the relic density of cold DM in the universe, Ωch2=0.1198±0.0015\Omega_{c}h^{2}=0.1198\pm 0.0015 planck . The XENON1T collaboration reported stringent upper bounds of the spin-independent DM-nucleon cross section xenon2018 . The Fermi-LAT searches for the DM annihilation from dwarf spheroidal satellite galaxies gave the upper limits on the averaged cross sections of the DM annihilation to e+ee^{+}e^{-}, μ+μ\mu^{+}\mu^{-}, τ+τ\tau^{+}\tau^{-}, uu¯u\bar{u}, bb¯b\bar{b}, and WWWW fermi .

Refer to caption
Refer to caption
Refer to caption
Figure 3: The surviving samples projected on the planes of mSm_{S} versus λH\lambda_{H}, mSm_{S} versus mHm_{H}, and mSm_{S} versus σp\sigma_{p}. All the samples are allowed by the constraints of ”pre-LHC”, the LHC Higgs data, and the relic density. The circles (royal blue) and pluses (red) are respectively excluded by the experimental data of the XENON1T and Fermi-LAT, while the bullets (green) are allowed.

In Fig. 3, we project the surviving samples on the planes of λH\lambda_{H} versus mSm_{S}, mHm_{H} versus mSm_{S}, and σp\sigma_{p} versus mSm_{S} after imposing the constraints of ”pre-LHC”, the Higgs data at the LHC, the relic density, XENON1T, and Fermi-LAT. The middle panel shows that the HSSH\to SS decay weakens the constraints of the LHC Higgs data compared to Fig.2. For example, mHm_{H} is allowed to be as low as 200 GeV for a light DM. However, the upper bounds of the XENON1T and Fermi-LAT exclude mS<130m_{S}<130 GeV and mH<m_{H}< 360 GeV. In order to obtain the correct relic density, λH\mid\lambda_{H}\mid is favored to increase with decreasing of mSm_{S}. Thus, for a small mSm_{S}, a large λH\mid\lambda_{H}\mid can enhance the spin-independent DM-nucleon cross section and the averaged cross sections of the today DM annihilation to the SM particles, leading that mS<130m_{S}<130 GeV and mS<m_{S}< 75 GeV are respectively excluded by the experimental data of the XENON1T and Fermi-LAT. For 180 GeV <mS<<m_{S}< 340 GeV, λH\mid\lambda_{H}\mid can be allowed to be smaller than 0.01 because of the resonant contribution at 2mSmH2m_{S}\sim m_{H}.

V Electroweak phase transition and gravitational wave

The phase transition can proceed in basically two different ways. In a first-order phase transition, at the critical temperature TCT_{C}, the two degenerate minima will be at different points in field space, typically with a potential barrier in between. For a second order (cross-over) transition, the broken and symmetric minimum are not degenerate until they are at the same point in field space. In this paper we focus on the SFOEWPT, which is required by a successful explanation of the observed BAU and can produce primordial GW signals.

V.1 The thermal effective potential

In order to examine electroweak phase transition (EWPT), we first take h1h_{1}, h2h_{2}, and S1S_{1} as the field configurations, and obtain the field dependent masses of the scalars (h,H,A,H±,Sh,~{}H,~{}A,~{}H^{\pm},~{}S), the Goldstone boson (G,G±G,~{}G^{\pm}), the gauge boson, and fermions. The masses of scalars are given

m^h,H,S2\displaystyle{\hat{m}}^{2}_{h,H,S} =eigenvalues(P2^),\displaystyle=\rm{eigenvalues}(\widehat{\mathcal{M}^{2}_{P}})\ , (13)
m^G,A2\displaystyle{\hat{m}}^{2}_{G,A} =eigenvalues(A2^),\displaystyle=\rm{eigenvalues}(\widehat{\mathcal{M}^{2}_{A}})\ , (14)
m^G±,H±2\displaystyle{\hat{m}}^{2}_{G^{\pm},H^{\pm}} =eigenvalues(C2^),\displaystyle=\rm{eigenvalues}(\widehat{\mathcal{M}^{2}_{C}})\ , (15)
P2^11\displaystyle\widehat{\mathcal{M}^{2}_{P}}_{11} =3λ12h12+λ3452h22+m122tβλ12v2cβ2λ3452v2sβ2+κ12S12\displaystyle={3\lambda_{1}\over 2}h^{2}_{1}+{\lambda_{345}\over 2}h^{2}_{2}+m^{2}_{12}t_{\beta}-{\lambda_{1}\over 2}v^{2}c_{\beta}^{2}-{\lambda_{345}\over 2}v^{2}s_{\beta}^{2}+{\kappa_{1}\over 2}S_{1}^{2}
P2^22\displaystyle\widehat{\mathcal{M}^{2}_{P}}_{22} =3λ22h22+λ3452h12+m122tβλ22v2sβ2λ3452v2cβ2+κ22S12\displaystyle={3\lambda_{2}\over 2}h^{2}_{2}+{\lambda_{345}\over 2}h^{2}_{1}+{m^{2}_{12}\over t_{\beta}}-{\lambda_{2}\over 2}v^{2}s_{\beta}^{2}-{\lambda_{345}\over 2}v^{2}c_{\beta}^{2}+{\kappa_{2}\over 2}S_{1}^{2}
P2^33\displaystyle\widehat{\mathcal{M}^{2}_{P}}_{33} =mS2+κ12h12+κ22h22+λS2S12κ12v2cβ2κ22v2sβ2\displaystyle=m^{2}_{S}+{\kappa_{1}\over 2}h^{2}_{1}+{\kappa_{2}\over 2}h^{2}_{2}+{\lambda_{S}\over 2}S_{1}^{2}-{\kappa_{1}\over 2}v^{2}c_{\beta}^{2}-{\kappa_{2}\over 2}v^{2}s_{\beta}^{2}
P2^12\displaystyle\widehat{\mathcal{M}^{2}_{P}}_{12} =P2^21=λ345h1h2m122\displaystyle=\widehat{\mathcal{M}^{2}_{P}}_{21}=\lambda_{345}h_{1}h_{2}-m^{2}_{12}
P2^13\displaystyle\widehat{\mathcal{M}^{2}_{P}}_{13} =P2^31=κ1h1S1\displaystyle=\widehat{\mathcal{M}^{2}_{P}}_{31}=\kappa_{1}h_{1}S_{1}
P2^23\displaystyle\widehat{\mathcal{M}^{2}_{P}}_{23} =P2^32=κ2h2S1\displaystyle=\widehat{\mathcal{M}^{2}_{P}}_{32}=\kappa_{2}h_{2}S_{1}
A2^11\displaystyle\widehat{\mathcal{M}^{2}_{A}}_{11} =λ12h12+m122tβλ12v2cβ2λ3452v2sβ2+(λ3+λ4λ5)2h22+κ12S12\displaystyle={\lambda_{1}\over 2}h^{2}_{1}+m^{2}_{12}t_{\beta}-{\lambda_{1}\over 2}v^{2}c_{\beta}^{2}-{\lambda_{345}\over 2}v^{2}s_{\beta}^{2}+{(\lambda_{3}+\lambda_{4}-\lambda_{5})\over 2}h^{2}_{2}+{\kappa_{1}\over 2}S_{1}^{2}
A2^22\displaystyle\widehat{\mathcal{M}^{2}_{A}}_{22} =λ22h22+m122tβλ22v2sβ2λ3452v2cβ2+(λ3+λ4λ5)2h12+κ22S12\displaystyle={\lambda_{2}\over 2}h^{2}_{2}+{m^{2}_{12}\over t_{\beta}}-{\lambda_{2}\over 2}v^{2}s_{\beta}^{2}-{\lambda_{345}\over 2}v^{2}c_{\beta}^{2}+{(\lambda_{3}+\lambda_{4}-\lambda_{5})\over 2}h^{2}_{1}+{\kappa_{2}\over 2}S_{1}^{2}
A2^12\displaystyle\widehat{\mathcal{M}^{2}_{A}}_{12} =A2^21=λ5h1h2m122\displaystyle=\widehat{\mathcal{M}^{2}_{A}}_{21}=\lambda_{5}h_{1}h_{2}-m^{2}_{12}
C2^11\displaystyle\widehat{\mathcal{M}^{2}_{C}}_{11} =λ12h12+m122tβλ12v2cβ2λ3452v2sβ2+λ32h22+κ12S12\displaystyle={\lambda_{1}\over 2}h^{2}_{1}+m^{2}_{12}t_{\beta}-{\lambda_{1}\over 2}v^{2}c_{\beta}^{2}-{\lambda_{345}\over 2}v^{2}s_{\beta}^{2}+{\lambda_{3}\over 2}h^{2}_{2}+{\kappa_{1}\over 2}S_{1}^{2}
C2^22\displaystyle\widehat{\mathcal{M}^{2}_{C}}_{22} =λ22h22+m122tβλ22v2sβ2λ3452v2cβ2+λ32h12+κ22S12\displaystyle={\lambda_{2}\over 2}h^{2}_{2}+{m^{2}_{12}\over t_{\beta}}-{\lambda_{2}\over 2}v^{2}s_{\beta}^{2}-{\lambda_{345}\over 2}v^{2}c_{\beta}^{2}+{\lambda_{3}\over 2}h^{2}_{1}+{\kappa_{2}\over 2}S_{1}^{2}
C2^12\displaystyle\widehat{\mathcal{M}^{2}_{C}}_{12} =C2^21=(λ4+λ5)2h1h2m122,\displaystyle=\widehat{\mathcal{M}^{2}_{C}}_{21}={(\lambda_{4}+\lambda_{5})\over 2}h_{1}h_{2}-m^{2}_{12}, (16)

where λ345=λ3+λ4+λ5\lambda_{345}=\lambda_{3}+\lambda_{4}+\lambda_{5}, cβ=cosβc_{\beta}=\cos\beta, and sβ=sinβs_{\beta}=\sin\beta.

The masses of gauge boson are given

m^W±2\displaystyle{\hat{m}}^{2}_{W^{\pm}} =14g2(h12+h22),\displaystyle={1\over 4}g^{2}\left(h^{2}_{1}+h^{2}_{2}\right),
m^Z2\displaystyle{\hat{m}}^{2}_{Z} =14(g2+g2)(h12+h22),\displaystyle={1\over 4}(g^{2}+g^{\prime 2})\left(h^{2}_{1}+h^{2}_{2}\right),
m^γ2\displaystyle\quad{\hat{m}}^{2}_{\gamma} =0.\displaystyle=0. (17)

We neglect the contributions of light fermions, and only consider the masses of top quark and bottom quark,

m^t2=12yt2h22/sβ2,m^b2=12yb2h12/cβ2.{\hat{m}}^{2}_{t}={1\over 2}y^{2}_{t}h^{2}_{2}/{s_{\beta}^{2}},~{}~{}~{}~{}~{}{\hat{m}}^{2}_{b}={1\over 2}y^{2}_{b}h^{2}_{1}/{c_{\beta}^{2}}. (18)

where yt=2mtvy_{t}={\sqrt{2}m_{t}\over v} and yb=2mbv.y_{b}={\sqrt{2}m_{b}\over v}.

Now we study the effective potential with thermal correction. The thermal effective potential VeffV_{eff} in terms of the classical fields (h1,h2,S1h_{1},~{}h_{2},~{}S_{1}) is composed of four parts:

Veff(h1,h2,S1,T)=\displaystyle V_{eff}(h_{1},h_{2},S_{1},T)= V0(h1,h2,S1)+VCW(h1,h2,S1)+VCT(h1,h2,S1)\displaystyle V_{0}(h_{1},h_{2},S_{1})+V_{CW}(h_{1},h_{2},S_{1})+V_{CT}(h_{1},h_{2},S_{1})
+VT(h1,h2,S1,T)+Vring(h1,h2,S1,T).\displaystyle+V_{T}(h_{1},h_{2},S_{1},T)+V_{ring}(h_{1},h_{2},S_{1},T). (19)

Where V0V_{0} is the tree-level potential, VCWV_{CW} is the Coleman-Weinberg potential, VCTV_{CT} is the counter term, VTV_{T} is the thermal correction, and VringV_{ring} is the resummed daisy corrections. In this paper, we calculate VeffV_{eff} in the Landau gauge.

We obtain the tree-level potential V0V_{0} in terms of their classical fields (h1,h2,S1h_{1},~{}h_{2},~{}S_{1})

𝒱0\displaystyle\mathcal{V}_{0} =\displaystyle= [12m122tβ14λ1v2cβ214λ345v2sβ2]h12\displaystyle\left[{1\over 2}m_{12}^{2}t_{\beta}-{1\over 4}\lambda_{1}v^{2}c_{\beta}^{2}-{1\over 4}\lambda_{345}v^{2}s_{\beta}^{2}\right]h_{1}^{2} (20)
+[12m1221tβ14λ2v2sβ214λ345v2cβ2]h22\displaystyle+\left[{1\over 2}m_{12}^{2}{1\over t_{\beta}}-{1\over 4}\lambda_{2}v^{2}s_{\beta}^{2}-{1\over 4}\lambda_{345}v^{2}c_{\beta}^{2}\right]h_{2}^{2}
+λ18h14+λ28h24m122h1h2+14λ345h12h22\displaystyle+{\lambda_{1}\over 8}h_{1}^{4}+{\lambda_{2}\over 8}h_{2}^{4}-m_{12}^{2}h_{1}h_{2}+{1\over 4}\lambda_{345}h_{1}^{2}h_{2}^{2}
+κ14h12S12+κ24h22S12+12mS2S12+124λsS14\displaystyle+{\kappa_{1}\over 4}h_{1}^{2}S_{1}^{2}+{\kappa_{2}\over 4}h_{2}^{2}S_{1}^{2}+{1\over 2}m_{S}^{2}S_{1}^{2}+{1\over 24}\lambda_{s}S_{1}^{4}
κ14v2cβ2S12κ24v2sβ2S12.\displaystyle-{\kappa_{1}\over 4}v^{2}c_{\beta}^{2}S_{1}^{2}-{\kappa_{2}\over 4}v^{2}s_{\beta}^{2}S_{1}^{2}.

The Coleman-Weinberg potential in the MS¯\overline{\rm MS} scheme at 1-loop level has the form Coleman:1973jx :

VCW(h1,h2,S1)=i(1)2sinim^i4(h1,h2,S1)64π2[lnm^i2(h1,h2,S1)Q2Ci],V_{\rm CW}(h_{1},h_{2},S_{1})=\sum_{i}(-1)^{2s_{i}}n_{i}\frac{{\hat{m}}_{i}^{4}(h_{1},h_{2},S_{1})}{64\pi^{2}}\left[\ln\frac{{\hat{m}}_{i}^{2}(h_{1},h_{2},S_{1})}{Q^{2}}-C_{i}\right], (21)

where i=h,H,A,H±,S,G,G±,W±,Z,t,bi=h,H,A,H^{\pm},S,G,G^{\pm},W^{\pm},Z,t,b, and sis_{i} is the spin of particle i. QQ is a renormalization scale, and we take Q2=v2Q^{2}=v^{2}. The constants Ci=32C_{i}=\frac{3}{2} for scalars or fermions and Ci=65C_{i}=\frac{6}{5} for gauge bosons. nin_{i} is the number of degree of freedom,

nh=nH=nG=nA=1,\displaystyle n_{h}=n_{H}=n_{G}=n_{A}=1,
nH±=nG±=2,\displaystyle n_{H^{\pm}}=n_{G^{\pm}}=2,
nW±=6,nZ=3,\displaystyle n_{W^{\pm}}=6,~{}n_{Z}=3,
nt=nb=12.\displaystyle n_{t}=n_{b}=12. (22)

With VCWV_{CW} being included in the potential, the minimization conditions of scalar potential in Eq. (19) and the CP-even mass matrix will be shifted slightly. To maintain the minimization conditions at T=0, we add the so-called “counter-terms”

VCT\displaystyle V_{\rm CT} =δm12h12+δm22h22+δλ1h14+δλ12h12h22+δλ2h24\displaystyle=\delta m_{1}^{2}h_{1}^{2}+\delta m_{2}^{2}h_{2}^{2}+\delta\lambda_{1}h_{1}^{4}+\delta\lambda_{12}h_{1}^{2}h_{2}^{2}+\delta\lambda_{2}h_{2}^{4}
+δm02S12+δκ1h12S12+δκ2h22S12,\displaystyle+\delta m_{0}^{2}S_{1}^{2}+\delta\kappa_{1}h_{1}^{2}S_{1}^{2}+\delta\kappa_{2}h_{2}^{2}S_{1}^{2}, (23)

where the relevant coefficients are determined by

VCTh1=VCWh1,VCTh2=VCWh2,VCTS1=VCWS1,\frac{\partial V_{\rm CT}}{\partial h_{1}}=-\frac{\partial V_{\rm CW}}{\partial h_{1}}\;,\quad\frac{\partial V_{\rm CT}}{\partial h_{2}}=-\frac{\partial V_{\rm CW}}{\partial h_{2}},\;\quad\frac{\partial V_{\rm CT}}{\partial S_{1}}=-\frac{\partial V_{\rm CW}}{\partial S_{1}}, (24)
2VCTh1h1=2VCWh1h1,2VCTh1h2=2VCWh1h2,2VCTh2h2=2VCWh2h2,\displaystyle\frac{\partial^{2}V_{\rm CT}}{\partial h_{1}\partial h_{1}}=-\frac{\partial^{2}V_{\rm CW}}{\partial h_{1}\partial h_{1}}\;,\quad\frac{\partial^{2}V_{\rm CT}}{\partial h_{1}\partial h_{2}}=-\frac{\partial^{2}V_{\rm CW}}{\partial h_{1}\partial h_{2}}\;,\quad\frac{\partial^{2}V_{\rm CT}}{\partial h_{2}\partial h_{2}}=-\frac{\partial^{2}V_{\rm CW}}{\partial h_{2}\partial h_{2}}\;,
2VCTS1S1=2VCWS1S1,2VCTh1S1=2VCWh1S1,2VCTh2S1=2VCWh2S1,\displaystyle\frac{\partial^{2}V_{\rm CT}}{\partial S_{1}\partial S_{1}}=-\frac{\partial^{2}V_{\rm CW}}{\partial S_{1}\partial S_{1}}\;,\quad\frac{\partial^{2}V_{\rm CT}}{\partial h_{1}\partial S_{1}}=-\frac{\partial^{2}V_{\rm CW}}{\partial h_{1}\partial S_{1}}\;,\quad\frac{\partial^{2}V_{\rm CT}}{\partial h_{2}\partial S_{1}}=-\frac{\partial^{2}V_{\rm CW}}{\partial h_{2}\partial S_{1}}\;, (25)

which are evaluated at the EW minimum of {h1=vcβ,h2=vsβ,S1=0}\{h_{1}=vc_{\beta},h_{2}=vs_{\beta},S_{1}=0\} on both sides. As a result, the VEVs of h1h_{1}, h2h_{2}, S1S_{1} and the CP-even mass matrix will not be shifted.

It is a well-known problem that the second derivative of the Coleman-Weinberg potential at T=0T=0 suffers from logarithmic divergences originating from the vanishing Goldstone masses. To solve the divergence problem, we take a straightforward approach of imposing an IR cut-off at mIR2=mh2m^{2}_{IR}=m^{2}_{h} for the masses of Goldstone boson of the divergent terms, which gives a good approximation to the exact procedure of on-shell renormalization, as argued in PT_2HDM1.5 .

The thermal contributions VTV_{T} to the potential can be written as v1t

Vth(h1,h2,S1,T)=T42π2iniJB,F(m^i2(h1,h2,S1)T2),V_{\rm th}(h_{1},h_{2},S_{1},T)=\frac{T^{4}}{2\pi^{2}}\,\sum_{i}n_{i}J_{B,F}\left(\frac{{\hat{m}}_{i}^{2}(h_{1},h_{2},S_{1})}{T^{2}}\right)\;, (26)

where i=h,H,A,H±,S,G,G±,W±,Z,t,bi=h,H,A,H^{\pm},S,G,G^{\pm},W^{\pm},Z,t,b, and the functions JB,FJ_{B,F} are

JB,F(y)=±0𝑑xx2ln[1exp(x2+y)].J_{B,F}(y)=\pm\int_{0}^{\infty}\,dx\,x^{2}\,\ln\left[1\mp{\rm exp}\left(-\sqrt{x^{2}+y}\right)\right]. (27)

Finally, the thermal corrections with resumed ring diagrams are given vdai1 ; vdai2

Vring(h1,h2,S1,T)=T12πini[(M¯i2(h1,h2,S1,T))32(m^i2(h1,h2,S1,T))32],V_{\rm ring}\left(h_{1},h_{2},S_{1},T\right)=-\frac{T}{12\pi}\sum_{i}n_{i}\left[\left(\bar{M}_{i}^{2}\left(h_{1},h_{2},S_{1},T\right)\right)^{\frac{3}{2}}-\left({\hat{m}}_{i}^{2}\left(h_{1},h_{2},S_{1},T\right)\right)^{\frac{3}{2}}\right], (28)

where i=h,H,A,H±,S,G,G±,WL±,ZL,γLi=h,H,A,H^{\pm},S,G,G^{\pm},W^{\pm}_{L},Z_{L},\gamma_{L}. The WL±,ZLW^{\pm}_{L},~{}Z_{L}, and γL\gamma_{L} are the longitudinal gauge bosons with nWL±=2,nZL=nγL=1n_{W^{\pm}_{L}}=2,~{}n_{Z_{L}}=n_{\gamma_{L}}=1. The thermal Debye masses M¯i2(h1,h2,S1,T)\bar{M}_{i}^{2}\left(h_{1},h_{2},S_{1},T\right) are the eigenvalues of the full mass matrix,

M¯i2(h1,h2,T)=eigenvalues[X2^(h1,h2)+ΠX(T)],\bar{M}_{i}^{2}\left(h_{1},h_{2},T\right)={\rm eigenvalues}\left[\widehat{\mathcal{M}_{X}^{2}}\left(h_{1},h_{2}\right)+\Pi_{X}(T)\right], (29)

where X=P,A,CX=P,A,C. ΠX\Pi_{X} are given by

ΠP11\displaystyle\Pi_{P11} =[9g22+3g22+6yb2cβ2+6λ1+4λ3+2λ4+κ1]T224\displaystyle=\left[{9g^{2}\over 2}+{3g^{\prime 2}\over 2}+{6y_{b}^{2}\over c_{\beta}^{2}}+6\lambda_{1}+4\lambda_{3}+2\lambda_{4}+\kappa_{1}\right]{T^{2}\over 24}
ΠP22\displaystyle\Pi_{P22} =[9g22+3g22+6yt2sβ2+6λ2+4λ3+2λ4+κ2]T224\displaystyle=\left[{9g^{2}\over 2}+{3g^{\prime 2}\over 2}+{6y_{t}^{2}\over s_{\beta}^{2}}+6\lambda_{2}+4\lambda_{3}+2\lambda_{4}+\kappa_{2}\right]{T^{2}\over 24}
ΠP33\displaystyle\Pi_{P33} =[4κ1+4κ2+λS]T224\displaystyle=\left[4\kappa_{1}+4\kappa_{2}+\lambda_{S}\right]{T^{2}\over 24}
ΠP13\displaystyle\Pi_{P13} =ΠP31=ΠP23=ΠP32=0\displaystyle=\Pi_{P31}=\Pi_{P23}=\Pi_{P32}=0
ΠA11\displaystyle\Pi_{A11} =ΠC11=ΠP11\displaystyle=\Pi_{C11}=\Pi_{P11}
ΠA22\displaystyle\Pi_{A22} =ΠC22=ΠP22\displaystyle=\Pi_{C22}=\Pi_{P22}
ΠA12\displaystyle\Pi_{A12} =ΠA21=ΠC12=ΠC21=0.\displaystyle=\Pi_{A21}=\Pi_{C12}=\Pi_{C21}=0. (30)

The physical mass of the longitudinally polarized WW boson is

M¯WL±2=14g2(h12+h22)+2g2T2.\bar{M}_{W^{\pm}_{L}}^{2}={1\over 4}g^{2}(h^{2}_{1}+h^{2}_{2})+2g^{2}T^{2}. (31)

The physical mass of the longitudinally polarized ZZ and γ\gamma boson

M¯ZL,γL2=18(g2+g2)(h12+h22)+(g2+g2)T2±Δ,\bar{M}_{Z_{L},\gamma_{L}}^{2}=\frac{1}{8}(g^{2}+g^{\prime 2})(h^{2}_{1}+h^{2}_{2})+(g^{2}+g^{\prime 2})T^{2}\pm\Delta, (32)

with

Δ2=164(g2+g2)2(h12+h22+8T2)2g2g2T2(h12+h22+4T2).\Delta^{2}=\frac{1}{64}(g^{2}+g^{\prime 2})^{2}(h_{1}^{2}+h_{2}^{2}+8T^{2})^{2}-g^{2}g^{\prime 2}T^{2}(h_{1}^{2}+h_{2}^{2}+4T^{2}). (33)

V.2 Calculation of electroweak phase transition and gravitational wave

In a first-order cosmological phase transition, bubbles nucleate and expand, converting the high-temperature phase into the low-temperature one. The bubble nucleation rate per unit volume at finite temperature is given by bubble-0 ; bubble-1 ; bubble-2

ΓA(T)eSE(T),\displaystyle\Gamma\ \approx\ A(T)e^{-S_{E}(T)}, (34)

where A(T)T4A(T)\sim T^{4} is a prefactor and SES_{E} is the Euclidean action

SE(T)=S3(T)T=𝑑x3[12(dϕdr)2+V(ϕ,T)].\displaystyle S_{E}(T)=\frac{S_{3}(T)}{T}=\ \int dx^{3}\bigg{[}\frac{1}{2}\big{(}\frac{d\phi}{dr}\big{)}^{2}+V(\phi,T)\bigg{]}. (35)

At the nucleation temperature TnT_{n}, the thermal tunneling probability for bubble nucleation per horizon volume and per horizon time is of order one, and the conventional condition is S3(T)T140\frac{S_{3}(T)}{T}\approx 140. The bubbles nucleated within one Hubble patch proceed to expand and collide, until the entire volume is filled with the true vacuum.

There are two key parameters characterizing the dynamics of the EWPT, β\beta and α\alpha. β\beta describes roughly the inverse time duration of the strong first order phase transition,

βHn=Td(S3(T)/T)dT|T=Tn,\displaystyle\frac{\beta}{H_{n}}=T\frac{d(S_{3}(T)/T)}{dT}|_{T=T_{n}}\;, (36)

where HnH_{n} is the Hubble parameter at the bubble nucleation temperature TnT_{n}. α\alpha is defined as the vacuum energy released from the phase transition normalized by the total radiation energy density ρR\rho_{R} at TnT_{n},

α=ΔρρR=Δρπ2gTn4/30,\displaystyle\alpha=\frac{\Delta\rho}{\rho_{R}}=\frac{\Delta\rho}{\pi^{2}g_{\ast}T_{n}^{4}/30}\;, (37)

where gg_{\ast} is the effective number of relativistic degrees of freedom. We use the numerical package CosmoTransitions cosmopt and PhaseTracer Athron:2020sbe to analyze the phase transition and computes quantities related to cosmological phase transition.

In a radiation-dominated Universe, there are three sources of GW production at a EWPT: bubble collisions, in which the localized energy density generates a quadrupole contribution to the stress-energy tensor, which in turn gives rise to GW, plus sound waves in the plasma and magnetohydrodynamic (MHD) turbulence. The total resultant energy density spectrum can be approximately given as,

ΩGWh2Ωcolh2+Ωswh2+Ωturbh2.\Omega_{\text{GW}}h^{2}\ \simeq\ \Omega_{\rm col}h^{2}+\Omega_{\rm sw}h^{2}+\Omega_{\rm turb}h^{2}. (38)

Recent studies show that the energy deposited in the bubble walls is negligible, despite the possibility that the bubble walls can run away in some circumstances gw-coll-1 . Therefore, although a bubble wall can reach relativistic speed, its contribution to GW can generally be neglected gw-coll-2 ; gw-coll-3 . Therefore, in the following discussions we do not include the contribution from bubble collision Ωcol\Omega_{\rm col}.

The GW spectrum from the the sound waves can be obtained by fitting to the result of numerical simulations gw-sw ,

Ωswh2\displaystyle\Omega_{\textrm{sw}}h^{2} =\displaystyle\ =\ 2.65×106(Hnβ)(κvα1+α)2(100g)1/3vw\displaystyle 2.65\times 10^{-6}\left(\frac{H_{n}}{\beta}\right)\left(\frac{\kappa_{v}\alpha}{1+\alpha}\right)^{2}\left(\frac{100}{g_{\ast}}\right)^{1/3}v_{w} (39)
×(ffsw)3(74+3(f/fsw)2)7/2,\displaystyle\times\left(\frac{f}{f_{sw}}\right)^{3}\left(\frac{7}{4+3(f/f_{\textrm{sw}})^{2}}\right)^{7/2}\ ,

where fswf_{\text{sw}} is the present peak frequency of the spectrum,

fsw= 1.9×1051vw(βHn)(Tn100GeV)(g100)1/6Hz.f_{\textrm{sw}}\ =\ 1.9\times 10^{-5}\frac{1}{v_{w}}\left(\frac{\beta}{H_{n}}\right)\left(\frac{T_{n}}{100\textrm{GeV}}\right)\left(\frac{g_{\ast}}{100}\right)^{1/6}\textrm{Hz}\,. (40)

vwv_{w} is the wall velocity, and the factor κv\kappa_{v} is the fraction of latent heat transformed into the kinetic energy of the fluid. κv\kappa_{v} and vwv_{w} are difficult to compute, and involves certain assumptions regarding the dynamics of the bubble walls. On the other hand, successful electroweak baryogenesis scenarios favor lower wall velocity vwv_{w}\leq 0.150.30.15-0.3 ewbg-vw , which allows the effective diffuse of particle asymmetries near the bubble wall front. In Ref. new-ewbg-vw , however, it is pointed out that the relevant velocity for electroweak baryogenesis is not really vwv_{w}, but the relative velocity between the bubble wall and the plasma in the deflagration front. As a result, the electroweak baryogenesis is not necessarily impossible even in the case with large vwv_{w}. Therefore, in this paper we take two different cases of vwv_{w} and κv\kappa_{v} 1004.4187 :

  • For small wall velocity: vw=0.3v_{w}=0.3 and

    κvvw6/56.9α1.360.037α+α.\kappa_{v}\simeq v_{w}^{6/5}\frac{6.9\alpha}{1.36-0.037\sqrt{\alpha}+\alpha}\ . (41)
  • For very large wall velocity: vw=0.9v_{w}=0.9 and

    κvα0.73+0.083α+α.\kappa_{v}\simeq\frac{\alpha}{0.73+0.083\sqrt{\alpha}+\alpha}\ . (42)

Considering Kolmogorov-type turbulence as proposed in Ref. mhd-type , the GW spectrum from the MHD turbulence has the form mhd-1 ; mhd-2 ,

Ωturbh2\displaystyle\Omega_{\textrm{turb}}h^{2} =\displaystyle\ =\ 3.35×104(Hnβ)(κturbα1+α)3/2(100g)1/3vw\displaystyle 3.35\times 10^{-4}\left(\frac{H_{n}}{\beta}\right)\left(\frac{\kappa_{turb}\alpha}{1+\alpha}\right)^{3/2}\left(\frac{100}{g_{\ast}}\right)^{1/3}v_{w} (43)
×(f/fturb)3[1+(f/fturb)]11/3(1+8πf/hn),\displaystyle\times\frac{(f/f_{\textrm{turb}})^{3}}{[1+(f/f_{\textrm{turb}})]^{11/3}(1+8\pi f/h_{n})},

with the red-shifted Hubble rate at GW generation

hn=1.65×105(Tn100GeV)(g100)16Hz.h_{n}=1.65\times 10^{-5}\left(\frac{T_{n}}{100\textrm{GeV}}\right)\left(\frac{g_{\ast}}{100}\right)^{\frac{1}{6}}\textrm{Hz}. (44)

The peak frequency fturbf_{\rm turb} is given by

fturb= 2.7×1051vw(βHn)(Tn100GeV)(g100)1/6Hz.f_{\textrm{turb}}\ =\ 2.7\times 10^{-5}\frac{1}{v_{w}}\left(\frac{\beta}{H_{n}}\right)\left(\frac{T_{n}}{100\textrm{GeV}}\right)\left(\frac{g_{\ast}}{100}\right)^{1/6}\textrm{Hz}\,. (45)

The energy fraction transferred to the MHD turbulence κturb\kappa_{\text{turb}} can vary between 5%5\% to 10%10\% of κv\kappa_{v} gw-sw . Here we take κturb=0.1κv\kappa_{\text{turb}}=0.1\kappa_{v}.

For both sound wave and turbulence contribution as shown in Eq. (40) and Eq. (43), the amplitudes of the GW spectra are proportional to vwv_{w} and the peak frequencies shift as 1/vw1/v_{w}. Therefore, one changes in the wall velocity approximately have an order one effect on the spectrum and peak frequencies.

V.3 Results and discussions

Refer to caption
Figure 4: The surviving samples projected on the planes of <h1><h_{1}> versus <h2><h_{2}>, TcT_{c} versus mHm_{H}, and TcT_{c} versus tanβ\tan\beta. All the samples achieve a SFOEWPT.
Refer to caption
Figure 5: The surviving samples projected on the planes of sin(βα)\mid\sin(\beta-\alpha), tanβ\tan\beta, m122m_{12}^{2} versus mHm_{H}, m122m_{12}^{2} versus tanβ\tan\beta, and mSm_{S} versus mHm_{H}, λH\lambda_{H}. All the samples are allowed by the constraints of ”pre-LHC”, the LHC Higgs data, and the DM observables. The squares achieve a SFOEWPT, and bullets fail.

The strength of the electroweak phase transition is quantified as

ξc=vcTc\xi_{c}=\frac{v_{c}}{T_{c}} (46)

with vc=<h1>2+<h2>2v_{c}=\sqrt{<h_{1}>^{2}+<h_{2}>^{2}} at critical temperature TcT_{c}. The global minimum of potential has <A>=0<A>=0 because of the CP-conserving case. In order to avoid washing out the baryon number generated during the phase transition, a SFOEWPT is required and the conventional condition is ξc1\xi_{c}\geq 1.

After imposing the constraints of ”pre-LHC”, the LHC Higgs data, the relic density, XENON1T, and Fermi-LAT, we scan over the parameter space in the previous selected scenario. We find some surviving samples which can achieve a SFOEWPT, and these samples are projected in Fig. 4 and Fig. 5. For all the surviving samples, at TcT_{c} the two degenerate minima of potential are respectively at (<h1>,<h2>,0<h_{1}>,~{}<h_{2}>,~{}0) and (0, 0, 0). In the process of EWPT, <S1><S_{1}> always has no VEV.

From Fig. 4, we find that <h1><h_{1}> and <h2><h_{2}> can vary in the ranges of 20 GeV \sim 150 GeV and 125 GeV \sim 230 GeV with TcT_{c} varying from 134 GeV to 240 GeV. TcT_{c} tends to increase with mHm_{H}, and has a relative small value for a large tanβ\tan\beta. It should also be noted that the relic abundance of the DM is achieved by the thermal freeze-out in the early universe when the temperature was about TmS/25T\sim m_{S}/25. In the model, TcT_{c} is much larger than mS/25m_{S}/25 for 50 GeV <mS<700<m_{S}<700 GeV. Therefore, the EWPT hardly affects the thermal freeze-out process of DM.

From Fig. 5 , we find that a SFOEWPT favors a small mHm_{H}, namely a large mass splitting between mHm_{H} and mAm_{A}, which is consistent with Refs. PT_2HDM2 ; PT_2HDM3 . Most of samples lie in the region of mH<500m_{H}<500 GeV, and there are several samples with mH>m_{H}> 500 GeV when sin(βα)\mid\sin(\beta-\alpha)\mid is very closed to 1.0. Also a SFOEWPT favors m122m_{12}^{2} to increase with mHm_{H} and decrease with an increase of tanβ\tan\beta. There is a relative strong correlation between m122m_{12}^{2} and tanβ\tan\beta, and m122m_{12}^{2} is imposed upper and lower bounds for a given tanβ\tan\beta. With an increase of tanβ\tan\beta, m122m_{12}^{2} is stringently restricted by the theoretical constraints and the LHC Higgs data, leading that it is difficult to achieve a SFOEWPT. Thus, most of samples lie in the region of small tanβ\tan\beta. The requirement of a SFOEWPT is not sensitive to mSm_{S}, and disfavors λH>\mid\lambda_{H}\mid> 0.3.

Now we examine two key parameters α\alpha and β/Hn\beta/H_{n} which characterize the dynamics of the SFOEWPT, and govern the strength of GW spectra. A larger α\alpha and smaller β/Hn\beta/H_{n} can lead to stronger GW signals. In addition to the conditions of the successful bubble nucleations, we require

ξn=vnTn1\xi_{n}=\frac{v_{n}}{T_{n}}\geq 1 (47)

with vn=<h1>2+<h2>2v_{n}=\sqrt{<h_{1}>^{2}+<h_{2}>^{2}} at the nucleation temperature TnT_{n}. In fact, this is a more precise condition of SFOEWPT than ξc1\xi_{c}\geq 1. Also note that there generically exists a difficulty for solving bounce solution in a very thin-walled bubble, including the package CosmoTransitions BubbleProfiler . Therefore, we will neglect the samples with very thin-walled bubble. Consider the constraints discussed above, we find some surviving samples, and the corresponding α\alpha and β/Hn\beta/H_{n} are shown in Fig. 6.

Refer to caption
Figure 6: The parameters α\alpha and β/Hn\beta/H_{n} characterizing the dynamics of the SFOEWPT.
    BP1      BP2
sin(βα)\sin(\beta-\alpha) 0.9998 0.9991
tanβ\tan\beta 1.95 1.87
mHm_{H} (GeV) 369.55 387.97
mH±m_{H^{\pm}} (GeV) 620.8 618.31
m122m_{12}^{2} (GeV)2)^{2} 53049.1 53649.1
mSm_{S} (GeV) 479.2 501.7
λH\lambda_{H} 0.133 -0.129
λS\lambda_{S} 12.3 10.93
TcT_{c} (GeV) 135.7 160.0
TnT_{n} (GeV) 61.0 95.0
β/Hn\beta/H_{n} 35.6 102.8
α\alpha 0.094 0.018
Table 3: Input and output parameters for two benchmark points for fixed mhm_{h}=125 GeV, mAm_{A}=600 GeV and λh=0\lambda_{h}=0.
Refer to caption
Refer to caption
Figure 7: Phase structures for BP1 (left) and BP2 (right). The lines show the field configurations at a particular minimum as a function of temperature. The arrows indicate that at that temperature (TCT_{C}) the two phases linked by the arrows are degenerate, and can achieve the first order phase transition (FOPT).
Refer to caption
Refer to caption
Figure 8: Gravitational wave spectra for BP1 and BP2.

The β/Hn\beta/H_{n} may characterize the inverse time duration of the EWPT. A small β/Hn\beta/H_{n} means a long EWPT, and gives strong GW signals. For the GW coming from the sound waves in the plasma, the GW signal will continue being generated and the energy density of the GW is thus proportional to the duration of the EWPT if the mean square fluid velocity of the plasma is non-negligible gw-sw . In addition, a large β/Hn\beta/H_{n} can enhance the peak frequency of the GW spectra. The parameter α\alpha describes the amount of energy released during the EWPT, and therefore a large α\alpha leads to strong GW signals.

We pick out two benchmark points (BPs), and examine the corresponding GW spectra. Table 3 shows the input and output parameters of the BPs. Their phase histories are exhibited in Fig. 7 on filed configurations versus temperature plane. The filed configuration S1S_{1} is not shown as the minima at any temperatures locate at <S1>=0<S_{1}>=0. In Fig. 8, we show predicted GW spectra for our BPs along with expected sensitivities of various future interferometer experiments, and find that the amplitudes of the GW spectra reach the sensitivities of LISA, TianQin, BBO, DECIGO, UDECIGO for BP1 (UDECIGO for BP2).

VI Conclusion

We examine the status of the 2HDMIID confronted with the recent LHC Higgs data, the DM observables and SFOEWPT, and discuss the detectability of GW at the future GW detectors. We choose the heavy CP-even Higgs HH as the only portal between the DM and SM sectors, and focus on the case of the 125 GeV Higgs with the SM-like coupling. We find that for mA=600m_{A}=600 GeV, mS<m_{S}< 130 GeV and mH<m_{H}< 360 GeV are excluded by the joint constraints of the 125 GeV Higgs signal data, the searches for additional Higgs via H/Aτ+τH/A\to\tau^{+}\tau^{-}, AHZA\to HZ, HWW,ZZ,γγ,hhH\to WW,~{}ZZ,~{}\gamma\gamma,~{}hh at the LHC as well as the relic density, XENON1T.

A SFOEWPT can be achieved in the many regions of mH<500m_{H}<500 GeV and mA=600m_{A}=600 GeV, favors a small tanβ\tan\beta, and is not sensitive to the mass of DM. We find the benchmark points for which the predicted GW spectra can reach the sensitivities of LISA, TianQin, BBO, DECIGO, and UDECIGO.

Acknowledgment

We thank L. Bian, Wei Chao and Huai-Ke Guo for helpful discussions. This work was supported by the National Natural Science Foundation of China under grant 11975013, by the Natural Science Foundation of Shandong province (ZR2017MA004 and ZR2017JL002), and by the ARC Centre of Excellence for Particle Physics at the Tera-scale under the grant CE110001004. This work is also supported by the Project of Shandong Province Higher Educational Science and Technology Program under Grants No. 2019KJJ007.

References

  • (1) T. D. Lee, Phys. Rev. D 8, 1226 (1973).
  • (2) H. E. Haber, G. L. Kane and T. Sterling, Nucl. Phys. B 161, 493 (1979).
  • (3) J. F. Donoghue and L. F. Li, Phys. Rev. D 19, 945 (1979).
  • (4) X.-G. He, T. Li, X.-Q. Li, J. Tandean, H.-C. Tsai, Phys. Rev. D 79, 023521 (2009).
  • (5) X.-G. He, J. Tandean, Phys. Rev. D 88, 013020 (2013).
  • (6) Y. Cai, T. Li, Phys. Rev. D 88, 115004 (2013).
  • (7) L. Wang, X.-F. Han, Phys. Lett. B 739, 416-420 (2014).
  • (8) A. Drozd, B. Grzadkowski, J. F. Gunion, Y. Jiang, JHEP  1411, 105 (2014).
  • (9) X.-G. He, J. Tandean, JHEP  1612, 074 (2016).
  • (10) T. Alanne, K. Kainulainen, K. Tuominen, V. Vaskonen, JCAP  1608, 057 (2016).
  • (11) L. Wang, R. Shi, X.-F. Han, Phys. Rev. D 96, 115025 (2017).
  • (12) N. Chen, Z. Kang, J. Li, Phys. Rev. D 95, 015003 (2017).
  • (13) L. Wang, X.-F. Han, B. Zhu, Phys. Rev. D 98, 035024 (2018).
  • (14) S. Baum, N. R. Shah, JHEP  12, 044 (2018).
  • (15) A. I. Bochkarev, S. V. Kuzmin and M. E. Shaposhnikov, Phys. Lett. B 244, 275 (1990); J. M. Cline, P.-A. Lemieux, Phys. Rev. D 55, 3873 (1997); G. C. Dorsch, S. J. Huber and J. M. No, JHEP 1310, 029 (2013); G. C. Dorsch, S. J. Huber, K. Mimasu and J. M. No, Phys. Rev. Lett.  113, 211802 (2014); N. Chen, T. Li, Z. Teng, Y. Wu, arXiv:2006.06913; R. Zhou, L. Bian, arXiv:2001.01237; R. Zhou, L. Bian, H.-K Guo, Phys. Rev. D 101, 091903 (2020); X. Wang, F. Huang, X. Zhang, Phys. Rev. D 101, 015015 (2020); JCAP  05, 045 (2020).
  • (16) J. M. Cline, K. Kainulainen and M. Trott, JHEP 1111, 089 (2011).
  • (17) P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt and A. Wlotzka, JHEP 1702, 121 (2017).
  • (18) J. Bernon, L. Bian and Y. Jiang, JHEP 1805, 151 (2018).
  • (19) A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz.  5, 32 (1967) [JETP Lett.  5, 24 (1967)] [Sov. Phys. Usp.  34, no. 5, 392 (1991)] [Usp. Fiz. Nauk 161, no. 5, 61 (1991)].
  • (20) M. Kamionkowski, A. Kosowsky and M. S. Turner, Phys. Rev. D 49, 2837 (1994).
  • (21) LISA Collaboration, H. Audley et al., “Laser Interferometer Space Antenna,” arXiv:1702.00786.
  • (22) X. Gong et al., “Descope of the ALIA mission,” J. Phys. Conf. Ser. 610, 012011 (2015).
  • (23) TianQin Collaboration, J. Luo et al., “TianQin: a space-borne gravitational wave detector,” Class. Quant. Grav. 33, 035010 (2016).
  • (24) K. Yagi and N. Seto, “Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries,” Phys. Rev. D 83, 044011 (2011).
  • (25) H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto, “Detecting a gravitational-wave background with next-generation space interferometers,” Phys. Rev. D 73, 064006 (2006).
  • (26) R. A. Battye, G. D. Brawn, A. Pilaftsis, JHEP  1108, 020 (2011).
  • (27) Heavy Flavor Averaging Group, Eur. Phys. Jour. C 77, 895 (2017); M. Misiak, M. Steinhauser, Eur. Phys. Jour. C 77, 201 (2017).
  • (28) F. Kling, J. M. No, S. Su, JHEP  1609, 093 (2016).
  • (29) L. Wang, F. Zhang, X.-F. Han, Phys. Rev. D 95, 115014 (2017).
  • (30) L. Wang, H.-X. Wang, X.-F. Han, Comput. Phys. Commun. 44, 073101 (2020).
  • (31) D. Eriksson, J. Rathsman, O. Stål, Comput. Phys. Commun. 181, 189 (2010).
  • (32) M. Tanabashi et al., [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  • (33) F. Mahmoudi, Comput. Phys. Commun. 180, 1579-1673 (2009).
  • (34) C. Q. Geng and J. N. Ng, Phys. Rev. D 38, 2857 (1988) [Erratum-ibid. D 41, 1715 (1990)].
  • (35) H. E. Haber, H. E. Logan, Phys. Rev. D 62, 015011 (2010).
  • (36) G. Degrassi, P. Slavich, Phys. Rev. D 81, 075001 (2010).
  • (37) J. Bernon, B. Dumont, S. Kraml, Phys. Rev. D 90, 071301 (2014); S. Kraml, T. Q. Loc, D. T Nhung, L. D. Ninh, arXiv:1908.03952.
  • (38) P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. E. Williams, Comput. Phys. Commun. 181, 138-167 (2010).
  • (39) P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. E. Williams, Eur. Phys. Jour. C 74, 2693 (2014).
  • (40) R. V. Harlander, S. Liebler, H. Mantler, Comput. Phys. Commun. 184, 1605 (2013).
  • (41) S. Heinemeyer et al. [LHC Higgs Cross Section Working Group Collaboration], arXiv:1307.1347.
  • (42) S. Moretti, arXiv:1612.02063.
  • (43) ATLAS Collaboration, G. Aad et al., “Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at s\sqrt{s} = 8 TeV with the ATLAS detector,” JHEP  11, 056 (2014).
  • (44) CMS Collaboration, “Search for additional neutral Higgs bosons decaying to a pair of tau leptons in pppp collisions at s\sqrt{s} = 7 and 8 TeV,” CMS-PAS-HIG-14-029.
  • (45) CMS Collaboration, “Search for a neutral MSSM Higgs Boson decaying into ττ\tau\tau H/AH/A with 12.9 fb-1 of data at s\sqrt{s}= 13 TeV,” CMS-PAS-HIG-16-037.
  • (46) ATLAS Collaboration, “Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb-1 of pp collisions at s\sqrt{s}= 13 TeV with the ATLAS detector,” JHEP  1801, 055 (2018).
  • (47) CMS Collaboration, “Search for a low-mass pseudoscalar Higgs boson produced in association with a bb¯b\bar{b} pair in pp collisions at s\sqrt{s} = 8 TeV,” Phys. Lett. B 758, 296-320 (2016).
  • (48) ATLAS Collaboration, “Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using p p collisions at at s\sqrt{s}= 13 TeV,” arXiv:2002.12223.
  • (49) CMS Collaboration, “Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at s\sqrt{s} = 8 TeV,” CMS-HIG-15-009.
  • (50) ATLAS Collaboration, “Search for scalar diphoton resonances with 15.4 fb-1 of data collected at s\sqrt{s}=13 TeV in 2015 and 2016 with the ATLAS detector,” ATLAS-CONF-2016-059.
  • (51) CMS Collaboration, “Search for resonant production of high mass photon pairs using 12.9fb112.9\,\mathrm{fb^{-1}} of proton-proton collisions at s=13TeV\sqrt{s}=13~{}\mathrm{TeV} and combined interpretation of searches at 8 and 13 TeV,” CMS-PAS-EXO-16-027.
  • (52) CMS Collaboration, “Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at s\sqrt{s} = 8 and 13 TeV,” CMS-PAS-HIG-17-013.
  • (53) ATLAS Collaboration, G. Aad et al., “Search for a high-mass Higgs boson decaying to a WW boson pair in pppp collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector,” JHEP  01, (2016) 032.
  • (54) ATLAS collaboration, “Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at s=13\sqrt{s}=13 TeV with the ATLAS detector,” ATLAS-CONF-2016-074.
  • (55) ATLAS Collaboration, “Search for diboson resonance production in the νqq\ell\nu qq final state using p p collisions at s\sqrt{s} = 13 TeV with the ATLAS detector at the LHC,” ATLAS-CONF-2016-062.
  • (56) ATLAS Collaboration, “Search for WW/WZ resonance production in νqq\ell\nu qq final states in pp collisions at s\sqrt{s} = 13 TeV with the ATLAS detector,” arXiv:1710.07235.
  • (57) ATLAS Collaboration, “Search for heavy resonances decaying into WW in the eνμνe\nu\mu\nu final state in pp collisions s\sqrt{s} = 13 TeV with the ATLAS detector,” Eur. Phys. Jour. C 78, 24 (2018).
  • (58) CMS Collaboration, “Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at s\sqrt{s} = 13 TeV,” arXiv:1912.01594.
  • (59) ATLAS Collaboration, G. Aad et al., “Search for an additional, heavy Higgs boson in the HZZH\rightarrow ZZ decay channel at s=8 TeV \sqrt{s}=8\;\text{ TeV } in pppp collision data with the ATLAS detector,” Eur. Phys. Jour. C 76, 45 (2016).
  • (60) ATLAS Collaboration, “Search for new phenomena in the Z()+ETmissZ(\rightarrow\ell\ell)+E_{\mathrm{T}}^{\mathrm{miss}} final state at s\sqrt{s} = 13 TeV with thee ATLAS detector,” ATLAS-CONF-2016-056.
  • (61) ATLAS Collaboration, “Searches for heavy ZZ and ZW resonances in the qq\ell\ell qq and vvqq final states in pp collisions at s=13\sqrt{s}=13 TeV with the ATLAS detector,” ATLAS-CONF-2016-082.
  • (62) ATLAS Collaboration, “Study of the Higgs boson properties and search for high-mass scalar resonances in the HZZ4H\rightarrow ZZ^{*}\rightarrow 4\ell decay channel at s\sqrt{s} = 13 TeV with the ATLAS detector,” ATLAS-CONF-2016-079.
  • (63) ATLAS Collaboration, “Search for heavy ZZ resonances in the ++\ell^{+}\ell^{-}\ell^{+}\ell^{-} and +νν\ell^{+}\ell^{-}\nu\nu final states using proton proton collisions at s\sqrt{s} = 13 TeV with the ATLAS detector,” arXiv:1712.06386.
  • (64) ATLAS Collaboration, “Searches for heavy ZZ and ZW resonances in the qq\ell\ell qq and ννqq\nu\nu qq final states in pp collisions at s\sqrt{s} = 13 TeV with the ATLAS detector,” arXiv:1708.09638.
  • (65) CMS Collaboration, V. Khachatryan et al., “Search for two Higgs bosons in final states containing two photons and two bottom quarks,” Phys. Rev. D 94, 052012 (2016).
  • (66) CMS Collaboration, V. Khachatryan et al., “Search for resonant pair production of Higgs bosons decaying to two bottom quark–antiquark pairs in proton–proton collisions at 8 TeV,” Phys. Lett. B 749, 560-582 (2015).
  • (67) CMS Collaboration, V. Khachatryan et al., “Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with hττh\to\tau\tau,” Phys. Lett. B 755, 217-244 (2016).
  • (68) ATLAS Collaboration, “Search for pair production of Higgs bosons in the bb¯bb¯b\bar{b}b\bar{b} final state using proton-proton collisions at s=13\sqrt{s}=13 TeV with the ATLAS detector,” ATLAS-CONF-2016-049.
  • (69) CMS Collaboration, “Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at s=13\sqrt{s}=13 TeV,” arXiv:1710.04960.
  • (70) CMS Collaboration, “Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at s=13\sqrt{s}=13 TeV,” arXiv:1707.02909.
  • (71) CMS Collaboration, “Combination of searches for Higgs boson pair production in proton-proton collisions at at s=13\sqrt{s}=13 TeV,” Phys. Rev. Lett. 122, 121803 (2019).
  • (72) CMS Collaboration, “Search for resonant pair production of Higgs bosons in the bbZZbbZZ channel in proton-proton collisions at s=13\sqrt{s}=13 TeV,” arXiv:2006.06391.
  • (73) ATLAS Collaboration, “Reconstruction and identification of boosted di-τ\tau systems in a search for Higgs boson pairs using 13 TeV proton–proton collision data in ATLAS,” arXiv:2007.14811.
  • (74) CMS Collaboration, V. Khachatryan et al., “Search for a pseudoscalar boson decaying into a ZZ boson and the 125 GeV Higgs boson in +bb¯\ell^{+}\ell^{-}b\overline{b} final states,” Phys. Lett. B 748, 221-243 (2015).
  • (75) ATLAS Collaboration, G. Aad et al., “Search for a CP-odd Higgs boson decaying to Zh in pp collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector,” Phys. Lett. B 744, 163-183 (2015).
  • (76) ATLAS Collaboration, “Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb1fb^{-1} of s\sqrt{s} = 13 pp collisions with the ATLAS detector,” arXiv:1712.06518.
  • (77) CMS Collaboration, “Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at s\sqrt{s} = 13 TeV,” Eur. Phys. Jour. C 79, 564 (2019).
  • (78) CMS Collaboration, “Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a ZZ boson in final states with two tau and two light leptons at s\sqrt{s} = 13 TeV,” arXiv:1910.11634.
  • (79) ATLAS Collaboration, “Search for Higgs bosons decaying to aa in the μμττ\mu\mu\tau\tau final state in pp collisions at s\sqrt{s}= 8 TeV with the ATLAS experiment,” Phys. Rev. D 92, 052002 (2015).
  • (80) CMS Collaboration, “Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s\sqrt{s}= 8 TeV,” JHEP  1710, 076 (2017).
  • (81) CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two bb quarks and two τ\tau leptons in proton-proton collisions at s\sqrt{s}= 13 TeV,” Phys. Lett. B 785, 462 (2018).
  • (82) CMS Collaboration, “Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at s\sqrt{s}= 13 TeV,” arXiv:1907.07235.
  • (83) CMS Collaboration, “Search for a light pseudoscalar Higgs boson in the boosted μμττ\mu\mu\tau\tau final state in proton-proton collisions at s\sqrt{s}= 13 TeV,” arXiv:2005.08694.
  • (84) CMS Collaboration, V. Khachatryan et al., “Search for neutral resonances decaying into a Z boson and a pair of b jets or τ\tau leptons,” Phys. Lett. B 759, 369-394 (2016).
  • (85) ATLAS Collaboration, “Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the \ell\ell bb final state in p p collisions s\sqrt{s}=13 TeV with the ATLAS detector,” Phys. Lett. B 783, 392 (2018).
  • (86) CMS Collaboration, “Search for new neutral Higgs bosons through the HZA+bb¯H\to ZA\to\ell^{+}\ell^{-}b\bar{b} process in pp collisions at s\sqrt{s}=13 TeV,” arXiv:1911.03781.
  • (87) A. Alloul et al., Comput. Phys. Commun. 185, 2250 (2014).
  • (88) G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 185, 960-985 (2014).
  • (89) G. Jungman, M. Kamionkowski, K. Griest, Phys. Rept. 267, 195 (1996); M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Phys. Lett. B 78, 443 (1978).
  • (90) Planck Collaboration, Astron. Astrophys. A 27, 594 (2016).
  • (91) E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett. 121, 111302 (2018).
  • (92) Fermi-LAT Collaboration, Phys. Rev. Lett. 115, 231301 (2015).
  • (93) S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).
  • (94) L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9, 3320–3341 (1974).
  • (95) M. E. Carrington, Phys. Rev. D 45, 2933–2944 (1992).
  • (96) P. B. Arnold and O. Espinosa, Phys. Rev. D 47, 3546 (1993) [Erratum: Phys. Rev. D 50, 6662 (1994)].
  • (97) I. Affleck, Phys. Rev. Lett. 46, 388 (1981).
  • (98) A. D. Linde, Nucl. Phys. B 216, 421 (1983) [Erratum: Nucl. Phys. B 223, 544 (1983)].
  • (99) A. D. Linde, Phys. Lett. B 100, 37-40 (1981).
  • (100) C. L. Wainwright, Comput. Phys. Commun. 183, 2006–2013 (2012).
  • (101) P. Athron, C. Balázs, A. Fowlie and Y. Zhang, Eur. Phys. J. C 80, no.6, 567 (2020) doi:10.1140/epjc/s10052-020-8035-2 [arXiv:2003.02859 [hep-ph]].
  • (102) D. Bodeker and G. D. Moore, JCAP  0905, 009 (2009).
  • (103) D. Bodeker and G. D. Moore, JCAP  1705, 025 (2017).
  • (104) D. Bodeker and G. D. Moore, JCAP  1705, 025 (2017).
  • (105) M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Phys. Rev. D 92, 123009 (2015).
  • (106) J. Kozaczuk, JHEP 1510, 135 (2015).
  • (107) J. M. No, Phys. Rev. D 84, 124025 (2011).
  • (108) M. Maziashvili, JCAP  1006, 028 (2010).
  • (109) A. Kosowsky, A. Mack and T. Kahniashvili, Phys. Rev. D 66, 024030 (2002).
  • (110) C. Caprini, R. Durrer and G. Servant, JCAP  0912, 024 (2009).
  • (111) P. Binetruy, A. Bohe, C. Caprini and J.-F. Dufaux, JCAP  1206, 027 (2012).
  • (112) P. Athron et al., arXiv:1901.03714.