This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Density of monochromatic infinite paths

Allan Lo and Nicolás Sanhueza-Matamala School of Mathematics,
University of Birmingham,
Birmingham B15 2TT,
United Kingdom
s.a.lo@bham.ac.uk, NIS564@bham.ac.uk
 and  Guanghui Wang School of Mathematics,
Shandong University,
Jinan, 250100, China
ghwang@sdu.edu.cn
Abstract.

For any subset AA\subseteq\mathbb{N}, we define its upper density to be lim supn|A{1,,n}|/n\limsup_{n\rightarrow\infty}|A\cap\{1,\dotsc,n\}|/n. We prove that every 22-edge-colouring of the complete graph on \mathbb{N} contains a monochromatic infinite path, whose vertex set has upper density at least (9+17)/160.82019(9+\sqrt{17})/16\approx 0.82019. This improves on results of Erdős and Galvin, and of DeBiasio and McKenney.

The research leading to these results was partially supported by EPSRC, grant no. EP/P002420/1 (A. Lo), the Becas Chile scholarship scheme from CONICYT (N. Sanhueza-Matamala) and NSFC No. 11471193, 11631014 (G. Wang).

1. Introduction

A 22-edge-colouring of a graph GG is an assignment of 2 colours, red and blue, to each edge of GG. We say that GG is monochromatic if all the edges of GG are coloured with the same colour. Given an arbitrary 22-edge-colouring of KnK_{n}, what is the size of the largest monochromatic path contained as a subgraph? This was answered by Gerencsér and Gyárfás [GerencserGyarfas1967], who proved that every 22-edge-coloured KnK_{n} contains a monochromatic path of length at least 2n/32n/3. This result is sharp.

Now consider the infinite complete graph KK_{\mathbb{N}} on the vertex set \mathbb{N}. For any subset AA\subseteq\mathbb{N}, the upper density d¯(A)\overline{d}(A) of AA is defined as

d¯(A):=lim supn|A{1,,n}|n.\overline{d}(A):=\limsup_{n\rightarrow\infty}\frac{|A\cap\{1,\dotsc,n\}|}{n}.

Given a subgraph HH of KK_{\mathbb{N}}, we define the upper density d¯(H)\overline{d}(H) of HH to be that of V(H)V(H). Trying to generalise the results known in the finite case, it is natural to ask what are the densest paths which can be found in any 22-edge-coloured KK_{\mathbb{N}}. This problem was considered first by Erdős and Galvin [ErdosGalvin1993]. Other variants of this problem have been studied as well. For example, it is possible to consider other monochromatic subgraphs rather than paths, edge-colourings with more than two colours, use different notions of density or consider monochromatic sub-digraphs of infinite edge-coloured digraphs, etc. Results along these lines have been obtained by Erdős and Galvin [ErdosGalvin1991, ErdosGalvin1993], DeBiasio and McKenney [DeBiasioMcKenney2016] and Bürger, DeBiasio, Guggiari and Pitz [Guggiari2017].

We focus on the case of monochromatic paths in 22-edge-coloured complete graphs. By a classical result of Ramsey Theory, any 22-edge-colouring of KK_{\mathbb{N}} contains a monochromatic infinite complete graph, and therefore, also a monochromatic infinite path PP. However, this argument alone cannot guarantee a monochromatic path with positive upper density, as it was shown by Erdős [Erdos1964] that there exist 22-edge-colourings of the infinite complete graph where every infinite monochromatic complete subgraph has upper density zero. Rado [Rado1978] showed that in every rr-edge-coloured KK_{\mathbb{N}} there are rr monochromatic paths, of distinct colours, which partition the vertex set. This immediately implies that every 22-edge-coloured KK_{\mathbb{N}} contains an infinite monochromatic path PP with d¯(P)1/2\overline{d}(P)\geq 1/2.

Erdős and Galvin [ErdosGalvin1993] proved that for every 22-edge-colouring of KK_{\mathbb{N}} there exists a monochromatic path PP with d¯(P)2/3\overline{d}(P)\geq 2/3 and showed an example of a 22-edge-colouring of KK_{\mathbb{N}} such that every monochromatic path satisfies d¯(P)8/9\overline{d}(P)\leq 8/9. DeBiasio and McKenney [DeBiasioMcKenney2016] improved the lower bound and showed that for every 22-edge-colouring of KK_{\mathbb{N}}, there exists a monochromatic path PP with d¯(P)3/4\overline{d}(P)\geq 3/4. In this paper, we improve the lower bound on d¯(P)\overline{d}(P).

Theorem 1.1.

Every 22-edge-colouring of KK_{\mathbb{N}} contains a monochromatic path PP with d¯(P)(9+17)/160.82019\overline{d}(P)\geq(9+\sqrt{17})/16\approx 0.82019.

In Section 2 we state our main lemma (Lemma 2.1) and use it to deduce Theorem 1.1. In Section 3 we collect some useful tools that will be used during the proof of Lemma 2.1, which is done in Section 4.

1.1. Notation

Given a graph GG, we write V(G)V(G) and E(G)E(G) for its vertex and edge set, respectively; and e(G):=|E(G)|e(G):=|E(G)|. Given SV(G)S\subseteq V(G), we write G[S]G[S] for the subgraph of GG induced by SS. If S,TV(G)S,T\subseteq V(G) are disjoint, we write G[S,T]G[S,T] for the bipartite graph with classes SS and TT consisting precisely of those edges in GG with one endpoint in SS and the other in TT.

Let GG be a 22-edge-coloured graph. Throughout the paper, we assume its colours to be red and blue. For a vertex xV(G)x\in V(G) and a subset SV(G)S\subseteq V(G), we write the red neighbourhood of xx in SS for the set NGR(x,S):={yS:xy is coloured red}N^{R}_{G}(x,S):=\{y\in S:xy\text{ is coloured red}\}, that is, the set of vertices in SS connected to xx with red edges. We define NGB(x,S)N^{B}_{G}(x,S) analogously for blue. For all {R,B}\ast\in\{R,B\}, we also define dG(x,S):=|NG(x,S)|d^{\ast}_{G}(x,S):=|N^{\ast}_{G}(x,S)| whenever NG(x,S)N^{\ast}_{G}(x,S) is finite, dG(x,S):=d^{\ast}_{G}(x,S):=\infty otherwise.

For every i0i\geq 0, let [i]:={1,,i}[i]:=\{1,\dotsc,i\} and [i]0:=[i]{0}[i]_{0}:=[i]\cup\{0\}. For every set SS\subseteq\mathbb{N} and tt\in\mathbb{N} we write StS\cup t for S{t}S\cup\{t\}.

We write xyx\ll y to mean that for all y(0,1]y\in(0,1] there exists x0(0,1)x_{0}\in(0,1) such that for all xx0x\leq x_{0} the following statements hold. Hierarchies with more constants are defined in a similar way and are to be read from right to left.

2. Monochromatic path-forests

Our proof follows the strategies of Erdős and Galvin [ErdosGalvin1993] and of DeBiasio and McKenney [DeBiasioMcKenney2016], where they reduce the problem of finding monochromatic paths to the problem of finding collections of monochromatic disjoint paths satisfying certain conditions, which are then joined together to form an infinite path.

Consider a 22-edge-coloured KK_{\mathbb{N}}. We say a vertex xx\in\mathbb{N} is red (or blue) if xx has infinitely many red (or blue, respectively) neighbours in KK_{\mathbb{N}}. Note that it is possible for a vertex to be both red and blue. A 22-edge-colouring of KK_{\mathbb{N}} is restricted if there is no vertex that is both red and blue. We write RR and BB for the set of red and blue vertices of KK_{\mathbb{N}}, respectively.

A path-forest is a collection of vertex-disjoint paths. Let KK_{\mathbb{N}} be a 22-edge-coloured graph. A path-forest FF of KK_{\mathbb{N}} is said to be red if every edge of FF is red and all endpoints of every path in FF are red. We further assume that, for every path PP in FF, its vertices V(P)V(P) alternate between red and blue. Note that a red path-forest may contain isolated red vertices. A blue path-forest is defined similarly.

Our main lemma states that given a restricted 22-edge-coloured KK_{\mathbb{N}}, there exists a monochromatic path-forest FF and an arbitrary long interval [t][t] such that V(F)[t]V(F)\cap[t] has size which is linear in tt.

Lemma 2.1.

Let ε(0,1/2)\varepsilon\in(0,1/2) and k0k_{0}\in\mathbb{N}. For every restricted 22-edge-coloured KK_{\mathbb{N}}, there exists an integer tk0t\geq k_{0} and red and blue path-forests FRF^{R} and FBF^{B}, respectively, such that

max{|V(FR)[t]|,|V(FB)[t]|}((9+17)/16ε)t.\displaystyle\max\{|V(F^{R})\cap[t]|,|V(F^{B})\cap[t]|\}\geq((9+\sqrt{17})/16-\varepsilon)t.

We defer the proof of Lemma 2.1 to Section 4. Note that we can always add any vertex which is both red and blue to a monochromatic path-forest, as an isolated vertex. Thus Lemma 2.1 implies the following corollary, which is valid for arbitrary 22-edge-colourings.

Corollary 2.2.

Let ε(0,1/2)\varepsilon\in(0,1/2) and k0k_{0}\in\mathbb{N}. For every 22-edge-coloured KK_{\mathbb{N}}, there exists an integer tk0t\geq k_{0} and red and blue path-forests FRF^{R} and FBF^{B}, respectively, such that

max{|V(FR)[t]|,|V(FB)[t]|}((9+17)/16ε)t.\displaystyle\max\{|V(F^{R})\cap[t]|,|V(F^{B})\cap[t]|\}\geq((9+\sqrt{17})/16-\varepsilon)t.

We use it now to deduce Theorem 1.1. The proof is based on the proofs of [ErdosGalvin1993, Theorem 3.5] and [DeBiasioMcKenney2016, Theorem 1.6].

Proof of Theorem 1.1.

Consider an arbitrary 22-edge-colouring of KK_{\mathbb{N}}. Suppose that there exist two red vertices x1,x2x_{1},x_{2}\in\mathbb{N} and a finite subset SS of \mathbb{N} such that KSK_{\mathbb{N}}\setminus S does not contain a red path between x1x_{1} and x2x_{2}. For i[2]i\in[2], let XiX_{i} be the set of vertices reachable from xix_{i} using red paths in S\mathbb{N}\setminus S. Let X3=(X1X2S)X_{3}=\mathbb{N}\setminus(X_{1}\cup X_{2}\cup S). Then X1X_{1} and X2X_{2} are infinite; X1,X2X_{1},X_{2} and X3X_{3} are pairwise disjoint and there are no red edges between any Xi,XjX_{i},X_{j} for distinct i,j[3]i,j\in[3]. Thus there is an infinite blue path PP on the vertex set X1X2X3=SX_{1}\cup X_{2}\cup X_{3}=\mathbb{N}\setminus S. Since SS is finite, d¯(P)=1\overline{d}(P)=1, so we are done. An analogous argument is true if red is swapped with blue. Hence, we might assume that

(2.1)

For all ii\in\mathbb{N}, let εi:=1/(2i)\varepsilon_{i}:=1/(2i). If the vertex 11 is red, set P1R=({1},)P^{R}_{1}=(\{1\},\varnothing) to be the red path with the vertex 11 and P1BP^{B}_{1} to be empty. Otherwise, set P1RP^{R}_{1} to be empty and P1B=({1},)P^{B}_{1}=(\{1\},\varnothing). Set n1=1n_{1}=1. Suppose that, for some ii\in\mathbb{N}, we have already found an integer nin_{i} and red and blue paths PiRP_{i}^{R} and PiBP_{i}^{B}, respectively, such that the endpoints of PiRP_{i}^{R} are red, the endpoints of PiBP_{i}^{B} are blue; and

(2.2) max{|V(PiR)[ni]|,|V(PiB)[ni]|}((9+17)/162εi)ni.\displaystyle\max\{|V(P^{R}_{i})\cap[n_{i}]|,|V(P^{B}_{i})\cap[n_{i}]|\}\geq((9+\sqrt{17})/16-2\varepsilon_{i})n_{i}.

We construct ni+1n_{i+1}, Pi+1RP_{i+1}^{R} and Pi+1BP_{i+1}^{B} as follows. Let ri:=max{V(PiR),V(PiB),ni}r_{i}:=\max\{V(P^{R}_{i}),V(P^{B}_{i}),n_{i}\} and ki:=ri/εi+1=2(i+1)rik_{i}:=r_{i}/\varepsilon_{i+1}=2(i+1)r_{i}. Considering the induced subgraph of KK_{\mathbb{N}} on [ri]\mathbb{N}\setminus[r_{i}], by Corollary 2.2, there exists a monochromatic path-forest Fi+1F_{i+1} and tikit_{i}\geq k_{i} such that |V(Fi+1){ri+1,,ri+ti}|((9+17)/16εi+1)ti|V(F_{i+1})\cap\{r_{i}+1,\dotsc,r_{i}+t_{i}\}|\geq((9+\sqrt{17})/16-\varepsilon_{i+1})t_{i}. Let ni+1:=ri+tin_{i+1}:=r_{i}+t_{i}. By the choice of kik_{i}, note that

|V(Fi+1)[ni+1]|\displaystyle|V(F_{i+1})\cap[n_{i+1}]| ((9+17)/16εi+1)ti((9+17)/162εi+1)ni+1.\displaystyle\geq((9+\sqrt{17})/16-\varepsilon_{i+1})t_{i}\geq((9+\sqrt{17})/16-2\varepsilon_{i+1})n_{i+1}.

Suppose Fi+1F_{i+1} is red (if not, interchange the colours in what follows). Let Pi+1B:=PiBP^{B}_{i+1}:=P^{B}_{i}. Apply (2.1) repeatedly to join the endpoints of the paths in PiRFiP^{R}_{i}\cup F_{i} and obtain a red path Pi+1RP^{R}_{i+1} containing PiRP^{R}_{i} and FiF_{i} with red vertices as endpoints.

By construction, we have ni+1>nin_{i+1}>n_{i} and (2.2) holds for all i1i\geq 1. Without loss of generality, we may assume that |V(PiR)[ni]|((9+17)/162εi)ni|V(P^{R}_{i})\cap[n_{i}]|\geq((9+\sqrt{17})/16-2\varepsilon_{i})n_{i} for infinitely many values of ii. Let P:=i1PiRP:=\bigcup_{i\geq 1}P^{R}_{i}. Therefore, PP is a monochromatic path and d¯(P)(9+17)/16\overline{d}(P)\geq(9+\sqrt{17})/16. ∎

3. Preliminaries

In this section, we consider two ways of extending a path forest.

Proposition 3.1.

Let GG be a graph. Let FGF\subseteq G be a path-forest and let JV(F)J\subseteq V(F) be the set of vertices with degree at most one in FF. Let xV(G)V(F)x\in V(G)\setminus V(F) be such that dG(x,J)3d_{G}(x,J)\geq 3. Then there exist j1,j2V(F)j_{1},j_{2}\in V(F) such that F{xj1,xj2}F\cup\{xj_{1},xj_{2}\} is a path-forest.

Proof.

Since dG(x,J)3d_{G}(x,J)\geq 3, there exist at least two neighbours of xx in JJ, which are not endpoints of the same path in FF. ∎

Proposition 3.2.

Let GG be a graph and FGF\subseteq G a path-forest. Let YV(G)V(F)Y\subseteq V(G)\setminus V(F) and XV(F)X\subseteq V(F). Suppose that

  1. (i)

    xX(2dF(x))2|Y|\sum_{x\in X}(2-d_{F}(x))\geq 2|Y|, and

  2. (ii)

    for every xXx\in X, dG(x,Y)|Y|2d_{G}(x,Y)\geq|Y|-2.

Then there exists a path-forest FG[X,Y]F^{\prime}\subseteq G[X,Y]; every path in FF^{\prime} has both endpoints in XX; FFF\cup F^{\prime} is a path-forest and |V(F)Y||Y|4|V(F^{\prime})\cap Y|\geq|Y|-4.

Proof.

Without loss of generality, we may assume that dF(x)<2d_{F}(x)<2 for all xXx\in X. We proceed by induction on |Y||Y|. It is trivial if |Y|4|Y|\leq 4 (by setting FF^{\prime} to be empty). So we may assume that |Y|5|Y|\geq 5. Note that |X|5|X|\geq 5 by (i). Pick x1,x2Xx_{1},x_{2}\in X be such that x1x_{1} and x2x_{2} are not connected in FF. By (ii) and |Y|5|Y|\geq 5, there exists yYNG(x1)NG(x2)y\in Y\cap N_{G}(x_{1})\cap N_{G}(x_{2}). Set F1:=F{x1y,x2y}F_{1}:=F\cup\{x_{1}y,x_{2}y\} and Y:=Y{y}Y^{\prime}:=Y\setminus\{y\}. It is easy to check that F1,X,YF_{1},X,Y^{\prime} also satisfy the corresponding (i) and (ii). Therefore, by our induction hypothesis, the proposition holds. ∎

The next lemma is a useful statement about difference inequalities. We include its proof for completeness.

Lemma 3.3.

Let τ1,τ2>0\tau_{1},\tau_{2}>0, c00c_{0}\geq 0 be given and let s0,s1,s_{0},s_{1},\dotsc be a strictly increasing sequence of non-negative integers. Suppose there exists n0n_{0} such that for every nn0n\geq n_{0},

sn+1τ1snτ2sn1+c0.s_{n+1}\leq\tau_{1}s_{n}-\tau_{2}s_{n-1}+c_{0}.

Then τ124τ2\tau^{2}_{1}\geq 4\tau_{2}.

Proof.

Suppose τ12<4τ2\tau^{2}_{1}<4\tau_{2}. Choose δ(0,1)\delta\in(0,1) sufficiently small such that τ12<4τ2(1δ)\tau_{1}^{2}<4\tau_{2}(1-\delta) and let ρ1:=τ1/(1δ)\rho_{1}:=\tau_{1}/(1-\delta) and ρ2:=τ2/(1δ)\rho_{2}:=\tau_{2}/(1-\delta). Since {sn}n\{s_{n}\}_{n\in\mathbb{N}} is a strictly increasing sequence of non-negative integers, there exists n1n0n_{1}\geq n_{0} such that

δsnc0 for every nn1.\displaystyle\delta s_{n}\geq c_{0}\text{ for every $n\geq n_{1}$.}

Then, for nn1n\geq n_{1}, sn+1τ1snτ2sn1+δsn+1s_{n+1}\leq\tau_{1}s_{n}-\tau_{2}s_{n-1}+\delta s_{n+1}, which implies, for every nn1n\geq n_{1},

(3.1) sn+1ρ1snρ2sn1.\displaystyle s_{n+1}\leq\rho_{1}s_{n}-\rho_{2}s_{n-1}.

Consider the function f:(,ρ1)f:(-\infty,\rho_{1})\rightarrow\mathbb{R} given by f(x)=ρ2/(ρ1x)f(x)=\rho_{2}/(\rho_{1}-x). It is immediate that ff is continuous. Since ρ12<4ρ2\rho^{2}_{1}<4\rho_{2}, it follows that x<f(x)x<f(x) for all x<ρ1x<\rho_{1}.

For every nn1n\geq n_{1}, let βn:=sn+1/sn\beta_{n}:=s_{n+1}/s_{n}. From (3.1), for every nn1n\geq n_{1},

1<βn<ρ1.1<\beta_{n}<\rho_{1}.

Using (3.1) it also follows that ρ1snρ2sn1βnsn,\rho_{1}s_{n}-\rho_{2}s_{n-1}\geq\beta_{n}s_{n}, which can be rearranged to get

βn1=snsn1ρ2ρ1βn=f(βn)>βn.\beta_{n-1}=\frac{s_{n}}{s_{n-1}}\geq\frac{\rho_{2}}{\rho_{1}-\beta_{n}}=f(\beta_{n})>\beta_{n}.

Since βn\beta_{n} is monotone decreasing and bounded, it converges to a limit β[1,ρ1)\beta\in[1,\rho_{1}). Moreover, the sequence f(βn)f(\beta_{n}) converges to the same limit. The continuity of ff implies that β=f(β)>β\beta=f(\beta)>\beta, a contradiction. ∎

4. Proof of Lemma 2.1

4.1. The path-forests algorithm

To satisfy the conditions stated in Lemma 2.1, we consider an algorithm that will build path-forests considering one extra vertex at a time, in increasing order.

Our algorithm is based on the following simple idea. Suppose that tt\in\mathbb{N} is a red vertex and we have constructed red and blue path-forests FRF^{R} and FBF^{B}, respectively. We can add tt to FRF^{R} without any difficulty, forming a new red path-forest. We would like to add tt to the blue path-forest FBF^{B} as well. However, we will add tt to the blue path-forest FBF^{B} using only forward edges or only backward edges. Namely, when we say “add tt to FBF^{B} using forward edges” (or backward edges) we mean to add the blue edges tj1,tj2tj_{1},tj_{2} to FBF^{B} for some blue vertices j1,j2>tj_{1},j_{2}>t (or j1,j2<tj_{1},j_{2}<t, respectively). We remark that the red (or blue) path-forest will contain all the red (or blue) vertices that have been considered so far, but it might be possible that some vertices are never included in the path-forest of the opposite colour.

Here we give an outline of Algorithm 4.1. There is a positive even integer \ell which will be chosen before running the algorithm. The algorithm will consider each tt\in\mathbb{N} in order to decide whether to add it to the path-forest of the opposite colour by using forward or backward edges, with a preference toward forward edges. In fact, the algorithm will add a vertex using forward edges straight away, if possible, but will only add vertices using backward edges in batches. Roughly speaking, AtRA^{R}_{t} will be an (ordered) set of red vertices v[t]v\in[t] such that vv is joined to almost all blue vertices w>vw>v with red edges. Once AtRA^{R}_{t} is large enough, we will set aside a subset ΩR\Omega^{R} of AtRA^{R}_{t} “of size \ell”, which will be the ‘smaller’ endpoints of the backward edges. We continue the algorithm and collect a set ΓB\Gamma^{B} of blue vertices, which could not be included in the red path-forest by using red forward edges. Once ΓB\Gamma^{B} has \ell vertices, we then add most of the vertices of ΓB\Gamma^{B} into the red path-forest using red backward edges between ΩR\Omega^{R} and ΓB\Gamma^{B}.

During the course of the algorithm, we will also construct a function φ:\varphi:\mathbb{N}\rightarrow\mathbb{N}, which will help us to define the sets AtR,AtBA^{R}_{t},A^{B}_{t} at any given step. The role of φ\varphi is the following: a red vertex tt will be part of AtRA^{R}_{t^{\prime}} only when tφ(t)t^{\prime}\geq\varphi(t), similarly with the blue vertices. Imprecisely speaking, for a red vertex we would like φ(t)\varphi(t) to be “the last” of the blue vertices connected to tt via forward blue edges (this makes sense since the colouring is restricted); if no such blue vertices exist we just define ϕ(t)=t\phi(t)=t. If t=φ(t)t^{\prime}=\varphi(t) is chosen like this, then when the algorithm reaches step tt^{\prime}, the red vertex tt will now be connected to “most” of the upcoming blue vertices using only red edges, which makes tt suitable to belong in AtRA^{R}_{t^{\prime}}.

Before presenting the algorithm, we will need the following notation. Suppose that after round number tt, we have constructed red and blue path-forests FtRF^{R}_{t} and FtBF^{B}_{t}, respectively. Given an ordered vertex set V={vi:i[n]}V=\{v_{i}\colon i\in[n]\} and {R,B}\ast\in\{R,B\}, define

ρt(V):=vV(2dFt(v)).\rho^{\ast}_{t}(V):=\sum_{v\in V}(2-d_{F^{\ast}_{t}}(v)).

We view ρt(V)\rho^{\ast}_{t}(V) to be the number of additional degree that we can (theoretically) add to VV while keeping FtF^{\ast}_{t} being a path-forest. Suppose an even \ell\in\mathbb{N} is given and V={vi:i[n]}V=\{v_{i}:i\in[n]\}. If ρt(V)\rho^{\ast}_{t}(V)\geq\ell, then we define σt(V)\sigma^{\ast}_{t}(V) in the following way: let s[n]s\in[n] be minimal such that ρt({vi:i[s]})\rho^{\ast}_{t}(\{v_{i}\colon i\in[s]\})\geq\ell and then select V{vi:i[s]}VV^{\prime}\subseteq\{v_{i}\colon i\in[s]\}\subseteq V to be minimal with respect to inclusion such that ρt(V)\rho^{\ast}_{t}(V^{\prime})\geq\ell; and let σt(V):=V\sigma^{\ast}_{t}(V):=V^{\prime}. Note that, by choice, dFt(v)1d_{F^{\ast}_{t}}(v)\leq 1 for all vVv\in V^{\prime}. Note as well that ρt(σt(V)){,+1}\rho^{\ast}_{t}(\sigma^{\ast}_{t}(V))\in\{\ell,\ell+1\}. (Referring to the outline above, we will set ΩR=σt(AtR)\Omega^{R}=\sigma^{\ast}_{t}(A^{R}_{t}).)

We make the following crucial definition. For all {R,B}\ast\in\{R,B\} and tt\in\mathbb{N}, we define

ct\displaystyle c^{\ast}_{t} :=|V(Ft)[t]|.\displaystyle:=|V(F^{\ast}_{t})\cap[t]|.

We are now ready to describe the algorithm. We will verify that this algorithm is well-defined in Lemma 4.2.

Algorithm 4.1.

Fix an even \ell\in\mathbb{N}. Given any restricted 22-edge-colouring of KK_{\mathbb{N}}, we now construct monochromatic path-forests as follows. Initially, let F0,A0,Ω0,Γ0,φ0F^{\ast}_{0},A^{\ast}_{0},\Omega^{\ast}_{0},\Gamma^{\ast}_{0},\varphi_{0} be empty for all {R,B}\ast\in\{R,B\}. Now suppose that we are at round number t1t\geq 1, and we have already constructed monochromatic path-forests Ft1F^{\ast}_{t-1}, an ordered vertex subset At1A^{\ast}_{t-1}, vertex subsets Ωt1,Γt1\Omega^{\ast}_{t-1},\Gamma^{\ast}_{t-1} for {R,B}\ast\in\{R,B\} and a function φt1:[t1]\varphi_{t-1}:[t-1]\rightarrow\mathbb{N}.

We now construct Ft,At,Ωt,Γt,φtF^{\ast}_{t},A^{\ast}_{t},\Omega^{\ast}_{t},\Gamma^{\ast}_{t},\varphi_{t} as follows by considering the vertex tt\in\mathbb{N}. Suppose tRt\in R (and if tBt\in B, interchange the roles of RR and BB in what follows). Our algorithm works in four steps.

  1. Step 1:

    Adding tt to the red path-forest.
    Set FtR:=Ft1RtF^{R}_{t}:=F^{R}_{t-1}\cup t.

  2. Step 2:

    Updating available and waiting blue vertices.
    Let AtBA^{B}_{t} be obtained from At1BA^{B}_{t-1} by adding the vertices v[t1]v\in[t-1] with φt1(v)=t\varphi_{t-1}(v)=t at the end of the ordering and ΓtB:=Γt1B\Gamma_{t}^{B}:=\Gamma_{t-1}^{B}. If ρt1B(AtB)\rho_{t-1}^{B}(A^{B}_{t})\geq\ell and Ωt1B=\Omega^{B}_{t-1}=\varnothing, then set ΩtB:=σt1B(AtB)\Omega_{t}^{B}:=\sigma_{t-1}^{B}(A_{t}^{B}); otherwise set ΩtB:=Ωt1B\Omega^{B}_{t}:=\Omega^{B}_{t-1}.

  3. Step 3:

    Classifying tt.
    We now classify tt into one of four types, which will use to determine whether (and how) tt can be added to the blue path-forest Ft1BF^{B}_{t-1}. Let J:={vNKB(t,B[t]):dFt1B(v)<2}J:=\{v\in N^{B}_{K_{\mathbb{N}}}(t,B\setminus[t])\colon d_{F^{B}_{t-1}}(v)<2\}. That is, JJ is the blue neighbourhood of tt, that theoretically we can use to attach tt to Ft1BF_{t-1}^{B} using blue forward edges without creating a vertex of degree 33. If ΩtB\Omega^{B}_{t}\neq\varnothing, then we set tΩt_{\Omega} to be the smallest tΩt_{\Omega} such that ΩtΩB=ΩtB\Omega^{B}_{t_{\Omega}}=\Omega^{B}_{t}. We say that tt is

    • of type WW if |J|3|J|\geq 3;

    • of type XX if |J|2|J|\leq 2 and ΩtB=\Omega^{B}_{t}=\varnothing;

    • of type YY if |J|2|J|\leq 2, ΩtB\Omega^{B}_{t}\neq\varnothing and dFtΩR(t)<2d_{F_{t_{\Omega}}^{R}}(t)<2;

    • of type ZZ if |J|2|J|\leq 2, ΩtB\Omega^{B}_{t}\neq\varnothing and dFtΩR(t)=2d_{F_{t_{\Omega}}^{R}}(t)=2.

  4. Step 4:

    Trying to add tt to the blue path-forest.
    Depending on the type of tt, we have three different cases.

    1. Step 4a:

      tt is of type WW.
      We add tt to FtBF^{B}_{t} using forward edges. By Proposition 3.1 (with Ft1B,J,tF^{B}_{t-1},J,t playing the roles of F,J,xF,J,x) there exist j1,j2Jj_{1},j_{2}\in J such that Ft1B{tj1,tj2}F^{B}_{t-1}\cup\{tj_{1},tj_{2}\} is a blue path-forest. Further choose j1j_{1} and j2j_{2} such that min{j1,j2}\min\{j_{1},j_{2}\} is maximised (which is well-defined as tRt\in R and the colouring is restricted, so JNKB(t)J\subseteq N^{B}_{K_{\mathbb{N}}}(t) is finite). Define φt(t)=min{j1,j2}\varphi_{t}(t)=\min\{j_{1},j_{2}\} and φt(i)=φt1(i)\varphi_{t}(i)=\varphi_{t-1}(i) for all i[t1]i\in[t-1]. Set FtB:=Ft1B{tj1,tj2}F_{t}^{B}:=F^{B}_{t-1}\cup\{tj_{1},tj_{2}\}, AtR:=At1RA_{t}^{R}:=A_{t-1}^{R}, ΩtR:=Ωt1R\Omega^{R}_{t}:=\Omega^{R}_{t-1} and ΓtR:=Γt1R\Gamma_{t}^{R}:=\Gamma_{t-1}^{R}.

    2. Step 4b:

      tt is of type XX or ZZ.
      In this case, we will not add tt to Ft1BF^{B}_{t-1} at all. Define φt(t)=t\varphi_{t}(t)=t and φt(i)=φt1(i)\varphi_{t}(i)=\varphi_{t-1}(i) for all i[t1]i\in[t-1]. Set FtB:=Ft1BF_{t}^{B}:=F^{B}_{t-1}. Let AtRA_{t}^{R} be obtained from At1RA_{t-1}^{R} by adding tt to the end of the ordering. If ρtR(AtR)\rho_{t}^{R}(A^{R}_{t})\geq\ell and Ωt1R:=\Omega^{R}_{t-1}:=\varnothing, set ΩtR:=σtR(AtR)\Omega_{t}^{R}:=\sigma_{t}^{R}(A_{t}^{R}); otherwise set ΩtR:=Ωt1R\Omega^{R}_{t}:=\Omega^{R}_{t-1}. Finally, set ΓtR:=Γt1R\Gamma_{t}^{R}:=\Gamma_{t-1}^{R}.

    3. Step 4c:

      tt is of type YY.
      In this case, we will try to add tt to FtBF^{B}_{t} using backwards edges if ΓtR\Gamma^{R}_{t} has reached the correct size. Define φt\varphi_{t}, AtRA^{R}_{t} and ΩtR\Omega^{R}_{t} as in Step 44b.

      If |Γt1Rt|</2|\Gamma_{t-1}^{R}\cup t|<\ell/2, then set FtB:=Ft1BF_{t}^{B}:=F_{t-1}^{B} and ΓtR:=Γt1Rt\Gamma_{t}^{R}:=\Gamma_{t-1}^{R}\cup t and finish this step. Otherwise, we have |Γt1Rt|=/2|\Gamma_{t-1}^{R}\cup t|=\ell/2. By Proposition 3.2 (with Ft1B,ΩtB,Γt1RtF_{t-1}^{B},\Omega^{B}_{t},\Gamma_{t-1}^{R}\cup t playing the roles of F,X,YF,X,Y), we obtain a blue path-forest FF^{\prime} such that Ft1BFF_{t-1}^{B}\cup F^{\prime} is a blue path-forest which covers all but at most 44 vertices of Γt1Rt\Gamma_{t-1}^{R}\cup t. Let FtB:=Ft1BFF_{t}^{B}:=F^{B}_{t-1}\cup F^{\prime}. Adding the new blue edges to form FtBF^{B}_{t} means we need to redefine ΩtB\Omega^{B}_{t} accordingly, as follows: if ρtB(AtB)\rho_{t}^{B}(A^{B}_{t})\geq\ell, then redefine ΩtB:=σtB(AtB)\Omega_{t}^{B}:=\sigma_{t}^{B}(A_{t}^{B}); otherwise redefine ΩtB:=\Omega^{B}_{t}:=\varnothing. Finally, define ΓtR:=\Gamma_{t}^{R}:=\varnothing.

4.2. Correctness and analysis of the algorithm

First we show that Algorithm 4.1 is well-defined. For tt\in\mathbb{N}, define WtRW_{t}^{R} (and WtBW_{t}^{B}) to be the set of vertices v[t]Rv\in[t]\cap R (and v[t]Bv\in[t]\cap B, respectively) of type WW, as in Step 3 of Algorithm 4.1. Similarly, define Xt,Yt,ZtX_{t}^{\ast},Y_{t}^{\ast},Z_{t}^{\ast} for {R,B}\ast\in\{R,B\}.

Lemma 4.2.

Let \ell\in\mathbb{N} be even. Then Algorithm 4.1 is well defined.

Proof.

Suppose that KK_{\mathbb{N}} has a restricted 22-edge-colouring. We prove by induction on tt that FtF_{t}^{\ast}, Ωt\Omega_{t}^{\ast}, Γt\Gamma_{t}^{\ast}, AtA_{t}^{\ast}, φt\varphi_{t}, WtW_{t}^{\ast}, XtX_{t}^{\ast}, YtY_{t}^{\ast}, ZtZ_{t}^{\ast} given by Algorithm 4.1 satisfy the following properties (and similar statements hold if we interchange RR and BB):

  1. (i)

    φt(i)i\varphi_{t}(i)\geq i for all i[t]i\in[t] and φt(i)=φt1(i)\varphi_{t}(i)=\varphi_{t-1}(i) for all i[t1]i\in[t-1];

  2. (ii)

    if iR[t]i\in R\cap[t] and φt(i)>i\varphi_{t}(i)>i, then φt(i)B\varphi_{t}(i)\in B;

  3. (iii)

    AtR,ΩtR,ΓtR,R[t]A^{R}_{t},\Omega^{R}_{t},\Gamma^{R}_{t},\subseteq R\cap[t], ΩtRAtR\Omega^{R}_{t}\subseteq A^{R}_{t} and At1RAtRA^{R}_{t-1}\subseteq A^{R}_{t};

  4. (iv)

    {φt(v):vAtR}[t]\{\varphi_{t}(v)\colon v\in A^{R}_{t}\}\subseteq[t];

  5. (v)

    if ΩtR\Omega^{R}_{t}\neq\varnothing, then ρtR(ΩtR){,+1}\rho^{R}_{t}(\Omega^{R}_{t})\in\{\ell,\ell+1\};

  6. (vi)

    |ΓtR|</2|\Gamma^{R}_{t}|<\ell/2;

  7. (vii)

    if y>ty>t and yRy\in R, then yV(FtB)y\notin V(F^{B}_{t});

  8. (viii)

    if ΩtR,ΓtB\Omega^{R}_{t},\Gamma^{B}_{t}\neq\varnothing, then maxΩtRmax{φt(v):vΩtR}<minΓtB\max\Omega^{R}_{t}\leq\max\{\varphi_{t}(v)\colon v\in\Omega^{R}_{t}\}<\min\Gamma^{B}_{t} and for all vΩtRv\in\Omega^{R}_{t}, dKB(v,ΓtB)2d^{B}_{K_{\mathbb{N}}}(v,\Gamma^{B}_{t})\leq 2.

Note that these properties imply the lemma. By our construction, (i)(vii) hold.

To see (viii), let tΩt_{\Omega} to be the smallest tΩt_{\Omega} such that ΩtΩR=ΩtR\Omega^{R}_{t_{\Omega}}=\Omega^{R}_{t}. Consider any vΩtRv\in\Omega^{R}_{t}. Clearly vφt(v)tΩminΓtBv\leq\varphi_{t}(v)\leq t_{\Omega}\leq\min\Gamma^{B}_{t} by (i) and (iv). So the first assertion of (viii) holds. Let J:={jNKB(v,B[v]):dFv1B(j)<2}J:=\{j^{\prime}\in N^{B}_{K_{\mathbb{N}}}(v,B\setminus[v])\colon d_{F^{B}_{v-1}}(j^{\prime})<2\}, which is JJ defined at round number vv. For all uΓtBYtBu\in\Gamma^{B}_{t}\subseteq Y^{B}_{t}, we have dFv1B(u)dFtΩB(u)<2d_{F^{B}_{v-1}}(u)\leq d_{F^{B}_{t_{\Omega}}}(u)<2. Hence ΓtBJ\Gamma^{B}_{t}\subseteq J. If vv is not of type XX, then dKB(v,ΓtB)dKB(v,J)2d^{B}_{K_{\mathbb{N}}}(v,\Gamma^{B}_{t})\leq d^{B}_{K_{\mathbb{N}}}(v,J)\leq 2. If vv is of type XX, then dKB(v,ΓtB)3d^{B}_{K_{\mathbb{N}}}(v,\Gamma^{B}_{t})\geq 3 would contradict the maximality of φt(v)\varphi_{t}(v) in Step 44a. Hence we have dKB(v,ΓtB)2d^{B}_{K_{\mathbb{N}}}(v,\Gamma^{B}_{t})\leq 2 for all vΩtRv\in\Omega^{R}_{t}. ∎

Recall that for every {R,B}\ast\in\{R,B\} and tt\in\mathbb{N}, ct=|V(Ft)[t]|c^{\ast}_{t}=|V(F^{\ast}_{t})\cap[t]|. In the next two lemmas, we collect some useful information from the algorithm.

Lemma 4.3.

Let \ell\in\mathbb{N} be even. Suppose that KK_{\mathbb{N}} has a restricted 22-edge-colouring. Let FtF_{t}^{\ast}, Ωt\Omega_{t}^{\ast}, Γt\Gamma_{t}^{\ast}, AtA_{t}^{\ast}, φt\varphi_{t}, WtW_{t}^{\ast}, XtX_{t}^{\ast}, YtY_{t}^{\ast}, ZtZ_{t}^{\ast} be as defined by Algorithm 4.1. Then the following holds for all tt\in\mathbb{N} (and similar statements hold if we interchange RR and BB):

  1. (i)

    |R[t]|=|WtR|+|XtR|+|YtR|+|ZtR||R\cap[t]|=|W^{R}_{t}|+|X^{R}_{t}|+|Y^{R}_{t}|+|Z^{R}_{t}|;

  2. (ii)

    FtR,WtR,XtR,YtR,ZtRF^{R}_{t},W^{R}_{t},X^{R}_{t},Y^{R}_{t},Z^{R}_{t} are nested;

  3. (iii)

    if there exists ttt^{\prime}\geq t such that Ωt′′B\Omega^{B}_{t^{\prime\prime}}\neq\varnothing for all tt′′tt\leq t^{\prime\prime}\leq t^{\prime}, then XtR=XtRX^{R}_{t}=X^{R}_{t^{\prime}};

  4. (iv)

    if vV(FtR)v\in V(F^{R}_{t}) with v>tv>t, then vRv\in R and NFtR(v)WtBN_{F^{R}_{t}}(v)\subseteq W^{B}_{t};

  5. (v)

    if vBv\in B with dFtR(v)>0d_{F^{R}_{t}}(v)>0, then vWtBYtBv\in W^{B}_{t}\cup Y^{B}_{t};

  6. (vi)

    if ρtR(AtR)\rho_{t}^{R}(A_{t}^{R})\geq\ell, then ΩtR\Omega^{R}_{t}\neq\varnothing;

  7. (vii)

    ctR(18/)(t|ZtB||XtB|)/2c^{R}_{t}\geq(1-8/\ell)(t-|Z^{B}_{t}|-|X_{t}^{B}|)-\ell/2;

  8. (viii)

    2|YtBYtB|ρtR(AtR)ρtR(AtR)2|Y^{B}_{t^{\prime}}\setminus Y^{B}_{t}|\geq\rho_{t}^{R}(A^{R}_{t})-\rho_{t^{\prime}}^{R}(A^{R}_{t}) for ttt^{\prime}\geq t;

  9. (ix)

    if ρt1R(AtR)\rho_{t^{\prime}-1}^{R}(A_{t}^{R})\geq\ell for some ttt^{\prime}\geq t, then |ZtB||WtR||Z^{B}_{t^{\prime}}|\leq|W^{R}_{t}|.

Proof.

Note that (i)(vi) hold by our construction.

Now we prove (vii). By our construction, we have WtB,R[t]V(FtR)W^{B}_{t},R\cap[t]\subseteq V(F^{R}_{t}). Partition YtBY^{B}_{t} into Γ1,Γ2,,Γs,Γs+1\Gamma^{\prime}_{1},\Gamma^{\prime}_{2},\dots,\Gamma^{\prime}_{s},\Gamma^{\prime}_{s+1} (with Γs+1\Gamma^{\prime}_{s+1} possibly empty) such that, for all i[s]i\in[s], |Γi|=/2|\Gamma^{\prime}_{i}|=\ell/2, maxΓi<minΓi+1\max\Gamma^{\prime}_{i}<\min\Gamma^{\prime}_{i+1} and |Γs+1|</2|\Gamma^{\prime}_{s+1}|<\ell/2. In other words, Γ1,Γ2,,Γs,Γs+1\Gamma^{\prime}_{1},\Gamma^{\prime}_{2},\dots,\Gamma^{\prime}_{s},\Gamma^{\prime}_{s+1} is a partition of YtBY^{B}_{t} into sets of ‘consecutive’ /2\ell/2 vertices. Consider any i[s]i\in[s]. Let ti:=maxΓit_{i}:=\max\Gamma^{\prime}_{i}. Since tiYtiBt_{i}\in Y_{t_{i}}^{B}, Step 44c implies that we have |Γti1B|=/21|\Gamma_{t_{i}-1}^{B}|=\ell/2-1, Γti1Bti=Γi\Gamma_{t_{i}-1}^{B}\cup t_{i}=\Gamma^{\prime}_{i} and ΓtiB=\Gamma_{t_{i}}^{B}=\varnothing. Moreover, all but at most 44 vertices of Γi\Gamma^{\prime}_{i} are added to FtRF^{R}_{t} (at round number tit_{i}). Therefore,

ctR\displaystyle c^{R}_{t} =|V(FtR)[t]||R[t]|+|WtB|+i[s](|Γi|4)\displaystyle=|V(F^{R}_{t})\cap[t]|\geq|R\cap[t]|+|W^{B}_{t}|+\sum_{i\in[s]}(|\Gamma^{\prime}_{i}|-4)
=|R[t]|+|WtB|+i[s](18/)|Γi|\displaystyle=|R\cap[t]|+|W^{B}_{t}|+\sum_{i\in[s]}(1-8/\ell)|\Gamma^{\prime}_{i}|
|R[t]|+|WtB|+(18/)(|YtB|/2)\displaystyle\geq|R\cap[t]|+|W^{B}_{t}|+(1-8/\ell)(|Y^{B}_{t}|-\ell/2)
(18/)(t|XtB||ZtB|)/2.\displaystyle\geq(1-8/\ell)(t-|X^{B}_{t}|-|Z^{B}_{t}|)-\ell/2.

Hence (vii) holds.

To see (viii), note that ρt′′R(AtR)\rho_{t^{\prime\prime}}^{R}(A^{R}_{t}) is a decreasing sequence in t′′t^{\prime\prime} and it decreases if and only if we join some vertices of AtRA^{R}_{t} to some vertices in YtBYtBY^{B}_{t^{\prime}}\setminus Y^{B}_{t} with red edges to form the red path-forest. Each such vertex of yYtBYtBy\in Y^{B}_{t^{\prime}}\setminus Y^{B}_{t} reduces ρtR(AtR)\rho_{t}^{R}(A^{R}_{t}) by at most 22.

To see (ix), since ρt1R(AtR)\rho_{t^{\prime}-1}^{R}(A_{t}^{R})\geq\ell for some ttt^{\prime}\geq t, we have Ωt′′RAtR\Omega_{t^{\prime\prime}}^{R}\subseteq A_{t}^{R} for all tt′′<tt\leq t^{\prime\prime}<t^{\prime}. Note that

maxvΩt′′R{φt′′(v)}\displaystyle\max_{v\in\Omega_{t^{\prime\prime}}^{R}}\{\varphi_{t^{\prime\prime}}(v)\} maxvAtR{φt′′(v)}t.\displaystyle\leq\max_{v\in A_{t}^{R}}\{\varphi_{t^{\prime\prime}}(v)\}\leq t.

Consider any zZtBz\in Z^{B}_{t^{\prime}}. By Step 3 of Algorithm 4.1, this means that dFtB(z)=2d_{F_{t}^{B}}(z)=2. Hence dFtB(z)=2d_{F_{t}^{B}}(z)=2 for all zZtBz\in Z^{B}_{t^{\prime}}. By (iv), NFtB(z)WtRN_{F^{B}_{t}}(z)\subseteq W^{R}_{t} for all zZtBz\in Z^{B}_{t^{\prime}}. By counting the number of edges in FtB[ZtB,WtR]F^{B}_{t}[Z^{B}_{t^{\prime}},W^{R}_{t}], we have

2|ZtB|=e(FtB[ZtB,WtR])2|WtR|\displaystyle 2|Z^{B}_{t^{\prime}}|=e(F^{B}_{t}[Z^{B}_{t^{\prime}},W^{R}_{t}])\leq 2|W^{R}_{t}|

implying (ix). ∎

Lemma 4.4.

Let \ell\in\mathbb{N} be even. Suppose that KK_{\mathbb{N}} has a restricted 22-edge-colouring. For all tt\in\mathbb{N}, let Ft,Ωt,Γt,At,φt,Wt,Xt,Yt,ZtF_{t}^{\ast},\Omega_{t}^{\ast},\Gamma_{t}^{\ast},A_{t}^{\ast},\varphi_{t},W_{t}^{\ast},X_{t}^{\ast},Y_{t}^{\ast},Z_{t}^{\ast} be as defined by Algorithm 4.1. Then there exist YtDtWtYtY_{t}^{\ast}\subseteq D^{\ast}_{t}\subseteq W_{t}^{\ast}\cup Y_{t}^{\ast} for all tt\in\mathbb{N} and {R,B}\ast\in\{R,B\} such that (where similar statements hold if we interchange RR and BB):

  1. (i)

    ρtR(AtR)ρtR(AtR)2|DtRDtR|+2|XtRXtR|\rho_{t^{\prime}}^{R}(A^{R}_{t^{\prime}})-\rho_{t}^{R}(A^{R}_{t})\leq 2|D_{t^{\prime}}^{R}\setminus D_{t}^{R}|+2|X_{t^{\prime}}^{R}\setminus X_{t}^{R}|, for every ttt^{\prime}\geq t;

  2. (ii)

    2|DtB|2|DtRXtRZtR|ρtR(AtR)2|D_{t}^{B}|\geq 2|D_{t}^{R}\cup X_{t}^{R}\cup Z_{t}^{R}|-\rho_{t}^{R}(A_{t}^{R});

  3. (iii)

    if ρt1B(AtB)\rho^{B}_{t^{\prime}-1}(A^{B}_{t})\geq\ell for some ttt^{\prime}\geq t, then 2|DtB|2|DtR|+|XtRZtR|ρtR(AtR)2|D_{t}^{B}|\geq 2|D_{t}^{R}|+|X_{t^{\prime}}^{R}\cup Z_{t^{\prime}}^{R}|-\rho_{t}^{R}(A_{t}^{R});

  4. (iv)

    ctR+ctB+12ρtR(AtR)+12ρtB(AtB)2(18/)tc_{t}^{R}+c_{t}^{B}+\frac{1}{2}\rho_{t}^{R}(A_{t}^{R})+\frac{1}{2}\rho_{t}^{B}(A_{t}^{B})\geq 2(1-8/\ell)t-\ell.

Proof.

Let UtR:={wWtR:φt(w)t}U_{t}^{R}:=\{w\in W_{t}^{R}\colon\varphi_{t}(w)\leq t\}. Let DtR:=UtRYtRD_{t}^{R}:=U_{t}^{R}\cup Y_{t}^{R}. Note that AtR=DtRXtRZtRA_{t}^{R}=D_{t}^{R}\cup X_{t}^{R}\cup Z_{t}^{R} (here we view AtRA_{t}^{R} as an unordered set). Hence

(4.1) ρtR(AtR)=ρtR(DtR)+ρtR(XtR)+ρtR(ZtR)=ρtR(DtR)+ρtR(XtR).\displaystyle\rho_{t}^{R}(A_{t}^{R})=\rho_{t}^{R}(D_{t}^{R})+\rho_{t}^{R}(X_{t}^{R})+\rho_{t}^{R}(Z_{t}^{R})=\rho_{t}^{R}(D_{t}^{R})+\rho_{t}^{R}(X_{t}^{R}).

as dFtR(z)=2d_{F^{R}_{t}}(z)=2 for all zZtRz\in Z_{t}^{R}. Note that UtRUtRU_{t}^{R}\subseteq U_{t^{\prime}}^{R} for t<tt<t^{\prime}. Hence

ρtR(AtR)\displaystyle\rho_{t^{\prime}}^{R}(A_{t^{\prime}}^{R}) =ρtR(DtR)+ρtR(XtR)\displaystyle=\rho_{t^{\prime}}^{R}(D_{t^{\prime}}^{R})+\rho_{t^{\prime}}^{R}(X_{t^{\prime}}^{R})
=ρtR(DtRDtR)+ρtR(XtRXtR)+ρtR(AtR)\displaystyle=\rho_{t^{\prime}}^{R}(D_{t^{\prime}}^{R}\setminus D_{t}^{R})+\rho_{t^{\prime}}^{R}(X_{t^{\prime}}^{R}\setminus X_{t}^{R})+\rho_{t^{\prime}}^{R}(A_{t}^{R})
2|DtRDtR|+2|XtRXtR|+ρtR(AtR)\displaystyle\leq 2|D_{t^{\prime}}^{R}\setminus D_{t}^{R}|+2|X_{t^{\prime}}^{R}\setminus X_{t}^{R}|+\rho_{t}^{R}(A_{t}^{R})

implying (i).

Let GtR:=FtR[{1,,t}]G^{R}_{t}:=F^{R}_{t}[\{1,\dotsc,t\}]. Since FtRF^{R}_{t} is a red path-forest, GtRG^{R}_{t} is a bipartite graph with vertex classes RR[t]R^{\prime}\subseteq R\cap[t] and BB[t]B^{\prime}\subseteq B\cap[t]. If vBv\in B with dFtR(v)>0d_{F^{R}_{t}}(v)>0, then vWtBYtBv\in W^{B}_{t}\cup Y^{B}_{t} by Lemma 4.3(v). If vWtBv\in W^{B}_{t} with dFtR(v)>0d_{F^{R}_{t}}(v)>0, then we must have φt(v)t\varphi_{t}(v)\leq t and so vUtBv\in U^{B}_{t}. Hence if vBv\in B with dFtR(v)>0d_{F^{R}_{t}}(v)>0, then vDtBv\in D^{B}_{t}. Therefore,

(4.2) e(GtR)2|DtB|.\displaystyle e(G^{R}_{t})\leq 2|D^{B}_{t}|.

On the other hand, since V(FtR)R=R[t]=V(GtR)RV(F^{R}_{t})\cap R=R\cap[t]=V(G^{R}_{t})\cap R,

e(GtR)\displaystyle e(G^{R}_{t}) =uR[t]dGtR(u)=uR[t]dFtR(u)\displaystyle=\sum_{u\in R\cap[t]}d_{G^{R}_{t}}(u)=\sum_{u\in R\cap[t]}d_{F^{R}_{t}}(u)
uDtRXtRZtRdFtR(u)=2|DtRXtRZtR|ρtR(AtR).\displaystyle\geq\sum_{u\in D_{t}^{R}\cup X_{t}^{R}\cup Z_{t}^{R}}d_{F^{R}_{t}}(u)=2|D_{t}^{R}\cup X_{t}^{R}\cup Z_{t}^{R}|-\rho_{t}^{R}(A_{t}^{R}).

Together with (4.2), we obtain (ii).

To see (iii) proceed similarly but considering the graph FtR[{1,,t}XtRZtR]F^{R}_{t}[\{1,\dotsc,t\}\cup X^{R}_{t^{\prime}}\cup Z^{R}_{t^{\prime}}]. Lemma 4.3(vi) and (iii) imply that XtRXtR=X^{R}_{t^{\prime}}\setminus X^{R}_{t}=\varnothing; together with Lemma 4.3(iv) it implies that for every uZtRu\in Z^{R}_{t^{\prime}}, NFtR(u)WtBN_{F^{R}_{t}}(u)\subseteq W^{B}_{t} and dFtR(u)=2d_{F^{R}_{t}}(u)=2. Counting the edges of FtR[{1,,t}XtRZtR]F^{R}_{t}[\{1,\dotsc,t\}\cup X^{R}_{t^{\prime}}\cup Z^{R}_{t^{\prime}}] in two different ways, as before, gives the desired inequality.

By adding (ii) and its analogus version, we get

(4.3) 12ρtR(AtR)+12ρtB(AtB)\displaystyle\frac{1}{2}\rho_{t}^{R}(A_{t}^{R})+\frac{1}{2}\rho_{t}^{B}(A_{t}^{B}) |XtRZtRXtBZtB|.\displaystyle\geq|X_{t}^{R}\cup Z_{t}^{R}\cup X_{t}^{B}\cup Z_{t}^{B}|.

Lemma 4.3(vii) implies that

ctR+ctB\displaystyle c_{t}^{R}+c_{t}^{B} 2(18/)t|XtRZtRXtBZtB|,\displaystyle\geq 2(1-8/\ell)t-|X_{t}^{R}\cup Z_{t}^{R}\cup X_{t}^{B}\cup Z_{t}^{B}|-\ell,

which together with (4.3) implies (iv). ∎

4.3. Evolutions of ρtR(AtR)\rho^{R}_{t}(A^{R}_{t}) and ρtB(AtB)\rho^{B}_{t}(A^{B}_{t})

To prove Lemma 2.1, we will consider the path-forests FtRF^{R}_{t}, FtBF^{B}_{t} for every t1t\geq 1, as constructed by Algorithm 4.1. If, given ε\varepsilon and k0k_{0}, for some tk0t\geq k_{0} we have max{ctR,ctB}((9+17)/16ε)t\max\{c^{R}_{t},c^{B}_{t}\}\geq((9+\sqrt{17})/16-\varepsilon)t, then we are done. Therefore, assuming this is not the case, we will deduce information about the evolution of the parameters ρtR(AtR)\rho^{R}_{t}(A^{R}_{t}) and ρtB(AtB)\rho^{B}_{t}(A^{B}_{t}) whenever tt increases, which we will use to finish the proof. (It also suffices to use Lemmas 4.3 and 4.4 instead of appealing to Algorithm 4.1.)

First, we show that if ρtB(AtB)\rho_{t}^{B}(A_{t}^{B})\geq\ell then there exists t>tt^{\prime}>t such that ρtB(AtB)<\rho_{t^{\prime}}^{B}(A_{t}^{B})<\ell (or we are already done). That is, almost all vertices AtBA_{t}^{B} have degree 22 in the red path-forest at round number tt^{\prime}.

Lemma 4.5.

Let \ell\in\mathbb{N} be even. Suppose that KK_{\mathbb{N}} has a restricted 22-edge-colouring. Let Ft,Ωt,Γt,At,φt,Wt,Xt,Yt,ZtF_{t}^{\ast},\Omega_{t}^{\ast},\Gamma_{t}^{\ast},A_{t}^{\ast},\varphi_{t},W_{t}^{\ast},X_{t}^{\ast},Y_{t}^{\ast},Z_{t}^{\ast} be as defined by Algorithm 4.1. Suppose ρtB(AtB)\rho_{t}^{B}(A_{t}^{B})\geq\ell. Then there exists t>tt^{\prime}>t such that ρtB(AtB)<\rho_{t^{\prime}}^{B}(A_{t}^{B})<\ell or ctB(19/)tc^{B}_{t^{\prime}}\geq(1-9/\ell)t^{\prime}.

Proof.

Suppose that ρtB(AtB)\rho_{t^{\prime}}^{B}(A_{t}^{B})\geq\ell for all t>tt^{\prime}>t (or else we are done). By Lemma 4.3(vi), ΩtB\Omega^{B}_{t^{\prime}}\neq\varnothing for all t>tt^{\prime}>t. Hence XtR=XtRX_{t^{\prime}}^{R}=X_{t}^{R} for all t>tt^{\prime}>t by Lemma 4.3(iii). Moreover, Lemma 4.3(ix) implies that |ZtR||WtB||Z^{R}_{t^{\prime}}|\leq|W^{B}_{t}| for all ttt^{\prime}\geq t. Let t=(t+/2)t^{\prime}=\ell(t+\ell/2). Lemma 4.3(vii) implies that

ctB\displaystyle c^{B}_{t^{\prime}} (18/)t|ZtR||XtR|/2\displaystyle\geq(1-8/\ell)t^{\prime}-|Z^{R}_{t^{\prime}}|-|X_{t^{\prime}}^{R}|-\ell/2
(18/)t|WtB||XtR|/2\displaystyle\geq(1-8/\ell)t^{\prime}-|W^{B}_{t}|-|X_{t}^{R}|-\ell/2
(18/)t(t+/2)(19/)t.\displaystyle\geq(1-8/\ell)t^{\prime}-(t+\ell/2)\geq(1-9/\ell)t^{\prime}.\qed
Lemma 4.6.

Let \ell\in\mathbb{N} be even and 1/t01/ε1/21/t_{0}\ll 1/\ell\ll\varepsilon\leq 1/2. Suppose that KK_{\mathbb{N}} has a restricted 22-edge-colouring. Let FtF_{t}^{\ast}, Ωt\Omega_{t}^{\ast}, Γt\Gamma_{t}^{\ast}, AtA_{t}^{\ast}, φt\varphi_{t}, WtW_{t}^{\ast}, XtX_{t}^{\ast}, YtY_{t}^{\ast}, ZtZ_{t}^{\ast} be as defined by Algorithm 4.1. Suppose that ρt0B(At0B)\rho_{t_{0}}^{B}(A_{t_{0}}^{B})\geq\ell. Then there exists t>t0t^{\prime}>t_{0} such that ρtB(AtB)<\rho_{t^{\prime}}^{B}(A_{t^{\prime}}^{B})<\ell or max{ctR,ctB}(222ε)t\max\{c^{R}_{t^{\prime}},c^{B}_{t^{\prime}}\}\geq(2\sqrt{2}-2-\varepsilon)t^{\prime}.

Proof.

Let α:=322\alpha:=3-2\sqrt{2}. Suppose the contrary, that is, for all t>t0t>t_{0} we have

(4.4) ρtB(AtB) and ctR,ctB(1αε)t.\displaystyle\rho_{t}^{B}(A_{t}^{B})\geq\ell\text{ and }c^{R}_{t},c^{B}_{t}\leq(1-\alpha-\varepsilon)t.

Note that Lemma 4.3(iii) and (vi) imply that

(4.5) XtR=Xt0R\displaystyle X^{R}_{t}=X^{R}_{t_{0}}

for all tt0t\geq t_{0}.

Given tit_{i}, define ti+1Rt^{R}_{i+1} to be the minimum t>tit>t_{i} such that ρtR(AtiR)<\rho_{t}^{R}(A_{t_{i}}^{R})<\ell, which exists by Lemma 4.5 and 1/ε1/21/\ell\ll\varepsilon\leq 1/2. Analogously, define ti+1Bt^{B}_{i+1}. Define ti+1:=max{ti+1R,ti+1B}t_{i+1}:=\max\{t^{R}_{i+1},t^{B}_{i+1}\} and ti+1:=min{ti+1R,ti+1B}t^{\prime}_{i+1}:=\min\{t^{R}_{i+1},t^{B}_{i+1}\}. This defines sequences ti,tit_{i},t_{i}^{\prime} such that, for all i1i\geq 1,

ti1\displaystyle t_{i-1} <titi,\displaystyle<t^{\prime}_{i}\leq t_{i},
min{ρtiR(Ati1R),ρtiB(Ati1B)},\displaystyle\min\{\rho_{t^{\prime}_{i}}^{R}(A_{t_{i-1}}^{R}),\rho_{t^{\prime}_{i}}^{B}(A_{t_{i-1}}^{B})\}, ρtiR(Ati1R),ρtiB(Ati1B)<.\displaystyle\rho_{t_{i}}^{R}(A_{t_{i-1}}^{R}),\rho_{t_{i}}^{B}(A_{t_{i-1}}^{B})<\ell.

For convenience, let t1:=0t_{-1}:=0 and for every i0i\geq 0, let Ii:={ti1+1,,ti}I_{i}:=\{t_{i-1}+1,\dotsc,t_{i}\}. For every i0i\geq 0 and {R,B}\ast\in\{R,B\}, let

xi\displaystyle x_{i}^{\ast} :=|IiXti| and zi:=|IiZti|.\displaystyle:=|I_{i}\cap X_{t_{i}}^{\ast}|\text{ and }z_{i}^{\ast}:=|I_{i}\cap Z_{t_{i}}^{\ast}|.

Lemma 4.3(vii) and (4.4) imply that

(1αε)ti\displaystyle(1-\alpha-\varepsilon)t_{i} ctiR(18/)ti|ZtiB||XtiB|/2\displaystyle\geq c^{R}_{t_{i}}\geq(1-8/\ell)t_{i}-|Z^{B}_{t_{i}}|-|X_{t_{i}}^{B}|-\ell/2
(18/)tij[i]0(xjB+zjB)/2,\displaystyle\geq(1-8/\ell)t_{i}-\sum_{j\in[i]_{0}}(x_{j}^{B}+z_{j}^{B})-\ell/2,

and a similar inequality also holds for j[i]0(xjR+zjR)\sum_{j\in[i]_{0}}(x_{j}^{R}+z_{j}^{R}). In summary, we have for {R,B}\ast\in\{R,B\},

(4.6) j[i]0(xj+zj)\displaystyle\sum_{j\in[i]_{0}}(x_{j}^{*}+z_{j}^{*}) (α+ε/2)ti.\displaystyle\geq(\alpha+\varepsilon/2)t_{i}.

Consider any i1i\geq 1. Write Ti:=j[i]0tjT_{i}:=\sum_{j\in[i]_{0}}t_{j}. Lemma 4.3(viii) implies that

|YtiBYti1B|\displaystyle|Y^{B}_{t_{i}}\setminus Y^{B}_{t_{i-1}}| |YtiRBYti1B|12(ρti1R(Ati1R)ρtiRR(Ati1R))12(ρti1R(Ati1R))\displaystyle\geq|Y^{B}_{t^{R}_{i}}\setminus Y^{B}_{t_{i-1}}|\geq\frac{1}{2}(\rho_{t_{i-1}}^{R}(A^{R}_{t_{i-1}})-\rho_{t^{R}_{i}}^{R}(A^{R}_{t_{i-1}}))\geq\frac{1}{2}(\rho_{t_{i-1}}^{R}(A^{R}_{t_{i-1}})-\ell)

and a similar inequality holds for |YtiRYti1R||Y^{R}_{t_{i}}\setminus Y^{R}_{t_{i-1}}|. Hence by combining both inequalities and using Lemma 4.4(iv), we have

|YtiBYti1B|+|YtiRYti1R|\displaystyle|Y^{B}_{t_{i}}\setminus Y^{B}_{t_{i-1}}|+|Y^{R}_{t_{i}}\setminus Y^{R}_{t_{i-1}}| 12(ρti1R(Ati1R)+ρti1B(Ati1B))\displaystyle\geq\frac{1}{2}(\rho_{t_{i-1}}^{R}(A^{R}_{t_{i-1}})+\rho_{t_{i-1}}^{B}(A^{B}_{t_{i-1}}))-\ell
2(18/)ti12cti1Rcti1B\displaystyle\geq 2(1-8/\ell)t_{i-1}-2\ell-c^{R}_{t_{i-1}}-c^{B}_{t_{i-1}}
(4.4)2(α+ε)ti1216ti1/\displaystyle\overset{\mathclap{\text{\eqref{eqn:av1}}}}{\geq}2(\alpha+\varepsilon)t_{i-1}-2\ell-16t_{i-1}/\ell
2(α+ε/2)ti1,\displaystyle\geq 2(\alpha+\varepsilon/2)t_{i-1},

where the last inequality follows from 1/ti11/t01/ε1/{t_{i-1}}\leq 1/t_{0}\ll 1/\ell\ll\varepsilon. Hence, for all i0i\geq 0,

(4.7) |YtiBYtiR|2(α+ε/2)Ti1.\displaystyle|Y^{B}_{t_{i}}\cup Y^{R}_{t_{i}}|\geq 2(\alpha+\varepsilon/2)T_{i-1}.
Claim 4.7.

For all ii\in\mathbb{N}, |WtiRWtiBXtiBZtiB|(α+ε/2)(ti+ti+1)t0|W^{R}_{t_{i}}\cup W^{B}_{t_{i}}\cup X^{B}_{t_{i}}\cup Z^{B}_{t_{i}}|\geq(\alpha+\varepsilon/2)(t_{i}+t_{i+1})-t_{0}.

Proof of the claim.

We divide the proof into two cases. First suppose that ti+1Bti+1Rt^{B}_{i+1}\geq t^{R}_{i+1}. Since ρti1B(Ati1B)\rho_{t_{i}-1}^{B}(A_{t_{i-1}}^{B})\geq\ell, Lemma 4.3(ix) implies that |WtiB||Zti+1R|=j[i+1]0zjR|W_{t_{i}}^{B}|\geq|Z_{t_{i+1}}^{R}|=\sum_{j\in[i+1]_{0}}z^{R}_{j}. Hence

|WtiRWtiBXtiBZtiB|\displaystyle|W^{R}_{t_{i}}\cup W^{B}_{t_{i}}\cup X^{B}_{t_{i}}\cup Z^{B}_{t_{i}}|
|WtiB|+|XtiBZtiB|j[i+1]0zjR+j[i]0(xjB+zjB)\displaystyle\geq|W^{B}_{t_{i}}|+|X^{B}_{t_{i}}\cup Z^{B}_{t_{i}}|\geq\sum_{j\in[i+1]_{0}}z^{R}_{j}+\sum_{j\in[i]_{0}}(x^{B}_{j}+z^{B}_{j})
=(4.5)j[i+1]0(xjR+zjR)x0R+j[i]0(xjB+zjB)\displaystyle\overset{\mathclap{\text{\eqref{eqn:Xi}}}}{=}\sum_{j\in[i+1]_{0}}(x^{R}_{j}+z^{R}_{j})-x^{R}_{0}+\sum_{j\in[i]_{0}}(x^{B}_{j}+z^{B}_{j})
(4.6)(α+ε/2)(ti+ti+1)t0,\displaystyle\overset{\mathclap{\text{\eqref{eqn:sumq}}}}{\geq}(\alpha+\varepsilon/2)(t_{i}+t_{i+1})-t_{0},

so the claim holds in this case.

Now, suppose that ti+1B<ti+1Rt^{B}_{i+1}<t^{R}_{i+1}. By the choice of ti+1Rt^{R}_{i+1}, Lemma 4.3(ix) implies that |WtiR||Zti+1B|=j[i+1]0zjB|W_{t_{i}}^{R}|\geq|Z_{t_{i+1}}^{B}|=\sum_{j\in[i+1]_{0}}z^{B}_{j}. By a similar argument, |WtiB|j[i]0zjR|W_{t_{i}}^{B}|\geq\sum_{j\in[i]_{0}}z^{R}_{j}. Lemma 4.3(iii) and (vi) imply that Xti+1B=XtiBX^{B}_{t_{i+1}}=X^{B}_{t_{i}} and so xi+1B=0x_{i+1}^{B}=0. Hence

|WtiRWtiBXtiBZtiB||WtiR|+|WtiB|+|XtiB|\displaystyle|W^{R}_{t_{i}}\cup W^{B}_{t_{i}}\cup X^{B}_{t_{i}}\cup Z^{B}_{t_{i}}|\geq|W^{R}_{t_{i}}|+|W^{B}_{t_{i}}|+|X^{B}_{t_{i}}|
j[i+1]0zjB+j[i]0zjR+j[i]0xjB=(4.5)j[i+1]0(xjB+zjB)+j[i]0(xjR+zjR)x0R\displaystyle\geq\sum_{j\in[i+1]_{0}}z^{B}_{j}+\sum_{j\in[i]_{0}}z^{R}_{j}+\sum_{j\in[i]_{0}}x^{B}_{j}\overset{\mathclap{\text{\eqref{eqn:Xi}}}}{=}\sum_{j\in[i+1]_{0}}(x^{B}_{j}+z^{B}_{j})+\sum_{j\in[i]_{0}}(x^{R}_{j}+z^{R}_{j})-x^{R}_{0}
(4.6)(α+ε/2)(ti+ti+1)t0.\displaystyle\overset{\mathclap{\text{\eqref{eqn:sumq}}}}{\geq}(\alpha+\varepsilon/2)(t_{i}+t_{i+1})-t_{0}.\qed

Together with Lemma 4.3(i) and (4.7), we have

ti|ZtiR||XtiR|\displaystyle t_{i}-|Z^{R}_{t_{i}}|-|X_{t_{i}}^{R}| =|YtiBYtiR|+|WtiRWtiBXtiBZtiB|\displaystyle=|Y^{B}_{t_{i}}\cup Y^{R}_{t_{i}}|+|W^{R}_{t_{i}}\cup W^{B}_{t_{i}}\cup X^{B}_{t_{i}}\cup Z^{B}_{t_{i}}|
(α+ε/2)(Ti1+Ti+1)t0.\displaystyle\geq(\alpha+\varepsilon/2)(T_{i-1}+T_{i+1})-t_{0}.

Hence, (4.4) and Lemma 4.3(vii) imply that

(1α)(TiTi1)\displaystyle(1-\alpha)(T_{i}-T_{i-1}) =(1α)tictiB\displaystyle=(1-\alpha)t_{i}\geq c^{B}_{t_{i}}
(18/)(ti|ZtiR||XtiR|)/2\displaystyle\geq(1-8/\ell)(t_{i}-|Z^{R}_{t_{i}}|-|X_{t_{i}}^{R}|)-\ell/2
(α+ε/4)(Ti1+Ti+1)t0/2,\displaystyle\geq(\alpha+\varepsilon/4)(T_{i-1}+T_{i+1})-t_{0}-\ell/2,
0\displaystyle 0 (α+ε/4)Ti+1(1α)Ti+Ti1t0/2.\displaystyle\geq(\alpha+\varepsilon/4)T_{i+1}-(1-\alpha)T_{i}+T_{i-1}-t_{0}-\ell/2.

Therefore, Lemma 3.3 (and our choice of α\alpha) implies

0(1α)24(α+ε/4)<16α+α2=0,\displaystyle 0\leq(1-\alpha)^{2}-4(\alpha+\varepsilon/4)<1-6\alpha+\alpha^{2}=0,

a contradiction. ∎

Now we are ready to prove Lemma 2.1.

Proof of Lemma 2.1.

Let α:=(717)/16\alpha:=(7-\sqrt{17})/16. Choose ,k0\ell,k^{\prime}_{0}\in\mathbb{N} such that \ell is even, k0k0k^{\prime}_{0}\geq k_{0} and

(4.8) 0<1/k01/ε,α.\displaystyle 0<1/k^{\prime}_{0}\ll 1/\ell\ll\varepsilon,\alpha.

Let FtF^{\ast}_{t}, Ωt\Omega^{\ast}_{t}, Γt\Gamma^{\ast}_{t}, AtA_{t}^{\ast}, φt\varphi_{t}, WtW^{\ast}_{t}, XtX^{\ast}_{t}, YtY^{\ast}_{t}, ZtZ^{\ast}_{t} be as defined by Algorithm 4.1. Lemma 4.3(i) implies that for all tt\in\mathbb{N},

(4.9) t\displaystyle t ={R,B}|Wt|+|Xt|+|Yt|+|Zt|.\displaystyle=\sum_{\ast\in\{R,B\}}|W^{\ast}_{t}|+|X^{\ast}_{t}|+|Y^{\ast}_{t}|+|Z^{\ast}_{t}|.

Lemma 4.3(vii) together with (4.9) imply that for all tt\in\mathbb{N} (and a similar bound is true replacing RR by BB):

(4.10) ctR\displaystyle c^{R}_{t} (18/)(|WtRYtR|+|WtBYtB|+|XtRZtR|)/2.\displaystyle\geq(1-8/\ell)(|W^{R}_{t}\cup Y^{R}_{t}|+|W^{B}_{t}\cup Y^{B}_{t}|+|X^{R}_{t}\cup Z^{R}_{t}|)-\ell/2.

We might suppose that for all tk0t\geq k_{0} we have

(4.11) ctR,ctB(1αε)t,\displaystyle c^{R}_{t},c^{B}_{t}\leq(1-\alpha-\varepsilon)t,

or else we are done. Together with Lemma 4.4(iv) and (4.8),

(4.12) ρtR(AtR) or ρtB(AtB)tk0.\displaystyle\rho^{R}_{t}(A^{R}_{t})\geq\ell\text{ or }\rho^{B}_{t}(A^{B}_{t})\geq\ell\qquad\forall t\geq k_{0}.

Without loss of generality, we may assume that ρk0B(Ak0B)\rho^{B}_{k^{\prime}_{0}}(A^{B}_{k^{\prime}_{0}})\geq\ell. Define t0t_{0} to be the minimum t>k0t>k^{\prime}_{0} such that ρtB(AtB)<\rho^{B}_{t}(A^{B}_{t})<\ell, which exists by Lemma 4.6 and (4.11). Note that ρt0R(At0R)\rho^{R}_{t_{0}}(A^{R}_{t_{0}})\geq\ell by (4.12). Similarly, define t1t_{1} to be the minimum t>t0t>t_{0} such that ρtR(AtR)<\rho^{R}_{t}(A^{R}_{t})<\ell. Now define t2t_{2} to be the minimum t>t1t>t_{1} such that ρtB(At1B)<\rho^{B}_{t}(A^{B}_{t_{1}})<\ell. Note that t2t_{2} exists by Lemma 4.5 and (4.11), and that t0<t1<t2t_{0}<t_{1}<t_{2}.

Lemma 4.3(vii) and (4.11) imply that for all {R,B}\ast\in\{R,B\} and i[2]i\in[2],

(4.13) |XtiZti|\displaystyle|X^{\ast}_{t_{i}}\cup Z^{\ast}_{t_{i}}| (α+ε/2)ti.\displaystyle\geq(\alpha+\varepsilon/2)t_{i}.
Claim 4.8.

There exist

(4.14) HRYt1RWt1R and HBYt1BWt1B\displaystyle H^{R}\subseteq Y^{R}_{t_{1}}\cup W^{R}_{t_{1}}\text{ and }H^{B}\subseteq Y^{B}_{t_{1}}\cup W^{B}_{t_{1}}

such that

|HR|\displaystyle|H^{R}| =|Xt1BZt1B|,\displaystyle=|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|-\ell,
|HB|\displaystyle|H^{B}| =|Xt1BZt1B|+|Xt2RZt2R|.\displaystyle=|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|+|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|-\ell.
Proof of the claim.

For every {R,B}\ast\in\{R,B\}, consider Dt1Yt1Wt1D^{\ast}_{t_{1}}\subseteq Y^{\ast}_{t_{1}}\cup W^{\ast}_{t_{1}} as given by Lemma 4.4. Note that ρt0B(At0B)\rho^{B}_{t_{0}}(A^{B}_{t_{0}})\leq\ell. Then Lemma 4.4(i) implies

ρt1B(At1B)\displaystyle\rho^{B}_{t_{1}}(A^{B}_{t_{1}})-\ell ρt1B(A1B)ρt0B(At0B)2|Dt1BDt0B|+2|Xt1BXt0B|\displaystyle\leq\rho^{B}_{t_{1}}(A^{B}_{1})-\rho^{B}_{t_{0}}(A^{B}_{t_{0}})\leq 2|D^{B}_{t_{1}}\setminus D^{B}_{t_{0}}|+2|X^{B}_{t_{1}}\setminus X^{B}_{t_{0}}|
2|Dt1B|+2|Xt1BXt0B|.\displaystyle\leq 2|D^{B}_{t_{1}}|+2|X^{B}_{t_{1}}\setminus X^{B}_{t_{0}}|.

By the choice of t0t_{0} and t1t_{1}, ρtR(AtR)\rho^{R}_{t^{\prime}}(A^{R}_{t^{\prime}})\geq\ell for all t0t<t1t_{0}\leq t^{\prime}<t_{1}. Therefore, Lemma 4.3(iii) and (vi) imply that Xt1BXt0B=X^{B}_{t_{1}}\setminus X^{B}_{t_{0}}=\varnothing. Hence,

(4.15) ρt1B(At1B)2|Dt1B|+.\displaystyle\rho^{B}_{t_{1}}(A^{B}_{t_{1}})\leq 2|D^{B}_{t_{1}}|+\ell.

Lemma 4.4(ii) and (4.15) together imply that

(4.16) 2|Dt1R|\displaystyle 2|D^{R}_{t_{1}}| 2|Dt1B|+2|Xt1BZt1B|ρt1B(At1B)2|Xt1BZt1B|.\displaystyle\geq 2|D^{B}_{t_{1}}|+2|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|-\rho^{B}_{t_{1}}(A^{B}_{t_{1}})\geq 2|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|-\ell.

Recall that ρt1R(At1R)\rho^{R}_{t_{1}}(A^{R}_{t_{1}})\leq\ell and ρt21B(At1B)\rho^{B}_{t_{2}-1}(A^{B}_{t_{1}})\geq\ell. By Lemma 4.4(iii),

2|Dt1B|\displaystyle 2|D^{B}_{t_{1}}| 2|Dt1R|+2|Xt2RZt2R|ρt1R(At1R)2|Dt1R|+2|Xt2RZt2R|\displaystyle\geq 2|D^{R}_{t_{1}}|+2|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|-\rho^{R}_{t_{1}}(A^{R}_{t_{1}})\geq 2|D^{R}_{t_{1}}|+2|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|-\ell
(4.16)2|Xt1BZt1B|+2|Xt2RZt2R|2.\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:theinequalityforDRtiabove}}}}{{\geq}}2|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|+2|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|-2\ell.

Thus |Dt1B||Xt1BZt1B|+|Xt2RZt2R||D^{B}_{t_{1}}|\geq|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|+|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|-\ell and |Dt1R||Xt1BZt1B||D^{R}_{t_{1}}|\geq|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|-\ell, which implies the existence of a set HDt1Yt1Wt1H^{\ast}\subseteq D^{\ast}_{t_{1}}\subseteq Y^{\ast}_{t_{1}}\cup W^{\ast}_{t_{1}} of the desired size for every {R,B}\ast\in\{R,B\}. ∎

Since k0t0t1t2k^{\prime}_{0}\leq t_{0}\leq t_{1}\leq t_{2}, we have 1/t2,1/t11/α,ε1/t_{2},1/{t_{1}}\ll 1/\ell\ll\alpha,\varepsilon. Let HRH^{R} and HBH^{B} be given by Claim 4.8. Let

a\displaystyle a :=|Xt1BZt1B|,\displaystyle:=|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|, b\displaystyle b :=|Xt1RZt1R|,\displaystyle:=|X^{R}_{t_{1}}\cup Z^{R}_{t_{1}}|,
c\displaystyle c :=|(Xt2BZt2B)(Xt1BZt1B)|,\displaystyle:=|(X^{B}_{t_{2}}\cup Z^{B}_{t_{2}})\setminus(X^{B}_{t_{1}}\cup Z^{B}_{t_{1}})|, d\displaystyle d :=|(Xt2RZt2R)(Xt1RZt1R)|.\displaystyle:=|(X^{R}_{t_{2}}\cup Z^{R}_{t_{2}})\setminus(X^{R}_{t_{1}}\cup Z^{R}_{t_{1}})|.

Thus, |HR|=a|H^{R}|=a-\ell and |HB|=a+b+d|H^{B}|=a+b+d-\ell. Let δ:=ε/2\delta:=\varepsilon/2 and ρ:=α+δ\rho:=\alpha+\delta. Since α=(717)/16\alpha=(7-\sqrt{17})/16 is the least real root of the polynomial 8x27x+18x^{2}-7x+1 and 0<ε<1/20<\varepsilon<1/2, it follows that 17ρ8ρ21\leq 7\rho-8\rho^{2}.

Now we use the previous bounds to get

1αε\displaystyle 1-\alpha-\varepsilon (4.11)ct1Rt1(4.10)(18/)(|Wt1RYt1R|+|Wt1BYt1B|+|Xt1RZt1R|)/2t1\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:truenodensepathforest}}}}{{\geq}}\;\frac{c^{R}_{t_{1}}}{t_{1}}\;\stackrel{{\scriptstyle\mathclap{\eqref{eq:lowerboundcovered}}}}{{\geq}}\;\frac{(1-8/\ell)(|W^{R}_{t_{1}}\cup Y^{R}_{t_{1}}|+|W^{B}_{t_{1}}\cup Y^{B}_{t_{1}}|+|X^{R}_{t_{1}}\cup Z^{R}_{t_{1}}|)-\ell/2}{t_{1}}
(4.9)|Wt1RYt1R|+|Wt1BYt1B|+|Xt1RZt1R|/2|Wt1RYt1R|+|Wt1BYt1B|+|Xt1RZt1R|+|Xt1BZt1B|8\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:totalattimet}}}}{{\geq}}\;\frac{|W^{R}_{t_{1}}\cup Y^{R}_{t_{1}}|+|W^{B}_{t_{1}}\cup Y^{B}_{t_{1}}|+|X^{R}_{t_{1}}\cup Z^{R}_{t_{1}}|-\ell/2}{|W^{R}_{t_{1}}\cup Y^{R}_{t_{1}}|+|W^{B}_{t_{1}}\cup Y^{B}_{t_{1}}|+|X^{R}_{t_{1}}\cup Z^{R}_{t_{1}}|+|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|}-\frac{8}{\ell}
(4.14)|HR|+|HB|+|Xt1RZt1R|/2|HR|+|HB|+|Xt1RZt1R|+|Xt1BZt1B|8\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:HsubsetofWY}}}}{{\geq}}\;\frac{|H^{R}|+|H^{B}|+|X^{R}_{t_{1}}\cup Z^{R}_{t_{1}}|-\ell/2}{|H^{R}|+|H^{B}|+|X^{R}_{t_{1}}\cup Z^{R}_{t_{1}}|+|X^{B}_{t_{1}}\cup Z^{B}_{t_{1}}|}-\frac{8}{\ell}
=2a+2b+d5/23a+2b+d282a+2b+d3a+2b+dε2,\displaystyle=\frac{2a+2b+d-5\ell/2}{3a+2b+d-2\ell}-\frac{8}{\ell}\geq\frac{2a+2b+d}{3a+2b+d}-\frac{\varepsilon}{2},

where the last line follows from (4.8), (4.13) and 1/t11/α,ε1/t_{1}\ll 1/\ell\ll\alpha,\varepsilon. Rearranging, we get ρa/(3a+2b+d)\rho\leq a/(3a+2b+d), and recalling that 17ρ8ρ21\leq 7\rho-8\rho^{2} we have

(4.17) 3a+2b+d\displaystyle 3a+2b+d (78ρ)a.\displaystyle\leq(7-8\rho)a.

A similar argument (by estimating ct1B/t1c^{B}_{t_{1}}/t_{1}) shows that

(4.18) 3a+2b+d(78ρ)b.\displaystyle 3a+2b+d\leq(7-8\rho)b.

Next, we would like to estimate ct2B/t2c^{B}_{t_{2}}/t_{2} and ct2R/t2c^{R}_{t_{2}}/t_{2}. By the choice of t1t_{1}, Lemma 4.4(iv) and (4.11),

ρt1B(At1B)\displaystyle\rho^{B}_{t_{1}}(A^{B}_{t_{1}}) 4(18/)t122(ct1R+ct1B)ρt1R(At1R)\displaystyle\geq 4(1-8/\ell)t_{1}-2\ell-2(c^{R}_{t_{1}}+c^{B}_{t_{1}})-\rho^{R}_{t_{1}}(A^{R}_{t_{1}})
4(18/)t124(1αε)t1\displaystyle\geq 4(1-8/\ell)t_{1}-2\ell-4(1-\alpha-\varepsilon)t_{1}-\ell
4(α+2ε/3)t1,\displaystyle\geq 4(\alpha+2\varepsilon/3)t_{1},

where the last inequality follows from (4.8). Together with Lemma 4.3(viii) and the choice of t2t_{2} we get

2|Yt2BYt1B|\displaystyle 2|Y^{B}_{t_{2}}\setminus Y^{B}_{t_{1}}| ρt1B(At1B)ρt2B(At1B)4(α+2ε/3)t1\displaystyle\geq\rho^{B}_{t_{1}}(A^{B}_{t_{1}})-\rho^{B}_{t_{2}}(A^{B}_{t_{1}})\geq 4(\alpha+2\varepsilon/3)t_{1}-\ell
(4.19) 4ρ(3a+2b+d).\displaystyle\geq 4\rho(3a+2b+d).

Using Claim 4.8, we get

1αε(4.11)ct2Bt2\displaystyle 1-\alpha-\varepsilon\stackrel{{\scriptstyle\eqref{eq:truenodensepathforest}}}{{\geq}}\frac{c^{B}_{t_{2}}}{t_{2}}\; (4.10)(18/)(|Wt2RYt2R|+|Wt2BYt2B|+|Xt2BZt2B|)/2t2\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:lowerboundcovered}}}}{{\geq}}\;\frac{(1-8/\ell)(|W^{R}_{t_{2}}\cup Y^{R}_{t_{2}}|+|W^{B}_{t_{2}}\cup Y^{B}_{t_{2}}|+|X^{B}_{t_{2}}\cup Z^{B}_{t_{2}}|)-\ell/2}{t_{2}}
(4.9)|Wt2RYt2R|+|Wt2BYt2B|+|Xt2BZt2B|/2|Wt2RYt2R|+|Wt2BYt2B|+|Xt2BZt2B|+|Xt2RZt2R|8\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:totalattimet}}}}{{\geq}}\;\frac{|W^{R}_{t_{2}}\cup Y^{R}_{t_{2}}|+|W^{B}_{t_{2}}\cup Y^{B}_{t_{2}}|+|X^{B}_{t_{2}}\cup Z^{B}_{t_{2}}|-\ell/2}{|W^{R}_{t_{2}}\cup Y^{R}_{t_{2}}|+|W^{B}_{t_{2}}\cup Y^{B}_{t_{2}}|+|X^{B}_{t_{2}}\cup Z^{B}_{t_{2}}|+|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|}-\frac{8}{\ell}
(4.14)|HR|+|HB|+|Yt2BYt1B|+|Xt2BZt2B|/2|HR|+|HB|+|Yt2BYt1B|+|Xt2BZt2B|+|Xt2RZt2R|8\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:HsubsetofWY}}}}{{\geq}}\frac{|H^{R}|+|H^{B}|+|Y^{B}_{t_{2}}\setminus Y^{B}_{t_{1}}|+|X^{B}_{t_{2}}\cup Z^{B}_{t_{2}}|-\ell/2}{|H^{R}|+|H^{B}|+|Y^{B}_{t_{2}}\setminus Y^{B}_{t_{1}}|+|X^{B}_{t_{2}}\cup Z^{B}_{t_{2}}|+|X^{R}_{t_{2}}\cup Z^{R}_{t_{2}}|}-\frac{8}{\ell}
(4.19)2a+b+d+2ρ(3a+2b+d)+a+c3/22a+b+d+2ρ(3a+2b+d)+a+c+b+d28\displaystyle\stackrel{{\scriptstyle\mathclap{\eqref{eq:boundyi}}}}{{\geq}}\;\frac{2a+b+d+2\rho(3a+2b+d)+a+c-3\ell/2}{2a+b+d+2\rho(3a+2b+d)+a+c+b+d-2\ell}-\frac{8}{\ell}
3a+b+c+d+2ρ(3a+2b+d)3a+2b+c+2d+2ρ(3a+2b+d)ε2,\displaystyle\geq\frac{3a+b+c+d+2\rho(3a+2b+d)}{3a+2b+c+2d+2\rho(3a+2b+d)}-\frac{\varepsilon}{2},

where the last inequality follows from (4.8), (4.13) and 1/t21/α,ε1/t_{2}\ll 1/\ell\ll\alpha,\varepsilon. Rearranging, we get ρ(b+d)/[(1+2ρ)(3a+2b+d)+c+d]\rho\leq(b+d)/[(1+2\rho)(3a+2b+d)+c+d]. Recalling that 17ρ8ρ21\leq 7\rho-8\rho^{2}, we get

(4.20) (1+2ρ)(3a+2b+d)+c+d(78ρ)(b+d).\displaystyle(1+2\rho)(3a+2b+d)+c+d\leq(7-8\rho)(b+d).

A similar argument (by estimating ct2R/t2c^{R}_{t_{2}}/t_{2}) shows that

(4.21) (1+2ρ)(3a+2b+d)+c+d(78ρ)(a+c).\displaystyle(1+2\rho)(3a+2b+d)+c+d\leq(7-8\rho)(a+c).

By (4.17), (4.18), (4.20) and (4.21), we deduce that Ax0Ax\leq 0, where x=(a,b,c,d)tx=(a,b,c,d)^{t} and

A=[8ρ420138ρ5017ρ21+2ρ4ρ31+ρ3+6ρ12ρ5110ρ5].A=\left[\begin{array}[]{cccc}8\rho-4&2&0&1\\ 3&8\rho-5&0&1\\ 7\rho-2&1+2\rho&4\rho-3&1+\rho\\ 3+6\rho&12\rho-5&1&10\rho-5\end{array}\right].

Now consider the column vector y=(712α,24α,1,34α)ty=(7-12\alpha,2-4\alpha,1,3-4\alpha)^{t}. Then y0y\geq 0 and ytA=((81120α)δ,(5480α)δ,4δ,(3140α)δ)(δ,δ,δ,δ)>0y^{t}A=((81-120\alpha)\delta,(54-80\alpha)\delta,4\delta,(31-40\alpha)\delta)\geq(\delta,\delta,\delta,\delta)>0. Since Ax0Ax\leq 0 and x,y0x,y\geq 0, we get

0(ytA)x(δ,δ,δ,δ)x=δ(a+b+c+d)>0,\displaystyle 0\geq(y^{t}A)x\geq(\delta,\delta,\delta,\delta)x=\delta(a+b+c+d)>0,

a contradiction. ∎

Remark

After the submission of this paper, we learned that Corsten, DeBiasio, Lamaison and Lang [CDLL18] have obtained an improved version of Theorem 1.1.

Acknowledgements

We thank an anonymous referee for their helpful suggestions.

References

  • \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry