This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Delay stochastic interest rate model with jump and strong convergence in Monte Carlo simulations

Emmanuel Coffie 111Email: emmanuel.coffie@strath.ac.uk
Department of Mathematics and Statistics,
University of Strathclyde, Glasgow G1 1XH, U.K
Abstract

In this paper, we study analytical properties of the solutions to the generalised delay Ait-Sahalia-type interest rate model with Poisson-driven jump. Since this model does not have explicit solution, we employ several new truncated Euler-Maruyama (EM) techniques to investigate finite time strong convergence theory of the numerical solutions under the local Lipschitz condition plus the Khasminskii-type condition. We justify the strong convergence result for Monte Carlo calibration and valuation of some debt and derivative instruments.

Key words: Stochastic interest rate model, delay volatility, Poisson jump, truncated EM scheme, strong convergence, Monte Carlo scheme.

1 Introduction

Despite of the popularity of several asset price stochastic models such as Black-Scholes (1973) [1], Merton (1973) [2], Vasicek (1977) [3], Dothan (1978) [4], Brennan and Schwartz (1980) [5], Cox, Ingersoll and Ross (CIR) (1985) [6] and Lewis (2000) [19], they may not be well-specified adequately to fully explain certain types of empirical phenomena in most financial markets. For instance, volatility ’skews’ and ’smiles’, and tail distribution of asset prices which have been observed empirically from various sources of financial data, may not be captured by these models (e.g., see [7, 10, 28]).

In recent times, several interesting research works have been directed towards adequate explanation of dynamical behaviours of financial variables against unexpected occurrences of these empirical phenomena. For instance, contrary to efficient market hypothesis, the delayed GBM [7], CIR [12] and CEV [13] models have been introduced as extensions of [1], [6] and [19] to incorporate volatility ’skews’ and ’smiles’ based on non-Markovian property to explain asset price dynamics. Similarly, a variety of jump diffusion models have also been proposed to explain jump behaviour or tails of distribution of asset prices. For references, see, for example, Merton (1976) [8], Lin and Yeh (1999) [9] , Kou (2002) [10] and Wu et al. (2008) [11].

Ait-Sahalia model proposed in [14] serves extensively as an indispensable tool for capturing dynamics of term structure of interest rates. This model is driven by a highly nonlinear stochastic differential equation (SDE)

dx(t)=(α1x(t)1α0+α1x(t)α2x(t)2)dt+σx(t)θdB(t),dx(t)=(\alpha_{-1}x(t)^{-1}-\alpha_{0}+\alpha_{1}x(t)-\alpha_{2}x(t)^{2})dt+\sigma x(t)^{\theta}dB(t), (1)

x(0)=x0x(0)=x_{0}, for any t>0t>0, where α1,α0,α1,α2\alpha_{-1},\alpha_{0},\alpha_{1},\alpha_{2} are positive constants and θ>1\theta>1. Besides interest rates, it has also been considerably used to explain dynamics of asset price, volatility and other financial instruments. There have been several rich literature concerning with this model. For instance, Cheng (2009) in [16] studied this model and established weak convergence of EM scheme. Szpruch et al. (2011) in [15] generalised this model and established strong convergence of implicit EM method as well as preservation of positive approximate solutions of this method when a monotone condition is fulfilled. Dung (2016) in [17] derived explicit estimates for tail probabilities of solutions to the generalised form of this model. Deng et al. in [18] studied analytical properties of the generalised form of this model with Poisson-driven jump and revealed weak convergence of EM method.

While the SDE (1) enjoys significant patronage of both market participants and practitioners, it may also not be well specified to adequately explain interest rate dynamics in response to joint effects of extreme volatility and jump behaviour or information flows as observed empirically from most financial markets. This motivates the need to modify this model to help explain adequately these empirical phenomena more collectively. In modelling context, it is worthwhile to extend SDE (1) to incorporate delayed volatility function and Poisson-driven jump described by

dx(t)=(α1x(t)1α0+α1x(t)α2x(t)ρ)dt+φ(x((tτ)))x(t)θdB(t)+α3x(t)dN(t)dx(t)=(\alpha_{-1}x(t^{-})^{-1}-\alpha_{0}+\alpha_{1}x(t^{-})-\alpha_{2}x(t^{-})^{\rho})dt+\varphi(x((t-\tau)^{-}))x(t^{-})^{\theta}dB(t)+\alpha_{3}x(t^{-})dN(t) (2)

on tτt\geq-\tau with initial data x(t)=ξ(t)x(t)=\xi(t) for t[τ,0]t\in[-\tau,0]. Here x(t)=limstx(s)x(t^{-})=\lim_{s\rightarrow t^{-}}x(s), x((tτ))x((t-\tau)^{-}) denotes delay in x(t)x(t^{-}), φ()\varphi(\cdot) depends on x((tτ))x((t-\tau)^{-}) with τ>0\tau>0. Moreover, α1,α0,α1,α2,α3>0\alpha_{-1},\alpha_{0},\alpha_{1},\alpha_{2},\alpha_{3}>0, ρ,θ>1\rho,\theta>1, B(t)B(t) is a scalar Brownian motion and N(t)N(t) is a scalar Poisson process independent of B(t)B(t) with a scalar compensated Poisson process defined by N~(t)=N(t)λt\widetilde{N}(t)=N(t)-\lambda t, where λ\lambda is the jump intensity.

The SDDE (2) is characterised by two distinguished features. The delayed volatility function may explain volatility ’smiles’ and ’skews’ which are common in most financial markets. On the other hand, the Poisson-driven jump may account for responses of interest rates to discontinuous random effects generated in connection with unexpected catastrophic news or lack of information.

It is worth observing that the SDDE (2) is not analytically tractable and so there is a need to employ an efficient numerical scheme to estimate the exact solution. We cannot in this case employ classical explicit EM method which requires coefficients to be of linear growth (e.g., see [21]). Meanwhile, the truncated EM scheme recently developed in [23] serves as a useful explicit numerical tool for strong convergent approximation of SDEs with superlinear coefficients. In this work, we aim at investigating the LpL^{p} (where p2)(\text{where }p\geq 2) finite time strong convergence of the truncated EM solutions of system of SDDE (2) under the local Lipschitz condition plus the Khasminskii-type condition. Essentially, this work extends results in [24] to cope with random jumps.

The rest of the paper is organised as follows: In section 2, we will study the existence of a unique global solution to SDDE (2) and show that the solution will always be positive. We will also establish moment bounds of the exact solution in section 2. In section 3, we will present the truncated EM approximation scheme for SDDE (2). Section 4 will be entirely devoted to explore numerical properties of the truncated EM scheme including LpL^{p} finite time strong convergence of the truncated EM approximate solutions to the exact solution. In section 5, we will perform some numerical illustrations to support the findings. Finally, we will apply the strong convergence result within a Monte Carlo framework to value some debt and derivative instruments in section 6.

2 Analytical properties

In this section, we establish existence of uniqueness and moment bounds of the exact solution to SDDE (2). In sequel, let introduce the following mathematical notations and settings.

2.1 Mathematical preliminaries

Throughout this paper unless otherwise specified, we let {Ω,,{t}t0,}\{\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\geq 0},\mathbb{P}\} be a complete probability space with filtration {t}t0\{\mathcal{F}_{t}\}_{t\geq 0} satisfying the usual conditions (i.e, it is increasing and right continuous while 0\mathcal{F}_{0} contains all \mathbb{P}-null sets), and let 𝔼\mathbb{E} denote the expectation corresponding to \mathbb{P}. Let B(t),t0B(t),t\geq 0, be a scalar Brownian motion defined on the above probability space. Let N(t)N(t) be a scalar Poisson process independent of B(t)B(t) with compensated Poisson process N~(t)=N(t)λt\widetilde{N}(t)=N(t)-\lambda t, where λ\lambda is the jump intensity, also defined on the above probability space. If x,yx,y are real numbers, then xyx\vee y denotes the maximum of x and yx\text{ and }y, and xyx\wedge y denotes the minimum of x and yx\text{ and }y. Let =(,)\mathbb{R}=(-\infty,\infty) and +=(0,)\mathbb{R}_{+}=(0,\infty). For τ>0\tau>0, let C([τ,0];+)C([-\tau,0];\mathbb{R}_{+}) denote the space of all continuous functions ξ:[τ,0]+\xi:[-\tau,0]\rightarrow\mathbb{R}_{+} with the norm ξ=supτt0ξ(t)\|\xi\|=\sup_{-\tau\leq t\leq 0}\xi(t). For an empty set \emptyset, we set inf =\text{inf }\emptyset=\infty. For a set AA, we denote its indication function by 1A1_{A}. Let the following dynamics

dx(t)=f(x(t))dt+φ(x((tτ)))g(x(t))dB(t)+h(x(t))dN(t),dx(t)=f(x(t^{-}))dt+\varphi(x((t-\tau)^{-}))g(x(t^{-}))dB(t)+h(x(t^{-}))dN(t), (3)

x(t)=ξ(t)x(t)=\xi(t), on t[τ,)t\in[-\tau,\infty), denote equation of SDDE (2) such that f(x)=α1x1α0+α1xα2xρf(x)=\alpha_{-1}x^{-1}-\alpha_{0}+\alpha_{1}x-\alpha_{2}x^{\rho}, g(x)=xθg(x)=x^{\theta} and h(x)=α3xh(x)=\alpha_{3}x, x+\forall x\in\mathbb{R}_{+}, with φ()\varphi(\cdot) defined in C(+;+)C(\mathbb{R}_{+};\mathbb{R}_{+}). Let C2,1(×+;)C^{2,1}(\mathbb{R}\times\mathbb{R}_{+};\mathbb{R}) be the family of all real-valued functions Z(x,t)Z(x,t) defined on ×+\mathbb{R}\times\mathbb{R}_{+} such that Z(x,t)Z(x,t) is twice continuously differentiable in xx and once in tt. For each ZC2,1(×+;)Z\in C^{2,1}(\mathbb{R}\times\mathbb{R}_{+};\mathbb{R}), define the jump-diffusion operator LZ:××+LZ:\mathbb{R}\times\mathbb{R}\times\mathbb{R}_{+}\rightarrow\mathbb{R} by

LZ(x,y,t)=(x,y,t)+λ(Z(x+h(x),t)Z(x,t)),LZ(x,y,t)=\ell(x,y,t)+\lambda(Z(x+h(x),t)-Z(x,t)), (4)

for SDDE (3) associated with the C2,1C^{2,1}-function ZZ, where

(x,y,t)=Zt(x,t)+Zx(x,t)f(x)+12Zxx(x,t)φ(y)2g(x)2,\ell(x,y,t)=Z_{t}(x,t)+Z_{x}(x,t)f(x)+\frac{1}{2}Z_{xx}(x,t)\varphi(y)^{2}g(x)^{2}, (5)

Z:××+\ell Z:\mathbb{R}\times\mathbb{R}\times\mathbb{R}_{+}\rightarrow\mathbb{R}, is the diffusion operator, Zt(x,t)Z_{t}(x,t) and Zx(x,t)Z_{x}(x,t) are first-order partial derivatives with respect to tt and xx respectively, and Zxx(x,t)Z_{xx}(x,t), a second-order partial derivative with respect to xx. With the jump-diffusion operator defined, the Itô formula then yields

dZ(x(t),t)\displaystyle dZ(x(t),t) =LZ(x(t),x((tτ)),t)dt+φ(x((tτ)))Zx(x(t),t)g(x(t))dB(t)\displaystyle=LZ(x(t^{-}),x((t-\tau)^{-}),t)dt+\varphi(x((t-\tau)^{-}))Z_{x}(x(t^{-}),t)g(x(t^{-}))dB(t) (6)
+(Z(x(t)+h(x(t)),t)Z(x(t),t))dN~(t)\displaystyle+(Z(x(t^{-})+h(x(t^{-})),t)-Z(x(t^{-}),t))d\widetilde{N}(t)

almost surely. We refer the reader, for instance, to [29] for detailed coverage of (6).

2.2 Existence of nonnegative solution

Before we show existence of nonnegative solution to SDDE (3), we are required to assume the volatility function φ()\varphi(\cdot) is locally Lipschitz continuous and bounded (see, e.g.,[7] for detailed accounts of these conditions). The following conditions are thus sufficient to establish existence of a unique positive global or nonexplosive solution to SDDE (3).

Assumption 2.1.

The volatility function φ:++\varphi:\mathbb{R_{+}}\rightarrow\mathbb{R_{+}} of SDDE (3) is Borel-measurable and bounded by a positive constant σ\sigma, i.e.

φ(y)σ,\varphi(y)\leq\sigma, (7)

y+\forall y\in\mathbb{R}_{+}.

Assumption 2.2.

For any R>0R>0, there exists a constant LR>0L_{R}>0 such that the volatility function φ()\varphi(\cdot) of SDDE (3) satisfies

|φ(y)φ(y¯)|LR|yy¯||\varphi(y)-\varphi(\bar{y})|\leq L_{R}|y-\bar{y}| (8)

y,y¯[1/,]\forall y,\bar{y}\in[1/\mathbb{R},\mathbb{R}].

Assumption 2.3.

The parameters of SDDE (3) satisfy

1+ρ>2θ.1+\rho>2\theta. (9)

The following theorem reveals the SDDE (3) admits a pathwise-unique positive global solution x(t)x(t) on t[τ,)t\in[-\tau,\infty). Since SDDE (3) describes interest rate dynamics, the solution will always remain nonnegative almost surely.

Theorem 2.4.

Let Assumptions 2.1 and 2.3 hold. Then for any given initial data

{x(t):τt0}=ξ(t)C([τ,0]):+),\{x(t):-\tau\leq t\leq 0\}=\xi(t)\in C([-\tau,0]):\mathbb{R}_{+}), (10)

there exists a unique global solution x(t)x(t) to SDDE (3) on t[τ,)t\in[-\tau,\infty) and x(t)>0x(t)>0 a.sa.s.

Proof.

Since the coefficient terms of SDDE (3) are locally Lipschitz continuous in [τ,)[-\tau,\infty), then there exists a unique positive maximal local solution x(t)[τ,τe)x(t)\in[-\tau,\tau_{e}) for any given initial data (10), where τe\tau_{e} is the explosion time. Let n0>0n_{0}>0 be sufficiently large such that

1n0<minτt0|ξ(t)|maxτt0|ξ(t)|<n0.\frac{1}{n_{0}}<\underset{-\tau\leq t\leq 0}{\min}|\xi(t)|\leq\underset{-\tau\leq t\leq 0}{\max}|\xi(t)|<n_{0}.

For each integer nn0n\geq n_{0}, define the stopping time

τn=inf{t[0,τe):x(t)(1/n,n)}.\tau_{n}=\inf\{t\in[0,\tau_{e}):x(t)\not\in(1/n,n)\}. (11)

Obviously, τn\tau_{n} is increasing as nn\rightarrow\infty. Set τ=limnτn\tau_{\infty}=\underset{n\rightarrow\infty}{\lim}\tau_{n}, whence ττe\tau_{\infty}\leq\tau_{e} almost surely. In other words, we need to show that τ=\tau_{\infty}=\infty almost surely to complete the proof. For any β(0,1)\beta\in(0,1), define a C2C^{2}-function Z:++Z:\mathbb{R_{+}}\rightarrow\mathbb{R_{+}} by

Z(x)=xβ1βlog(x).Z(x)=x^{\beta}-1-\beta\text{log}(x). (12)

Clearly Z(x)Z(x)\rightarrow\infty as xx\rightarrow\infty or x0x\rightarrow 0. By Assumption 2.1, we get from the operator in (4) that

LZ(x,y)\displaystyle LZ(x,y) Z(x,y)+λ((x+α3x)β1βlog(x+α3x)(xβ1βlog(x)))\displaystyle\leq\ell Z(x,y)+\lambda\Big{(}(x+\alpha_{3}x)^{\beta}-1-\beta\log(x+\alpha_{3}x)-(x^{\beta}-1-\beta\log(x))\Big{)}
=Z(x,y)+λ(((x+α3x)βxβ)βlog(x(+α3)/x))\displaystyle=\ell Z(x,y)+\lambda\Big{(}((x+\alpha_{3}x)^{\beta}-x^{\beta})-\beta\log(x(+\alpha_{3})/x)\Big{)}
=Z(x,y)+λ((1+α3)β1)xβλβlog(1+α3),\displaystyle=\ell Z(x,y)+\lambda((1+\alpha_{3})^{\beta}-1)x^{\beta}-\lambda\beta\log(1+\alpha_{3}),

where

(x,y)\displaystyle\ell(x,y) =β(xβ1x1)(α1x1α0+α1xα2xρ)+12(β(β1)xβ2+βx2)φ(y)2x2θ\displaystyle=\beta(x^{\beta-1}-x^{-1})(\alpha_{-1}x^{-1}-\alpha_{0}+\alpha_{1}x-\alpha_{2}x^{\rho})+\frac{1}{2}(\beta(\beta-1)x^{\beta-2}+\beta x^{-2})\varphi(y)^{2}x^{2\theta}
α1βxβ2α0βxβ1+α1βxβα2βxρ+β1α1βx2+α0βx1\displaystyle\leq\alpha_{-1}\beta x^{\beta-2}-\alpha_{0}\beta x^{\beta-1}+\alpha_{1}\beta x^{\beta}-\alpha_{2}\beta x^{\rho+\beta-1}-\alpha_{-1}\beta x^{-2}+\alpha_{0}\beta x^{-1}
α1β+α2βxρ1+σ22β(β1)xβ+2θ2+σ22βx2θ2.\displaystyle-\alpha_{1}\beta+\alpha_{2}\beta x^{\rho-1}+\frac{\sigma^{2}}{2}\beta(\beta-1)x^{\beta+2\theta-2}+\frac{\sigma^{2}}{2}\beta x^{2\theta-2}.

Since β(0,1)\beta\in(0,1) and by Assumption 2.3, we note α1βx2-\alpha_{-1}\beta x^{-2} leads and tends to -\infty for small xx and for large xx, α2βxρ+β1-\alpha_{2}\beta x^{\rho+\beta-1} leads and also tends to -\infty. Hence there exists a constant K0K_{0} such that

LZ(x,y)K0.LZ(x,y)\leq K_{0}. (13)

So for t1[0,τ]t_{1}\in[0,\tau], we derive from the Itô formula

𝔼[Z(x(τnt1))]Z(ξ(0))+0τnt1K0𝑑t,\displaystyle\mathbb{E}[Z(x(\tau_{n}\wedge t_{1}))]\leq Z(\xi(0))+\int_{0}^{\tau_{n}\wedge t_{1}}K_{0}dt,

nn0\forall n\geq n_{0}. It then follows that

(τnτ)Z(ξ(0))+K0τZ(1/n)Z(n).\mathbb{P}(\tau_{n}\leq\tau)\leq\frac{Z(\xi(0))+K_{0}\tau}{Z(1/n)\wedge Z(n)}.

As nn\rightarrow\infty, (τnτ)0\mathbb{P}(\tau_{n}\leq\tau)\rightarrow 0. This implies τ>τ\tau_{\infty}>\tau a.s. Also for t1[0,2τ]t_{1}\in[0,2\tau], the Itô formula yields

𝔼[Z(x(τnt1))]Z(ξ(0))+0τnt1K0𝑑t,\displaystyle\mathbb{E}[Z(x(\tau_{n}\wedge t_{1}))]\leq Z(\xi(0))+\int_{0}^{\tau_{n}\wedge t_{1}}K_{0}dt,

nn0\forall n\geq n_{0} and consequently,

(τn2τ)Z(ξ(0))+2K0τZ(1/n)Z(n).\mathbb{P}(\tau_{n}\leq 2\tau)\leq\frac{Z(\xi(0))+2K_{0}\tau}{Z(1/n)\wedge Z(n)}.

As nn\rightarrow\infty, we get τ>2τ\tau_{\infty}>2\tau a.s. Repeating this procedure for t1[0,]t_{1}\in[0,\infty], we obtain (τ)0\mathbb{P}(\tau_{\infty}\leq\infty)\rightarrow 0 by letting nn\rightarrow\infty. This means τ=\tau_{\infty}=\infty a.s and hence τe=\tau_{e}=\infty a.s. The proof is now complete. ∎

2.3 Moment bound

The following lemmas show moments of the exact solution to SDDE (3) are upper bounded.

Lemma 2.5.

Let Assumptions 2.1 and 2.3 hold. Then for any p2p\geq 2, there exists a constant ρ1\rho_{1} such that the solution of SDDE (3) satisfies

sup0t<(𝔼|x(t)|p)ρ1.\sup_{0\leq t<\infty}\Big{(}\mathbb{E}|x(t)|^{p}\Big{)}\leq\rho_{1}. (14)
Proof.

Define the stopping time for every sufficiently large integer nn by

τn=inf{t0:x(t)(1/n,n)}.\tau_{n}=\inf\{t\geq 0:x(t)\not\in(1/n,n)\}. (15)

Define a function ZC2,1(+×+;+)Z\in C^{2,1}(\mathbb{R}_{+}\times\mathbb{R}_{+};\mathbb{R}_{+}) by Z(x,t)=etxpZ(x,t)=e^{t}x^{p} . By Assumption 2.1, the jump-diffusion operator in (4) gives us

LZ(x,y,t)\displaystyle LZ(x,y,t) Z(x,y,t)+λ[et(x+α3x)petxp]\displaystyle\leq\ell Z(x,y,t)+\lambda[e^{t}(x+\alpha_{3}x)^{p}-e^{t}x^{p}]
=Z(x,y,t)+λetxp[(1+α3)p1],\displaystyle=\ell Z(x,y,t)+\lambda e^{t}x^{p}[(1+\alpha_{3})^{p}-1],

where

Z(x,y,t)\displaystyle\ell Z(x,y,t) =etxp+petxp1(α1x1α0+α1xα2xρ)+12p(p1)etxp2φ2(y)x2θ\displaystyle=e^{t}x^{p}+pe^{t}x^{p-1}(\alpha_{-1}x^{-1}-\alpha_{0}+\alpha_{1}x-\alpha_{2}x^{\rho})+\frac{1}{2}p(p-1)e^{t}x^{p-2}\varphi^{2}(y)x^{2\theta}
et[xp+α1pxp2α0pxp1+α1pxpα2pxρ+p1+p(p1)2σ2x2θ+p2)].\displaystyle\leq e^{t}[x^{p}+\alpha_{-1}px^{p-2}-\alpha_{0}px^{p-1}+\alpha_{1}px^{p}-\alpha_{2}px^{\rho+p-1}+\frac{p(p-1)}{2}\sigma^{2}x^{2\theta+p-2})].

By Assumption 2.3, pα2xρ+p1-p\alpha_{2}x^{\rho+p-1} dominates and tends to -\infty for large xx. Hence we can find a constant K1K_{1} such that

LZ(x,y,t)K1et.LZ(x,y,t)\leq K_{1}e^{t}.

The Itô formula gives us

𝔼[etτn|x(tτn)|p]|ξ(0)|p+K1et.\mathbb{E}[e^{t\wedge\tau_{n}}|x(t\wedge\tau_{n})|^{p}]\leq|\xi(0)|^{p}+K_{1}e^{t}.

Applying the Fatou lemma and letting nn\rightarrow\infty yields

𝔼|x(t)|p<et|ξ(0)|p+K1\mathbb{E}|x(t)|^{p}<e^{-t}|\xi(0)|^{p}+K_{1}

and consequently,

sup0t<(𝔼|x(t)|p)ρ1.\underset{0\leq t<\infty}{\sup}(\mathbb{E}|x(t)|^{p})\leq\rho_{1}.

as the required assertion in (14). ∎

Lemma 2.6.

Let Assumptions 2.1 and 2.3 hold. For any p>2(ρ1)p>2\vee(\rho-1), there exists a constant ρ2\rho_{2} such that the solution of SDDE (3) satisfies

sup0t<(𝔼|1x(t)|p)ρ2.\sup_{0\leq t<\infty}\Big{(}\mathbb{E}|\frac{1}{x(t)}|^{p}\Big{)}\leq\rho_{2}. (16)
Proof.

Let τn\tau_{n} be the same as in (15). By applying (4) to Z(x,t)=et/xpZ(x,t)=e^{t}/x^{p}, we compute

LZ(x,y,t)\displaystyle LZ(x,y,t) Z(x,y,t)+λ[et(x+α3x)petxp]\displaystyle\leq\ell Z(x,y,t)+\lambda[e^{t}(x+\alpha_{3}x)^{-p}-e^{t}x^{-p}]
=Z(x,y,t)+λetxp[(1+α3)p1],\displaystyle=\ell Z(x,y,t)+\lambda e^{t}x^{-p}[(1+\alpha_{3})^{-p}-1],

where Assumption 2.1 has been used and here, we have

Z(x,y,t)\displaystyle\ell Z(x,y,t) =etxppetx(p+1)(α1x1α0+α1xα2xρ)+12p(p+1)etx(p+2)φ(y)2x2θ\displaystyle=e^{t}x^{-p}-pe^{t}x^{-(p+1)}(\alpha_{-1}x^{-1}-\alpha_{0}+\alpha_{1}x-\alpha_{2}x^{\rho})+\frac{1}{2}p(p+1)e^{t}x^{-(p+2)}\varphi(y)^{2}x^{2\theta}
et[xpα1px(p+2)+α0px(p+1)α1pxp+α2xρp1p(p+1)2σ2x2θp2)].\displaystyle\leq e^{t}[x^{-p}-\alpha_{-1}px^{-(p+2)}+\alpha_{0}px^{-(p+1)}-\alpha_{1}px^{-p}+\alpha_{2}x^{\rho-p-1}-\frac{p(p+1)}{2}\sigma^{2}x^{2\theta-p-2})].

By Assumption 2.3 and noting that p>2(ρ1)p>2\vee(\rho-1), we observe α1px(p+2)-\alpha_{-1}px^{-(p+2)} leads and tends to -\infty for small xx and for large xx, pα2xρp1p\alpha_{2}x^{\rho-p-1} dominates and tends to 0. Hence there exists a constant K2K_{2} such that

LZ(x,y,t,)K2et.LZ(x,y,t,)\leq K_{2}e^{t}.

We can now use the Itô formula, apply Fatou lemma and let nn\rightarrow\infty to arrive at

𝔼|x(t)|p<et|ξ(0)|p+K2\mathbb{E}|x(t)|^{-p}<e^{-t}|\xi(0)|^{-p}+K_{2}

and consequently the required assertion in (16). ∎

3 The truncated EM method

In this section, we present the truncated EM scheme for numerical approximation of SDDE (3). Meanwhile, we need the following assumption on the initial data which will be used later.

Assumption 3.1.

There is a pair of constant K3>0K_{3}>0 and γ(0,1]\gamma\in(0,1] such that for all τst0-\tau\leq s\leq t\leq 0, the initial data ξ\xi satisfies

|ξ(t)ξ(s)|K3|ts|γ.|\xi(t)-\xi(s)|\leq K_{3}|t-s|^{\gamma}. (17)

In the sequel, we also need these lemmas below.

Lemma 3.2.

For any R>0R>0, there exists a constant KR>0K_{R}>0 such that the coefficient terms ff, gg and hh of SDDE (3) satisfy

|f(x)f(x¯)||g(x)g(x¯)||h(x)h(x¯)|KR|xx¯|,|f(x)-f(\bar{x})|\vee|g(x)-g(\bar{x})|\vee|h(x)-h(\bar{x})|\leq K_{R}|x-\bar{x}|, (18)

x,x¯[1/,]\forall x,\bar{x}\in[1/\mathbb{R},\mathbb{R}].

Lemma 3.3.

Let Assumptions 2.1 and 2.3 hold. Then for any p2p\geq 2, there exists K4>0K_{4}>0 such that the drift and diffusion terms of SDDE (3) satisfy

xf(x)+p12|φ(y)g(x)|2K4(1+|x|2),xf(x)+\frac{p-1}{2}|\varphi(y)g(x)|^{2}\leq K_{4}(1+|x|^{2}), (19)

x,y+\forall x,y\in\mathbb{R}_{+}, where K4K_{4} is a constant (see [24] for the proof).

3.1 Numerical approximation

Before we proceed, let extend the volatility function φ()\varphi(\cdot) and the jump term h()h(\cdot) from +\mathbb{R}_{+} to \mathbb{R} by setting φ(y)=φ(0)\varphi(y)=\varphi(0) and h(x)=0h(x)=0 for x<0x<0. Apparently, Theorem 2.4 as well as conditions (7), (8), (18) and (19) are well maintained. Moreover, we need not truncate the jump term since it is of linear growth. To define the truncated EM scheme for SDDE (3), we first choose a strictly increasing continuous function μ:++\mu:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+} such that μ(r)\mu(r)\rightarrow\infty as rr\rightarrow\infty and

sup1/rxr(|f(x)|g(x))μ(r),r>1.\sup_{1/r\leq x\leq r}(|f(x)|\vee g(x))\leq\mu(r),\quad\forall r>1. (20)

Denote by μ1\mu^{-1} the inverse function of μ\mu. We define a strictly decreasing function π:(0,1)+\pi:(0,1)\rightarrow\mathbb{R}_{+} such that

limΔ0π(Δ)= and Δ1/4π(Δ)1,Δ(0,1].\quad\lim_{\Delta\rightarrow 0}\pi(\Delta)=\infty\text{ and }\Delta^{1/4}\pi(\Delta)\leq 1,\quad\forall\Delta\in(0,1]. (21)

Find Δ(0,1)\Delta^{*}\in(0,1) such that μ1(π(Δ))>1\mu^{-1}(\pi(\Delta^{*}))>1 and f(x)>0f(x)>0 for 0<x<Δ0<x<\Delta^{*}. For a given step size Δ(0,Δ)\Delta\in(0,\Delta^{*}), let us define the truncated functions

fΔ(x)=f(1/μ1(π(Δ))(xμ1(π(Δ)))),xf_{\Delta}(x)=f\Big{(}1/\mu^{-1}(\pi(\Delta))\vee(x\wedge\mu^{-1}(\pi(\Delta)))\Big{)},\quad\forall x\in\mathbb{R}

and

gΔ(x)={g(xμ1(π(Δ))),if x0 0,if x<0.g_{\Delta}(x)=\begin{cases}g\Big{(}x\wedge\mu^{-1}(\pi(\Delta))\Big{)},&\mbox{if $x\geq 0$ }\\ 0,&\mbox{if $x<0$}.\end{cases}

So for x[1/μ1(π(Δ)),μ1(π(Δ))]x\in[1/\mu^{-1}(\pi(\Delta)),\mu^{-1}(\pi(\Delta))], we have

|fΔ(x)|\displaystyle|f_{\Delta}(x)| =|f(x)|max|f(w)|1/μ1(π(Δ))wμ1(π(Δ))\displaystyle=|f(x)|\leq\underset{1/\mu^{-1}(\pi(\Delta))\leq w\leq\mu^{-1}(\pi(\Delta))}{\max|f(w)|}
μ(μ1(π(Δ)))=π(Δ)\displaystyle\leq\mu(\mu^{-1}(\pi(\Delta)))=\pi(\Delta)

and

gΔ(x)μ(μ1(π(Δ)))=π(Δ).\displaystyle g_{\Delta}(x)\leq\mu(\mu^{-1}(\pi(\Delta)))=\pi(\Delta).

We easily observe that

|fΔ(x)|gΔ(x)π(Δ),x.|f_{\Delta}(x)|\vee g_{\Delta}(x)\leq\pi(\Delta),\quad\forall x\in\mathbb{R}. (22)

That is, both truncated functions fΔf_{\Delta} and gΔg_{\Delta} are bounded although both ff and gg may not. The following lemma shows fΔf_{\Delta} and gΔg_{\Delta} maintain (19) nicely.

Lemma 3.4.

Let Assumptions 2.1 and 2.3 hold. Then, for all Δ(0,Δ)\Delta\in(0,\Delta^{*}) and p2p\geq 2, the truncated functions satisfy

xfΔ(x)+p12|φ(y)gΔ(x)|2K5(1+|x|2)xf_{\Delta}(x)+\frac{p-1}{2}|\varphi(y)g_{\Delta}(x)|^{2}\leq K_{5}(1+|x|^{2}) (23)

x,y\forall x,y\in\mathbb{R}, where K5K_{5} is a constant independent of Δ\Delta (see [24] for the proof).

From now on, let T>0T>0 be fixed arbitrarily and the step size Δ(0,Δ]\Delta\in(0,\Delta^{*}] be a fraction of τ\tau. We define Δ=τ/M\Delta=\tau/M for some positive integer MM. Let now form the discrete-time truncated EM approximation of SDDE (3). Define tk=kΔt_{k}=k\Delta for k=M,(M1),..,0,1,2,..k=-M,-(M-1),..,0,1,2,... Set XΔ(tk)=ξ(tk)X_{\Delta}(t_{k})=\xi(t_{k}) for k=M,(M1),..,0k=-M,-(M-1),..,0 and then compute

XΔ(tk+1)=XΔ(tk)+fΔ(XΔ(tk))Δ+φ(XΔ(tkM))gΔ(XΔ(tk))ΔBk+h(XΔ(tk))ΔNkX_{\Delta}(t_{k+1})=X_{\Delta}(t_{k})+f_{\Delta}(X_{\Delta}(t_{k}))\Delta+\varphi(X_{\Delta}(t_{k-M}))g_{\Delta}(X_{\Delta}(t_{k}))\Delta B_{k}+h(X_{\Delta}(t_{k}))\Delta N_{k} (24)

for k=0,1,2,k=0,1,2..., where ΔBk=B(tk+1)B(tk)\Delta B_{k}=B(t_{k+1})-B(t_{k}) and ΔNk=N(tk+1)N(tk)\Delta N_{k}=N(t_{k+1})-N(t_{k}). Let now form two versions of the continuous-time truncated EM solutions. The first one is defined by

x¯Δ(t)=k=MXΔ(tk)1[tk,tk+1)(t).\bar{x}_{\Delta}(t)=\sum_{k=-M}^{\infty}X_{\Delta}(t_{k})1_{[t_{k},t_{k+1})}(t). (25)

This is the continuous-time step-process x¯Δ(t)\bar{x}_{\Delta}(t) on t[τ,]t\in[-\tau,\infty], where 1[tk,tk+1)1_{[t_{k},t_{k+1})} is the indicator function on [tk,tk+1)[t_{k},t_{k+1}). The other one is the continuous-time continuous process xΔ(t)x_{\Delta}(t) on tτt\geq-\tau defined conveniently by setting xΔ(t)=ξ(t)x_{\Delta}(t)=\xi(t) for t[τ,0]t\in[-\tau,0] while for t0t\geq 0

xΔ(t)=ξ(0)+0tfΔ(x¯Δ(s))𝑑s+0tφ(x¯Δ((sτ)))gΔ(x¯Δ(s))𝑑B(s)+0th(x¯Δ(s))𝑑N(s).x_{\Delta}(t)=\xi(0)+\int_{0}^{t}f_{\Delta}(\bar{x}_{\Delta}(s^{-}))ds+\int_{0}^{t}\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(s^{-}))dB(s)+\int_{0}^{t}h(\bar{x}_{\Delta}(s^{-}))dN(s). (26)

Obviously xΔ(t)x_{\Delta}(t) is an Itô process on t0t\geq 0 satisfying Itô differential

dxΔ(t)=fΔ(x¯Δ(t))dt+φ(x¯Δ((tτ)))gΔ(x¯Δ(t))dB(t)+h(x¯Δ(t))dN(t).dx_{\Delta}(t)=f_{\Delta}(\bar{x}_{\Delta}(t^{-}))dt+\varphi(\bar{x}_{\Delta}((t-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(t^{-}))dB(t)+h(\bar{x}_{\Delta}(t^{-}))dN(t). (27)

For all k=M,(M1),..k=-M,-(M-1),.., it is useful to see that xΔ(tk)=x¯Δ(tk)=XΔ(tk)x_{\Delta}(t_{k})=\bar{x}_{\Delta}(t_{k})=X_{\Delta}(t_{k}).

4 Numerical properties

In this section, we establish moment bound and finite time strong convergence theory of the truncated EM solutions to SDDE (3).

4.1 Moment bound

To upper bound the moment of the truncated EM solution, let first define

k(t)=[t/Δ]Δ,k(t)=[t/\Delta]\Delta,

for any t[0,T]t\in[0,T], where [t/Δ][t/\Delta] denotes the integer part of t/Δt/\Delta. The following lemma shows xΔ(t)x_{\Delta}(t) and x¯Δ(t)\bar{x}_{\Delta}(t) are close to each other in LpL^{p}.

Lemma 4.1.

Let Assumption 2.1 hold. Then for any fixed Δ(0,Δ]\Delta\in(0,\Delta^{*}], we have

𝔼(|xΔ(t)x¯Δ(t)|p|k(t))𝔇1(Δp/2(π(Δ))p+Δ)|x¯Δ(t)|p,p[2,)\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\big{|}\mathcal{F}_{k(t)}\Big{)}\leq\mathfrak{D}_{1}\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+\Delta\Big{)}|\bar{x}_{\Delta}(t)|^{p},\quad p\in[2,\infty) (28)

and

𝔼(|xΔ(t)x¯Δ(t)|p|k(t))𝔇2(Δp/2(π(Δ))p)|x¯Δ(t)|p,p(0,2),\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\big{|}\mathcal{F}_{k(t)}\Big{)}\leq\mathfrak{D}_{2}\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}\Big{)}|\bar{x}_{\Delta}(t)|^{p},\quad p\in(0,2), (29)

for all t0t\geq 0, where 𝔇1\mathfrak{D}_{1} and 𝔇2\mathfrak{D}_{2} denote positive generic constants which depend only on pp and may change between occurrences.

Proof.

Fix any Δ(0,Δ)\Delta\in(0,\Delta^{*}) and t[0,T]t\in[0,T]. Then for p[2,)p\in[2,\infty), we derive

𝔼(|xΔ(t)x¯Δ(t)|p|k(t))\displaystyle\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\big{|}\mathcal{F}_{k(t)}\Big{)}
3p1(𝔼(|k(t)tfΔ(x¯Δ(s))ds|p|k(t))+𝔼(|k(t)tφ(x¯Δ((sτ)))gΔ(x¯Δ(s))dB(s)|p|k(t))\displaystyle\leq 3^{p-1}\Big{(}\mathbb{E}\big{(}|\int_{k(t)}^{t}f_{\Delta}(\bar{x}_{\Delta}(s))ds|^{p}\big{|}\mathcal{F}_{k(t)}\big{)}+\mathbb{E}\big{(}|\int_{k(t)}^{t}\varphi(\bar{x}_{\Delta}((s-\tau)))g_{\Delta}(\bar{x}_{\Delta}(s))dB(s)|^{p}\big{|}\mathcal{F}_{k(t)}\big{)}
+𝔼(|k(t)th(x¯Δ(s))dN(s)|p|k(t)))\displaystyle+\mathbb{E}\big{(}|\int_{k(t)}^{t}h(\bar{x}_{\Delta}(s))dN(s)|^{p}\big{|}\mathcal{F}_{k(t)}\big{)}\Big{)}
3p1(Δp1𝔼(k(t)t|fΔ(x¯Δ(s))|pds|k(t))+c(p)Δ(p2)/2𝔼(k(t)t|φ(x¯Δ((sτ)))gΔ(x¯Δ(s))|pds|k(t))\displaystyle\leq 3^{p-1}\Big{(}\Delta^{p-1}\mathbb{E}(\int_{k(t)}^{t}|f_{\Delta}(\bar{x}_{\Delta}(s))|^{p}ds\big{|}\mathcal{F}_{k(t)})+c(p)\Delta^{(p-2)/2}\mathbb{E}(\int_{k(t)}^{t}|\varphi(\bar{x}_{\Delta}((s-\tau)))g_{\Delta}(\bar{x}_{\Delta}(s))|^{p}ds\big{|}\mathcal{F}_{k(t)})
+𝔼(|k(t)th(x¯Δ(s))dN(s)|p|k(t)))\displaystyle+\mathbb{E}(|\int_{k(t)}^{t}h(\bar{x}_{\Delta}(s))dN(s)|^{p}\big{|}\mathcal{F}_{k(t)})\Big{)}
3p1(Δp1Δ(π(Δ))p+c(p)Δ(p2)/2Δ(σπ(Δ))p+𝔼(|k(t)th(x¯Δ(s))𝑑N(s)|p|k(t))),\displaystyle\leq 3^{p-1}\Big{(}\Delta^{p-1}\Delta(\pi(\Delta))^{p}+c(p)\Delta^{(p-2)/2}\Delta(\sigma\pi(\Delta))^{p}+\mathbb{E}(|\int_{k(t)}^{t}h(\bar{x}_{\Delta}(s))dN(s)|^{p}\big{|}\mathcal{F}_{k(t)})\Big{)},

where Assumption 2.1 and (22) have been used and c(p)c(p) depends on pp. By the characteristic function’s argument (see [27]), we have

𝔼|ΔNk|pc¯Δ,Δ(0,Δ),\mathbb{E}|\Delta N_{k}|^{p}\leq\bar{c}\Delta,\quad\forall\Delta\in(0,\Delta^{*}),

where c¯\bar{c} is a positive constant independent of Δ\Delta. We now obtain

𝔼(|k(t)th(x¯Δ(s))𝑑N(s)|p|k(t))\displaystyle\mathbb{E}(|\int_{k(t)}^{t}h(\bar{x}_{\Delta}(s))dN(s)|^{p}\big{|}\mathcal{F}_{k(t)}) =|h(x¯Δ(t))|p𝔼|ΔNk|p.\displaystyle=|h(\bar{x}_{\Delta}(t))|^{p}\mathbb{E}|\Delta N_{k}|^{p}.

This implies

𝔼(|xΔ(t)x¯Δ(t)|p|k(t))\displaystyle\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\big{|}\mathcal{F}_{k(t)}\Big{)} 3p1(Δp1Δ(π(Δ))p+c(p)Δ(p2)/2Δ(σπ(Δ))p+|h(x¯Δ(t))|p𝔼|ΔNk|p),\displaystyle\leq 3^{p-1}\Big{(}\Delta^{p-1}\Delta(\pi(\Delta))^{p}+c(p)\Delta^{(p-2)/2}\Delta(\sigma\pi(\Delta))^{p}+|h(\bar{x}_{\Delta}(t))|^{p}\mathbb{E}|\Delta N_{k}|^{p}\Big{)},

where h(x¯Δ(t))h(\bar{x}_{\Delta}(t)) is independent of NkN_{k}. We now have

𝔼(|xΔ(t)x¯Δ(t)|p|k(t))\displaystyle\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\big{|}\mathcal{F}_{k(t)}\Big{)} 3p1((1c(p)σp)Δp/2(π(Δ))p+c¯α3p|x¯Δ(t)|pΔ)\displaystyle\leq 3^{p-1}\Big{(}(1\vee c(p)\sigma^{p})\Delta^{p/2}(\pi(\Delta))^{p}+\bar{c}\alpha_{3}^{p}|\bar{x}_{\Delta}(t^{-})|^{p}\Delta\Big{)}
3p1(1c(p)σpc¯α3p)(Δp/2(π(Δ))p+|x¯Δ(t)|pΔ)\displaystyle\leq 3^{p-1}(1\vee c(p)\sigma^{p}\vee\bar{c}\alpha_{3}^{p})\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+|\bar{x}_{\Delta}(t)|^{p}\Delta\Big{)}
𝔇1(Δp/2(π(Δ))p+Δ)|x¯Δ(t)|p,\displaystyle\leq\mathfrak{D}_{1}\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+\Delta\Big{)}|\bar{x}_{\Delta}(t)|^{p},

which is (28), where 𝔇1=3p1[(1c(p)σp)c¯α3p]\mathfrak{D}_{1}=3^{p-1}[(1\vee c(p)\sigma^{p})\vee\bar{c}\alpha_{3}^{p}]. For p(0,2)p\in(0,2), the Jensen inequality yields

𝔼(|xΔ(t)x¯Δ(t)|p|k(t))\displaystyle\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\big{|}\mathcal{F}_{k(t)}\Big{)} {𝔼(|xΔ(t)x¯Δ(t)|2|k(t))}p/2\displaystyle\leq\Big{\{}\mathbb{E}\Big{(}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{2}\big{|}\mathcal{F}_{k(t)}\Big{)}\Big{\}}^{p/2}
{𝔇1(Δ(π(Δ))2+Δ)|x¯Δ(t)|p}p/2\displaystyle\leq\Big{\{}\mathfrak{D}_{1}\Big{(}\Delta(\pi(\Delta))^{2}+\Delta\Big{)}|\bar{x}_{\Delta}(t)|^{p}\Big{\}}^{p/2}
2p/21𝔇1p/2(Δp/2(π(Δ))p+Δp/2)(|x¯Δ(t)|p)p/2\displaystyle\leq 2^{p/2-1}\mathfrak{D}_{1}^{p/2}\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+\Delta^{p/2}\Big{)}(|\bar{x}_{\Delta}(t)|^{p})^{p/2}
𝔇2(Δp/2(π(Δ))p)|x¯Δ(t)|p,\displaystyle\leq\mathfrak{D}_{2}\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}\Big{)}|\bar{x}_{\Delta}(t)|^{p},

which is the required assertion in (29), where 𝔇2=2p/2𝔇1p/2\mathfrak{D}_{2}=2^{p/2}\mathfrak{D}_{1}^{p/2}. The proof is thus complete. ∎

We can now upper bound the moment of the truncated EM solution as follows.

Lemma 4.2.

Let Assumptions 2.1 and 2.3 hold. Then for any p3p\geq 3

sup0ΔΔsup0tT(𝔼|xΔ(t)|p)ρ3,T>0,\sup_{0\leq\Delta\leq\Delta^{*}}\sup_{0\leq t\leq T}(\mathbb{E}|x_{\Delta}(t)|^{p})\leq\rho_{3},\quad\forall T>0, (30)

where ρ3:=ρ3(T,p,K,ξ)\rho_{3}:=\rho_{3}(T,p,K,\xi) and may change between occurrences.

Proof.

Fix any Δ(0,Δ)\Delta\in(0,\Delta^{*}) and T0T\geq 0. For t[0,T]t\in[0,T], we obtain from (4), (20) and Lemma 3.4

𝔼|xΔ(t)|p|ξ(0)|p\displaystyle\mathbb{E}|x_{\Delta}(t)|^{p}-|\xi(0)|^{p} 𝔼0tp|xΔ(s)|p2(x¯Δ(s)fΔ(x¯Δ(s))+p12|φ(x¯Δ((sτ)))gΔ(x¯Δ(s))|2)𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t}p|x_{\Delta}(s^{-})|^{p-2}\Big{(}\bar{x}_{\Delta}(s^{-})f_{\Delta}(\bar{x}_{\Delta}(s^{-}))+\frac{p-1}{2}|\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(s^{-}))|^{2}\Big{)}ds
+𝔼0tp|xΔ(s)|p2(xΔ(s)x¯Δ(s))fΔ(x¯Δ(s))𝑑s\displaystyle+\mathbb{E}\int_{0}^{t}p|x_{\Delta}(s^{-})|^{p-2}(x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-}))f_{\Delta}(\bar{x}_{\Delta}(s^{-}))ds
+λ𝔼(0t|xΔ(s)+h(x¯Δ(s))|p|xΔ(s)|p)ds\displaystyle+\lambda\mathbb{E}\Big{(}\int_{0}^{t}|x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-}))|^{p}-|x_{\Delta}(s^{-})|^{p}\Big{)}ds
H11+H12+H13,\displaystyle\leq H_{11}+H_{12}+H_{13},

where

H11\displaystyle H_{11} =𝔼0tK5p|xΔ(s)|p2(1+|x¯Δ(s)|2)𝑑s\displaystyle=\mathbb{E}\int_{0}^{t}K_{5}p|x_{\Delta}(s^{-})|^{p-2}(1+|\bar{x}_{\Delta}(s^{-})|^{2})ds
H12\displaystyle H_{12} =𝔼0tp|xΔ(s)|p2(xΔ(s)x¯Δ(s))fΔ(x¯Δ(s))𝑑s\displaystyle=\mathbb{E}\int_{0}^{t}p|x_{\Delta}(s^{-})|^{p-2}\Big{(}x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})\Big{)}f_{\Delta}(\bar{x}_{\Delta}(s^{-}))ds
H13\displaystyle H_{13} =λ𝔼(0t|xΔ(s)+h(x¯Δ(s))|p|xΔ(s)|p)ds.\displaystyle=\lambda\mathbb{E}\Big{(}\int_{0}^{t}|x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-}))|^{p}-|x_{\Delta}(s^{-})|^{p}\Big{)}ds.

Applying the Young inequality, we obtain

H11\displaystyle H_{11} =K5p𝔼0t|xΔ(s)|p2(1+|x¯Δ(s)|2)𝑑s\displaystyle=K_{5}p\mathbb{E}\int_{0}^{t}|x_{\Delta}(s^{-})|^{p-2}(1+|\bar{x}_{\Delta}(s^{-})|^{2})ds
K5p0t((p2)p𝔼|xΔ(s)|p+2p𝔼(1+|x¯Δ(s)|)p)𝑑s\displaystyle\leq K_{5}p\int_{0}^{t}\Big{(}\frac{(p-2)}{p}\mathbb{E}|x_{\Delta}(s^{-})|^{p}+\frac{2}{p}\mathbb{E}(1+|\bar{x}_{\Delta}(s^{-})|)^{p}\Big{)}ds
K50t((p2)𝔼|xΔ(s)|p+2p(1+𝔼|x¯Δ(s)|p))𝑑s\displaystyle\leq K_{5}\int_{0}^{t}\Big{(}(p-2)\mathbb{E}|x_{\Delta}(s^{-})|^{p}+2^{p}(1+\mathbb{E}|\bar{x}_{\Delta}(s^{-})|^{p})\Big{)}ds
c10t(1+𝔼|xΔ(s)|p+𝔼|x¯Δ(s)|p)𝑑s,\displaystyle\leq c_{1}\int_{0}^{t}(1+\mathbb{E}|x_{\Delta}(s)|^{p}+\mathbb{E}|\bar{x}_{\Delta}(s)|^{p})ds,

where c1=K5[(p2)2p]c_{1}=K_{5}[(p-2)\vee 2^{p}]. For s[0,t]s\in[0,t], we note from the triangle inequality

|xΔ(s)||xΔ(s)x¯Δ(s)|+|x¯Δ(s)|.|x_{\Delta}(s^{-})|\leq|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})|+|\bar{x}_{\Delta}(s^{-})|.

This implies for p3p\geq 3, we obtain

H12\displaystyle H_{12} p𝔼0t(|xΔ(s)x¯Δ(s)|+|x¯Δ(s)|)p2|xΔ(s)x¯Δ(s)||fΔ(x¯Δ(s))|𝑑s\displaystyle\leq p\mathbb{E}\int_{0}^{t}\Big{(}|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})|+|\bar{x}_{\Delta}(s^{-})|\Big{)}^{p-2}|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})||f_{\Delta}(\bar{x}_{\Delta}(s^{-}))|ds
2(p3)p𝔼0t(|xΔ(s)x¯Δ(s)|p2+|x¯Δ(s)|p2)|xΔ(s)x¯Δ(s)||fΔ(x¯Δ(s))|𝑑s\displaystyle\leq 2^{(p-3)}p\mathbb{E}\int_{0}^{t}\Big{(}|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})|^{p-2}+|\bar{x}_{\Delta}(s^{-})|^{p-2}\Big{)}|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})||f_{\Delta}(\bar{x}_{\Delta}(s^{-}))|ds
=H121+H122,\displaystyle=H_{121}+H_{122},

where

H121\displaystyle H_{121} =2(p3)p𝔼0t|x¯Δ(s)|p2|xΔ(s)x¯Δ(s)||fΔ(x¯Δ(s))|𝑑s\displaystyle=2^{(p-3)}p\mathbb{E}\int_{0}^{t}|\bar{x}_{\Delta}(s^{-})|^{p-2}|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s)||f_{\Delta}(\bar{x}_{\Delta}(s^{-}))|ds
H122\displaystyle H_{122} =2(p3)p𝔼0t|xΔ(s)x¯Δ(s)|p1|fΔ(x¯Δ(s))|𝑑s.\displaystyle=2^{(p-3)}p\mathbb{E}\int_{0}^{t}|x_{\Delta}(s^{-})-\bar{x}_{\Delta}(s^{-})|^{p-1}|f_{\Delta}(\bar{x}_{\Delta}(s^{-}))|ds.

By Lemma 4.1 and (22), we now have

H121\displaystyle H_{121} 2(p3)p0t𝔼{|x¯Δ(s)|p2|fΔ(x¯Δ(s))|𝔼(|xΔ(s)x¯Δ(s)|k(s)))}ds\displaystyle\leq 2^{(p-3)}p\int_{0}^{t}\mathbb{E}\Big{\{}|\bar{x}_{\Delta}(s)|^{p-2}|f_{\Delta}(\bar{x}_{\Delta}(s))|\mathbb{E}\Big{(}|x_{\Delta}(s)-\bar{x}_{\Delta}(s)|\mathcal{F}_{k(s)})\Big{)}\Big{\}}ds
2(p3)p𝔇2(π(Δ))Δ1/2(π(Δ))0t𝔼{|x¯Δ(s)|(|x¯Δ(s)|p2)}𝑑s\displaystyle\leq 2^{(p-3)}p\mathfrak{D}_{2}(\pi(\Delta))\Delta^{1/2}(\pi(\Delta))\int_{0}^{t}\mathbb{E}\Big{\{}|\bar{x}_{\Delta}(s)|(|\bar{x}_{\Delta}(s)|^{p-2})\Big{\}}ds
2(p3)p𝔇2(π(Δ))Δ1/2(π(Δ))0t𝔼|x¯Δ(s)|p1𝑑s\displaystyle\leq 2^{(p-3)}p\mathfrak{D}_{2}(\pi(\Delta))\Delta^{1/2}(\pi(\Delta))\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p-1}ds
2(p3)p𝔇2(π(Δ))2Δ1/20t(1p+(p1)p𝔼|x¯Δ(s)|p)𝑑s\displaystyle\leq 2^{(p-3)}p\mathfrak{D}_{2}(\pi(\Delta))^{2}\Delta^{1/2}\int_{0}^{t}\Big{(}\frac{1}{p}+\frac{(p-1)}{p}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}\Big{)}ds
c2+c30t𝔼|x¯Δ(s)|p𝑑s,\displaystyle\leq c_{2}+c_{3}\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}ds, (31)

where c2=2(p3)𝔇2Tc_{2}=2^{(p-3)}\mathfrak{D}_{2}T and c3=2(p3)𝔇2(p1)c_{3}=2^{(p-3)}\mathfrak{D}_{2}(p-1) , noting that (π(Δ))Δ1/41(\pi(\Delta))\Delta^{1/4}\leq 1 and hence

[(π(Δ))Δ1/4]21.[(\pi(\Delta))\Delta^{1/4}]^{2}\leq 1.

Also by (22), we have

H122\displaystyle H_{122} 2(p3)pπ(Δ)0t𝔼|xΔ(s)x¯Δ(s)|p1𝑑s.\displaystyle\leq 2^{(p-3)}p\pi(\Delta)\int_{0}^{t}\mathbb{E}|x_{\Delta}(s)-\bar{x}_{\Delta}(s)|^{p-1}ds. (32)

Do note for p3p\geq 3 and w¯(0,1/4]\bar{w}\in(0,1/4], we have pw¯(p1)/2p\bar{w}\leq(p-1)/2 and then

Δ(p1)/2w¯p1.\Delta^{(p-1)/2-\bar{w}p}\leq 1. (33)

So for p3p\geq 3 and w¯=1/4\bar{w}=1/4, we obtain from (32), Lemma 4.1, (33) and the Young’s inequality

H122\displaystyle H_{122} 2(p3)p𝔇1(Δ(p1)/2(π(Δ))p1(π(Δ))+Δ(π(Δ)))0t𝔼|x¯Δ(s)|p1𝑑s\displaystyle\leq 2^{(p-3)}p\mathfrak{D}_{1}\Big{(}\Delta^{(p-1)/2}(\pi(\Delta))^{p-1}(\pi(\Delta))+\Delta(\pi(\Delta))\Big{)}\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p-1}ds
2(p3)p𝔇1(Δ(p1)/2(π(Δ))p+Δ(π(Δ)))0t𝔼|x¯Δ(s)|p1𝑑s\displaystyle\leq 2^{(p-3)}p\mathfrak{D}_{1}\Big{(}\Delta^{(p-1)/2}(\pi(\Delta))^{p}+\Delta(\pi(\Delta))\Big{)}\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p-1}ds
2(p3)p𝔇1(Δ(p2)/4+Δ(π(Δ)))0t𝔼|x¯Δ(s)|p1𝑑s\displaystyle\leq 2^{(p-3)}p\mathfrak{D}_{1}\Big{(}\Delta^{(p-2)/4}+\Delta(\pi(\Delta))\Big{)}\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p-1}ds
2(p2)p𝔇10t(1p+(p1)p𝔼|x¯Δ(s)|p)𝑑s\displaystyle\leq 2^{(p-2)}p\mathfrak{D}_{1}\int_{0}^{t}\Big{(}\frac{1}{p}+\frac{(p-1)}{p}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}\Big{)}ds
c4+c50t𝔼|x¯Δ(s)|p𝑑s,\displaystyle\leq c_{4}+c_{5}\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}ds,

where c4=2(p2)𝔇1Tc_{4}=2^{(p-2)}\mathfrak{D}_{1}T and c5=2(p2)𝔇1(p1)c_{5}=2^{(p-2)}\mathfrak{D}_{1}(p-1). We now combine H121H_{121} and H122H_{122} to have

H12\displaystyle H_{12} c2+c4+(c3+c5)0t𝔼|x¯Δ(s)|p𝑑s\displaystyle\leq c_{2}+c_{4}+(c_{3}+c_{5})\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}ds
c6+c70t𝔼|x¯Δ(s)|p𝑑s,\displaystyle\leq c_{6}+c_{7}\int_{0}^{t}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}ds,

where c6=c2+c4c_{6}=c_{2}+c_{4} and c7=c3+c5c_{7}=c_{3}+c_{5}. Also we estimate H13H_{13} as

H13\displaystyle H_{13} =λ𝔼(0t|xΔ(s)+h(x¯Δ(s))|p|xΔ(s)|p)ds\displaystyle=\lambda\mathbb{E}\Big{(}\int_{0}^{t}|x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-}))|^{p}-|x_{\Delta}(s^{-})|^{p}\Big{)}ds
λ𝔼(0t2p1|xΔ(s)|p+2p1|h(x¯Δ(s))|p|xΔ(s)|p)ds\displaystyle\leq\lambda\mathbb{E}\Big{(}\int_{0}^{t}2^{p-1}|x_{\Delta}(s^{-})|^{p}+2^{p-1}|h(\bar{x}_{\Delta}(s^{-}))|^{p}-|x_{\Delta}(s^{-})|^{p}\Big{)}ds
λ𝔼(0t(2p11)|xΔ(s)|p+2p1α3p|x¯Δ(s)|p)ds\displaystyle\leq\lambda\mathbb{E}\Big{(}\int_{0}^{t}(2^{p-1}-1)|x_{\Delta}(s^{-})|^{p}+2^{p-1}\alpha_{3}^{p}|\bar{x}_{\Delta}(s^{-})|^{p}\Big{)}ds
c80t(𝔼|xΔ(s)|p+𝔼|x¯Δ(s)|p)𝑑s,\displaystyle\leq c_{8}\int_{0}^{t}(\mathbb{E}|x_{\Delta}(s)|^{p}+\mathbb{E}|\bar{x}_{\Delta}(s)|^{p})ds,

where c8=λ[(2p11)2p1α3p]c_{8}=\lambda[(2^{p-1}-1)\vee 2^{p-1}\alpha_{3}^{p}]. Combining H11H_{11}, H12H_{12} and H13H_{13}, we have

𝔼|xΔ(t)|p\displaystyle\mathbb{E}|x_{\Delta}(t)|^{p} |ξ(0)|p+(c1T+c6)+0t((c1+c8)𝔼|xΔ(s)|p+(c1+c7+c8)𝔼|x¯Δ(s)|p)𝑑s\displaystyle\leq|\xi(0)|^{p}+(c_{1}T+c_{6})+\int_{0}^{t}\Big{(}(c_{1}+c_{8})\mathbb{E}|x_{\Delta}(s)|^{p}+(c_{1}+c_{7}+c_{8})\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}\Big{)}ds
c9+2c100tsup0us(𝔼|xΔ(u)|p)ds,\displaystyle\leq c_{9}+2c_{10}\int_{0}^{t}\sup_{0\leq u\leq s}\Big{(}\mathbb{E}|x_{\Delta}(u)|^{p}\Big{)}ds,

where c9=|ξ(0)|p+c1T+c6c_{9}=|\xi(0)|^{p}+c_{1}T+c_{6} and c10=(c1+c8)(c1+c7+c8)c_{10}=(c_{1}+c_{8})\vee(c_{1}+c_{7}+c_{8}). As this holds for any t[0,T]t\in[0,T], we then have

sup0ut(𝔼|xΔ(u)|p)c9+2c100tsup0us(𝔼|xΔ(u)|p)ds.\sup_{0\leq u\leq t}(\mathbb{E}|x_{\Delta}(u)|^{p})\leq c_{9}+2c_{10}\int_{0}^{t}\sup_{0\leq u\leq s}\Big{(}\mathbb{E}|x_{\Delta}(u)|^{p}\Big{)}ds.

The Gronwall inequality yields

sup0uT(𝔼|xΔ(u)|p)ρ3\sup_{0\leq u\leq T}(\mathbb{E}|x_{\Delta}(u)|^{p})\leq\rho_{3}

as the required assertion, where ρ3=c9e2c10T\rho_{3}=c_{9}e^{2c_{10}T} is independent of Δ\Delta. ∎

4.2 Finite time strong convergence

We can now establish finite time strong convergence theory for the truncated EM solutions to SDDE (3). Before that, let first establish the following useful lemma.

Lemma 4.3.

Suppose Assumptions 2.1, 2.3 and 3.1 hold and fix T>0T>0. Then for any ϵ(0,1)\epsilon\in(0,1), there exists a pair n=n(ϵ)>0n=n(\epsilon)>0 and Δ¯=Δ¯(ϵ)>0\bar{\Delta}=\bar{\Delta}(\epsilon)>0 such that

(ϑΔ,nT)ϵ\mathbb{P}(\vartheta_{\Delta,n}\leq T)\leq\epsilon (34)

as long as Δ(0,Δ¯]\Delta\in(0,\bar{\Delta}], where

ϑΔ,n=inf{t[0,T]:xΔ(t)(1/n,n)}\vartheta_{\Delta,n}=\inf\{t\in[0,T]:x_{\Delta}(t)\notin(1/n,n)\} (35)

is a stopping time.

Proof.

Let Z()Z(\cdot) be the Lyapunov function in (12). Then for t[0,T]t\in[0,T], the Itô formula gives us

𝔼(Z(xΔ(tϑΔ,n))Z(ξ(0)))\displaystyle\mathbb{E}(Z(x_{\Delta}(t\wedge\vartheta_{\Delta,n}))-Z(\xi(0)))
=𝔼0tϑΔ,n[Zx(xΔ(s))fΔ(x¯Δ(s))+12Zxx(xΔ(s))φ(x¯Δ((sτ)))2gΔ(x¯Δ(s))2\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}\Big{[}Z_{x}(x_{\Delta}(s^{-}))f_{\Delta}(\bar{x}_{\Delta}(s^{-}))+\frac{1}{2}Z_{xx}(x_{\Delta}(s^{-}))\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(\bar{x}_{\Delta}(s^{-}))^{2}
+λ(Z(xΔ(s)+h(x¯Δ(s)))Z(xΔ(s)))]ds.\displaystyle+\lambda(Z(x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-})))-Z(x_{\Delta}(s^{-})))\Big{]}ds.

By expansion, we obtain

𝔼(Z(xΔ(tϑΔ,n))Z(ξ(0)))\displaystyle\mathbb{E}(Z(x_{\Delta}(t\wedge\vartheta_{\Delta,n}))-Z(\xi(0)))
𝔼0tϑΔ,n[(Zx(xΔ(s))fΔ(xΔ(s))+12Zxx(xΔ(s))φ(xΔ((sτ)))2gΔ(xΔ(s))2\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}\Big{[}\Big{(}Z_{x}(x_{\Delta}(s^{-}))f_{\Delta}(x_{\Delta}(s^{-}))+\frac{1}{2}Z_{xx}(x_{\Delta}(s^{-}))\varphi(x_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(x_{\Delta}(s^{-}))^{2}
+λ(Z(xΔ(s)+h(xΔ(s)))Z(xΔ(s))))+Zx(xΔ(s))(fΔ(x¯Δ(s))fΔ(xΔ(s)))\displaystyle+\lambda(Z(x_{\Delta}(s^{-})+h(x_{\Delta}(s^{-})))-Z(x_{\Delta}(s^{-})))\Big{)}+Z_{x}(x_{\Delta}(s^{-}))\Big{(}f_{\Delta}(\bar{x}_{\Delta}(s^{-}))-f_{\Delta}(x_{\Delta}(s^{-}))\Big{)}
+12Zxx(xΔ(s))(φ(x¯Δ((sτ)))2gΔ(x¯Δ(s))2φ(xΔ((sτ)))2gΔ(xΔ(s))2)\displaystyle+\frac{1}{2}Z_{xx}(x_{\Delta}(s^{-}))\Big{(}\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(\bar{x}_{\Delta}(s^{-}))^{2}-\varphi(x_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(x_{\Delta}(s^{-}))^{2}\Big{)}
+λ(Z(xΔ(s)+h(x¯Δ(s)))Z(xΔ(s)+h(xΔ(s))))]ds\displaystyle+\lambda\Big{(}Z(x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-})))-Z(x_{\Delta}(s^{-})+h(x_{\Delta}(s^{-})))\Big{)}\Big{]}ds
𝔼0tϑΔ,nL(xΔ(s),xΔ((sτ)))𝑑s+H21+H22+H23\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}L(x_{\Delta}(s^{-}),x_{\Delta}((s-\tau)^{-}))ds+H_{21}+H_{22}+H_{23}

Here,

L(xΔ(s),xΔ((sτ)))(xΔ(s),xΔ((sτ)))+λ(Z(xΔ(s)+h(xΔ(s)))Z(xΔ(s)))L(x_{\Delta}(s^{-}),x_{\Delta}((s-\tau)^{-}))\leq\ell(x_{\Delta}(s^{-}),x_{\Delta}((s-\tau)^{-}))+\lambda(Z(x_{\Delta}(s^{-})+h(x_{\Delta}(s^{-})))-Z(x_{\Delta}(s^{-})))

is the operator (4) which is independent of tt with

(xΔ(s),xΔ((sτ)))=Zx(xΔ(s))fΔ(xΔ(s))+12Zxx(xΔ(s))φ(xΔ((sτ)))2gΔ(xΔ(s))2,\ell(x_{\Delta}(s^{-}),x_{\Delta}((s-\tau)^{-}))=Z_{x}(x_{\Delta}(s^{-}))f_{\Delta}(x_{\Delta}(s^{-}))+\frac{1}{2}Z_{xx}(x_{\Delta}(s^{-}))\varphi(x_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(x_{\Delta}(s^{-}))^{2},

and

H21\displaystyle H_{21} =𝔼0tϑΔ,nZx(xΔ(s))(fΔ(x¯Δ(s))fΔ(xΔ(s)))𝑑s\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{x}(x_{\Delta}(s^{-}))\Big{(}f_{\Delta}(\bar{x}_{\Delta}(s^{-}))-f_{\Delta}(x_{\Delta}(s^{-}))\Big{)}ds
H22\displaystyle H_{22} =12𝔼0tϑΔ,nZxx(xΔ(s))(φ(x¯Δ((sτ)))2gΔ(x¯Δ(s))2φ(xΔ((sτ)))2gΔ(xΔ(s))2)𝑑s\displaystyle=\frac{1}{2}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{xx}(x_{\Delta}(s^{-}))\Big{(}\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(\bar{x}_{\Delta}(s^{-}))^{2}-\varphi(x_{\Delta}((s-\tau)^{-}))^{2}g_{\Delta}(x_{\Delta}(s^{-}))^{2}\Big{)}ds
H23\displaystyle H_{23} =λ𝔼0tϑΔ,n(Z(xΔ(s)+h(x¯Δ(s)))Z(xΔ(s)+h(xΔ(s))))𝑑s.\displaystyle=\lambda\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}\Big{(}Z(x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-})))-Z(x_{\Delta}(s^{-})+h(x_{\Delta}(s^{-})))\Big{)}ds.

By Assumption 2.3, there exists a constant K6>0K_{6}>0 such that for s[0,tϑΔ,n]s\in[0,t\wedge\vartheta_{\Delta,n}]

L(xΔ(s),xΔ((sτ)))K6.L(x_{\Delta}(s^{-}),x_{\Delta}((s-\tau)^{-}))\leq K_{6}.

Also by Lemma 3.2, we have

H21Kn𝔼0tϑΔ,nZx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s.H_{21}\leq K_{n}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{x}(x_{\Delta}(s^{-}))|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds.

Meanwhile, for xΔ(s),x¯Δ(s)[1/n,n]x_{\Delta}(s^{-}),\bar{x}_{\Delta}(s^{-})\in[1/n,n], we derive that

H22\displaystyle H_{22} =12𝔼0tϑΔ,nZxx(gΔ(xΔ(s))2|φ(x¯Δ((sτ)))2φ(xΔ((sτ)))2|\displaystyle=\frac{1}{2}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{xx}\Big{(}g_{\Delta}(x_{\Delta}(s^{-}))^{2}|\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))^{2}-\varphi(x_{\Delta}((s-\tau)^{-}))^{2}|
+φ(x¯Δ((sτ)))2|gΔ(x¯Δ(s))2gΔ(xΔ(s))2|)ds\displaystyle+\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))^{2}|g_{\Delta}(\bar{x}_{\Delta}(s^{-}))^{2}-g_{\Delta}(x_{\Delta}(s^{-}))^{2}|\Big{)}ds
𝔼0tϑΔ,nZxx(xΔ(s))(σ2μ(n)Kn|x¯Δ(s)xΔ(s)|\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{xx}\Big{(}x_{\Delta}(s^{-}))(\sigma^{2}\mu(n)K_{n}|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|
+σ(μ(n))2Ln|x¯Δ((sτ))xΔ((sτ))|)ds,\displaystyle+\sigma(\mu(n))^{2}L_{n}|\bar{x}_{\Delta}((s-\tau)^{-})-x_{\Delta}((s-\tau)^{-})|\Big{)}ds,

where (7), (17) and (18) have been used. Moreover, by the definition of (12), we have

H23λ𝔼\displaystyle H_{23}\leq\lambda\mathbb{E} 0tϑΔ,n((xΔ(s)+h(x¯Δ(s)))β1βlog(xΔ(s)+h(x¯Δ(s)))\displaystyle\int_{0}^{t\wedge\vartheta_{\Delta,n}}\Big{(}(x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-})))^{\beta}-1-\beta\log(x_{\Delta}(s^{-})+h(\bar{x}_{\Delta}(s^{-})))
(xΔ(s)+h(xΔ(s)))β+1+βlog(xΔ(s)+h(xΔ(s))))ds\displaystyle-(x_{\Delta}(s^{-})+h(x_{\Delta}(s^{-})))^{\beta}+1+\beta\log(x_{\Delta}(s^{-})+h(x_{\Delta}(s^{-})))\Big{)}ds
H231+H232,\displaystyle\leq H_{231}+H_{232},

where

H231\displaystyle H_{231} =λ𝔼0tϑΔ,n|(xΔ(s)+α3x¯Δ(s))β(xΔ(s)+α3xΔ(s))β|𝑑s\displaystyle=\lambda\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|(x_{\Delta}(s^{-})+\alpha_{3}\bar{x}_{\Delta}(s^{-}))^{\beta}-(x_{\Delta}(s^{-})+\alpha_{3}x_{\Delta}(s^{-}))^{\beta}|ds

and

H232\displaystyle H_{232} =λβ𝔼0tϑΔ,n|log(xΔ(s)+α3x¯Δ(s))log(xΔ(s)+α3xΔ(s))|𝑑s.\displaystyle=\lambda\beta\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\log(x_{\Delta}(s^{-})+\alpha_{3}\bar{x}_{\Delta}(s^{-}))-\log(x_{\Delta}(s^{-})+\alpha_{3}x_{\Delta}(s^{-}))|ds.

Applying the mean value theorem, we obtain

H231\displaystyle H_{231} nλ𝔼0tϑΔ,n|xΔ(s)+α3x¯Δ(s)α3xΔ(s)xΔ(s)|𝑑s\displaystyle\leq n\lambda\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|x_{\Delta}(s^{-})+\alpha_{3}\bar{x}_{\Delta}(s^{-})-\alpha_{3}x_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds
=nλα3𝔼0tϑΔ,n|x¯Δ(s)xΔ(s)|𝑑s.\displaystyle=n\lambda\alpha_{3}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds.

Similarly, we also have

H232\displaystyle H_{232} nλβ𝔼0tϑΔ,n|xΔ(s)+α3x¯Δ(s)α3xΔ(s)xΔ(s)|𝑑s\displaystyle\leq n\lambda\beta\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|x_{\Delta}(s^{-})+\alpha_{3}\bar{x}_{\Delta}(s^{-})-\alpha_{3}x_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds
=nλα3β𝔼0tϑΔ,n|x¯Δ(s)xΔ(s)|𝑑s.\displaystyle=n\lambda\alpha_{3}\beta\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds.

Substituting H231H_{231} and H232H_{232} back into H23H_{23}, we have

H23nλα3(1+β)𝔼0tϑΔ,n|x¯Δ(s)xΔ(s)|𝑑s.H_{23}\leq n\lambda\alpha_{3}(1+\beta)\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds.

We thus combine the H21H_{21}, H22H_{22} and H23H_{23} to have

𝔼(Z(xΔ(tϑΔ,n)))\displaystyle\mathbb{E}(Z(x_{\Delta}(t\wedge\vartheta_{\Delta,n}))) Z(ξ(0))+K6T\displaystyle\leq Z(\xi(0))+K_{6}T
+σ(μ(n))2Ln𝔼0tϑΔ,nZxx(xΔ(s))|x¯Δ((sτ))xΔ((sτ))|𝑑s\displaystyle+\sigma(\mu(n))^{2}L_{n}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{xx}(x_{\Delta}(s^{-}))|\bar{x}_{\Delta}((s-\tau)^{-})-x_{\Delta}((s-\tau)^{-})|ds
+Kn𝔼0tϑΔ,nZx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s\displaystyle+K_{n}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{x}(x_{\Delta}(s^{-}))|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds
+σ2μ(n)Kn𝔼0tϑΔ,nZxx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s\displaystyle+\sigma^{2}\mu(n)K_{n}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}Z_{xx}(x_{\Delta}(s^{-}))|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds
+nλα3(1+β)𝔼0tϑΔ,n|x¯Δ(s)xΔ(s)|𝑑s.\displaystyle+n\lambda\alpha_{3}(1+\beta)\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x_{\Delta}(s^{-})|ds.

Therefore

𝔼(Z(xΔ(tϑΔ,n)))\displaystyle\mathbb{E}(Z(x_{\Delta}(t\wedge\vartheta_{\Delta,n}))) Z(ξ(0))+K6T+K7𝔼0tϑΔ,n|x¯Δ(sτ)xΔ(sτ)|𝑑s\displaystyle\leq Z(\xi(0))+K_{6}T+K_{7}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\bar{x}_{\Delta}(s-\tau)-x_{\Delta}(s-\tau)|ds
+K8𝔼0tϑΔ,n|x¯Δ(s)xΔ(s)|𝑑s\displaystyle+K_{8}\mathbb{E}\int_{0}^{t\wedge\vartheta_{\Delta,n}}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|ds
Z(ξ(0))+K6T+K7𝔼τ0|ξ([s/Δ]Δ)ξ(s)|𝑑s\displaystyle\leq Z(\xi(0))+K_{6}T+K_{7}\mathbb{E}\int_{-\tau}^{0}|\xi([s/\Delta]\Delta)-\xi(s)|ds
+(K7+K8)0T𝔼(𝔼|x¯Δ(s)xΔ(s)|p|k(s))1/p𝑑s\displaystyle+(K_{7}+K_{8})\int_{0}^{T}\mathbb{E}\Big{(}\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}\Big{|}\mathcal{F}_{k(s)}\Big{)}^{1/p}ds

where

K7\displaystyle K_{7} =max1/nxn{Zxx(x)σ(μ(n))2Ln}\displaystyle=\max_{1/n\leq x\leq n}\{Z_{xx}(x)\sigma(\mu(n))^{2}L_{n}\}

and

K8\displaystyle K_{8} =max1/nxn{Zx(x)Kn+Zxx(x)σ2μ(n)Kn+nλα3(1+β)}.\displaystyle=\max_{1/n\leq x\leq n}\{Z_{x}(x)K_{n}+Z_{xx}(x)\sigma^{2}\mu(n)K_{n}+n\lambda\alpha_{3}(1+\beta)\}.

By Lemma 4.1 and 4.2, we now have

𝔼(Z(xΔ(tϑΔ,n)))\displaystyle\mathbb{E}(Z(x_{\Delta}(t\wedge\vartheta_{\Delta,n}))) Z(ξ(0))+K6T+K3K7TΔγ+(K7+K8)𝔇11/p\displaystyle\leq Z(\xi(0))+K_{6}T+K_{3}K_{7}T\Delta^{\gamma}+(K_{7}+K_{8})\mathfrak{D}_{1}^{1/p}
×(Δp/2(π(Δ))p+Δ)1/p0T(𝔼|x¯Δ(s)|p)1/p𝑑s\displaystyle\times\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+\Delta\Big{)}^{1/p}\int_{0}^{T}(\mathbb{E}|\bar{x}_{\Delta}(s)|^{p})^{1/p}ds
Z(ξ(0))+K6T+K3K7TΔγ+(K7+K8)𝔇11/p\displaystyle\leq Z(\xi(0))+K_{6}T+K_{3}K_{7}T\Delta^{\gamma}+(K_{7}+K_{8})\mathfrak{D}_{1}^{1/p}
×(Δp/2(π(Δ))p+Δ)1/p0T(sup0us(𝔼|x¯Δ(u)|p))1/p𝑑s\displaystyle\times\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+\Delta\Big{)}^{1/p}\int_{0}^{T}(\sup_{0\leq u\leq s}(\mathbb{E}|\bar{x}_{\Delta}(u)|^{p}))^{1/p}ds
Z(ξ(0))+K6T+ν1Δγ+ν2(Δp/2(π(Δ))p+Δ)1/pρ31/pT.\displaystyle\leq Z(\xi(0))+K_{6}T+\nu_{1}\Delta^{\gamma}+\nu_{2}(\Delta^{p/2}(\pi(\Delta))^{p}+\Delta)^{1/p}\rho_{3}^{1/p}T.

where ν1=K3K7T\nu_{1}=K_{3}K_{7}T and ν2=(K7+K8)𝔇11/p\nu_{2}=(K_{7}+K_{8})\mathfrak{D}_{1}^{1/p}. Hence,

(ϑΔ,nT)Z(ξ(0))+K6T+ν1Δγ+ν2(Δp/2(π(Δ))p+Δ)1/pρ31/pTZ(1/n)Z(n).\mathbb{P}(\vartheta_{\Delta,n}\leq T)\leq\frac{Z(\xi(0))+K_{6}T+\nu_{1}\Delta^{\gamma}+\nu_{2}(\Delta^{p/2}(\pi(\Delta))^{p}+\Delta)^{1/p}\rho_{3}^{1/p}T}{Z(1/n)\wedge Z(n)}. (36)

For any ϵ(0,1)\epsilon\in(0,1), we may select sufficiently large nn such that

Z(ξ(0))+K6TZ(1/n)Z(n)ϵ2\frac{Z(\xi(0))+K_{6}T}{Z(1/n)\wedge Z(n)}\leq\frac{\epsilon}{2} (37)

and sufficiently small of each step size Δ(0,Δ¯]\Delta\in(0,\bar{\Delta}] such that

ν1Δγ+ν2(Δp/2(π(Δ))p+Δ)1/pρ31/pTZ(1/n)Z(n)ϵ2.\frac{\nu_{1}\Delta^{\gamma}+\nu_{2}(\Delta^{p/2}(\pi(\Delta))^{p}+\Delta)^{1/p}\rho_{3}^{1/p}T}{Z(1/n)\wedge Z(n)}\leq\frac{\epsilon}{2}. (38)

Therefore, we obtain (34) by combining (37) and (38). ∎

We can now reveal finite time strong convergence theory of the truncated EM scheme.

Lemma 4.4.

Let Assumptions 2.1, 2.3, 3.1 and 2.2 hold. Set

ςΔ,n=ϑΔ,nτn,\varsigma_{\Delta,n}=\vartheta_{\Delta,n}\wedge\tau_{n},

where ϑΔ,n\vartheta_{\Delta,n} and τn\tau_{n} are (11) and (35) respectively. Then for any p2p\geq 2, T>0T>0, we have

𝔼(sup0tT|xΔ(tςΔ,n)x(tςΔ,n)|p)𝒦Δp(1/4γ1/p)\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}\leq\mathcal{K}\Delta^{p(1/4\wedge\gamma\wedge 1/p)} (39)

for any sufficiently large nn and any Δ(0,Δ]\Delta\in(0,\Delta^{*}], where 𝒦\mathcal{K} is a constant independent of Δ\Delta. Consequently, we have

limΔ0𝔼(sup0tT|xΔ(tςΔ,n)x(tςΔ,n)|p)=0.\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}=0. (40)
Proof.

By elementary inequality, it follows from (3) and (27) that for t1[0,T]t_{1}\in[0,T]

𝔼(sup0tt1|xΔ(tςΔ,n)x(tςΔ,n)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)} H31+H32+H33.\displaystyle\leq H_{31}+H_{32}+H_{33}.

where

H31=3p1𝔼(|0t1ςΔ,n[fΔ(x¯Δ(s))f(x(s))]𝑑s|p),\displaystyle H_{31}=3^{p-1}\mathbb{E}\Big{(}|\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}[f_{\Delta}(\bar{x}_{\Delta}(s^{-}))-f(x(s^{-}))]ds|^{p}\Big{)},
H32=3p1𝔼(sup0tt1|0tςΔ,n[φ(x¯Δ((sτ)))gΔ(x¯Δ(s))φ(x((sτ)))g(x(s))]𝑑B(s)|p)\displaystyle H_{32}=3^{p-1}\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|\int_{0}^{t\wedge\varsigma_{\Delta,n}}[\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(s^{-}))-\varphi(x((s-\tau)^{-}))g(x(s^{-}))]dB(s)|^{p}\Big{)}
and
H33=3p1𝔼(sup0tt1|0tςΔ,n[h(x¯Δ(s))h(x(s))]𝑑N(s)|p).\displaystyle H_{33}=3^{p-1}\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|\int_{0}^{t\wedge\varsigma_{\Delta,n}}[h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))]dN(s)|^{p}\Big{)}.

By the Hölder inequality and Lemma 3.2, we have

H313p1Tp1Knp𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s,H_{31}\leq 3^{p-1}T^{p-1}K_{n}^{p}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds, (41)

Furthermore, the Hölder and Burkholder-Davis Gundy inequalities yield

H32\displaystyle H_{32} 3p1Tp22cp𝔼0t1ςΔ,n(|φ(x¯Δ((sτ)))gΔ(x¯Δ(s))φ(x((sτ)))gΔ(x¯Δ(s))\displaystyle\leq 3^{p-1}T^{\frac{p-2}{2}}c_{p}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}\Big{(}|\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(s^{-}))-\varphi(x((s-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(s^{-}))
+φ(x((sτ)))gΔ(x¯Δ(s))φ(x((sτ)))g(x(s))|p)ds\displaystyle+\varphi(x((s-\tau)^{-}))g_{\Delta}(\bar{x}_{\Delta}(s^{-}))-\varphi(x((s-\tau)^{-}))g(x(s^{-}))|^{p}\Big{)}ds
2p13p1Tp22cp𝔼0t1ςΔ,n(gΔ(x¯Δ(s))p|φ(x¯Δ((sτ)))φ(x((sτ)))|p\displaystyle\leq 2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}\Big{(}g_{\Delta}(\bar{x}_{\Delta}(s^{-}))^{p}|\varphi(\bar{x}_{\Delta}((s-\tau)^{-}))-\varphi(x((s-\tau)^{-}))|^{p}
+φ(x((sτ)))p|gΔ(x¯Δ(s))g(x(s))|p)ds,\displaystyle+\varphi(x((s-\tau)^{-}))^{p}|g_{\Delta}(\bar{x}_{\Delta}(s^{-}))-g(x(s^{-}))|^{p}\Big{)}ds,

where cpc_{p} is a positive constant. For s[0,t1ςΔ,n]s\in[0,t_{1}\wedge\varsigma_{\Delta,n}], we have xΔ(s),x¯Δ(s)[1/n,n]x_{\Delta}(s^{-}),\bar{x}_{\Delta}(s^{-})\in[1/n,n]. So by Assumption 3.1, Lemma 3.2 and (20), we now have

H32\displaystyle H_{32} 2p13p1Tp22cpLnp(μ(n))p𝔼τ0|ξ([s/Δ]Δ)ξ(s)|p𝑑s\displaystyle\leq 2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}L_{n}^{p}(\mu(n))^{p}\mathbb{E}\int_{-\tau}^{0}|\xi([s/\Delta]\Delta)-\xi(s)|^{p}ds (42)
+2p13p1Tp22cp(Lnp(μ(n))p+Knpσp)𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s.\displaystyle+2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}(L_{n}^{p}(\mu(n))^{p}+K_{n}^{p}\sigma^{p})\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds.
2p13p1Tp22cpLnpK3p(μ(n))pΔpγτ+2p13p1Tp22cp(Lnp(μ(n))p+Knpσp)\displaystyle\leq 2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}L_{n}^{p}K_{3}^{p}(\mu(n))^{p}\Delta^{p\gamma}\tau+2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}\Big{(}L_{n}^{p}(\mu(n))^{p}+K_{n}^{p}\sigma^{p}\Big{)}
×𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s.\displaystyle\times\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds. (43)

Moreover, we obtain from elementary inequality

H33\displaystyle H_{33} 3p1𝔼(sup0tt1|0tςΔ,n[h(x¯Δ(s))h(x(s))]dN~(s)\displaystyle\leq 3^{p-1}\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|\int_{0}^{t\wedge\varsigma_{\Delta,n}}[h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))]d\widetilde{N}(s)
+λ0tςΔ,n[h(x¯Δ(s))h(x(s))]ds|p)\displaystyle+\lambda\int_{0}^{t\wedge\varsigma_{\Delta,n}}[h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))]ds|^{p}\Big{)}
H331+H332,\displaystyle\leq H_{331}+H_{332},

where

H331\displaystyle H_{331} =2p13p1𝔼(sup0tt1|0tςΔ,n[h(x¯Δ(s))h(x(s))]𝑑N~(s)|p)\displaystyle=2^{p-1}3^{p-1}\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|\int_{0}^{t\wedge\varsigma_{\Delta,n}}[h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))]d\widetilde{N}(s)|^{p}\Big{)}

and

H332\displaystyle H_{332} =2p13p1λp𝔼(sup0tt1|0tςΔ,n[h(x¯Δ(s))h(x(s))]𝑑s|p).\displaystyle=2^{p-1}3^{p-1}\lambda^{p}\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|\int_{0}^{t\wedge\varsigma_{\Delta,n}}[h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))]ds|^{p}\Big{)}.

The Doob martingale inequality, martingale isometry and Lemma 3.2 give us

H331\displaystyle H_{331} 2p13p1c¯pλp2(𝔼0t1ςΔ,n|h(x¯Δ(s))h(x(s))|2𝑑N~(s))p2\displaystyle\leq 2^{p-1}3^{p-1}\bar{c}_{p}\lambda^{\frac{p}{2}}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))|^{2}d\widetilde{N}(s)\Big{)}^{\frac{p}{2}}
2p13p1c¯pλp2Tp22Knp𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s,\displaystyle\leq 2^{p-1}3^{p-1}\bar{c}_{p}\lambda^{\frac{p}{2}}T^{\frac{p-2}{2}}K_{n}^{p}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds,

where c¯p\bar{c}_{p} is a positive constant. Moreover by the Hölder inequality and Lemma 3.2,

H332\displaystyle H_{332} 2p13p1λpTp1𝔼0t1ςΔ,n|h(x¯Δ(s))h(x(s))|p𝑑s\displaystyle\leq 2^{p-1}3^{p-1}\lambda^{p}T^{p-1}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|h(\bar{x}_{\Delta}(s^{-}))-h(x(s^{-}))|^{p}ds
2p13p1λpTp1Knp𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s,\displaystyle\leq 2^{p-1}3^{p-1}\lambda^{p}T^{p-1}K_{n}^{p}\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds,

where Lemma 3.2 has been used. Substituting H331H_{331} and H332H_{332} into H33H_{33} yields

H332p13p1Knp(c¯pλp2Tp22+λpTp1)𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s.H_{33}\leq 2^{p-1}3^{p-1}K_{n}^{p}(\bar{c}_{p}\lambda^{\frac{p}{2}}T^{\frac{p-2}{2}}+\lambda^{p}T^{p-1})\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds. (44)

We now combine (41), (42) and (44) to have

𝔼(sup0tt1|xΔ(tςΔ,n)x(tςΔ,n)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)} ζ1Δpγτ+(ζ2+ζ3+ζ4)𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s\displaystyle\leq\zeta_{1}\Delta^{p\gamma}\tau+(\zeta_{2}+\zeta_{3}+\zeta_{4})\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s^{-})-x(s^{-})|^{p}ds
ζ1Δpγτ+(ζ2+ζ3+ζ4)𝔼0t1ςΔ,n|x¯Δ(s)x(s)|p𝑑s,\displaystyle\leq\zeta_{1}\Delta^{p\gamma}\tau+(\zeta_{2}+\zeta_{3}+\zeta_{4})\mathbb{E}\int_{0}^{t_{1}\wedge\varsigma_{\Delta,n}}|\bar{x}_{\Delta}(s)-x(s)|^{p}ds,

where

ζ1\displaystyle\zeta_{1} =2p13p1Tp22cpLnpK3p(μ(n))p\displaystyle=2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}L_{n}^{p}K_{3}^{p}(\mu(n))^{p}
ζ2\displaystyle\zeta_{2} =3p1Tp1Knp\displaystyle=3^{p-1}T^{p-1}K_{n}^{p}
ζ3\displaystyle\zeta_{3} =2p13p1Tp22cp(Lnp(μ(n))p+Knpσp)\displaystyle=2^{p-1}3^{p-1}T^{\frac{p-2}{2}}c_{p}(L_{n}^{p}(\mu(n))^{p}+K_{n}^{p}\sigma^{p})

and

ζ4\displaystyle\zeta_{4} =2p13p1Knp(c¯pλp2Tp22+λpTp1).\displaystyle=2^{p-1}3^{p-1}K_{n}^{p}(\bar{c}_{p}\lambda^{\frac{p}{2}}T^{\frac{p-2}{2}}+\lambda^{p}T^{p-1}).

Meanwhile by elementary inequality and Lemma 4.1,

𝔼(sup0tt1|xΔ(tςΔ,n)x(tςΔ,n)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}
ζ1Δpγτ+2p1(ζ2+ζ3+ζ4)0T𝔼(𝔼|x¯Δ(s)xΔ(s)|p|k(s))𝑑s\displaystyle\leq\zeta_{1}\Delta^{p\gamma}\tau+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\int_{0}^{T}\mathbb{E}\Big{(}\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}\big{|}\mathcal{F}_{k(s)}\Big{)}ds
+2p1(ζ2+ζ3+ζ4)0t1𝔼(sup0ts|xΔ(tςΔ,n)x(tςΔ,n)|p)𝑑s\displaystyle+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\int_{0}^{t_{1}}\mathbb{E}\Big{(}\sup_{0\leq t\leq s}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}ds
ζ1Δpγτ+2p1(ζ2+ζ3+ζ4)𝔇1(Δp/2(π(Δ))p+Δ)0T𝔼|x¯Δ(s)|p𝑑s\displaystyle\leq\zeta_{1}\Delta^{p\gamma}\tau+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\mathfrak{D}_{1}\Big{(}\Delta^{p/2}(\pi(\Delta))^{p}+\Delta\Big{)}\int_{0}^{T}\mathbb{E}|\bar{x}_{\Delta}(s)|^{p}ds
+2p1(ζ2+ζ3+ζ4)0t1𝔼(sup0ts|xΔ(tςΔ,n)x(tςΔ,n)|p)𝑑s\displaystyle+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\int_{0}^{t_{1}}\mathbb{E}\Big{(}\sup_{0\leq t\leq s}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}ds

So by Lemma 4.2, we have

𝔼(sup0tt1|xΔ(tςΔ,n)x(tςΔ,n)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}
ζ1τΔpγ+2p1ρ3𝔇1T(ζ2+ζ3+ζ4)([Δp/4(π(Δ))p]Δp/4+Δp(1/p))\displaystyle\leq\zeta_{1}\tau\Delta^{p\gamma}+2^{p-1}\rho_{3}\mathfrak{D}_{1}T(\zeta_{2}+\zeta_{3}+\zeta_{4})\Big{(}[\Delta^{p/4}(\pi(\Delta))^{p}]\Delta^{p/4}+\Delta^{p(1/p)}\Big{)}
+2p1(ζ2+ζ3+ζ4)0t1𝔼(sup0ts|xΔ(tςΔ,n)x(tςΔ,n)|p)𝑑s\displaystyle+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\int_{0}^{t_{1}}\mathbb{E}\Big{(}\sup_{0\leq t\leq s}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}ds
(ζ1τ+2p1ρ3𝔇1T(ζ2+ζ3+ζ4)(Δp/4(π(Δ))p+1))Δp(1/4γ1/p)\displaystyle\leq\Big{(}\zeta_{1}\tau+2^{p-1}\rho_{3}\mathfrak{D}_{1}T(\zeta_{2}+\zeta_{3}+\zeta_{4})(\Delta^{p/4}(\pi(\Delta))^{p}+1)\Big{)}\Delta^{p(1/4\wedge\gamma\wedge 1/p)}
+2p1(ζ2+ζ3+ζ4)0t1𝔼(sup0ts|xΔ(tςΔ,n)x(tςΔ,n)|p)𝑑s.\displaystyle+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\int_{0}^{t_{1}}\mathbb{E}\Big{(}\sup_{0\leq t\leq s}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}ds.

Noting from (21) that [Δ1/4(π(Δ))]p1[\Delta^{1/4}(\pi(\Delta))]^{p}\leq 1, we have

𝔼(sup0tt1|xΔ(tςΔ,n)x(tςΔ,n)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}
(ζ1τ+2pρ3𝔇1T(ζ2+ζ3+ζ4))Δp(1/4γ1/p)\displaystyle\leq\Big{(}\zeta_{1}\tau+2^{p}\rho_{3}\mathfrak{D}_{1}T(\zeta_{2}+\zeta_{3}+\zeta_{4})\Big{)}\Delta^{p(1/4\wedge\gamma\wedge 1/p)}
+2p1(ζ2+ζ3+ζ4)0t1𝔼(sup0ts|xΔ(tςΔ,n)x(tςΔ,n)|p)𝑑s.\displaystyle+2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4})\int_{0}^{t_{1}}\mathbb{E}\Big{(}\sup_{0\leq t\leq s}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}ds.

By the Gronwall inequality, we obtain

𝔼(sup0tT|xΔ(tςΔ,n)x(tςΔ,n)|p)𝒦Δp(1/4γ1/p),\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t\wedge\varsigma_{\Delta,n})-x(t\wedge\varsigma_{\Delta,n})|^{p}\Big{)}\leq\mathcal{K}\Delta^{p(1/4\wedge\gamma\wedge 1/p)},

where 𝒦=ϱ1(p)eϱ2(p)\mathcal{K}=\varrho_{1}(p)e^{\varrho_{2}(p)} with

ϱ1(p)\displaystyle\varrho_{1}(p) =ζ1τ+2pρ3𝔇1T(ζ2+ζ3+ζ4)\displaystyle=\zeta_{1}\tau+2^{p}\rho_{3}\mathfrak{D}_{1}T(\zeta_{2}+\zeta_{3}+\zeta_{4})

and

ϱ2(p)\displaystyle\varrho_{2}(p) =2p1(ζ2+ζ3+ζ4).\displaystyle=2^{p-1}(\zeta_{2}+\zeta_{3}+\zeta_{4}).

Moreover, the required inequality (40) is deduced by setting Δ0\Delta\rightarrow 0. ∎

The following gives the strong convergence theory of the truncated EM scheme.

Theorem 4.5.

Let Assumptions 2.1, 2.3, 3.1 and 2.2 hold. Then for any p2p\geq 2, we have

limΔ0𝔼(sup0tT|xΔ(t)x(t)|p)=0\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t)-x(t)|^{p}\Big{)}=0 (45)

and consequently

limΔ0𝔼(sup0tT|x¯Δ(t)x(t)|p)=0.\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|\bar{x}_{\Delta}(t)-x(t)|^{p}\Big{)}=0. (46)
Proof.

We only need to prove the theorem for p3p\geq 3 as for p[2,3)p\in[2,3) it follows from the case of p=3p=3 and the Hölder inequality. Let ϑΔ,n\vartheta_{\Delta,n}, τn\tau_{n} and ςΔ,n\varsigma_{\Delta,n} be the same as before and set

eΔ(t)=xΔ(t)x(t).e_{\Delta}(t)=x_{\Delta}(t)-x(t).

For any arbitrarily δ>0\delta>0, the Young inequality

𝔞𝔟δ2𝔞2+12δ𝔟2𝔞,𝔟>0,\mathfrak{a}\mathfrak{b}\leq\frac{\delta}{2}\mathfrak{a}^{2}+\frac{1}{2\delta}\mathfrak{b}^{2}\quad\forall\mathfrak{a},\mathfrak{b}>0,

yields

𝔼(sup0tT|eΔ(t)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}\Big{)} =𝔼(sup0tT|eΔ(t)|p1{τn>T and ϑΔ,n>T})+𝔼(sup0tT|eΔ(t)|p1{τnT or ϑΔ,nT})\displaystyle=\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\tau_{n}>T\text{ and }\vartheta_{\Delta,n}>T\}}\Big{)}+\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\tau_{n}\leq T\text{ or }\vartheta_{\Delta,n}\leq T\}}\Big{)}
𝔼(sup0tT|eΔ(t)|p1{ςΔ,n>T})+δ2𝔼(sup0tT|eΔ(t)|2p)\displaystyle\leq\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\varsigma_{\Delta,n}>T\}}\Big{)}+\frac{\delta}{2}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{2p}\Big{)}
+12δ(τnT or ϑΔ,nT).\displaystyle+\frac{1}{2\delta}\mathbb{P}(\tau_{n}\leq T\text{ or }\vartheta_{\Delta,n}\leq T). (47)

So for p3p\geq 3, Lemmas 2.5 and 4.2 give us

𝔼(sup0tT|eΔ(t)|2p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{2p}\Big{)} 22p𝔼(sup0tT|x(t)|2psup0tT|xΔ(t)|2p)\displaystyle\leq 2^{2p}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x(t)|^{2p}\vee\sup_{0\leq t\leq T}|x_{\Delta}(t)|^{2p}\Big{)}
22p(ρ1ρ3)2.\displaystyle\leq 2^{2p}(\rho_{1}\vee\rho_{3})^{2}. (48)

Also by Theorem 2.4 and Lemma 4.4,

(ςΔ,nT)(τnT)+(ϑΔ,nT).\mathbb{P}(\varsigma_{\Delta,n}\leq T)\leq\mathbb{P}(\tau_{n}\leq T)+\mathbb{P}(\vartheta_{\Delta,n}\leq T). (49)

Moreover, by Lemma 4.4

𝔼(sup0tT|eΔ(t)|p1{ςΔ,n>T})𝒦Δp(1/4γ1/p).\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\varsigma_{\Delta,n}>T\}}\Big{)}\leq\mathcal{K}\Delta^{p(1/4\wedge\gamma\wedge 1/p)}. (50)

Therefore, we substitute (4.2), (49) and (50) into (4.2) to have

𝔼(sup0tT|eΔ(t)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}\Big{)} 22p(ρ1ρ3)2δ2+𝒦Δp(1/4γ1/p)+12δ(τnT)+12δ(ϑΔ,nT).\displaystyle\leq\frac{2^{2p}(\rho_{1}\vee\rho_{3})^{2}\delta}{2}+\mathcal{K}\Delta^{p(1/4\wedge\gamma\wedge 1/p)}+\frac{1}{2\delta}\mathbb{P}(\tau_{n}\leq T)+\frac{1}{2\delta}\mathbb{P}(\vartheta_{\Delta,n}\leq T).

Given ϵ(0,1)\epsilon\in(0,1), we can select δ\delta so that

22p(ρ1ρ3)2δ2ϵ4.\frac{2^{2p}(\rho_{1}\vee\rho_{3})^{2}\delta}{2}\leq\frac{\epsilon}{4}. (51)

Similarly, for any given ϵ(0,1)\epsilon\in(0,1), there exists non_{o} so that for nnon\geq n_{o}, we may select δ\delta to have

12δ(τnT)ϵ4\frac{1}{2\delta}\mathbb{P}(\tau_{n}\leq T)\leq\frac{\epsilon}{4} (52)

and select n(ϵ)non(\epsilon)\leq n_{o} such that for Δ(0,Δ¯]\Delta\in(0,\bar{\Delta}]

12δ(ϑΔ,nT)ϵ4.\frac{1}{2\delta}\mathbb{P}(\vartheta_{\Delta,n}\leq T)\leq\frac{\epsilon}{4}. (53)

Finally, we may select Δ(0,Δ¯]\Delta\in(0,\bar{\Delta}] sufficiently small for ϵ(0,1)\epsilon\in(0,1) such that

𝒦Δp(1/4γ1/p)ϵ4.\mathcal{K}\Delta^{p(1/4\wedge\gamma\wedge 1/p)}\leq\frac{\epsilon}{4}. (54)

Combining (51), (52), (53) and (54), we establish

𝔼(sup0tT|xΔ(t)x(t)|p)ϵ.\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t)-x(t)|^{p}\Big{)}\leq\epsilon.

Therefore, we obtain (45) and clearly, by Lemma 4.1, also get (46) by letting Δ0\Delta\rightarrow 0. ∎

5 Numerical examples

In this section, we analyse the strong convergence result established in Theorem 4.5 by comparing the truncated Euler-Maruyama (TEM) scheme with backward Euler-Maruyama (BEM) scheme for SDDE (4) without α1x(t)1\alpha_{-1}x(t)^{-1} term. It is already noted in [24] that the BEM scheme is not known to cope with α1x(t)1\alpha_{-1}x(t)^{-1} term. Consider the following form of SDDE (3)

dx(t)=(α1x(t)1α0+α1x(t)α2x(t)2)dt+φ(x((t1)))x(t)5/4dB(t)+α3x(t)dN(t),dx(t)=(\alpha_{-1}x(t^{-})^{-1}-\alpha_{0}+\alpha_{1}x(t^{-})-\alpha_{2}x(t^{-})^{2})dt+\varphi(x((t-1)^{-}))x(t^{-})^{5/4}dB(t)+\alpha_{3}x(t^{-})dN(t), (55)

with initial data ξ(t)=0.2\xi(t)=0.2. Here φ()\varphi(\cdot) is a sigmoid-type function defined by

φ(y)={12(1+(eyey))(ey+ey),if y0 14,Otherwise,\varphi(y)=\begin{cases}\frac{1}{2}\frac{(1+(e^{y}-e^{-y}))}{(e^{y}+e^{-y})},&\mbox{if $y\geq 0$ }\\ \frac{1}{4},&\mbox{Otherwise},\end{cases} (56)

Obviously, equation (56) meets all the conditions imposed on φ()\varphi(\cdot) (see [24]). The coefficient terms f(x)=α1x1α0+α1xα2x2f(x)=\alpha_{-1}x^{-1}-\alpha_{0}+\alpha_{1}x-\alpha_{2}x^{2} and g(x)=x5/4g(x)=x^{5/4} are locally Lipschitz continuous and hence fulfil Assumption 2.5. Moreover, we easily observe

sup1/uxu(|f(x)|g(x))K9u2,u1,\sup_{1/u\leq x\leq u}(|f(x)|\vee g(x))\leq K_{9}u^{2},\quad u\geq 1,

where K9=α1+α0+α1+α2+α3K_{9}=\alpha_{-1}+\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}. We can now use μ=K9u2\mu=K_{9}u^{2} with inverse μ1(u)=(u/K9)1/2\mu^{-1}(u)=(u/K_{9})^{1/2}.

5.1 Numerical results

By choosing π(Δ)=Δ2/3\pi(\Delta)=\Delta^{-2/3}, step size 10310^{-3} and the following coefficient values in Table 1, we obtain Monte Carlo simulated sample path of x(t)x(t) to SDDE (55) in Figure 1 using the TEM scheme.

α1\alpha_{-1} α0\alpha_{0} α1\alpha_{1} α2\alpha_{2} α3\alpha_{3}
0.2 0.3 0.2 0.5 1
Table 1: Coefficient values including α1\alpha_{-1}

By similarly choosing π(Δ)=Δ2/3\pi(\Delta)=\Delta^{-2/3}, step size 10310^{-3} and the coefficient values in Table 2 below, we also obtain Monte Carlo simulated sample paths of x(t)x(t) to SDDE (55) in Figure 2 using the TEM and BEM schemes. We can clearly see the TEM scheme converges strongly to BEM scheme.

α0\alpha_{0} α1\alpha_{1} α2\alpha_{2} α3\alpha_{3}
0.3 0.2 0.5 1
Table 2: Coefficient values excluding α1\alpha_{-1}

Finally, the plot of strong errors between these two numerical schemes is displayed in Figure 3 with reference line at 0. Do note this simulated result of strong errors is not yet established theoretically.

Refer to caption


Figure 1: Simulated sample path of x(t)x(t) using Δ=0.001\Delta=0.001

Refer to caption

Figure 2: Simulated sample paths of x(t)x(t) using Δ=0.0001\Delta=0.0001

Refer to caption

Figure 3: Strong errors between the TEM and BEM schemes

6 Financial applications

In this section, we apply Theorem 4.5 to justify numerical schemes within Monte Carlo framework that value the expected payoffs of a bond and a barrier option.

6.1 A bond

Suppose the short-term interest rate is explained by (3). Then a bond price P𝐁P_{\mathbf{B}} at maturity time TT is of the form

P𝐁(T)=𝔼[exp(0Tx(t)𝑑t)].P_{\mathbf{B}}(T)=\mathbb{E}\Big{[}\exp\Big{(}-\int_{0}^{T}x(t)dt\Big{)}\Big{]}. (57)

The approximate value of (57) using (25) is computed by

P𝐁Δ(T)=𝔼[exp(0Tx¯Δ(t)𝑑t)].P_{\mathbf{B}\Delta}(T)=\mathbb{E}\Big{[}\exp\Big{(}-\int_{0}^{T}\bar{x}_{\Delta}(t)dt\Big{)}\Big{]}.

Hence by Theorem 4.5

limΔ0|P𝐁Δ(T)P𝐁(T)|=0.\lim_{\Delta\rightarrow 0}|P_{\mathbf{B}\Delta}(T)-P_{\mathbf{B}}(T)|=0.

6.2 A barrier option

Consider the payoff of a path-dependent barrier option at an expiry date TT given by

PO(T)=𝔼[(x(T)𝔈)+1sup0tTx(t)<𝔅)],P_{O}(T)=\mathbb{E}\Big{[}(x(T)-\mathfrak{E})^{+}1_{\sup_{0\leq t\leq T}}x(t)<\mathfrak{B})\Big{]}, (58)

where the barrier, 𝔅\mathfrak{B}, and exercise price, 𝔈\mathfrak{E}, are constants. Then the approximate value of (58) using (25) is computed by

POΔ(T)=𝔼[(x¯Δ(T)𝔈)+1sup0tTx¯Δ(t)<𝔅)].P_{O\Delta}(T)=\mathbb{E}\Big{[}(\bar{x}_{\Delta}(T)-\mathfrak{E})^{+}1_{\sup_{0\leq t\leq T}}\bar{x}_{\Delta}(t)<\mathfrak{B})\Big{]}.

Similarly, by Theorem 4.5

limΔ0|POΔ(T)PO(T)|=0.\lim_{\Delta\rightarrow 0}|P_{O\Delta}(T)-P_{O}(T)|=0.

See, for instance, [22] for detailed accounts.

Acknowledgements

The Author would like to thank University of Strathclyde for the scholarship and his first PhD supervisor, Prof. Xuerong Mao.

References

  • [1] Black, F. and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of political economy, 81(3), pp.637-654.
  • [2] Merton, R.C., 1973. Theory of rational option pricing. Theory of Valuation, pp.229-288.
  • [3] Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of financial economics, 5(2), pp.177-188.
  • [4] Dothan, L.U., 1978. On the term structure of interest rates. Journal of Financial Economics, 6(1), pp.59-69.
  • [5] Brennan, M.J. and Schwartz, E.S., 1980. Analyzing convertible bonds. Journal of Financial and Quantitative analysis, 15(4), pp.907-929.
  • [6] Cox, J.C., Ingersoll Jr, J.E. and Ross, S.A., 2005. A theory of the term structure of interest rates. In Theory of Valuation (pp. 129-164).
  • [7] Mao, X. and Sabanis, S., 2013. Delay geometric Brownian motion in financial option valuation. Stochastics An International Journal of Probability and Stochastic Processes, 85(2), pp.295-320.
  • [8] Merton, R.C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3(1-2), pp.125-144.
  • [9] Lin, B.H. and Yeh, S.K., 1999. Jump‐Diffusion Interest Rate Process: An Empirical Examination. Journal of Business Finance and Accounting, 26(7‐8), pp.967-995.
  • [10] Kou, S.G., 2002. A jump-diffusion model for option pricing. Management science, 48(8), pp.1086-1101.
  • [11] Wu, F., Mao, X. and Chen, K., 2008. Strong convergence of Monte Carlo simulations of the mean-reverting square root process with jump. Applied Mathematics and Computation, 206(1), pp.494-505.
  • [12] Wu, F., Mao, X. and Chen, K., 2009. The Cox–Ingersoll–Ross model with delay and strong convergence of its Euler–Maruyama approximate solutions. Applied Numerical Mathematics, 59(10), pp.2641-2658.
  • [13] Lee, M.K. and Kim, J.H., 2016. A delayed stochastic volatility correction to the constant elasticity of variance model. Acta Mathematicae Applicatae Sinica, English Series, 32(3), pp.611-622.
  • [14] Ait-Sahalia, Y., 1996. Testing continuous-time models of the spot interest rate. The review of financial studies, 9(2), pp.385-426.
  • [15] Szpruch, L., Mao, X., Higham, D.J. and Pan, J., 2011. Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT Numerical Mathematics, 51(2), pp.405-425.
  • [16] Cheng, S.R., 2009. Highly nonlinear model in finance and convergence of Monte Carlo simulations. Journal of Mathematical Analysis and Applications, 353(2), pp.531-543.
  • [17] Dung, N.T., 2016. Tail probabilities of solutions to a generalized Ait-Sahalia interest rate model. Statistics and Probability Letters, 112, pp.98-104.
  • [18] Deng, S., Fei, C., Fei, W. and Mao, X., 2019. Generalized Ait-Sahalia-type interest rate model with Poisson jumps and convergence of the numerical approximation. Physica A: Statistical Mechanics and its Applications, 533, p.122057.
  • [19] Lewis, A.L., 2009. Option Valuation Under Stochastic Volatility II. Finance Press, Newport Beach, CA.
  • [20] Higham, D.J. and Kloeden, P.E., 2005. Numerical methods for nonlinear stochastic differential equations with jumps. Numerische Mathematik, 101(1), pp.101-119.
  • [21] Mao, X., 2007. Stochastic differential equations and applications. 2nd ed. Chichester: Horwood Publishing Limited.
  • [22] Higham, D.J. and Mao, X., 2005. Convergence of Monte Carlo simulations involving the mean-reverting square root process. Journal of Computational Finance, 8(3), pp.35-61.
  • [23] Mao, X., 2015. The truncated Euler–Maruyama method for stochastic differential equations. Journal of Computational and Applied Mathematics, 290, pp.370-384.
  • [24] Coffie, E. and Mao, X., Truncated EM numerical method for generalised Ait-Sahalia-type interest rate model with delay. Journal of Computational and Applied Mathematics, 383.
  • [25] Guo, Q., Mao, X. and Yue, R., 2018. The truncated Euler–Maruyama method for stochastic differential delay equations. Numerical Algorithms, 78(2), pp.599-624.
  • [26] Deng, S., Fei, W., Liu, W. and Mao, X., 2019. The truncated EM method for stochastic differential equations with Poisson jumps. Journal of Computational and Applied Mathematics, 355, pp.232-257.
  • [27] Bao, J., Böttcher, B., Mao, X. and Yuan, C., 2011. Convergence rate of numerical solutions to SFDEs with jumps. Journal of Computational and Applied Mathematics, 236(2), pp.119-131.
  • [28] Benth, F.E., 2003. Option theory with stochastic analysis: an introduction to mathematical finance. Berlin: Springer Science and Business Media.
  • [29] Applebaum, D., 2009. Lévy processes and stochastic calculus. Cambridge university press.