This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Deformed super brackets on forms of a manifold

Kentaro Mikami Akita University, Japan    Tadayoshi Mizutani Saitama University, Japan

1 Introduction

Let MM be a differentiable manifold and T(M)\mathrm{T}(M) and T(M)\mathrm{T}^{*}(M) be the tangent and cotangent bundle of MM (or the spaces of the sections). In addition to the typical example of Lie superalgebra 𝔤=p=1dimMΛpT(M)\mathfrak{g}=\sum_{p=1}^{\textrm{dim}M}\Lambda^{p}\mathrm{T}(M) with the Schouten bracket, the space of differential forms 𝔥=q=0dimMΛqT(M)\mathfrak{h}=\sum_{q=0}^{\textrm{dim}M}\Lambda^{q}\mathrm{T}^{*}(M) with the bracket

(1.1) {α,β}=(1)ad(αβ)whereαΛaT(M) and βΛbT(M)\{\alpha,\beta\}=(-1)^{a}d(\alpha\wedge\beta)\quad\text{where}\alpha\in\Lambda^{a}\mathrm{T}^{*}(M)\ \text{ and }\ \beta\in\Lambda^{b}\mathrm{T}^{*}(M)

becomes a Lie superalgebra, where the grading of ΛaT(M)\Lambda^{a}\mathrm{T}^{*}(M) is a1-a-1, and is often referred to as aa^{\prime} (cf.  [5]). The grading of ΛaT(M)\Lambda^{a}\mathrm{T}(M) is a1a-1, and is also represented by aa^{\prime}.

There is a notion of deformation of the exterior differentiation dd by a 1-form ϕ\phi defined by dtα=dα+tϕαd_{t}\alpha=d\alpha+t\phi\wedge\alpha where tt is a scalar parameter runs at least [0,1][0,1] interval, and it is well-known that dtdt=0d_{t}\circ d_{t}=0 if ϕ\phi is a 1-cocycle. It is natural to expect dϕd_{\phi} defines a Lie superalgebra structure, namely

{α,β}t=(1)adt(αβ)={α,β}+α(tϕ)β\{\alpha,\beta\}^{t}=(-1)^{a}d_{t}(\alpha\wedge\beta)=\{\alpha,\beta\}+{\alpha}\wedge(t\phi)\wedge{\beta}

will be a super bracket for each tt. Super symmetry holds good. About super Jacobi identity,

{{α,β}t,γ}t\displaystyle\quad\{\{\alpha,\beta\}^{t},\gamma\}^{t}
={{α,β},γ}+(1)a+1d(αβtϕγ)+(1)ad(αβ)tϕγ\displaystyle=\{\{\alpha,\beta\},\gamma\}+(-1)^{a+1}d(\alpha\wedge\beta\wedge t\phi\wedge\gamma)+(-1)^{a}d({\alpha}\wedge{\beta})\wedge t\phi\wedge\gamma
={{α,β},γ}+(1)b+c+1αβdγtϕ+(1)b+1αβγd(tϕ)\displaystyle=\{\{\alpha,\beta\},\gamma\}+(-1)^{b+c+1}\alpha\wedge\beta\wedge d\gamma\wedge t\phi+(-1)^{b+1}\alpha\wedge\beta\wedge\gamma\wedge d(t\phi)
={{α,β},γ}+(1)b+c+1αβdγtϕif ϕ is closed.\displaystyle=\{\{\alpha,\beta\},\gamma\}+(-1)^{b+c+1}\alpha\wedge\beta\wedge d\gamma\wedge t\phi\quad\text{if $\phi$ is closed.}
𝔖α,β,γ(1)ac{{α,β}t,γ}t\displaystyle\quad\mathop{\mathfrak{S}}_{\alpha,\beta,\gamma}(-1)^{a^{\prime}c^{\prime}}\{\{\alpha,\beta\}^{t},\gamma\}^{t}
=(1)ac{{α,β},γ}+(1)ac+b+c+1αβdγtϕ+(1)ac+b+1αβγd(tϕ)\displaystyle=(-1)^{a^{\prime}c^{\prime}}\{\{\alpha,\beta\},\gamma\}+(-1)^{a^{\prime}c^{\prime}+b+c+1}\alpha\wedge\beta\wedge d\gamma\wedge t\phi+(-1)^{a^{\prime}c^{\prime}+b+1}\alpha\wedge\beta\wedge\gamma\wedge d(t\phi)
=𝔖α,β,γ(1)acd(α)βdγtϕ+3(1)ac+a+b+cαβγd(tϕ)\displaystyle=\mathop{\mathfrak{S}}_{\alpha,\beta,\gamma}(-1)^{ac}d(\alpha)\wedge\beta\wedge d\gamma\wedge t\phi+3(-1)^{ac+a+b+c}\alpha\wedge\beta\wedge\gamma\wedge d(t\phi)
=𝔖α,β,γ(1)acd(α)βdγtϕif ϕ is closed.\displaystyle=\mathop{\mathfrak{S}}_{\alpha,\beta,\gamma}(-1)^{ac}d(\alpha)\wedge\beta\wedge d\gamma\wedge t\phi\quad\text{if $\phi$ is closed.}

So far, there is no affirmative statement in general setting. On the other hand, there is a result of deformation of the Schouten bracket by D. Iglesias and J. C. Marrero in [1]. They say for a 1-cocycle ϕ\phi,

(1.2) [P,Q]ϕ=[P,Q]+(1)pP(ϕ)(q1)Q+(p1)PQ(ϕ) where P(ϕ)=ιϕP[P,Q]^{\phi}=[P,Q]+(-1)^{p}P(\phi)\wedge(q-1)Q+(p-1)P\wedge Q(\phi)\quad\text{ where }\quad P(\phi)=\iota_{\phi}P

satisfies the axioms of bracket of Lie superalgebra.

  1. 1.

    [P,Q]ϕ=(1)(p1)(q1)[Q,P]ϕ[P,Q]^{\phi}=-(-1)^{(p-1)(q-1)}[Q,P]^{\phi}

  2. 2.

    [P,[Q,R]ϕ]ϕ=[[P,Q]ϕ,R]ϕ+(1)(p1)(q1)[Q,[P,R]ϕ]ϕ[P,[Q,R]^{\phi}]^{\phi}=[[P,Q]^{\phi},R]^{\phi}+(-1)^{(p-1)(q-1)}[Q,[P,R]^{\phi}]^{\phi}   .

Inspired by the work above, in this note for a given 1-form ϕ\phi, we fix properties of a function FF so that

(1.3) (1)ad(αβ)+F(a,b)α(tϕ)β(αΛaT(M),βΛbT(M))(-1)^{a}d(\alpha\wedge\beta)+F(a,b){\alpha}\wedge(t\phi)\wedge{\beta}\quad\quad(\alpha\in\Lambda^{a}\mathrm{T}^{*}(M),\;\beta\in\Lambda^{b}\mathrm{T}^{*}(M))\;

becomes super bracket for tt. The function FF should be defined on {(a,b)2a+bdimM1}\{(a,b)\in\mathbb{Z}^{2}\mid a+b\leqq\textrm{dim}M-1\}.

Main results in this note is that there are deformations of two super brackets on the space 𝔥=q=0dimMΛqT(M)\mathfrak{h}=\sum_{q=0}^{\textrm{dim}M}\Lambda^{q}\mathrm{T}^{*}(M), and there is a natural extension to a subalgebra of T(M)\mathrm{T}(M).

Claim 1: A deformation of the trivial bracket: For a given 1-form ϕ\phi

{α,β}t,ϕ=F(a,b)α(tϕ)β(αΛaT(M),βΛbT(M))\{\alpha,\beta\}^{t,\phi}=F(a,b){\alpha}\wedge(t\phi)\wedge{\beta}\quad\quad(\alpha\in\Lambda^{a}\mathrm{T}^{*}(M),\;\beta\in\Lambda^{b}\mathrm{T}^{*}(M))\;

is a super bracket on 𝔥\mathfrak{h} when FF is a symmetric function.

Claim 2: A deformation of the standard bracket: For a given closed 1-form ϕ\phi,

{α,β}t,ϕ=(1)ad(αβ)+a+b+22αtϕβ(αΛaT(M),βΛbT(M))\{\alpha,\beta\}^{t,\phi}=(-1)^{a}d({\alpha}\wedge{\beta})+\tfrac{a+b+2}{2}\alpha\wedge t\phi\wedge\beta\quad\quad(\alpha\in\Lambda^{a}\mathrm{T}^{*}(M),\;\beta\in\Lambda^{b}\mathrm{T}^{*}(M))\;

is a super bracket on 𝔥\mathfrak{h}.

Claim 3: An extension of the deformation of the standard bracket: For a given closed 1-form ϕ\phi, Claim 2 says 𝔥,{,}t,ϕ\mathfrak{h},\{\cdot,\cdot\}^{t,\phi} are Lie superalgebra. Let 𝔤0={XT(M)LXϕ=0}{\mathfrak{g}}_{0}^{\prime}=\{X\in\mathrm{T}(M)\mid\mathit{L}_{X}\phi=0\}, which is a subalgebra of T(M)\mathrm{T}(M). Then (𝔥,{,}t,ϕ)𝔤0(\mathfrak{h},\{\cdot,\cdot\}^{t,\phi})\oplus{\mathfrak{g}}_{0}^{\prime} becomes a Lie superalgebra naturally by the Lie derivative for each tt.


Based on these results, there are many issues to be studied. We would like to develop homology theory of deformed superalgebra. When a Lie group GG acts on MM, we get p=1dimMΛpTG(M)\sum_{p=1}^{\textrm{dim}M}\Lambda^{p}\mathrm{T}_{G}(M) of GG-invariant multivector fields, and q=0dimMΛqTG(M)\sum_{q=0}^{\textrm{dim}M}\Lambda^{q}\mathrm{T}^{*}_{G}(M) of GG-invariant differential forms. Since the action preserves the Jacobi-Lie bracket, the Schouten bracket is preserved by the action. Also the action commutes with the differentiation dd, the Lie superalgebra bracket is preserved by the action. In short, p=1dimMΛpTG(M)\sum_{p=1}^{\textrm{dim}M}\Lambda^{p}\mathrm{T}_{G}(M) and q=0dimMΛqTG(M)\sum_{q=0}^{\textrm{dim}M}\Lambda^{q}\mathrm{T}^{*}_{G}(M) have Lie superalgebra structures. The simplest case is a Lie group acts on itself. 𝔤¯=p=1nΛp𝔤\overline{\mathfrak{g}}=\sum_{p=1}^{n}\Lambda^{p}\mathfrak{g} where 𝔤=\mathfrak{g}=Lie algebra of GG, has a Lie superalgebra structure by the Schouten bracket (cf.[4]). The differential dd gives a Lie superalgebra structure on 𝔥¯=p=0nΛp𝔥\overline{\mathfrak{h}}=\sum_{p=0}^{n}\Lambda^{p}\mathfrak{h}, where 𝔥=𝔤\mathfrak{h}=\mathfrak{g}^{*} (cf.  [5]). Concrete and fancy examples are presented from those superalgebras.

2 Deformation from the trivial bracket

In this section, we study deformed super bracket of the trivial bracket on 𝔥\mathfrak{h}, namely

(2.1) {α,β}t,ϕ=F(a,b)α(tϕ)β(αΛaT(M),βΛbT(M)).\{\alpha,\beta\}^{t,\phi}=F(a,b){\alpha}\wedge(t\phi)\wedge{\beta}\quad\quad(\alpha\in\Lambda^{a}\mathrm{T}^{*}(M),\;\beta\in\Lambda^{b}\mathrm{T}^{*}(M))\;.

Then the symmetric property of FF implies the super symmetric property of {,}t,ϕ\{\cdot,\cdot\}^{t,\phi} because of

{α,β}t,ϕ+(1)(1+a)(1+b){β,α}t,ϕ=(F(a,b)F(b,a))α(tϕ)β.\{\alpha,\beta\}^{t,\phi}+(-1)^{(1+a)(1+b)}\{\beta,\alpha\}^{t,\phi}=(F(a,b)-F(b,a))\alpha\wedge(t\phi)\wedge\beta\;.

The super Jacobi identity holds automatically because

{{α,β}t,ϕ,γ}t,ϕ\displaystyle\{\{\alpha,\beta\}^{t,\phi},\gamma\}^{t,\phi} ={F(a,b)α(tϕ)β,γ}t,ϕ=F(a,b)F(a+b+1,c)α(tϕ)β(tϕ)γ=0.\displaystyle=\{F(a,b){\alpha}\wedge(t\phi)\wedge{\beta},\gamma\}^{t,\phi}=F(a,b)F(a+b+1,c){\alpha}\wedge(t\phi)\wedge{\beta}\wedge(t\phi)\wedge\gamma=0\;.
Proposition 2.1.

The bracket (2.1) is a super bracket on 𝔥\mathfrak{h} when FF is a symmetric function on {(a,b)2a+bdimM1}\{(a,b)\in\mathbb{Z}^{2}\mid a+b\leqq\textrm{dim}M-1\}.

Remark 2.1.

In the proposition above, ϕ\phi is not necessarily closed. Like nilpotent subalgebras of a Lie algebra, {{𝔥,𝔥}t,ϕ,𝔥}t,ϕ=0\{\{\mathfrak{h},\mathfrak{h}\}^{t,\phi},\mathfrak{h}\}^{t,\phi}=0 holds. In contrast, (1)ac{{α,β},γ}=(1)acαdβγ(1)baβdγdα(-1)^{a^{\prime}c^{\prime}}\{\{\alpha,\beta\},\gamma\}=(-1)^{a^{\prime}c^{\prime}}\alpha\wedge d\beta\wedge\gamma-(-1)^{b^{\prime}a^{\prime}}\beta\wedge d\gamma\wedge d\alpha holds for {α,β}=(1)ad(αβ)\{\alpha,\beta\}=(-1)^{a}d(\alpha\wedge\beta).

We already know that the superalgebra 𝔥=i=0dimMΛiT(M)\mathfrak{h}=\sum_{i=0}^{\textrm{dim}M}\Lambda^{i}\mathrm{T}^{*}(M) with the bracket {α,β}=(1)ad(αβ)\{\alpha,\beta\}=(-1)^{a}d(\alpha\wedge\beta) has an extension by 𝔤0=T(M){\mathfrak{g}}_{0}=\mathrm{T}(M) through Lie derivative in [5]. Here we study the deformed superalgebra given by the bracket (2.1) has an extension by a subalgebra of T(M)\mathrm{T}(M) through the Lie derivative LX=ιXd+dιX\mathit{L}_{X}=\iota_{X}\circ d+d\circ\iota_{X} with respect to XX.

Let F(a,b)F(a,b) be a symmetric function on 2\mathbb{Z}^{2} and ϕ\phi be a 1-form on MM and

(2.2) {α,β}t,ϕ=F(a,b)αtϕβ(αΛaT(M),βΛbT(M)).\{\alpha,\beta\}^{t,\phi}=F(a,b)\alpha\wedge t\phi\wedge\beta\quad\quad(\alpha\in\Lambda^{a}\mathrm{T}^{*}(M),\;\beta\in\Lambda^{b}\mathrm{T}^{*}(M))\;.

For 1-vector field XX, we define {X,α}t,ϕ=LXα\{X,\alpha\}^{t,\phi}=\mathit{L}_{X}\alpha and {α,X}t,ϕ=LXα\{\alpha,X\}^{t,\phi}=-\mathit{L}_{X}\alpha. So the super symmetry holds good. About super Jacobi identity, we check two cases: one is X,Y,αX,Y,\alpha and the other is X,α,βX,\alpha,\beta. The first case the super Jacobi identity is just the formula L[X,Y]=LXLYLYLX\mathit{L}_{[X,Y]}=\mathit{L}_{X}\mathit{L}_{Y}-\mathit{L}_{Y}\mathit{L}_{X}. So the super symmetry holds good. We treat the other case: Since

{X,{α,β}t,ϕ}t,ϕ{{X,α}t,ϕ,β}t,ϕ{α,{X,β}t,ϕ}t,ϕ\displaystyle\quad\{X,\{\alpha,\beta\}^{t,\phi}\}^{t,\phi}-\{\{X,\alpha\}^{t,\phi},\beta\}^{t,\phi}-\{\alpha,\{X,\beta\}^{t,\phi}\}^{t,\phi}
=tF(a,b)LX(αϕβ)tF(a,b)LXαϕβtF(a,b)αϕLXβ\displaystyle=tF(a,b)\mathit{L}_{X}(\alpha\wedge\phi\wedge\beta)-tF(a,b)\mathit{L}_{X}\alpha\wedge\phi\wedge\beta-tF(a,b)\alpha\wedge\phi\wedge\mathit{L}_{X}{\beta}
=tF(a,b)α(LXϕ)β\displaystyle=tF(a,b)\alpha\wedge(\mathit{L}_{X}\phi)\wedge\beta

we see that LXϕ=0\mathit{L}_{X}\phi=0 is an efficient condition for super Jacobi identity.

Proposition 2.2.

Let 𝔤0={X𝔤0LXϕ=0}{\mathfrak{g}}_{0}^{\prime}=\{X\in{\mathfrak{g}}_{0}\mid\mathit{L}_{X}\phi=0\}, which is a subalgebra of 𝔤0{\mathfrak{g}}_{0}. Then ( 𝔥𝔤0,{,}t,ϕ\mathfrak{h}\oplus{\mathfrak{g}}_{0}^{\prime},\{\cdot,\cdot\}^{t,\phi}) is a deformed superalgebra.

If ϕ\phi is a 1-cocycle, then ( 𝔥𝔤0′′,{,}t,ϕ\mathfrak{h}\oplus{\mathfrak{g}}_{0}^{\prime\prime},\{\cdot,\cdot\}^{t,\phi}) is a deformed superalgebra, where 𝔤0′′={X𝔤0iXϕ=0}{\mathfrak{g}}_{0}^{\prime\prime}=\{X\in{\mathfrak{g}}_{0}\mid i_{X}\phi=0\}, which is a subalgebra of 𝔤0{\mathfrak{g}}_{0}^{\prime}.

Some concrete example will appear in the tail of the next section.

3 Deformation from the standard bracket

It is known in [5] that {α,β}=(1)ad(αβ)\{\alpha,\beta\}=(-1)^{a}d(\alpha\wedge\beta) defines a super bracket on i=0dimMΛiT(M)\sum_{i=0}^{\textrm{dim}M}\Lambda^{i}\mathrm{T}^{*}(M). Looking at the deformed Schouten bracket, the bracket we expect is of form {α,β}t,ϕ={α,β}+F(a,b)αtϕβ\{\alpha,\beta\}^{t,\phi}=\{\alpha,\beta\}+F(a,b)\alpha\wedge t\phi\wedge\beta for some function FF on {(a,b)2a+bdimM1}\{(a,b)\in\mathbb{Z}^{2}\mid a+b\leqq\textrm{dim}M-1\}.

About super symmetric property, we have

(3.1) {α,β}t,ϕ+(1)ab{β,α}t,ϕ=(F(a,b)F(b,a))αtϕβ\{\alpha,\beta\}^{t,\phi}+(-1)^{a^{\prime}b^{\prime}}\{\beta,\alpha\}^{t,\phi}=(F(a,b)-F(b,a))\alpha\wedge t\phi\wedge\beta

About Jacobi identity, we see

𝔖α,β,γ(1)ac({{α,β}t,ϕ,γ}t,ϕ{{α,β},γ})\displaystyle\quad\mathop{\mathfrak{S}}_{\alpha,\beta,\gamma}(-1)^{a^{\prime}c^{\prime}}\left(\{\{\alpha,\beta\}^{t,\phi},\gamma\}^{t,\phi}-\{\{\alpha,\beta\},\gamma\}\right)
=(F(1+b+c,a)F(a,b)F(b,c)F(c,a)+F(1+c+a,b))(1)ac+a+c(αtϕβd(γ))\displaystyle=\left(F(1+b+c,a)-F(a,b)-F(b,c)-F(c,a)+F(1+c+a,b)\right)\left(-1\right)^{ac+a+c}\left(\alpha\wedge t\phi\wedge\beta\wedge d\left(\gamma\right)\right)
(1)ac+a+c(F(1+a+b,c)+F(1+b+c,a)F(a,b)F(b,c)F(c,a))(αd(β)tϕγ)\displaystyle-\left(-1\right)^{ac+a+c}\left(F(1+a+b,c)+F\left(1+b+c,a\right)-F(a,b)-F\left(b,c\right)-F\left(c,a\right)\right)\left(\alpha\wedge d\left(\beta\right)\wedge t\phi\wedge\gamma\right)
+(F(a,b)+F(b,c)+F(c,a))(1)ac+a+b+c(αd(tϕ)βγ)\displaystyle+\left(F(a,b)+F(b,c)+F(c,a)\right)\left(-1\right)^{ac+a+b+c}\left(\alpha\wedge d\left(t\phi\right)\wedge\beta\wedge\gamma\right)
(1)ac+c(F(1+a+b,c)F(a,b)F(b,c)F(c,a)+F(1+c+a,b))(d(α)βtϕγ).\displaystyle-\left(-1\right)^{ac+c}\left(F(1+a+b,c)-F(a,b)-F(b,c)-F(c,a)+F(1+c+a,b)\right)\left(d\left(\alpha\right)\wedge\beta\wedge t\phi\wedge\gamma\right)\;.

Thus, if ϕ\phi is a 1-cocycle, then we get the following sufficient conditions for super Jacobi identity

(3.2) 0\displaystyle 0 =F(1+b+c,a)+F(1+c+a,b)F(a,b)F(b,c)F(c,a),\displaystyle=F(1+b+c,a)+F(1+c+a,b)-F(a,b)-F(b,c)-F(c,a)\;,
(3.3) 0\displaystyle 0 =F(1+a+b,c)+F(1+b+c,a)F(a,b)F(b,c)F(c,a),\displaystyle=F(1+a+b,c)+F(1+b+c,a)-F(a,b)-F(b,c)-F(c,a)\;,
(3.4) 0\displaystyle 0 =F(1+c+a,b)+F(1+a+b,c)F(a,b)F(b,c)F(c,a).\displaystyle=F(1+c+a,b)+F(1+a+b,c)-F(a,b)-F(b,c)-F(c,a)\;.

The difference (3.2)(3.3)=0\eqref{eq:x:1}-\eqref{eq:x:2}=0 implies F(1+c+a,b)=F(1+a+b,c)F(1+c+a,b)=F(1+a+b,c). Putting c=0c=0, we have F(1+a,b)=F(1+a+b,0)F(1+a,b)=F(1+a+b,0) and F(a,0)=F(0,0)(a2+1)\displaystyle F(a,0)=F(0,0)(\frac{a}{2}+1), we see that the symmetric function FF satisfying the above 3 conditions is

(3.5) F(a,b)=κ(a+b+2)whereκ is a constant.F(a,b)=\kappa(a+b+2)\ \ \text{where}\ \kappa\text{ is a constant.}

Assume 1-form ϕ\phi is not closed. Then we get the following sufficient conditions for super Jacobi identity

(3.6) 0\displaystyle 0 =F(1+b+c,a)+F(1+c+a,b)\displaystyle=F(1+b+c,a)+F(1+c+a,b)
(3.7) 0\displaystyle 0 =F(1+a+b,c)+F(1+b+c,a)\displaystyle=F(1+a+b,c)+F(1+b+c,a)
(3.8) 0\displaystyle 0 =F(a,b)+F(b,c)+F(c,a)\displaystyle=F(a,b)+F(b,c)+F(c,a)
(3.9) 0\displaystyle 0 =F(1+c+a,b)+F(1+a+b,c)\displaystyle=F(1+c+a,b)+F(1+a+b,c)
We conclude a symmetric FF satisfying the 4 above conditions is trivial as follows. Putting c=0c=0 in (3.8)
(3.10) F(a,b)\displaystyle F(a,b) =G(a)G(b)whereG(a)=F(0,a)=F(a,0).\displaystyle=-G(a)-G(b)\quad\text{where}\ G(a)=F(0,a)=F(a,0)\;.
Applying this expression to (3.8), we have
(3.11) 0\displaystyle 0 =2(G(a)+G(b)+G(c)),and so G(a)=0,F(a,b)=0,i.e., trivial.\displaystyle=-2(G(a)+G(b)+G(c))\;,\ \text{and so }\;G(a)=0\;,\ F(a,b)=0\;,\ \text{i.e., trivial.}

We summarize above discussion.

Theorem 3.1.

The super symmetry of the bracket (1.3)

(1)ad(αβ)+F(a,b)α(tϕ)β(-1)^{a}d(\alpha\wedge\beta)+F(a,b){\alpha}\wedge(t\phi)\wedge{\beta}

yields F(a,b)F(a,b) is a symmetric function, i.e., F(a,b)=F(b,a)F(a,b)=F(b,a).

The super Jacobi identity implies if ϕ\phi is not a cocycle, i.e., not exact then F(a,b)=0F(a,b)=0. If ϕ\phi is a cocycle, i.e., if ϕ\phi is exact then the super Jacobi identify yields F(a,b)=κ(a+b+2)F(a,b)=\kappa(a+b+2).

Corollary 3.1.

Let ϕ\phi be an exact 1-form.

(3.12) {α,β}t,ϕ={α,β}+a+b+22αtϕβ\{\alpha,\beta\}^{t,\phi}=\{\alpha,\beta\}+\tfrac{a+b+2}{2}\alpha\wedge t\phi\wedge\beta

where {α,β}=(1)ad(αβ)\{\alpha,\beta\}=(-1)^{a}d({\alpha}\wedge{\beta}), αΛaT(M)\alpha\in\Lambda^{a}\mathrm{T}^{*}(M) and βΛbT(M)\beta\in\Lambda^{b}\mathrm{T}^{*}(M). This bracket satisfies super symmetry and super Jacobi identity, and the space 𝔥\mathfrak{h} with this bracket is a Lie superalgebra.

Remark 3.1.

This bracket is a super bracket from Theorem above. If one proceed to reconfirm that this bracket is a super bracket, it is one page exercise. Symbol calculus, Maple has a package difforms and it is helpful to study of properties of this bracket.

Example 3.1.

Take a 2-dimensional Lie algebra with the Lie bracket relations [y1,y2]=y1[y_{1},y_{2}]=y_{1} and the z1,z2z_{1},z_{2} is the dual basis so that dz1=z1z2dz_{1}=-z_{1}\wedge z_{2} and dz2=0dz_{2}=0. The chain complex of weight 3-3 is given by C1[3]=(z1z2)C_{1}^{[-3]}=\mathbb{R}(z_{1}\wedge z_{2}), C2[3]=(z11)+(z21)C_{2}^{[-3]}=\mathbb{R}(z_{1}\bigtriangleup 1)+\mathbb{R}(z_{2}\bigtriangleup 1), C3[3]=(111)=(31)C_{3}^{[-3]}=\mathbb{R}(1\bigtriangleup 1\bigtriangleup 1)=\mathbb{R}(\bigtriangleup^{3}1). We refer to the appendix or [5] about odd notations. Fix ϕ=z2\phi=z_{2}. (z1z2)=0\partial(z_{1}\wedge z_{2})=0 for 1-chain.

(zj1)\displaystyle\partial(z_{j}\bigtriangleup 1) ={zj,1}t,z2={c1δj1tz1z2c1 is constant, deform of trivialδj1(1+32t)z1z2deform of standard\displaystyle=\{z_{j},1\}^{t,z_{2}}=\begin{cases*}c_{1}\delta_{j}^{1}tz_{1}\wedge z_{2}&$c_{1}$ is constant, deform of trivial\\ \delta_{j}^{1}(1+\frac{3}{2}t)z_{1}\wedge z_{2}&deform of standard\end{cases*}
(31)\displaystyle\partial(\bigtriangleup^{3}1) =(32){1,1}t,z21={c0tz21c0 is constant, deform of trivialtz21deform of standard\displaystyle=\tbinom{3}{2}\{1,1\}^{t,z_{2}}\bigtriangleup 1=\begin{cases*}c_{0}tz_{2}\bigtriangleup 1&$c_{0}$ is constant, deform of trivial\\ tz_{2}\bigtriangleup 1&deform of standard\end{cases*}

We summarize the kernel dimensions and Betti numbers as follows, we assume c0c10c_{0}c_{1}\neq 0).

trivial123dim121kerdim11+δt0δt0Bettiδt02δt0δt0standard123dim121kerdim11+δ2+3t0δt0Bettiδ2+3t0δ2+3t0+δt0δt0\begin{array}[]{c | *{3}{c}}\text{trivial}&1&2&3\\ \hline\cr\textrm{dim}&1&2&1\\ \hline\cr\ker\textrm{dim}&1&1+\delta_{t}^{0}&\delta_{t}^{0}\\ \text{Betti}&\delta_{t}^{0}&2\delta_{t}^{0}&\delta_{t}^{0}\end{array}\hskip 56.9055pt\begin{array}[]{c | *{3}{c}}\text{standard}&1&2&3\\ \hline\cr\textrm{dim}&1&2&1\\ \hline\cr\ker\textrm{dim}&1&1+\delta_{2+3t}^{0}&\delta_{t}^{0}\\ \text{Betti}&\delta_{2+3t}^{0}&\delta_{2+3t}^{0}+\delta_{t}^{0}&\delta_{t}^{0}\end{array}

3.1 An extension

We mentioned before that the superalgebra 𝔥=i=0dimMΛiT(M)\mathfrak{h}=\sum_{i=0}^{\textrm{dim}M}\Lambda^{i}\mathrm{T}^{*}(M) with the bracket {α,β}=(1)ad(αβ)\{\alpha,\beta\}=(-1)^{a}d(\alpha\wedge\beta) has an extension by T(M)\mathrm{T}(M) through Lie derivation in [5]. Here we study two deformed superalgebras have an extension by a subalgebra of 𝔤0=T(M){\mathfrak{g}}_{0}=\mathrm{T}(M) through the Lie derivative LX=ιXd+dιX\mathit{L}_{X}=\iota_{X}\circ d+d\circ\iota_{X} with respect to XX.

The superalgebra 𝔥\mathfrak{h} has the deformed bracket {α,β}t,ϕ=(1)ad(αβ)+a+b+22αtϕβ\{\alpha,\beta\}^{t,\phi}=(-1)^{a}d(\alpha\wedge\beta)+\frac{a+b+2}{2}\alpha\wedge t\phi\wedge\beta, where ϕ\phi is a 1-cocycle.

Let {,}\{\cdot,\cdot\}^{{}^{\prime}} be a candidate of superbracket on 𝔥T(M)\mathfrak{h}\oplus\mathrm{T}(M), i.e., {α,β}={α,β}t,ϕ\{\alpha,\beta\}^{{}^{\prime}}=\{\alpha,\beta\}^{t,\phi} , {X,Y}=[X,Y]\{X,Y\}^{{}^{\prime}}=[X,Y], {X,β}={β,X}=LXβ\{X,\beta\}^{{}^{\prime}}=-\{\beta,X\}^{{}^{\prime}}=\mathit{L}_{X}{\beta} for forms α,β\alpha,\beta and 1-vectors X,YX,Y. We have to check super Jacobi identity for two cases. Again we abbreviate tϕt\phi by ϕ\phi. One case is all right as following.

{{X,Y},α}+{{Y,α},X}+{{α,X},Y}\displaystyle\quad\{\{X,Y\}^{{}^{\prime}},\alpha\}^{{}^{\prime}}+\{\{Y,\alpha\}^{{}^{\prime}},X\}^{{}^{\prime}}+\{\{\alpha,X\}^{{}^{\prime}},Y\}^{{}^{\prime}}
=\displaystyle= {[X,Y],α}LXLYα+LYLXα=(L[X,Y]LXLY+LYLX)α=0.\displaystyle\{[X,Y],\alpha\}^{{}^{\prime}}-\mathit{L}_{X}\mathit{L}_{Y}\alpha+\mathit{L}_{Y}\mathit{L}_{X}\alpha=(\mathit{L}_{[X,Y]}-\mathit{L}_{X}\mathit{L}_{Y}+\mathit{L}_{Y}\mathit{L}_{X})\alpha=0\;.

We try the other.

{X,{α,β}}+{α,{β,X}}+(1)ba{β,{X,α}}\displaystyle\quad\{X,\{\alpha,\beta\}^{{}^{\prime}}\}^{{}^{\prime}}+\{\alpha,\{\beta,X\}^{{}^{\prime}}\}^{{}^{\prime}}+(-1)^{b^{\prime}a^{\prime}}\{\beta,\{X,\alpha\}^{{}^{\prime}}\}^{{}^{\prime}}
=\displaystyle= LX{α,β}+(1)ad(α{β,X})+a+b2αϕ{β,X}\displaystyle\mathit{L}_{X}\{\alpha,\beta\}^{{}^{\prime}}+(-1)^{a}d(\alpha\wedge\{\beta,X\}^{{}^{\prime}})+\frac{a^{\prime}+b^{\prime}}{2}\alpha\wedge\phi\wedge\{\beta,X\}^{{}^{\prime}}
+(1)1+ab((1)bd(βLXα)a+b2βϕLXα)\displaystyle+(-1)^{1+a^{\prime}b^{\prime}}\left((-1)^{b^{\prime}}d(\beta\wedge\mathit{L}_{X}{\alpha})-\frac{a^{\prime}+b^{\prime}}{2}\beta\wedge\phi\wedge\mathit{L}_{X}{\alpha}\right)
=\displaystyle= LX((1)ad(αβ)+a+b2αϕβ)+(1)a+1d(αLXβ)\displaystyle\mathit{L}_{X}((-1)^{a}d(\alpha\wedge\beta)+\frac{a^{\prime}+b^{\prime}}{2}\alpha\wedge\phi\wedge\beta)+(-1)^{a+1}d(\alpha\wedge\mathit{L}_{X}\beta)
a+b2αϕLXβ+(1)1+ab((1)bd(βLXα)a+b2βϕLXα)\displaystyle-\frac{a^{\prime}+b^{\prime}}{2}\alpha\wedge\phi\wedge\mathit{L}_{X}\beta+(-1)^{1+a^{\prime}b^{\prime}}\left((-1)^{b^{\prime}}d(\beta\wedge\mathit{L}_{X}{\alpha})-\frac{a^{\prime}+b^{\prime}}{2}\beta\wedge\phi\wedge\mathit{L}_{X}{\alpha}\right)
=\displaystyle= (1)adLX(αβ)+a+b2LX(αϕβ)\displaystyle(-1)^{a}d\mathit{L}_{X}(\alpha\wedge\beta)+\frac{a^{\prime}+b^{\prime}}{2}\mathit{L}_{X}(\alpha\wedge\phi\wedge\beta)
+(1)a+1d(αLXβ)a+b2αϕ(LXβ)\displaystyle+(-1)^{a+1}d(\alpha\wedge\mathit{L}_{X}\beta)-\frac{a^{\prime}+b^{\prime}}{2}\alpha\wedge\phi\wedge(\mathit{L}_{X}\beta)
+(1)1+abd(βLXα)+(1)aba+b2βϕ(LXα+X,00α)\displaystyle+(-1)^{1+ab^{\prime}}d(\beta\wedge\mathit{L}_{X}{\alpha})+(-1)^{a^{\prime}b^{\prime}}\frac{a^{\prime}+b^{\prime}}{2}\beta\wedge\phi\wedge(\mathit{L}_{X}{\alpha}+\langle X,00\rangle\alpha)
=\displaystyle= +a+b2LX(αϕβ)+(1)aba+b2βϕLXαa+b2αϕ(LXβ)\displaystyle+\frac{a^{\prime}+b^{\prime}}{2}\mathit{L}_{X}(\alpha\wedge\phi\wedge\beta)+(-1)^{a^{\prime}b^{\prime}}\frac{a^{\prime}+b^{\prime}}{2}\beta\wedge\phi\wedge\mathit{L}_{X}{\alpha}-\frac{a^{\prime}+b^{\prime}}{2}\alpha\wedge\phi\wedge(\mathit{L}_{X}\beta)
+(1)adLX(αβ)+(1)a+1d(αLXβ)+(1)a+1d(LXαβ)\displaystyle+(-1)^{a}d\mathit{L}_{X}(\alpha\wedge\beta)+(-1)^{a+1}d(\alpha\wedge\mathit{L}_{X}\beta)+(-1)^{a+1}d(\mathit{L}_{X}{\alpha}\wedge\beta)
=\displaystyle= +a+b2LX(αϕβ)+(1)aba+b2(βϕLXα)a+b2(αϕLXβ)\displaystyle+\frac{a^{\prime}+b^{\prime}}{2}\mathit{L}_{X}(\alpha\wedge\phi\wedge\beta)+(-1)^{a^{\prime}b^{\prime}}\frac{a^{\prime}+b^{\prime}}{2}(\beta\wedge\phi\wedge\mathit{L}_{X}{\alpha})-\frac{a^{\prime}+b^{\prime}}{2}(\alpha\wedge\phi\wedge\mathit{L}_{X}\beta)
=\displaystyle= +a+b2(LX(αϕβ)LXαϕβαϕLXβ)\displaystyle+\frac{a^{\prime}+b^{\prime}}{2}\left(\mathit{L}_{X}(\alpha\wedge\phi\wedge\beta)-\mathit{L}_{X}{\alpha}\wedge\phi\wedge\beta-\alpha\wedge\phi\wedge\mathit{L}_{X}\beta\right)
=\displaystyle= +a+b2(αLX(ϕ)β)\displaystyle+\frac{a^{\prime}+b^{\prime}}{2}\left(\alpha\wedge\mathit{L}_{X}(\phi)\wedge\beta\right)

This vanishes if LXϕ=0\mathit{L}_{X}\phi=0. We see that {XT(M)LXϕ=0}\{X\in\mathrm{T}(M)\mid\mathit{L}_{X}\phi=0\} forms a \mathbb{R} subalgebra of T(M)\mathrm{T}(M). Thus we have the following result.

Theorem 3.2.

The superalgebra (𝔥,{,}t,ϕ)(\mathfrak{h},\{\cdot,\cdot\}^{t,\phi}) allows an extension by 𝔤0={XT(M)LXϕ=0}{\mathfrak{g}}_{0}^{\prime}=\{X\in\mathrm{T}(M)\mid\mathit{L}_{X}\phi=0\}, namely, 𝔥𝔤0\mathfrak{h}\oplus{\mathfrak{g}}_{0}^{\prime} becomes a Lie superalgebra extension of 𝔥\mathfrak{h}.

Example 3.2.

We extend 𝔥\mathfrak{h} in Example 3.1 by 𝔤0{\mathfrak{g}}_{0} and show the (3)(-3)-weighted chain complex. We denote y1y2y_{1}\bigtriangleup y_{2} by UU, and z1z2z_{1}\wedge z_{2} by VV.

C~m[3]12345 if dim14641basisVzj1yiV13yizj1UVyi13Uzj1U13kerdim1343210t(1+3t/2)=0t(1+3t/2)0Betti01020100t(1+3t/2)=0t(1+3t/2)0\begin{array}[t]{c|*{5}c | c}\widetilde{C}_{m}^{[3]}&1&2&3&4&5&\text{ if }\\ \hline\cr\textrm{dim}&1&4&6&4&1\\ \hline\cr\text{basis}&V&{\begin{array}[]{c}z_{j}\bigtriangleup 1\\ y_{i}\bigtriangleup V\end{array}}&{\begin{array}[]{c}1^{3}\\ y_{i}\bigtriangleup z_{j}\bigtriangleup 1\\ U\bigtriangleup V\end{array}}&{\begin{array}[]{c}y_{i}\bigtriangleup 1^{3}\\ U\bigtriangleup z_{j}\bigtriangleup 1\end{array}}&U\bigtriangleup 1^{3}\\ \hline\cr\ker\textrm{dim}&1&3&\begin{array}[]{c}4\\ 3\end{array}&\begin{array}[]{c}2\\ 1\end{array}&0&\begin{array}[]{c}t(1+3t/2)=0\\ t(1+3t/2)\neq 0\end{array}\\ \hline\cr\text{Betti}&0&\begin{array}[]{c}1\\ 0\end{array}&\begin{array}[]{c}2\\ 0\end{array}&\begin{array}[]{c}1\\ 0\end{array}&0&\begin{array}[]{c}t(1+3t/2)=0\\ t(1+3t/2)\neq 0\end{array}\\ \end{array}

By the direct computation, we see that the boundary image is spanned as follows.

C1[3]\displaystyle\partial C_{1}^{[-3]} ={0},C2[3]={(1+3t/2)V,V}\displaystyle=\{0\}\;,\qquad\partial C_{2}^{[-3]}=\{(1+3t/2)V,V\}
C3[3]\displaystyle\partial C_{3}^{[-3]} ={3tz21,z21+(1+3t/2)y1V,z11(1+3t/2)y2V},\displaystyle=\{3tz_{2}\bigtriangleup 1,z_{2}\bigtriangleup 1+(1+3t/2)y_{1}\bigtriangleup V,z_{1}\bigtriangleup 1-(1+3t/2)y_{2}\bigtriangleup V\}\;,
C4[3]\displaystyle\partial C_{4}^{[-3]} ={ty1z21,ty2z21,y2z21+(1+3t/2)y1y2V,y1z21},\displaystyle=\{ty_{1}\bigtriangleup z_{2}\bigtriangleup 1,ty_{2}\bigtriangleup z_{2}\bigtriangleup 1,-y_{2}\bigtriangleup z_{2}\bigtriangleup 1+(1+3t/2)y_{1}\bigtriangleup y_{2}\bigtriangleup V,y_{1}\bigtriangleup z_{2}\bigtriangleup 1\}\;,
C5[3]\displaystyle\partial C_{5}^{[-3]} ={y131+3ty1y2z21}.\displaystyle=\{y_{1}\bigtriangleup^{3}1+3ty_{1}\bigtriangleup y_{2}\bigtriangleup z_{2}\bigtriangleup 1\}\;.

Thus, the kernel dimensions of \partial for m=1,3,5 are 1,3,0 and those of m = 3,4 are 4,2 if t(1+3t/2)=0t(1+3t/2)=0 else 3,1. Finally the Betti numbers are 0,1,2,1, 0 if t(1+3t/2)=0t(1+3t/2)=0 else 0,0,0,0,0 .

To get the weighted homology groups of Lie algebras, even of 2-dimensional, we need hard work. We prepare reporting the general weighted homology groups of 2-dimensional Lie algebra.

In [2] and [3], we introduced double weight for the algebra of homogeneous polynomial coefficient multi-vector fields on n\mathbb{R}^{n}. By the similar way, we get examples of double weighted super algebras of homogeneous polynomial coefficient forms and 1-vector fields on n\mathbb{R}^{n} in [5]. It may be interesting to study those deformed double weighted superalgebras and their homology groups.

Appendix Appendix: A Quick review of the homology groups of Lie superalgebra

Let 𝔤=i𝔤i\mathfrak{g}=\sum_{i\in\mathbb{Z}}{\mathfrak{g}}_{i} be a Lie superalgebra. From super symmetry [X,Y]+(1)xy[Y,X]=0[X,Y]+(-1)^{xy}[Y,X]=0 for X𝔤x,Y𝔤yX\in{\mathfrak{g}}_{x},Y\in{\mathfrak{g}}_{y}, mm-th chain space is given by Cm=m𝔤/Ideal of(XY+(1)xyYX)\text{C}_{m}=\otimes^{m}\mathfrak{g}/\text{Ideal of}({X}\otimes{Y}+(-1)^{xy}{Y}\otimes{X}). We denote the class of A1ApA_{1}\otimes\cdots\otimes A_{p} by A1ApA_{1}\bigtriangleup\cdots\bigtriangleup A_{p}. Let A~=A1Ap\widetilde{A}=A_{1}\bigtriangleup\cdots\bigtriangleup A_{p} and B~=B1Bq\widetilde{B}=B_{1}\bigtriangleup\cdots\bigtriangleup B_{q}. The boundary operator :CmCm1\displaystyle\partial:\text{C}_{m}\to\text{C}_{m-1} called (boundary homomorphism) is defined by

(Appendix: A.1) (Y1Ym)\displaystyle\partial(Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m}) =i<j(1)i1+yi(i<s<jys)Y1Yi^[Yi,Yj]jYm\displaystyle=\sum_{i<j}(-1)^{i-1+y_{i}(\mathop{\sum}_{i<s<j}y_{s})}Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\bigtriangleup\underbrace{[Y_{i},Y_{j}]}_{j}\bigtriangleup\cdots\bigtriangleup Y_{m}

for a decomposable element, where yi\displaystyle y_{i} is the degree of homogeneous element YiY_{i}, i.e., Yi𝔤yi\displaystyle Y_{i}\in\mathfrak{g}_{y_{i}}. It is clear that =0\displaystyle\partial\circ\partial=0 and we have the homology groups Hm(𝔤,)=ker(:CmCm1)/(Cm+1)\displaystyle\textrm{H}_{m}(\mathfrak{g},\mathbb{R})=\ker(\partial:\text{C}_{m}\rightarrow\text{C}_{m-1})/\partial(\text{C}_{m+1}).

We say a non-zero mm-th decomposable element Y1YmY_{1}\bigtriangleup\cdots\bigtriangleup Y_{m} has the weight i=1myi\sum_{i=1}^{m}y_{i} where Yi𝔤yi\displaystyle Y_{i}\in{\mathfrak{g}}_{y_{i}}. The weight is preserved by \partial, i.e., (Cm[w])Cm1[w]\partial(C_{m}^{[w]})\subset C_{m-1}^{[w]} where Cm[w]=C_{m}^{[w]}= the subspace of ww-weighted mm-th chains and we have the weighted homology groups.

If all yiy_{i} are even in (Appendix: A.1), then
(Appendix: A.3) (Y1Ym)\displaystyle\partial(Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m}) =i<j(1)i+j[Yi,Yj]Y1Yi^Yj^Ym.\displaystyle=-\sum_{i<j}(-1)^{i+j}[Y_{i},Y_{j}]\bigtriangleup Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\widehat{Y_{j}}\cdots\bigtriangleup Y_{m}\;.
If all yiy_{i} are odd in (Appendix: A.1), then
(Appendix: A.4) (Y1Ym)\displaystyle\partial(Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m}) =i<j[Yi,Yj]Y1Yi^Yj^Ym.\displaystyle=\sum_{i<j}[Y_{i},Y_{j}]\bigtriangleup Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\widehat{Y_{j}}\cdots\bigtriangleup Y_{m}\;.
Definition 1.

Let A=A1Aa¯A=A_{1}\bigtriangleup\cdots\bigtriangleup A_{\bar{a}} (Ai𝔤aiA_{i}\in\mathfrak{g}_{a_{i}}) and B=B1Bb¯B=B_{1}\bigtriangleup\cdots\bigtriangleup B_{\bar{b}} ( Bj𝔤bjB_{j}\in\mathfrak{g}_{b_{j}}). Define

(Appendix: A.5) [A,B]res=(AB)(A)B(1)a¯AB.[A,B]_{res}=\partial(A\bigtriangleup B)-(\partial A)\bigtriangleup B-(-1)^{\bar{a}}A\bigtriangleup\partial B\;.

It satisfies

(Appendix: A.6) [A,B]res\displaystyle[A,B]_{res} =i,j(1)i+ais>ias+j+bj(1+s=1jbs)A1Ai^Aa¯[Ai,Bj]B1Bj^Bb¯.\displaystyle=\sum_{i,j}(-1)^{i+a_{i}\sum\limits_{s>i}a_{s}+j+b_{j}(1+\sum\limits_{s=1}^{j}b_{s})}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup[A_{i},B_{j}]\bigtriangleup B_{1}\bigtriangleup\widehat{B_{j}}\cdots\bigtriangleup B_{\bar{b}}\;.
If all aia_{i} are even and all bjb_{j} are odd in (Appendix: A.6), then
(Appendix: A.7) [A,B]res\displaystyle[A,B]_{res} =i,j(1)i+1A1Ai^Aa¯[Ai,Bj]B1Bj^Bb¯.\displaystyle=\sum_{i,j}(-1)^{i+1}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup[A_{i},B_{j}]\bigtriangleup B_{1}\bigtriangleup\cdots\widehat{B_{j}}\cdots\bigtriangleup B_{\bar{b}}\;.
Let C=C1Cc¯C=C_{1}\bigtriangleup\cdots\bigtriangleup C_{\bar{c}} (Ck𝔤ckC_{k}\in\mathfrak{g}_{c_{k}}) with ckc_{k} are all even. Then
(Appendix: A.8) [A,CB]res\displaystyle[A,C\bigtriangleup B]_{res} =i,k(1)i+kA1Ai^Aa¯[Ai,Ck]C1Ck^Cc¯B\displaystyle=\sum_{i,k}(-1)^{i+k}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup[A_{i},C_{k}]\bigtriangleup C_{1}\bigtriangleup\cdots\widehat{C_{k}}\cdots\bigtriangleup C_{\bar{c}}\bigtriangleup B
+i,j(1)i+1A1Ai^Aa¯C[Ai,Bj]B1Bj^Bb¯.\displaystyle\quad+\sum_{i,j}(-1)^{i+1}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup C\bigtriangleup[A_{i},B_{j}]\bigtriangleup B_{1}\bigtriangleup\cdots\widehat{B_{j}}\cdots\bigtriangleup B_{\bar{b}}\;.
(Appendix: A.9) =i,k(1)i+1A1Ai^Aa¯C1[Ai,Ck]Cc¯B\displaystyle=\sum_{i,k}(-1)^{i+1}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup C_{1}\bigtriangleup\cdots\bigtriangleup[A_{i},C_{k}]\bigtriangleup\cdots\bigtriangleup C_{\bar{c}}\bigtriangleup B
+i,j(1)i+1A1Ai^Aa¯C[Ai,Bj]B1Bj^Bb¯.\displaystyle\quad+\sum_{i,j}(-1)^{i+1}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup C\bigtriangleup[A_{i},B_{j}]\bigtriangleup B_{1}\bigtriangleup\cdots\widehat{B_{j}}\cdots\bigtriangleup B_{\bar{b}}\;.

References

  • [1] Iglesias D. and Marrero J. C. Generalised lie bialgebroids and Jacobi structure. J. Geom. Phys., 40:176–199, 2001.
  • [2] Kentaro Mikami and Tadayoshi Mizutani. Euler number and Betti numbers of homology groups of pre Lie superalgebra. arXiv:1809.08028v2, December 2018.
  • [3] Kentaro Mikami and Tadayoshi Mizutani. The second Betti number of doubly weighted homology groups of some pre Lie superalgebra (in press). arXiv:1902.09137, February 2019.
  • [4] Kentaro Mikami and Tadayoshi Mizutani. Super homologies associated with low dimensional Lie algebras. arXiv:2008.08774, August 2020.
  • [5] Kentaro Mikami and Tadayoshi Mizutani. Superalgebra structure on differential forms of manifold. arXiv:2105.09738, May 2021.