This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Deformed polynuclear growth in (1+1) dimensions

Amol Aggarwal, Alexei Borodin, and Michael Wheeler
Abstract.

We introduce and study a one parameter deformation of the polynuclear growth (PNG) in (1+1)-dimensions, which we call the tt-PNG model. It is defined by requiring that, when two expanding islands merge, with probability tt they sprout another island on top of the merging location. At t=0t=0, this becomes the standard (non-deformed) PNG model that, in the droplet geometry, can be reformulated through longest increasing subsequences of uniformly random permutations or through an algorithm known as patience sorting. In terms of the latter, the tt-PNG model allows errors to occur in the sorting algorithm with probability tt.

We prove that the tt-PNG model exhibits one-point Tracy–Widom GUE asymptotics at large times for any fixed t[0,1)t\in[0,1), and one-point convergence to the narrow wedge solution of the Kardar–Parisi–Zhang (KPZ) equation as tt tends to 11. We further construct distributions for an external source that are likely to induce Baik–Ben Arous–Péché type phase transitions. The proofs are based on solvable stochastic vertex models and their connection to the determinantal point processes arising from Schur measures on partitions.

1. Introduction

The process of polynuclear growth (PNG, for short) is a mathematical model for randomly growing interfaces. If the space is one-dimensional, it can be described as follows; see the book of Meakin [42] for a broader context. The interface is represented by a continuous broken line in a plane that consists of horizontal linear segments and height 1 up or down steps between them. As time progresses, the up and down steps move with speed 1 to the left and to the right, respectively; this is interpreted as lateral growth of islands that form on the interface. When a left-moving up step and a right-moving down step meet, they disappear, which corresponds to merging of neighboring islands. In addition to that, new islands are randomly created by adding an up step and a down step separated by infinitesimal distance (that immediately starts growing). The creation, or nucleation events are space-time uncorrelated, which is represented by their space-time locations forming the two-dimensional Poisson process with intensity 1.

We will be interested in the so-called droplet PNG, where initially the interface is perfectly flat, and all nucleation events take place in the light cone of the origin {(x,τ)×+:|x|<τ}\big{\{}(x,\tau)\in\mathbb{R}\times\mathbb{R}_{+}:|x|<\tau\big{\}}. Three successive snapshots of this process are depicted in Figure 1, where the growing interface is pictured on top in red, and the cone below is the space-time locus of the nucleation events symbolized by dots. The horizontal line that runs through the cones indicates the value of time τ\tau at which the interface is drawn, with the corner corresponding to τ=x=0\tau=x=0. The full animation, created by Patrik Ferrari, can be found on his webpage https://wt.iam.uni-bonn.de/ferrari/research/animationpng.

Refer to caption
Figure 1. Snapshots of the droplet PNG in (1+1) dimensions.

We will view the interface of the droplet PNG as the graph of a function called the height function, and denote it by (x,τ)\mathfrak{H}(x,\tau); we assume that initially (x,0)0\mathfrak{H}(x,0)\equiv 0. It is not difficult to show, cf. Prähofer–Spohn [45], that for |x|<τ|x|<\tau, (x,τ)\mathfrak{H}(x,\tau) is equidistributed with the length of the longest increasing subsequence of the uniformly random permutation of size nn, where nn is itself an independent Poisson-distributed random variable with parameter 12(τ2x2)\frac{1}{2}(\tau^{2}-x^{2}).111This random variable counts the number of nucleation events that affect (x,τ)\mathfrak{H}(x,\tau), and its expectation is the area of the rectangle with opposite corners at (0,0)(0,0) and (x,τ)(x,\tau) and sides parallel to the cone walls. Two decades ago, breakthrough results by Baik–Deift–Johansson [8] on asymptotic fluctuations of the length of the longest increasing subsequences of random permutations, and by Johansson [34] on asymptotic fluctuations of the totally asymmetric simple exclusion process (TASEP), opened the gates towards understanding a close relationship between such (1+1)d random growth models and random matrix type ensembles, cf. the survey of Ferrari–Spohn [31]. The height function (x,τ)\mathfrak{H}(x,\tau) also admits an interpretation through an algorithm called patience sorting; see the survey [5] of Aldous–Diaconis (and Appendix A below).

Both PNG and TASEP belong to the so-called (conjectural) Kardar–Parisi–Zhang (KPZ) universality class of random growth models, named after the authors of seminal work [36]. Another member of this class is the KPZ stochastic partial differential equation introduced in the same paper. It is more difficult to analyze, and arguably the best known way to understanding large time asymptotics of this equation is through two one-parameter deformations of the TASEP, namely, the (partially) asymmetric exclusion process (ASEP) dating back to the work of Spitzer [49] and Macdonald–Gibbs–Pipkin [39], and the more recent qq-TASEP introduced by Borodin–Corwin in [14]. Remarkable analysis of the ASEP by Tracy-Widom [50] led to finding the form and asymptotics of certain solutions of the KPZ equation by Amir–Corwin–Quastel [6] and Sasamoto–Spohn [48]. An alternative and non-rigorous approach to such solutions via 1d delta-interaction Bose gas and replica by Dotsenko [30] and Calabrese–Le Doussal–Rosso [25], was regularized by means of the qq-TASEP in [14].

Despite the substantial progress in this area that ensued, no analogously simple deformation of the PNG process has been described so far, to the best of our knowledge. The goal of this work is to present one. It would be fitting to use the term “qq-PNG” for such a deformation. However, in what follows we choose a different letter tt to denote the deformation parameter, because of its tight connection to a similarly named parameter in the theory of symmetric functions. Correspondingly, we will speak of a tt-PNG below. The value of t=0t=0 corresponds to the standard (non-deformed) PNG process that was described above.

The definition of this (droplet) tt-PNG model is very similar to the non-deformed one. The only difference is in what happens when a right-moving up step and a left-moving down step meet. We now stipulate that, with probability 1t1-t, they disappear as before (in which case, the corresponding islands simply merge). With the complementary probability tt, simultaneously with the merging, another island of infinitesimal size is created on top of the merging place. In other words, with probability tt another nucleation is added at the space-time location of the merging event. In yet another interpretation, if we speak in the language of rays in space-time formed by the moving up/down steps (this is the language we use in the text below), merging corresponds to annihilation of two rays at their intersection, while merging with nucleation corresponds to those rays moving through each other despite their intersection. See Figure 5 below for an illustration of the behavior of these rays. There is also a concise description of the corresponding deformation of the patience sorting – one needs to introduce independent errors occuring with probability tt in choosing which pile to place a card onto; see Appendix A below.

We prove two limiting statements about large time asymptotic behavior of the height function of the tt-PNG model at a single point. In order to state them, it is more convenient to set the intensity of the Poisson process of the nucleation events to be 1t1-t. Let us denote the corresponding height function by t\mathfrak{H}_{t}.

First, we prove, in Theorem 5.3 below, that

limτ2x2[𝔱(x,τ)(τ2x2)1/221/3(τ2x2)1/6s]=FTW(s),\displaystyle\displaystyle\lim_{\tau^{2}-x^{2}\rightarrow\infty}\mathbb{P}\bigg{[}\displaystyle\frac{\mathfrak{H_{t}}(x,\tau)-(\tau^{2}-x^{2})^{1/2}}{2^{-1/3}(\tau^{2}-x^{2})^{1/6}}\leq s\bigg{]}=F_{\operatorname{TW}}(s),

where FTWF_{\operatorname{TW}} denotes the Tracy–Widom Gaussian Unitary Ensemble (GUE) distribution. At t=0t=0 this coincides with the (Poissonized version of the) Baik–Deift–Johansson theorem, and the only tt-dependence in the statement is in the definition of t\mathfrak{H}_{t}.

The second claim is convergence to a solution of the KPZ equation. To that end, we choose a small parameter ε>0\varepsilon>0 and set t=exp(ε)t=\exp(-\varepsilon). Then, assuming |x|<τ|x|<\tau, the normalized and centered height function

ε(t(ε3x,ε3τ)ε3(τ2x2))logε\displaystyle\varepsilon\big{(}\mathfrak{H}_{t}(\varepsilon^{-3}x,\varepsilon^{-3}\tau)-\varepsilon^{-3}(\tau^{2}-x^{2})\big{)}-\log\varepsilon

weakly converges, as ε0\varepsilon\to 0, to T24T(0)\frac{T}{24}-\mathcal{H}_{T}(0), where T=τ2x2T=\tau^{2}-x^{2}, and T(X)\mathcal{H}_{T}(X) denotes the (Cole–Hopf) solution of the KPZ equation with narrow wedge initial data at time TT and position XX. This is the subject of Theorem 5.4 below.

We also describe a family of distributions for additional nucleation events along one of the boundaries of the cone |x|<τ|x|<\tau that are likely to induce what is known as the Baik-Ben Arous-Péché type phase transition [7] for t\mathfrak{H}_{t}. Such phase transitions for the qq-TASEP, ASEP, and KPZ equation were described by Barraquand [10], Aggarwal–Borodin [2], and Borodin–Corwin–Ferrari [15], respectively. Additional nucleations at the two walls of the cone are often referred to as external sources, cf. Baik–Rains [9] and Imamura–Sasamoto [32].

We expect that the tt-PNG model should admit further results, such as multi-point convergence to the Airy2 process (following the ideas of Virág [51]); multi-point convergence to the narrow wedge solution of the KPZ equation (see, e.g., Corwin–Ghosal–Shen–Tsai [27] and references therein); introduction of the second external source and description of the stationary growth (cf. Aggarwal [1]); adding colors to the model in such a way that it remains integrable (cf. Borodin–Wheeler [23]); and extending the model to multiple layers via RSK-type algorithms (cf. Prähofer–Spohn [46] in the t=0t=0 case). However, we will not pursue these directions in the present text.

Our proofs are based on relatively recent techniques of solvable stochastic lattice models and their relation to the theory of symmetric functions. The tt-PNG model arises as a certain limit of a fully fused Ut(𝔰𝔩^2)U_{t}(\widehat{\mathfrak{sl}}_{2}) stochastic vertex model in a quadrant. Such models are known to be related to Macdonald measures on partitions [14] in two different ways: (a) the two have equal averages of certain observables, and (b) the height function of the vertex models is equidistributed with the length of the corresponding random partitions for the Hall–Littlewood measures; see Borodin [12] and Borodin–Bufetov–Wheeler [13]. Applying (a) to connect to the Schur measures, we are able to deduce our limit results from the Airy asymptotics of the determinantal point processes related to the non-deformed PNG process (and to the Plancherel measure on partitions), which has been well understood since the works of Baik–Deift–Johansson [8], Borodin–Okounkov–Olshanski [18], and Johansson [35]. Applying (b) tells us that, in the language of symmetric functions, our construction of the tt-PNG model corresponds to passing from Hall–Littlewood measures to those related to modified Hall–Littlewood polynomials and further considering Plancherel specializations of those. This should be compared to the role of the qq-Whittaker measures for the qq-TASEP, see [14], and Hall–Littlewood measures for the ASEP, see Bufetov–Matveev [24]. In fact, it is the focus on the modified Hall–Littlewood polynomials, which played an important role in our recent work [4], that led us to the deformed PNG.

The remainder of this text is organized as follows. In Section 2 we recall the definitions and various properties of the Ut(𝔰𝔩^2)U_{t}(\widehat{\mathfrak{sl}}_{2}) fused stochastic higher spin vertex models and their relation to Macdonald measures. In Section 3 we analyze certain limits of these fused weights, which will give rise to the tt-PNG model (possibly with boundary conditions) in Section 4. In Section 5 we use a matching result between the tt-PNG model and the Poissonized Plancherel measure to derive asymptotic results concerning the tt-PNG model, including its large scale fluctuations and its scaling limit to the Kardar–Parisi–Zhang (KPZ) equation. In Appendix A we provide an alternative interpretation for the tt-PNG model through patience sorting; in Appendix B we provide a careful proof of how the tt-PNG model appears as a limit of a stochastic fused vertex model; and in Appendix C we provide an alternative proof of an expectation matching result (2.8 below) that we use.

In what follows, we denote the q-Pochhammer symbol (a;q)k=j=0k1(1qja)(a;q)_{k}=\prod_{j=0}^{k-1}(1-q^{j}a), for any complex numbers a,qa,q\in\mathbb{C} and integer k0k\geq 0.

Acknowledgments

Amol Aggarwal was partially supported by a Clay Research Fellowship. Alexei Borodin was partially supported by the NSF grants DMS-1664619, DMS-1853981 and the Simons Investigator program. Michael Wheeler was supported by an Australian Research Council Future Fellowship, grant FT200100981.

2. Miscellaneous Preliminaries

In this section we collect various miscellaneous results concerning vertex models and Macdonald measures. In Section 2.1 we recall the definition of the fused stochastic higher spin vertex models from [29, 22] and the notion of fusion. In Section 2.2 we recall matching results from [12] between these stochastic vertex models and certain Macdonald measures.

2.1. Fused Stochastic Higher Spin Vertex Model

The vertex models we consider will be probability measures on ensembles of directed up-right paths222We will later “complement” these paths in a way that changes their orientations from up-right to up-left. on the positive quadrant >02\mathbb{Z}_{>0}^{2} that emanate from the xx and yy axes; see the right side of Figure 2 for an example. The specific forms of these probability measures are expressed through weights associated with each vertex v>02v\in\mathbb{Z}_{>0}^{2}. These weights will depend on the arrow configuration of vv, which is a quadruple (i1,j1;i2,j2)=(i1,j1;i2,j2)v(i_{1},j_{1};i_{2},j_{2})=(i_{1},j_{1};i_{2},j_{2})_{v} of non-negative integers. Here, i1i_{1} counts the number of paths vertically entering through vv. In the same way j1j_{1}, i2i_{2}, and j2j_{2} count paths horizontally entering, vertically exiting, and horizontally exiting through vv, respectively. An example of an arrow configuration is depicted on the left side of Figure 2.

Assigning values j1j_{1} to vertices on the line (1,y)(1,y) and values i1i_{1} to vertices on the line (x,1)(x,1) can be viewed as imposing boundary conditions on the vertex model. If for some sequence 𝑱=(J1,J2,)\boldsymbol{J}=(J_{1},J_{2},\ldots) of nonnegative integers we have j1=Jyj_{1}=J_{y} at (1,y)(1,y) and i1=0i_{1}=0 at (x,1)(x,1) for each x,y>0x,y>0, then JyJ_{y} paths enter through each site (0,y)(0,y) of the yy-axis, and no paths enter through any site of the xx-axis. We will refer to this particular assignment as 𝐉\boldsymbol{J}-step boundary data; in the special case when 𝑱=(1,1,)\boldsymbol{J}=(1,1,\ldots), it will be abbreviated step boundary data. See the right side of Figure 2 for an example when 𝑱=(2,2,)\boldsymbol{J}=(2,2,\ldots). In general, we will refer to any assignment of i1i_{1} to >0×{1}\mathbb{Z}_{>0}\times\{1\} and j1j_{1} to {1}×>0\{1\}\times\mathbb{Z}_{>0} as boundary data, which can be deterministic (like 𝑱\boldsymbol{J}-step) or random.

In addition to depending on the arrow configuration (i1,j1;i2,j2)(i_{1},j_{1};i_{2},j_{2}), the vertex weight at v2v\in\mathbb{Z}^{2} will also be governed by several complex parameters. The first among them consist in two pairs of rapidity parameters (u;r)(u;r) and (ξ;s)(\xi;s), which are associated with the row and column intersecting to form vv, respectively; these rapidities (u;r)(u;r) and (ξ;s)(\xi;s) may vary across the domain but remain constant along rows or columns, respectively. The last is a quantization parameter333In the framework of vertex models, this parameter is typically denoted by qq. However, it will eventually match with the parameter denoted by tt in the context of Macdonald polynomials, and so we use the notation tt here. tt, which cannot vary and is fixed throughout the model. This produces five governing parameters, but the vertex weight will in fact only depend on uu and ξ\xi through their quotient z=uξz=\frac{u}{\xi}, which is sometimes referred to as a spectral parameter. Given this notation, we can define the following vertex weights.

Definition 2.1.

Fix an arrow configuration (i1,j1,i2,j2)04(i_{1},j_{1},i_{2},j_{2})\in\mathbb{Z}_{\geq 0}^{4} and complex numbers z,r,sz,r,s\in\mathbb{C}. Assume there exists an integer J0J\geq 0 such that r2=tJr^{2}=t^{-J}. Then, define the vertex weight Lz(i1,j1;i2,j2r,s)L_{z}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}r,s) by setting

(2.1) Lz(i1,j1;i2,j2r,s)=1i1+j1=i2+j21j1J1j2J(1)i1t(i12)+i1j1zi1sj1+j2i2×(s1z;t)j2i1(s2;t)i2(tj2i1+1;t)i2(r2t1i2j2;t)i2(t;t)i2(sz;t)i2+j2(r2t1j1;t)j1j2×k=0i2tk(ti2;t)k(ti1;t)k(r2sz;t)k(tsz1;t)k(t;t)k(s2;t)k(tj2i1+1;t)k(r2t1i2j2;t)k.\displaystyle\begin{aligned} L_{z}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}r,s)&=\textbf{1}_{i_{1}+j_{1}=i_{2}+j_{2}}\textbf{1}_{j_{1}\leq J}\textbf{1}_{j_{2}\leq J}\cdot(-1)^{i_{1}}t^{\binom{i_{1}}{2}+i_{1}j_{1}}z^{i_{1}}s^{j_{1}+j_{2}-i_{2}}\\ &\qquad\times\displaystyle\frac{(s^{-1}z;t)_{j_{2}-i_{1}}(s^{2};t)_{i_{2}}(t^{j_{2}-i_{1}+1};t)_{i_{2}}(r^{-2}t^{1-i_{2}-j_{2}};t)_{i_{2}}}{(t;t)_{i_{2}}(sz;t)_{i_{2}+j_{2}}(r^{-2}t^{1-j_{1}};t)_{j_{1}-j_{2}}}\\ &\qquad\times\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}(r^{-2}sz;t)_{k}(tsz^{-1};t)_{k}}{(t;t)_{k}(s^{2};t)_{k}(t^{j_{2}-i_{1}+1};t)_{k}(r^{-2}t^{1-i_{2}-j_{2}};t)_{k}}.\end{aligned}
i2i_{2}i1i_{1}j1j_{1}j2j_{2}(u3,r3)(u_{3},r_{3})(ξ4,s4)(\xi_{4},s_{4})
Figure 2. Shown to the left is a vertex with arrow configuration (i1,j1;i2,j2)=(4,3;2,5)(i_{1},j_{1};i_{2},j_{2})=(4,3;2,5). Shown to the right is a vertex model with (2,2,)(2,2,\ldots)-step boundary data.

The weights (2.1) were originally found as equation (5.8) of [41] as entries for the higher spin RR-matrix associated with the affine quantum algebra Ut(𝔰𝔩^2)U_{t}(\widehat{\mathfrak{sl}}_{2}). They were later interpreted as weights for stochastic vertex models through Theorem 3.15 of [29] and equation (5.6) of [22]; in particular, (2.1) matches with the latter upon equating the (q,qJ)(q,q^{J}) there with (t,r2)(t,r^{-2}) here. As indicated by Theorem 3.15 of [29], the weights LzL_{z} are stochastic, meaning

(2.2) i2,j20Lz(i1,j1;i2,j2r,s)=1.\displaystyle\displaystyle\sum_{i_{2},j_{2}\geq 0}L_{z}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}r,s)=1.

Throughout, the parameters (z,r,s)(z,r,s) will be selected so that the summands in (2.2) are nonnegative.

Now let us describe how to sample a random path ensemble using the LzL_{z} weights from (2.1). We will first define probability measures n\mathbb{P}_{n} on the set of path ensembles whose vertices are all contained in triangles of the form 𝕋n={(x,y)02:x+yn}\mathbb{T}_{n}=\{(x,y)\in\mathbb{Z}_{\geq 0}^{2}:x+y\leq n\}, and then we will take a limit as nn tends to infinity to obtain the vertex models in infinite volume. The first two measures 0\mathbb{P}_{0} and 1\mathbb{P}_{1} are both supported by the empty ensembles (that have no paths).

For each positive integer n1n\geq 1, we will define n+1\mathbb{P}_{n+1} from n\mathbb{P}_{n} through the following Markovian update rules. Use n\mathbb{P}_{n} to sample a directed path ensemble n\mathcal{E}_{n} on 𝕋n\mathbb{T}_{n}. This yields arrow configurations for all vertices in the triangle 𝕋n1\mathbb{T}_{n-1}. To extend this to a path ensemble on 𝕋n+1\mathbb{T}_{n+1}, we must prescribe arrow configurations to all vertices (x,y)(x,y) on the complement 𝕋n𝕋n1\mathbb{T}_{n}\setminus\mathbb{T}_{n-1}, which is the diagonal 𝔻n={(x,y)>02:x+y=n}\mathbb{D}_{n}=\{(x,y)\in\mathbb{Z}_{>0}^{2}:x+y=n\}. Since any incoming arrow to 𝔻n\mathbb{D}_{n} is an outgoing arrow from 𝔻n1\mathbb{D}_{n-1}, n\mathcal{E}_{n} and the initial data prescribe the first two coordinates, i1i_{1} and j1j_{1}, of the arrow configuration to each (x,y)𝔻n(x,y)\in\mathbb{D}_{n}. Thus, it remains to explain how to assign the second two coordinates (i2i_{2} and j2j_{2}) to any vertex on 𝔻n\mathbb{D}_{n}, given the first two coordinates.

This is done by producing (i2,j2)(x,y)(i_{2},j_{2})_{(x,y)} from (i1,j1)(x,y)(i_{1},j_{1})_{(x,y)} according to the transition probability

(2.3) n[(i2,j2)(x,y)|(i1,j1)(x,y)]=Luxξy(i1,j1;i2,j2ry,sx),\displaystyle\mathbb{P}_{n}\big{[}(i_{2},j_{2})_{(x,y)}\big{|}(i_{1},j_{1})_{(x,y)}\big{]}=L_{u_{x}\xi_{y}}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}r_{y},s_{x}),

where tt\in\mathbb{C} is a complex number and 𝒖=(u1,u2,)\boldsymbol{u}=(u_{1},u_{2},\ldots)\subset\mathbb{C}, 𝝃=(ξ1,ξ2,)\boldsymbol{\xi}=(\xi_{1},\xi_{2},\ldots)\subset\mathbb{C}, 𝒓=(r1,r2,)\boldsymbol{r}=(r_{1},r_{2},\ldots)\subset\mathbb{C}, and 𝒔=(s1,s2,)\boldsymbol{s}=(s_{1},s_{2},\ldots)\subset\mathbb{C} are infinite sequences of complex numbers, so that ry2=tJyr_{y}^{2}=t^{-J_{y}} for each y1y\geq 1, for some sequence of nonnegative integers 𝑱=(J1,J2,)\boldsymbol{J}=(J_{1},J_{2},\ldots) (as in Definition 2.1). We assume that these parameters are chosen so that the probabilities (2.3) are all nonnegative; the stochasticity (2.2) of the LzL_{z} weights then ensures that (2.3) is indeed a probability measure.

Choosing (i2,j2)(i_{2},j_{2}) according to the above transition probabilities yields a random directed path ensemble n+1\mathcal{E}_{n+1}, now defined on 𝕋n+1\mathbb{T}_{n+1}; the probability distribution of n+1\mathcal{E}_{n+1} is then denoted by n+1\mathbb{P}_{n+1}. We define FV=limnn\mathbb{P}_{\operatorname{FV}}=\lim_{n\rightarrow\infty}\mathbb{P}_{n}.444Here, FV\operatorname{FV} stands for “fused vertex,” and below PV\operatorname{PV} will stand for “prefused vertex.” Then, FV\mathbb{P}_{\operatorname{FV}} is a probability measure on the set of directed path ensembles that depends on the parameters tt, 𝒖\boldsymbol{u}, 𝝃\boldsymbol{\xi}, 𝒓\boldsymbol{r} (equivalently, 𝑱\boldsymbol{J}), and 𝒔\boldsymbol{s}. This measure is called the fused stochastic higher spin vertex model; we denote the associated expectation by 𝔼FV\mathbb{E}_{\operatorname{FV}}.

If ry=t1/2r_{y}=t^{-1/2} (that is, Jy=1J_{y}=1), then this model is known as the (prefused) stochastic higher spin vertex model [29, 22]. By (2.1), Lz(i1,j1;i2,j2r,s)=0L_{z}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}r,s)=0 if either j1{0,1}j_{1}\notin\{0,1\} or j2{0,1}j_{2}\notin\{0,1\}. In particular, horizontal edges of this model can accommodate at most one arrow (but vertical edges may accommodate arbitrarily many).

Remark 2.2.

Although we have assumed above that (t,𝒖,𝝃,𝑱,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{J},\boldsymbol{s}) are chosen to ensure that the weights (2.3) all nonnegative, the probability under FV\mathbb{P}_{\operatorname{FV}} of any cylinder event is a rational function in these parameters. Therefore, the probability FV\mathbb{P}_{\operatorname{FV}} and expectation 𝔼FV\mathbb{E}_{\operatorname{FV}} remain well-defined by analytic continuation for any complex parameters (t,𝒖,𝝃,𝑱,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{J},\boldsymbol{s}) (with 𝑱\boldsymbol{J} consisting of nonnegative integers) when this nonnegativty does not hold.

Associated with any six-vertex ensemble \mathcal{E} on the positive quadrant >02\mathbb{Z}_{>0}^{2} is a height function 𝔥:>02\mathfrak{h}:\mathbb{Z}_{>0}^{2}\rightarrow\mathbb{Z}, defined by setting 𝔥(x,y)\mathfrak{h}(x,y) equal to the number of paths in \mathcal{E} that pass either through or below (x,y)(x,y). Observe that \mathcal{E} is determined uniquely from its height function 𝔥\mathfrak{h}.

Before proceeding, let us recall the relation between height functions for fused and prefused stochastic higher spin vertex models. To that end, we require some terminology.

Definition 2.3.

Fix sequences of real numbers 𝒖=(u1,u2,)\boldsymbol{u}=(u_{1},u_{2},\ldots) and of positive integers 𝑱=(J1,J2,)\boldsymbol{J}=(J_{1},J_{2},\ldots). For each k1k\geq 1, set J[1,k]=i=1kJiJ_{[1,k]}=\sum_{i=1}^{k}J_{i}, and define 𝒓=(r1,r2,)\boldsymbol{r}=(r_{1},r_{2},\ldots)\subset\mathbb{R} by setting ri=tJi/2r_{i}=t^{-J_{i}/2} for each i1i\geq 1. Further set 𝒗=(v1,v2,)=k=0{uk,tuk,,tJk1uk}\boldsymbol{v}=(v_{1},v_{2},\ldots)=\bigcup_{k=0}^{\infty}\{u_{k},tu_{k},\ldots,t^{J_{k}-1}u_{k}\}, that is, vi=tjukv_{i}=t^{j}u_{k} for each integer i1i\geq 1, where the indices j=j(i)[0,Jk1]j=j(i)\in[0,J_{k}-1] and k=k(i)1k=k(i)\geq 1 are such that i=J[1,k1]+ji=J_{[1,k-1]}+j. Letting 𝒕1/2=(t1/2,t1/2,)\boldsymbol{t}^{-1/2}=(t^{-1/2},t^{-1/2},\ldots), we call (𝒖;𝒓)(\boldsymbol{u};\boldsymbol{r}) the fusion of (𝒗,𝒕1/2)(\boldsymbol{v},\boldsymbol{t}^{-1/2}) with respect to 𝑱\boldsymbol{J}.

(u1,t1/2)(u_{1},t^{-1/2})(tu1,t1/2)(tu_{1},t^{-1/2})(t2u1,t1/2)(t^{2}u_{1},t^{-1/2})(u2,t1/2)(u_{2},t^{-1/2})(u3,t1/2)(u_{3},t^{-1/2})(tu3,t1/2)(tu_{3},t^{-1/2})J1J_{1}J2J_{2}J3J_{3}(u1,tJ1/2)(u_{1},t^{-J_{1}/2})(u2,tJ2/2)(u_{2},t^{-J_{2}/2})(u3,tJ3/2)(u_{3},t^{-J_{3}/2})(ξ2,s2)(\xi_{2},s_{2})(ξ2,s2)(\xi_{2},s_{2})
Figure 3. Shown to the left is a path ensemble from a prefused model, which concatenates to one for a fused model shown on the right. The joint laws of the height function at the corresponding colored vertices coincide.

Under this notation, 𝒗\boldsymbol{v} is a union of geometric progressions with ratio tt started from entries of 𝒖\boldsymbol{u}, with lengths indexed by 𝑱\boldsymbol{J}. The following lemma, essentially originating in [38] (though described in the formulation below in [29, 22, 41, 11]), states that one may view the fused stochastic higher spin vertex model with parameters (t,𝒗,𝝃,𝒓,𝒔)(t,\boldsymbol{v},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}) as obtained from the prefused one with parameters (t,𝒖,𝝃,𝒕1/2,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{t}^{-1/2},\boldsymbol{s}) by “concatenating” (or “fusing”) each family of rows corresponding to a single geometric progression. We refer to Figure 3 for a depiction.

Lemma 2.4 ([22, Section 5]).

Consider two stochastic higher spin vertex models. The first is prefused under step boundary data with parameters (t,𝐮,𝛏,𝐭1/2,𝐬)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{t}^{-1/2},\boldsymbol{s}), and the second is fused under 𝐉\boldsymbol{J}-step boundary data with parameters (t,𝐯,𝛏,𝐫,𝐬)(t,\boldsymbol{v},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}); denote their height functions by 𝔥PV\mathfrak{h}_{\operatorname{PV}} and 𝔥FV\mathfrak{h}_{\operatorname{FV}}, respectively. Suppose (𝐯,𝐫)(\boldsymbol{v},\boldsymbol{r}) is the fusion of (𝐮,𝐭1/2)(\boldsymbol{u},\boldsymbol{t}^{-1/2}) with respect to 𝐉\boldsymbol{J}. Then, for any vertices (x1,y1),(x2,y2),,(xm,ym)>02(x_{1},y_{1}),(x_{2},y_{2}),\ldots,(x_{m},y_{m})\in\mathbb{Z}_{>0}^{2}, the joint laws of {𝔥FV(xi,yi)}\big{\{}\mathfrak{h}_{\operatorname{FV}}(x_{i},y_{i})\big{\}} and {𝔥PV(xi,J[1,yi])}\big{\{}\mathfrak{h}_{\operatorname{PV}}(x_{i},J_{[1,y_{i}]})\big{\}} coincide.

2.2. Macdonald Measures and Vertex Models

We now recall a matching result between observables for the stochastic higher spin vertex models and those for certain Macdonald measures from [12]; we begin by recalling the latter measures.

Fix complex parameters q,tq,t\in\mathbb{C} with |q|,|t|<1|q|,|t|<1, and let 𝒙=(x1,x2,)\boldsymbol{x}=(x_{1},x_{2},\ldots) denote an infinite set of variables. A partition λ=(λ1,λ2,,λ)\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{\ell}) is a non-increasing sequence of positive integers. The length of any partition λ\lambda is (λ)=\ell(\lambda)=\ell, and the size of λ\lambda is |λ|=i=1λi|\lambda|=\sum_{i=1}^{\ell}\lambda_{i}. For any integer i1i\geq 1, we let mi(λ)m_{i}(\lambda) denote the multiplicity of ii in λ\lambda, that is, it denotes the number of indices j1j\geq 1 such that λj=i\lambda_{j}=i. For any integer n0n\geq 0, let 𝕐n\mathbb{Y}_{n} denote the set of partitions of size nn, and let 𝕐=n=0𝕐n\mathbb{Y}=\bigcup_{n=0}^{\infty}\mathbb{Y}_{n} denote the set of all partitions.

Let Λq,t(𝒙)\Lambda_{q,t}(\boldsymbol{x}) denote the ring of symmetric functions in 𝒙\boldsymbol{x}, with coefficients in (q,t)\mathbb{C}(q,t). Denote the power sum symmetric function pλ(𝒙)p_{\lambda}(\boldsymbol{x}) and the (q,t)(q,t)-deformed complete homogeneous symmetric function gk(𝒙;q,t)g_{k}(\boldsymbol{x};q,t) for each partition λ𝕐\lambda\in\mathbb{Y} and integer k0k\geq 0 by

pk(𝒙)=x𝒙xk;pλ(𝒙)=j=1(λ)pλj(𝒙);gk(𝒙;q,t)=λ𝕐kzλ(q,t)1pλ(𝒙),\displaystyle p_{k}(\boldsymbol{x})=\sum_{x\in\boldsymbol{x}}x^{k};\qquad p_{\lambda}(\boldsymbol{x})=\displaystyle\prod_{j=1}^{\ell(\lambda)}p_{\lambda_{j}}(\boldsymbol{x});\qquad g_{k}(\boldsymbol{x};q,t)=\displaystyle\sum_{\lambda\in\mathbb{Y}_{k}}z_{\lambda}(q,t)^{-1}p_{\lambda}(\boldsymbol{x}),

where

zλ(q,t)=i=1imi(λ)mi(λ)!j=1(λ)1qλj1tλj.\displaystyle z_{\lambda}(q,t)=\displaystyle\prod_{i=1}^{\infty}i^{m_{i}(\lambda)}m_{i}(\lambda)!\displaystyle\prod_{j=1}^{\ell(\lambda)}\displaystyle\frac{1-q^{\lambda_{j}}}{1-t^{\lambda_{j}}}.

Under this notation, {pλ(𝒙)}λ𝕐\big{\{}p_{\lambda}(\boldsymbol{x})\big{\}}_{\lambda\in\mathbb{Y}} is a linear basis of Λq,t(𝒙)\Lambda_{q,t}(\boldsymbol{x}), and {pk(𝒙)}k1\big{\{}p_{k}(\boldsymbol{x})\big{\}}_{k\geq 1} and {gk(𝒙;q,t)}k1\big{\{}g_{k}(\boldsymbol{x};q,t)\big{\}}_{k\geq 1} are both algebraic bases of Λq,t(𝒙)\Lambda_{q,t}(\boldsymbol{x}); see [40].

Next, we recall the Macdonald symmetric functions Pλ(𝒙;q,t)Λq,t(𝒙)P_{\lambda}(\boldsymbol{x};q,t)\in\Lambda_{q,t}(\boldsymbol{x}) and Qλ(𝒙;q,t)Λq,t(𝒙)Q_{\lambda}(\boldsymbol{x};q,t)\in\Lambda_{q,t}(\boldsymbol{x}), from (6.4.7) and (6.4.12) of [40], respectively. For any two sequences of variables 𝒙\boldsymbol{x} and 𝒚\boldsymbol{y}, (6.4.13) of [40] implies that Macdonald polynomials satisfy the Cauchy identity

(2.4) λ𝕐Pλ(𝒙;q,t)Qλ(𝒚;q,t)=Ωq,t(𝒙;𝒚),\displaystyle\displaystyle\sum_{\lambda\in\mathbb{Y}}P_{\lambda}(\boldsymbol{x};q,t)Q_{\lambda}(\boldsymbol{y};q,t)=\Omega_{q,t}(\boldsymbol{x};\boldsymbol{y}),

where

Ωq,t(𝒙;𝒚)=x𝒙y𝒚(txy;q)(xy;q)=exp(k=11k1tk1qkpk(𝒙)pk(𝒚)).\displaystyle\Omega_{q,t}(\boldsymbol{x};\boldsymbol{y})=\displaystyle\prod_{x\in\boldsymbol{x}}\displaystyle\prod_{y\in\boldsymbol{y}}\displaystyle\frac{(txy;q)_{\infty}}{(xy;q)_{\infty}}=\exp\Bigg{(}\displaystyle\sum_{k=1}^{\infty}\displaystyle\frac{1}{k}\displaystyle\frac{1-t^{k}}{1-q^{k}}p_{k}(\boldsymbol{x})p_{k}(\boldsymbol{y})\Bigg{)}.

To define Macdonald measures in the generality we will eventually use, we require specializations of Λq,t(𝒙)\Lambda_{q,t}(\boldsymbol{x}), which are algebra homomorphisms ρ:Λq,t(𝒙)\rho:\Lambda_{q,t}(\boldsymbol{x})\rightarrow\mathbb{C}. For any element fΛq,t(𝒙)f\in\Lambda_{q,t}(\boldsymbol{x}), we abbreviate f(ρ)=ρ(f(𝒙))f(\rho)=\rho\big{(}f(\boldsymbol{x})\big{)}; for example, Pλ(ρ;q,t)=ρ(Pλ(𝒙;q,t))P_{\lambda}(\rho;q,t)=\rho\big{(}P_{\lambda}(\boldsymbol{x};q,t)\big{)} and Qλ(ρ;q,t)=ρ(Qλ(𝒙;q,t)Q_{\lambda}(\rho;q,t)=\rho\big{(}Q_{\lambda}(\boldsymbol{x};q,t\big{)}. For any two specializations ρ1,ρ2:Λq,t(𝒙)\rho_{1},\rho_{2}:\Lambda_{q,t}(\boldsymbol{x})\rightarrow\mathbb{C}, the Cauchy identity (2.4) implies

(2.5) λ𝕐Pλ(ρ1;q,t)Qλ(ρ2;q,t)=Ωq,t(ρ1;ρ2),where Ωq,t(ρ1;ρ2)=exp(k=11k1tk1qkpk(ρ1)pk(ρ2)).\displaystyle\displaystyle\sum_{\lambda\in\mathbb{Y}}P_{\lambda}(\rho_{1};q,t)Q_{\lambda}(\rho_{2};q,t)=\Omega_{q,t}(\rho_{1};\rho_{2}),\quad\text{where $\Omega_{q,t}(\rho_{1};\rho_{2})=\exp\Bigg{(}\displaystyle\sum_{k=1}^{\infty}\displaystyle\frac{1}{k}\displaystyle\frac{1-t^{k}}{1-q^{k}}p_{k}(\rho_{1})p_{k}(\rho_{2})\Bigg{)}$}.

whenever both sides of (2.5) converge absolutely.

Under this notation, following Definition 2.2.5 of [14], we define the Macdonald measure MM=MM;ρ1,ρ2\mathbb{P}_{\operatorname{MM}}=\mathbb{P}_{\operatorname{MM};\rho_{1},\rho_{2}} on 𝕐\mathbb{Y} by setting

MM[λ]=Ωq,t(ρ1;ρ2)1Pλ(ρ1;q,t)Qλ(ρ2,q;t),\displaystyle\mathbb{P}_{\operatorname{MM}}[\lambda]=\Omega_{q,t}(\rho_{1};\rho_{2})^{-1}P_{\lambda}(\rho_{1};q,t)Q_{\lambda}(\rho_{2},q;t),

for any partition λ𝕐\lambda\in\mathbb{Y}; the associated expectation is denoted by 𝔼MM=𝔼MM;ρ1,ρ2\mathbb{E}_{\operatorname{MM}}=\mathbb{E}_{\operatorname{MM};\rho_{1},\rho_{2}}. By (2.5), the Macdonald measure is a probability measure assuming that ρ1\rho_{1} and ρ2\rho_{2} are Macdonald nonnegative, that is, if Pλ(ρ1;q,t),Qλ(ρ2;q,t)0P_{\lambda}(\rho_{1};q,t),Q_{\lambda}(\rho_{2};q,t)\geq 0 for each λ𝕐\lambda\in\mathbb{Y}. Otherwise, PMMP_{\operatorname{MM}} is a possibly signed measure that sums to one, and we can still consider probabilities and expectations with respect to it.

Remark 2.5.

Two special cases of the Macdonald measure will be of particular use to us. First, if q=0q=0, then it is the Hall–Littlewood measure, denoted by HL=HL;ρ1,ρ2\mathbb{P}_{\operatorname{HL}}=\mathbb{P}_{\operatorname{HL};\rho_{1},\rho_{2}}. Second, if q=tq=t, then it is the Schur measure of [43], denoted by SM=SM;ρ1,ρ2\mathbb{P}_{\operatorname{SM}}=\mathbb{P}_{\operatorname{SM};\rho_{1},\rho_{2}}.

Let us describe certain specializations (ρ1,ρ2)(\rho_{1},\rho_{2}) that we will use. To define a specialization ρ\rho, it suffices to fix gk(ρ;q,t)g_{k}(\rho;q,t) for each k1k\geq 1, since {gk}k1\{g_{k}\}_{k\geq 1} forms an algebraic basis of Λq,t(𝒙)\Lambda_{q,t}(\boldsymbol{x}). For a real number γ\gamma and (possibly infinite) sequences of nonnegative real numbers 𝜶=(α1,α2,)\boldsymbol{\alpha}=(\alpha_{1},\alpha_{2},\ldots) and 𝜷=(β1,β2,)\boldsymbol{\beta}=(\beta_{1},\beta_{2},\ldots) with j=1(αj+βj)<\sum_{j=1}^{\infty}(\alpha_{j}+\beta_{j})<\infty, we write ρ=(𝜶𝜷γ)\rho=(\boldsymbol{\alpha}\boldsymbol{\mid}\boldsymbol{\beta}\boldsymbol{\mid}\gamma) if the gk(ρ)g_{k}(\rho) satisfy

(2.6) k=0zkgk(ρ)=eγzj=1(tαjz;q)(αjz;q)(1+βjz).\displaystyle\displaystyle\sum_{k=0}^{\infty}z^{k}g_{k}(\rho)=e^{\gamma z}\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{(t\alpha_{j}z;q)_{\infty}}{(\alpha_{j}z;q)_{\infty}}(1+\beta_{j}z).

If γ=0\gamma=0, then we abbreviate ρ=(𝜶𝜷)\rho=(\boldsymbol{\alpha}\boldsymbol{\mid}\boldsymbol{\beta}). Under this notation, we will in this section often set ρ1=(𝒙𝟎)\rho_{1}=(\boldsymbol{x}\boldsymbol{\mid}\boldsymbol{0}), where 𝟎=(0,0,)\boldsymbol{0}=(0,0,\ldots) is the sequence of infinitely many entries equal to 0.

Remark 2.6.

Let 𝜶=𝜶ε=(εα1,εα2,)\boldsymbol{\alpha}=\boldsymbol{\alpha}_{\varepsilon}=(\varepsilon\alpha_{1},\varepsilon\alpha_{2},\ldots) be a sequence of nonnegative real numbers, dependent on a parameter ε>0\varepsilon>0, and let 𝜷=(β1,β2,)\boldsymbol{\beta}=(\beta_{1},\beta_{2},\ldots) be a sequence of nonnegative real numbers independent of ε\varepsilon. Suppose that A=εi=1αiA=\varepsilon\sum_{i=1}^{\infty}\alpha_{i}, j=1βj\sum_{j=1}^{\infty}\beta_{j}, and maxi1αi\max_{i\geq 1}\alpha_{i} are bounded above (independently of ε\varepsilon). Then, by (2.6), the specialization (𝜶ε𝜷)(\boldsymbol{\alpha}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{\beta}) converges to555By this, we mean that limε0f(𝜶ε𝜷)=f(𝟎𝜷1t1qA)\lim_{\varepsilon\rightarrow 0}f(\boldsymbol{\alpha}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{\beta})=f\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{\beta}\boldsymbol{\mid}\frac{1-t}{1-q}A\big{)}, for any symmetric function fΛq,t(𝒙)f\in\Lambda_{q,t}(\boldsymbol{x}). (𝟎𝜷1t1qA)\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{\beta}\boldsymbol{\mid}\frac{1-t}{1-q}A\big{)}, as ε\varepsilon tends to 0.

To equate observables for the stochastic higher spin vertex model and the Macdonald measure, we must impose how the parameters underlying these models are related. This is done through the following definition, which originally appeared in [12].

Definition 2.7 ([12, Definition 4.1]).

Fix sequences of parameters (t,𝒖,𝝃,𝒓,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}) for a fused stochastic higher spin vertex model, such that ri=tJi/2r_{i}=t^{-J_{i}/2} for each i1i\geq 1 and some positive integer sequence 𝑱=(J1,J2,)>0\boldsymbol{J}=(J_{1},J_{2},\ldots)\subseteq\mathbb{Z}_{>0}. Further fix an integer M1M\geq 1 and nonnegative parameter sequences (𝒙,𝜶,𝜷)(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta}) for a Macdonald measure, with 𝒙=(x1,x2,,xJ[1,N])\boldsymbol{x}=\big{(}x_{1},x_{2},\ldots,x_{J_{[1,N]}}\big{)} and j=1(αi+βj)<\sum_{j=1}^{\infty}(\alpha_{i}+\beta_{j})<\infty. We say that these parameter sequences match if the following conditions are satisfied.

  1. (1)

    We have 𝒙=i=1N{t1Jiui1,t2Jiui1,,ui1}\boldsymbol{x}=\bigcup_{i=1}^{N}\{t^{1-J_{i}}u_{i}^{-1},t^{2-J_{i}}u_{i}^{-1},\ldots,u_{i}^{-1}\}.

  2. (2)

    Denoting for any zz\in\mathbb{R} and h0h\in\mathbb{Z}_{\geq 0} the geometric progression

    𝒢(z;h)={z,tz,,th1z},\displaystyle\mathcal{G}(z;h)=\{z,tz,\ldots,t^{h-1}z\},

    we may partition 𝜶\boldsymbol{\alpha} and 𝜷\boldsymbol{\beta} into disjoint unions of geometric progressions

    𝜶=i=1m𝔊(α^i;hi);𝜷=i=1n𝔊(β^i;hi),\displaystyle\boldsymbol{\alpha}=\bigcup_{i=1}^{m}\mathfrak{G}(\widehat{\alpha}_{i};h_{i});\qquad\boldsymbol{\beta}=\bigcup_{i=1}^{n}\mathfrak{G}(\widehat{\beta}_{i};h_{i}),

    such m+n=Mm+n=M that the following holds.

    1. (a)

      For each i{1,2,,m}i\in\{1,2,\ldots,m\}, there exists j=j(i)1j=j(i)\geq 1 such that sj=thi/2s_{j}=t^{-h_{i}/2} and ξj=thi/2α^i1\xi_{j}=t^{-h_{i}/2}\widehat{\alpha}_{i}^{-1}.

    2. (b)

      For each i{1,2,,n}i\in\{1,2,\ldots,n\}, there exists k=k(i)1k=k(i)\geq 1 such that sk=qhi/2s_{k}=-q^{h_{i}/2} and ξk=qhi/2β^i1\xi_{k}=q^{-h_{i}/2}\widehat{\beta}_{i}^{-1}.

    3. (c)

      We have that {j(1),j(2),}{k(1),k(2),}={1,2,,M}\big{\{}j(1),j(2),\ldots\big{\}}\cup\big{\{}k(1),k(2),\ldots\big{\}}=\{1,2,\ldots,M\}.

In particular, under this notation, each entry of {s1,s2,,sM}\{s_{1},s_{2},\ldots,s_{M}\} is a possibly negated power of tt or qq; its positive entries index the lengths of the geometric sequences comprising 𝜶\boldsymbol{\alpha}, and its negative entries index the lengths of those comprising 𝜷\boldsymbol{\beta}. Moreover, under the prefused setting where Ji=1J_{i}=1 for each i1i\geq 1, 𝒖\boldsymbol{u} and 𝒙\boldsymbol{x} coincide as unordered sets, upon inverting each entry of the latter.

Now we have the following result, which was established in [12] (where it was stated in the prefused setting), that equates observables of the fused stochastic higher spin vertex model with a Macdonald measure, assuming their parameter sets match.

Proposition 2.8 ([12]).

Let tt\in\mathbb{C} denote a complex number and 𝐮,𝛏,𝐫,𝐬\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s} be infinite sequences of complex parameters, such that ri=tJi/2r_{i}=t^{-J_{i}/2} for some positive integer sequence 𝐉=(J1,J2,)\boldsymbol{J}=(J_{1},J_{2},\ldots). Further let M1M\geq 1 be an integer and (𝐱,𝛂,𝛃)(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta}) be parameters sequences for a Macdonald measure with specializations ρ1=(𝐱𝟎)\rho_{1}=(\boldsymbol{x}\boldsymbol{\mid}\boldsymbol{0}) and ρ2=(𝛂𝛃)\rho_{2}=(\boldsymbol{\alpha}\boldsymbol{\mid}\boldsymbol{\beta}). Assume that these parameter sequences match in the sense of Definition 2.7. Denoting K=J[1,N]K=J_{[1,N]}, we have for any ζ{1,t1,t2,}\zeta\in\mathbb{C}\setminus\{-1,-t^{-1},-t^{-2},\ldots\} that

(2.7) 𝔼FV[1(ζt𝔥(M,N);t)]=𝔼MM[1(ζ;t)j=0K1(1+ζqλKjtj)].\displaystyle\mathbb{E}_{\operatorname{FV}}\Bigg{[}\displaystyle\frac{1}{(-\zeta t^{\mathfrak{h}(M,N)};t)_{\infty}}\Bigg{]}=\mathbb{E}_{\operatorname{MM}}\Bigg{[}\displaystyle\frac{1}{(-\zeta;t)_{\infty}}\displaystyle\prod_{j=0}^{K-1}(1+\zeta q^{\lambda_{K-j}}t^{j})\Bigg{]}.

Here, the left side denotes the expectation with respect to the fused stochastic higher spin vertex model with parameters (t,𝒖,𝝃,𝒓,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}), and the right side denotes the expectation with respect to the Macdonald measure with specializations ρ1\rho_{1} and ρ2\rho_{2}.

Proof.

Corollary 4.4 of [12] establishes (2.7) in the prefused case, that is, when Ji=1J_{i}=1 for each i1i\geq 1. This, together with 2.4, establishes the result in general. ∎

The above proof of 2.8 ends up being rather heavy as it is based on finding and matching explicit integral representations of both sides of (2.7). In Appendix C below, we offer a more direct and less formulaic argument that proves 2.8 in the Schur q=tq=t case. The general Macdonald case then easily follows as well.

By setting q=0q=0 in 2.8, we deduce the following corollary that states a distributional equality between a fused stochastic higher spin vertex model and a Hall–Littlewood measure (recall 2.5). Let us mention that (a multi-dimensional extension of) this corollary could also be derived from Theorem 4.1 of [13] (or from the framework of [3]).

Corollary 2.9.

Adopt the notation of 2.8. Then, K𝔥(M,N)K-\mathfrak{h}(M,N) under the fused stochastic higher spin vertex model with parameters (t,𝐮,𝛏,𝐫,𝐬)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}) has the same law as (λ)\ell(\lambda), sampled under the Hall–Littlewood measure with specializations (ρ1,ρ2)(\rho_{1},\rho_{2}).

Proof.

By taking q=0q=0 in (2.7), we deduce for any ζ{1,t1,}\zeta\in\mathbb{C}\setminus\{-1,-t^{-1},\ldots\} that

𝔼FV[1(ζt𝔥(M,N);t)]=𝔼HL[1(ζtK(λ);t)],\displaystyle\mathbb{E}_{\operatorname{FV}}\bigg{[}\displaystyle\frac{1}{(-\zeta t^{\mathfrak{h}(M,N)};t)_{\infty}}\bigg{]}=\mathbb{E}_{\operatorname{HL}}\bigg{[}\displaystyle\frac{1}{(-\zeta t^{K-\ell(\lambda)};t)_{\infty}}\bigg{]},

where we have used 2.5 and the fact that qλKj=0q^{\lambda_{K-j}}=0 unless j<K(λ)j<K-\ell(\lambda). This, together with the tt-binomial theorem, implies

(2.8) j=0ζj(t;t)j𝔼FV[tj𝔥(M,N)]=j=0ζj(t;t)j𝔼HL[tj(K(λ))].\displaystyle\displaystyle\sum_{j=0}^{\infty}\displaystyle\frac{\zeta^{j}}{(t;t)_{j}}\mathbb{E}_{\operatorname{FV}}[t^{j\mathfrak{h}(M,N)}]=\displaystyle\sum_{j=0}^{\infty}\displaystyle\frac{\zeta^{j}}{(t;t)_{j}}\mathbb{E}_{\operatorname{HL}}[t^{j(K-\ell(\lambda))}].

In particular, the coefficients of ζj\zeta^{j} on either side of (2.8) must coincide for each j0j\geq 0; this implies that all moments of t𝔥(M,N)t^{\mathfrak{h}(M,N)} and tK(λ)t^{K-\ell(\lambda)} coincide. Since both are random variables bounded in [0,1][0,1], it follows that they have the same law; so, 𝔥(M,N)\mathfrak{h}(M,N) and K(λ)K-\ell(\lambda) have the same law, from which we deduce the corollary. ∎

3. Limits of the Fused Weights

In this section we analyze the fused vertex models from Section 2.1 under the limiting regime where the JiJ_{i} tend to \infty and the sis_{i} each tend to either 0 or \infty. We first explicitly evaluate the limiting LzL_{z} vertex weights (from (2.1)) in Section 3.1 and then explain an interpretation for the associated vertex model in Section 3.2.

3.1. Limiting Weights

In this section we consider limits of the Lz(i1,j1;i2,j2tJ/2,s)L_{z}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}t^{-J/2},s) vertex weights from (2.1) under the regimes where (J,s)=(,)(J,s)=(\infty,\infty) or (J,s)=(,0)(J,s)=(\infty,0) (see 3.2 and 3.3 below, respectively). These quantities will admit limits if both the spectral parameter is of the form z=tJsAz=t^{-J}sA for some fixed AA\in\mathbb{C} and (j1,j2)=(Jh1,Jh2)(j_{1},j_{2})=(J-h_{1},J-h_{2}) for some fixed (h1,h2)02(h_{1},h_{2})\in\mathbb{Z}_{\geq 0}^{2}. The first condition is closely related to the initial terms q1Jiui1q^{1-J_{i}}u_{i}^{-1} in the sequence 𝒙\boldsymbol{x} from the first part of Definition 2.7, and the second to the appearance of K𝔥(M,N)=J[1,N]𝔥(M,N)K-\mathfrak{h}(M,N)=J_{[1,N]}-\mathfrak{h}(M,N) in 2.9. Observe that the second condition corresponds to horizontal edges being “almost saturated” with arrows (as (2.1) implies Lz(i1,j1;i2,j2tJ/2,s)0L_{z}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}t^{-J/2},s)\neq 0 only if j1,j2Jj_{1},j_{2}\leq J). In what follows, for any complex numbers A,tA,t\in\mathbb{C} and integers i1,h1,i2,h20i_{1},h_{1},i_{2},h_{2}\geq 0 we define the quantities

(3.1) ΨA(i1,h1;i2,h2)=Ai2ti2(i2+h1)(A1ti2+h1+1;t)(th2i2+1;t)i2(t;t)h1(t;t)i2(t;t)h2×1i1h1=i2h2k=0i2(At)k(ti2;t)k(ti1;t)k(t;t)k(th2i2+1;t)k,\displaystyle\begin{aligned} \Psi_{A}(i_{1},h_{1};i_{2},h_{2})&=A^{-i_{2}}t^{i_{2}(i_{2}+h_{1})}\displaystyle\frac{(A^{-1}t^{i_{2}+h_{1}+1};t)_{\infty}(t^{h_{2}-i_{2}+1};t)_{i_{2}}(t;t)_{h_{1}}}{(t;t)_{i_{2}}(t;t)_{h_{2}}}\\ &\qquad\times\textbf{1}_{i_{1}-h_{1}=i_{2}-h_{2}}\displaystyle\sum_{k=0}^{i_{2}}(At)^{k}\displaystyle\frac{(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}}{(t;t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}},\end{aligned}

and

(3.2) ΘA(i1,h1;i2,h2)=t(i2+12)+i2h1Ai2(th2i2+1;t)i2(t;t)h1(th2i2+1A1;t)(t;t)i2(t;t)h2×1i1+j1=i2+j2k=0i2tk(ti1;t)k(ti2;t)k(A;t)k(t;t)k(th2i2+1;t)k.\displaystyle\begin{aligned} \Theta_{A}(i_{1},h_{1};i_{2},h_{2})&=t^{\binom{i_{2}+1}{2}+i_{2}h_{1}}A^{-i_{2}}\displaystyle\frac{(t^{h_{2}-i_{2}+1};t)_{i_{2}}(t;t)_{h_{1}}}{(-t^{h_{2}-i_{2}+1}A^{-1};t)_{\infty}(t;t)_{i_{2}}(t;t)_{h_{2}}}\\ &\qquad\times\textbf{1}_{i_{1}+j_{1}=i_{2}+j_{2}}\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{1}};t)_{k}(t^{-i_{2}};t)_{k}(-A;t)_{k}}{(t;t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}}.\end{aligned}
Remark 3.1.

Observe for any real numbers t(0,1)t\in(0,1) and A>0A>0, and any integers i1,h1,i2,h20i_{1},h_{1},i_{2},h_{2}\geq 0, that ΨA(i1,h1;i2,h2)0\Psi_{A}(i_{1},h_{1};i_{2},h_{2})\geq 0. Indeed, for ΨA\Psi_{A}, the only possibly negative factors on the right side of (4.1) are given by (th2i2+1;t)i2(th2i2+1;t)k1=(th2i2+k+1;t)i2k(t^{h_{2}-i_{2}+1};t)_{i_{2}}(t^{h_{2}-i_{2}+1};t)_{k}^{-1}=(t^{h_{2}-i_{2}+k+1};t)_{i_{2}-k} and (ti2;t)k(ti1;t)k(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}. The first is nonzero only if h2i2+k0h_{2}-i_{2}+k\geq 0, in which case it is positive; the second is also nonnegative since (ti1;t)k(t^{-i_{1}};t)_{k} and (ti2;t)k(t^{-i_{2}};t)_{k} are both nonzero only if kmin{i1,i2}k\leq\min\{i_{1},i_{2}\}, in which case they are of the same sign (1)k(-1)^{k}. Similar reasoning indicates that ΘA(i1,h1;i2,h2)0\Theta_{A}(i_{1},h_{1};i_{2},h_{2})\geq 0 under the same conditions.

Lemma 3.2.

For any complex numbers A,tA,t\in\mathbb{C} and integers i1,h1,i2,h20i_{1},h_{1},i_{2},h_{2}\in\mathbb{Z}_{\geq 0}, we have

limJ(limsLAs/tJ\displaystyle\displaystyle\lim_{J\rightarrow\infty}\bigg{(}\displaystyle\lim_{s\rightarrow\infty}L_{As/t^{J}} (i1,Jh1;i2,Jh2qJ/2,s))=ΨA(i1,h1;i2,h2),\displaystyle(i_{1},J-h_{1};i_{2},J-h_{2}\boldsymbol{\mid}q^{-J/2},s)\bigg{)}=\Psi_{A}(i_{1},h_{1};i_{2},h_{2}),

where ΨA\Psi_{A} is defined by (3.1).

Proof.

Throughout, we abbreviate L=LAs/tJ(i1,Jh1;i2,Jh2qJ/2,s)L=L_{As/t^{J}}(i_{1},J-h_{1};i_{2},J-h_{2}\boldsymbol{\mid}q^{-J/2},s). If i1h1i2h2i_{1}-h_{1}\neq i_{2}-h_{2}, then L=0L=0 due to the factor of 1i1+j1=i2+j2\textbf{1}_{i_{1}+j_{1}=i_{2}+j_{2}} in (2.1), in which case the lemma holds.

Thus, we will assume in what follows that i1h1=i2h2i_{1}-h_{1}=i_{2}-h_{2}. Then, setting (u,j1,j2)=(AstJ,Jh1,Jh2)(u,j_{1},j_{2})=(Ast^{-J},J-h_{1},J-h_{2}) in the definition (2.1) of the LzL_{z} weights gives

L\displaystyle L =(1)i1t(i12)i1h1Ai1s2J2h2(AtJ;t)Jh2i1(t;t)i2(As2tJ;t)i2+Jh2(th1+1;t)h2h1(tJh2i1+1;t)i2\displaystyle=(-1)^{i_{1}}t^{\binom{i_{1}}{2}-i_{1}h_{1}}\displaystyle\frac{A^{i_{1}}s^{2J-2h_{2}}(At^{-J};t)_{J-h_{2}-i_{1}}}{(t;t)_{i_{2}}(As^{2}t^{-J};t)_{i_{2}+J-h_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}(t^{J-h_{2}-i_{1}+1};t)_{i_{2}}
×(s2;t)i2(th2i2+1;t)i2k=0i2tk(ti2;t)k(ti1;t)k(As2;t)k(tJ+1A1;t)k(t;t)k(s2;t)k(tJh2i1+1;t)k(th2i2+1;t)k,\displaystyle\qquad\times(s^{2};t)_{i_{2}}(t^{h_{2}-i_{2}+1};t)_{i_{2}}\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}(As^{2};t)_{k}(t^{J+1}A^{-1};t)_{k}}{(t;t)_{k}(s^{2};t)_{k}(t^{J-h_{2}-i_{1}+1};t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}},

where we have used the fact that i1+j1+j2i2=2j2=2J2h2i_{1}+j_{1}+j_{2}-i_{2}=2j_{2}=2J-2h_{2}. Letting ss tend to \infty and using the facts that

lims(As2tJ;t)i2+Jh2(As2tJ)i2+Jh2t(i2+Jh22)=1;lims(s2;t)i2(s2)i2t(i22)=1;lims(As2;t)k(s2;t)k=Ak,\displaystyle\displaystyle\lim_{s\rightarrow\infty}\displaystyle\frac{(As^{2}t^{-J};t)_{i_{2}+J-h_{2}}}{(As^{2}t^{-J})^{i_{2}+J-h_{2}}t^{\binom{i_{2}+J-h_{2}}{2}}}=1;\qquad\displaystyle\lim_{s\rightarrow\infty}\displaystyle\frac{(s^{2};t)_{i_{2}}}{(-s^{2})^{i_{2}}t^{\binom{i_{2}}{2}}}=1;\qquad\displaystyle\lim_{s\rightarrow\infty}\displaystyle\frac{(As^{2};t)_{k}}{(s^{2};t)_{k}}=A^{k},

we find

(3.3) limsL=(1)i1+J+h2t(i12)+(i22)i1h1Ai1i2J+h2(AtJ;t)Jh2i1(th2i2+1;t)i2tJ(h2i2J)+(i2+Jh22)(t;t)i2(th1+1;t)h2h1×(tJh2i1+1;t)i2k=0i2(At)k(ti2;t)k(ti1;t)k(tJ+1A1;t)k(t;t)k(tJh2i1+1;t)k(th2i2+1;t)k,\displaystyle\begin{aligned} \displaystyle\lim_{s\rightarrow\infty}L&=(-1)^{i_{1}+J+h_{2}}t^{\binom{i_{1}}{2}+\binom{i_{2}}{2}-i_{1}h_{1}}\displaystyle\frac{A^{i_{1}-i_{2}-J+h_{2}}(At^{-J};t)_{J-h_{2}-i_{1}}(t^{h_{2}-i_{2}+1};t)_{i_{2}}}{t^{J(h_{2}-i_{2}-J)+\binom{i_{2}+J-h_{2}}{2}}(t;t)_{i_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}\\ &\qquad\times(t^{J-h_{2}-i_{1}+1};t)_{i_{2}}\displaystyle\sum_{k=0}^{i_{2}}(At)^{k}\displaystyle\frac{(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}(t^{J+1}A^{-1};t)_{k}}{(t;t)_{k}(t^{J-h_{2}-i_{1}+1};t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}},\end{aligned}

Next, we let JJ tend to \infty. Since for any k0k\geq 0 we have

(AtJ;t)Jk=(A)Jkt(k+12)(J+12)(A1tk+1;t)Jk,\displaystyle(At^{-J};t)_{J-k}=(-A)^{J-k}t^{\binom{k+1}{2}-\binom{J+1}{2}}(A^{-1}t^{k+1};t)_{J-k},

we have

limJ(AtJ;t)Jh2i1(A)Jh2i1t(i1+h2+12)(J+12)(ti1+h2+1A1;t)=1.\displaystyle\displaystyle\lim_{J\rightarrow\infty}\displaystyle\frac{(At^{-J};t)_{J-h_{2}-i_{1}}}{(-A)^{J-h_{2}-i_{1}}t^{\binom{i_{1}+h_{2}+1}{2}-\binom{J+1}{2}}(t^{i_{1}+h_{2}+1}A^{-1};t)_{\infty}}=1.

Inserting this into (3.3) gives

limJ(limsL)\displaystyle\displaystyle\lim_{J\rightarrow\infty}\Big{(}\displaystyle\lim_{s\rightarrow\infty}L\Big{)} =Ai2t(i12)+(i22)i1h1t(i1+h2+12)(J+12)(A1ti1+h2+1;t)(th2i2+1;t)i2tJ(h2i2J)+(i2+Jh22)(t;t)i2(th1+1;t)h2h1\displaystyle=A^{-i_{2}}t^{\binom{i_{1}}{2}+\binom{i_{2}}{2}-i_{1}h_{1}}\displaystyle\frac{t^{\binom{i_{1}+h_{2}+1}{2}-\binom{J+1}{2}}(A^{-1}t^{i_{1}+h_{2}+1};t)_{\infty}(t^{h_{2}-i_{2}+1};t)_{i_{2}}}{t^{J(h_{2}-i_{2}-J)+\binom{i_{2}+J-h_{2}}{2}}(t;t)_{i_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}
×k=0i2(At)k(ti2;t)k(ti1;t)k(t;t)k(th2i2+1;t)k.\displaystyle\qquad\times\displaystyle\sum_{k=0}^{i_{2}}(At)^{k}\displaystyle\frac{(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}}{(t;t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}}.

Since

J(i2h2+J)(J+12)(i2+Jh22)=(i2h22)=(i1h12);\displaystyle J(i_{2}-h_{2}+J)-\binom{J+1}{2}-\binom{i_{2}+J-h_{2}}{2}=-\binom{i_{2}-h_{2}}{2}=-\binom{i_{1}-h_{1}}{2};
(i12)i1h1(i1h12)=(h1+12);i1+h2=i2+h1,\displaystyle\binom{i_{1}}{2}-i_{1}h_{1}-\binom{i_{1}-h_{1}}{2}=-\binom{h_{1}+1}{2};\qquad i_{1}+h_{2}=i_{2}+h_{1},

it follows that

(3.4) limJ(limsL)=Ai2t(i22)+(i2+h1+12)(h1+12)(A1ti1+h2+1;t)(th2i2+1;t)i2(t;t)i2(th1+1;t)h2h1×k=0i2(At)k(ti2;t)k(ti1;t)k(t;t)k(th2i2+1;t)k.\displaystyle\begin{aligned} \displaystyle\lim_{J\rightarrow\infty}\Big{(}\displaystyle\lim_{s\rightarrow\infty}L\Big{)}&=A^{-i_{2}}t^{\binom{i_{2}}{2}+\binom{i_{2}+h_{1}+1}{2}-\binom{h_{1}+1}{2}}\displaystyle\frac{(A^{-1}t^{i_{1}+h_{2}+1};t)_{\infty}(t^{h_{2}-i_{2}+1};t)_{i_{2}}}{(t;t)_{i_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}\\ &\qquad\times\displaystyle\sum_{k=0}^{i_{2}}(At)^{k}\displaystyle\frac{(t^{-i_{2}};t)_{k}(t^{-i_{1}};t)_{k}}{(t;t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}}.\end{aligned}

By the equalities

(i22)+(i2+h1+12)(h1+12)=i2(i2+h1);(th1+1;t)h2h1=(t;t)h2(t;t)h1,\displaystyle\binom{i_{2}}{2}+\binom{i_{2}+h_{1}+1}{2}-\binom{h_{1}+1}{2}=i_{2}(i_{2}+h_{1});\qquad(t^{h_{1}+1};t)_{h_{2}-h_{1}}=\displaystyle\frac{(t;t)_{h_{2}}}{(t;t)_{h_{1}}},

(3.4) implies the lemma. ∎

Lemma 3.3.

We have that

limJ(lims0LA/stJ(i1,Jh1;i2,Jh2qJ/2,s))=ΘA(i1,h1;i2,h2),\displaystyle\displaystyle\lim_{J\rightarrow\infty}\bigg{(}\displaystyle\lim_{s\rightarrow 0}L_{-A/st^{J}}(i_{1},J-h_{1};i_{2},J-h_{2}\boldsymbol{\mid}q^{-J/2},s)\bigg{)}=\Theta_{A}(i_{1},h_{1};i_{2},h_{2}),

where ΘA\Theta_{A} is defined by (3.2).

Proof.

Similarly to in the proof of 3.2, we abbreviate L=LA/stJ(i1,Jh1;i2,Jh2)L=L_{-A/st^{J}}(i_{1},J-h_{1};i_{2},J-h_{2}). Again, if i1h1i2h2i_{1}-h_{1}\neq i_{2}-h_{2}, then L=0L=0 due to the factor of 1i1+j1=i2+j2\textbf{1}_{i_{1}+j_{1}=i_{2}+j_{2}} in (2.1), so the lemma holds.

Thus, we assume in what follows that i1h1=i2h2i_{1}-h_{1}=i_{2}-h_{2}. Then, setting (u,j1,j2)=(As1tJ,Jh1,Jh2)(u,j_{1},j_{2})=(-As^{-1}t^{-J},J-h_{1},J-h_{2}) in (2.1), we deduce

L\displaystyle L =t(i12)i1h1Ai1s2J2i12h2(s2tJA;t)Jh2i1(th2i2+1;t)i2(t;t)i2(tJA;t)Jh2+i2(th1+1;t)h2h1\displaystyle=t^{\binom{i_{1}}{2}-i_{1}h_{1}}A^{i_{1}}s^{2J-2i_{1}-2h_{2}}\displaystyle\frac{(-s^{-2}t^{-J}A;t)_{J-h_{2}-i_{1}}(t^{h_{2}-i_{2}+1};t)_{i_{2}}}{(t;t)_{i_{2}}(-t^{-J}A;t)_{J-h_{2}+i_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}
×(s2;t)i2(tJi1h2+1;t)i2k=0i2tk(ti1;t)k(ti2;t)k(A;t)k(s2tJ+1A1;t)k(t;t)k(s2;t)k(tJi1h2+1;t)k(th2i2+1;t)k,\displaystyle\qquad\times(s^{2};t)_{i_{2}}(t^{J-i_{1}-h_{2}+1};t)_{i_{2}}\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{1}};t)_{k}(t^{-i_{2}};t)_{k}(-A;t)_{k}(s^{2}t^{J+1}A^{-1};t)_{k}}{(t;t)_{k}(s^{2};t)_{k}(t^{J-i_{1}-h_{2}+1};t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}},

where we have used the fact that i1h1=i2h2i_{1}-h_{1}=i_{2}-h_{2}. Letting ss tend to 0 and using the fact that

lims0s2J2i12h2(s2tJA;t)Jh2i1=tJ(i1+h2J)+(Jh2i12)AJh2i1,\displaystyle\displaystyle\lim_{s\rightarrow 0}s^{2J-2i_{1}-2h_{2}}(-s^{-2}t^{-J}A;t)_{J-h_{2}-i_{1}}=t^{J(i_{1}+h_{2}-J)+\binom{J-h_{2}-i_{1}}{2}}A^{J-h_{2}-i_{1}},

we obtain

lims0L\displaystyle\displaystyle\lim_{s\rightarrow 0}L =t(i12)i1h1+J(i1+h2J)+(Ji1h22)AJh2(th2i2+1;t)i2(t;t)i2(tJA;t)Jh2+i2(th1+1;t)h2h1\displaystyle=t^{\binom{i_{1}}{2}-i_{1}h_{1}+J(i_{1}+h_{2}-J)+\binom{J-i_{1}-h_{2}}{2}}A^{J-h_{2}}\displaystyle\frac{(t^{h_{2}-i_{2}+1};t)_{i_{2}}}{(t;t)_{i_{2}}(-t^{-J}A;t)_{J-h_{2}+i_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}
×(tJi1h2+1;t)i2k=0i2tk(ti1;t)k(ti2;t)k(A;t)k(t;t)k(tJi1h2+1;t)k(th2i2+1;t)k.\displaystyle\qquad\times(t^{J-i_{1}-h_{2}+1};t)_{i_{2}}\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{1}};t)_{k}(t^{-i_{2}};t)_{k}(-A;t)_{k}}{(t;t)_{k}(t^{J-i_{1}-h_{2}+1};t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}}.

Next letting JJ tend to \infty and using the facts that

limJAJtJ(Jh2+i2)(Jh2+i22)(tJA;t)Jh2+i2=Ai2h2(th2i2+1A1;t);\displaystyle\displaystyle\lim_{J\rightarrow\infty}A^{-J}t^{J(J-h_{2}+i_{2})-\binom{J-h_{2}+i_{2}}{2}}(-t^{-J}A;t)_{J-h_{2}+i_{2}}=A^{i_{2}-h_{2}}(-t^{h_{2}-i_{2}+1}A^{-1};t)_{\infty};
(i12)+(Ji1h22)(Jh2+i22)=(i2+12)+h1(i1+i2)J(i1+i2),\displaystyle\binom{i_{1}}{2}+\binom{J-i_{1}-h_{2}}{2}-\binom{J-h_{2}+i_{2}}{2}=\binom{i_{2}+1}{2}+h_{1}(i_{1}+i_{2})-J(i_{1}+i_{2}),

where the first holds since

(tJA;t)Jk=tJ(kJ)+(Jk2)AJk(tk+1A1;t)Jk,\displaystyle(-t^{-J}A;t)_{J-k}=t^{J(k-J)+\binom{J-k}{2}}A^{J-k}(-t^{k+1}A^{-1};t)_{J-k},

for any integer kk, and the second holds since i1h1=i2h2i_{1}-h_{1}=i_{2}-h_{2}, we deduce

limJ(lims0L)\displaystyle\displaystyle\lim_{J\rightarrow\infty}\Big{(}\displaystyle\lim_{s\rightarrow 0}L\Big{)} =t(i2+12)+i2h1Ai2(th2i2+1;t)i2(th2i2+1A1;t)(t;t)i2(th1+1;t)h2h1\displaystyle=t^{\binom{i_{2}+1}{2}+i_{2}h_{1}}A^{-i_{2}}\displaystyle\frac{(t^{h_{2}-i_{2}+1};t)_{i_{2}}}{(-t^{h_{2}-i_{2}+1}A^{-1};t)_{\infty}(t;t)_{i_{2}}(t^{h_{1}+1};t)_{h_{2}-h_{1}}}
×k=0i2tk(ti1;t)k(ti2;t)k(A;t)k(t;t)k(th2i2+1;t)k.\displaystyle\qquad\times\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{1}};t)_{k}(t^{-i_{2}};t)_{k}(-A;t)_{k}}{(t;t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}}.

Since

(th1+1;t)h2h1=(t;t)h2(t;t)h1,\displaystyle(t^{h_{1}+1};t)_{h_{2}-h_{1}}=\displaystyle\frac{(t;t)_{h_{2}}}{(t;t)_{h_{1}}},

this implies the lemma. ∎

3.2. Corresponding Vertex Model

In this section we explain how to interpret the vertex model associated with the limiting fused vertex weights derived in Section 3.1. In what follows, for any complex numbers A,tA,t\in\mathbb{C} and integers i1,h1,i2,h20i_{1},h_{1},i_{2},h_{2}\geq 0, we recall the quantities ΨA(i1,h1;i2,h2)\Psi_{A}(i_{1},h_{1};i_{2},h_{2}) and ΘA(i1,h1;i2,h2)\Theta_{A}(i_{1},h_{1};i_{2},h_{2}) from (3.1) and (3.2), respectively. We further fix sequences 𝑨=(A1,A2,)\boldsymbol{A}=(A_{1},A_{2},\ldots)\subset\mathbb{C}; 𝝎=(ω1,ω2,)\boldsymbol{\omega}=(\omega_{1},\omega_{2},\ldots)\subset\mathbb{C}; and 𝒔=(s1,s2,)\boldsymbol{s}=(s_{1},s_{2},\ldots) with si{0,}s_{i}\in\{0,\infty\} for each i1i\geq 1, such that each ΨAyωx[0,1]\Psi_{A_{y}\omega_{x}}\in[0,1] if sy=s_{y}=\infty and each ΘAyωx[0,1]\Theta_{A_{y}\omega_{x}}\in[0,1] if sy=0s_{y}=0.

The vertex models discussed here will be obtained as follows. Let J1J\geq 1 be a large integer and s(0,1)s\in(0,1) be a small real number. We first consider a fused stochastic higher spin vertex model, as in Section 2.1, with rapidity parameters (uy,ry)=(tJAy,tJ/2)(u_{y},r_{y})=(t^{-J}A_{y},t^{-J/2}) in the yy-th row. The rapidity parameters (ξx,sx)(\xi_{x},s_{x}) in the xx-th column depend on whether sx=s_{x}=\infty or sx=0s_{x}=0; if sx=s_{x}=\infty then set (ξx,sx)=(s1ωx,s1)(\xi_{x},s_{x})=(s^{-1}\omega_{x},s^{-1}), and otherwise if sx=0s_{x}=0 then set (ξx,sx)=(s1ωx,s)(\xi_{x},s_{x})=(-s^{-1}\omega_{x},s). Next, we horizontally complement this vertex model, that is, we replace any arrow configuration (i1,j1;i2,j2)(i_{1},j_{1};i_{2},j_{2}) with (i1,h1;i2,h2)=(i1,Jj1;i2,Jj2)(i_{1},h_{1};i_{2},h_{2})=(i_{1},J-j_{1};i_{2},J-j_{2}). Then, we let ss tend to 0 and JJ tend to \infty.

Observe under the above complementation that (J,J,)(J,J,\ldots)-step boundary data on the quadrant becomes empty boundary data, in which no arrows enter through either the xx-axis or yy-axis. Still, paths can exist in this model within the interior of the quadrant >02\mathbb{Z}_{>0}^{2}. Indeed, due the complementation, the form of arrow conservation satisfied by this model will be i1h1=i2h2i_{1}-h_{1}=i_{2}-h_{2} (instead of i1+h1=i2+h2)i_{1}+h_{1}=i_{2}+h_{2}). As such, vertices admit the possibility to “create” two exiting arrows or “destroy” two entering ones666The arrow conservation i1+h2=i2+h1i_{1}+h_{2}=i_{2}+h_{1} can alternatively be interpreted as directing paths up-left, instead of up-right.; see Figure 4 for an example.

Figure 4. Shown to the left is a vertex model with 𝑱=(2,2,)\boldsymbol{J}=(2,2,\ldots) and 𝑱\boldsymbol{J}-step boundary data. Shown to the right is its horizontal complementation.

Using the weights ΨA\Psi_{A} and ΘA\Theta_{A}, we can explicitly sample this limiting complemented path ensemble as in Section 2.1, namely, by randomly assigning arrow configurations to vertices in triangles of the form 𝕋n={(x,y)>02:x+y=n}\mathbb{T}_{n}=\big{\{}(x,y)\in\mathbb{Z}_{>0}^{2}:x+y=n\}. As previously, to extend an assignment from 𝕋n\mathbb{T}_{n} to 𝕋n+1\mathbb{T}_{n+1}, we must explain how to sample the last two coordinates (i2,h2)(x,y)(i_{2},h_{2})_{(x,y)} of an arrow configuration at any vertex (x,y)𝔻n={(x,y)>02:x+y=n+1}(x,y)\in\mathbb{D}_{n}=\big{\{}(x,y)\in\mathbb{Z}_{>0}^{2}:x+y=n+1\big{\}}, given the first two coordinates (i1,h1)(x,y)(i_{1},h_{1})_{(x,y)}. This is done by producing (i2,h2)(x,y)(i_{2},h_{2})_{(x,y)} from (i1,h1)(x,y)(i_{1},h_{1})_{(x,y)} according to the transition probabilities

[(i2,h2)(x,y)|(i1,h1)(x,y)]=ΨAyωx(i1,h1;i2,h2),\displaystyle\mathbb{P}\big{[}(i_{2},h_{2})_{(x,y)}\big{|}(i_{1},h_{1})_{(x,y)}\big{]}=\Psi_{A_{y}\omega_{x}}(i_{1},h_{1};i_{2},h_{2}),\quad if sx=;\displaystyle\text{if $s_{x}=\infty$};
[(i2,h2)(x,y)|(i1,h1)(x,y)]=ΘAyωx(i1,h1;i2,h2),\displaystyle\mathbb{P}\big{[}(i_{2},h_{2})_{(x,y)}\big{|}(i_{1},h_{1})_{(x,y)}\big{]}=\Theta_{A_{y}\omega_{x}}(i_{1},h_{1};i_{2},h_{2}),\quad if sx=0.\displaystyle\text{if $s_{x}=0$}.

That we use ΨAyωx\Psi_{A_{y}\omega_{x}} as a probability if sx=s_{x}=\infty and ΘAyωx\Theta_{A_{y}\omega_{x}} as one if sx=0s_{x}=0 is in accordance with the limits considered in 3.2 and 3.3, respectively.

Letting nn tend to \infty then yields a random (horizontally complemented) path ensemble on all of >02\mathbb{Z}_{>0}^{2}, which is the vertex model corresponding to the limit weights derived in Section 3.1.

4. A tt-Deformed Polynuclear Growth Model

In this section we apply a further limit, as the AiA_{i} parameters to \infty, to the vertex model described in Section 3.2. By further taking sx=s_{x}=\infty for each xx, we will see in Section 4.1 this gives rise to a tt-deformation of the polynuclear growth (PNG) model. Then, in Section 4.2, we will explain how one can incorporate boundary conditions in this growth model by taking the first several sxs_{x} to be 0. Throughout this section, we fix parameters t[0,1)t\in[0,1) and θ>0\theta>0.

4.1. The tt-PNG Model

In this section we analyze a limit of the model considered in Section 3.2 as the AyA_{y} tend to \infty, which will give rise to a tt-PNG model. Here, we take sx=s_{x}=\infty for each x1x\geq 1. To implement this limit, let ε(0,1)\varepsilon\in(0,1) denote some parameter (which we will eventually let tend to 0), and set

(4.1) Ay=t1t(εθ)1,for each integer y1;ωx=(εθ)1,for each integer x1.\displaystyle A_{y}=\frac{t}{1-t}(\varepsilon\theta)^{-1},\quad\text{for each integer $y\geq 1$};\qquad\omega_{x}=(\varepsilon\theta)^{-1},\quad\text{for each integer $x\geq 1$}.

Further set

(4.2) A=Ayωx=t1t(εθ)2.\displaystyle A=A_{y}\omega_{x}=\displaystyle\frac{t}{1-t}(\varepsilon\theta)^{-2}.

Let us analyze the weights ΨA\Psi_{A} under (4.2) for small ε\varepsilon.

Lemma 4.1.

The following statements hold for ΨA(i1,h1;i2,h2)\Psi_{A}(i_{1},h_{1};i_{2},h_{2}) under (4.2).

  1. (1)

    For (i1,h1)=(0,0)(i_{1},h_{1})=(0,0), we have

    (4.3) ΨA(0,0;0,0)=1𝒪(ε2);ΨA(0,0;1,1)=(εθ)2𝒪(ε4);k=2|ΨA(0,0;k,k)|=𝒪(ε4).\displaystyle\Psi_{A}(0,0;0,0)=1-\mathcal{O}(\varepsilon^{2});\quad\Psi_{A}(0,0;1,1)=(\varepsilon\theta)^{2}-\mathcal{O}(\varepsilon^{4});\quad\displaystyle\sum_{k=2}^{\infty}\big{|}\Psi_{A}(0,0;k,k)\big{|}=\mathcal{O}(\varepsilon^{4}).
  2. (2)

    For (i1,h1)=(1,0)(i_{1},h_{1})=(1,0) or (i1,h1)=(0,1)(i_{1},h_{1})=(0,1), we have

    (4.4) ΨA(1,0;1,0)=1𝒪(ε2);k=2ΨA(1,0;k+1,k)=𝒪(ε2);ΨA(0,1;0,1)=1𝒪(ε2);k=2ΨA(0,1;k,k+1)=𝒪(ε2).\displaystyle\begin{aligned} &\Psi_{A}(1,0;1,0)=1-\mathcal{O}(\varepsilon^{2});\qquad\displaystyle\sum_{k=2}^{\infty}\Psi_{A}(1,0;k+1,k)=\mathcal{O}(\varepsilon^{2});\\ &\Psi_{A}(0,1;0,1)=1-\mathcal{O}(\varepsilon^{2});\qquad\displaystyle\sum_{k=2}^{\infty}\Psi_{A}(0,1;k,k+1)=\mathcal{O}(\varepsilon^{2}).\end{aligned}
  3. (3)

    For (i1,h1)=(1,1)(i_{1},h_{1})=(1,1), we have

    (4.5) ΨA(1,1;0,0)=1t𝒪(ε2);ΨA(1,1;1,1)=t𝒪(ε2);k=2ΨA(1,1;k,k)=𝒪(ε2).\displaystyle\Psi_{A}(1,1;0,0)=1-t-\mathcal{O}(\varepsilon^{2});\quad\Psi_{A}(1,1;1,1)=t-\mathcal{O}(\varepsilon^{2});\quad\displaystyle\sum_{k=2}^{\infty}\Psi_{A}(1,1;k,k)=\mathcal{O}(\varepsilon^{2}).
Proof.

Let us show (4.3). To that end, we insert (i1,h1)=(0,0)(i_{1},h_{1})=(0,0) into (3.1) to obtain

(4.6) ΨA(0,0;i2,h2)=Ai2ti22(A1ti2+1;t)(t;t)i21h1=h2i2,\displaystyle\Psi_{A}(0,0;i_{2},h_{2})=A^{-i_{2}}t^{i_{2}^{2}}\displaystyle\frac{(A^{-1}t^{i_{2}+1};t)_{\infty}}{(t;t)_{i_{2}}}\textbf{1}_{h_{1}=h_{2}-i_{2}},

where we have used the facts h1=h1i1=h2i2h_{1}=h_{1}-i_{1}=h_{2}-i_{2} for i1=0i_{1}=0; that the sum on the right side of (3.1) is supported on the term k=0k=0, due to the factor of (ti1;t)k(t^{-i_{1}};t)_{k} there; and the fact that (th2i2+1;t)i2(t;t)h1=(t;t)h2(t^{h_{2}-i_{2}+1};t)_{i_{2}}(t;t)_{h_{1}}=(t;t)_{h_{2}}, since h2=h2+i1=i2+h1h_{2}=h_{2}+i_{1}=i_{2}+h_{1}. Setting i2=0i_{2}=0 or i2=1i_{2}=1, we find

ΨA(0,0;0,0)=(A1t;t)=1𝒪(A1)=1𝒪(ε2);\displaystyle\Psi_{A}(0,0;0,0)=(A^{-1}t;t)_{\infty}=1-\mathcal{O}(A^{-1})=1-\mathcal{O}(\varepsilon^{2});
ΨA(0,0;1,1)=A1t1t(A1t2;t)=(εθ)2𝒪(A2)=(εθ)2𝒪(ε4),\displaystyle\Psi_{A}(0,0;1,1)=A^{-1}\displaystyle\frac{t}{1-t}(A^{-1}t^{2};t)_{\infty}=(\varepsilon\theta)^{2}-\mathcal{O}(A^{-2})=(\varepsilon\theta)^{2}-\mathcal{O}(\varepsilon^{4}),

where for both statements we used the expression (4.2) for AA. This verifies the first and second statements of (4.3). To verify the last, observe by (4.6) that ΨA(0,0;k,k)=𝒪(Ak(t;t)k1)\Psi_{A}(0,0;k,k)=\mathcal{O}\big{(}A^{-k}(t;t)_{k}^{-1}\big{)} (where the implicit constant only depends on tt and not on kk), yielding by the tt-binomial theorem that

k=2ΨA(0,0;k,k)=k=2𝒪(Ak(t;t)k)=𝒪(A2(A1;t))=𝒪(A2)=𝒪(ε4).\displaystyle\displaystyle\sum_{k=2}^{\infty}\Psi_{A}(0,0;k,k)=\displaystyle\sum_{k=2}^{\infty}\mathcal{O}\bigg{(}\displaystyle\frac{A^{-k}}{(t;t)_{k}}\bigg{)}=\mathcal{O}\bigg{(}\displaystyle\frac{A^{-2}}{(A^{-1};t)_{\infty}}\bigg{)}=\mathcal{O}(A^{-2})=\mathcal{O}(\varepsilon^{4}).

This establishes (4.3); the proofs of (4.4) and (4.5) are very similar and therefore omitted. ∎

Next, fix real numbers χ,η>0\chi,\eta>0 and define the integers X=XεX=X_{\varepsilon} and Y=YεY=Y_{\varepsilon} by

(4.7) X=ε1χ;Y=ε1η.\displaystyle X=\lceil\varepsilon^{-1}\chi\rceil;\qquad Y=\lceil\varepsilon^{-1}\eta\rceil.

Let us use 4.1 to interpret the small ε\varepsilon limit vertex model from Section 3.2 on the rectangle [1,X]×[1,Y]>02[1,X]\times[1,Y]\subset\mathbb{Z}_{>0}^{2}, under empty boundary data, with (ξx,sx)=(ωx,)(\xi_{x},s_{x})=(\omega_{x},\infty) for each x1x\geq 1 and AyA_{y} defined by (4.1). Since A=AyωxA=A_{y}\omega_{x}, the first statement of (4.3) implies that, if (i1,h1)=(0,0)(i_{1},h_{1})=(0,0), then with probability about 1ε2θ21-\varepsilon^{2}\theta^{2} we have (i2,h2)=(0,0)(i_{2},h_{2})=(0,0). In view of the empty boundary data, this indicates that most vertices in [1,X]×[1,Y][1,X]\times[1,Y] have arrow configuration (0,0;0,0)(0,0;0,0). However, with probability about ε2θ2\varepsilon^{2}\theta^{2}, we have (i2,h2)=(1,1)(i_{2},h_{2})=(1,1); in this case, a pair of exiting arrows is created, or nucleates. Since [1,X]×[1,Y][1,X]\times[1,Y] constitutes 𝒪(ε2)\mathcal{O}(\varepsilon^{-2}) vertices, there are 𝒪(1)\mathcal{O}(1) such nucleation events; in the limit as ε\varepsilon tends to 0, they become distributed according to a Poisson point process with intensity θ2\theta^{2}.

If (i1,h1)=(1,0)(i_{1},h_{1})=(1,0), then (4.4) implies that (i2,h2)=(1,0)(i_{2},h_{2})=(1,0) almost deterministically. In particular, whenever a vertical exiting arrow is created it proceeds vertically until h10h_{1}\neq 0, that is, until it meets a horizontal arrow. Similarly, if (i1,h1)=(0,1)(i_{1},h_{1})=(0,1) then (i2,h2)=(1,0)(i_{2},h_{2})=(1,0) almost deterministically, meaning that any created horizontal arrow proceeds horizontally until it meets a vertical arrow.

The event (i1,h1)=(1,1)(i_{1},h_{1})=(1,1) corresponds to the collision of a horizontal and vertical arrow. Then, (4.5) implies that (i2,h2)=(0,0)(i_{2},h_{2})=(0,0) with probability about 1t1-t; in this case, the two arrows annihilate each other. With the complementary probability of about tt, we have (i2,h2)=(1,1)(i_{2},h_{2})=(1,1), in which case the arrows pass through each other. This description gives rise to the following growth model.

Definition 4.2.

The tt-deformed polynuclear growth (tt-PNG) model on the rectangle =χ;η=[0,χ]×[0,η]2\mathcal{R}=\mathcal{R}_{\chi;\eta}=[0,\chi]\times[0,\eta]\subset\mathbb{R}^{2}, with intensity θ2\theta^{2}, is described as follows.

  1. (1)

    Sample a Poisson point process with intensity θ2\theta^{2} on \mathcal{R}, denoted by 𝒱={v1,v2,,vK}\mathcal{V}=\{v_{1},v_{2},\ldots,v_{K}\}, where vi=(xi,yi)v_{i}=(x_{i},y_{i})\in\mathcal{R} for each index i[1,K]i\in[1,K].

  2. (2)

    For each point v𝒱v\in\mathcal{V}, draw two rays emanating from vv, one directed north and the other directed east. Whenever two rays emanating from different vertices meet, the following occurs.

    1. (a)

      With probability 1t1-t, they annihilate each other.

    2. (b)

      With probability tt, they pass through each other.

We refer to Figure 5 for a depiction.

Remark 4.3.

Observe for χ>χ>0\chi>\chi^{\prime}>0 and η>η>0\eta>\eta^{\prime}>0 that the tt-PNG models on χ;η\mathcal{R}_{\chi;\eta} and χ;η\mathcal{R}_{\chi^{\prime};\eta^{\prime}} are consistent in the following sense. The restriction to χ;η\mathcal{R}_{\chi^{\prime};\eta^{\prime}} of the tt-PNG model on χ;η\mathcal{R}_{\chi;\eta} is the tt-PNG model on χ;η\mathcal{R}_{\chi^{\prime};\eta^{\prime}}. Therefore, one may take the limit as χ\chi and η\eta tend to \infty to obtain a tt-PNG model on the (infinite) nonnegative quadrant 02\mathbb{R}_{\geq 0}^{2}.

Figure 5. Shown above is a possible sample of the tt-PNG model. The nucleation events are the black points; the red cross is a location where two paths annihilate each other; and the green cross is a location where two paths cross through each other.

Under the tt-PNG model for t=0t=0, two colliding rays must always annihilate each other. In this case, the model coincides with the standard PNG model analyzed in [46]; see also Section 4 of [16]. This t=0t=0 model is known to admit an interpretation through patience sorting [5]; we will provide an analogous interpretation for the more general tt-PNG model in Appendix A below.

The following proposition more precisely states the convergence of the vertex model from Section 3.2 to the tt-PNG model. A heuristic for it was provided above Definition 4.2; we will give a more careful proof in Appendix B below.

Proposition 4.4.

Fix real numbers χ,η>0\chi,\eta>0, and define X,Y>0X,Y\in\mathbb{Z}_{>0} as in (4.7). Consider the vertex model described in Section 3.2 on the rectangle [1,X]×[1,Y]>02[1,X]\times[1,Y]\subseteq\mathbb{Z}_{>0}^{2}, under empty boundary data, with sx=s_{x}=\infty for each x1x\geq 1 and AyA_{y} chosen according to (4.2). When both its coordinates are multiplied by ε\varepsilon, this model converges, as ε\varepsilon tends to 0, to the tt-PNG model with intensity θ2\theta^{2} on χ;η\mathcal{R}_{\chi;\eta} from Definition 4.2.

Although we will not pursue this here, it should also be possible to introduce a multi-layer version of this tt-PNG model through Dynamics 8 of [21] and a colored variant of this model (along the same lines of the colored particle systems analyzed in [23]). Let us also mention that it should be possible to derive this tt-PNG model as a limit of either the tt-Push TASEP [21, 28] or a more intricate version of the tt-PNG model defined in Section 4.2 of [44].

4.2. Boundary Conditions

In this section we fix an integer m1m\geq 1 and a sequence of mm positive real numbers 𝜷=(β1,β2,,βm)\boldsymbol{\beta}=(\beta_{1},\beta_{2},\ldots,\beta_{m}); further let ε>0\varepsilon>0 be a small real parameter. We then consider the vertex model as described in Section 3.2, with parameters given by

(4.8) (sx,ωx)=(0,βj1),for each x[1,m];(sx,ωx)=(,(εθ)1)for each x>m,\displaystyle(s_{x},\omega_{x})=(0,\beta_{j}^{-1}),\quad\text{for each $x\in[1,m]$};\qquad(s_{x},\omega_{x})=\big{(}\infty,(\varepsilon\theta)^{-1}\big{)}\quad\text{for each $x>m$},

and

(4.9) Ay=t1t(εθ)1,for each integer i1.\displaystyle A_{y}=\displaystyle\frac{t}{1-t}(\varepsilon\theta)^{-1},\quad\text{for each integer $i\geq 1$}.

In particular, for x>mx>m, we have Ayωx=AA_{y}\omega_{x}=A from (4.2). Thus, the dynamics of this model to the right of its mm-th column are governed by the ΨA\Psi_{A} weights, whose small ε\varepsilon asymptotics are given by 4.1 (and give rise to the tt-PNG model as in Definition 4.2, under scaling by ε\varepsilon).

For xmx\leq m, we have sx=0s_{x}=0 so, at and to the left of the mm-th column, this model is governed by the Θ\Theta weights defined by (3.2). We will see these different sxs_{x} parameters in the leftmost mm column of the model will give rise to a boundary condition for the tt-PNG model; a similar phenomenon in the context of the asymmetric simple exclusion process (ASEP) and stochastic six-vertex model was observed in [2].

The below lemma analyzes the asymptotics of the Θ\Theta weights as ε\varepsilon tends to 0.

Lemma 4.5.

Fix a real number β>0\beta>0 and an integer i0i\geq 0. Denoting B=t(1t)1(εθβ)1B=t(1-t)^{-1}(\varepsilon\theta\beta)^{-1}, we have the following.

  1. (1)

    For (i1,h1)=(i,0)(i_{1},h_{1})=(i,0), we have

    (4.10) ΘB(i,0;i,0)=1𝒪(ε);ΘB(i,0;i+1,0)=εθβ+𝒪(ε2);k=2ΘB(i,0;i+k,k)=𝒪(ε2).\displaystyle\begin{aligned} \Theta_{B}(i,0;i,0)=1&-\mathcal{O}(\varepsilon);\qquad\Theta_{B}(i,0;i+1,0)=\varepsilon\theta\beta+\mathcal{O}(\varepsilon^{2});\\ &\displaystyle\sum_{k=2}^{\infty}\Theta_{B}(i,0;i+k,k)=\mathcal{O}(\varepsilon^{2}).\end{aligned}
  2. (2)

    For (i1,h1)=(i,1)(i_{1},h_{1})=(i,1), we have

    (4.11) ΘB(i,1;i1,0)=1ti𝒪(ε);ΘB(i,1;i,1)=ti𝒪(ε);k=2ΘB(i,1;i+k1,k)=𝒪(ε).\displaystyle\begin{aligned} \Theta_{B}(i,1;i-1,0)&=1-t^{i}-\mathcal{O}(\varepsilon);\qquad\Theta_{B}(i,1;i,1)=t^{i}-\mathcal{O}(\varepsilon);\\ &\displaystyle\sum_{k=2}^{\infty}\Theta_{B}(i,1;i+k-1,k)=\mathcal{O}(\varepsilon).\end{aligned}
Proof.

By the choice of BB, we have

(th2i2+1B1;t)=1+𝒪(ε);Bi2(B;t)k1ki2=1k=i2t(i22)+𝒪(ε),\displaystyle(-t^{h_{2}-i_{2}+1}B^{-1};t)_{\infty}=1+\mathcal{O}(\varepsilon);\qquad B^{-i_{2}}(B;t)_{k}\textbf{1}_{k\leq i_{2}}=\textbf{1}_{k=i_{2}}t^{\binom{i_{2}}{2}}+\mathcal{O}(\varepsilon),

which when combined with the identity t(i22)+i2(ti2;t)i2=(1)i2(t;t)i2t^{\binom{i_{2}}{2}+i_{2}}(t^{-i_{2}};t)_{i_{2}}=(-1)^{i_{2}}(t;t)_{i_{2}} gives

Bi2(th2i1+1B1;t)k=0i2tk(ti1;t)k(ti2;t)k(B;t)k(t;t)k(th2i2+1;t)k=(1)i2(ti1;t)i2(th2i2+1;t)i2+𝒪(ε).\displaystyle\displaystyle\frac{B^{-i_{2}}}{(-t^{h_{2}-i_{1}+1}B^{-1};t)_{\infty}}\displaystyle\sum_{k=0}^{i_{2}}t^{k}\displaystyle\frac{(t^{-i_{1}};t)_{k}(t^{-i_{2}};t)_{k}(-B;t)_{k}}{(t;t)_{k}(t^{h_{2}-i_{2}+1};t)_{k}}=(-1)^{i_{2}}\displaystyle\frac{(t^{-i_{1}};t)_{i_{2}}}{(t^{h_{2}-i_{2}+1};t)_{i_{2}}}+\mathcal{O}(\varepsilon).

Inserting this into (3.2) yields

(4.12) ΘB(i1,h1;i2,h2)=(1)i2t(i2+12)+i2h1(t;t)h1(t;t)h2(ti1;t)i2(t;t)i2+𝒪(ε).\displaystyle\Theta_{B}(i_{1},h_{1};i_{2},h_{2})=(-1)^{i_{2}}t^{\binom{i_{2}+1}{2}+i_{2}h_{1}}\displaystyle\frac{(t;t)_{h_{1}}}{(t;t)_{h_{2}}}\displaystyle\frac{(t^{-i_{1}};t)_{i_{2}}}{(t;t)_{i_{2}}}+\mathcal{O}(\varepsilon).

Next, observe that

(1)i2(ti1;t)i2(t;t)i2=t(i1i2+12)(i1+12)(t;t)i1(t;t)i2(t;t)i1i21i1i2;\displaystyle(-1)^{i_{2}}\displaystyle\frac{(t^{-i_{1}};t)_{i_{2}}}{(t;t)_{i_{2}}}=t^{\binom{i_{1}-i_{2}+1}{2}-\binom{i_{1}+1}{2}}\displaystyle\frac{(t;t)_{i_{1}}}{(t;t)_{i_{2}}(t;t)_{i_{1}-i_{2}}}\textbf{1}_{i_{1}\geq i_{2}};
(i2+12)+(i1i2+12)(i1+12)+i2h1=i2(i2i1+h1)=i2h2,\displaystyle\binom{i_{2}+1}{2}+\binom{i_{1}-i_{2}+1}{2}-\binom{i_{1}+1}{2}+i_{2}h_{1}=i_{2}(i_{2}-i_{1}+h_{1})=i_{2}h_{2},

where in the last equality we used the fact that i1h1=i2h2i_{1}-h_{1}=i_{2}-h_{2}. This, together with (4.12) yields

(4.13) ΘB(i1,h1;i2,h2)=ti2h2(t;t)h1(t;t)h2(t;t)i1(t;t)i2(t;t)i1i21i1i2+𝒪(ε).\displaystyle\Theta_{B}(i_{1},h_{1};i_{2},h_{2})=t^{i_{2}h_{2}}\displaystyle\frac{(t;t)_{h_{1}}}{(t;t)_{h_{2}}}\displaystyle\frac{(t;t)_{i_{1}}}{(t;t)_{i_{2}}(t;t)_{i_{1}-i_{2}}}\textbf{1}_{i_{1}\geq i_{2}}+\mathcal{O}(\varepsilon).

By inserting (i1,h1;i2,h2){(i,0;i,0),(i,1;i1,0),(i,1;i,1)}(i_{1},h_{1};i_{2},h_{2})\in\big{\{}(i,0;i,0),(i,1;i-1,0),(i,1;i,1)\big{\}} into (4.13), we deduce the first statement of (4.10) and the first two statements of (4.11).

To deduce the second statement of (4.10), we insert (i1,h1;i2,h2)=(i,0;i+1,1)(i_{1},h_{1};i_{2},h_{2})=(i,0;i+1,1) into (3.2) to obtain

(4.14) ΘB(i,0;i+1,1)=t(i+22)Bi1(t1iB1;t)(t;t)i+1(1t)k=0itk(ti;t)k(t;t)k(ti1;t)k(B;t)k(tki+1;t)ik+1,\displaystyle\Theta_{B}(i,0;i+1,1)=\displaystyle\frac{t^{\binom{i+2}{2}}B^{-i-1}}{(-t^{1-i}B^{-1};t)_{\infty}(t;t)_{i+1}(1-t)}\displaystyle\sum_{k=0}^{i}t^{k}\displaystyle\frac{(t^{-i};t)_{k}}{(t;t)_{k}}(t^{-i-1};t)_{k}(-B;t)_{k}(t^{k-i+1};t)_{i-k+1},

where we have used the facts that the summand in (4.14) corresponding to k=i+1k=i+1 is equal to 0 (since (ti;t)i+1=0(t^{-i};t)_{i+1}=0) and that (th2i2+1;t)i2(th2i2+1;t)k1=(th2i2+k+1;t)i2k(t^{h_{2}-i_{2}+1};t)_{i_{2}}(t^{h_{2}-i_{2}+1};t)_{k}^{-1}=(t^{h_{2}-i_{2}+k+1};t)_{i_{2}-k}. Since

(t1iB1;t)=1+𝒪(ε);Bi1(B;t)k1ki=t(i2)B11k=i+𝒪(ε2);\displaystyle(-t^{1-i}B^{-1};t)_{\infty}=1+\mathcal{O}(\varepsilon);\qquad B^{-i-1}(-B;t)_{k}\textbf{1}_{k\leq i}=t^{\binom{i}{2}}B^{-1}\textbf{1}_{k=i}+\mathcal{O}(\varepsilon^{2});
(1)it(i+12)(ti;t)i=(t;t)i;(1)it(i+22)(ti1;t)i(t;t)i+1=t1t\displaystyle(-1)^{i}t^{\binom{i+1}{2}}(t^{-i};t)_{i}=(t;t)_{i};\qquad(-1)^{i}t^{\binom{i+2}{2}}\displaystyle\frac{(t^{-i-1};t)_{i}}{(t;t)_{i+1}}=\displaystyle\frac{t}{1-t}

it follows that

ΘB(i,0;i+1,1)=t1tB1+𝒪(ε2)=εθβj+𝒪(ε2),\displaystyle\Theta_{B}(i,0;i+1,1)=\displaystyle\frac{t}{1-t}B^{-1}+\mathcal{O}(\varepsilon^{2})=\varepsilon\theta\beta_{j}+\mathcal{O}(\varepsilon^{2}),

which yields the second statement of (4.10). The proofs of the third statements of (4.10) and (4.11) are very similar to those of the analogous estimates in 4.1 and are therefore omitted. ∎

Now, as in Section 4.1, we fix real numbers χ,η>0\chi,\eta>0 and define the integers X=Xε=ε1χX=X_{\varepsilon}=\lceil\varepsilon^{-1}\chi\rceil and Y=Yε=ε1ηY=Y_{\varepsilon}=\lceil\varepsilon^{-1}\eta\rceil as in (4.7). Let us use 4.5 to interpret the behavior in the first mm columns of the vertex model from Section 3.2 on the rectangle [1,X]×[1,Y][1,X]\times[1,Y], under empty boundary data with the parameter choices (4.8) and (4.9), in the limit as ε\varepsilon tends to 0.

If h1=0h_{1}=0 at some vertex in the kk-th column, then by the first statement of (4.10) we have h2=0h_{2}=0 with probability about 1εθβk1-\varepsilon\theta\beta_{k}. In the leftmost column of the vertex model we have h1=0h_{1}=0 at all sites due to the empty boundary data; so, most vertices will also have h2=0h_{2}=0. However, with probability about εθβ1\varepsilon\theta\beta_{1}, we have (i2,h2)=(i1+1,h1+1)(i_{2},h_{2})=(i_{1}+1,h_{1}+1), that is, a pair of a horizontal and vertical arrow nucleates (is created). Since any column of the model has Y=𝒪(ε1)Y=\mathcal{O}(\varepsilon^{-1}) vertices, there are 𝒪(1)\mathcal{O}(1) such nucleation events along the leftmost column. In the limit as ε\varepsilon tends to 0, they become (after scaling the vertical coordinate by ε\varepsilon) distributed according to a Poisson point process with intensity θβ1\theta\beta_{1}.

A similar effect occurs in the kk-th column, for any k[2,m]k\in[2,m]; the first statement of 4.5 again implies that pairs of horizontal and vertical paths nucleate along this column according to a Poisson process with intensity θβk\theta\beta_{k}. However, now there may be some sites with h1=1h_{1}=1, corresponding to locations where a horizontal arrow enters the column. Letting ii denote the number of vertical arrows in the column at such a site, the second statement of (4.11) implies that with probability tit^{i} we have (i2,h2)=(i,1)(i_{2},h_{2})=(i,1), meaning that this arrow “passes through” the column. The first statement of (4.11) implies that with the complementary probability 1ti1-t^{i} we have (i2,h2)=(i1,0)(i_{2},h_{2})=(i-1,0), meaning that this arrow is annihilated, along with one vertical arrow in the column.777An equivalent interpretation is that the entering horizontal arrow attempts to pass through each of the ii vertical arrows in the column, one at a time. As in the tt-PNG model, with probability tt this horizontal arrow successfully passes through the vertical arrow, and with probability 1t1-t they annihilate each other.

These dynamics proceed in the first mm columns of the model. Since mm is uniformly bounded in ε\varepsilon, when we scale the horizontal coordinate by ε\varepsilon and let ε\varepsilon tend to 0, these mm columns all converge to the yy-axis, that is, the west boundary of the rectangle =χ;η=[0,χ]×[0,η]\mathcal{R}=\mathcal{R}_{\chi;\eta}=[0,\chi]\times[0,\eta]. This boundary therefore acts as an “external source” for paths, releasing a horizontal ray into the interior of \mathcal{R} at every site along the mm-th column at which h2=1h_{2}=1. In view of the choice (4.9) and 4.4, the tt-deformed PNG model then occurs in the interior of \mathcal{R}. This gives rise to the following definition.

Definition 4.6.

Fix an integer m1m\geq 1 and a sequence of positive real numbers 𝜷=(β1,β2,,βm)\boldsymbol{\beta}=(\beta_{1},\beta_{2},\ldots,\beta_{m}). The tt-PNG model on χ;η\mathcal{R}_{\chi;\eta} with intensity θ2\theta^{2}, under (𝛃;θ;t)(\boldsymbol{\beta};\theta;t)-boundary conditions, is the tt-PNG model as described in Definition 4.2, with additional horizontal rays entering at points along the east boundary of χ,η\mathcal{R}_{\chi,\eta}, given by {(0,κ1),(0,κ2),,(0,κr)}{0}×[0,η]\big{\{}(0,\kappa_{1}),(0,\kappa_{2}),\ldots,(0,\kappa_{r})\big{\}}\subset\{0\}\times[0,\eta]. Here, the sequence 𝜿=(κ1,κ2,,κr)[0,η]\boldsymbol{\kappa}=(\kappa_{1},\kappa_{2},\ldots,\kappa_{r})\subset[0,\eta] is random and sampled as follows.

  1. (1)

    Consider mm columns 𝒞1,𝒞2,,𝒞m\mathcal{C}_{1},\mathcal{C}_{2},\ldots,\mathcal{C}_{m}, where 𝒞j={jm}×[0,η]2\mathcal{C}_{j}=\{j-m\}\times[0,\eta]\subset\mathbb{R}^{2}. For each j[1,m]j\in[1,m], sample a Poisson point process on [0,η][0,\eta], denoted by 𝒴j=(y1,y2,,yK(j))\mathcal{Y}_{j}=(y_{1},y_{2},\ldots,y_{K(j)}). Define 𝒱j=(v1,v2,,vK(j))𝒞j\mathcal{V}_{j}=(v_{1},v_{2},\ldots,v_{K(j)})\subset\mathcal{C}_{j} by setting vh=(jm,yh)v_{h}=(j-m,y_{h}) for each 1hK(j)1\leq h\leq K(j).

  2. (2)

    For each point v𝒱1𝒱2𝒱mv\in\mathcal{V}_{1}\cup\mathcal{V}_{2}\cup\cdots\cup\mathcal{V}_{m}, draw two rays emanating from vv, one directed north and the other directed east. Whenever a horizontal ray intersects a column 𝒞j\mathcal{C}_{j} containing i=i(v)i=i(v) vertical rays, the following occurs.

    1. (a)

      With probability 1ti1-t^{i}, this horizontal ray and one of the vertical rays in 𝒞j\mathcal{C}_{j} (that it intersects) are annihilated.

    2. (b)

      With probability tit^{i}, the horizontal ray passes through 𝒞j\mathcal{C}_{j}.

  3. (3)

    Define 𝜿=(κ1,κ2,,κr)\boldsymbol{\kappa}=(\kappa_{1},\kappa_{2},\ldots,\kappa_{r}) by setting (0,κ1),(0,κ2),,(0,κr)(0,\kappa_{1}),(0,\kappa_{2}),\ldots,(0,\kappa_{r}) to be the vertices at which a horizontal ray exits through 𝒞m\mathcal{C}_{m}.

We refer to Figure 6 for a depiction.

𝒞1\mathcal{C}_{1}𝒞2\mathcal{C}_{2}𝒞3\mathcal{C}_{3}𝒞4\mathcal{C}_{4}κ2\kappa_{2}κ6\kappa_{6}κ5\kappa_{5}κ1\kappa_{1}κ3\kappa_{3}κ4\kappa_{4}
Figure 6. Shown to the left is the procedure described by Definition 4.6 used to sample 𝜿=(κ1,κ2,,κr)\boldsymbol{\kappa}=(\kappa_{1},\kappa_{2},\ldots,\kappa_{r}), where here r=6r=6. Shown to the right is a sample of the tt-PNG model with the corresponding boundary data.
Remark 4.7.

Suppose m=1m=1, and denote β=θβ1\beta=\theta\beta_{1}. Then, the tt-PNG model with (𝜷;θ;t)(\boldsymbol{\beta};\theta;t)-boundary data is the tt-PNG model in which horizontal paths additionally enter through the yy-axis according to a Poisson point process with intensity β\beta. In the case t=0t=0, this model was studied in [9, 32] (see also [20] for the general m1m\geq 1 case of a last passage percolation model slightly different from, but closely related to, the t=0t=0 PNG model).

The following proposition then states convergence of the vertex model from Section 3.2 to the tt-PNG model with (𝜷;θ;t)(\boldsymbol{\beta};\theta;t)-boundary data. A heuristic for it was provided above; a careful proof for it is very similar to that of 4.4 and is thus omitted.

Proposition 4.8.

Fix real numbers χ,η>0\chi,\eta>0, and define X,Y>0X,Y\in\mathbb{Z}_{>0} as in (4.7). Consider the vertex model described in Section 3.2 on the rectangle [1,X]×[1,Y]>02[1,X]\times[1,Y]\subseteq\mathbb{Z}_{>0}^{2}, under empty boundary data, with parameters choices as in (4.8) and (4.9). When both its coordinates are multiplied by ε\varepsilon, this model converges, as ε\varepsilon tends to 0, to the tt-PNG model with intensity θ2\theta^{2} on χ;η\mathcal{R}_{\chi;\eta}, under (𝛃;θ;t)(\boldsymbol{\beta};\theta;t)-boundary data, from Definition 4.6.

5. Asymptotics

In this section we describe asymptotic results for the tt-PNG model. We begin in Section 5.1 by explaining a matching result between an observable of the tt-PNG model with that of a Schur and of a Hall–Littlewood measure. We then analyze the large scale asymptotics for the tt-PNG model in Section 5.2 and a limit to the KPZ equation in Section 5.3.

5.1. Matching With Schur and Hall–Littlewood Measures

In this section we describe matching results between the tt-PNG model and both the Schur and Hall–Littlewood measures, given by the following theorem. In the below, the height function (x,y)\mathfrak{H}(x,y) for the tt-PNG model is defined to be the number of horizontal rays in the model that intersect the vertical interval {x}×[0,y]2\{x\}\times[0,y]\subset\mathbb{R}^{2}.

Theorem 5.1.

Fix an integer m0m\geq 0; real numbers t0t\geq 0 and χ,η,θ>0\chi,\eta,\theta>0; and a sequence of real numbers 𝛃=(β1,β2,,βm)>0\boldsymbol{\beta}=(\beta_{1},\beta_{2},\ldots,\beta_{m})\subset\mathbb{R}_{>0}. Let (x,y)\mathfrak{H}(x,y) denote the height function for the tt-PNG model on >02\mathbb{R}_{>0}^{2} with intensity θ2\theta^{2}, under (𝛃;θ;t)(\boldsymbol{\beta};\theta;t)-boundary data, from Definition 4.6 (or Definition 4.2, if m=0m=0). Further let 𝛃~=j=1m{βj,tβj,}\widetilde{\boldsymbol{\beta}}=\bigcup_{j=1}^{m}\{\beta_{j},t\beta_{j},\ldots\}. Define the specializations

ρ1=(𝟎𝟎ηθ);ρ1=(𝟎𝟎(1t)ηθ);ρ2=(𝟎𝜷~(1t)1χθ);ρ2=(𝟎𝜷χθ).\displaystyle\rho_{1}=(\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}\eta\theta);\quad\rho_{1}^{\prime}=\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}(1-t)\eta\theta\big{)};\quad\rho_{2}=\big{(}\boldsymbol{0}\boldsymbol{\mid}\widetilde{\boldsymbol{\beta}}\boldsymbol{\mid}(1-t)^{-1}\chi\theta\big{)};\quad\rho_{2}^{\prime}=(\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{\beta}\boldsymbol{\mid}\chi\theta).

Then, the following two statements hold.

  1. (1)

    We have that

    (5.1) 𝔼[1(ζt(χ,η);t)]=𝔼SM[1(t(λ)ζ;t)j=1(λ)(1+ζtλjj)],\displaystyle\mathbb{E}\Bigg{[}\displaystyle\frac{1}{(-\zeta t^{-\mathfrak{H}(\chi,\eta)};t)_{\infty}}\Bigg{]}=\mathbb{E}_{\operatorname{SM}}\Bigg{[}\displaystyle\frac{1}{(-t^{-\ell(\lambda)}\zeta;t)_{\infty}}\displaystyle\prod_{j=1}^{\ell(\lambda)}(1+\zeta t^{\lambda_{j}-j})\Bigg{]},

    where the expectation on the left side is with respect to the tt-PNG model, and the right side is with respect to the Schur measure with specializations ρ1\rho_{1} and ρ2\rho_{2}.

  2. (2)

    Let λ\lambda denote a random partition sampled under the Hall–Littlewood measure with specializations ρ1\rho_{1}^{\prime} and ρ2\rho_{2}^{\prime}. Then, (χ,η)\mathfrak{H}(\chi,\eta) has the same law as (λ)\ell(\lambda).

Proof.

In what follows, we let q[0,1)q\in[0,1) be a real number. By 4.8, the tt-PNG model is the limit as ε\varepsilon tends to 0 of the vertex model described in Section 3.2, with parameters given by (4.8) and (4.9). The latter is the horizontal complementation of the fused stochastic higher spin vertex model with parameters (t,𝒖,𝝃,𝒓,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}) given by setting

(uy,ry)=(t1J1t(εθ)1,tJ/2),\displaystyle(u_{y},r_{y})=\bigg{(}\displaystyle\frac{t^{1-J}}{1-t}(\varepsilon\theta)^{-1},t^{-J/2}\bigg{)}, for any integer y1;\displaystyle\qquad\text{for any integer $y\geq 1$};
(ξx,sx)=((sβj)1,s),\displaystyle(\xi_{x},s_{x})=\big{(}-(s^{\prime}\beta_{j})^{-1},s^{\prime}\big{)},\qquad\quad for any integer x[1,m];\displaystyle\qquad\text{for any integer $x\in[1,m]$};
(ξx,sx)=(s(εθ)1,s),\displaystyle(\xi_{x},s_{x})=\big{(}s(\varepsilon\theta)^{-1},s\big{)},\qquad\qquad for any integer xm,\displaystyle\qquad\text{for any integer $x\geq m$},

first letting (s,s)(s,s^{\prime}) tend to (,0)(\infty,0), and then letting JJ tend to \infty. Let J1J\geq 1 remain an arbitrary integer for the moment, and denote the height function for the associated vertex model by 𝔥FV(J)(x,y)\mathfrak{h}_{\operatorname{FV}(J)}(x,y). The height function for its horizontal complementation is then hCV(J)(x,y)=Jx𝔥FV(J)(x,y)h_{\operatorname{CV}(J)}(x,y)=Jx-\mathfrak{h}_{\operatorname{FV}(J)}(x,y).

Next, set X=Xε=ε1χX=X_{\varepsilon}=\lceil\varepsilon^{-1}\chi\rceil and Y=Yε=ε1ηY=Y_{\varepsilon}=\lceil\varepsilon^{-1}\eta\rceil. Define the parameter (multi-)sets

𝒙=𝒙ε=i=1Y{(1t)εθ,t(1t)εθ,t2(1t)εθ,,tJ1(1t)εθ};\displaystyle\boldsymbol{x}=\boldsymbol{x}_{\varepsilon}=\bigcup_{i=1}^{Y}\big{\{}(1-t)\varepsilon\theta,t(1-t)\varepsilon\theta,t^{2}(1-t)\varepsilon\theta,\ldots,t^{J-1}(1-t)\varepsilon\theta\big{\}};
𝝍=𝝍ε=i=1X{εθ,tεθ,t2εθ,};𝝋=j=1m{βj,qβj,q2βj,},\displaystyle\boldsymbol{\psi}=\boldsymbol{\psi}_{\varepsilon}=\bigcup_{i=1}^{X}\{\varepsilon\theta,t\varepsilon\theta,t^{2}\varepsilon\theta,\ldots\};\qquad\boldsymbol{\varphi}=\bigcup_{j=1}^{m}\{\beta_{j},q\beta_{j},q^{2}\beta_{j},\ldots\},

where the geometric progressions with ratio tt do not depend on ii (meaning that 𝒙\boldsymbol{x} and 𝝍\boldsymbol{\psi} contain YY and XX copies of them, respectively). Then, the above parameter sets (t,𝒖,𝝃,𝒓,𝒔)(t,\boldsymbol{u},\boldsymbol{\xi},\boldsymbol{r},\boldsymbol{s}) for FV(J)\operatorname{FV}(J) and (𝒙,𝜶,𝝍)(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\psi}) match in the sense of Definition 2.7, by taking (N,M)(N,M) there to be (X,Y)(X,Y) here; 𝒙\boldsymbol{x} there to be 𝒙\boldsymbol{x} here; 𝒖\boldsymbol{u} there to constitute YY copies of t1J(1t)1(εθ)1t^{1-J}(1-t)^{-1}(\varepsilon\theta)^{-1} here; 𝒓\boldsymbol{r} to constitute JJ copies of tJ/2t^{-J/2}; each α^i\widehat{\alpha}_{i} there to be εθ\varepsilon\theta here; each β^j\widehat{\beta}_{j} there to be βj\beta_{j} here; and each hih_{i} there to be \infty here.

We may therefore apply 2.8, with (K,ζ)(K,\zeta) there equal to (XJ,qXJζ)(XJ,q^{-XJ}\zeta) here to deduce

(5.2) 𝔼CV(J)[1(ζt𝔥CV(J)(X,Y);t)]=𝔼MM[1(t(λ)ζ;t)j=1(λ)(1+ζqλjtj)],\displaystyle\mathbb{E}_{\operatorname{CV}(J)}\Bigg{[}\displaystyle\frac{1}{(-\zeta t^{-\mathfrak{h}_{\operatorname{CV}(J)}(X,Y)};t)_{\infty}}\Bigg{]}=\mathbb{E}_{\operatorname{MM}}\Bigg{[}\displaystyle\frac{1}{(-t^{-\ell(\lambda)}\zeta;t)_{\infty}}\displaystyle\prod_{j=1}^{\ell(\lambda)}(1+\zeta q^{\lambda_{j}}t^{-j})\Bigg{]},

where the expectation on the right side is with respect to the Macdonald measure with specializations (𝒙ε𝟎)(\boldsymbol{x}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{0}) and (𝝍ε𝝋)(\boldsymbol{\psi}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{\varphi}), and we used the fact that 1+ζqλjtj=1+ζtj1+\zeta q^{\lambda_{j}}t^{j}=1+\zeta t^{j} for j>(λ)j>\ell(\lambda).

Now let us take the limit of both sides of (5.2) as first JJ tends to \infty, and then ε\varepsilon tends to 0. By 4.8, the left side converges to 𝔼[(ζt(χ,η);t)1]\mathbb{E}\big{[}(-\zeta t^{-\mathfrak{H}(\chi,\eta)};t)_{\infty}^{-1}\big{]}, where the expectation is with respect to the tt-PNG model. To analyze the right side, observe by 2.6 that under this limit (𝒙ε𝟎)(\boldsymbol{x}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{0}) and (𝝍ε𝜷)(\boldsymbol{\psi}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{\beta}) converge to ρ1=(𝟎𝟎1t1q(1tJ)ηθ)\rho_{1}=\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}\frac{1-t}{1-q}(1-t^{J})\eta\theta\big{)} and ρ3=(𝟎𝝋χθ1q)\rho_{3}=\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{\varphi}\boldsymbol{\mid}\frac{\chi\theta}{1-q}\big{)}, respectively. Thus, taking the limit first as JJ tends to \infty and next as ε\varepsilon tends to 0 in (5.2) gives

(5.3) 𝔼[1(ζt(χ,η);t)]=𝔼MM[1(t(λ)ζ;t)j=1(λ)(1+ζqλjtj)],\displaystyle\mathbb{E}\Bigg{[}\displaystyle\frac{1}{(-\zeta t^{-{\mathfrak{H}(\chi,\eta)};t)_{\infty}}}\Bigg{]}=\mathbb{E}_{\operatorname{MM}}\Bigg{[}\displaystyle\frac{1}{(-t^{-\ell(\lambda)}\zeta;t)_{\infty}}\displaystyle\prod_{j=1}^{\ell(\lambda)}(1+\zeta q^{\lambda_{j}}t^{-j})\Bigg{]},

where the expectation on the left side is with respect to the tt-PNG model, and the expectation on the right side is with respect to the Macdonald measure with specializations ρ1\rho_{1} and ρ3\rho_{3}. Applying (5.3) with q=tq=t then yields (5.1) (since at q=tq=t we have ρ3=ρ2\rho_{3}=\rho_{2}), by 2.5; this establishes the first statement of the theorem.

To establish the second, we apply 2.9. This implies that 𝔥CV(J)(X,Y)\mathfrak{h}_{\operatorname{CV}(J)}(X,Y) has the same law as (λ)\ell(\lambda), where λ\lambda is distributed according to a Hall–Littlewood measure with specializations (𝒙ε𝟎)(\boldsymbol{x}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{0}) and (𝝍ε𝜷)(\boldsymbol{\psi}_{\varepsilon}\boldsymbol{\mid}\boldsymbol{\beta}) (where we used the fact that at q=0q=0 we have 𝝋=𝜷\boldsymbol{\varphi}=\boldsymbol{\beta}). Again taking the limits as first JJ tends to \infty and then as ε\varepsilon tends to 0, and applying 4.8 and 2.6, we deduce the second statement of the theorem. ∎

5.2. Large Scale Asymptotics

In this section we analyze the large scale asymptotics for the height function (χ,η)\mathfrak{H}(\chi,\eta) of the tt-PNG model, as χ\chi and η\eta tend to \infty. To that end, we use 5.1 to compare (χ,η)\mathfrak{H}(\chi,\eta) with a Schur measure (which will correspond to the standard PNG model at t=0t=0).

To implement this, we recall from Definition 5.2 of [12] that two sequences of real-valued random variables {𝔞n}\{\mathfrak{a}_{n}\} and {𝔟n}\{\mathfrak{b}_{n}\} are called asymptotically independent if the following two conditions hold.

  1. (1)

    We have

    (5.4) limnsupz[z<𝔞nz+1]=0,if and only iflimnsupz[z<𝔟nz+1]=0.\displaystyle\displaystyle\lim_{n\rightarrow\infty}\displaystyle\sup_{z\in\mathbb{R}}\mathbb{P}[z<\mathfrak{a}_{n}\leq z+1]=0,\quad\text{if and only if}\quad\displaystyle\lim_{n\rightarrow\infty}\displaystyle\sup_{z\in\mathbb{R}}\mathbb{P}[z<\mathfrak{b}_{n}\leq z+1]=0.
  2. (2)

    If both limits in (5.4) hold, then limnsupz([𝔞nz][𝔟nz])=0\lim_{n\rightarrow\infty}\sup_{z\in\mathbb{R}}\big{(}\mathbb{P}[\mathfrak{a}_{n}\leq z]-\mathbb{P}[\mathfrak{b}_{n}\leq z]\big{)}=0.

The below lemma, which quickly follows from 5.1 with results from [12], states an asymptotic equivalence between the height function (χ,η)\mathfrak{H}(\chi,\eta) and the length of a partition sampled from a Schur measure.

Lemma 5.2.

Recall the notation of 5.1; let N1N\geq 1 be an integer; assume that (χ,η)=(χN,ηN)=(xN,yN)(\chi,\eta)=(\chi_{N},\eta_{N})=(xN,yN); and sample a partition λ𝕐\lambda\in\mathbb{Y} under the Schur measure with specializations ρ1=(𝟎𝟎yθN)\rho_{1}=(\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}y\theta N) and ρ2=(𝟎𝛃(1t)1xθN)\rho_{2}=\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{\beta}\boldsymbol{\mid}(1-t)^{-1}x\theta N\big{)}. Then (χ,η)=(xN,yN)\mathfrak{H}(\chi,\eta)=\mathfrak{H}(xN,yN) is asymptotically equivalent to (λ)\ell(\lambda) (where N1N\geq 1 is the index variable for both sequences).

Proof.

Throughout this proof, we say that a sequence of random variables {𝔞n}\{\mathfrak{a}_{n}\} is asymptotically equivalent to a sequence of cumulative distribution functions {Fn}\{F_{n}\} if the following holds. Letting 𝔟n\mathfrak{b}_{n} denote the random variable such that [𝔟nz]=Fn(z)\mathbb{P}[\mathfrak{b}_{n}\leq z]=F_{n}(z), the random variable sequences {𝔞n}\{\mathfrak{a}_{n}\} and {𝔟n}\{\mathfrak{b}_{n}\} are asymptotically equivalent.

Now, for any real number zz\in\mathbb{R}, set

(5.5) FN(x)=𝔼[1(tz(χN,ηN);t)];GN(z)=𝔼[1(tz(λ);t)j=1(λ)(1+tλjj+z)].\displaystyle F_{N}(x)=\mathbb{E}\Bigg{[}\displaystyle\frac{1}{(-t^{z-\mathfrak{H}(\chi_{N},\eta_{N})};t)_{\infty}}\Bigg{]};\qquad G_{N}(z)=\mathbb{E}\Bigg{[}\displaystyle\frac{1}{(-t^{z-\ell(\lambda)};t)_{\infty}}\displaystyle\prod_{j=1}^{\ell(\lambda)}(1+t^{\lambda_{j}-j+z})\Bigg{]}.

By the ζ=tz\zeta=t^{z} case of (5.1), we have FN(z)=GN(z)F_{N}(z)=G_{N}(z) for each xx\in\mathbb{R}. It is quickly verified that FNF_{N} and GNG_{N} are nondecreasing in zz, and further satisfy limzFN(z)=0=limzGN(z)\lim_{z\rightarrow-\infty}F_{N}(z)=0=\lim_{z\rightarrow-\infty}G_{N}(z) and limzFN(z)=1=limzGN(z)\lim_{z\rightarrow\infty}F_{N}(z)=1=\lim_{z\rightarrow\infty}G_{N}(z).

Corollary 5.7 of [12] implies that the random variable (xN,yN)\mathfrak{H}(xN,yN) is asymptotically equivalent to the function FNF_{N}, and that (λ)\ell(\lambda) is asymptotically equivalent to GNG_{N}. The lemma then follows from the fact that FN=GNF_{N}=G_{N}. ∎

When m=0m=0, the sequence 𝜷\boldsymbol{\beta} is empty, and the Schur measure considered in 5.2 reduces to the Poissonized Plancherel measure. The latter was analyzed in detail in [8, 18, 35] relating to the longest increasing subsequence of a random permutation and to the t=0t=0 PNG model. Its asymptotics are therefore well understood, which gives rise to the following result for the asymptotic behavior of the tt-PNG model without boundary conditions.

Theorem 5.3.

Fix positive real numbers x,y,θ>0x,y,\theta\in\mathbb{R}_{>0} and t[0,1)t\in[0,1). Let \mathfrak{H} denote the height function for the tt-PNG model with intensity θ2\theta^{2} on >02\mathbb{R}_{>0}^{2} (without boundary conditions) from Definition 4.2. Then,

limN[(xN,yN)μNσN1/3s]=FTW(s),\displaystyle\displaystyle\lim_{N\rightarrow\infty}\mathbb{P}\bigg{[}\displaystyle\frac{\mathfrak{H}(xN,yN)-\mu N}{\sigma N^{1/3}}\leq s\bigg{]}=F_{\operatorname{TW}}(s),

where FTWF_{\operatorname{TW}} denotes the Tracy–Widom Gaussian Unitary Ensemble (GUE) distribution, and μ=μ(t,θ,x,y)\mu=\mu(t,\theta,x,y) and σ=σ(t,x,y,θ)\sigma=\sigma(t,x,y,\theta) are defined by

μ=2θ(xy)1/2(1t)1/2;σ=θ1/3(xy)1/6(1t)1/6.\displaystyle\mu=2\theta(xy)^{1/2}(1-t)^{-1/2};\qquad\sigma=\theta^{1/3}(xy)^{1/6}(1-t)^{-1/6}.
Proof.

Under the Schur measure with specializations (𝟎𝟎(1t)yθN)\big{(}\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}(1-t)y\theta N\big{)} and (𝟎𝟎xθN)(\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}x\theta N), Theorem 5 of [18] or Proposition 1.5 and Theorem 1.7 of [35] (see also Remark 2 of the survey [16]) gives

limN[(λ)μNσN1/3s]=FTW(s).\displaystyle\displaystyle\lim_{N\rightarrow\infty}\mathbb{P}\bigg{[}\displaystyle\frac{\ell(\lambda)-\mu N}{\sigma N^{1/3}}\leq s\bigg{]}=F_{\operatorname{TW}}(s).

This, together with 5.2, implies the theorem. ∎

The m1m\geq 1 case of 5.2 corresponds to the tt-PNG model with boundary conditions, as in Definition 4.6. Although we will not pursue this here, the associated Schur measure can be analyzed to access the large scale asymptotics for this model. For example, if β1=β2==βm=β\beta_{1}=\beta_{2}=\cdots=\beta_{m}=\beta (or are more generally within N1/3N^{-1/3} of one another), then the height function (x,y)\mathfrak{H}(x,y) will exhibit a Baik–Ben Arous–Péché transition [7] across a characteristic line. To the left of this line, it will exhibit N1/2N^{1/2} fluctuations scaling to the largest eigenvalue of an m×mm\times m GUE matrix; to the right of this line, it will exhibit N1/3N^{1/3} fluctuations scaling to the Tracy–Widom GUE distribution; and along this line it will converge to an interpolation between the two, known as a level mm Baik–Ben Arous–Péché distribution. For m=1m=1, this was established for the t=0t=0 PNG model in [9].

5.3. Limit to the KPZ Equation

The fact that our PNG model is dependent on a parameter t[0,1)t\in[0,1) enables us to consider its scaling limit as tt tends to 11. In this section we explain how, under this scaling limit, the tt-PNG height function converges to the Cole–Hopf solution of the Kardar–Parisi–Zhang (KPZ) equation with narrow wedge initial data. The latter is defined as t(x)=log𝒵t(x)\mathcal{H}_{t}(x)=-\log\mathcal{Z}_{t}(x), where 𝒵t(x)\mathcal{Z}_{t}(x) is the solution of the stochastic heat equation with multiplicative noise, given by

t𝒵t(x)=12x2𝒵(x)+𝒵t(x)𝒲˙t(x),with initial data 𝒵0(x)=δ(x),\displaystyle\partial_{t}\mathcal{Z}_{t}(x)=\displaystyle\frac{1}{2}\partial_{x}^{2}\mathcal{Z}(x)+\mathcal{Z}_{t}(x)\cdot\dot{\mathcal{W}}_{t}(x),\qquad\text{with initial data $\mathcal{Z}_{0}(x)=\delta(x)$},

where 𝒲˙t(x)\dot{\mathcal{W}}_{t}(x) denotes space-time white noise, and δ(x)\delta(x) denotes the delta function; we refer to [26, 47] for surveys on the KPZ equation and universality class.

Given this notation, we have the following theorem stating convergence of a (normalization) of the tt-PNG height function (χ,η)\mathfrak{H}(\chi,\eta) (recall Section 5.1) to the solution \mathcal{H} of the KPZ equation, in the limit as tt tends to 11. Observe in this theorem that we also let the intensity of the model simultaneously tend to \infty, while keeping the coordinates (χ,η)(\chi,\eta) fixed. We only outline the proof of the below theorem, since it follows from 5.1 and results of [18, 17] in a similar way to what was done in the proof of Theorem 11.6 (and Remark 11.7) of [19].

Theorem 5.4.

Fix real numbers χ,η>0\chi,\eta>0, let ε>0\varepsilon>0 be a parameter, and denote

(5.6) T=2χη;t=tε=eε;θ=θε=ε3.\displaystyle T=2\sqrt{\chi\eta};\qquad t=t_{\varepsilon}=e^{-\varepsilon};\qquad\theta=\theta_{\varepsilon}=\varepsilon^{-3}.

Consider the tt-PNG model with intensity (1t)θ2(1-t)\theta^{2} on >02\mathbb{R}_{>0}^{2}, as in Definition 4.2, and define the normalization 𝔫(χ,η)\mathfrak{n}(\chi,\eta) of its height function by

(5.7) 𝔫ε(χ,η)=ε((χ,η)ε3T)logε.\displaystyle\mathfrak{n}_{\varepsilon}(\chi,\eta)=\varepsilon\big{(}\mathfrak{H}(\chi,\eta)-\varepsilon^{-3}T\big{)}-\log\varepsilon.

Then, as ε\varepsilon tends to 0, the random variable 𝔫ε(χ,η)\mathfrak{n}_{\varepsilon}(\chi,\eta) converges weakly to T24T(0)\frac{T}{24}-\mathcal{H}_{T}(0).

Proof (Outline).

By the discussion at the end of the proof of Theorem 11.6 of [19], it suffices to verify that the limit as ε\varepsilon tends to 0 of the Laplace transform of e𝔫ε(χ,η)e^{\mathfrak{n}_{\varepsilon}(\chi,\eta)} is given by that of eT/24T(0)=eT/24𝒵T(0)e^{T/24-\mathcal{H}_{T}(0)}=e^{T/24}\mathcal{Z}_{T}(0).888Indeed, it is quickly verified from (5.8) that the sequence of random variables {e𝔫ε(χ,η)}\{e^{\mathfrak{n}_{\varepsilon}(\chi,\eta)}\} is tight. Since any probability distribution is uniquely characterized by its Laplace transform, (5.8) also implies that any limit point must converge to eT/24𝒵T(0)e^{T/24}\mathcal{Z}_{T}(0). Thus, by taking the logarithm, we deduce that 𝔫ε(χ,η)\mathfrak{n}_{\varepsilon}(\chi,\eta) converges to T24T(0)\frac{T}{24}-\mathcal{H}_{T}(0). So, for a fixed ζ0>0\zeta_{0}\in\mathbb{R}_{>0} we will show that

(5.8) limε0𝔼[exp(ζ0e𝔫ε(χ,η))]=𝔼[exp(ζ0eT/24𝒵T(0))].\displaystyle\displaystyle\lim_{\varepsilon\rightarrow 0}\mathbb{E}\Big{[}\exp\big{(}-\zeta_{0}e^{\mathfrak{n}_{\varepsilon}(\chi,\eta)}\big{)}\Big{]}=\mathbb{E}\Big{[}\exp\big{(}-\zeta_{0}e^{T/24}\mathcal{Z}_{T}(0)\big{)}\Big{]}.

The right side of (5.8) is expressible in terms of the Airy point process999This is the determinantal point process on \mathbb{R} with correlation kernel given by KAi(x,y)=0Ai(x+u)Ai(y+u)duK_{\text{Ai}}(x,y)=\int_{0}^{\infty}\text{Ai}(x+u)\text{Ai}(y+u)du, where Ai(x):\text{Ai}(x):\mathbb{R}\rightarrow\mathbb{R} denotes the Airy function. 𝒜=(𝔞1,𝔞2,)\mathcal{A}=(\mathfrak{a}_{1},\mathfrak{a}_{2},\ldots). In particular, Theorem 2.1 of [17] states that

𝔼[exp(ζ0eT/24𝒵T(0))]=𝔼[j=111+ζ0exp(21/3T1/3𝔞j)],\displaystyle\mathbb{E}\Big{[}\exp\big{(}-\zeta_{0}e^{T/24}\mathcal{Z}_{T}(0)\big{)}\Big{]}=\mathbb{E}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{1}{1+\zeta_{0}\exp(2^{-1/3}T^{1/3}\mathfrak{a}_{j})}\Bigg{]},

so it suffices to establish

(5.9) limε0𝔼[exp(ζ0𝔫ε(χ,η))]=𝔼[j=111+ζ0exp(21/3T1/3𝔞j)].\displaystyle\displaystyle\lim_{\varepsilon\rightarrow 0}\mathbb{E}\Big{[}\exp\big{(}-\zeta_{0}\mathfrak{n}_{\varepsilon}(\chi,\eta)\big{)}\Big{]}=\mathbb{E}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{1}{1+\zeta_{0}\exp(2^{-1/3}T^{1/3}\mathfrak{a}_{j})}\Bigg{]}.

To that end, set ζ=ζ0t2θχη=tθT\zeta=\zeta_{0}t^{2\theta\sqrt{\chi\eta}}=t^{\theta T}. Observe for any partition λ=(λ1,λ2,,λ)𝕐\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{\ell})\in\mathbb{Y} with conjugate (transpose) λ=(λ1,λ2,,λ)\lambda^{\prime}=(\lambda_{1}^{\prime},\lambda_{2}^{\prime},\ldots,\lambda_{\ell^{\prime}}^{\prime}) that {λii}i1{jλj1}j1=\{\lambda_{i}-i\}_{i\geq 1}\cup\{j-\lambda_{j}^{\prime}-1\}_{j\geq 1}=\mathbb{Z} (where λi=0\lambda_{i}=0 and λj=0\lambda_{j}^{\prime}=0 for ii\geq\ell and jj\geq\ell^{\prime}, respectively). This implies

1(ζ(λ);t)j=1(λ)(1+ζtλjj)=j=111+ζtjλj1.\displaystyle\displaystyle\frac{1}{(-\zeta^{-\ell(\lambda)};t)_{\infty}}\displaystyle\prod_{j=1}^{\ell(\lambda)}(1+\zeta t^{\lambda_{j}-j})=\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{1}{1+\zeta t^{j-\lambda_{j}^{\prime}-1}}.

This, together with (5.1) (with the θ\theta there replaced by (1t)1/2θ(1-t)^{-1/2}\theta here), yields

(5.10) 𝔼[1(ζt(χ,η);t)]=𝔼[j=111+ζtjλj1],\displaystyle\mathbb{E}\Bigg{[}\displaystyle\frac{1}{(-\zeta t^{-\mathfrak{H}(\chi,\eta)};t)_{\infty}}\Bigg{]}=\mathbb{E}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{1}{1+\zeta t^{j-\lambda_{j}^{\prime}-1}}\Bigg{]},

where the expectation on the left side is with respect to the tt-PNG model with intensity θ2(1t)\theta^{2}(1-t) and that on the right side is with respect to the Schur measure with specializations ρ1=(𝟎𝟎ηθ)\rho_{1}=(\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}\eta\theta) and ρ2=(𝟎𝟎χθ)\rho_{2}=(\boldsymbol{0}\boldsymbol{\mid}\boldsymbol{0}\boldsymbol{\mid}\chi\theta).

We will show that, as ε\varepsilon tends to 0, the left and right sides of (5.10) converge to those of (5.9), respectively. We begin with the right sides, which will follow from results of [18]. In particular, from the choices ζ=ζ0t2θχη\zeta=\zeta_{0}t^{2\theta\sqrt{\chi\eta}}, t=eεt=e^{-\varepsilon}, and ε=θ1/3\varepsilon=\theta^{-1/3} (recall (5.6)), we find that

(5.11) 𝔼[j=111+ζtjλj1]=𝔼[j=1(1+ζ0exp(λjj2θχη+1θ1/3))1].\displaystyle\mathbb{E}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{1}{1+\zeta t^{j-\lambda_{j}^{\prime}-1}}\Bigg{]}=\mathbb{E}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\Bigg{(}1+\zeta_{0}\exp\bigg{(}\displaystyle\frac{\lambda_{j}^{\prime}-j-2\theta\sqrt{\chi\eta}+1}{\theta^{1/3}}\bigg{)}\Bigg{)}^{-1}\Bigg{]}.

Next, Theorem 4 of [18] states that {(χη)1/6θ1/3(λj2θχη)}j1\big{\{}(\chi\eta)^{-1/6}\theta^{-1/3}(\lambda_{j}^{\prime}-2\theta\sqrt{\chi\eta})\big{\}}_{j\geq 1} converges weakly to 𝒜\mathcal{A} as ε\varepsilon tends to 0. A slightly stronger form of this convergence, given by Proposition 4.3 of [18] (see also the proof of Theorem 11.6 of [19]), quickly implies that

(5.12) limε0[j=1(1+ζ0exp(λjj2θχη+1θ1/3))1]=𝔼[j=111+ζ0exp((χη)1/6𝔞j)].\displaystyle\displaystyle\lim_{\varepsilon\rightarrow 0}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\Bigg{(}1+\zeta_{0}\exp\bigg{(}\displaystyle\frac{\lambda_{j}^{\prime}-j-2\theta\sqrt{\chi\eta}+1}{\theta^{1/3}}\bigg{)}\Bigg{)}^{-1}\Bigg{]}=\mathbb{E}\Bigg{[}\displaystyle\prod_{j=1}^{\infty}\displaystyle\frac{1}{1+\zeta_{0}\exp\big{(}(\chi\eta)^{1/6}\mathfrak{a}_{j}\big{)}}\Bigg{]}.

By the choice of T=2χηT=2\sqrt{\chi\eta}, (5.11), and (5.12) together imply that the right side of (5.10) converges to that of (5.9) as ε\varepsilon tends to 0.

Next, we analyze the left side of (5.10). The tt-binomial theorem, (5.6), and (5.7) together give

1(ζt(χ,η);t)=j=0(ζ)jtj(χ,η)(t;t)j\displaystyle\displaystyle\frac{1}{(-\zeta t^{-\mathfrak{H}(\chi,\eta)};t)_{\infty}}=\displaystyle\sum_{j=0}^{\infty}\displaystyle\frac{(-\zeta)^{j}t^{-j\mathfrak{H}(\chi,\eta)}}{(t;t)_{j}} =j=0(1t)j(t;t)j(ζ0t1exp(1θ1/3((χ,η)2θχη)))j\displaystyle=\displaystyle\sum_{j=0}^{\infty}\displaystyle\frac{(1-t)^{j}}{(t;t)_{j}}\Bigg{(}\displaystyle\frac{\zeta_{0}}{t-1}\exp\bigg{(}\displaystyle\frac{1}{\theta^{1/3}}\big{(}\mathfrak{H}(\chi,\eta)-2\theta\sqrt{\chi\eta}\big{)}\bigg{)}\Bigg{)}^{j}
=j=0(1t)j(t;t)j(ζ0e𝔫ε(χ,η)ε(t1))j.\displaystyle=\displaystyle\sum_{j=0}^{\infty}\displaystyle\frac{(1-t)^{j}}{(t;t)_{j}}\bigg{(}\displaystyle\frac{\zeta_{0}e^{\mathfrak{n}_{\varepsilon}(\chi,\eta)}}{\varepsilon(t-1)}\bigg{)}^{j}.

Since

limε0(1t)j(t;t)j=1j!;limε0ε(t1)=1,\displaystyle\displaystyle\lim_{\varepsilon\rightarrow 0}\displaystyle\frac{(1-t)^{j}}{(t;t)_{j}}=\displaystyle\frac{1}{j!};\qquad\displaystyle\lim_{\varepsilon\rightarrow 0}\varepsilon(t-1)=-1,

it follows that

(5.13) limε01(ζt(χ,η);t)=j=01j!(ζ0e𝔫(χ,η))j=exp(ζ0e𝔫(χ,η)).\displaystyle\displaystyle\lim_{\varepsilon\rightarrow 0}\displaystyle\frac{1}{(-\zeta t^{-\mathfrak{H}(\chi,\eta)};t)_{\infty}}=\displaystyle\sum_{j=0}^{\infty}\displaystyle\frac{1}{j!}\big{(}-\zeta_{0}e^{\mathfrak{n}(\chi,\eta)}\big{)}^{j}=\exp\big{(}-\zeta_{0}e^{\mathfrak{n}(\chi,\eta)}\big{)}.

This indicates that the left side of (5.10) converges to (5.9) as ε\varepsilon tends to 0. Hence, (5.10), (5.13), (5.11), and (5.12) together imply (5.9) and thus the theorem. ∎

Although we will not pursue this here, let us mention that a similar scaling limit as considered in 5.4, for the tt-PNG model with (𝜷;θ;t)(\boldsymbol{\beta};\theta;t)-boundary conditions should give rise to the solution of the KPZ equation with spiked initial data, as considered in [15].

Appendix A The tt-PNG Model and Patience Sorting

In this section we provide an interpretation for the tt-PNG model through patience sorting “with errors.” Before explaining this in more detail, we first recall the standard patience sorting algorithm; see Section 1.1 of [5]. Starting with a deck of NN cards labeled {1,2,,N}\{1,2,\ldots,N\}, one begins drawing cards from it and sorting them into piles as follows.

  1. (1)

    Suppose the card drawn has label ii, and search for the pile with the smallest top card that is greater than ii.

    1. (a)

      If such a pile exists, then place card ii on top of that pile.

    2. (b)

      If no such pile exists, create a new pile consisting of card ii.

  2. (2)

    Repeat this procedure until all cards are sorted into piles.

Observe in particular that, if these piles are ordered according to their time of creation, then their top cards are increasing. Thus, the search from part 1 of this algorithm scans through the piles in order and stops upon reaching one whose top card exceeds ii.

Example A.1.

Suppose N=6N=6 and the deck is ordered (5,2,1,3,4,6)(5,2,1,3,4,6) from top to bottom. Then, after the first card is drawn, the set of piles is {(5)}\big{\{}(5)\big{\}}; after the second, it is {(2,5)}\big{\{}(2,5)\big{\}}; after the third, it is {(1,2,5)}\big{\{}(1,2,5)\big{\}}; after the fourth, it is {(1,2,5),(3)}\big{\{}(1,2,5),(3)\big{\}}; after the fifth, it is {(1,2,5),(3),(4)}\big{\{}(1,2,5),(3),(4)\big{\}}; and after the sixth, it is {(1,2,5),(3),(4),(6)}\big{\{}(1,2,5),(3),(4),(6)\big{\}}.

The t=0t=0 PNG model with intensity θ2\theta^{2} is known to be closely related to patience sorting, applied to a uniformly randomly shuffled deck of NN cards, where NN is selected according to an independent exponential distribution with parameter θ2\theta^{2}. In particular, the total number of piles created under the patience sorting algorithm (equivalently, the longest increasing subsequence of the deck) has the same law as the height function (1,1)\mathfrak{H}(1,1) (recall the beginning of Section 5.1) for the t=0t=0 PNG model. The analogous equivalence for the tt-PNG model will be with the following variant of patience sorting that allows for random “errors” to occur with probability tt.

Definition A.2.

Starting with a deck of NN cards labeled {1,2,,N}\{1,2,\ldots,N\}, the patience sorting algorithm with error probability tt draws cards from the deck and sorts them into piles as follows.

  1. (1)

    Suppose the card drawn has label ii, and consider all piles 𝒫1,𝒫2,,𝒫g\mathcal{P}_{1},\mathcal{P}_{2},\ldots,\mathcal{P}_{g} whose top cards are greater than ii; denote their top cards by c1,c2,,cgc_{1},c_{2},\ldots,c_{g}, respectively, where c1<c2<<cgc_{1}<c_{2}<\cdots<c_{g}. Set k=1k=1.

    1. (a)

      Suppose kgk\leq g.

      1. (i)

        With probability 1t1-t, place card ii on top of pile 𝒫k\mathcal{P}_{k}.

      2. (ii)

        With probability tt, “miss” this pile by changing kk to k+1k+1 and repeating step 1a.

    2. (b)

      If k>gk>g, then create a new pile consisting of card ii.

  2. (2)

    Repeat this procedure until all cards are sorted into piles.

Observe in the case t=0t=0 (corresponding to no “misses”), Definition A.2 reduces to the original patience sorting algorithm described above.

Example A.3.

Again suppose N=6N=6 and the deck is ordered (5,2,1,3,4,6)(5,2,1,3,4,6) from top to bottom. After the first card is drawn, a pile (5)(5) is deterministically formed. After the second card is drawn, with probability 1t1-t it is placed on top of this pile (forming (2,5)(2,5)); with probability tt, pile (5)(5) is “missed,” and card 22 is placed in its own pile (forming {(2),(5)}\big{\{}(2),(5)\big{\}}). Suppose that the latter event occurs. The third card is then placed on pile (2)(2) with probability 1t1-t; on pile (5)(5) with probability tt2t-t^{2}; and in its own pile with probability t2t^{2}. One continues in this way until all cards are placed.

The following proposition explains a relation between the tt-PNG height function and the number of piles created under applying this variant of patience sorting to a random permutation; its proof more generally explains that broken lines in the former directly correspond to piles in the latter.

Proposition A.4.

Fix parameters t0t\geq 0 and θ>0\theta>0; let NN be a θ2\theta^{2}-exponentially distributed random variable; and apply the patience sorting algorithm with error probability tt (from Definition A.2) to a uniformly randomly shuffled deck with NN cards. The number of piles created under this algorithm has the same law as the height function (1,1)\mathfrak{H}(1,1) of the tt-PNG model with intensity θ2\theta^{2} on [0,1]×[0,1][0,1]\times[0,1], under empty boundary conditions (from Definition 4.2).

Proof.

Sample the tt-PNG model on [0,1]×[0,1][0,1]\times[0,1] through Definition 4.2, and denote the associated Poisson point process (corresponding to the locations of nucleation events) by 𝒱=(v1,v2,,vN)[0,1]×[0,1]\mathcal{V}=(v_{1},v_{2},\ldots,v_{N})\subset[0,1]\times[0,1]; then NN is a θ2\theta^{2}-exponentially distributed random variable. Order 𝒱\mathcal{V} so that vi=(xi,yσ(i))v_{i}=(x_{i},y_{\sigma(i)}), where x1<x2<<xNx_{1}<x_{2}<\cdots<x_{N} and y1<y2<<yNy_{1}<y_{2}<\cdots<y_{N}. Then, σ\sigma is a uniformly random permutation on {1,2,,N}\{1,2,\ldots,N\}; we associate it with the order of the deck to be sorted.

A broken line in the tt-PNG model is defined to be a maximal increasing sequence (i1,i2,,ik){1,2,,N}(i_{1},i_{2},\ldots,i_{k})\subseteq\{1,2,\ldots,N\} such that the horizontal ray emanating from vijv_{i_{j}} annihilates with the vertical one emanating from vij+1v_{i_{j+1}}, for each j[1,k1]j\in[1,k-1]. For example, in the sample depicted in Figure 5, σ=(6,3,4,2,1,5)\sigma=(6,3,4,2,1,5) and there are three broken lines given by (1,3,5)(1,3,5), (2,4)(2,4), and (6)(6). We associate with any broken line (i1,i2,,ik)(i_{1},i_{2},\ldots,i_{k}) a pile of cards (σ(ik),σ(ik1),,σ(i1))\big{(}\sigma(i_{k}),\sigma(i_{k-1}),\ldots,\sigma(i_{1})\big{)} (ordered from top to bottom). When a nucleation occurs at some point vi=(xi,yσ(i))v_{i}=(x_{i},y_{\sigma(i)}), the vertical ray emanating from viv_{i} can collide with a horizontal ray along a broken line; the latter corresponds to some pile 𝒫\mathcal{P}, with top card greater than ii. With probability 1t1-t, the two rays annihilate each other, meaning that card σ(i)\sigma(i) is appended to the top of 𝒫\mathcal{P}. With probability tt, the two rays pass through each other, meaning that pile 𝒫\mathcal{P} is “missed” when sorting σ(i)\sigma(i), and we repeat the procedure on the next broken line that intersects the vertical ray emanating from viv_{i}.

These sorting dynamics induced by the tt-PNG model coincide with those of the patience sorting algorithm with error probability tt. Thus, the family of broken lines sampled under the former has the same law as the family of piles created under applying the latter to σ\sigma. This implies the proposition, since (1,1)\mathfrak{H}(1,1) counts the number of such broken lines. ∎

Appendix B Proof of 4.4

In this section we establish 4.4. Let \mathcal{E} denote a (complemented) path ensemble on >02\mathbb{Z}_{>0}^{2}, sampled under the vertex model described in 4.4. We will couple \mathcal{E} with an ensemble \mathcal{F} sampled from a slightly different vertex model that can be more directly seen to converge to the tt-PNG process. The weights of this latter vertex model are Φ(i1,h1;i2,h2)\Phi(i_{1},h_{1};i_{2},h_{2}), defined by setting

(B.1) Φ(0,0;0,0)=1(θε)2;Φ(0,0;1,1)=(θε)2;Φ(1,0;1,0)=1;Φ(0,1;0,1)=1;Φ(1,1;0,0)=1t;Φ(1,1;1,1)=t,\displaystyle\begin{aligned} \Phi(0,0;0,0)=1-(\theta\varepsilon)^{2};\qquad&\Phi(0,0;1,1)=(\theta\varepsilon)^{2};\qquad\Phi(1,0;1,0)=1;\qquad\Phi(0,1;0,1)=1;\\ &\Phi(1,1;0,0)=1-t;\qquad\Phi(1,1;1,1)=t,\end{aligned}

and Φ(i1,h1;i2,h2)=0\Phi(i_{1},h_{1};i_{2},h_{2})=0 for all other integer quadruples (i1,h1;i2,h2)(i_{1},h_{1};i_{2},h_{2}).

It is quickly verified that a random ensemble \mathcal{F} sampled under the vertex model with weights (B.1), under empty boundary data, converges to the tt-PNG model, as ε\varepsilon tends to 0. Indeed, by the first two probabilities in (B.1), upon scaling the rectangle [1,X]×[1,Y][1,X]\times[1,Y] by ε\varepsilon, the law for the set of locations with arrow configuration (0,0;1,1)(0,0;1,1) converges to a Poisson point process on χ;θ\mathcal{R}_{\chi;\theta} with intensity θ2\theta^{2}. Under the tt-PNG model, these correspond to nucleation events when a vertical and horizontal ray are created. By the second two probaiblities in (B.1), these rays proceed until meeting another ray. By the last two probabilities in (B.1), when a horizontal ray collides with a vertical one, they are annihilated with probability 1t1-t and continue through each other with probability tt. This description matches with that of the tt-PNG model provided in Definition 4.2.

Thus, it remains to couple \mathcal{E} and \mathcal{F} on [1,X]×[1,Y][1,X]\times[1,Y] off of an event with probability o(1)o(1), as ε\varepsilon tends to 0. To that end, it suffices to establish lemma. In the below, for any vertex v[1,X]×[1,Y]v\in[1,X]\times[1,Y] and path ensemble 𝒢{,}\mathcal{G}\in\{\mathcal{E},\mathcal{F}\}, we let (i1(v;𝒢),h1(v;𝒢);i2(v;𝒢),h2(v;𝒢))\big{(}i_{1}(v;\mathcal{G}),h_{1}(v;\mathcal{G});i_{2}(v;\mathcal{G}),h_{2}(v;\mathcal{G})\big{)} denote the arrow configuration at vv under 𝒢\mathcal{G}.

Lemma B.1.

The following two statements hold as ε\varepsilon tends to 0.

  1. (1)

    Let 𝒜\mathscr{A} denote the event that there exist at most ε3/2=o(ε2)\varepsilon^{-3/2}=o(\varepsilon^{-2}) vertices v[1,X]×[1,Y]v\in[1,X]\times[1,Y] with (i1(v;),h1(v;))(0,0)\big{(}i_{1}(v;\mathcal{E}),h_{1}(v;\mathcal{E})\big{)}\neq(0,0). Then, [𝒜]=1o(1)\mathbb{P}[\mathscr{A}]=1-o(1).

  2. (2)

    Let \mathscr{B} denote the event that there does not exist any vertex v[1,X]×[1,Y]v\in[1,X]\times[1,Y] with arrow configuration satisfying max{i1(v),h1(v)}2\max\big{\{}i_{1}(v),h_{1}(v)\big{\}}\geq 2. Then, []=1o(1)\mathbb{P}[\mathscr{B}]=1-o(1).

Proof of 4.4 Assuming B.1.

For any v[1,X]×[1,Y]v\in[1,X]\times[1,Y] such that we have (i1(v;),h1(v;))=(i1(v;),h1(v;)){(0,0),(1,0),(0,1),(1,1)}\big{(}i_{1}(v;\mathcal{E}),h_{1}(v;\mathcal{E})\big{)}=\big{(}i_{1}(v;\mathcal{F}),h_{1}(v;\mathcal{F})\big{)}\in\big{\{}(0,0),(1,0),(0,1),(1,1)\big{\}}, 4.1 and (B.1) together yield a coupling between \mathcal{E} and \mathcal{F} so that (i2(v;),h2(v;))=(i2(v;),h2(v;))\big{(}i_{2}(v;\mathcal{E}),h_{2}(v;\mathcal{E})\big{)}=\big{(}i_{2}(v;\mathcal{F}),h_{2}(v;\mathcal{F})\big{)} with probability at least 1𝒪(ε2)1-\mathcal{O}(\varepsilon^{2}). By the first part of 4.1 and the first two statements of (B.1), this coupling probability is improved to 1𝒪(ε4)1-\mathcal{O}(\varepsilon^{4}) if (i1(v;),h1(v;))=(0,0)=(i1(v;),h1(v;))\big{(}i_{1}(v;\mathcal{E}),h_{1}(v;\mathcal{E})\big{)}=(0,0)=\big{(}i_{1}(v;\mathcal{F}),h_{1}(v;\mathcal{F})\big{)}.

Since the empty boundary conditions for \mathcal{E} and \mathcal{F} coincide, we may apply a union bound to couple \mathcal{E} and \mathcal{F} with probability at least 1(V+1)𝒪(ε2)1-(V+1)\mathcal{O}(\varepsilon^{2}), where VV denotes the number of vertices v[1,X]×[1,Y]v\in[1,X]\times[1,Y] such that i1(v;)+h1(v;)1i_{1}(v;\mathcal{E})+h_{1}(v;\mathcal{E})\geq 1. Restricting to the event 𝒜\mathscr{A}\cap\mathscr{B} from B.1, we have V=o(ε2)V=o(\varepsilon^{-2}), meaning that we may couple \mathscr{E} and \mathscr{F} to coincide on [1,X]×[1,Y][1,X]\times[1,Y] with probability at least [𝒜]o(1)=1o(1)\mathbb{P}[\mathscr{A}\cap\mathscr{B}]-o(1)=1-o(1). As mentioned above, this gives the proposition. ∎

To verify the bounds [𝒜]=1o(1)\mathbb{P}[\mathscr{A}]=1-o(1) and []=1o(1)\mathbb{P}[\mathscr{B}]=1-o(1), for any integer D0D\geq 0 we define the set 𝒱d>02\mathcal{V}_{d}\subset\mathbb{Z}_{>0}^{2}, the integer VDV_{D}, and event d\mathscr{B}_{d} by

𝒱D\displaystyle\mathcal{V}_{D} ={v=(x,y)>02:x+y=D,i1(v;)+h1(v;)1};VD=|𝒱D|;\displaystyle=\big{\{}v=(x,y)\in\mathbb{Z}_{>0}^{2}:x+y=D,i_{1}(v;\mathcal{E})+h_{1}(v;\mathcal{E})\geq 1\big{\}};\qquad V_{D}=|\mathcal{V}_{D}|;
D\displaystyle\mathscr{B}_{D} =d=0Dv𝒱d{max{i1(v;),h1(v;)}1}.\displaystyle=\bigcap_{d=0}^{D}\bigcap_{v\in\mathcal{V}_{d}}\Big{\{}\max\big{\{}i_{1}(v;\mathcal{E}),h_{1}(v;\mathcal{E})\big{\}}\leq 1\Big{\}}.

The following lemma provides inductive estimates on VDV_{D} and on the probability of D\mathscr{B}_{D}.

Lemma B.2.

There exists a constant C=C(t,θ)>1C=C(t,\theta)>1 such that

(B.2) 𝔼[1D|VD+1VD|]CDε2;[D+1][D]C(ε2𝔼[1DVD]+Dε4).\displaystyle\mathbb{E}\big{[}\textbf{\emph{1}}_{\mathscr{B}_{D}}|V_{D+1}-V_{D}|\big{]}\leq CD\varepsilon^{2};\qquad\mathbb{P}[\mathscr{B}_{D+1}]\geq\mathbb{P}[\mathscr{B}_{D}]-C\Big{(}\varepsilon^{2}\ \mathbb{E}\big{[}\textbf{\emph{1}}_{\mathscr{B}_{D}}V_{D}\big{]}+D\varepsilon^{4}\big{)}.
Proof.

To verify the first statement of (B.2), observe on the event D\mathscr{B}_{D} that the quantity VD+1VD=|𝒱D+1||𝒱D|V_{D+1}-V_{D}=|\mathcal{V}_{D+1}|-|\mathcal{V}_{D}| is bounded from above by the number of vertices v=(x,y)>0v=(x,y)\in\mathbb{Z}_{>0} with x+y=Dx+y=D such that we either have (i1(v;),h1(v;);i2(v;),h2(v;))=(0,0;1,1)\big{(}i_{1}(v;\mathcal{E}),h_{1}(v;\mathcal{E});i_{2}(v;\mathcal{E}),h_{2}(v;\mathcal{E})\big{)}=(0,0;1,1) or max{i2(v;),h2(v;)}2\max\big{\{}i_{2}(v;\mathcal{E}),h_{2}(v;\mathcal{E})\big{\}}\geq 2. By 4.1, there exists a constant C>1C>1 such that the probability of any vv satisfying either event is at most Cε2C\varepsilon^{2}. Applying a union bound over all v=(x,y)v=(x,y) with x+y=Dx+y=D yields the first statement of (B.2).

To verify the second, we again restrict to the event D\mathscr{B}_{D}. Observe that the event D+1\mathscr{B}_{D+1} does not hold only if there exists some vertex v>02v\in\mathbb{Z}_{>0}^{2} with x+y=Dx+y=D such that max{i1(v;),h1(v;)}1\max\big{\{}i_{1}(v;\mathcal{E}),h_{1}(v;\mathcal{E})\big{\}}\leq 1 and max{i2(v;);h2(v;)}2\max\big{\{}i_{2}(v;\mathcal{E});h_{2}(v;\mathcal{E})\big{\}}\geq 2. By 4.1, there exist a constant C>1C>1 such that the probability of any vv satisfying this event is at most Cε2C\varepsilon^{2}. Moreover, by the first statement of 4.1, this probability at most Cε4C\varepsilon^{4} if (i1(v),h1(v))=(0,0)\big{(}i_{1}(v),h_{1}(v)\big{)}=(0,0). Applying a union bound over at most DD vertices satisfying the latter statement and at most VDV_{D} remaining ones then yields the second statement of (B.2). ∎

Now we can establish B.1.

Proof of B.1.

Let us use (B.2) to bound [𝒜]\mathbb{P}[\mathscr{A}] and []\mathbb{P}[\mathscr{B}]. To that end, observe for any integer D1D\geq 1 that

(B.3) 𝔼[1DVD]=d=0D1𝔼[1d+1Vd+11dVd]d=0D1𝔼[1d(Vd+1Vd)]CD2ε2,\displaystyle\mathbb{E}\big{[}\textbf{1}_{\mathscr{B}_{D}}V_{D}\big{]}=\displaystyle\sum_{d=0}^{D-1}\mathbb{E}\big{[}\textbf{1}_{\mathscr{B}_{d+1}}V_{d+1}-\textbf{1}_{\mathscr{B}_{d}}V_{d}\big{]}\leq\displaystyle\sum_{d=0}^{D-1}\mathbb{E}\big{[}\textbf{1}_{\mathscr{B}_{d}}(V_{d+1}-V_{d})\big{]}\leq CD^{2}\varepsilon^{2},

where to deduce the second bound we used the fact that d+1d\mathscr{B}_{d+1}\subseteq\mathscr{B}_{d} and Vd+10V_{d+1}\geq 0, and to deduce the third we used the first statement of (B.2). By (B.3) and the second statement of (B.2), we obtain

(B.4) 1[D]=[0][D]=d=0D1([d][d+1])Cd=0D1(ε2𝔼[1dVd]+Dε4)Cε4(D3+D2)2Cε4D3.\displaystyle\begin{aligned} 1-\mathbb{P}[\mathscr{B}_{D}]=\mathbb{P}[\mathscr{B}_{0}]-\mathbb{P}[\mathscr{B}_{D}]=\displaystyle\sum_{d=0}^{D-1}\big{(}\mathbb{P}[\mathscr{B}_{d}]-\mathbb{P}[\mathscr{B}_{d+1}]\big{)}&\leq C\displaystyle\sum_{d=0}^{D-1}\Big{(}\varepsilon^{2}\mathbb{E}\big{[}\textbf{1}_{\mathscr{B}_{d}}V_{d}\big{]}+D\varepsilon^{4}\Big{)}\\ &\leq C\varepsilon^{4}(D^{3}+D^{2})\leq 2C\varepsilon^{4}D^{3}.\end{aligned}

By taking D=X+Y=𝒪(ε1)D=X+Y=\mathcal{O}(\varepsilon^{-1}), it follows from (B.4) that

(B.5) [][X+Y]12Cε4(X+Y)3=1𝒪(ε)=1o(1).\displaystyle\mathbb{P}[\mathscr{B}]\geq\mathbb{P}[\mathscr{B}_{X+Y}]\geq 1-2C\varepsilon^{4}(X+Y)^{3}=1-\mathcal{O}(\varepsilon)=1-o(1).

Moreover, denoting the complement of any event EE by EcE^{c}, we have

(B.6) [𝒜c][D=0X+Y1VDε3/2][{D=0X+YVDε3/2}X+Y]+[X+Yc]ε3/2𝔼[D=0X+Y1DVD]+[X+Yc]=ε3/2D=0X+Y𝔼[1DVD]+𝒪(ε)C(X+Y)3ε7/2+𝒪(ε)=𝒪(ε1/2)=o(1).\displaystyle\begin{aligned} \mathbb{P}[\mathscr{A}^{c}]\leq\mathbb{P}\Bigg{[}\displaystyle\sum_{D=0}^{X+Y-1}V_{D}\geq\varepsilon^{-3/2}\Bigg{]}&\leq\mathbb{P}\Bigg{[}\bigg{\{}\displaystyle\sum_{D=0}^{X+Y}V_{D}\geq\varepsilon^{-3/2}\bigg{\}}\cap\mathscr{B}_{X+Y}\Bigg{]}+\mathbb{P}[\mathscr{B}_{X+Y}^{c}]\\ &\leq\varepsilon^{3/2}\mathbb{E}\Bigg{[}\displaystyle\sum_{D=0}^{X+Y}\textbf{1}_{\mathscr{B}_{D}}V_{D}\Bigg{]}+\mathbb{P}[\mathscr{B}_{X+Y}^{c}]\\ &=\varepsilon^{3/2}\displaystyle\sum_{D=0}^{X+Y}\mathbb{E}\big{[}\textbf{1}_{\mathscr{B}_{D}}V_{D}\big{]}+\mathcal{O}(\varepsilon)\\ &\leq C(X+Y)^{3}\varepsilon^{7/2}+\mathcal{O}(\varepsilon)=\mathcal{O}(\varepsilon^{1/2})=o(1).\end{aligned}

Here, to deduce the first bound we used the definitions of 𝒜\mathscr{A}, 𝒱D\mathcal{V}_{D}, and VDV_{D}; to deduce the second we applied a union bound; to deduce the third, we used with the fact that X+YD\mathscr{B}_{X+Y}\subseteq\mathscr{B}_{D} for DX+YD\leq X+Y, together with a Markov estimate; to deduce the fourth we applied (B.5); to deduce the fifth we applied (B.3); and to deduce the sixth we used the fact that X+Y=𝒪(ε1)X+Y=\mathcal{O}(\varepsilon^{-1}).

Since (B.6) and (B.5) imply [𝒜]=1o(1)\mathbb{P}[\mathscr{A}]=1-o(1) and []=1o(1)\mathbb{P}[\mathscr{B}]=1-o(1), they yield the proposition. ∎

Appendix C Matching Expectations

In this appendix we provide an alternative, direct proof of Proposition 2.8 in the case of Schur measures (q=t)(q=t), when all parameters ri=si=t1/2r_{i}=s_{i}=t^{-1/2}, and for M=NM=N. The proof is carried out by noticing that a certain partition function (C.13) in the quadrant is equal to the expectation on the left hand side of (2.7), and that this partition function may be evaluated as an N×NN\times N determinant, borrowing a result from [52]. Performing the expansion of this determinant over the Schur basis via the Cauchy–Binet identity, we then obtain the right hand side of (2.7), with q=tq=t.

Extending this result to generic Macdonald measures, generic higher spin weights, and MNM\not=N, as in (2.7), is then straightforward. The passage to generic Macdonald measures is achieved by noting that the right hand side of (2.7) is in fact independent of qq, and therefore equal to the Schur expectation; this is an easy consequence of acting with Macdonald difference operators on the Macdonald Cauchy kernel. Passing to the general spin setting, with arbitrary rir_{i} and sis_{i}, is achieved by performing fusion of the partition function (C.13). Finally, the case MNM\not=N may be accessed by certain reductions of the match (C.22), as we briefly mention in Section C.6.

C.1. Reduction to tt-Boson Model

Fix integers j1,j2{0,1}j_{1},j_{2}\in\{0,1\} and i1,i20i_{1},i_{2}\in\mathbb{Z}_{\geq 0}. We define

(C.1) lims0Lx(i1,j1;i2,j2t1/2,s)(s)j2=x(i1,j1;i2,j2).\displaystyle\lim_{s\rightarrow 0}L_{x}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}t^{-1/2},s)(-s)^{-j_{2}}=\mathcal{L}_{x}(i_{1},j_{1};i_{2},j_{2}).

We denote these weights graphically by

(C.2) x(i1,j1;i2,j2)=xj1j2i1i2,j1,j2{0,1},i1,i20.\displaystyle\mathcal{L}_{x}(i_{1},j_{1};i_{2},j_{2})=\leavevmode\hbox to78.11pt{\vbox to61.97pt{\pgfpicture\makeatletter\hbox{\hskip 47.5857pt\lower-30.98268pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-35.00447pt}{0.0pt}\pgfsys@curveto{-35.00447pt}{3.41902pt}{-37.77606pt}{6.19061pt}{-41.19508pt}{6.19061pt}\pgfsys@curveto{-44.6141pt}{6.19061pt}{-47.3857pt}{3.41902pt}{-47.3857pt}{0.0pt}\pgfsys@curveto{-47.3857pt}{-3.41902pt}{-44.6141pt}{-6.19061pt}{-41.19508pt}{-6.19061pt}\pgfsys@curveto{-37.77606pt}{-6.19061pt}{-35.00447pt}{-3.41902pt}{-35.00447pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-41.19508pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-43.3383pt}{-1.61458pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$x$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope{} {} {} {} \pgfsys@moveto{3.64998pt}{0.0pt}\pgfsys@lineto{-2.18999pt}{2.91998pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{-2.18999pt}{-2.91998pt}\pgfsys@fill\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{-19.91684pt}{0.0pt}\pgfsys@lineto{16.26686pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.26686pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{4.0pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope{} {} {} {} \pgfsys@moveto{7.40005pt}{0.0pt}\pgfsys@lineto{-4.44003pt}{5.92004pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{-4.44003pt}{-5.92004pt}\pgfsys@fill\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{-19.91684pt}\pgfsys@lineto{0.0pt}{12.51678pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{0.0pt}{12.51678pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.19505pt}{-1.1627pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$j_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.44984pt}{-1.1627pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$j_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.56128pt}{-26.74745pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$i_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.56128pt}{24.35207pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$i_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\qquad j_{1},j_{2}\in\{0,1\},\qquad i_{1},i_{2}\in\mathbb{Z}_{\geq 0}.

The vertex (C.2) vanishes unless i1+j1=i2+j2i_{1}+j_{1}=i_{2}+j_{2}; when this constraint is met, we obtain the following table of nonzero weights:

(C.5)

C.2. Reduction to Stochastic Six-Vertex Model

Fix integers i1,i2,j1,j2{0,1}i_{1},i_{2},j_{1},j_{2}\in\{0,1\}. We define

(C.6) Lt1/2x/y(i1,j1;i2,j2t1/2,t1/2)=y/x(i1,j1;i2,j2).\displaystyle L_{t^{-1/2}\cdot x/y}(i_{1},j_{1};i_{2},j_{2}\boldsymbol{\mid}t^{-1/2},t^{-1/2})=\mathcal{R}_{y/x}(i_{1},j_{1};i_{2},j_{2}).

We denote these weights graphically by

(C.7) y/x(i1,j1;i2,j2)=xyjik,i1,i2,j1,j2{0,1}.\displaystyle\mathcal{R}_{y/x}(i_{1},j_{1};i_{2},j_{2})=\leavevmode\hbox to68.63pt{\vbox to70.83pt{\pgfpicture\makeatletter\hbox{\hskip 42.6069pt\lower-43.41624pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-30.02568pt}{0.0pt}\pgfsys@curveto{-30.02568pt}{3.41902pt}{-32.79727pt}{6.19061pt}{-36.2163pt}{6.19061pt}\pgfsys@curveto{-39.63531pt}{6.19061pt}{-42.4069pt}{3.41902pt}{-42.4069pt}{0.0pt}\pgfsys@curveto{-42.4069pt}{-3.41902pt}{-39.63531pt}{-6.19061pt}{-36.2163pt}{-6.19061pt}\pgfsys@curveto{-32.79727pt}{-6.19061pt}{-30.02568pt}{-3.41902pt}{-30.02568pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-36.2163pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-38.35951pt}{-1.61458pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$x$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{6.59528pt}{-36.62097pt}\pgfsys@curveto{6.59528pt}{-32.97845pt}{3.64252pt}{-30.0257pt}{0.0pt}{-30.0257pt}\pgfsys@curveto{-3.64252pt}{-30.0257pt}{-6.59528pt}{-32.97845pt}{-6.59528pt}{-36.62097pt}\pgfsys@curveto{-6.59528pt}{-40.26349pt}{-3.64252pt}{-43.21625pt}{0.0pt}{-43.21625pt}\pgfsys@curveto{3.64252pt}{-43.21625pt}{6.59528pt}{-40.26349pt}{6.59528pt}{-36.62097pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-36.62097pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-1.9731pt}{-37.50638pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{13.42184pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.42184pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{13.42184pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{0.0pt}{13.42184pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.95004pt}{-1.1627pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$j$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.60483pt}{-1.7361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\ell$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.86128pt}{-23.90244pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$i$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.3802pt}{20.60483pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\qquad i_{1},i_{2},j_{1},j_{2}\in\{0,1\}.

The vertex (C.7) vanishes unless i1+j1=i2+j2i_{1}+j_{1}=i_{2}+j_{2}; when this constraint is met, we obtain the following table of nonzero weights:

(C.12)

Observe that these weights are stochastic, that is,

i2,j2y/x(i1,j1;i2,j2)=1.\displaystyle\displaystyle\sum_{i_{2},j_{2}}\mathcal{R}_{y/x}(i_{1},j_{1};i_{2},j_{2})=1.

C.3. Partition Function Z(x1,,xN;y1,,yN;k)Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)

Fix two alphabets (x1,,xN)N(x_{1},\dots,x_{N})\in\mathbb{C}^{N} and (y1,,yN)N(y_{1},\dots,y_{N})\in\mathbb{C}^{N}, and an integer k0k\in\mathbb{Z}_{\geq 0}. Define the following partition function in the quadrant:

(C.13) Z(x1,,xN;y1,,yN;k)=11111k00000yNy111111kx¯1x¯N00000\displaystyle Z\left(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k\right)=\leavevmode\hbox to194.12pt{\vbox to195.08pt{\pgfpicture\makeatletter\hbox{\hskip 32.87224pt\lower-32.38995pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{21.33957pt}\pgfsys@lineto{145.727pt}{21.33957pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.727pt}{21.33957pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{42.67914pt}\pgfsys@lineto{145.727pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.727pt}{42.67914pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{64.0187pt}\pgfsys@lineto{145.727pt}{64.0187pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.727pt}{64.0187pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{85.35828pt}\pgfsys@lineto{145.727pt}{85.35828pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.727pt}{85.35828pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{106.69785pt}\pgfsys@lineto{145.727pt}{106.69785pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.727pt}{106.69785pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{21.33957pt}{0.0pt}\pgfsys@lineto{21.33957pt}{145.727pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{21.33957pt}{145.727pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{42.67914pt}{145.727pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{42.67914pt}{145.727pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{64.0187pt}{0.0pt}\pgfsys@lineto{64.0187pt}{145.727pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{64.0187pt}{145.727pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@lineto{85.35828pt}{145.727pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{85.35828pt}{145.727pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{106.69785pt}{0.0pt}\pgfsys@lineto{106.69785pt}{145.727pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{106.69785pt}{145.727pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{4.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@lineto{128.03741pt}{128.03741pt}\pgfsys@lineto{7.40005pt}{128.03741pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{7.40005pt}{128.03741pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.19785pt}{152.90999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{152.90999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.5187pt}{152.90999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.17914pt}{152.90999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.83957pt}{152.90999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.277pt}{-10.47743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{104.19785pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.5187pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.17914pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.83957pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{114.71548pt}{-24.17232pt}\pgfsys@curveto{114.71548pt}{-19.74425pt}{111.12592pt}{-16.15468pt}{106.69785pt}{-16.15468pt}\pgfsys@curveto{102.26978pt}{-16.15468pt}{98.6802pt}{-19.74425pt}{98.6802pt}{-24.17232pt}\pgfsys@curveto{98.6802pt}{-28.60039pt}{102.26978pt}{-32.18996pt}{106.69785pt}{-32.18996pt}\pgfsys@curveto{111.12592pt}{-32.18996pt}{114.71548pt}{-28.60039pt}{114.71548pt}{-24.17232pt}\pgfsys@closepath\pgfsys@moveto{106.69785pt}{-24.17232pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{102.8085pt}{-25.05772pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{70.93849pt}{-26.53767pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.59892pt}{-26.53767pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{28.66507pt}{-23.48018pt}\pgfsys@curveto{28.66507pt}{-19.43437pt}{25.38538pt}{-16.15468pt}{21.33957pt}{-16.15468pt}\pgfsys@curveto{17.29376pt}{-16.15468pt}{14.01407pt}{-19.43437pt}{14.01407pt}{-23.48018pt}\pgfsys@curveto{14.01407pt}{-27.52599pt}{17.29376pt}{-30.80568pt}{21.33957pt}{-30.80568pt}\pgfsys@curveto{25.38538pt}{-30.80568pt}{28.66507pt}{-27.52599pt}{28.66507pt}{-23.48018pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-23.48018pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{18.31648pt}{-24.36559pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{18.11736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{39.45692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{60.7965pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{82.13606pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{103.47563pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.05385pt}{124.5652pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-16.15466pt}{21.33957pt}\pgfsys@curveto{-16.15466pt}{25.5307pt}{-19.55215pt}{28.92819pt}{-23.74329pt}{28.92819pt}\pgfsys@curveto{-27.93442pt}{28.92819pt}{-31.33191pt}{25.5307pt}{-31.33191pt}{21.33957pt}\pgfsys@curveto{-31.33191pt}{17.14844pt}{-27.93442pt}{13.75095pt}{-23.74329pt}{13.75095pt}\pgfsys@curveto{-19.55215pt}{13.75095pt}{-16.15466pt}{17.14844pt}{-16.15466pt}{21.33957pt}\pgfsys@closepath\pgfsys@moveto{-23.74329pt}{21.33957pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-26.66829pt}{19.88708pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{x}_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.03767pt}{50.84892pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.03767pt}{72.18849pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-16.15466pt}{106.69785pt}\pgfsys@curveto{-16.15466pt}{111.2591pt}{-19.8522pt}{114.95663pt}{-24.41345pt}{114.95663pt}\pgfsys@curveto{-28.9747pt}{114.95663pt}{-32.67224pt}{111.2591pt}{-32.67224pt}{106.69785pt}\pgfsys@curveto{-32.67224pt}{102.1366pt}{-28.9747pt}{98.43906pt}{-24.41345pt}{98.43906pt}\pgfsys@curveto{-19.8522pt}{98.43906pt}{-16.15466pt}{102.1366pt}{-16.15466pt}{106.69785pt}\pgfsys@closepath\pgfsys@moveto{-24.41345pt}{106.69785pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-28.2047pt}{105.2862pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{x}_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{152.90999pt}{18.11736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{152.90999pt}{39.45692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{152.90999pt}{60.7965pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{152.90999pt}{82.13606pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{152.90999pt}{103.47563pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

Vertices in the topmost row and the rightmost column are of the form (C.2); all other vertices are given by (C.7). The variables associated to horizontal lines are reciprocated; namely, we set x¯a=1/xa\overline{x}_{a}=1/x_{a}, for all 1aN1\leq a\leq N. Partition functions of the form (C.13) were originally studied in [52], where they appeared in connection with Cauchy identities and as a one-parameter generalization of domain wall partition functions [33, 37].

We now show that (C.13) admits a nice probabilistic interpretation. Fix parameters tt, (x1,,xN)(x_{1},\dots,x_{N}) and (y1,,yN)(y_{1},\dots,y_{N}) such that each vertex (C.7) within (C.13) has real weight in the interval [0,1][0,1]. We may then associate to any configuration \mathfrak{C} in the (finite) quadrant [1,N]×[1,N][1,N]\times[1,N] (that does not include the thick arrow along the northeast boundary in (C.13)) a probability weight 6v()\mathbb{P}_{6{\rm v}}(\mathfrak{C}), defined as the product of weights of all vertices within \mathfrak{C}.

Proposition C.1.

Let 𝔥(N,N)\mathfrak{h}(N,N) denote the height function assigned to the vertex (N,N)(N,N) within the stochastic six-vertex model. We have that

(C.14) Z(x1,,xN;y1,,yN;k)=a=1Nya𝔼6v[(tk+1;t)(tk+1+𝔥(N,N);t)],\displaystyle Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)=\prod_{a=1}^{N}y_{a}\cdot\mathbb{E}_{6{\rm v}}\left[\frac{(t^{k+1};t)_{\infty}}{(t^{k+1+\mathfrak{h}(N,N)};t)_{\infty}}\right],

where the expectation is taken with respect to the measure 6v\mathbb{P}_{6{\rm v}} defined above.

Proof.

We begin by decomposing the partition function (C.13) along the edges where vertices of the types (C.2) and (C.7) meet. This produces the equation

(C.15) Z(x1,,xN;y1,,yN;k)={i1,,iN}{0,1}N{j1,,jN}{0,1}N6v(i1,,iN;j1,,jN)Hk(j1,,jN;i1,,iN),Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)\\ =\sum_{\{i_{1},\dots,i_{N}\}\in\{0,1\}^{N}}\sum_{\{j_{1},\dots,j_{N}\}\in\{0,1\}^{N}}\mathbb{P}_{6{\rm v}}(i_{1},\dots,i_{N};j_{1},\dots,j_{N})H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N}),

where we have defined two new partition functions. The first is given by

(C.16) 6v(i1,,iN;j1,,jN)=iNi100000yNy111111x¯1x¯Nj1jN\displaystyle\mathbb{P}_{6{\rm v}}(i_{1},\dots,i_{N};j_{1},\dots,j_{N})=\leavevmode\hbox to187.18pt{\vbox to185.9pt{\pgfpicture\makeatletter\hbox{\hskip 33.93929pt\lower-33.457pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{22.76228pt}\pgfsys@lineto{132.92378pt}{22.76228pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{132.92378pt}{22.76228pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{45.52458pt}\pgfsys@lineto{132.92378pt}{45.52458pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{132.92378pt}{45.52458pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{68.28688pt}\pgfsys@lineto{132.92378pt}{68.28688pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{132.92378pt}{68.28688pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{91.04916pt}\pgfsys@lineto{132.92378pt}{91.04916pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{132.92378pt}{91.04916pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{113.81146pt}\pgfsys@lineto{132.92378pt}{113.81146pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{132.92378pt}{113.81146pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{132.92378pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{22.76228pt}{132.92378pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{132.92378pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{45.52458pt}{132.92378pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{132.92378pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{68.28688pt}{132.92378pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{132.92378pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{91.04916pt}{132.92378pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@lineto{113.81146pt}{132.92378pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{113.81146pt}{132.92378pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{109.5339pt}{142.0201pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{87.29916pt}{142.10677pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.53688pt}{142.10677pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.77458pt}{142.10677pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.63972pt}{141.91121pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{111.31146pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.54916pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.78688pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.02458pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.26228pt}{-9.97743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{121.8291pt}{-25.23936pt}\pgfsys@curveto{121.8291pt}{-20.8113pt}{118.23953pt}{-17.22173pt}{113.81146pt}{-17.22173pt}\pgfsys@curveto{109.38339pt}{-17.22173pt}{105.79382pt}{-20.8113pt}{105.79382pt}{-25.23936pt}\pgfsys@curveto{105.79382pt}{-29.66743pt}{109.38339pt}{-33.257pt}{113.81146pt}{-33.257pt}\pgfsys@curveto{118.23953pt}{-33.257pt}{121.8291pt}{-29.66743pt}{121.8291pt}{-25.23936pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-25.23936pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{109.92212pt}{-26.12477pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.91801pt}{-27.60472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{53.15573pt}{-27.60472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\cdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{30.08778pt}{-24.54723pt}\pgfsys@curveto{30.08778pt}{-20.50142pt}{26.80809pt}{-17.22173pt}{22.76228pt}{-17.22173pt}\pgfsys@curveto{18.71648pt}{-17.22173pt}{15.43678pt}{-20.50142pt}{15.43678pt}{-24.54723pt}\pgfsys@curveto{15.43678pt}{-28.59303pt}{18.71648pt}{-31.87273pt}{22.76228pt}{-31.87273pt}\pgfsys@curveto{26.80809pt}{-31.87273pt}{30.08778pt}{-28.59303pt}{30.08778pt}{-24.54723pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-24.54723pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{19.7392pt}{-25.43263pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{19.54007pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{42.30237pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{65.06467pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{87.82695pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{110.58925pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-17.22171pt}{22.76228pt}\pgfsys@curveto{-17.22171pt}{26.95341pt}{-20.6192pt}{30.3509pt}{-24.81033pt}{30.3509pt}\pgfsys@curveto{-29.00146pt}{30.3509pt}{-32.39896pt}{26.95341pt}{-32.39896pt}{22.76228pt}\pgfsys@curveto{-32.39896pt}{18.57115pt}{-29.00146pt}{15.17366pt}{-24.81033pt}{15.17366pt}\pgfsys@curveto{-20.6192pt}{15.17366pt}{-17.22171pt}{18.57115pt}{-17.22171pt}{22.76228pt}\pgfsys@closepath\pgfsys@moveto{-24.81033pt}{22.76228pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-27.73534pt}{21.3098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{x}_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.10472pt}{54.40573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.10472pt}{77.16801pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-17.22171pt}{113.81146pt}\pgfsys@curveto{-17.22171pt}{118.37271pt}{-20.91925pt}{122.07025pt}{-25.4805pt}{122.07025pt}\pgfsys@curveto{-30.04175pt}{122.07025pt}{-33.73929pt}{118.37271pt}{-33.73929pt}{113.81146pt}\pgfsys@curveto{-33.73929pt}{109.25021pt}{-30.04175pt}{105.55267pt}{-25.4805pt}{105.55267pt}\pgfsys@curveto{-20.91925pt}{105.55267pt}{-17.22171pt}{109.25021pt}{-17.22171pt}{113.81146pt}\pgfsys@closepath\pgfsys@moveto{-25.4805pt}{113.81146pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-29.27174pt}{112.39981pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{x}_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.10677pt}{20.43687pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$j_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.10677pt}{43.02458pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.10677pt}{65.78688pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.10677pt}{88.54916pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.10677pt}{111.48605pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$j_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

where all vertices are of the type (C.7); this quantity is the probability that a random configuration \mathfrak{C} in the quadrant [1,N]×[1,N][1,N]\times[1,N] has state ia{0,1}i_{a}\in\{0,1\} exiting vertically from vertex (a,N)(a,N) and state ja{0,1}j_{a}\in\{0,1\} exiting horizontally from vertex (N,a)(N,a), for all 1aN1\leq a\leq N. The second is a tower of vertices of the type (C.2) (which one may also view as a straightened version of the thick arrow along the northeast boundary in (C.13)):

(C.17) Hk(j1,,jN;i1,,iN)=kkj1jNiNi1x¯1x¯NyNy1000111\displaystyle H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N})=\leavevmode\hbox to95.24pt{\vbox to196.92pt{\pgfpicture\makeatletter\hbox{\hskip 35.00633pt\lower-13.81044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{24.18501pt}\pgfsys@lineto{44.72005pt}{24.18501pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.72005pt}{24.18501pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{48.37003pt}\pgfsys@lineto{44.72005pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.72005pt}{48.37003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{72.55505pt}\pgfsys@lineto{44.72005pt}{72.55505pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.72005pt}{72.55505pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{96.74007pt}\pgfsys@lineto{44.72005pt}{96.74007pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.72005pt}{96.74007pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{120.92508pt}\pgfsys@lineto{44.72005pt}{120.92508pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.72005pt}{120.92508pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{1.5pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{145.1101pt}\pgfsys@lineto{44.72005pt}{145.1101pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.72005pt}{145.1101pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0.85,0.85,0.85}\definecolor[named]{pgfstrokecolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@stroke{0.85}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@setlinewidth{4.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@lineto{24.18501pt}{161.89507pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{24.18501pt}{161.89507pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.42459pt}{172.82813pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.42459pt}{-10.47743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.02348pt}{21.8596pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$j_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.033pt}{45.87003pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.33348pt}{70.22964pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$j_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.08812pt}{94.39911pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.033pt}{118.42508pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.77812pt}{142.7147pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-18.28876pt}{24.18501pt}\pgfsys@curveto{-18.28876pt}{28.37614pt}{-21.68625pt}{31.77364pt}{-25.87738pt}{31.77364pt}\pgfsys@curveto{-30.06851pt}{31.77364pt}{-33.466pt}{28.37614pt}{-33.466pt}{24.18501pt}\pgfsys@curveto{-33.466pt}{19.99388pt}{-30.06851pt}{16.59639pt}{-25.87738pt}{16.59639pt}\pgfsys@curveto{-21.68625pt}{16.59639pt}{-18.28876pt}{19.99388pt}{-18.28876pt}{24.18501pt}\pgfsys@closepath\pgfsys@moveto{-25.87738pt}{24.18501pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-28.80238pt}{22.73253pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{x}_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.17177pt}{45.87003pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-18.28876pt}{72.55505pt}\pgfsys@curveto{-18.28876pt}{77.1163pt}{-21.9863pt}{80.81384pt}{-26.54755pt}{80.81384pt}\pgfsys@curveto{-31.1088pt}{80.81384pt}{-34.80634pt}{77.1163pt}{-34.80634pt}{72.55505pt}\pgfsys@curveto{-34.80634pt}{67.9938pt}{-31.1088pt}{64.29626pt}{-26.54755pt}{64.29626pt}\pgfsys@curveto{-21.9863pt}{64.29626pt}{-18.28876pt}{67.9938pt}{-18.28876pt}{72.55505pt}\pgfsys@closepath\pgfsys@moveto{-26.54755pt}{72.55505pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-30.33879pt}{71.1434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{x}_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-18.28876pt}{96.74007pt}\pgfsys@curveto{-18.28876pt}{101.16814pt}{-21.87833pt}{104.7577pt}{-26.3064pt}{104.7577pt}\pgfsys@curveto{-30.73447pt}{104.7577pt}{-34.32404pt}{101.16814pt}{-34.32404pt}{96.74007pt}\pgfsys@curveto{-34.32404pt}{92.312pt}{-30.73447pt}{88.72243pt}{-26.3064pt}{88.72243pt}\pgfsys@curveto{-21.87833pt}{88.72243pt}{-18.28876pt}{92.312pt}{-18.28876pt}{96.74007pt}\pgfsys@closepath\pgfsys@moveto{-26.3064pt}{96.74007pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-30.19574pt}{95.85466pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y_{N}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.17177pt}{118.42508pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{-18.28876pt}{145.1101pt}\pgfsys@curveto{-18.28876pt}{149.15591pt}{-21.56845pt}{152.43561pt}{-25.61426pt}{152.43561pt}\pgfsys@curveto{-29.66006pt}{152.43561pt}{-32.93976pt}{149.15591pt}{-32.93976pt}{145.1101pt}\pgfsys@curveto{-32.93976pt}{141.0643pt}{-29.66006pt}{137.7846pt}{-25.61426pt}{137.7846pt}\pgfsys@curveto{-21.56845pt}{137.7846pt}{-18.28876pt}{141.0643pt}{-18.28876pt}{145.1101pt}\pgfsys@closepath\pgfsys@moveto{-25.61426pt}{145.1101pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.75}{0.0}{0.0}{0.75}{-28.63734pt}{144.2247pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$y_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{45.14781pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{69.33284pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{93.51785pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{117.70287pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{141.8879pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

In view of the arrow conservation property of the vertices (C.2), it is easy to see that each internal vertical edge within (C.17) admits a unique state such that the tower has non-vanishing weight. This allows us to compute Hk(j1,,jN;i1,,iN)H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N}) explicitly:

(C.18) Hk(j1,,jN;i1,,iN)=a=1Nx¯a(k+Ja1,ja;k+Ja,0)ya(k+Ia,ia;k+Ia1,1),\displaystyle H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N})=\prod_{a=1}^{N}\mathcal{L}_{\overline{x}_{a}}(k+J_{a-1},j_{a};k+J_{a},0)\mathcal{L}_{y_{a}}(k+I_{a},i_{a};k+I_{a-1},1),

where we have defined the partial sums J0=I0=0J_{0}=I_{0}=0, Ja=b=1ajbJ_{a}=\sum_{b=1}^{a}j_{b}, Ia=ab=1aibI_{a}=a-\sum_{b=1}^{a}i_{b} for 1aN1\leq a\leq N, and where we note that JN=INJ_{N}=I_{N}. From the table (C.5), the weights x¯a(k+Ja1,ja;k+Ja,0)\mathcal{L}_{\overline{x}_{a}}(k+J_{a-1},j_{a};k+J_{a},0) are all equal to 11; the remaining terms in the product (C.18) are given by

ya(k+Ia,ia;k+Ia1,1)=ya{1tk+Ia,ia=0,1,ia=1.\displaystyle\mathcal{L}_{y_{a}}(k+I_{a},i_{a};k+I_{a-1},1)=y_{a}\cdot\left\{\begin{array}[]{ll}1-t^{k+I_{a}},&\qquad i_{a}=0,\\ \\ 1,&\qquad i_{a}=1.\end{array}\right.

The product (C.18) then simplifies to

Hk(j1,,jN;i1,,iN)=a=1Nyab=1IN(1tk+b)=a=1Nyab=1JN(1tk+b).\displaystyle H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N})=\prod_{a=1}^{N}y_{a}\cdot\prod_{b=1}^{I_{N}}(1-t^{k+b})=\prod_{a=1}^{N}y_{a}\cdot\prod_{b=1}^{J_{N}}(1-t^{k+b}).

In particular, Hk(j1,,jN;i1,,iN)H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N}) depends on (i1,,iN)(i_{1},\dots,i_{N}) and (j1,,jN)(j_{1},\dots,j_{N}) only via IN=JN=b=1NjbI_{N}=J_{N}=\sum_{b=1}^{N}j_{b}. In fact, returning to the quadrant (C.16), we see that JN=𝔥(N,N)J_{N}=\mathfrak{h}(N,N); accordingly, one has

Hk(j1,,jN;i1,,iN)\displaystyle H_{k}(j_{1},\dots,j_{N};i_{1},\dots,i_{N}) =a=1Nyab=1𝔥(N,N)(1tk+b)\displaystyle=\prod_{a=1}^{N}y_{a}\cdot\prod_{b=1}^{\mathfrak{h}(N,N)}(1-t^{k+b})
=a=1Nyab=11tk+b1tk+b+𝔥(N,N)=a=1Nya(tk+1;t)(tk+1+𝔥(N,N);t).\displaystyle=\prod_{a=1}^{N}y_{a}\cdot\prod_{b=1}^{\infty}\frac{1-t^{k+b}}{1-t^{k+b+\mathfrak{h}(N,N)}}=\prod_{a=1}^{N}y_{a}\cdot\frac{(t^{k+1};t)_{\infty}}{(t^{k+1+\mathfrak{h}(N,N)};t)_{\infty}}.

Coming back to (C.15), we then find that

Z(x1,,xN;y1,,yN;k)=a=1Nya{i1,,iN}{0,1}N{j1,,jN}{0,1}N6v(i1,,iN;j1,,jN)(tk+1;t)(tk+1+𝔥(N,N);t).Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)\\ =\prod_{a=1}^{N}y_{a}\cdot\sum_{\{i_{1},\dots,i_{N}\}\in\{0,1\}^{N}}\sum_{\{j_{1},\dots,j_{N}\}\in\{0,1\}^{N}}\mathbb{P}_{6{\rm v}}(i_{1},\dots,i_{N};j_{1},\dots,j_{N})\frac{(t^{k+1};t)_{\infty}}{(t^{k+1+\mathfrak{h}(N,N)};t)_{\infty}}.

Conditioning on the possible values of 𝔥(N,N)\mathfrak{h}(N,N), this may be written as

Z(x1,,xN;y1,,yN;k)\displaystyle Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k) =a=1Nyam=0N(tk+1;t)(tk+1+m;t)6v(𝔥(N,N)=m),\displaystyle=\prod_{a=1}^{N}y_{a}\cdot\sum_{m=0}^{N}\frac{(t^{k+1};t)_{\infty}}{(t^{k+1+m};t)_{\infty}}\mathbb{P}_{6{\rm v}}(\mathfrak{h}(N,N)=m),

which proves the claim (C.14). ∎

C.4. Determinant Evaluation

Following Section 4.2 and Appendix B of [52], the partition function (C.13) may be computed in closed form:

Proposition C.2.

For any N1N\geq 1 and k0k\geq 0, one has

(C.19) Z(x1,,xN;y1,,yN;k)=i=1Nyi1i,jN(1xiyj)1i<jN(xixj)(yiyj)det1i,jN[1tk+1t(1tk)xiyj(1xiyj)(1txiyj)].\displaystyle Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)=\frac{\prod_{i=1}^{N}y_{i}\prod_{1\leq i,j\leq N}(1-x_{i}y_{j})}{\prod_{1\leq i<j\leq N}(x_{i}-x_{j})(y_{i}-y_{j})}\det_{1\leq i,j\leq N}\left[\frac{1-t^{k+1}-t(1-t^{k})x_{i}y_{j}}{(1-x_{i}y_{j})(1-tx_{i}y_{j})}\right].
Proof (Outline).

The proof relies on finding a list of properties of Z(x1,,xN;y1,,yN;k)Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k) that determine it uniquely; one then shows that the right hand side of (C.19) obeys the same properties. We list these properties below without derivation; for more information, we refer the reader to [52, Lemma 5].

  1. (1)

    Z(x1,,xN;y1,,yN;k)Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k) is symmetric in the alphabet (x1,,xN)(x_{1},\dots,x_{N}) and separately in the alphabet (y1,,yN)(y_{1},\dots,y_{N});

  2. (2)

    1i,jN(1txiyj)Z(x1,,xN;y1,,yN;k)\prod_{1\leq i,j\leq N}(1-tx_{i}y_{j})\cdot Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k) is a polynomial in xNx_{N} of degree NN;

  3. (3)

    Setting xN=1/yNx_{N}=1/y_{N} we have

    Z(x1,,xN;y1,,yN;k)|xN=1/yN=yNZ(x1,,xN1;y1,,yN1;k);\displaystyle Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)\Big{|}_{x_{N}=1/y_{N}}=y_{N}\cdot Z(x_{1},\dots,x_{N-1};y_{1},\dots,y_{N-1};k);
  4. (4)

    Setting xi=0x_{i}=0 for all 1iN1\leq i\leq N, we have

    Z(0,,0;y1,,yN;k)=b=1N(1tk+b);\displaystyle Z(0,\dots,0;y_{1},\dots,y_{N};k)=\prod_{b=1}^{N}(1-t^{k+b});
  5. (5)

    For N=1N=1, there holds

    Z(x1;y1;k)=y1(1tk+1t(1tk)x1y11tx1y1).\displaystyle Z(x_{1};y_{1};k)=y_{1}\cdot\left(\frac{1-t^{k+1}-t(1-t^{k})x_{1}y_{1}}{1-tx_{1}y_{1}}\right).

C.5. Schur Expectation

Having computed (C.13) in determinant form, it is now easy to pass to its Schur expansion.

Proposition C.3.

Define the following Schur measure with respect to two alphabets (x1,,xN)(x_{1},\dots,x_{N}) and (y1,,yN)(y_{1},\dots,y_{N}):

(C.20) SM(λ)=1i,jN(1xiyj)sλ(x1,,xN)sλ(y1,,yN).\displaystyle\mathbb{P}_{\operatorname{SM}}(\lambda)=\prod_{1\leq i,j\leq N}(1-x_{i}y_{j})\cdot s_{\lambda}(x_{1},\dots,x_{N})s_{\lambda}(y_{1},\dots,y_{N}).

For fixed N1N\geq 1 and k0k\geq 0 we then have the identity

(C.21) Z(x1,,xN;y1,,yN;k)=i=1Nyi𝔼SM[i=1N(1tk+1+λii+N)],\displaystyle Z(x_{1},\dots,x_{N};y_{1},\dots,y_{N};k)=\prod_{i=1}^{N}y_{i}\cdot\mathbb{E}_{\operatorname{SM}}\left[\prod_{i=1}^{N}(1-t^{k+1+\lambda_{i}-i+N})\right],

where the expectation is taken with respect to the measure (C.20).

Proof.

We begin by manipulating the determinant present in (C.19). One has

det1i,jN[1tk+1t(1tk)xiyj(1xiyj)(1txiyj)]=det1i,jN[11xiyjtk+11txiyj.],\displaystyle\det_{1\leq i,j\leq N}\left[\frac{1-t^{k+1}-t(1-t^{k})x_{i}y_{j}}{(1-x_{i}y_{j})(1-tx_{i}y_{j})}\right]=\det_{1\leq i,j\leq N}\left[\frac{1}{1-x_{i}y_{j}}-\frac{t^{k+1}}{1-tx_{i}y_{j}}.\right],

Replacing the two fractions on the right hand side by their corresponding geometric series, we obtain the identity

det1i,jN[1tk+1t(1tk)xiyj(1xiyj)(1txiyj)]=det1i,jN[a=0(1tk+1+a)(xiyj)a].\displaystyle\det_{1\leq i,j\leq N}\left[\frac{1-t^{k+1}-t(1-t^{k})x_{i}y_{j}}{(1-x_{i}y_{j})(1-tx_{i}y_{j})}\right]=\det_{1\leq i,j\leq N}\left[\sum_{a=0}^{\infty}(1-t^{k+1+a})(x_{i}y_{j})^{a}\right].

To the latter we apply the Cauchy–Binet identity, which yields

det1i,jN[1tk+1t(1tk)xiyj(1xiyj)(1txiyj)]=0a1<<aNi=1N(1tk+1+ai)det1i,jN[xiaj]det1i,jN[yjai];\displaystyle\det_{1\leq i,j\leq N}\left[\frac{1-t^{k+1}-t(1-t^{k})x_{i}y_{j}}{(1-x_{i}y_{j})(1-tx_{i}y_{j})}\right]=\sum_{0\leq a_{1}<\cdots<a_{N}}\prod_{i=1}^{N}(1-t^{k+1+a_{i}})\det_{1\leq i,j\leq N}\left[x_{i}^{a_{j}}\right]\det_{1\leq i,j\leq N}\left[y_{j}^{a_{i}}\right];

including Vandermonde factors on both sides of the equation, and making the change of summation indices ai=λNi+1+i1a_{i}=\lambda_{N-i+1}+i-1, we then find that

1i<jN1(xixj)(yiyj)det1i,jN[1tk+1t(1tk)xiyj(1xiyj)(1txiyj)]=λ1λN0i=1N(1tk+1+λii+N)sλ(x1,,xN)sλ(y1,,yN).\prod_{1\leq i<j\leq N}\frac{1}{(x_{i}-x_{j})(y_{i}-y_{j})}\cdot\det_{1\leq i,j\leq N}\left[\frac{1-t^{k+1}-t(1-t^{k})x_{i}y_{j}}{(1-x_{i}y_{j})(1-tx_{i}y_{j})}\right]\\ =\sum_{\lambda_{1}\geq\cdots\geq\lambda_{N}\geq 0}\ \prod_{i=1}^{N}(1-t^{k+1+\lambda_{i}-i+N})s_{\lambda}(x_{1},\dots,x_{N})s_{\lambda}(y_{1},\dots,y_{N}).

This recovers the claim (C.21), after multiplying through by i=1Nyi1i,jN(1xiyj)\prod_{i=1}^{N}y_{i}\cdot\prod_{1\leq i,j\leq N}(1-x_{i}y_{j}). ∎

C.6. Final Match

Comparing (C.14) and (C.21), we have proved that

(C.22) 𝔼6v[(tk+1;t)(tk+1+𝔥(N,N);t)]=𝔼SM[i=1N(1tk+1+λii+N)].\displaystyle\mathbb{E}_{6{\rm v}}\left[\frac{(t^{k+1};t)_{\infty}}{(t^{k+1+\mathfrak{h}(N,N)};t)_{\infty}}\right]=\mathbb{E}_{\operatorname{SM}}\left[\prod_{i=1}^{N}(1-t^{k+1+\lambda_{i}-i+N})\right].

Both sides of (C.22) are polynomial in tkt^{k}; since (C.22) holds for all integer values k0k\in\mathbb{Z}_{\geq 0} and the set {tk}k0\{t^{k}\}_{k\geq 0} has a point of accumulation for |t|<1|t|<1, we may extend the equality to all complex values by the analytic continuation tk+1=ζt^{k+1}=-\zeta\in\mathbb{C}. This yields

𝔼6v[(ζ;t)(ζt𝔥(N,N);t)]=𝔼SM[i=1N(1+ζtλii+N)],\displaystyle\mathbb{E}_{6{\rm v}}\left[\frac{(-\zeta;t)_{\infty}}{(-\zeta t^{\mathfrak{h}(N,N)};t)_{\infty}}\right]=\mathbb{E}_{\operatorname{SM}}\left[\prod_{i=1}^{N}(1+\zeta t^{\lambda_{i}-i+N})\right],

which is precisely the result (2.7) in the case q=tq=t, ri=si=t1/2r_{i}=s_{i}=t^{-1/2} and M=NM=N.

Extending this result to M<NM<N may be achieved by taking yM+1==yN=0y_{M+1}=\cdots=y_{N}=0 in (C.22). On the side of the six-vertex model, this choice trivializes the contribution of the final NMN-M thin vertical lines in the picture (C.13) (as no arrows can enter them through the left), leading to a rectangular domain; on the side of the Schur expectation, this choice does not damage the measure (C.20) in view of the stability property of Schur polynomials. A similar reduction is possible in the case M>NM>N.

References

  • [1] A. Aggarwal. Current fluctuations of the stationary ASEP and six-vertex model. Duke Math. J., 167(2):269–384, 2018.
  • [2] A. Aggarwal and A. Borodin. Phase transitions in the ASEP and stochastic six-vertex model. Ann. Probab., 47(2):613–689, 2019.
  • [3] A. Aggarwal, A. Borodin, and A. Bufetov. Stochasticization of solutions to the Yang-Baxter equation. Ann. Henri Poincaré, 20(8):2495–2554, 2019.
  • [4] A. Aggarwal, A. Borodin, and M. Wheeler. Colored fermionic vertex models and symmetric functions. Preprint, arXiv:2101.01605.
  • [5] D. Aldous and P. Diaconis. Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. (N.S.), 36(4):413–432, 1999.
  • [6] G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in 1+11+1 dimensions. Comm. Pure Appl. Math., 64(4):466–537, 2011.
  • [7] J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab., 33(5):1643–1697, 2005.
  • [8] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc., 12(4):1119–1178, 1999.
  • [9] J. Baik and E. M. Rains. Limiting distributions for a polynuclear growth model with external sources. J. Statist. Phys., 100:523–541, 2000.
  • [10] G. Barraquand. A phase transition for qq-TASEP with a few slower particles. Stoch. Proc. Appl., 125(7):2674–2699, 2015.
  • [11] A. Borodin. On a family of symmetric rational functions. Adv. Math., 306:973–1018, 2017.
  • [12] A. Borodin. Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys., 59(2):023301, 17, 2018.
  • [13] A. Borodin, A. Bufetov, and M. Wheeler. Between the stochastic six vertex model and Hall–Littlewood processes. Preprint, arXiv:1611.09486.
  • [14] A. Borodin and I. Corwin. Macdonald processes. Probab. Theory Related Fields, 158(1-2):225–400, 2014.
  • [15] A. Borodin, I. Corwin, and P. Ferrari. Free energy fluctuations for directed polymers in random media in 1+11+1 dimension. Comm. Pure Appl. Math., 67(7):1129–1214, 2014.
  • [16] A. Borodin and V. Gorin. Lectures on integrable probability. In Probability and statistical physics in St. Petersburg, volume 91 of Proc. Sympos. Pure Math., pages 155–214. Amer. Math. Soc., Providence, RI, 2016.
  • [17] A. Borodin and V. Gorin. Moments match between the KPZ equation and the Airy point process. SIGMA Symmetry Integrability Geom. Methods Appl., 12:Paper No. 102, 7, 2016.
  • [18] A. Borodin, A. Okounkov, and G. Olshanski. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc., 13(3):481–515, 2000.
  • [19] A. Borodin and G. Olshanski. The ASEP and determinantal point processes. Comm. Math. Phys., 353(2):853–903, 2017.
  • [20] A. Borodin and S. Péché. Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys., 132(2):275–290, 2008.
  • [21] A. Borodin and L. Petrov. Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math., 300:71–155, 2016.
  • [22] A. Borodin and L. Petrov. Higher spin six vertex model and symmetric rational functions. Selecta Math. (N.S.), 24(2):751–874, 2018.
  • [23] A. Borodin and M. Wheeler. Coloured stochastic vertex models and their spectral theory. Preprint, arXiv:1808.01866.
  • [24] A. Bufetov and K. Matveev. Hall-Littlewood RSK field. Selecta Math. (N.S.), 24(5):4839–4884, 2018.
  • [25] P. Calabrese, P. Le Doussal, and A. Rosso. Free-energy distribution of the directed polymer at high temperature. EPL (Europhysics Letters), 90(2):20002, apr 2010.
  • [26] I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl., 1(1):1130001, 76, 2012.
  • [27] I. Corwin, P. Ghosal, H. Shen, and L.-C. Tsai. Stochastic PDE limit of the six vertex model. Comm. Math. Phys., 375(3):1945–2038, 2020.
  • [28] I. Corwin and L. Petrov. The qq-PushASEP: a new integrable model for traffic in 1+11+1 dimension. J. Stat. Phys., 160(4):1005–1026, 2015.
  • [29] I. Corwin and L. Petrov. Stochastic higher spin vertex models on the line. Comm. Math. Phys., 343(2):651–700, 2016.
  • [30] V. Dotsenko. Bethe ansatz derivation of the tracy-widom distribution for one-dimensional directed polymers. EPL (Europhysics Letters), 90(2):20003, apr 2010.
  • [31] P. L. Ferrari and H. Spohn. Random growth models. In The Oxford handbook of random matrix theory, pages 782–801. Oxford Univ. Press, Oxford, 2011.
  • [32] T. Imamura and T. Sasamoto. Fluctuations of the one-dimensional polynuclear growth model with external sources. Nuclear Phys. B, 699(3):503–544, 2004.
  • [33] A. G. Izergin. Partition function of a six-vertex model in a finite volume. In Doklady Akademii Nauk, volume 297, pages 331–333. Russian Academy of Sciences, 1987.
  • [34] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000.
  • [35] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. (2), 153(1):259–296, 2001.
  • [36] M. Kardar, G. Parisi, and Y.-C. Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56:889–892, Mar 1986.
  • [37] V. E. Korepin. Calculation of norms of Bethe wave functions. Communications in Mathematical Physics, 86(3):391–418, 1982.
  • [38] P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin. Yang-Baxter equations and representation theory. I. Lett. Math. Phys., 5(5):393–403, 1981.
  • [39] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin. Kinetics of biopolymerization on nucleic acid templates. Biopolymers, 6(1):1–25, 1968.
  • [40] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Classic Texts in the Physical Sciences. Oxford University Press, New York, second edition, 2015.
  • [41] V. V. Mangazeev. On the Yang-Baxter equation for the six-vertex model. Nuclear Phys. B, 882:70–96, 2014.
  • [42] P. Meakin. Fractals, scaling and growth far from equilibrium, volume 5 of Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge, 1998.
  • [43] A. Okounkov. Infinite wedge and random partitions. Selecta Math. (N.S.), 7(1):57–81, 2001.
  • [44] Y. Pei. A qq-Robinson-Schensted-Knuth algorithm and a qq-polymer. Electron. J. Combin., 24(4):Paper No. 4.6, 38, 2017.
  • [45] M. Prähofer and H. Spohn. Universal distributions for growth processes in 1+11+1 dimensions and random matrices. Phys. Rev. Lett., 84:4882–4885, May 2000.
  • [46] M. Prähofer and H. Spohn. Scale invariance of the PNG droplet and the Airy process. J. Statist. Phys., 108(5-6):1071–1106, 2002.
  • [47] J. Quastel. Introduction to KPZ. In Current developments in mathematics, 2011, pages 125–194. Int. Press, Somerville, MA, 2012.
  • [48] T. Sasamoto and H. Spohn. Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B, 834(3):523–542, 2010.
  • [49] F. Spitzer. Interaction of Markov processes. Adv. Math., 5:246–290 (1970), 1970.
  • [50] C. A. Tracy and H. Widom. Asymptotics in ASEP with step initial condition. Comm. Math. Phys., 290(1):129–154, 2009.
  • [51] B. Virag. The heat and the landscape I. Preprint, arXiv:2008.07241.
  • [52] M. Wheeler and P. Zinn-Justin. Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons. Advances in Mathematics, 299:543–600, 2016.