This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dark states in an integrable XYXY central spin model

Jaco van Tonder, Jon Links School of Mathematics and Physics, The University of Queensland, 4072, Australia $^*$w.vantonder@student.uq.edu.au
Abstract

Eigenstates of central spin models in which the central spin is unentangled with the environment are known as dark states. They have recently been observed in a class of integrable XXXX models. Here we find that dark states are present in XYXY models, but only for particular configurations of the central spin magnetic field. We show this via an explicit construction of the Bethe states.

1 Introduction

Central spin models have gained renewed attention due to their possible applications in modern quantum technologies focused on quantum sensing and metrology [16]. This is due to their integrability allowing high-fidelity control of these systems at a mesoscopic scale, where the exponentially increasing size of the Hilbert space would in general be prohibitive [6]. The central spin allows the dynamics of the spin bath to be monitored, and for feedback to be used to steer the dynamics of the bath in a desired direction. There are several physical or engineered systems for which central spin models provide a theoretical model. These include nitrogen vacancy (NV) centres in diamonds [23], room temperature quantum memory storage [18, 21, 22], quantum batteries [11] and quantum dots [2, 19] – an active area of research which gained public attention through the 2023 Nobel prize for Chemistry [13].

On the theoretical side, these models have been known for their integrability since Gaudin’s seminal paper [8]. Integrability allows for the analytic solution of the eigenstates and eigenspectrum of the models through the Bethe Ansatz. This makes these models well suited for studies of their equilibrium and dynamical behaviour; in particular, tests of the Eigenstate Thermalisation Hypothesis (ETH) and investigation of many-body localisation [1, 12, 17, 22]. Integrability is also essential for perturbative solutions of physical models. For example, integrability provides a wavefunction Ansatz in variational eigensolvers to model strong electron correlation in quantum chemistry [7].

Integrability is also of great interest in mathematical physics. There is ongoing work on extending or modifying known integrable models to obtain new ones. This has recently led to establishing that the XXXX model, which models certain resonant dipolar spin systems, is integrable [5, 21]. Integrability was subsequently extended to the XYXY model [20] using conserved charges discussed in [14], and the same charges with self-interaction obtained by Skrypnyk [15]. These charges were diagonalised using several modifications of the standard algebraic Bethe Ansatz for arbitrary spin [15]. These expressions for the eigenvalues can also be obtained through the use of functional relations as described in [20].

Here we derive the XYXY central spin model Hamiltonian and its charges through a limit of the charges for the XYZXYZ Gaudin model in [15]. We also derive a second integrable class of XYXY central spin models, which are seen to simply be a different parametrisation of the original model. With this reparametrisation we obtain regularised eigenvalue and eigenstate results for the central spin model. We show that these reproduce the diagonalisation results in the literature [3, 21] in the appropriate limits. It is found that dark states, states in which the central spin is not entangled with the environment, are present for special configurations of the magnetic field B=(Bx,By,Bz)\vec{B}=(B^{x},B^{y},B^{z}). This is reminiscent of the XXXX model for which these occur for an out-of-plane magnetic field, Bx=By=0B^{x}=B^{y}=0 [5, 21].

In Sect. 2 we derive two examples of XYXY central spin Hamiltonians and their conserved charges for spin-1/21/2 central spin. We then show how these are different parametrisations of the same integrable model. After performing a reparametrisation which regularises the eigenstate results of [15], we find the eigenstates for the XYXY central spin model in Sect. 3. We show that for special magnetic field configurations dark states occur, in analogy to those that were seen in the out-of-plane XXXX model [21]. Concluding remarks are given in Sect. 4. In the Appendix 5 we take the isotropic limit to confirm that these recover the results for the XXXX model. This is supplemented with some heuristic arguments and numerical results about how the dark states emerge from the states with generic magnetic field configurations.

2 Derivation of integrable XYXY central spin Hamiltonians

Consider a set of L+1L+1 spin operators {Sjx,Sjy,Sjz:j=0,1,,L}\{S^{x}_{j},\,S_{j}^{y},\,S^{z}_{j}:j=0,1,\dots,L\} satisfying the standard canonical commutation relations

[Sjθ,Skη]=iδjkκ{x,y,z}εθηκSjκ,\displaystyle[S^{\theta}_{j},\,S^{\eta}_{k}]=i\delta_{jk}\sum_{\kappa\in\{x,y,z\}}\varepsilon^{\theta\eta\kappa}S^{\kappa}_{j}, (1)

where i=1i=\sqrt{-1} and εθηκ\varepsilon^{\theta\eta\kappa} is the Levi-Civita symbol. Introduce a set of distinct parameters {β}{ϵj:j=0,1,,L}\{\beta\}\cup\{\epsilon_{j}:j=0,1,\dots,L\} with β>0\beta>0 and such that ϵjβ>0\epsilon_{j}-\beta>0 for all j=0,1,,Lj=0,1,\dots,L. Also define fj±=ϵj±βf_{j}^{\pm}=\sqrt{\epsilon_{j}\pm\beta}.

Integrable central spin models, with spin-1/2 central spin and arbitrary bath spins, are derived from the following L+1L+1 conserved charges 111We use ζ\zeta instead of BzB^{z} to prevent confusion with BzB^{z} of the XYXY Hamiltonian, Eq. (7) below.

𝒬i=ζSiz+Bxfi+Six+ByfiSiy+fifi+SixSix+fi+fiSiySiy\displaystyle\mathcal{Q}_{i}=\zeta S^{z}_{i}+\frac{B^{x}}{f_{i}^{+}}S^{x}_{i}+\frac{B^{y}}{f_{i}^{-}}S^{y}_{i}+\frac{f_{i}^{-}}{f_{i}^{+}}S^{x}_{i}S^{x}_{i}+\frac{f_{i}^{+}}{f_{i}^{-}}S^{y}_{i}S^{y}_{i}
+2jiL1ϵiϵj(fi+fjSixSjx+fifj+SiySjy+fj+fjSizSjz),\displaystyle\quad\quad\quad\quad+2\sum_{j\neq i}^{L}\frac{1}{\epsilon_{i}-\epsilon_{j}}(f_{i}^{+}f_{j}^{-}S^{x}_{i}S^{x}_{j}+f_{i}^{-}f_{j}^{+}S^{y}_{i}S^{y}_{j}+f_{j}^{+}f_{j}^{-}S^{z}_{i}S^{z}_{j}), (2)
[𝒬i,𝒬j]=0,i,j{0,1,,L}.\displaystyle[\mathcal{Q}_{i},\mathcal{Q}_{j}]=0,\quad\forall{i,j}\in\{0,1,\dots,L\}.

To do this, we take {S0x,S0y,S0z}\{S^{x}_{0},\,S_{0}^{y},\,S^{z}_{0}\} to be the spin-1/21/2 operators, identify the zero subscript with the central spin and the other subscripts with the bath spins. The zeroth charge 𝒬0\mathcal{Q}_{0} will then become the central spin Hamiltonian and 𝒬j{\mathcal{Q}}_{j}, j=1,,Lj=1,\dots,L its conserved charges. Noting that for spin-1/2 operators we have

(S0x)2=(S0y)2=14I,\displaystyle\left(S^{x}_{0}\right)^{2}=\left(S^{y}_{0}\right)^{2}=\frac{1}{4}I,

it is convenient for the zeroth charge to subtract off the squared spin operator terms. After making the change of variables {ζBz/ϵ0}\{\zeta\mapsto B^{z}/\sqrt{\epsilon_{0}}\} for the magnetic field, we obtain the first class of XY central spin models through the limit as ϵ0\epsilon_{0}\to\infty with the Hamiltonian being

HI\displaystyle H^{\rm I} =limϵ0[ϵ0𝒬0ϵ04(f0f0++f0+f0)]\displaystyle=\lim\limits_{\epsilon_{0}\to\infty}\left[\sqrt{\epsilon_{0}}\mathcal{Q}_{0}-\frac{\sqrt{\epsilon_{0}}}{4}\left(\frac{f^{-}_{0}}{f^{+}_{0}}+\frac{f^{+}_{0}}{f^{-}_{0}}\right)\right] (3)
=BxS0x+ByS0y+BzS0z+2j=1L(fjS0xSjx+fj+S0ySjy),\displaystyle=B^{x}S^{x}_{0}+B^{y}S^{y}_{0}+B^{z}S^{z}_{0}+2\sum_{j=1}^{L}(f_{j}^{-}S^{x}_{0}S^{x}_{j}+f_{j}^{+}S^{y}_{0}S^{y}_{j}),

and the charges

QiI\displaystyle Q_{i}^{\rm I} =limϵ0𝒬i\displaystyle=\lim\limits_{\epsilon_{0}\to\infty}\mathcal{Q}_{i} (4)
=2S0zSiz+Bxfi+Six+ByfiSiy+fifi+SixSix+fi+fiSiySiy\displaystyle=-2S_{0}^{z}S_{i}^{z}+\frac{B^{x}}{f_{i}^{+}}S_{i}^{x}+\frac{B^{y}}{f_{i}^{-}}S^{y}_{i}+\frac{f_{i}^{-}}{f_{i}^{+}}S_{i}^{x}S_{i}^{x}+\frac{f_{i}^{+}}{f_{i}^{-}}S_{i}^{y}S_{i}^{y}
+2j[i]j=1L1ϵiϵj(fi+fjSixSjx+fifj+SiySjy+fj+fjSizSjz),\displaystyle\quad+2\sum_{\stackrel{{\scriptstyle[}}{{j}}\neq i]{}{j=1}}^{L}\frac{1}{\epsilon_{i}-\epsilon_{j}}(f_{i}^{+}f_{j}^{-}S^{x}_{i}S^{x}_{j}+f_{i}^{-}f_{j}^{+}S^{y}_{i}S^{y}_{j}+f_{j}^{+}f_{j}^{-}S^{z}_{i}S^{z}_{j}),

reproducing those introduced in [20].

For the second class of Hamiltonians we use the variables {Bx~,ζ~,Bz~}\{\tilde{B^{x}},\tilde{\zeta},\tilde{B^{z}}\} for the magnetic field and {ϕj}\{\phi_{j}\} instead of {ϵj}\{\epsilon_{j}\}, letting hj±=ϕj±βh^{\pm}_{j}=\sqrt{\phi_{j}\pm\beta}. We make a change of variables for the magnetic field, {Bx~f0+Bx~,ζ~f0By~,Bz~Bz~}\{\tilde{B^{x}}\mapsto-f_{0}^{+}\tilde{B^{x}},\tilde{\zeta}\mapsto-f_{0}^{-}\tilde{B^{y}},\tilde{B^{z}}\mapsto-\tilde{B^{z}}\}. Taking the limit as ϕ0β\phi_{0}\to\beta leads to the Hamiltonian

HII\displaystyle H^{\rm II} =limϵ0β[𝒬0+14(h0h0++h0+h0)]\displaystyle=\lim\limits_{\epsilon_{0}\to\beta}\left[-\mathcal{Q}_{0}+\frac{1}{4}\left(\frac{h^{-}_{0}}{h^{+}_{0}}+\frac{h^{+}_{0}}{h^{-}_{0}}\right)\right] (5)
=Bx~S0x+By~S0y+Bz~S0z+2j=1L(2βhjS0xSjx+hj+hjS0zSjz),\displaystyle=\tilde{B^{x}}S^{x}_{0}+\tilde{B^{y}}S^{y}_{0}+\tilde{B^{z}}S^{z}_{0}+2\sum_{j=1}^{L}\left(\frac{\sqrt{2\beta}}{h_{j}^{-}}S^{x}_{0}S^{x}_{j}+\frac{h^{+}_{j}}{h^{-}_{j}}S^{z}_{0}S^{z}_{j}\right),

and the charges

QiII\displaystyle Q^{\rm{II}}_{i} =limϵ0β[𝒬i]\displaystyle=\lim\limits_{\epsilon_{0}\to\beta}\left[-\mathcal{Q}_{i}\right] (6)
=22βhiS0ySiy+Bz~Siz+Bx~2βhi+Sixhihi+SixSixhi+hiSiySiy\displaystyle=-2\frac{\sqrt{2\beta}}{h_{i}^{-}}S^{y}_{0}S^{y}_{i}+\tilde{B^{z}}S^{z}_{i}+\tilde{B^{x}}\frac{\sqrt{2\beta}}{h_{i}^{+}}S_{i}^{x}-\frac{h_{i}^{-}}{h_{i}^{+}}S_{i}^{x}S_{i}^{x}-\frac{h_{i}^{+}}{h_{i}^{-}}S_{i}^{y}S_{i}^{y}
2j[i]j=1L1ϕiϕj(hi+hjSixSjx+hihj+SiySjy+hj+hjSizSjz)\displaystyle\quad-2\sum_{\stackrel{{\scriptstyle[}}{{j}}\neq i]{}{j=1}}^{L}\frac{1}{\phi_{i}-\phi_{j}}(h_{i}^{+}h_{j}^{-}S^{x}_{i}S^{x}_{j}+h_{i}^{-}h_{j}^{+}S^{y}_{i}S^{y}_{j}+h_{j}^{+}h_{j}^{-}S^{z}_{i}S^{z}_{j})
=22βhiS0ySiy+Bx~Six+By~2βhi+Siy+2βhi+hiSiySiy+hi+hiSizSiz\displaystyle=-2\frac{\sqrt{2\beta}}{h_{i}^{-}}S^{y}_{0}S^{y}_{i}+\tilde{B^{x}}S^{x}_{i}+\tilde{B^{y}}\frac{\sqrt{2\beta}}{h_{i}^{+}}S_{i}^{y}+\frac{2\beta}{h_{i}^{+}h_{i}^{-}}S_{i}^{y}S_{i}^{y}+\frac{h_{i}^{+}}{h_{i}^{-}}S_{i}^{z}S_{i}^{z}
2j[i]j=1L1ϕiϕj(hi+hjSixSjx+hihj+SiySjy+hj+hjSizSjz)\displaystyle\quad-2\sum_{\stackrel{{\scriptstyle[}}{{j}}\neq i]{}{j=1}}^{L}\frac{1}{\phi_{i}-\phi_{j}}(h_{i}^{+}h_{j}^{-}S^{x}_{i}S^{x}_{j}+h_{i}^{-}h_{j}^{+}S^{y}_{i}S^{y}_{j}+h_{j}^{+}h_{j}^{-}S^{z}_{i}S^{z}_{j})

where the last equality is obtained through a shift by 𝐒i2=(Six)2+(Siy)2+(Siz)2\mathbf{S}_{i}^{2}=(S^{x}_{i})^{2}+(S^{y}_{i})^{2}+(S^{z}_{i})^{2}. Note that for this class the limit as β0\beta\to 0 is an XX model (after making the transformation SxSz,SzSxS^{x}\mapsto-S^{z},\,S^{z}\mapsto S^{x}) in contrast to the first class.

These two classes can be seen as different parametrisations of the parameters {ϵj}\{\epsilon_{j}\} and the magnetic field components. The integrable XYXY central spin Hamiltonian

HXY=BxS0x+ByS0y+BzS0z+2j=1L(XjS0xSjx+YjS0ySjy)\displaystyle H_{XY}=B^{x}S_{0}^{x}+B^{y}S_{0}^{y}+B^{z}S_{0}^{z}+2\sum_{j=1}^{L}(X_{j}S_{0}^{x}S_{j}^{x}+Y_{j}S_{0}^{y}S_{j}^{y}) (7)

was seen in [20] to be characterised by Yj2Xj2=cY_{j}^{2}-X_{j}^{2}=c, with the constant cc being free to be chosen through rescalings of the parameters {ϵj}\{\epsilon_{j}\} and magnetic field components. The isotropic case where c=0c=0 corresponds to the XXXX model, as seen for example in [21]. In the above two cases cc is seen to be respectively 2β2\beta and 1-1. The reparametrisation relating the two classes is

ϕj=β+4β2ϵjβ.\displaystyle\phi_{j}=\beta+\frac{4\beta^{2}}{\epsilon_{j}-\beta}.

Specifically, the charges (2) in the variables {ϕj}\{\phi_{j}\} and {Bx~,ζ~,Bz~}\{\tilde{B^{x}},\tilde{\zeta},\tilde{B^{z}}\}, under this reparametrisation take the form (after making the rotation SySz,SzSyS^{y}\to S^{z},\;S^{z}\to-S^{y} and adding 𝐒i2\mathbf{S}_{i}^{2})

𝒬~i\displaystyle\tilde{\mathcal{Q}}_{i} =fi2β{fi+fisi(si+1)By~2βSizBx~fi+Six+ζ~2βfiSiy+fifi+SixSix\displaystyle=-\frac{f_{i}^{-}}{\sqrt{2\beta}}\bigg{\{}-\frac{f_{i}^{+}}{f_{i}^{-}}s_{i}(s_{i}+1)-\frac{\tilde{B^{y}}}{\sqrt{2\beta}}S^{z}_{i}-\frac{\tilde{B^{x}}}{f^{+}_{i}}S^{x}_{i}+\tilde{\zeta}\frac{\sqrt{2\beta}}{f^{-}_{i}}S^{y}_{i}+\frac{f_{i}^{-}}{f_{i}^{+}}S_{i}^{x}S_{i}^{x} (8)
+fi+fiSiySiy+2jiL1ϵiϵj(fi+fjSixSjx+fifj+SiySjy+fj+fjSizSjz)}\displaystyle\quad+\frac{f_{i}^{+}}{f_{i}^{-}}S_{i}^{y}S_{i}^{y}+2\sum_{j\neq i}^{L}\frac{1}{\epsilon_{i}-\epsilon_{j}}\left(f^{+}_{i}f^{-}_{j}S^{x}_{i}S^{x}_{j}+f^{-}_{i}f^{+}_{j}S^{y}_{i}S^{y}_{j}+f^{+}_{j}f^{-}_{j}S^{z}_{i}S^{z}_{j}\right)\bigg{\}}
=fi2β(𝒬ifi+fisi(si+1))\displaystyle=-\frac{f_{i}^{-}}{\sqrt{2\beta}}\left(\mathcal{Q}_{i}-\frac{f_{i}^{+}}{f_{i}^{-}}s_{i}(s_{i}+1)\right)

where

𝒬i=ζSiz+Bxfi+Six+ByfiSiy+fifi+SixSix+fi+fiSiySiy\displaystyle\mathcal{Q}_{i}=\zeta S^{z}_{i}+\frac{B^{x}}{f^{+}_{i}}S^{x}_{i}+\frac{B^{y}}{f^{-}_{i}}S^{y}_{i}+\frac{f_{i}^{-}}{f_{i}^{+}}S_{i}^{x}S_{i}^{x}+\frac{f_{i}^{+}}{f_{i}^{-}}S_{i}^{y}S_{i}^{y}
+2jiL1ϵiϵj(fi+fjSixSjx+fifj+SiySjy+fj+fjSizSjz)\displaystyle\qquad+2\sum_{j\neq i}^{L}\frac{1}{\epsilon_{i}-\epsilon_{j}}\left(f^{+}_{i}f^{-}_{j}S^{x}_{i}S^{x}_{j}+f^{-}_{i}f^{+}_{j}S^{y}_{i}S^{y}_{j}+f^{+}_{j}f^{-}_{j}S^{z}_{i}S^{z}_{j}\right)

with the redefined magnetic field components

Bx~=Bx,ζ~=ζ2β,Bz~=By/2β.\displaystyle\tilde{B^{x}}=-B^{x},\quad\tilde{\zeta}=-\zeta\sqrt{2\beta},\quad\tilde{B^{z}}=B^{y}/\sqrt{2\beta}.

Henceforth we will only consider the parametrisation given in the first class and take H=HI,Qj=QjIH=H^{\rm I},\;Q_{j}=Q^{\rm I}_{j}. However, we will see that the second parametrisation will be useful for obtaining the eigenstates of the XYXY model.

3 The eigenstates

The eigenstates of the charges 𝒬j\mathcal{Q}_{j}, as well as their eigenvalues, have been found in [15]. Here we recall the algebraic setup and the results required in order to obtain the eigenstates and eigenvalues of HH and its conserved charges QjQ_{j}.

3.1 Relations for the Algebraic Bethe Ansatz

Introduce the Lax algebra generators (respectively corresponding to B(w)B(w), C(w)C(w) and A(w)D(w)A(w)-D(w) in [15]) 222Again using ζ~\tilde{\zeta} to prevent confusion with By~\tilde{B^{y}} of the XYXY model.

S(w)\displaystyle S^{-}(w) =Bx~+iζ~2βiBz~+2j=0Lhj+hjwϕjTj12ij=0L(Tj11Tj22),\displaystyle=\frac{-\tilde{B^{x}}+i\tilde{\zeta}}{\sqrt{2\beta}}-i\tilde{B^{z}}+2\sum_{j=0}^{L}\frac{h_{j}^{+}h_{j}^{-}}{w-\phi_{j}}T_{j}^{12}-i\sum_{j=0}^{L}\left(T_{j}^{11}-T_{j}^{22}\right),
S+(w)\displaystyle S^{+}(w) =Bx~+iζ~2β+iBz~+2j=0Lhj+hjwϕjTj21ij=0L(Tj11Tj22),\displaystyle=\frac{-\tilde{B^{x}}+i\tilde{\zeta}}{\sqrt{2\beta}}+i\tilde{B^{z}}+2\sum_{j=0}^{L}\frac{h_{j}^{+}h_{j}^{-}}{w-\phi_{j}}T_{j}^{21}-i\sum_{j=0}^{L}\left(T_{j}^{11}-T_{j}^{22}\right),
Sz(w)\displaystyle S^{z}(w) =2iBx~2β(wβ)2ζ~2β(w+β)+2j=0Lw2β2wϕj(Tj11Tj22)\displaystyle=-\frac{2i\tilde{B^{x}}}{\sqrt{2\beta}}(w-\beta)-\frac{2\tilde{\zeta}}{\sqrt{2\beta}}(w+\beta)+2\sum_{j=0}^{L}\frac{w^{2}-\beta^{2}}{w-\phi_{j}}\left(T_{j}^{11}-T_{j}^{22}\right)

where hj±=ϕj±βh_{j}^{\pm}=\sqrt{\phi_{j}\pm\beta} and the operators {Tkij}\{T_{k}^{ij}\} satisfy the 𝔤𝔩(2)\mathfrak{gl}(2) commutation relations

[Taij,Tbkl]=δab(δkjTailδilTakj);a,b=1,,L.\displaystyle[T_{a}^{ij},T_{b}^{kl}]=\delta_{ab}(\delta^{kj}T_{a}^{il}-\delta^{il}T_{a}^{kj});\quad\quad a,b=1,\dots,L.

The Lax algebra generators satisfy the relations

[S(u),S(v)]\displaystyle{[}S^{\mp}(u),S^{\mp}(v){]} =±2i(S(u)S(v)),\displaystyle=\pm 2i\left(S^{\mp}(u)-S^{\mp}(v)\right),
[Sz(u),S(v)]\displaystyle{[}S^{z}(u),S^{\mp}(v){]} =4u2β2uv(S(u)S(v)),\displaystyle=\mp 4\frac{u^{2}-\beta^{2}}{u-v}\left(S^{\mp}(u)-S^{\mp}(v)\right),
[Sz(u),Sz(v)]\displaystyle{[}S^{z}(u),S^{z}(v){]} =0,\displaystyle=0,
[S+(u),S(v)]\displaystyle{[}S^{+}(u),S^{-}(v){]} =2uv(Sz(u)Sz(v))2iS(v)2iS+(u).\displaystyle=\frac{2}{u-v}\left(S^{z}(u)-S^{z}(v)\right)-2iS^{-}(v)-2iS^{+}(u). (9)

We also define operators shifted by a constant term, necessary to build the appropriate Bethe states,

Sk(w)=S(w)(2k1)iI,k\displaystyle S^{\mp}_{k}(w)=S^{\mp}(w)\mp(2k-1)iI,\quad k\in\mathbb{Z}

and with these define

𝒮(w1,w2,,wM)=S1(w1)S2(w2)SM(wM).\displaystyle\mathcal{S}^{\mp}(w_{1},w_{2},\dots,w_{M})=S^{\mp}_{1}(w_{1})S^{\mp}_{2}(w_{2})\cdots S^{\mp}_{M}(w_{M}). (10)

Now in order to describe the eigenstates of the charges {𝒬j}\{\mathcal{Q}_{j}\} we use the following representation of the 𝔤𝔩(2)\mathfrak{gl}(2) operators

Tk11\displaystyle T_{k}^{11} =ihk2βSkxhk+2βSky,Tk22=ihk2βSkx+hk+2βSky,\displaystyle=-i\frac{h_{k}^{-}}{\sqrt{2\beta}}S_{k}^{x}-\frac{h_{k}^{+}}{\sqrt{2\beta}}S_{k}^{y},\quad T_{k}^{22}=i\frac{h_{k}^{-}}{\sqrt{2\beta}}S_{k}^{x}+\frac{h_{k}^{+}}{\sqrt{2\beta}}S_{k}^{y},
Tk21\displaystyle T_{k}^{21} =iSkzhk+2βSkx+ihk2βSky,Tk12=iSkzhk+2βSkx+ihk2βSky.\displaystyle=iS_{k}^{z}-\frac{h_{k}^{+}}{\sqrt{2\beta}}S_{k}^{x}+i\frac{h_{k}^{-}}{\sqrt{2\beta}}S_{k}^{y},\quad T_{k}^{12}=-iS_{k}^{z}-\frac{h_{k}^{+}}{\sqrt{2\beta}}S_{k}^{x}+i\frac{h_{k}^{-}}{\sqrt{2\beta}}S_{k}^{y}.

Following the notation of [15] we also introduce the reference states v±v^{\pm} defined as

v±\displaystyle v^{\pm} =v0±v1±vL±\displaystyle=v_{0}^{\pm}\otimes v_{1}^{\pm}\otimes\cdots\otimes v_{L}^{\pm} (11)

where the vk±v_{k}^{\pm} are respectively lowest and highest weight states satisfying

Tk11vk+=skvk+,\displaystyle T_{k}^{11}v_{k}^{+}=-s_{k}v_{k}^{+},\; Tk22vk+=skvk+,\displaystyle T_{k}^{22}v_{k}^{+}=s_{k}v_{k}^{+},\; Tk21vk+=0,\displaystyle T_{k}^{21}v_{k}^{+}=0,
Tk11vk=skvk,\displaystyle T_{k}^{11}v_{k}^{-}=s_{k}v_{k}^{-},\; Tk22vk=skvk,\displaystyle T_{k}^{22}v_{k}^{-}=-s_{k}v_{k}^{-},\; Tk12vk=0\displaystyle T_{k}^{12}v_{k}^{-}=0

for half non-negative integers sks_{k}, i.e. sk{0,1/2,1,3/2,}s_{k}\in\{0,1/2,1,3/2,\dots\}. For the spin labelled by the 0 subscript, for which s0=1/2s_{0}=1/2, we use the following notational convention

|+0=v0,|0=v0+.\ket{+}_{0}=v^{-}_{0},\quad\ket{-}_{0}=v^{+}_{0}.

For conciseness we will also use the notation

vB±=v1±vL±v_{B}^{\pm}=v_{1}^{\pm}\otimes\cdots\otimes v_{L}^{\pm}

when identifying spins 1 to LL as bath spins.

3.1.1 Reparametrised operators.

In the following we will also need the expressions of the operators in the reparametrisation introduced in Sect. 2

ϵj=β+4β2ϕjβ,u=β+4β2wβ,\displaystyle\epsilon_{j}=\beta+\frac{4\beta^{2}}{\phi_{j}-\beta},\quad u=\beta+\frac{4\beta^{2}}{w-\beta}, (12)
Bx=Bx~,ζ=ζ~/2β,By=Bz~2β.\displaystyle B^{x}=-\tilde{B^{x}},\quad\zeta=-\tilde{\zeta}/\sqrt{2\beta},\quad B^{y}=-\tilde{B^{z}}\sqrt{2\beta}.

These being (after also rescaling by 2β\sqrt{2\beta})

S(u)\displaystyle S^{-}(u) =BxiByiζ2β+2j=0Lfj+(uβ)ϵjuTj12i2βj=0L(Tj11Tj22),\displaystyle=B^{x}-iB^{y}-i\zeta\sqrt{2\beta}+2\sum_{j=0}^{L}\frac{f^{+}_{j}(u-\beta)}{\epsilon_{j}-u}T_{j}^{12}-i\sqrt{2\beta}\sum_{j=0}^{L}\left(T_{j}^{11}-T_{j}^{22}\right),
S+(u)\displaystyle S^{+}(u) =Bx+iByiζ2β+2j=0Lfj+(uβ)ϵjuTj21i2βj=0L(Tj11Tj22)\displaystyle=B^{x}+iB^{y}-i\zeta\sqrt{2\beta}+2\sum_{j=0}^{L}\frac{f^{+}_{j}(u-\beta)}{\epsilon_{j}-u}T_{j}^{21}-i\sqrt{2\beta}\sum_{j=0}^{L}\left(T_{j}^{11}-T_{j}^{22}\right)

with

Tk11\displaystyle T_{k}^{11} =i2βfkSkxfk+fkSkz,Tk22=i2βfkSkx+fk+fkSkz,\displaystyle=-i\frac{\sqrt{2\beta}}{f_{k}^{-}}S_{k}^{x}-\frac{f_{k}^{+}}{f_{k}^{-}}S_{k}^{z},\quad T_{k}^{22}=i\frac{\sqrt{2\beta}}{f_{k}^{-}}S_{k}^{x}+\frac{f_{k}^{+}}{f_{k}^{-}}S_{k}^{z},
Tk21\displaystyle T_{k}^{21} =iSkyfk+fkSkx+i2βfkSkz,Tk12=iSkyfk+fkSkx+i2βfkSkz.\displaystyle=-iS_{k}^{y}-\frac{f_{k}^{+}}{f_{k}^{-}}S_{k}^{x}+i\frac{\sqrt{2\beta}}{f_{k}^{-}}S_{k}^{z},\quad T_{k}^{12}=iS_{k}^{y}-\frac{f_{k}^{+}}{f_{k}^{-}}S_{k}^{x}+i\frac{\sqrt{2\beta}}{f_{k}^{-}}S_{k}^{z}.

We define 𝒮±(u1,,uM)\mathcal{S}^{\pm}(u_{1},\dots,u_{M}) similarly to (10) using instead

Sk(u)=S(u)(2k1)i2βI,k.\displaystyle S^{\mp}_{k}(u)=S^{\mp}(u)\mp(2k-1)i\sqrt{2\beta}I,\quad k\in\mathbb{Z}.

3.2 Eigenstates of HXYH_{XY}

To fully capture the possible types of eigenstates of the central spin model we first give the construction of the states via the supersymmetry of the model, before obtaining the states for generic magnetic field configurations from the limits of Sect. 2.

3.2.1 Construction from supersymmetry.

Define the spin raising and lowering operators S0±=S0x±iS0yS_{0}^{\pm}=S_{0}^{x}\pm iS_{0}^{y}, and supercharges 𝒜±=S0A±\mathcal{A}^{\pm}=S_{0}^{\mp}A^{\pm}, where

A±=(Bx±iBy)I/2+j=1L(fjSjx±ifj+Sjy).\displaystyle A^{\pm}=(B^{x}\pm iB^{y})I/2+\sum_{j=1}^{L}(f_{j}^{-}S^{x}_{j}\pm if_{j}^{+}S^{y}_{j}). (13)

The supercharges satisfy (𝒜±)2=0(\mathcal{A}^{\pm})^{2}=0 and S0z𝒜±=𝒜±S0zS_{0}^{z}\mathcal{A}^{\pm}=-\mathcal{A}^{\pm}S_{0}^{z}. Recall from [20] that the Hamiltonian (3) can be written as

H\displaystyle H =BzS0z+𝒜++𝒜.\displaystyle=B^{z}S_{0}^{z}+\mathcal{A}^{+}+\mathcal{A}^{-}. (14)

With this one sees that H2H^{2} is related to a supersymmetric Hamiltonian through

(H)2\displaystyle\left(H\right)^{2} =(Bz)2I/4+𝒜+𝒜+𝒜𝒜+\displaystyle=(B^{z})^{2}I/4+\mathcal{A}^{+}\mathcal{A}^{-}+\mathcal{A}^{-}\mathcal{A}^{+}
=((Bx)2+(By)2+(Bz)2)I/4+j=1Lfj+fjQj.\displaystyle=((B^{x})^{2}+(B^{y})^{2}+(B^{z})^{2})I/4+\sum_{j=1}^{L}f_{j}^{+}f_{j}^{-}Q_{j}.

Rewriting this in the eigenbasis of S0zS^{z}_{0}

H2\displaystyle H^{2} =(Bz)2/4+(I/2S0z)A+A+(I/2+S0z)AA+\displaystyle=(B^{z})^{2}/4+(I/2-S^{z}_{0})A^{+}A^{-}+(I/2+S^{z}_{0})A^{-}A^{+}
=((Bz)2/4+AA+00(Bz)2/4+A+A)\displaystyle=\pmatrix{(B^{z})^{2}/4+A^{-}A^{+}&0\cr 0&(B^{z})^{2}/4+A^{+}A^{-}}
=|B|24I+(j=1Lfj+fj𝒬j|ζ=100j=1Lfj+fj𝒬j|ζ=+1)\displaystyle=\frac{|\vec{B}|^{2}}{4}I+\pmatrix{\sum_{j=1}^{L}f_{j}^{+}f_{j}^{-}\mathcal{Q}_{j}|_{\zeta=-1}&0\cr 0&\sum_{j=1}^{L}f_{j}^{+}f_{j}^{-}\mathcal{Q}_{j}|_{\zeta=+1}}

shows that H2H^{2} can be diagonalised with eigenstates of the form

|ΨΘ=|Θ0|ψΘB,Θ{+,}\ket{\Psi_{\Theta}}=\ket{\Theta}_{0}\otimes\ket{\psi_{\Theta}}_{B},\quad\Theta\in\{+,-\}

where the subscript 0 denotes a central spin state and BB a bath-spin state. Observe that the the states |ψΘB\ket{\psi_{\Theta}}_{B} are respectively eigenstates of the charges 𝒬j|ζ=Θ\mathcal{Q}_{j}|_{\zeta=-\Theta}. Due to the supersymmetry, the eigenstates of H2H^{2} are either singlets or doublets. The singlets |ΨΘ\ket{\Psi_{\Theta}},

𝒜+|ΨΘ=𝒜|ΨΘ=0,\mathcal{A}^{+}\ket{\Psi_{\Theta}}=\mathcal{A}^{-}\ket{\Psi_{\Theta}}=0,

are also eigenstates of HH. Whereas for the doublets |ΨΘ\ket{\Psi_{\Theta}},

𝒜+|Ψ+=Λ|Ψ,𝒜|Ψ=Λ|Ψ+,Λ\displaystyle\mathcal{A}^{+}\ket{\Psi_{+}}=\Lambda\ket{\Psi_{-}},\quad\mathcal{A}^{-}\ket{\Psi_{-}}=\Lambda\ket{\Psi_{+}},\quad\Lambda\in\mathbb{R}

we can diagonalise HH to obtain the eigenstates

|EΘ\displaystyle\ket{E_{\Theta}} =Λ|Ψ++(EΘBz/2)|Ψ\displaystyle=\Lambda\ket{\Psi_{+}}+\left(E_{\Theta}-B^{z}/2\right)\ket{\Psi_{-}}
=(𝒜+(EΘBz/2))|Ψ\displaystyle=\left(\mathcal{A}^{-}+\left(E_{\Theta}-B^{z}/2\right)\right)\ket{\Psi_{-}}
=(A+(EΘBz/2)S0)|+0|ψB\displaystyle=\left(A^{-}+\left(E_{\Theta}-B^{z}/2\right)S_{0}^{-}\right)\ket{+}_{0}\otimes\ket{\psi_{-}}_{B}

where EΘ=Θ(Bz)2/4+Λ2E_{\Theta}=\Theta\sqrt{(B^{z})^{2}/4+\Lambda^{2}}.

From the above construction it is clear that we can obtain the eigenstates of the XYXY model from those of 𝒬j|ζ=Θ\mathcal{Q}_{j}|_{\zeta=-\Theta} or equivalently, due to simultaneous diagonalisability, respectively from AΘAΘA^{-\Theta}A^{\Theta}. To do so we observe that with the inverted reparametrisation introduced in Sect. 2

ϵj=β+4β2ϕjβ,Bx=Bx~,ζ=ζ~/2β,By=Bz~2β\displaystyle\epsilon_{j}=\beta+\frac{4\beta^{2}}{\phi_{j}-\beta},\quad B^{x}=-\tilde{B^{x}},\quad\zeta=-\tilde{\zeta}/\sqrt{2\beta},\quad B^{y}=\tilde{B^{z}}\sqrt{2\beta}

we have expressions in terms of the Lax algebra generators as

AΘAΘ=(β/2)S1Θ(β)S0Θ(β),\displaystyle A^{-\Theta}A^{\Theta}=(\beta/2)S^{-\Theta}_{1}(\beta)S^{\Theta}_{0}(\beta),

noting that ζ~=Θ2β\tilde{\zeta}=\Theta\sqrt{2\beta}.

3.2.2 Dark states.

Here we will demonstrate how dark states can be identified from the Bethe state construction. Assuming the roots {wm}m=1M\{w_{m}\}_{m=1}^{M} are distinct and not equal to β\beta we find using the algebraic relations (3.1)

S1Θ(β)S0Θ(β)\displaystyle S^{-\Theta}_{1}(\beta)S^{\Theta}_{0}(\beta) 𝒮Θ(w1,,wM)vΘ=𝒮Θ(β,w1,,wM)SMΘ(β)vΘ\displaystyle\mathcal{S}^{-\Theta}(w_{1},\dots,w_{M})v^{\Theta}=\mathcal{S}^{-\Theta}(\beta,w_{1},\dots,w_{M})S^{\Theta}_{-M}(\beta)v^{\Theta}
+l=1M𝒮Θ(w1,,wlβ,,wM)\displaystyle+\sum_{l=1}^{M}\mathcal{S}^{-\Theta}(w_{1},\dots,w_{l}\to\beta,\dots,w_{M})
×{8I+2ΘSz(wl)Sz(β)wlβ+8mlMwl+βwlwmI}vΘ.\displaystyle\times\left\{8I+2\Theta\frac{S^{z}(w_{l})-S^{z}(\beta)}{w_{l}-\beta}+8\sum_{m\neq l}^{M}\frac{w_{l}+\beta}{w_{l}-w_{m}}I\right\}v^{\Theta}.

Noting that

SMΘ(β)vΘ=Θ((Ns+2β+ΘiBx~2β+Bz~)i(2M+1)i)vΘ,\displaystyle S^{\Theta}_{-M}(\beta)v^{\Theta}=\Theta\left(\left(N_{s}+\frac{\sqrt{2\beta}+\Theta i\tilde{B^{x}}}{\sqrt{2\beta}}+\tilde{B^{z}}\right)i-(2M+1)i\right)v^{\Theta},

where

Ns=2j=1Lsj,\displaystyle N_{s}=2\sum_{j=1}^{L}s_{j},

we see that the Bethe state will be an eigenstate with zero eigenvalue if 333See Sect. 5.1 of the Appendix for the full argument that these are the only magnetic field configurations admitting dark states.

Ns/2+iΘBx~/22β+Bz~/2=M{0,1,,Ns}\displaystyle N_{s}/2+\frac{i\Theta\tilde{B^{x}}/2}{\sqrt{2\beta}}+\tilde{B^{z}}/2=M\in\{0,1,\dots,N_{s}\}

and the “unwanted terms” vanish. This corresponds to the roots {wm}\{w_{m}\} satisfying

4(wlβ)Θ(zΘ(wl)zΘ(β))+4mlMwl2β2wlwm=0,\displaystyle 4(w_{l}-\beta)-\Theta\left(z_{\Theta}(w_{l})-z_{\Theta}(\beta)\right)+4\sum_{m\neq l}^{M}\frac{w_{l}^{2}-\beta^{2}}{w_{l}-w_{m}}=0,

where zΘ(w)z_{\Theta}(w) are the eigenvalues of Sz(w)S^{z}(w) for the reference states vΘv^{\Theta}.

Due to these being zero eigenvalue states of AΘAΘA^{-\Theta}A^{\Theta}, they correspond to the singlet states. Hence, making the reparametrisation (12), the states

|Θ0𝒮Θ(u1,,uM)vBΘ|ζ=Θ\displaystyle\left.\ket{\Theta}_{0}\otimes\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M})\,v^{\Theta}_{B}\right|_{\zeta=-\Theta}

are eigenstates of HH with energy E=ΘBz/2E=\Theta B^{z}/2 if the roots satisfy the Bethe Ansatz equations

2β+ΘiBx2β+2j=1L(ul+β)(ϵjβ)ulϵjsj2mlM(ul+β)(umβ)ulum=0\displaystyle 2\beta+\Theta iB^{x}\sqrt{2\beta}+2\sum_{j=1}^{L}\frac{(u_{l}+\beta)(\epsilon_{j}-\beta)}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{M}\frac{(u_{l}+\beta)(u_{m}-\beta)}{u_{l}-u_{m}}=0

and the magnetic field components satisfy

iBx/2+ΘBy/22β{Ns/2,Ns/2+1,,Ns/2}.\displaystyle\frac{-iB^{x}/2+\Theta B^{y}/2}{\sqrt{2\beta}}\in\{-N_{s}/2,-N_{s}/2+1,\dots,N_{s}/2\}. (17)

3.2.3 Bright states

Due to AΘSΘ(β)A^{\Theta}\propto S^{\Theta}(\beta) we see that the doublets are Bethe states with one of the roots equal to β\beta. In this case one finds that

S1Θ(β)S0Θ(β)𝒮Θ(β,w1,,wM1)vΘ\displaystyle S^{-\Theta}_{1}(\beta)S^{\Theta}_{0}(\beta)\mathcal{S}^{-\Theta}(\beta,w_{1},\dots,w_{M-1})v^{\Theta}
=𝒮Θ(β,β,w1,,wM1)SMΘ(β)vΘ\displaystyle=\mathcal{S}^{-\Theta}(\beta,\beta,w_{1},\dots,w_{M-1})S^{\Theta}_{-M}(\beta)v^{\Theta}
+𝒮Θ(β,w1,,wM1){8I+2ΘSz˙(β)+m=1M116ββwm}vΘ\displaystyle\quad+\mathcal{S}^{-\Theta}(\beta,w_{1},\dots,w_{M-1})\left\{8I+2\Theta\dot{S^{z}}(\beta)+\sum_{m=1}^{M-1}\frac{16\beta}{\beta-w_{m}}\right\}v^{\Theta}
+l=1M1𝒮Θ(β,w1,,wlβ,,wM1)\displaystyle\quad+\sum_{l=1}^{M-1}\mathcal{S}^{-\Theta}(\beta,w_{1},\dots,w_{l}\to\beta,\dots,w_{M-1})
×{8I+2ΘSz(wl)Sz(β)wlβ+8wl+βwlβ+8mlM1wl+βwlwm}vΘ\displaystyle\quad\times\left\{8I+2\Theta\frac{S^{z}(w_{l})-S^{z}(\beta)}{w_{l}-\beta}+8\frac{w_{l}+\beta}{w_{l}-\beta}+8\sum_{m\neq l}^{M-1}\frac{w_{l}+\beta}{w_{l}-w_{m}}\right\}v^{\Theta}

where

Sz˙(β)=Sz(w)w|w=β.\dot{S^{z}}(\beta)=\frac{\partial S^{z}(w)}{\partial w}\bigg{|}_{w=\beta}.

We again see that this will be an eigenstate, with eigenvalue

8+2ΘzΘ(β)+m=1M116ββwm,\displaystyle 8+2\Theta z_{\Theta}^{\prime}(\beta)+\sum_{m=1}^{M-1}\frac{16\beta}{\beta-w_{m}},

if

Ns/2+iBx~/22β+ΘBz~/2=M{0,1,,Ns}\displaystyle N_{s}/2+\frac{i\tilde{B^{x}}/2}{\sqrt{2\beta}}+\Theta\tilde{B^{z}}/2=M\in\{0,1,\dots,N_{s}\}

and the roots {wm}\{w_{m}\} satisfy

8+2ΘzΘ(wl)zΘ(β)wlβ+8wl+βwlβ+8mlM1wl+βwlwm=0.\displaystyle 8+2\Theta\frac{z_{\Theta}(w_{l})-z_{\Theta}(\beta)}{w_{l}-\beta}+8\frac{w_{l}+\beta}{w_{l}-\beta}+8\sum_{m\neq l}^{M-1}\frac{w_{l}+\beta}{w_{l}-w_{m}}=0.

Hence, making the reparametrisation (12), the states

(A+(EΘBz/2)S0)|+0A+𝒮+(u1,,uM1)vB|ζ=1\displaystyle\left.\left(A^{-}+\left(E_{\Theta}-B^{z}/2\right)S_{0}^{-}\right)\ket{+}_{0}\otimes A^{+}\mathcal{S}^{+}(u_{1},\dots,u_{M-1})v_{B}^{-}\right|_{\zeta=-1} (18)

are eigenstates of HH with energy

EΘ2=(Bz)2/4+2βiBx2β+2j=1L(ϵjβ)sj2m=1M1(umβ)\displaystyle E_{\Theta}^{2}=(B^{z})^{2}/4+2\beta-iB^{x}\sqrt{2\beta}+2\sum_{j=1}^{L}(\epsilon_{j}-\beta)s_{j}-2\sum_{m=1}^{M-1}(u_{m}-\beta)

if the roots satisfy the Bethe Ansatz equations

2ul+4βiBx2β+2j=1L(ϵjβ)(ul+β)ulϵjsj2mlM1(ul+β)(umβ)ulum=02u_{l}+4\beta-iB^{x}\sqrt{2\beta}+2\sum_{j=1}^{L}\frac{(\epsilon_{j}-\beta)(u_{l}+\beta)}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{M-1}\frac{(u_{l}+\beta)(u_{m}-\beta)}{u_{l}-u_{m}}=0

and the magnetic field components satisfy

iBx/2By/22β{Ns/2,Ns/2+1,,Ns/2}.\displaystyle\frac{-iB^{x}/2-B^{y}/2}{\sqrt{2\beta}}\in\{-N_{s}/2,-N_{s}/2+1,\dots,N_{s}/2\}.

These states (18) are referred to as bright states [21] due to the central spin being entangled with the bath, in contrast to the dark states.

Before we conclude this section, we note that in the reparametrisation

AΘ=Θi2β+limuSΘ(u)|ζ=Θ=limuS1Θ(u)|ζ=Θ,\displaystyle A^{-\Theta}=\Theta i\sqrt{2\beta}+\lim_{u\to\infty}S^{-\Theta}(u)|_{\zeta=\Theta}=\lim_{u\to\infty}S_{1}^{-\Theta}(u)|_{\zeta={-\Theta}}, (19)

i.e. a root equal to β\beta corresponds to a root divergent in the reparametrisation.

3.2.4 Generic eigenstates of the charges 𝒬j\mathcal{Q}_{j}.

To describe the eigenstates of the XYXY model for generic magnetic field configurations we will use the corresponding results of [15] for the charges {𝒬j}\{\mathcal{Q}_{j}\}.

As was shown in [15], the charges

𝒬j~\displaystyle\tilde{\mathcal{Q}_{j}} =Bz~Sjz+Bx~hj+Sjx+ζ~hjSjy+hjhj+SjxSjx+hj+hjSjySjy\displaystyle=\tilde{B^{z}}S_{j}^{z}+\frac{\tilde{B^{x}}}{h_{j}^{+}}S_{j}^{x}+\frac{\tilde{\zeta}}{h_{j}^{-}}S_{j}^{y}+\frac{h_{j}^{-}}{h_{j}^{+}}S_{j}^{x}S_{j}^{x}+\frac{h_{j}^{+}}{h_{j}^{-}}S_{j}^{y}S_{j}^{y}
+2kjL1ϕjϕk(hj+hkSjxSkx+hjhk+SjySky+hk+hkSjzSkz),\displaystyle\quad+2\sum_{k\neq j}^{L}\frac{1}{\phi_{j}-\phi_{k}}(h_{j}^{+}h_{k}^{-}S_{j}^{x}S_{k}^{x}+h_{j}^{-}h_{k}^{+}S_{j}^{y}S_{k}^{y}+h_{k}^{+}h_{k}^{-}S_{j}^{z}S_{k}^{z}),

have the eigenstates constructed respectively from lowering or raising operators

|w1,,wMΘ\displaystyle\ket{w_{1},\dots,w_{M}}_{-\Theta} =𝒮Θ(w1,,wM)vΘ,\displaystyle=\mathcal{S}^{-\Theta}(w_{1},\dots,w_{M})v^{\Theta}, (20)

with respective eigenvalues

𝔮jΘ\displaystyle\mathfrak{q}^{-\Theta}_{j} =2ϕjhj+hjsj2+Θ(iBx~2βhjhj++ζ~2βhj+hj)sj\displaystyle=2\frac{\phi_{j}}{h^{+}_{j}h^{-}_{j}}s_{j}^{2}+\Theta\left(\frac{i\tilde{B^{x}}}{\sqrt{2\beta}}\frac{h^{-}_{j}}{h^{+}_{j}}+\frac{\tilde{\zeta}}{\sqrt{2\beta}}\frac{h^{+}_{j}}{h^{-}_{j}}\right)s_{j} (21)
2m=1Mhj+hjϕjwmsj+2kjLhj+hjϕjϕksjsk.\displaystyle\quad-2\sum_{m=1}^{M}\frac{h^{+}_{j}h^{-}_{j}}{\phi_{j}-w_{m}}s_{j}+2\sum_{k\neq j}^{L}\frac{h^{+}_{j}h^{-}_{j}}{\phi_{j}-\phi_{k}}s_{j}s_{k}.

The Bethe roots {wm}m=1M\{{w_{m}}\}_{m=1}^{M}, with M=j=1L2sjM=\sum_{j=1}^{L}2s_{j}, are the solutions to the set of Bethe equations

2wlΘiBx~(wlβ)+ζ~(wl+β)2β+2j=0Lwl2β2ϕjwlsj+2mlMwl2β2wlwm\displaystyle 2w_{l}-\Theta\frac{i\tilde{B^{x}}(w_{l}-\beta)+\tilde{\zeta}(w_{l}+\beta)}{\sqrt{2\beta}}+2\sum_{j=0}^{L}\frac{w_{l}^{2}-\beta^{2}}{\phi_{j}-w_{l}}s_{j}+2\sum_{m\neq l}^{M}\frac{w_{l}^{2}-\beta^{2}}{w_{l}-w_{m}}
=14([M+1Θ(iBx~+ζ~2β)]2(Bz)2)j=0L(wlϕj)2sjmlM(wlwm).\displaystyle\quad=\frac{1}{4}\left(\left[M+1-\Theta\bigg{(}\frac{i\tilde{B^{x}}+\tilde{\zeta}}{\sqrt{2\beta}}\bigg{)}\right]^{2}-(B^{z})^{2}\right)\frac{\prod_{j=0}^{L}(w_{l}-\phi_{j})^{2s_{j}}}{\prod_{m\neq l}^{M}(w_{l}-w_{m})}. (22)

As we will mainly be working with the variables of the reparametrisation (12), using also the notation of Sect. 3.1.1, we also give their corresponding expressions. Here the Bethe roots {um}\{u_{m}\} satisfy the modified Bethe equations

ul+3β+Θ(iBx2β+ζ(ul+β))\displaystyle u_{l}+3\beta+\Theta\left(iB^{x}\sqrt{2\beta}+\zeta(u_{l}+\beta)\right)
+2j=0L(ϵjβ)(ul+β)ulϵjsj2mlM(umβ)(ul+β)ulum\displaystyle+2\sum_{j=0}^{L}\frac{(\epsilon_{j}-\beta)(u_{l}+\beta)}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{M}\frac{(u_{m}-\beta)(u_{l}+\beta)}{u_{l}-u_{m}}
=14([(M+1)2β+Θ(iBx+ζ2β)]2(By)2)\displaystyle=\frac{1}{4}\left(\left[(M+1)\sqrt{2\beta}+\Theta(iB^{x}+\zeta\sqrt{2\beta})\right]^{2}-(B^{y})^{2}\right)
×j=0L(ϵjulϵjβ)2sjmlMumβumul,\displaystyle\quad\times\prod_{j=0}^{L}\left(\frac{\epsilon_{j}-u_{l}}{\epsilon_{j}-\beta}\right)^{2s_{j}}\prod_{m\neq l}^{M}\frac{u_{m}-\beta}{u_{m}-u_{l}}, (23)

while the eigenvalues 𝔮jΘ\mathfrak{q}^{-\Theta}_{j} of the charges 𝒬j\mathcal{Q}_{j}, using the result of (8), are

𝔮jΘ\displaystyle\mathfrak{q}^{-\Theta}_{j} =fj+fjsj(sj+1)ϵj+3βfj+fjsj2+Θ(iBx2βfj+fj+ζfj+fj)sj\displaystyle=\frac{f_{j}^{+}}{f_{j}^{-}}s_{j}(s_{j}+1)-\frac{\epsilon_{j}+3\beta}{f_{j}^{+}f_{j}^{-}}s_{j}^{2}+\Theta\left(iB^{x}\frac{\sqrt{2\beta}}{f_{j}^{+}f_{j}^{-}}+\zeta\frac{f_{j}^{+}}{f_{j}^{-}}\right)s_{j} (24)
+2fj+fjm=1Mumβumϵjsj+2fj+fjkjLϵkβϵjϵksjsk.\displaystyle\quad+2\frac{f_{j}^{+}}{f_{j}^{-}}\sum_{m=1}^{M}\frac{u_{m}-\beta}{u_{m}-\epsilon_{j}}s_{j}+2\frac{f_{j}^{+}}{f_{j}^{-}}\sum_{k\neq j}^{L}\frac{\epsilon_{k}-\beta}{\epsilon_{j}-\epsilon_{k}}s_{j}s_{k}.

Before moving onto the eigenstates of the central spin model, we note that for generic model parameters the states constructed by either applying the lowering operators to the highest weight state v+v^{+}, or the raising operators to the lowest weight state vv^{-}, constitute a complete set of eigenstates. This follows from quadratic identities of the charges 𝒬j\mathcal{Q}_{j} similar to those seen in [20], and extended to the eigenvalues. From these the Bethe Ansatz equations are seen to be the consistency equations for the parametrisation in terms of the roots {um}\{u_{m}\}. Completeness is then argued similarly as in [9, 10] by assuming regularisability and the one-dimensionality of the simultaneous eigenspace for generic parameters. We also observe that there is a map between the states obtained via the raising and lowering operators through the symmetry of the charges, {SzSz,ii,ζζ}\{S^{z}\to-S^{z},\;i\to-i,\;\zeta\to-\zeta\}.

3.3 Generic eigenstates of the XYXY model

We now proceed to obtain the eigenstates of the XYXY model with the limits defined in Sect. 2. Recall from (3) that we obtain the Hamiltonian by taking the limit of 𝒬0\mathcal{Q}_{0} as ϵ0\epsilon_{0}\to\infty after applying a rescaling and a constant shift. Hence the eigenstates are found from the eigenstates of the charge 𝒬0\mathcal{Q}_{0} in the above limit. As we saw in Sect. 3.2.3, the Bethe roots {um}\{u_{m}\} can diverge, so we analyse the behaviour as two cases.

Finite roots in the limit.

Assuming the roots stay finite in the limit, the raising operators become

S~Θ(u)\displaystyle\tilde{S}^{-\Theta}(u) =BxΘiBy+2i2βS0z+2j=1Lfj+(uβ)ϵju(±iSjyfj+fjSjx+i2βfjSjz)\displaystyle=B^{x}-\Theta iB^{y}+2i\sqrt{2\beta}S_{0}^{z}+2\sum_{j=1}^{L}\frac{f_{j}^{+}(u-\beta)}{\epsilon_{j}-u}\left(\pm iS_{j}^{y}-\frac{f_{j}^{+}}{f_{j}^{-}}S_{j}^{x}+i\frac{\sqrt{2\beta}}{f_{j}^{-}}S_{j}^{z}\right)
+22βj=1L(2βfjSjx+ifj+fjSjz)\displaystyle\quad+2\sqrt{2\beta}\sum_{j=1}^{L}\left(-\frac{\sqrt{2\beta}}{f_{j}^{-}}S_{j}^{x}+i\frac{f_{j}^{+}}{f_{j}^{-}}S_{j}^{z}\right)
=SΘ(u)|ζ=2S0z.\displaystyle=S^{-\Theta}(u)|_{\zeta=-2S^{z}_{0}}.

Hence the eigenstates are dark states

|u1,,uMΘ\displaystyle\ket{u_{1},\dots,u_{M}}_{\Theta} =|Θ0𝒮Θ(u1,u2,,uM)vBΘ|ζ=Θ.\displaystyle=\left.\ket{\Theta}_{0}\otimes\mathcal{S}^{-\Theta}(u_{1},u_{2},\dots,u_{M})v_{B}^{\Theta}\right|_{\zeta=-\Theta}.

However, from Sect. 3.2.2 we saw that these will in general only occur when (17) holds. So in this case the Bethe Ansatz would have to be modified to that seen in the same section. We also remark that the dark states can be seen to come from entangled states in the limit as the magnetic field configuration satisfy (17).444See also Sect. 5.2.1 in the Appendix for a heuristic discussion of this.

One of the roots diverges.

Assuming that uMu_{M}\to\infty we have

limϵ0,uMSΘ(uM)\displaystyle\lim_{\epsilon_{0},u_{M}\to\infty}S^{-\Theta}(u_{M}) =BxΘByi2κS0Θ+2i2βS0z+2j=1L(fjSjxΘifj+Sjy)\displaystyle=B^{x}-\Theta B^{y}i-2\kappa S_{0}^{-\Theta}+2i\sqrt{2\beta}S_{0}^{z}+2\sum_{j=1}^{L}\left(f_{j}^{-}S_{j}^{x}-\Theta if_{j}^{+}S_{j}^{y}\right)

where

κ=limϵ0,uM[uMϵ0].\kappa=\lim_{\epsilon_{0},u_{M}\to\infty}\left[\frac{u_{M}}{\sqrt{\epsilon_{0}}}\right].

The eigenstates become

|κ;u1,,uM1Θ\displaystyle\ket{\kappa;u_{1},\dots,u_{M-1}}_{\Theta} =[BxΘiBy+2j=1L(fjSjxΘifj+Sjy)2κS0Θ]|Θ0\displaystyle=\left[B^{x}-\Theta iB^{y}+2\sum_{j=1}^{L}\left(f_{j}^{-}S_{j}^{x}-\Theta if_{j}^{+}S_{j}^{y}\right)-2\kappa S_{0}^{-\Theta}\right]\ket{\Theta}_{0}
(SΘ(u1)Θ3i2βI)×\displaystyle\quad\otimes\left(S^{-\Theta}(u_{1})-\Theta 3i\sqrt{2\beta}I\right)\times\cdots
×(SΘ(uM1)Θ(2M1)i2βI)vBΘ|ζ=Θ\displaystyle\quad\times\left.\left(S^{-\Theta}(u_{M-1})-\Theta(2M-1)i\sqrt{2\beta}I\right)v_{B}^{\Theta}\right|_{\zeta=-\Theta}
=2[AΘκS0Θ]|Θ0𝒮Θ(u1,,uM1)vBΘ|ζ=Θ,\displaystyle=\left.2\left[A^{-\Theta}-\kappa S_{0}^{-\Theta}\right]\ket{\Theta}_{0}\otimes\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta},

using the expressions (13) for AΘA^{\Theta} in the last line. Here the roots satisfy

2ul+4β+ΘiBx2β+2j=1L(ϵjβ)(ul+β)ulϵjsj2mlM1(umβ)(ul+β)ulum\displaystyle 2u_{l}+4\beta+\Theta iB^{x}\sqrt{2\beta}+2\sum_{j=1}^{L}\frac{(\epsilon_{j}-\beta)(u_{l}+\beta)}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{M-1}\frac{(u_{m}-\beta)(u_{l}+\beta)}{u_{l}-u_{m}}
=14((M+1)2βΘ(iBx+By))((M+1)2βΘ(iBxBy))\displaystyle=\frac{1}{4}\left((M+1)\sqrt{2\beta}-\Theta(-iB^{x}+B^{y})\right)\left((M+1)\sqrt{2\beta}-\Theta(-iB^{x}-B^{y})\right)
×j=1L(ϵjulϵjβ)2sjmlM1umβumul\displaystyle\quad\times\prod_{j=1}^{L}\left(\frac{\epsilon_{j}-u_{l}}{\epsilon_{j}-\beta}\right)^{2s_{j}}\prod_{m\neq l}^{M-1}\frac{u_{m}-\beta}{u_{m}-u_{l}}

and κ\kappa satisfies

κ2Θ(iBx2β+Bzκ)2β2j=1L(ϵjβ)sj+2m=1M1(umβ)\displaystyle\kappa^{2}-\Theta\left(iB^{x}\sqrt{2\beta}+B^{z}\kappa\right)-2\beta-2\sum_{j=1}^{L}(\epsilon_{j}-\beta)s_{j}+2\sum_{m=1}^{M-1}(u_{m}-\beta)
=14([(M+1)2β+ΘiBx]2(By)2)m=1M1(umβ)j=1L(ϵjβ)2sj.\displaystyle=-\frac{1}{4}\left(\left[(M+1)\sqrt{2\beta}+\Theta iB^{x}\right]^{2}-(B^{y})^{2}\right)\frac{\prod_{m=1}^{M-1}(u_{m}-\beta)}{\prod_{j=1}^{L}(\epsilon_{j}-\beta)^{2s_{j}}}.

The energy is

E\displaystyle E =ΘBz/2κ\displaystyle=\Theta B^{z}/2-\kappa (26)

and the eigenvalues {qiΘ}\{q^{-\Theta}_{i}\} of the charges {Qi}\{Q_{i}\} are

qiΘ=\displaystyle q^{-\Theta}_{i}= 2βfi+fisi2+(ΘiBx2βfi+fi+2fi+fi)si\displaystyle-\frac{2\beta}{f_{i}^{+}f_{i}^{-}}s_{i}^{2}+\left(\Theta iB^{x}\frac{\sqrt{2\beta}}{f_{i}^{+}f_{i}^{-}}+2\frac{f_{i}^{+}}{f_{i}^{-}}\right)s_{i}
+2fi+fim=1Mumβumϵisi+2fi+fijiLϵjβϵiϵjsisj.\displaystyle+2\frac{f_{i}^{+}}{f_{i}^{-}}\sum_{m=1}^{M}\frac{u_{m}-\beta}{u_{m}-\epsilon_{i}}s_{i}+2\frac{f_{i}^{+}}{f_{i}^{-}}\sum_{j\neq i}^{L}\frac{\epsilon_{j}-\beta}{\epsilon_{i}-\epsilon_{j}}s_{i}s_{j}.

Due to the quadratic equation for κ\kappa this gives two sets of eigenstates with different energy. However, recalling the completeness argument of Sect. 3.2.4, the states with the same energy are the same. So a state constructed from lowering operators with κ=k\kappa=k corresponds to a state constructed with raising operators with κ=kBz\kappa=k-B^{z} (and vice-versa a “raised” state with κ=k\kappa=k corresponds to a “lowered” state with κ=k+Bz\kappa=k+B^{z}).

We note that, since these are the eigenstates of the charges {Qi}i=1,,L\{Q_{i}\}_{i=1,\dots,L}, projecting onto |Θ0\ket{-\Theta}_{0} for the central spin, the bath states

SΘ(u1,,uM1)vBΘ|ζ=Θ\left.S^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta}

are eigenstates of the charges {𝒬i}i=1,,L\{\mathcal{Q}_{i}\}_{i=1,\dots,L} with ζ=Θ\zeta=\Theta. We see that this is consistent with the Bethe Ansatz equations. To see that the eigenstates are also consistent with the construction via supersymmetry we rewrite them as

|κ(E);u1,,uM1Θ|Θ0AΘ𝒮Θ(u1,,uM1)vBΘ|ζ=Θ\displaystyle\left.\ket{\kappa(E);u_{1},\dots,u_{M-1}}_{\Theta}\propto\ket{\Theta}_{0}\otimes A^{-\Theta}\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta}
+(EΘBz/2)|Θ0𝒮Θ(u1,,uM1)vBΘ|ζ=Θ\displaystyle\quad+\left.(E-\Theta B^{z}/2)\ket{-\Theta}_{0}\otimes\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta} (27)

using expression (26) for the energy. Then by (19) we observe that

AΘ𝒮Θ(u1,,uM1)vBΘ|ζ=Θ\displaystyle\left.A^{-\Theta}\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta} =limu𝒮Θ(u,u1,,uM1)vBΘ|ζ=Θ.\displaystyle=\lim_{u\to\infty}\left.\mathcal{S}^{-\Theta}(u,u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=-\Theta}.

Whereas, we see from (3.2.1) that

𝒮Θ(u1,,uM1)vBΘ|ζ=Θ\displaystyle\left.\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta}

is an eigenstate of AΘAΘA^{\Theta}A^{-\Theta} with eigenvalue E2(Bz)2/4E^{2}-(B^{z})^{2}/4, so by the previous relation

(E2(Bz)2/4)𝒮Θ(u1,,uM1)vBΘ|ζ=Θ=𝒜Θ|Θ0𝒮Θ(,u1,,uM1)vBΘ|ζ=Θ.(E^{2}-(B^{z})^{2}/4)\left.\mathcal{S}^{-\Theta}(u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=\Theta}=\left.\mathcal{A}^{\Theta}\ket{\Theta}_{0}\otimes\mathcal{S}^{-\Theta}(\infty,u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=-\Theta}.

Hence we find that

|κ(E);u1,,uM1Θ((E+ΘBz/2)+𝒜Θ)|Θ0𝒮Θ(,u1,,uM1)vBΘ|ζ=Θ,\ket{\kappa(E);u_{1},\dots,u_{M-1}}_{\Theta}\propto\left((E+\Theta B^{z}/2)+\mathcal{A}^{\Theta}\right)\ket{\Theta}_{0}\otimes\left.\mathcal{S}^{-\Theta}(\infty,u_{1},\dots,u_{M-1})v_{B}^{\Theta}\right|_{\zeta=-\Theta},

which matches (3.2.1).

4 Conclusion

We have derived the XYXY central spin model Hamiltonian HXYH_{XY}, (7), and charges given in [20] as a limit of the XYZXYZ model charges with self-interaction 𝒬i\mathcal{Q}_{i} obtained by Skrypnyk [15]. This allowed the diagonalisation results found in [15] for the charges 𝒬i\mathcal{Q}_{i} via a modified Algebraic Bethe Ansatz to be used to diagonalise HXYH_{XY}. However, in order for these results to connect with those found for the XXXX model we regularised the charges 𝒬i\mathcal{Q}_{i} via a reparametrisation. Lastly, we showed that the dark states of the XXXX model without an in-plane magnetic field [5, 21] can be seen as a special case of dark states of the XYXY model for special configurations of the magnetic field.

These results open the way for finding form factors and correlation functions for the XYXY central spin model as well as probing the dynamics for large systems. The characterisation of the magnetic field configurations supporting dark states and their emergence via special limits of the parameter κ\kappa can provide experimental criteria for preparing these states with high-fidelity and determining how far a bright state is from being a product state.

Another extension of this work would be to the case of a spin-1 central spin. Here it has been shown that the XXXX central spin model is integrable for an out-of-plane magnetic field [17] and more recently for an arbitrarily oriented magnetic field [4]. Integrability for the XYXY model can also be shown through a minor modification of the charges found in [4]. In the latter work it was numerically demonstrated that dark states can emerge at asymptotically large coupling, just as seen in the central spin-1/2 model for an arbitrarily oriented magnetic field [5]. This raises the possibility of the existence of these states for certain special magnetic field configurations of the XXXX and XYXY spin-1 central spin models. However, determining whether these dark states actually exist is complicated by the fact that the relationship between the model and the known class of Richardson-Gaudin models is not yet understood.

The authors thank Pieter Claeys and Taras Skrypnyk for helpful comments that enabled progress on this research problem. The authors also acknowledge the traditional owners of the land on which The University of Queensland at St. Lucia operates, the Turrbal and Jagera people. This work was supported by the Australian Research Council through Discovery Project DP200101339.

5 Appendix

5.1 Characterisation of magnetic field configurations admitting dark states

In this section we supplement Subsect. 3.2.1 – to argue that the eigenstates given by the singlet states are the only dark states, i.e. product states of the central spin and bath spins – and Subsec. 3.2.2, to characterise when they occur.

Firstly, with regards to the singlets we note that for the eigenstates

|E=Λ|0|ψB+(E+Bz/2)|+0|ψ+B\ket{E}=\Lambda\ket{-}_{0}\otimes\ket{\psi_{-}}_{B}+\left(E+B^{z}/2\right)\ket{+}_{0}\otimes\ket{\psi_{+}}_{B}

to be dark states requires (E+Bz/2)|ψ+B|ψB.(E+B^{z}/2)\ket{\psi_{+}}_{B}\propto\ket{\psi_{-}}_{B}. If we assume that neither of these is zero this implies that |ψΘB,Θ{+,}\ket{\psi_{\Theta}}_{B},\,\Theta\in\{+,-\} are eigenstates of both charges 𝒬j|ζ=1\mathcal{Q}_{j}|_{\zeta=\mp 1} since |ψΘB\ket{\psi_{\Theta}}_{B} are respectively eigenstates of the charges 𝒬j|ζ=Θ\mathcal{Q}_{j}|_{\zeta=-\Theta} due to

A+𝒬j|ζ=1=𝒬j|ζ=+1A+.A^{+}\mathcal{Q}_{j}|_{\zeta=-1}=\mathcal{Q}_{j}|_{\zeta=+1}A^{+}.

Hence they are also eigenstates of 𝒬j|ζ=+1𝒬j|ζ=1=2Sjz\mathcal{Q}_{j}|_{\zeta=+1}-\mathcal{Q}_{j}|_{\zeta=-1}=2S_{j}^{z} for all j=1,,Lj=1,\dots,L. This determines |ψΘB,Θ{+,}\ket{\psi_{\Theta}}_{B},\,\Theta\in\{+,-\} and would lead to a contradiction if we took e.g. Bx1B^{x}\gg 1 since this holds for all BxB^{x}. This also means that dark states can only occur if Λ|ψB=0\Lambda\ket{\psi_{-}}_{B}=0 or (E+Bz/2)|ψ+B=0(E+B^{z}/2)\ket{\psi_{+}}_{B}=0 in which case the central spin state is respectively |Θ0\ket{\Theta}_{0}. Furthermore note that by the supersymmetry this means (as these are originally doublets) that |Θ0|ψΘB\ket{\Theta}_{0}\otimes\ket{\psi_{\Theta}}_{B} is a singlet.

Next we will show that these dark states only occur when

iBx/2±By/22β\displaystyle\frac{-iB^{x}/2\pm B^{y}/2}{\sqrt{2\beta}} =Ns2j=1Nnj{Ns/2,,Ns/2}\displaystyle=\frac{N_{s}}{2}-\sum_{j=1}^{N}n_{j}\in\{-N_{s}/2,\dots,N_{s}/2\} (28)

where Ns=j=1L2sjN_{s}=\sum_{j=1}^{L}2s_{j} and nj{0,1,,2sj}n_{j}\in\{0,1,\dots,2s_{j}\}. Define 𝔣j±:=(fj±fj+)/2\mathfrak{f}_{j}^{\pm}:=(f_{j}^{-}\pm f_{j}^{+})/2, so that we can write the local operators of A±A^{\pm} in terms of Sj±S_{j}^{\pm} as

fjSjx±ifj+Sjy\displaystyle f^{-}_{j}S_{j}^{x}\pm if_{j}^{+}S_{j}^{y} =𝔣j±Sj++𝔣jSj.\displaystyle=\mathfrak{f}_{j}^{\pm}S_{j}^{+}+\mathfrak{f}_{j}^{\mp}S_{j}^{-}.

If we now define operators

Ej±\displaystyle E_{j}^{\pm} =𝔣j±2𝔣jSj++Sjz+𝔣j2𝔣j±Sj,Hj±=𝔣j±𝔣jSj++𝔣j𝔣j±Sj,\displaystyle=-\frac{\sqrt{\mathfrak{f}_{j}^{\pm}}}{2\sqrt{\mathfrak{f}_{j}^{\mp}}}S_{j}^{+}+S_{j}^{z}+\frac{\sqrt{\mathfrak{f}_{j}^{\mp}}}{2\sqrt{\mathfrak{f}_{j}^{\pm}}}S_{j}^{-},\;H_{j}^{\pm}=\frac{\sqrt{\mathfrak{f}_{j}^{\pm}}}{\sqrt{\mathfrak{f}_{j}^{\mp}}}S_{j}^{+}+\frac{\sqrt{\mathfrak{f}_{j}^{\mp}}}{\sqrt{\mathfrak{f}_{j}^{\pm}}}S_{j}^{-},
Fj±\displaystyle F_{j}^{\pm} =𝔣j±2𝔣jSj++Sjz𝔣j2𝔣j±Sj,\displaystyle=\frac{\sqrt{\mathfrak{f}_{j}^{\pm}}}{2\sqrt{\mathfrak{f}_{j}^{\mp}}}S_{j}^{+}+S_{j}^{z}-\frac{\sqrt{\mathfrak{f}_{j}^{\mp}}}{2\sqrt{\mathfrak{f}_{j}^{\pm}}}S_{j}^{-},

then it can be checked that these respectively satisfy the 𝔰𝔩(2)\mathfrak{sl}(2) relations

[Hj±,Ej±]=2Ej±,[Ej±,Fj±]=2Hj±,[Hj±,Fj±]=2Fj±.\displaystyle[H_{j}^{\pm},E_{j}^{\pm}]=2E_{j}^{\pm},\quad[E_{j}^{\pm},F_{j}^{\pm}]=2H_{j}^{\pm},\quad[H_{j}^{\pm},F_{j}^{\pm}]=-2F_{j}^{\pm}.

Noting that

A±\displaystyle A^{\pm} =(Bx±iBy)I/2+j=1N𝔣j+𝔣jHj±\displaystyle=(B^{x}\pm iB^{y})I/2+\sum_{j=1}^{N}\sqrt{\mathfrak{f}^{+}_{j}\mathfrak{f}^{-}_{j}}\,H_{j}^{\pm}
=(Bx±iBy)I/2+ij=1Nβ/2Hj±\displaystyle=(B^{x}\pm iB^{y})I/2+i\sum_{j=1}^{N}\sqrt{\beta/2}\,H_{j}^{\pm}

we can respectively diagonalise A±A^{\pm} with the eigenvectors

|n1,,nN±=j=1N(Fj±)njχ±,\displaystyle\ket{n_{1},\dots,n_{N}}^{\pm}=\prod_{j=1}^{N}(F_{j}^{\pm})^{n_{j}}\chi^{\pm},

where the highest weight vector is defined as

χ±=χ1±χN±,\displaystyle\chi^{\pm}=\chi_{1}^{\pm}\otimes\cdots\chi_{N}^{\pm},
Ej±χj±=0,Hj±χj±=2sjχj±;2sjnj2sj,\displaystyle E_{j}^{\pm}\chi_{j}^{\pm}=0,\;H_{j}^{\pm}\chi_{j}^{\pm}=2s_{j}\chi_{j}^{\pm};\;-2s_{j}\leq n_{j}\leq 2s_{j},

to find that it has respective eigenvalues

(Bx±iBy)/2+i2βj=1NnjNs2i2β,2sjnj2sj.\displaystyle(B^{x}\pm iB^{y})/2+i\sqrt{2\beta}\sum_{j=1}^{N}n_{j}-\frac{N_{s}}{2}i\sqrt{2\beta},\quad-2s_{j}\leq n_{j}\leq 2s_{j}.

We see that these are zero (i.e. the corresponding states are dark states) when (28) holds.

For the following section we briefly mention the XXXX model case. Here the dark states are zero eigenvalue eigenstates of

A±=(Bx±iBy)I/2+j=1LϵjSj±.A^{\pm}=(B^{x}\pm iB^{y})I/2+\sum_{j=1}^{L}\sqrt{\epsilon_{j}}S_{j}^{\pm}.

From this we see that A±A^{\pm} is strictly upper or lower triangular if and only if Bx=By=0B^{x}=B^{y}=0, and so dark states can only occur if Bx=By=0B^{x}=B^{y}=0.

5.2 Eigenstates of the XXXX central spin model

Due to the reparametrised expressions for the eigenstates and eigenvalues of the XYZXYZ Gaudin model charges all being non-singular in the limit β0\beta\to 0, we can rederive the diagonalisation results for the XXXX model. This will also give us an idea of how the dark states emerge in the limit of the special magnetic field configurations of Subsect. 3.2.2.

Taking the limit as β0\beta\to 0, the eigenstates of the charges

𝒬i=ζSiz+BxϵiSix+ByϵiSiy+SixSix+SiySiy\displaystyle\mathcal{Q}_{i}=\zeta S^{z}_{i}+\frac{B^{x}}{\sqrt{\epsilon_{i}}}S^{x}_{i}+\frac{B^{y}}{\sqrt{\epsilon_{i}}}S^{y}_{i}+S_{i}^{x}S_{i}^{x}+S_{i}^{y}S_{i}^{y}
+2jiL1ϵiϵj(ϵiϵjSixSjx+ϵiϵjSiySjy+ϵjSizSjz)\displaystyle\qquad+2\sum_{j\neq i}^{L}\frac{1}{\epsilon_{i}-\epsilon_{j}}\left(\sqrt{\epsilon_{i}}\sqrt{\epsilon_{j}}S^{x}_{i}S^{x}_{j}+\sqrt{\epsilon_{i}}\sqrt{\epsilon_{j}}S^{y}_{i}S^{y}_{j}+\epsilon_{j}S^{z}_{i}S^{z}_{j}\right)

become

|u1,,uMΘ\displaystyle\ket{u_{1},\dots,u_{M}}_{-\Theta} =SΘ(u1)SΘ(u2)SΘ(uM)vΘ,\displaystyle=S^{-\Theta}(u_{1})S^{-\Theta}(u_{2})\cdots S^{-\Theta}(u_{M})v^{\Theta},

with Θ{+,}\Theta\in\{+,-\}. Here

SΘ(u)\displaystyle S^{-\Theta}(u) =BxΘiBy+2j=1LuϵjuϵjSjΘ\displaystyle=B^{x}-\Theta iB^{y}+2\sum_{j=1}^{L}\frac{u\sqrt{\epsilon_{j}}}{u-\epsilon_{j}}S_{j}^{-\Theta}

and the reference states vΘ=v0Θv1ΘvLΘv^{\Theta}=v_{0}^{\Theta}\otimes v_{1}^{\Theta}\otimes\cdots\otimes v_{L}^{\Theta} now satisfy

Skzvk+=skvk,\displaystyle S_{k}^{z}v_{k}^{+}=s_{k}v_{k},\; Sk+vk+=0,\displaystyle S_{k}^{+}v_{k}^{+}=0,
Skzvk=skvk,\displaystyle S_{k}^{z}v_{k}^{-}=-s_{k}v_{k},\; Skvk=0,\displaystyle S_{k}^{-}v_{k}^{-}=0,

or in other words

vΘ=|Θs1,,ΘsL.v^{\Theta}=\ket{\Theta s_{1},\dots,\Theta s_{L}}.

The Bethe roots in turn now satisfy

1+Θζ+\displaystyle 1+\Theta\zeta+ 2j=1Lϵjulϵjsj2mlMumulum\displaystyle 2\sum_{j=1}^{L}\frac{\epsilon_{j}}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{M}\frac{u_{m}}{u_{l}-u_{m}} (29)
=(Bx)2+(By)24j=1L(ul1ϵj1)2sjmlM(ul1um1)\displaystyle=-\frac{(B^{x})^{2}+(B^{y})^{2}}{4}\frac{\prod_{j=1}^{L}\left(u_{l}^{-1}-\epsilon_{j}^{-1}\right)^{2s_{j}}}{\prod_{m\neq l}^{M}(u_{l}^{-1}-u_{m}^{-1})}

with M=j=1L2sjM=\sum_{j=1}^{L}2s_{j}, while the eigenvalues {𝔮jΘ}\{\mathfrak{q}^{-\Theta}_{j}\} of the charges {𝒬j}\{\mathcal{Q}_{j}\} are

𝔮iΘ\displaystyle\mathfrak{q}^{-\Theta}_{i} =(1+Θζ)si+2m=1Mumumϵisi+2jiLϵjϵiϵjsisj.\displaystyle=\left(1+\Theta\zeta\right)s_{i}+2\sum_{m=1}^{M}\frac{u_{m}}{u_{m}-\epsilon_{i}}s_{i}+2\sum_{j\neq i}^{L}\frac{\epsilon_{j}}{\epsilon_{i}-\epsilon_{j}}s_{i}s_{j}.

To obtain the eigenstates of the XXXX central spin model we can simply use the results for the XYXY model in the limit β0\beta\to 0. For a magnetic field with a non-zero in-plane component the eigenstates are entangled states of the central spin and bath, the bright states of [21], taking the form

|κ;u1,,uM1Θ=\displaystyle\ket{\kappa;u_{1},\dots,u_{M-1}}_{\Theta}= [BxΘiBy+2j=1LϵjSjΘ2κS0Θ]|Θ0\displaystyle\left[B^{x}-\Theta iB^{y}+2\sum_{j=1}^{L}\sqrt{\epsilon_{j}}S_{j}^{-\Theta}-2\kappa S_{0}^{-\Theta}\right]\ket{\Theta}_{0}
𝒮Θ(u1,u2,,uM1)|Θs1,,ΘsL|ζ=Θ\displaystyle\otimes\left.\mathcal{S}^{-\Theta}(u_{1},u_{2},\dots,u_{M-1})\ket{\Theta s_{1},\dots,\Theta s_{L}}\right|_{\zeta=\Theta}

with the M1=j=1L2sjM-1=\sum_{j=1}^{L}2s_{j} roots satisfying the Bethe Ansatz equations

2+2j=1Lϵjulϵjsj2mlM1umulum\displaystyle 2+2\sum_{j=1}^{L}\frac{\epsilon_{j}}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{M-1}\frac{u_{m}}{u_{l}-u_{m}} =(Bx)2+(By)24j=1L(ul1ϵj1)2sjmlM1(ul1um1)\displaystyle=-\frac{(B^{x})^{2}+(B^{y})^{2}}{4}\frac{\prod_{j=1}^{L}(u_{l}^{-1}-\epsilon_{j}^{-1})^{2s_{j}}}{\prod_{m\neq l}^{M-1}(u_{l}^{-1}-u_{m}^{-1})}

and the equation for κ\kappa coming from the Bethe Ansatz equation for uMu_{M},

κ2ΘBzκ2j=1Lϵjsj+2m=1M1um\displaystyle\kappa^{2}-\Theta B^{z}\kappa-2\sum_{j=1}^{L}\epsilon_{j}s_{j}+2\sum_{m=1}^{M-1}u_{m} =(Bx)2+(By)24m=1M1umj=1L(ϵj)2sj.\displaystyle=-\frac{(B^{x})^{2}+(B^{y})^{2}}{4}\frac{\prod_{m=1}^{M-1}u_{m}}{\prod_{j=1}^{L}(\epsilon_{j})^{2s_{j}}}. (30)

The energy is

E\displaystyle E =ΘBz/2κ\displaystyle=\Theta B^{z}/2-\kappa

while the eigenvalues {qi}\{q_{i}\} of the charges {Qi}\{Q_{i}\} are

qi\displaystyle q_{i} =2si2m=1M1umϵiumsi+2jiLϵjϵiϵjsisj.\displaystyle=2s_{i}-2\sum_{m=1}^{M-1}\frac{u_{m}}{\epsilon_{i}-u_{m}}s_{i}+2\sum_{j\neq i}^{L}\frac{\epsilon_{j}}{\epsilon_{i}-\epsilon_{j}}s_{i}s_{j}.

Observe here that if κ\kappa is a solution to the first equation of (30)(\ref{eq: kappa XX}) then κ=κBz\kappa^{\prime}=\kappa-B^{z} is a solution to the second (respectively, if κ\kappa is a solution to the second equation of (30)(\ref{eq: kappa XX}) then κ=κ+Bz\kappa^{\prime}=\kappa+B^{z} is a solution to the first equation), due to the Bethe equations for the roots being the same for both. These have identical energy and charge eigenvalues. Therefore, based on the argument of the correspondence between eigenstates constructed using raising or lowering operators, they are proportional to the same eigenstate. We note these expressions match those of [3] and [21], where in the former sj=1/2s_{j}=1/2 and in the latter Bx=By=0B^{x}=B^{y}=0 .

5.2.1 Recovering the dark states for Bx=By=0B^{x}=B^{y}=0.

As argued in Sect. 5.1, in the case of a non-zero in-plane magnetic field, (Bx)2+(By)2>0(B^{x})^{2}+(B^{y})^{2}>0, there are no dark states. We find numerically (see also Sect. 5.3) that the dark states of the XXXX model with no in-plane field are recovered in the limit as (Bx)2+(By)20(B^{x})^{2}+(B^{y})^{2}\to 0 via κΘBz\kappa\to\Theta B^{z} or κ0\kappa\to 0 for some of the eigenstates. For simplicity we will only discuss the case where for all the bath spins sj=1/2s_{j}=1/2.

In the case where κΘBz\kappa\to\Theta B^{z}, the states become

|ψΘ=2[j=1LϵjSjΘ+BzS0Θ]|Θ0𝒮Θ(u1,u2,,u𝔐1)|Θs1,,ΘsL|ζ=Θ\ket{\psi_{\Theta}}=2\left[\sum_{j=1}^{L}\sqrt{\epsilon_{j}}S_{j}^{-\Theta}+B^{z}S_{0}^{-\Theta}\right]\ket{\Theta}_{0}\otimes\left.\mathcal{S}^{-\Theta}(u_{1},u_{2},\dots,u_{\mathfrak{M}-1})\ket{\Theta s_{1},\dots,\Theta s_{L}}\right|_{\zeta=\Theta}

where, from (29), the roots satisfy

1+Θ(Θ)=2+2j=1Lϵjulϵjsj2ml𝔐1umulum=0,\displaystyle\underbrace{1+\Theta\left(\Theta\right)}_{=2}+2\sum_{j=1}^{L}\frac{\epsilon_{j}}{u_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{\mathfrak{M}-1}\frac{u_{m}}{u_{l}-u_{m}}=0,

with 𝔐M\mathfrak{M}\leq M due to some of the roots becoming zero and their corresponding raising and lowering operators being asymptotically SΘ(u)c(Bx,By)IS^{-\Theta}(u)\propto c(B^{x},B^{y})I. This follows by noting that the Bethe states will become eigenstates of the total SzS^{z} operator, as the raising and lowering operators are proportional to products of total spin raising or lowering operators in the zero in-plane field limit, and since the XXXX model in this limit has a global U(1)U(1) symmetry.

Using the correspondence coming from the symmetry of the charges, {SzSz,ii,ζζ}\{S^{z}\to-S^{z},\;i\to-i,\;\zeta\to-\zeta\}, this can be written as

|ψΘ2[j=1LϵjSjΘ+BzS0Θ]|Θ0𝒮Θ(u~1,u~2,,u~1)|Θs1,,ΘsL|ζ=Θ\ket{\psi_{\Theta}}\propto 2\left[\sum_{j=1}^{L}\sqrt{\epsilon_{j}}S_{j}^{-\Theta}+B^{z}S_{0}^{-\Theta}\right]\ket{\Theta}_{0}\otimes\left.\mathcal{S}^{\Theta}(\tilde{u}_{1},\tilde{u}_{2},\dots,\tilde{u}_{\mathcal{M}-1})\ket{-\Theta s_{1},\dots,-\Theta s_{L}}\right|_{\zeta=-\Theta}

with the roots {u~m}m=11\{\tilde{u}_{m}\}_{m=1}^{\mathcal{M}-1} satisfying

1+Θ(Θ)=0+2j=1Lϵju~lϵjsj2ml1u~mu~lu~m=0.\displaystyle\underbrace{1+\Theta\left(-\Theta\right)}_{=0}+2\sum_{j=1}^{L}\frac{\epsilon_{j}}{\tilde{u}_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{\mathcal{M}-1}\frac{\tilde{u}_{m}}{\tilde{u}_{l}-\tilde{u}_{m}}=0.

Note that the bath component of the state now satisfies (see for example [21])

(j=1LϵjSjΘ)AΘ𝒮Θ(u~1,u~2,,u~1)|Θs1,,ΘsL|ζ=Θ=0,\displaystyle\underbrace{\left(\sum_{j=1}^{L}\sqrt{\epsilon_{j}}S_{j}^{-\Theta}\right)}_{A^{-\Theta}}\left.\mathcal{S}^{\Theta}(\tilde{u}_{1},\tilde{u}_{2},\dots,\tilde{u}_{\mathcal{M}-1})\ket{-\Theta s_{1},\dots,-\Theta s_{L}}\right|_{\zeta=-\Theta}=0,

giving the dark state

|ψΘ\displaystyle\ket{\psi_{\Theta}} |Θ0𝒮Θ(u~1,u~2,,u~1)|Θs1,,ΘsL|ζ=Θ.\displaystyle\propto\ket{-\Theta}_{0}\otimes\left.\mathcal{S}^{\Theta}(\tilde{u}_{1},\tilde{u}_{2},\dots,\tilde{u}_{\mathcal{M}-1})\ket{-\Theta s_{1},\dots,-\Theta s_{L}}\right|_{\zeta=-\Theta}.

As explained in Sect. 5.2, the states with κ=κ+Bz\kappa^{\prime}=\kappa+B^{z} constructed with lowering operators correspond to states with κ\kappa constructed with raising operators (and vice versa for κ=κBz\kappa^{\prime}=\kappa-B^{z} and κ\kappa). So the states constructed with raising operators for which κ0\kappa\to 0 are the same dark states as those constructed with lowering operators with the behaviour κ+Bz\kappa\to+B^{z} (and vice versa for κ0\kappa\to 0 and κBz\kappa\to-B^{z}) that we just found. However, for completeness we will sketch here the behaviour in this limit. For conciseness let ρΘ=(BxΘiBy)/2\rho_{-\Theta}=(B^{x}-\Theta iB^{y})/2 so that the state asymptotically becomes

|ψΘ|Θ0\displaystyle\ket{\psi_{\Theta}}\sim\ket{\Theta}_{0}\otimes (ρΘ+j=1LϵjSjΘ)(ρΘ+j=1Lu1ϵju1ϵjSjΘ)×\displaystyle\left(\rho_{-\Theta}+\sum_{j=1}^{L}\sqrt{\epsilon_{j}}S_{j}^{-\Theta}\right)\left(\rho_{-\Theta}+\sum_{j=1}^{L}\frac{u_{1}\sqrt{\epsilon_{j}}}{u_{1}-\epsilon_{j}}S_{j}^{\Theta}\right)\times
(ρΘ+j=1Lu𝔐1ϵju𝔐1ϵjSjΘ)|Θs1,,ΘsL\displaystyle\cdots\left(\rho_{-\Theta}+\sum_{j=1}^{L}\frac{u_{\mathfrak{M}-1}\sqrt{\epsilon_{j}}}{u_{\mathfrak{M}-1}-\epsilon_{j}}S_{j}^{\Theta}\right)\ket{\Theta s_{1},\dots,\Theta s_{L}}

where again some of the roots {ui}i=1M1\{u_{i}\}_{i=1}^{M-1} go to zero. Expanding this out, the state has the form (for si=1/2s_{i}=1/2)

|ψΘ|Θ0\displaystyle\ket{\psi_{\Theta}}\sim\ket{\Theta}_{0}\otimes (ρΘ𝔐+ρΘ𝔐1i1ci1Si1++ρΘ𝔐Ki1<<iKci1iKSi1ΘSiKΘ\displaystyle\left(\rho_{-\Theta}^{\mathfrak{M}}+\rho_{-\Theta}^{\mathfrak{M}-1}\sum_{i_{1}}c_{i_{1}}S_{i_{1}}^{\mp}+\cdots+\rho_{-\Theta}^{\mathfrak{M}-K}\sum_{i_{1}<\cdots<i_{K}}c_{i_{1}\cdots i_{K}}S_{i_{1}}^{-\Theta}\cdots S_{i_{K}}^{-\Theta}\right.
++i1<<i𝔐Lci1i𝔐Si1ΘSi𝔐Θ)|Θs1,,ΘsL\displaystyle\left.+\cdots+\sum_{i_{1}<\cdots<i_{\mathfrak{M}}}^{L}c_{i_{1}\cdots i_{\mathfrak{M}}}S_{i_{1}}^{-\Theta}\cdots S_{i_{\mathfrak{M}}}^{-\Theta}\right)\ket{\Theta s_{1},\dots,\Theta s_{L}}

where

ci1iK=j1<<jK1σSKϵiσ(1)uj1ϵiσ(2)uj1ϵiσ(2)ujK1ϵiσ(K)ujK1ϵiσ(K).c_{i_{1}\cdots i_{K}}=\sum_{j_{1}<\cdots<j_{K-1}}\sum_{\sigma\in S_{K}}\epsilon_{i_{\sigma(1)}}\frac{u_{j_{1}}\sqrt{\epsilon_{i_{\sigma(2)}}}}{u_{j_{1}}-\epsilon_{i_{\sigma(2)}}}\cdots\frac{u_{j_{K-1}}\sqrt{\epsilon_{i_{\sigma(K)}}}}{u_{j_{K}-1}-\epsilon_{i_{\sigma(K)}}}.

For a dark state with \mathcal{M} roots, all the ci1iKc_{i_{1}\cdots i_{K}} for K>K>\mathcal{M} are zero while

ci1i=σS(u~1ϵiσ(1)u~1ϵiσ(1)u~ϵiσ()u~ϵiσ()).c_{i_{1}\cdots i_{\mathcal{M}}}=\sum_{\sigma\in S_{\mathcal{M}}}\left(\frac{\tilde{u}_{1}\sqrt{\epsilon_{i_{\sigma(1)}}}}{\tilde{u}_{1}-\epsilon_{i_{\sigma(1)}}}\cdots\frac{\tilde{u}_{\mathcal{M}}\sqrt{\epsilon_{i_{\sigma(\mathcal{M})}}}}{\tilde{u}_{\mathcal{M}}-\epsilon_{i_{\sigma(\mathcal{M})}}}\right).

The state in the limit then becomes equal to the dark state

|ψΘ|Θ0(j=1Lu~1ϵju~1ϵjSjΘ)(j=1Lu~ϵju~ϵjSjΘ)|Θs1,,ΘsL\displaystyle\ket{\psi_{\Theta}}\propto\ket{\Theta}_{0}\otimes\left(\sum_{j=1}^{L}\frac{\tilde{u}_{1}\sqrt{\epsilon_{j}}}{\tilde{u}_{1}-\epsilon_{j}}S_{j}^{\Theta}\right)\cdots\left(\sum_{j=1}^{L}\frac{\tilde{u}_{\mathcal{M}}\sqrt{\epsilon_{j}}}{\tilde{u}_{\mathcal{M}}-\epsilon_{j}}S_{j}^{\Theta}\right)\ket{\Theta s_{1},\dots,\Theta s_{L}}

with 𝔐\mathcal{M}\leq\mathfrak{M} and where the roots satisfy

2j=1Lϵju~lϵjsj2mlu~mu~lu~m=0.2\sum_{j=1}^{L}\frac{\epsilon_{j}}{\tilde{u}_{l}-\epsilon_{j}}s_{j}-2\sum_{m\neq l}^{\mathcal{M}}\frac{\tilde{u}_{m}}{\tilde{u}_{l}-\tilde{u}_{m}}=0.

5.3 Emergence of dark states

In the following we show numerical examples of dark states emerging due to κ0,ΘBz\kappa\to 0,\Theta B^{z} when condition (28) is met. We set the model parameters as L=3,β=0.1,Bz=1L=3,\beta=0.1,B^{z}=1, 555This ϵ¯\underline{\epsilon} was generated in Mathematica with SeedRandom 1324 using RandomReal in the range 0.4 to 1.3.

ϵ¯={0.5869853530170386,1.270553831408777,1.2426482643150194},\displaystyle\underline{\epsilon}=\{0.5869853530170386,1.270553831408777,1.2426482643150194\},

and only look at the case where all spins are si=1/2s_{i}=1/2. Then for different ByB^{y} we change Bx0B^{x}\to 0 so that we approach conditions where dark states emerge. As we use states constructed from v+v^{+} with the lowering operators SS^{-}, we should observe for dark states that κ0,+Bz\kappa\to 0,+B^{z}. We label states by the eigenvalue q1q_{1} of Q1Q_{1}.

5.3.1 Dark states for By=L2βB^{y}=L\sqrt{2\beta}.

In this case there are only two dark states in the limit, both with the same eigenvalues for the charges but with different energies.

Bx/2B^{x}/2 κ1\kappa_{1} κ2\kappa_{2} q1q_{1}
10010^{0} 5.72938×102-5.72938\times 10^{-2} 1+5.72938×1021+5.72938\times 10^{-2} 2.57221-2.57221
10110^{-1} 6.70952×105-6.70952\times 10^{-5} 1+6.70952×1051+6.70952\times 10^{-5} 2.14310-2.14310
10210^{-2} 6.33204×107-6.33204\times 10^{-7} 1+6.33204×1071+6.33204\times 10^{-7} 2.13838-2.13838
10310^{-3} 6.32830×109-6.32830\times 10^{-9} 1+6.32830×1091+6.32830\times 10^{-9} 2.13833-2.13833
10410^{-4} 6.32829×1011-6.32829\times 10^{-11} 1+6.32829×10111+6.32829\times 10^{-11} 2.13833-2.13833

5.3.2 Dark states for By=(L2)2βB^{y}=\left(L-2\right)\sqrt{2\beta}.

In this case there are six dark states in the limit.

Bx/2B^{x}/2 κ1\kappa_{1} κ2\kappa_{2} q1q_{1}
10110^{-1} 1.03242×105-1.03242\times 10^{-5} 1+1.03242×1051+1.03242\times 10^{-5} 1.90365-1.90365
10210^{-2} 9.33203×108-9.33203\times 10^{-8} 1+9.33203×1081+9.33203\times 10^{-8} 1.89852-1.89852
10310^{-3} 9.32225×1010-9.32225\times 10^{-10} 1+9.32225×10101+9.32225\times 10^{-10} 1.89846-1.89846
10410^{-4} 9.30916×1012-9.30916\times 10^{-12} 1+9.30916×10121+9.30916\times 10^{-12} 1.89846-1.89846
Bx/2B^{x}/2 κ1\kappa_{1} κ2\kappa_{2} q1q_{1}
10110^{-1} 2.97399×103-2.97399\times 10^{-3} 1+2.97399×1051+2.97399\times 10^{-5} 9.88279×102-9.88279\times 10^{-2}
10210^{-2} 2.91182×105-2.91182\times 10^{-5} 1+2.91182×1051+2.91182\times 10^{-5} 8.68202×102-8.68202\times 10^{-2}
10310^{-3} 2.91118×107-2.91118\times 10^{-7} 1+2.91118×1071+2.91118\times 10^{-7} 8.66989×102-8.66989\times 10^{-2}
10410^{-4} 2.91117×109-2.91117\times 10^{-9} 1+2.91117×1091+2.91117\times 10^{-9} 8.66977×102-8.66977\times 10^{-2}
Bx/2B^{x}/2 κ1\kappa_{1} κ2\kappa_{2} q1q_{1}
10110^{-1} 1.07577×103-1.07577\times 10^{-3} 1+1.07577×1031+1.07577\times 10^{-3} 3.782623.78262
10210^{-2} 1.03663×105-1.03663\times 10^{-5} 1+1.03663×1051+1.03663\times 10^{-5} 3.777763.77776
10310^{-3} 1.03624×107-1.03624\times 10^{-7} 1+1.03624×1071+1.03624\times 10^{-7} 3.777713.77771
10410^{-4} 1.03623×109-1.03623\times 10^{9} 1+1.03623×1091+1.03623\times 10^{-9} 3.777713.77771

References

References

  • [1] V. Alba. Eigenstate thermalization hypothesis and integrability in quantum spin chains. Physical Review B, 91(15):155123, 2015. doi:10.1103/physrevb.91.155123.
  • [2] G. Chen, D. L. Bergman, and L. Balents. Semiclassical dynamics and long-time asymptotics of the central-spin problem in a quantum dot. Physical Review B, 76:045312, 2007. doi:10.1103/PhysRevB.76.045312.
  • [3] P. Claeys, S. De Baerdemacker, and D. Van Neck. Read-Green resonances in a topological superconductor coupled to a bath. Physical Review B, 93(22):220503, 6 2016. doi:10.1103/physrevb.93.220503.
  • [4] E. De Nadai, N. Maestracci, and A. Faribault. Integrability and dark states of the XX spin-1 central spin model in a transverse field. Physical Review B, 110(20):205427, 11 2024. doi:10.1103/physrevb.110.205427.
  • [5] C. Dimo and A. Faribault. Strong-coupling emergence of dark states in XX central spin models. Physical Review B, 105:L121404, 2022. doi:10.1103/PhysRevB.105.L121404.
  • [6] L. Dong, H. Liang, C.-K. Duan, Y. Wang, Z. Li, X. Rong, and J. Du. Optimal control of a spin bath. Physical Review A, 99:013426, 2019. doi:10.1103/PhysRevA.99.013426.
  • [7] C.-É. Fecteau, F. Berthiaume, M. Khalfoun, and P. Johnson. Richardson-Gaudin geminal wavefunctions in a Slater determinant basis. Journal of Mathematical Chemistry, 59(1):289–301, 11 2020. doi:10.1007/s10910-020-01197-0.
  • [8] M. Gaudin. Diagonalisation d'une classe d'hamiltoniens de spin. Journal de Physique, 37(10):1087–1098, 1976. doi:10.1051/jphys:0197600370100108700.
  • [9] J. Links. Completeness of the Bethe states for the rational, spin-1/2 Richardson-Gaudin system. SciPost Physics, 3:007, 2017. doi:10.21468/SciPostPhys.3.1.007.
  • [10] J. Links. On completeness of Bethe Ansatz solutions for sl(2) Richardson–Gaudin systems. In Physical and Mathematical Aspects of Symmetries, pages 239–244, Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-69164-0_36.
  • [11] J.-X. Liu, H.-L. Shi, Y.-H. Shi, X.-H. Wang, and W.-L. Yang. Entanglement and work extraction in the central-spin quantum battery. Physical Review B, 104(24):245418, 2021. doi:10.1103/physrevb.104.245418.
  • [12] O. Lychkovskiy. Entanglement and relaxation in exactly solvable models. Optics and Spectroscopy, 111(5):713–721, 2011. doi:10.1134/s0030400x11120186.
  • [13] K. Sanderson and D. Castelvecchi. Tiny ‘quantum dot’ particles win chemistry Nobel. Nature, 622(7982):227–228, 2023. doi:10.1038/d41586-023-03048-9.
  • [14] Y. Shen, P. S. Isaac, and J. Links. Ground-state energy of a Richardson-Gaudin integrable BCS model. SciPost Physics Core, 2:001, 2020. doi:10.21468/SciPostPhysCore.2.1.001.
  • [15] T. Skrypnyk. Anisotropic BCS-Richardson model and algebraic Bethe ansatz. Nuclear Physics B, 975:115679, 2022. doi:10.1016/j.nuclphysb.2022.115679.
  • [16] A. O. Sushkov, I. Lovchinsky, N. Chisholm, R. L. Walsworth, H. Park, and M. D. Lukin. Magnetic resonance detection of individual proton spins using quantum reporters. Physical Review Letters, 113:197601, 2014. doi:10.1103/PhysRevLett.113.197601.
  • [17] L. H. Tang, D. Long, A. Polkovnikov, A. Chandran, and P. W. Claeys. Integrability and quench dynamics in the spin-1 central spin XX model. SciPost Physics, 15(1), 2023. doi:10.21468/scipostphys.15.1.030.
  • [18] J. M. Taylor, A. Imamoglu, and M. D. Lukin. Controlling a mesoscopic spin environment by quantum bit manipulation. Physical Review Letters, 91(24):246802, 2003. doi:10.1103/physrevlett.91.246802.
  • [19] B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin, P. Maletinsky, A. Högele, and A. Imamoglu. Nuclear spin physics in quantum dots: An optical investigation. Reviews of Modern Physics, 85(1):79–133, 2013. doi:10.1103/revmodphys.85.79.
  • [20] J. van Tonder and J. Links. Supersymmetry and integrability for a class of XY central spin models. Journal of Physics A: Mathematical and Theoretical, 56(47):47LT01, 2023. doi:10.1088/1751-8121/ad043a.
  • [21] T. Villazon, A. Chandran, and P. W. Claeys. Integrability and dark states in an anisotropic central spin model. Physical Review Research, 2(3):032052, 2020. doi:10.1103/physrevresearch.2.032052.
  • [22] T. Villazon, P. W. Claeys, M. Pandey, A. Polkovnikov, and A. Chandran. Persistent dark states in anisotropic central spin models. Scientific Reports, 10(1), 2020. doi:10.1038/s41598-020-73015-1.
  • [23] N.Y. Yao, L. Jiang, A. V. Gorshkov, P. C. Maurer, G. Giedke, J. I. Cirac, and M. D. Lukin. Scalable architecture for a room temperature solid-state quantum information processor. Nature Communications, 3(1), 2012. doi:10.1038/ncomms1788.