This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These two authors contributed equally to this work.thanks: These two authors contributed equally to this work.

Demonstration of dynamical control of three-level open systems with a superconducting qutrit

Ri-Hua Zheng    Wen Ning    Zhen-Biao Yang zbyang@fzu.edu.cn    Yan Xia xia-208@163.com    Shi-Biao Zheng t96034@fzu.edu.cn Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
Abstract

We propose a method for the dynamical control in three-level open systems and realize it in the experiment with a superconducting qutrit. Our work demonstrates that in the Markovian environment for a relatively long time (3 μ\mus), the systemic populations or coherence can still strictly follow the preset evolution paths. This is the first experiment for precisely controlling the Markovian dynamics of three-level open systems, providing a solid foundation for the future realization of dynamical control in multiple open systems. An instant application of the techniques demonstrated in this experiment is to stabilize the energy of quantum batteries.

quantum control, opten system

Introduction.–The control of quantum systems is always an extremely interesting and essential topic among diverse types of quantum information tasks [1, 2]. With the gradual development of experimental techniques, decoherence, mainly resulted from energy relaxation and dephasing, has become a primary barrier lying on the way to experimentally implement the quantum control. To clear this barrier, the researchers choose to take measures to shorten the evolution time and have achieved remarkable successes in the experiments, such as, preparing 20-qubit entanglement [3, 4] and simulating quantum walk on 62-qubit processor [5]. Meanwhile, some researchers attempt on constructing qubits that are insensitive to decoherence [6, 5, 7, 8]. So far, the relaxation time T1T_{1} and dephasing time T2T_{2} of superconducting qubit have both been extended to 200 μ\mus [8]. Indeed, the methods of shortening the evolution time and making more perfect qubits naturally reduce the impact of decoherence rather than avoiding it, which still process quantified errors. For realizing the leap of quantum error rates from 10310^{-3} to 101510^{-15} [9, 10] and further accomplishing near-term quantum works, it is necessary to explore the control of open quantum systems, tailoring the decoherence as one of the effective elements involved in the quantum control.

The earlier open-system quantum control theory draws supports from a kind of nuclear magnetic resonance technology, called spin-echo [11], in which a π\pi pulse is inserted midway in the evolution time to increase T2T_{2}. However, this inserted π\pi pulse will change the systemic dynamics. Several spin-echo-like techniques, such as bang-bang control [12], dynamical decoupling technique [13], and parity-kicks [14], process the same problems with the destruction of dynamics. So these works generally served as techniques for storing coherence of quantum systems [15, 16, 17, 18, 19, 20]. Researchers alternatively develop an open-system adiabatic theorem [21] to fully control the dynamics. This method utilizes super operators to describe the open systems and can approximately predict the density matrix at each moment. Since the adiabatic theorem needs a long evolution time to guarantee the adiabatic approximation, researchers further try to build a shortcut to adiabaticity (STA) (similar to that in the closed systems [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]).

By virtue of super operators, Sarandy etet alal. [36] have proposed a concept about open-system dynamical invariants to build a STA in open systems. They constructed some 4-dimensional invariants for engineering two-level open systems, nevertheless, with several simplifications, such as, either considering energy relaxation or dephasing. Finding proper invariants will be complicated when someone simultaneously takes energy relaxation and dephasing into account, let alone expansion to three-level open systems with 9-dimensional invariants. Therefore other control methods are eagerly in need of discovery.

Recently, Medina and Semião [37] have directly set the density operator with time-dependent parameters and then submitted them to the Markovian master equation [38], which gives appropriate functions of pulses to control the populations in two-level open systems. The error rates of populations control in Ref. [37] under serious decoherence are almost zero, an exciting result. Some follow-up studies [39, 40] have made a lot of additions to the application scenarios, but still remaining in two-level open systems. With the general trend of quantum tasks towards multiplication [41], it is of great significance to explore the dynamics of three (or more)-level open systems.

In this letter, we propose a method for the dynamical control in three-level open systems, and demonstrate it with a superconducting circuit platform [42, 43, 44, 45, 46, 47]. Two time-dependent parameters are presupposed in the Markovian master equation to singly control the populations or coherence, and then the analytical functions of driving pulses are given to complete desired dynamical control. For proving the correctness of this method, we apply the designed driving pulses to a superconducting Xmon qutrit and measure populations of excited states |1|1\rangle and |2|2\rangle, or coherence between ground and excited states. The experimental results are in good agreement with the theoretical design for the dynamical control. This is the first experiment to precisely control the Markovian dynamics of three-level open systems, where the decoherence is effectively dominated. In addition, an interesting freezing phenomenon of populations is observed. That is, in the late stages of evolutions, the populations stabilize at specific values for a relatively long time (>>1.8 μs\mu s) in the presence of decoherence. An instant application scenario of this freezing phenomenon is the quantum battery (QB) [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. One can steadily lock the energy of QBs for a comparatively long time (>>1.2 μs\mu s), resisting the relaxation of excitation, and therefore building prototypes of QBs with more stable energy.

Method.–Assume that a three-level system consists of bases |0|0\rangle, |1|1\rangle, and |2|2\rangle. The systemic Hamiltonian in the interaction picture is (=1\hbar=1 hereafter) Hi(t)=Ω01(t)|01|+Ω12(t)|12|+H.c.H_{i}(t)=\Omega_{01}(t)|0\rangle\langle 1|+\Omega_{12}(t)|1\rangle\langle 2|+{\rm H.c.}, where Ω01(t)\Omega_{01}(t) and Ω12(t)\Omega_{12}(t) respectively represent the Rabi frequencies of the designed driving pulses for controlling transitions |0|1|0\rangle\leftrightarrow|1\rangle and |1|2|1\rangle\leftrightarrow|2\rangle. We assume the density matrix of this three-level system being [basis order {|2|2\rangle,|1|1\rangle,|0|0\rangle} and dropping (t)(t) henceforth]

ρ=(f2ih1h2ih1f1ih3h2ih31f1f2),\displaystyle\rho=\left(\begin{array}[]{ccc}f_{2}&-ih_{1}&h_{2}\\ ih_{1}&f_{1}&-ih_{3}\\ h_{2}&ih_{3}&1-f_{1}-f_{2}\\ \end{array}\right), (4)

in which f1f_{1}, f2f_{2}, h1h_{1}, h2h_{2}, and h3h_{3} are all time-dependent real functions. Here f1f_{1} and f2f_{2} describe the populations of states |1|1\rangle and |2|2\rangle, respectively. Additionally, h1h_{1}, h2h_{2}, and h3h_{3} describe the coherence of this three-level system. Equation 4 (5 degrees of freedom) is not the most generalized case for a three-level density operator (8 degrees of freedom), however sufficient as a demonstration. The Markovian master equation [38] here is

ρ˙\displaystyle\dot{\rho} =\displaystyle= i[Hi,ρ]+j=14[LjρLj12(LjLjρ+ρLjLj)],\displaystyle-i[H_{i},\rho]+\sum_{j=1}^{4}\big{[}L_{j}\rho L_{j}^{\dagger}-\frac{1}{2}(L_{j}^{\dagger}L_{j}\rho+\rho L_{j}^{\dagger}L_{j})\big{]}, (5)

where Lindblad operators are Lk=γk|kk|L_{k}=\sqrt{\gamma_{k}}|k\rangle\langle k| and Lk+2=Γk|k1k|L_{k+2}=\sqrt{\Gamma_{k}}|k-1\rangle\langle k|, with Γk\Gamma_{k} and γk\gamma_{k} being the rates of energy relaxation and dephasing of state |k|k\rangle, respectively (k=1,2k=1,2). By utilizing Eqs. (4, 5), we can derive the Rabi frequencies to control the dynamics of this three-level system, yielding

Ω01=\displaystyle\Omega_{01}= f1Γ1+f˙1+f˙22h3,\displaystyle\frac{f_{1}\Gamma_{1}+\dot{f}_{1}+\dot{f}_{2}}{2h_{3}}, (6a)
Ω12=\displaystyle\Omega_{12}= f2Γ2+f˙22h1.\displaystyle\frac{f_{2}\Gamma_{2}+\dot{f}_{2}}{2h_{1}}. (6b)

It is noteworthy that there are three constraint equations

h˙1\displaystyle\dot{h}_{1} =12(γ1+γ2+Γ1+Γ2)h1+(f1f2)Ω12h2Ω01,\displaystyle=-\frac{1}{2}(\gamma_{1}+\gamma_{2}+\Gamma_{1}+\Gamma_{2})h_{1}+(f_{1}-f_{2})\Omega_{12}-h_{2}\Omega_{01}, (7a)
h˙2\displaystyle\dot{h}_{2} =12(γ2+Γ2)h2h3Ω12+h1Ω01,\displaystyle=-\frac{1}{2}(\gamma_{2}+\Gamma_{2})h_{2}-h_{3}\Omega_{12}+h_{1}\Omega_{01}, (7b)
h˙3\displaystyle\dot{h}_{3} =12(γ1+Γ1)h3+h2Ω12(1+f2+2f1)Ω01.\displaystyle=-\frac{1}{2}(\gamma_{1}+\Gamma_{1})h_{3}+h_{2}\Omega_{12}-(-1+f_{2}+2f_{1})\Omega_{01}. (7c)

Up to now, the populations or coherence of the three-level system can be effectively controlled by the interaction Hamiltonian HiH_{i}, i.e., by Rabi frequencies Ω01\Omega_{01} and Ω12\Omega_{12}. A specific example is, an evolution from the ground state |0|0\rangle to a final state with populations respectively being P0(tf)P_{0}(t_{f}), P1(tf)P_{1}(t_{f}), and P2(tf)P_{2}(t_{f}) in states |0|0\rangle, |1|1\rangle, and |2|2\rangle, can be achieved by adjusting f1=fP1(tf)f_{1}=fP_{1}(t_{f}) and f2=fP2(tf)f_{2}=fP_{2}(t_{f}). The intermediate function ff changing from 0 to 1 in the time interval [0,tf][0,t_{f}] can be set as f=[1+ea(ttf/2)]1f=[1+e^{-a(t-t_{f}/2)}]^{-1} [26, 27, 37], with a=50/tfa=50/t_{f} determining the gradient of the transformation. By submitting f1f_{1} and f2f_{2} into Eqs. (6, 7), one can obtain Rabi frequencies Ω01\Omega_{01} and Ω12\Omega_{12} to accomplish the desired transformation of populations.

Device.–Here we use a frequency-tunable superconducting Xmon qutrit [42, 43, 44, 45, 46, 47] to test the above theory. The original Hamiltonian reads H=Ω01eiω01t|01|+Ω12eiω12t|12|+H.c.+i=0,1,2ωi|ii|H=\Omega_{01}e^{i\omega_{01}t}|0\rangle\langle 1|+\Omega_{12}e^{i\omega_{12}t}|1\rangle\langle 2|+{\rm H.c.}+\sum_{i=0,1,2}\omega_{i}|i\rangle\langle i|, where ωi\omega_{i} and ω01(12)\omega_{01(12)} are the angular frequencies of energy level |i|i\rangle and microwave pulses coupling |0|1(|1|2)|0\rangle\leftrightarrow|1\rangle\ (|1\rangle\leftrightarrow|2\rangle), respectively. We adjust ω01/2π=(ω1ω0)/2π=5.9600\omega_{01}/2\pi=(\omega_{1}-\omega_{0})/2\pi=5.9600 GHz and ω12/2π=(ω2ω1)/2π=5.7208\omega_{12}/2\pi=(\omega_{2}-\omega_{1})/2\pi=5.7208 GHz (in this experiment, frequency accuracy to 4 decimal places is mandatory) to ensure that the pulses can resonantly drive the transitions between adjacent energy levels. Note the fixed frequency of the resonator (not used here) is 5.584 GHz [44, 45, 46, 47], dynamically decoupled with the above system.

An essential process for this experiment is to precisely measure the coefficients of decoherence, γk\gamma_{k} and Γk\Gamma_{k}. According to the above form of Lindblad operators, one can deduce Γ1=1/T101\Gamma_{1}=1/T_{1}^{01}, γ1=2/T201Γ1\gamma_{1}=2/T_{2}^{01}-\Gamma_{1}, Γ2=1/T112\Gamma_{2}=1/T_{1}^{12}, and γ2=2/T212Γ2Γ1γ1\gamma_{2}=2/T_{2}^{12}-\Gamma_{2}-\Gamma_{1}-\gamma_{1}. Here T101(12)T_{1}^{01(12)} and T201(12)T_{2}^{01(12)} are the energy relaxation and dephasing time measured between |0|0\rangle and |1|1\rangle (|1|1\rangle and |2|2\rangle), shown in Figs. 1(a) and 1(b), respectively. From Fig. 1, we find T1T_{1} and T2T_{2} fluctuate a lot during the measured period of 20 hours. In addition, several works [59, 15, 16, 17, 18, 19, 20] support that T2T_{2} will change with the applying of microwave pulses (the spin-echo technique [11] is a strong proof). Therefore the values of T1T_{1} and T2T_{2} we utilized to design pulses are a little different from those measured in Fig. 1, specifically, [T101,T112,T201,T212]=[9.5,4.6,6,1.9]μs[T_{1}^{01},T_{1}^{12},T_{2}^{01},T_{2}^{12}]=[9.5,4.6,6,1.9]\ \mu s, which are fixed and utilized for all the experimental control (Figs. 3, 4, and 5).

Refer to caption
Figure 1: (Color online) Measurement results of (a) relaxation time T1T_{1} and (b) dephasing time T2T_{2}. The data are measured 12 groups per hour for a total of 20 hours. The insets, as examples, are the fitting processes for T1T_{1} and T2T_{2} in (a) and (b), respectively.
Refer to caption
Figure 2: (Color online) (a) Feasible area (FA, surrounded by curves and x-axis) and infeasible area (IFA, the outside zone) of the populations control in the experiment when the evolution time is 3, 5, and 10 μ\mus. Condition P1(tf)+P2(tf)1P_{1}(t_{f})+P_{2}(t_{f})\leq 1 triangulates the boundary. (b) A sample point marked as purple plus sign in (a): Rabi frequencies for the control of populations P1(0)=0P1(tf)=0.3P_{1}(0)=0\to P_{1}(t_{f})=0.3 and P2(0)=0P2(tf)=0.2P_{2}(0)=0\to P_{2}(t_{f})=0.2. The used parameters of decoherence are [T101,T112,T201,T212]=[9.5,4.6,6,1.9]μs[T_{1}^{01},T_{1}^{12},T_{2}^{01},T_{2}^{12}]=[9.5,4.6,6,1.9]\ \mu s and the inset shows the magnification picture of the Rabi frequencies.

Results of the populations control.–Due to the choice of f1f_{1} and f2f_{2}, there are infeasible zones of the populations transformation, shrinking as tft_{f} extending, shown in Fig. 2(a). While the feasible area still takes a large part. As an example, we utilize Eqs. (6, 7) to design Ω01\Omega_{01} and Ω12\Omega_{12} [see Fig. 2(b)] for the transformation of populations P1(0)=0P1(tf)=0.3P_{1}(0)=0\to P_{1}(t_{f})=0.3 and P2(0)=0P2(tf)=0.2P_{2}(0)=0\to P_{2}(t_{f})=0.2. For the evolution time, we choose tf=3μst_{f}=3\ \mu s to accumulate enough impact of the decoherence. The corresponding experimental results are shown in Fig. 3, with outer and inner layers indicating the results of applying open-system [see Eqs. (6, 7)] and closed-system [see Eqs. (6, 7), preset γk=Γk=0\gamma_{k}=\Gamma_{k}=0] pulses, respectively. Intuitively, the populations are controlled more precisely in the outer layer, as compared to the inner one. More rigorously, we define a standard deviation to describe the error rate of the population control

error=i=0,1,2[Pi(tf)idealPi(tf)exp.]2/3,\displaystyle{\rm error}=\sqrt{\sum_{i=0,1,2}[P_{i}(t_{f})^{\rm ideal}-P_{i}(t_{f})^{\rm exp.}]^{2}/3}, (8)

where Pi(tf)idealP_{i}(t_{f})^{\rm ideal} and Pi(tf)exp.P_{i}(t_{f})^{\rm exp.} are the ideal and experimental values of the population in |i|i\rangle, respectively. In the outer layer of Fig. 3, the populations control achieves an error rate of 1.02%, not small [60] because we intentionally extended the evolution time (3 μ\mus). In contrast, if the control is performed for such a long time by applying closed-system pulses, the error rate reaches 7.49%. This stark difference in error demonstrates the effectiveness of the present control method.

We also measure the results of 29 different controls of populations, 6 of them shown in Fig. 4 and all displayed in the Supplemental Material [61]. The error rates of the controls in Fig. 4 are around 1%, which we believe can be further improved with more stable superconducting qutrits [8].

Another exceptional physical phenomenon is that the populations seem to be frozen after 1.8 μ\mus in the outer layers of Fig. 3. This freezing phenomenon of populations does not mean that the driving pulses Ω01\Omega_{01} and Ω12\Omega_{12} have stopped. On the contrary, it is the driving pulses [see the insets of Fig. 2(b)] we applied that caused this freezing phenomenon to occur. Specifically, such a freezing phenomenon arises from the interplay between the dynamics induced by the continuous microwave drives and the two decoherence channels characterized by T1T_{1} and T2T_{2} (both available for |0|1|0\rangle\leftrightarrow|1\rangle and |1|2|1\rangle\leftrightarrow|2\rangle transitions), similar to the cases for generation of steady states in most open systems [62, 63, 64, 65, 36, 66, 67]. But here it differs significantly in that both the energy relaxation and the dephasing are involved in the nonequilibrium dynamical processes and together help freeze the states of three-level systems, as compared to the previous ones which generally consider only one decoherence channel [36, 66, 67].

Refer to caption
Figure 3: (Color online) Experimental results of the control of populations P1(0)=0P1(tf)=0.3P_{1}(0)=0\to P_{1}(t_{f})=0.3 and P2(0)=0P2(tf)=0.2P_{2}(0)=0\to P_{2}(t_{f})=0.2. The experimental results of applying open-system and closed-system pulses are shown (with circles, triangles, and pentagrams) in the outer and inner layers, respectively. The ideal results of P0(t)P_{0}(t), P1(t)P_{1}(t), and P2(t)P_{2}(t) are indicated by solid, dashed and dotted dashed curves, respectively.
Refer to caption
Figure 4: (Color online) Six groups of experimental results (error bars) of the controls of populations. The ideal results of P0(t)P_{0}(t), P1(t)P_{1}(t), and P2(t)P_{2}(t) are represented by solid, dashed and dotted dashed curves, respectively. The error rates are shown in corresponding subgraphs.
Refer to caption
Figure 5: (Color online) Six groups of experimental results (error bars) of the controls of coherence. The ideal results of h0(t)h_{0}(t), h1(t)h_{1}(t), and h2(t)h_{2}(t) are represented by solid, dashed and dotted dashed curves, respectively. The error rates are shown in corresponding subfigures.

Results of the coherence control. Since only two free variables, Ω01\Omega_{01} and Ω12\Omega_{12} in Eqs. (6, 7) can be controlled in the experiment, we can only control two parts of coherence. Here we choose h3h_{3} and h2h_{2} as an example for illuminating the coherence control. Corresponding variations of Eqs. (6, 7) and the forbidden zone of coherence control are shown in the Supplemental Material [61]. According to the same preset of parameters and intermediate function ff, we show 6 groups of results of the coherence control in Fig. 5 (all the 36 groups of results in the Supplemental Material [61]). The error rate here is

error=m=2,3[hm(tf)idealhm(tf)exp.]2/2,\displaystyle{\rm error}^{\prime}=\sqrt{\sum_{m=2,3}[h_{m}(t_{f})^{\rm ideal}-h_{m}(t_{f})^{\rm exp.}]^{2}/2}, (9)

where hm(tf)idealh_{m}(t_{f})^{\rm ideal} and hm(tf)exp.h_{m}(t_{f})^{\rm exp.} are the ideal and experimental values of coherence hmh_{m}, respectively. Figure 5 shows that h2h_{2} and h3h_{3} are controlled well and the values of h1h_{1} are accurately predicted. Similarly, the microwaves protect the coherence (lasting 1.2 μ\mus) from the influence of dephasing. If there are no microwaves applied, roughly, after the same 1.2 μ\mus, h3(1.2μs)/h3(0)exp(1.2μs/T201)0.8h_{3}(1.2\mu{\rm s})/h_{3}(0)\sim\exp(-1.2\mu{\rm s}/T_{2}^{01})\sim 0.8 and h2(1.2μs)/h2(0)exp(1.2μs/T212)0.45h_{2}(1.2\mu{\rm s})/h_{2}(0)\sim\exp(-1.2\mu{\rm s}/T_{2}^{12})\sim 0.45, the coherence will be seriously damaged. In contrast, the error rates are all within 2% when we apply microwaves for the coherence control.

Application.– Quantum battery [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. The freezing phenomenon seems helpful to stabilize the energy of the QB for a fairly long time, especially in the energy-storing stage of the QB. For proving this, we design a pulse for a qutrit in the experiment to simulate the charging, storing, discharging processes of the QB (see Fig. 6). A considerably long period, about 1.2 μ\mus, of energy [ϵ=(ω1ω0)P1\epsilon=(\omega_{1}-\omega_{0})P_{1}] stability was observed. This stability is hard to achieve by applying a pulse designed without considering decoherence because energy relaxation of the superconducting qutrit will exponentially drop the excitation down. Therefore, the present method may contribute to the construction of more stable QBs.

Refer to caption
Figure 6: (Color online) Experimental verification of the QB. We plot the experimental and ideal results by diamond points and solid curves, respectively. The inserted circle depicts the Bloch sphere of the ideal evolution and the density of points represents the speed of evolution, one point per 15 ns. The parameters of decoherence are [T101,T201]=[9.5,6]μ[T_{1}^{01},T_{2}^{01}]=[9.5,6]\ \mus.

Conclusion.–We have proposed a method to control the dynamics of three-level open systems and realized it in the experiment with a platform of a superconducting Xmon qutrit [42, 43, 44, 45, 46, 47]. The populations and coherence could be singly controlled with error rates around 1% under the influence of decoherence for a relatively long time, 3 μ\mus, close to the dephasing time T212T_{2}^{12} of the qutrit. In some situations where the control is more successful, the error rates can even be less than 0.3%. We believe these error rates can be further reduced with more stable superconducting qutrits [8].

Additionally, an interesting freezing phenomenon of populations was observed. The designed microwave pulses just offset the impact of decoherence and visually freeze the populations. We then applied this phenomenon to make more stable prototypes of QBs, whose energy can hold 1.2 μ\mus with only one charging. Moreover, this freezing phenomenon strongly proves that the Markovian master equation precisely describes the dynamics of three-level open systems, as demonstrated here with a superconducting Xmon qutrit that possesses the specially intrinsic decoherence rates. The present work provides a positive prospect of accurately realizing the dynamical control of three (or more)-level open systems by using the adjustable driving pulses in the Markovian environment.

Note that all the data points of experiments were averaged over 12000 times and the readout errors of the qutrit have been corrected. We thank Ye-Hong Chen and Xin Wang in RIKEN for discussions. This work was supported by the National Natural Science Foundation of China (Grants No. 11874114, and No. 11875108), and the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011, Project from Fuzhou University under Grant JG202001-2.

References

  • Vitanov et al. [2017] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89, 015006 (2017).
  • Koch et al. [2019] C. P. Koch, M. Lemeshko, and D. Sugny, Quantum control of molecular rotation, Rev. Mod. Phys. 91, 035005 (2019).
  • Song et al. [2019] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D.-W. Wang, H. Wang, and S.-Y. Zhu, Generation of multicomponent atomic schrödinger cat states of up to 20 qubits, Science 365, 574 (2019).
  • Omran et al. [2019] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of schrödinger cat states in rydberg atom arrays, Science 365, 570 (2019).
  • Gong et al. [2021] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo, et al., Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science 372, 948 (2021).
  • Gong et al. [2019] M. Gong, M.-C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, et al., Genuine 12-qubit entanglement on a superconducting quantum processor, Phys. Rev. Lett. 122, 110501 (2019).
  • Wu et al. [2021] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., Strong quantum computational advantage using a superconducting quantum processor, arXiv:2106.14734  (2021).
  • Qiskit [2021] Qiskit, An open-source framework for quantum computing, Online  (2021).
  • Fowler et al. [2012] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012).
  • Google-Quantum-AI [2021] Google-Quantum-AI, Exponential suppression of bit or phase errors with cyclic error correction, Nature 595, 383 (2021).
  • Hahn [1950] E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
  • Viola and Lloyd [1998] L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
  • Viola et al. [1999] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
  • Vitali and Tombesi [1999] D. Vitali and P. Tombesi, Using parity kicks for decoherence control, Phys. Rev. A 59, 4178 (1999).
  • Du et al. [2009] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, Preserving electron spin coherence in solids by optimal dynamical decoupling, Nature 461, 1265 (2009).
  • Biercuk et al. [2009] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Optimized dynamical decoupling in a model quantum memory, Nature 458, 996 (2009).
  • de Lange et al. [2010] G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and R. Hanson, Universal dynamical decoupling of a single solid-state spin from a spin bath, Science 330, 60 (2010).
  • van der Sar et al. [2012] T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Decoherence-protected quantum gates for a hybrid solid-state spin register, Nature 484, 82 (2012).
  • Zhong et al. [2015] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature 517, 177 (2015).
  • Guo et al. [2018] Q. Guo, S.-B. Zheng, J. Wang, C. Song, P. Zhang, K. Li, W. Liu, H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang, C.-Y. Lu, and J.-W. Pan, Dephasing-insensitive quantum information storage and processing with superconducting qubits, Phys. Rev. Lett. 121, 130501 (2018).
  • Sarandy and Lidar [2005] M. S. Sarandy and D. A. Lidar, Adiabatic quantum computation in open systems, Phys. Rev. Lett. 95, 250503 (2005).
  • Demirplak and Rice [2003] M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107, 9937 (2003).
  • Berry [2009] M. V. Berry, Transitionless quantum driving, J. Phys. A: Math. Theor. 42, 365303 (2009).
  • Chen et al. [2010a] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Phys. Rev. Lett. 104, 063002 (2010a).
  • Chen et al. [2010b] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105, 123003 (2010b).
  • Golubev and Kuleff [2014] N. V. Golubev and A. I. Kuleff, Control of populations of two-level systems by a single resonant laser pulse, Phys. Rev. A 90, 035401 (2014).
  • Golubev and Kuleff [2015] N. V. Golubev and A. I. Kuleff, Control of charge migration in molecules by ultrashort laser pulses, Phys. Rev. A 91, 051401(R) (2015).
  • Chen et al. [2021] Y.-H. Chen, W. Qin, X. Wang, A. Miranowicz, and F. Nori, Shortcuts to adiabaticity for the quantum rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126, 023602 (2021).
  • Chen et al. [2018] Y.-H. Chen, Z.-C. Shi, J. Song, and Y. Xia, Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97, 023841 (2018).
  • Zheng et al. [2020a] R.-H. Zheng, Y.-H. Kang, D. Ran, Z.-C. Shi, and Y. Xia, Deterministic interconversions between the greenberger-horne-zeilinger states and the ww states by invariant-based pulse design, Phys. Rev. A 101, 012345 (2020a).
  • Zheng et al. [2020b] R.-H. Zheng, Y.-H. Kang, S.-L. Su, J. Song, and Y. Xia, Robust and high-fidelity nondestructive rydberg parity meter, Phys. Rev. A 102, 012609 (2020b).
  • Kang et al. [2017] Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Complete bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm, Phys. Rev. A 96, 022304 (2017).
  • Kang et al. [2018] Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Pulse design for multilevel systems by utilizing lie transforms, Phys. Rev. A 97, 033407 (2018).
  • Wu et al. [2019] J.-L. Wu, Y. Wang, J. Song, Y. Xia, S.-L. Su, and Y.-Y. Jiang, Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths, Phys. Rev. A 100, 043413 (2019).
  • Guo et al. [2020] F.-Q. Guo, J.-L. Wu, X.-Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L.-L. Yan, M. Feng, and S.-L. Su, Complete and nondestructive distinguishment of many-body rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102, 062410 (2020).
  • Sarandy et al. [2007] M. S. Sarandy, E. I. Duzzioni, and M. H. Y. Moussa, Dynamical invariants and nonadiabatic geometric phases in open quantum systems, Phys. Rev. A 76, 052112 (2007).
  • Medina and Semião [2019] I. Medina and F. L. Semião, Pulse engineering for population control under dephasing and dissipation, Phys. Rev. A 100, 012103 (2019).
  • Nielsen and Chuang [2004] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, England, 2004) p. 386.
  • Ran et al. [2020a] D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, Pulse reverse engineering for controlling two-level quantum systems, Phys. Rev. A 101, 023822 (2020a).
  • Ran et al. [2020b] D. Ran, B. Zhang, Y.-H. Chen, Z.-C. Shi, Y. Xia, R. Ianconescu, J. Scheuer, and A. Gover, Effective pulse reverse-engineering for strong field–matter interaction, Opt. Lett. 45, 3597 (2020b).
  • Paesani et al. [2021] S. Paesani, J. F. F. Bulmer, A. E. Jones, R. Santagati, and A. Laing, Scheme for universal high-dimensional quantum computation with linear optics, Phys. Rev. Lett. 126, 230504 (2021).
  • Barends et al. [2014] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500 (2014).
  • Kelly et al. [2015] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519, 66 (2015).
  • Song et al. [2017] C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit, Nature Commun. 8, 1061 (2017).
  • Ning et al. [2019] W. Ning, X.-J. Huang, P.-R. Han, H. Li, H. Deng, Z.-B. Yang, Z.-R. Zhong, Y. Xia, K. Xu, D. Zheng, and S.-B. Zheng, Deterministic entanglement swapping in a superconducting circuit, Phys. Rev. Lett. 123, 060502 (2019).
  • Xu et al. [2021] K. Xu, W. Ning, X.-J. Huang, P.-R. Han, H. Li, Z.-B. Yang, D. Zheng, H. Fan, and S.-B. Zheng, Demonstration of a non-abelian geometric controlled-NOT gate in a superconducting circuit, Optica 8, 972 (2021).
  • Yang et al. [2021] Z.-B. Yang, P.-R. Han, X.-J. Huang, W. Ning, H. Li, K. Xu, D. Zheng, H. Fan, and S.-B. Zheng, Experimental demonstration of entanglement-enabled universal quantum cloning in a circuit, npj Quantum. Inf. 7, 44 (2021).
  • Alicki and Fannes [2013] R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87, 042123 (2013).
  • Campaioli et al. [2017] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett. 118, 150601 (2017).
  • Ferraro et al. [2018] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M. Polini, High-power collective charging of a solid-state quantum battery, Phys. Rev. Lett. 120, 117702 (2018).
  • Barra [2019] F. Barra, Dissipative charging of a quantum battery, Phys. Rev. Lett. 122, 210601 (2019).
  • Binder et al. [2015] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantacell: powerful charging of quantum batteries, New J. Phys. 17, 075015 (2015).
  • Farina et al. [2019] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V. Giovannetti, Charger-mediated energy transfer for quantum batteries: An open-system approach, Phys. Rev. B 99, 035421 (2019).
  • Le et al. [2018] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock, Spin-chain model of a many-body quantum battery, Phys. Rev. A 97, 022106 (2018).
  • Peng et al. [2021] L. Peng, W.-B. He, S. Chesi, H.-Q. Lin, and X.-W. Guan, Lower and upper bounds of quantum battery power in multiple central spin systems, Phys. Rev. A 103, 052220 (2021).
  • Bai and An [2020] S.-Y. Bai and J.-H. An, Floquet engineering to reactivate a dissipative quantum battery, Phys. Rev. A 102, 060201(R) (2020).
  • Tacchino et al. [2020] F. Tacchino, T. F. F. Santos, D. Gerace, M. Campisi, and M. F. Santos, Charging a quantum battery via nonequilibrium heat current, Phys. Rev. E 102, 062133 (2020).
  • Dou et al. [2020] F.-Q. Dou, Y.-J. Wang, and J.-A. Sun, Closed-loop three-level charged quantum battery, EPL 131, 43001 (2020).
  • Martinis et al. [2003] J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina, Decoherence of a superconducting qubit due to bias noise, Phys. Rev. B 67, 094510 (2003).
  • Kjaergaard et al. [2020] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Conden. Ma. Phys. 11, 369 (2020).
  • [61] See supplemental material, including experimental setup and details, variation of eqs. (3, 4), and supplementary experimental data .
  • Koyu et al. [2021] S. Koyu, A. Dodin, P. Brumer, and T. V. Tscherbul, Steady-state fano coherences in a v-type system driven by polarized incoherent light, Phys. Rev. Research 3, 013295 (2021).
  • Cui et al. [2015] J. Cui, J. I. Cirac, and M. C. Bañuls, Variational matrix product operators for the steady state of dissipative quantum systems, Phys. Rev. Lett. 114, 220601 (2015).
  • Luo et al. [2015] D.-W. Luo, P. V. Pyshkin, C.-H. Lam, T. Yu, H.-Q. Lin, J. Q. You, and L.-A. Wu, Dynamical invariants in a non-markovian quantum-state-diffusion equation, Phys. Rev. A 92, 062127 (2015).
  • Huang et al. [2008] X. L. Huang, X. X. Yi, C. Wu, X. L. Feng, S. X. Yu, and C. H. Oh, Effective hamiltonian approach to open systems and its applications, Phys. Rev. A 78, 062114 (2008).
  • Chen et al. [2015] M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, Driving to the steady ground-state superposition assisted by spontaneous emission, Phys. Rev. A 92, 033403 (2015).
  • Jing et al. [2018] J. Jing, T. Yu, C.-H. Lam, J. Q. You, and L.-A. Wu, Control relaxation via dephasing: A quantum-state-diffusion study, Phys. Rev. A 97, 012104 (2018).