This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Derived equivalence classification of mm-cluster tilted algebras of type AnA_{n}

Graham J. Murphy Dept. Pure Mathematics
School of Mathematics
University of Leeds
Leeds
LS2 9JT
U.K.
graham@maths.leeds.ac.uk
(Date: 22nd August 2007)
Abstract.

We use the maximal faces of the mm-cluster complex of type AnA_{n} introduced in [11] to describe the quivers of mm-cluster tilted algebras of type AnA_{n}. We then classify connected components of mm-cluster tilted algebras of type AnA_{n} up to derived equivalence using tilting complexes directly related to the combinatorics of the mm-cluster complex of type AnA_{n}. This generalizes a result of Buan and Vatne [9].

Key words and phrases:
mm-cluster tilted algebras, derived equivalence
2000 Mathematics Subject Classification:
Primary: 16G10; Secondary: 18E30, 05E99

1. Introduction

Cluster categories were introduced in [6] as a representation theoretic framework for cluster algebras of Fomin and Zelevinsky [12]. Independently, in [14] Iyama defines maximal mm-orthogonal modules for Artin algebras, mβ©Ύ1m\geqslant 1, and presents a classification of maximal 1-orthogonal modules for finite type self-injective algebras of tree class An,Bn,CnA_{n},B_{n},C_{n} and DnD_{n}. Motivated by a generalized version of the combinatorics related to cluster algebras, mm-cluster categories were defined as a generalization of cluster categories [21], [22]. The cluster categories and their generalizations have been the subject of much recent research.
The mm-cluster category is defined to be π’žm​(H):=π’Ÿb​(H)/Ο„βˆ’1​[m]\mathcal{C}_{m}(H):=\mathcal{D}^{b}(H)/\tau^{-1}[m] where HH is a finite dimensional hereditary algebra over a field kk (which we take to be algebraically closed) whose corresponding quiver has no loops or oriented 2-cycles; Ο„\tau is the Auslander-Reiten (AR) translate in the bounded derived category π’Ÿb​(H)\mathcal{D}^{b}(H); [1][1] denotes the suspension functor present in the triangulated structure of π’Ÿb​(H)\mathcal{D}^{b}(H) and [m][m] denotes its mm-th power, that is [1]m=[m][1]^{m}=[m].
In mm-cluster categories one can define mm-cluster tilting objects as follows [21].

Definition 1.1.

An mm-cluster tilting object TT in π’žm​(H)\mathcal{C}_{m}(H) is an object TT satisfying the following conditions.

  1. (1)

    Homπ’žm​(H)⁑(T,X​[i])=0\operatorname{Hom}_{\mathcal{C}_{m}(H)}(T,X[i])=0, 1β©½iβ©½m1\leqslant i\leqslant m, if and only if X∈add⁑(T)X\in\operatorname{add}(T).

  2. (2)

    Homπ’žm​(H)⁑(X,T​[i])=0\operatorname{Hom}_{\mathcal{C}_{m}(H)}(X,T[i])=0, 1β©½iβ©½m1\leqslant i\leqslant m, if and only if X∈add⁑(T)X\in\operatorname{add}(T).

It is the endomorphism algebras of these mm-cluster tilting objects, Endπ’žm​(H)⁑(T)\operatorname{End}_{\mathcal{C}_{m}(H)}(T), called mm-cluster tilted algebras, that we study in this paper. We focus on the case where HH is an hereditary algebra of Dynkin type AnA_{n}.
Our aim is to generalize a result of Buan and Vatne, [9], on the derived equivalence classification of 1-cluster tilted algebras of type AnA_{n}.
In section 2 we give a local description of mm-cluster tilted algebras of type AnA_{n} as quivers with relations using the combinatorics of mm-cluster complexes [11, section 4] which can be related to mm-cluster tilting objects. More precisely, it can be proven that the maximal faces, or facets, of the generalized cluster complex correspond bijectively to the mm-cluster tilting objects in π’žm​(k​An)\mathcal{C}_{m}(kA_{n}) [21], [18]. Then, the combinatorial model for the generalized cluster complex in type AnA_{n} can be used to determine the mm-cluster tilted algebra corresponding to a given mm-cluster tilting object.
This description of the mm-cluster tilted algebras based on the combinatorial model for the generalized cluster complex enables us to prove that mm-cluster tilted algebras of type AnA_{n} are gentle and that if the quiver of an mm-cluster tilted algebra of type AnA_{n} contains cycles they must be of length m+2m+2 and must have full relations, that is the composition of any two consecutive arrows in the cycle must be a relation. These m+2m+2-cycles play a crucial rΓ΄le when considering derived equivalences of mm-cluster tilted algebras. Details of these statements can be found in section 2.
Our main theorem can be stated as follows.

Theorem 1.2.

Two connected components of an mm-cluster tilted algebra of type AnA_{n} are derived equivalent if and only if their quivers have the same number of oriented m+2m+2-cycles with full relations.

The statement of theorem 1.2 must allow for the possibility that for mβ©Ύ2m\geqslant 2 the mm-cluster tilted algebras of type AnA_{n} may be disconnected. That these algebras can be disconnected follows from the combinatorial description in section 2. This is one of the noticeable differences between the m=1m=1 and mβ©Ύ2m\geqslant 2 cases, since 1-cluster tilted algebras of type AnA_{n} are connected [9].
After section 2 the paper is structured as follows. In section 3 we provide tilting complexes which prove that there exist derived equivalences between mm-cluster tilted algebras which preserve m+2m+2-cycles with full relations. In this section we also describe how these tilting complexes are related to the combinatorial model of mm-cluster tilted algebras in type AnA_{n}. Then we use [5, thm 4.1,cor 4.3], which states that the Cartan matrix of a gentle algebra is unimodular equivalent to a diagonal matrix determined by the cycles with full relations which appear in the description of that algebra as a quiver with relations, to identify the necessary conditions for derived equivalence of two connected components of an mm-cluster tilted algebra of type AnA_{n}. The form of the diagonal matrix is restated in section 3.
Finally, in section 4, we give the algorithm which uses the results of section 3 to mutate any connected component of an mm-cluster tilted algebra to a particular mm-cluster tilted algebra, referred to as the normal form (to be defined in section 3), in such a way that a derived equivalence is achieved.

2. mm-cluster tilted algebras

We begin with a brief summary of the combinatorial background from [11, section 4],[14, section 4], [19].
The mm-co-ordinate system, on the translation quiver ℀​An\mathbb{Z}A_{n} is defined as shown in the diagram below.

[Uncaptioned image]
Remark 2.1.

This co-ordinate system is similar to the idea of the mm-th power of the translation quiver defined by Baur and Marsh in [4].

We now recall the definition of the mesh category associated to the translation quiver ℀​An\mathbb{Z}A_{n}. The objects of this category are the vertices of ℀​An\mathbb{Z}A_{n} and morphisms are the arrows of ℀​An\mathbb{Z}A_{n}, subject to the mesh relations. For each arrow Ξ±:xβ†’y\alpha:x\rightarrow y denote by σ​(Ξ±)\sigma(\alpha) the unique arrow σ​(Ξ±):τ​(y)β†’x\sigma(\alpha):\tau(y)\rightarrow x. Notice that the uniqueness of σ​(Ξ±)\sigma(\alpha) follows from the bijection between the arrows starting at xx and the arrows ending at xx. The mesh relations are given by,

βˆ‘Ξ±:xβ†’yα​σ​(Ξ±)=0\sum_{\alpha:x\rightarrow y}\alpha\sigma(\alpha)=0

for each vertex y∈(℀​An)0y\in(\mathbb{Z}A_{n})_{0}.
Next for a vertex x=[r​m,s​m+1]βˆˆβ„€β€‹Anx=[rm,sm+1]\in\mathbb{Z}A_{n}, where rβˆˆβ„€r\in\mathbb{Z} and r+1β©½sβ©½r+nr+1\leqslant s\leqslant r+n, Hβˆ’β€‹(x)H^{-}(x) and H+​(x)H^{+}(x) as the vertices of ℀​An\mathbb{Z}A_{n} enclosed by and on the boundary of the regions specified in the following figure.

[Uncaptioned image]
Remark 2.2.

For any xβˆˆβ„€β€‹Anx\in\mathbb{Z}A_{n} by the left boundary of Hβˆ’β€‹(x)H^{-}(x) we mean the set of all vertices on the boundary of Hβˆ’β€‹(x)H^{-}(x) to the left of the vertices [r​m,(r+1)​m+1][rm,(r+1)m+1] and [(sβˆ’n)​m,s​m+1][(s-n)m,sm+1]. The right boundary of Hβˆ’β€‹(x)H^{-}(x) is the set of all vertices on the boundary of Hβˆ’β€‹(x)H^{-}(x) to the right of [r​m,(r+1)​m+1][rm,(r+1)m+1] and [(sβˆ’n)​m,s​m+1][(s-n)m,sm+1]. We define left and right boundaries of H+​(x)H^{+}(x) similarly. Notice also that the regions Hβˆ’β€‹(x)H^{-}(x) and H+​(x)H^{+}(x) on ℀​An\mathbb{Z}A_{n} describe the set of vertices from which (respectively, to which) there is a non-zero morphism in the mesh category associated to ℀​An\mathbb{Z}A_{n}.

Define the following automorphisms on ℀​An\mathbb{Z}A_{n}:

Ο‰:℀​An→℀​An\displaystyle\omega:\mathbb{Z}A_{n}\rightarrow\mathbb{Z}A_{n} , Ο„:℀​An→℀​An\displaystyle\tau:\mathbb{Z}A_{n}\rightarrow\mathbb{Z}A_{n}
(i,j)↦(jβˆ’(n+1)​m,i+1)\displaystyle(i,j)\mapsto(j-(n+1)m,i+1) (i,j)↦(iβˆ’m,jβˆ’m).\displaystyle(i,j)\mapsto(i-m,j-m).

Further, Ο„i:=τ​ωiβˆ’1\tau_{i}:=\tau\omega^{i-1}.

Remark 2.3.

These automorphisms were considered by Iyama in [14] for m=1m=1.

Results by D. Happel show that for a quiver QQ of Dynkin type Ξ”\Delta the AR-quiver of the bounded derived category π’Ÿb​(k​Q)\mathcal{D}^{b}(kQ) is isomorphic as a stable translation quiver to ℀​Δ\mathbb{Z}\Delta [13, I,5.6]. From this result it follows that Ο‰\omega as defined above in type AnA_{n} is the action of the inverse of the suspension [1][1] in π’Ÿb​(k​An)\mathcal{D}^{b}(kA_{n}) expressed in terms of the mm-co-ordinate system. Also the automorphism Ο„\tau on ℀​An\mathbb{Z}A_{n} is the action of the AR-translate in π’Ÿb​(k​An)\mathcal{D}^{b}(kA_{n}) expressed in terms of the mm-co-ordinate system. It is also proven in [13, I,5.6] that for QQ a quiver of Dynkin type the mesh category k​(℀​Δ)k(\mathbb{Z}\Delta) is equivalent to indβ‘π’Ÿb​(k​Q)\operatorname{ind}\mathcal{D}^{b}(kQ), where QQ is of type Ξ”\Delta. Here indβ‘π’Ÿb​(k​Q)\operatorname{ind}\mathcal{D}^{b}(kQ) denotes the subcategory of π’Ÿb​(k​Q)\mathcal{D}^{b}(kQ) whose objects are the indecomposable objects of π’Ÿb​(k​Q)\mathcal{D}^{b}(kQ) and whose morphisms are the irreducible morphisms between indecomposable objects in π’Ÿb​(k​Q)\mathcal{D}^{b}(kQ).
We can construct the quotient translation quiver ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle by identifying the vertices of ℀​An\mathbb{Z}A_{n} with their Ο„m+1\tau_{m+1}-shifts.

Now we present some polygonal combinatorics which appears in [11] in connection with the generalized cluster complexes of type AnA_{n}. We denote by PP a (regular convex) NN-gon where Nβˆˆβ„•N\in\mathbb{N}.

Definition 2.4.

An mm-allowable diagonal in PP is a chord joining two non-adjacent boundary vertices which divides PP into two smaller polygons P1P_{1} and P2P_{2} which can themselves be subdivided into m+2m+2-gons by non-crossing chords.

We label the vertices of PP from 0 to Nβˆ’1N-1 in an anti-clockwise direction, then we denote diagonals in PP by d​(i,j)d(i,j) where d​(i,j)d(i,j) meets the PP at the vertices labeled ii and jj.

Remark 2.5.

In type AnA_{n} the regular polygon PP will be an (n+1)​m+2(n+1)m+2-gon. Notice however that the definition of mm-allowable diagonals and also the next lemma 2.6 do not require us to choose a specific value for NN.

The following lemma is easy to prove.

Lemma 2.6.

A regular convex NN-gon, PP, can be divided into convex m+2m+2-gons by non-crossing diagonals if, and only if, N≑2​m​o​d​mN\equiv 2\,\,mod\,\,m.

Lemma 2.6 implies that an (n+1)​m+2(n+1)m+2-gon, PP, can be divided into m+2m+2-gons by non-crossing mm-allowable diagonals.

Remark 2.7.

We can define a simplicial complex with vertex set the mm-allowable diagonals of PP. Two mm-allowable diagonals are compatible if they do not cross in the interior of PP. The mm-cluster complex of type AnA_{n} is isomorphic as a simplicial complex to the clique complex with respect to the above notion of compatibility for the set of mm-allowable diagonals of an (n+1)​m+2(n+1)m+2-gon [11, sec. 4.1]. The original definition of mm-cluster complex of type AnA_{n} given in [11] by Fomin and Reading in terms of β€œgeneralized” root systems.

We will need the next proposition which appears in [18] in the proof of proposition 2.14.

Proposition 2.8.

There is a bijection

ΞΈAn:π’ŸβŸΆ(℀​An/βŸ¨Ο„m+1⟩)0\theta_{A_{n}}:\mathcal{D}\longrightarrow\left(\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle\right)_{0}

given by ΞΈAn​(d​(i,j))=(i,j)\theta_{A_{n}}(d(i,j))=(i,j) where (℀​An/βŸ¨Ο„m+1⟩)0\left(\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle\right)_{0} denotes the set of vertices of the translation quiver (℀​An/βŸ¨Ο„m+1⟩)\left(\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle\right) and π’Ÿ\mathcal{D} denotes the set of all mm-allowable diagonals of a regular convex (n+1)​m+2(n+1)m+2-gon.
Also, we have that the subset,

(ΞΈAnβˆ’1βˆ˜Ο€)(⋃1β©½cβ©½mH+(Ο„cβˆ’1(i,j))))βŠ†π’Ÿ(\theta_{A_{n}}^{-1}\circ\pi)\Big{(}\bigcup_{1\leqslant c\leqslant m}H^{+}\big{(}\tau_{c}^{-1}(i,j)\big{)}\big{)}\Big{)}\subseteq\mathcal{D}

(where Ο€:℀​An→℀​An/βŸ¨Ο„m+1⟩\pi:\mathbb{Z}A_{n}\rightarrow\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle is the canonical projection) is the set of mm-allowable diagonals crossing ΞΈAnβˆ’1​((i,j))=d​(i,j)\theta^{-1}_{A_{n}}((i,j))=d(i,j) in PP.

Remark 2.9.

Notice that if any collection of mm-allowable diagonals in a division of PP share a given vertex then when considered as vertices of ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle under ΞΈAnβˆ’1\theta_{A_{n}}^{-1} they must have a common co-ordinate. This will be used in the proof of 2.16.

The next result appears in [6, sec. 1] (for m=1m=1, but which holds for any value of mβ©Ύ1m\geqslant 1) relates the mesh category associated to the quotient translation quiver ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle to the full subcategory category ind⁑(π’žm​(k​An))\operatorname{ind}(\mathcal{C}_{m}(kA_{n})) of π’žm\mathcal{C}_{m}.

Proposition 2.10.

Let QQ be any quiver of Dynkin type Ξ”\Delta. Then ind⁑(π’žm​(k​Q))\operatorname{ind}(\mathcal{C}_{m}(kQ)) is equivalent to the mesh category associated with ℀​Δ/βŸ¨Ο„m+1⟩\mathbb{Z}\Delta/\langle\tau_{m+1}\rangle.

Remark 2.11.

Notice also that it follows from the mesh relations and the equivalence in proposition 2.10 that the Hom\operatorname{Hom} spaces in the mm-cluster category of type AnA_{n} are at most one dimensional.

From now on let PP denote a regular convex polygon with (n+1)​m+2(n+1)m+2 vertices. Any division of PP by mm-allowable diagonals will be assumed to be maximal and all mm-cluster-tilted algebras will be of type AnA_{n}. We will denote by π’žm\mathcal{C}_{m} the mm-cluster category π’Ÿb​(k​An)/Ο„βˆ’1​[m]\mathcal{D}^{b}(kA_{n})/\tau^{-1}[m]. Given a division, 𝒯\mathcal{T}, of a regular convex (n+1)​m+2(n+1)m+2-gon into m+2m+2-gons by non-crossing mm-allowable diagonals we describe a finite quiver, Q𝒯Q_{\mathcal{T}}. We also describe a set of relations, ℐ𝒯\mathcal{I}_{\mathcal{T}}, in the path algebra, k​Q𝒯kQ_{\mathcal{T}}, and show the algebra k​Q𝒯/ℐ𝒯kQ_{\mathcal{T}}/\mathcal{I}_{\mathcal{T}} is isomorphic to an mm-cluster-tilted algebra. We will show that all mm-cluster-tilted algebras can be realized in this way.

Let 𝒯\mathcal{T} denote the set of mm-allowable diagonals in a division of PP. The vertices of the quiver Q𝒯Q_{\mathcal{T}} are in one-to-one correspondence with the elements of 𝒯\mathcal{T}. For any two vertices ii and jj in Q𝒯Q_{\mathcal{T}}, there is an arrow iβ†’ji\rightarrow j if and only if:

  1. (1)

    the corresponding mm-allowable diagonals, did_{i} and djd_{j} share a vertex in the (n+1)​m+2(n+1)m+2-gon.

  2. (2)

    did_{i} and djd_{j} are edges of the same m+2m+2-gon in the division.

  3. (3)

    djd_{j} follows did_{i} in a clockwise direction.

Example 2.12.

Here Q𝒯Q_{\mathcal{T}} is shown for a particular division of a (5+1)+2=8-gon.

[Uncaptioned image]

In [21] the following statement is proven.

Proposition 2.13.

There exists a bijection between the maximal divisions of PP by mm-allowable diagonals and the mm-cluster-tilting objects in the cluster category π’žm\mathcal{C}_{m}.

The result also follows from [18, thm 1.01].
For a given division 𝒯\mathcal{T} of PP let TT denote the corresponding mm-cluster-tilting object under the bijection of proposition 2.13 and let Endπ’žm⁑(T)β‰…k​Q/I\operatorname{End}_{\mathcal{C}_{m}}(T)\cong kQ/I denote the mm-cluster-tilted algebra.

Proposition 2.14.

The quiver Q𝒯Q_{\mathcal{T}} is the quiver, QQ, where Endπ’žm⁑(T)β‰…k​Q/I\operatorname{End}_{\mathcal{C}_{m}}(T)\cong kQ/I.

Proof.

For an mm-allowable diagonal did_{i} in 𝒯\mathcal{T} let TiT_{i} denote the indecomposable object of π’žm\mathcal{C}_{m} which corresponds to the vertex ΞΈAnβˆ’1​(di)\theta_{A_{n}}^{-1}(d_{i}) of the mesh category associated with ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle.
Since by proposition 2.8 we have a bijection ΞΈAn:π’ŸβŸΆ(℀​An/βŸ¨Ο„m+1⟩)0\theta_{A_{n}}:\mathcal{D}\longrightarrow\left(\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle\right)_{0} and, by proposition 2.10, the category ind⁑(π’žm)\operatorname{ind}(\mathcal{C}_{m}) is equivalent to the mesh category of ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle it follows that if two mm-allowable diagonals d1d_{1} and d2d_{2} share a vertex of PP then there must be a non-zero map, Ξ½\nu say, between the corresponding indecomposable summands T1T_{1} and T2T_{2} of the mm-cluster-tilting object, TT. Indeed, if two mm-allowable diagonals, d1d_{1} and d2d_{2}, share a vertex of PP then they correspond under ΞΈAnβˆ’1\theta^{-1}_{A_{n}} to vertices, x1x_{1} and x2x_{2} say, of ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle which have a common co-ordinate. We assume without loss that Ξ½:T1β†’T2\nu:T_{1}\rightarrow T_{2}.
Then ν\nu will be irreducible if and only if d1d_{1} and d2d_{2} are part of the same m+2m+2-gon in the division of PP. Notice that if d1d_{1} and d2d_{2} lie in different m+2m+2-gons but, as we assume, share a vertex of PP then a third mm-allowable diagonal, d3d_{3}, must exist which also meets PP at the vertex shared by d1d_{1} and d2d_{2}. There would then exist non-zero maps from d1d_{1} to d3d_{3} and from d3d_{3} to d1d_{1}, but since there is a common co-ordinate we must have that the composition of the non-zero maps T1→T3T_{1}\rightarrow T_{3} and T3→T2T_{3}\rightarrow T_{2} is equal to ν\nu. The definition of θAn\theta_{A_{n}} ensures that the non-zero map between Ti→TjT_{i}\rightarrow T_{j} exists if djd_{j} follows did_{i} in a clockwise direction around the m+2m+2-gon.
Notice that it is not possible for other arrows to exist since they would have to correspond to irreducible morphisms on the mesh category. ∎

Next we define ℐ𝒯\mathcal{I}_{\mathcal{T}}. Given consecutive arrows iβ†’Ξ±jβ†’Ξ²ki\stackrel{{\scriptstyle\alpha}}{{\rightarrow}}j\stackrel{{\scriptstyle\beta}}{{\rightarrow}}k in Q𝒯Q_{\mathcal{T}} we define the path to be zero if did_{i}, djd_{j} and dkd_{k} are in the same m+2m+2-gon in the division of PP. Let ℐ𝒯\mathcal{I}_{\mathcal{T}} denote the ideal in the path algebra k​Q𝒯kQ_{\mathcal{T}} generated by such relations.

Example 2.15.

Here are two examples showing the quiver Q𝒯Q_{\mathcal{T}} and relations ℐ𝒯\mathcal{I}_{\mathcal{T}} for two different 2-allowable divisions of a 16=(6+1)β‹…2+216=(6+1)\cdot 2+2-gon.

[Uncaptioned image]

The following proposition was known for the m=1m=1 case [10], here we state the result for mβ©Ύ1m\geqslant 1.

Proposition 2.16.

The algebra kQ𝒯Q_{\mathcal{T}}/ℐ𝒯\mathcal{I}_{\mathcal{T}} is isomorphic to the mm-cluster-tilted algebra E​n​dπ’žm​(T)End_{\mathcal{C}_{m}}(T).

Remark 2.17.

In the proof of the proposition whenever we refer to H+​(x)H^{+}(x) we mean π​(H+​(x))\pi(H^{+}(x)), that is we regard the H+​(x)H^{+}(x) region as a subset of ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle. Also, when we refer to an mm-allowable diagonal dd we will use the same notation for the mm-allowable diagonal as the vertex of ℀​An/βŸ¨Ο„m+1⟩\mathbb{Z}A_{n}/\langle\tau_{m+1}\rangle

Proof.

Suppose that did_{i}, djd_{j} and dkd_{k} are mm-allowable diagonals which are part of the same m+2m+2-gon arranged as follows,

[Uncaptioned image]

so that did_{i} and djd_{j} share a vertex of PP, djd_{j} and dkd_{k} share a vertex of PP but did_{i}, djd_{j} and dkd_{k} have no common vertex.
We know by proposition 2.14 that there are arrows iβ†’Ξ±ji\stackrel{{\scriptstyle\alpha}}{{\rightarrow}}j and jβ†’Ξ²kj\stackrel{{\scriptstyle\beta}}{{\rightarrow}}k in Q𝒯Q_{\mathcal{T}} corresponding to irreducible maps between the indecomposable summands TiT_{i} and TjT_{j}, and TjT_{j} and TkT_{k} respectively.
We claim that the composition of these irreducible maps between Tiβ†’Ξ±Tjβ†’Ξ²TkT_{i}\stackrel{{\scriptstyle\alpha}}{{\rightarrow}}T_{j}\stackrel{{\scriptstyle\beta}}{{\rightarrow}}T_{k} is zero in the mm-cluster category. It is enough to show that dkβˆ‰H+​(di)d_{k}\notin H^{+}(d_{i}), the claim then follows from proposition 2.10.
Since did_{i} and djd_{j} share a co-ordinate we have that djd_{j} lies on the left boundary of H+​(di)H^{+}(d_{i}) and similarly, dkd_{k} lies on the left boundary of H+​(dj)H^{+}(d_{j}). Notice that since did_{i}, djd_{j} and dkd_{k} have no common vertex it follows that dkd_{k} cannot lie on the part of the left boundary of H+​(dj)H^{+}(d_{j}) which overlaps with the left boundary of H+​(di)H^{+}(d_{i}). Now since dkd_{k} does not cross did_{i} we have that dkβˆ‰H+​(Ο„βˆ’1​di)d_{k}\notin H^{+}(\tau^{-1}d_{i}) so that dkd_{k} lies on the left boundary of H+​(dj)H^{+}(d_{j}) but cannot lie in any part of H+​(di)H^{+}(d_{i}). Therefore the composition β∘α\beta\circ\alpha must be equal to zero in m​c​Cmmc{C}_{m} and so in Endπ’žm⁑(T)β‰…k​Q/I\operatorname{End}_{\mathcal{C}_{m}}(T)\cong kQ/I we have Ξ²β€‹Ξ±βˆˆI\beta\alpha\in I.
It follows from the above that β„π’―βŠ†I\mathcal{I}_{\mathcal{T}}\subseteq I. Finally, we claim that ℐ𝒯=I\mathcal{I}_{\mathcal{T}}=I. To see that this is the case it is enough to show that no commutativity relations exist in II and that the composition of two arrows in Q𝒯Q_{\mathcal{T}} not in the same m+2m+2-gon is not a relation.
First we consider commutativity relations. Suppose that an mm-cluster-tilting object TT has two indecomposable summands TiT_{i} and TjT_{j} so that there exist two distinct non-zero paths between the corresponding vertices, ii and jj of Endπ’žm⁑(T)\operatorname{End}_{\mathcal{C}_{m}}(T). Then the mesh relations dictate that j∈H+​(Ο„βˆ’1​(i))j\in H^{+}(\tau^{-1}(i)) or vice versa, which is impossible since did_{i} and djd_{j} do not cross.
Now suppose that d1β†’Ξ³d2d_{1}\stackrel{{\scriptstyle\gamma}}{{\rightarrow}}d_{2} and d2β†’Ξ΄d1d_{2}\stackrel{{\scriptstyle\delta}}{{\rightarrow}}d_{1} are two arrows in Q𝒯Q_{\mathcal{T}} such that the path δ​γ\delta\gamma is defined and Ξ³\gamma and Ξ΄\delta lie in different m+2m+2-gons in some division of PP. Then we must have that d1,d2d_{1},d_{2} and d3d_{3} have a common vertex so that ΞΈAnβˆ’1​(d2)\theta_{A_{n}}^{-1}(d_{2}) and ΞΈAnβˆ’1​(d3)\theta_{A_{n}}^{-1}(d_{3}) lie on the left boundary of H+​(ΞΈAnβˆ’1​(d1))H^{+}(\theta_{A_{n}}^{-1}(d_{1})). Hence the composition δ​γ\delta\gamma is not a relation in Endπ’žm⁑(T)\operatorname{End}_{\mathcal{C}_{m}}(T). ∎

We have now proven that k​Q𝒯kQ_{\mathcal{T}}/ℐ𝒯\mathcal{I}_{\mathcal{T}} is isomorphic to the mm-cluster-tilted algebra corresponding to TT. Since every mm-cluster-tilting object can be described by a division of PP [21] every mm-cluster-tilted algebra can be realized in this way.

Remark 2.18.

Notice that in the proof of proposition 2.16 if m=1m=1 then the mm-allowable diameters did_{i}, djd_{j} and dkd_{k} must form a triangle so that there exists an irreducible map Tk→TiT_{k}\rightarrow T_{i} making a three cycle. We collect the following easy consequences of 2.16,

  1. (1)

    the only possible cycles which can occur in k​Q𝒯kQ_{\mathcal{T}}/ℐ𝒯\mathcal{I}_{\mathcal{T}} are m+2m+2-cycles with full relations, that is all paths of length two in any m+2m+2-cycle are relations.

  2. (2)

    for mm-cluster-tilted algebras of type AnA_{n}, m≠1m\neq 1, relations can occur outwith cycles.

  3. (3)

    there can exist at most mβˆ’1m-1 consecutive relations outwith a cycle.

It is known for 1-cluster-tilted algebras of Dynkin type that the relations are determined by the quiver [8]. The next example shows that this is not the case for mm-cluster-tilted algebras of type AnA_{n}, m≠1m\neq 1.

Example 2.19.

This example shows that the quiver A2β†’\vec{A_{2}} can arise as the quiver of two different 2-cluster-tilted algebras of type A3A_{3}.

[Uncaptioned image]

Note that the figure in example 2.15 provides two more examples.

3. Tilting complexes and elementary moves

The remainder of this paper will demonstrate theorem 1.2.
We begin with the following observation.

Proposition 3.1.

mm-cluster-tilted algebras of type AnA_{n} are gentle for any m,nβ©Ύ1m,n\geqslant 1.

Proof.

The result follows from considerations of the possible divisions of PP, the regular (n+1)​m+2(n+1)m+2-gon. Let 𝒯\mathcal{T} be a division. It is clear that there can be at most two arrows starting or ending at a given vertex of Q𝒯Q_{\mathcal{T}}. The following figures make the other required properties clear.

[Uncaptioned image][Uncaptioned image][Uncaptioned image]\begin{array}[]{ccc}\includegraphics[scale={0.5}]{endogent1.eps}&\includegraphics[scale={0.5}]{endogent2.eps}&\includegraphics[scale={0.5}]{endogent3.eps}\end{array}

∎

Remark 3.2.

See [2], for example, for the definition of a gentle algebra.

Suppose that we have some division of PP. Notice that each mm-allowable diagonal, dd, is a common edge of two m+2m+2-gons and that for a given d0d_{0} (as in figure the next example) there are mm-allowable diagonals d1,d2,…,dmd_{1},d_{2},\ldots,d_{m} of PP which we view as anti-clockwise β€œrotations” of d0d_{0} inside the two m+2m+2-gons of which it is an edge. This is a generalization of the well know concept of quadrilateral exchange in triangulations of polygons, indeed quadrilateral exchange is the m=1m=1 case.
It is clear that for any given mm-allowable diagonal, d0βˆˆπ’―d_{0}\in\mathcal{T}, there exist mm distinct mm-allowable diagonals d1,d2,…,dmd_{1},d_{2},\ldots,d_{m} which could replace d0d_{0} and provide a distinct division of PP.

Example 3.3.

The next figure shows an example of the possible replacement 2-allowable diagonals for d0d_{0} in a regular hexagon.

[Uncaptioned image]
Definition 3.4.

Suppose that 𝒯\mathcal{T} is a maximal division of PP by mm-allowable diagonals. Fix a presentation of PP in the plane. For any chosen mm-allowable diagonal, d0d_{0}, in we define an operation ΞΌm\mu_{m}. This operation β€œrotates” d0d_{0} in an anti-clockwise direction inside the two m+2m+2-gons in the division of PP of which it is a common edge. Thus we have,

ΞΌm(di)=di+1,for allΒ 0β©½iβ©½mβˆ’1\mu_{m}(d_{i})=d_{i+1}\quad,\textnormal{for all $0\leqslant i\leqslant m-1$}

and

ΞΌm​(dm)=d0\mu_{m}(d_{m})=d_{0}

where d1,…,dmd_{1},\ldots,d_{m} are the mm-allowable diagonals which are the β€œrotations” of d0d_{0}. Every ΞΌmk​(d0)\mu_{m}^{k}(d_{0}), 1β©½kβ©½m1\leqslant k\leqslant m, can replace d0d_{0} and achieve a distinct division of PP as described above. Further we define, ΞΌmβˆ’1=ΞΌmm\mu_{m}^{-1}=\mu_{m}^{m}. We call ΞΌm\mu_{m} and ΞΌmβˆ’1\mu_{m}^{-1} elementary polygonal moves.

For the most part we will be interested in applying ΞΌm\mu_{m} or ΞΌmβˆ’1\mu_{m}^{-1} which can be thought of as β€œrotations”of an mm-allowable diagonal in the anti-clockwise and clockwise directions respectively. Given a division of PP we can apply the elementary polygonal moves to the mm-allowable diagonals in the division to create distinct divisions. As in section 2 an mm-cluster-tilted algebra can be associated with the original division and with the new division and we say that we have mutated the algebra corresponding to the original division to the algebra corresponding to the new division.

Remark 3.5.

ΞΌ1\mu_{1} can be thought of as the quiver mutation operation in a 1-cluster-tilted algebra of type AnA_{n} via the approach of [10]. Since for 1-cluster-tilted algebras of Dynkin type the quiver determines the relations [8], it is possible to define ΞΌ1\mu_{1} without reference to relations for 1-cluster-tilted algebras. For mm-cluster-tilted algebras of Dynkin type this is no longer possible since the quiver does not determine the relations (as we have seen in example 2.15).

Example 3.6.

We illustrate the algebra mutation induced by the elementary polygonal moves with an example. The algebra mutation shown is achieved by applying ΞΌ3βˆ’1\mu_{3}^{-1} at the vertex circled in the first quiver.

[Uncaptioned image]

In the above figure the numbers 1-6 denote where the division continues arbitrarily, the labels QiQ_{i} denote the corresponding parts of the quiver with relations. The edges in the polygonal configurations shown in bold typeface are edges of PP.

We now wish to show that using the elementary polygonal moves we can induce algebra mutations such that the original and new mm-cluster-tilted algebras are derived equivalent. The following theorem, due to Bessenrodt and Holm [5] plays a crucial role in determining when this is possible.

Theorem 3.7.

[5, thm 4.1,cor 4.3] Let Ξ›=k​Q/I\Lambda=kQ/I be a gentle algebra with e​c​(Ξ›)ec(\Lambda) and o​c​(Ξ›)oc(\Lambda) being the number of cycles of even length with full relations and the number of cycles of odd length with full relations respectively. Then the Cartan matrix, CΞ›C_{\Lambda}, is unimodular equivalent to a diagonal matrix of the form:

(2β‹±20β‹±01β‹±1)\left(\begin{array}[]{ccccccccc}2&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil\\ {}\hfil&\ddots&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil\\ {}\hfil&{}\hfil&2&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil\\ {}\hfil&{}\hfil&{}\hfil&0&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil\\ {}\hfil&{}\hfil&{}\hfil&{}\hfil&\ddots&{}\hfil&{}\hfil&{}\hfil&{}\hfil\\ {}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&0&{}\hfil&{}\hfil&{}\hfil\\ {}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&1&{}\hfil&{}\hfil\\ {}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&\ddots&{}\hfil\\ {}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&{}\hfil&1\\ \end{array}\right)

where there are o​c​(Ξ›)oc(\Lambda) 2’s and e​c​(Ξ›)ec(\Lambda) 0’s on the diagonal

Recall that the Cartan matrix for a finite dimensional algebra Ξ›β‰…k​Q/I\Lambda\cong kQ/I is given by CΞ›=[ci,j]1β©½i,j,β©½|Q0|C_{\Lambda}=[c_{i,j}]_{1\leqslant i,j,\leqslant|Q_{0}|} where ci,j=d​i​mk​HomΛ⁑(Pi,Pj)=d​i​mk​HomΛ⁑(ei​Λ,ej​Λ)=d​i​mk​ej​Λ​eic_{i,j}=dim_{k}\operatorname{Hom}_{\Lambda}(P_{i},P_{j})=dim_{k}\operatorname{Hom}_{\Lambda}(e_{i}\Lambda,e_{j}\Lambda)=dim_{k}\,\,e_{j}\Lambda e_{i}. Here eie_{i} is a principle idempotent and ei​Λ≅Pie_{i}\Lambda\cong P_{i} are the indecomposable projectives.
With the above conventions the columns of the Cartan matrix are the dimension vectors of the indecomposable projective right Ξ›\Lambda modules. For an mm-cluster tilted algebra of type AnA_{n} we have the following basic properties of the Cartan matrix which follow from the combinatorial descriptions in section 2.

  • β€’

    The entries of CΞ›C_{\Lambda} are either 0 or 1.

  • β€’

    There are at most nn entries which are 1 in any given row or column. In the case where there are nn entries which are 1 in some column then the mm-cluster tilted algebra in question is isomorphic to the path algebra of the linear orientation of the Dynkin diagram AnA_{n}.

  • β€’

    For a vertex ii in a cycle there are at least two entries which are 1 in the ii-th row.

It is well known that the unimodular equivalence class of the Cartan matrix of a finite dimensional algebra is a derived invariant. Therefore since the mm-cluster-tilted algebras of type AnA_{n} are gentle we have, by theorem 3.7, that any two mm-cluster-tilted algebras which are derived equivalent have the same number of m+2m+2-cycles. Hence in order to mutate an mm-cluster-tilted algebra and induce a derived equivalence we must ensure that we preserve the number of m+2m+2-cycles.

Remark 3.8.

It is not always possible to induce a derived equivalence by applying the elementary polygonal moves, for example applying ΞΌ3\mu_{3} at the circled vertex in figure in example 3.6 would not preserve the number of cycles and so the mutated algebra would not be derived equivalent to the original algebra.

It is our aim to show that each connected component of an mm-cluster-tilted algebra with a given number, rβˆˆβ„•0r\in\mathbb{N}_{0} of m+2m+2-cycles is derived equivalent to the following normal form having the same number of m+2m+2-cycles.

Definition 3.9.

We define the normal form to be the following finite dimensional algebra given as a quiver with relations:

[Uncaptioned image]

In the normal form shown the vertices in the region labeled A are called vertices of type A while those in the region labeled B are called vertices of type B. The vertices which connect cycles to each other or to the linear part of the quiver are not included in either region A or region B (the same holds for the extreme left vertex).
The cycles are m+2m+2-cycles and have full relations (see section 2). The number of m+2m+2-cycles is rr, for some rβ©Ύ0r\geqslant 0. The total number of vertices is nn.
If mm is even then there are m2\frac{m}{2} vertices of types A and B per cycle. If mm is odd there are (mβˆ’12)\left(\frac{m-1}{2}\right) vertices of type B and (m+12)\left(\frac{m+1}{2}\right) vertices of type A per m+2m+2-cycle.

We remark that there are other possible choices for the normal form in which the number of vertices of types A and B would be different.

To prove our claim that all connected components of mm-cluster-tilted algebras are derived equivalent to the quiver with relations specified by the normal form we employ mutations induced by the elementary polygonal moves which result in derived equivalent original and mutated algebras.
Shortly we give a list containing local descriptions of some algebra mutations induced by the elementary polygonal moves which preserve the number of m+2m+2-cycles occurring in the quiver of an mm-cluster-tilted algebra. We will use these extensively in section 4. Before presenting the list some explanation of the information contained in the figures below is required.
Denote by Ξ›\Lambda the original mm-cluster-tilted algebra and by Ξ›β€²\Lambda^{\prime} the mutated algebra. Each figure contains four diagrams. Two of these are parts of quivers with relations, the first of which is some local situation in Ξ›\Lambda. The circled vertex in this first diagram denotes the vertex of the quiver at which the algebra mutation corresponding to the elementary move takes place. The second of the quiver diagrams shows the resultant local situation in Ξ›β€²\Lambda^{\prime}. The curved dotted line appearing in both quiver diagrams indicates an m+2m+2-cycle.
The third and fourth diagrams are the local polygonal configurations corresponding to Ξ›\Lambda and Ξ›β€²\Lambda^{\prime} respectively. The dashed line in the fourth diagram illustrates the new position of the mm-allowable diagonal corresponding to the mutation vertex after the application of an elementary polygonal move.
The edges which appear in bold typeface correspond to boundary edges of PP. It should be noted that one edge in bold typeface may correspond to as many as m+1m+1 edges of PP. Each figure is general in the sense that it is independent of the values of mm and nn, though of course we assume nn is large enough to allow the configurations we show to exist.
In some figures we may make further assumptions on the quiver of Ξ›\Lambda, if this is the case then these assumptions will be stated in a short remark.
The (D)(D) which sometimes appears below the numbering denotes a mutation which has arisen from ΞΌmβˆ’1\mu_{m}^{-1} at the mutation vertex.

[Uncaptioned image][Uncaptioned image]

There is no relation involving an arrow in Q2Q_{2} and the arrow going into the mutation vertex (and not in the cycle) which is shown.

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

In the two figures immediately above we assume that there is no relation involving an arrow in Q3Q_{3} and the arrow into, or our of, the mutation vertex.

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

Here we assume there is no relation between an arrow from Q2Q_{2} and the arrow going into the mutation vertex (which is not in the cycle) and that there is no relation between the arrow going out of the mutation vertex (which is not in the cycle) and any arrow in Q3Q_{3}.

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

There is no relation involving an arrow in Q2Q_{2} and the arrow going out of the mutation vertex (and not in the cycle) which is shown.

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

In the two figures immediately above we assume that there is no relation involving an arrow in Q3Q_{3} and the arrow into, or our of, the mutation vertex.

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

Here we assume there is no relation between an arrow from Q2Q_{2} and the arrow going into the mutation vertex (which is not in the cycle) and that there is no relation between the arrow going out of the mutation vertex (which is not in the cycle) and any arrow in Q3Q_{3}.

[Uncaptioned image][Uncaptioned image]

There are two groups of diagrams. The first group are those numbered (i) to (xiii). The second consists of the remaining figures (xiv) to (xxvi). The two groups will be used at different stages in the algorithm described in section 4 which reduces any connected component of an mm-cluster-tilted algebra of type AnA_{n} to our chosen normal form in definition 3.9.

Remark 3.10.

Notice that in the above list some of the figures may be viewed as simplified versions of another figure. For example figure (i) is a simplified version of figure (iii). To realize figure (i) from figure (iii) we delete the parts of the quiver which are not needed, namely Q2Q_{2} and the arrow into Q2Q_{2}. In more complex examples such simplifications may not be immediately apparent. We include the longer list to facilitate checking the algorithm in section 4.

In order to demonstrate that in each of the local algebra mutations above the original and mutated algebras are derived equivalent we now provide explicit tilting complexes which achieve this. There are two such complexes, one corresponding to each of the elementary polygonal moves in definition 3.4.
Before stating the next theorem we must define the notations used. Let Ξ›β‰…k​Q𝒯/ℐ𝒯\Lambda\cong kQ_{\mathcal{T}}/\mathcal{I}_{\mathcal{T}} be an mm-cluster-tilted algebra and let PiP_{i} denote the finitely generated projective right Ξ›\Lambda-module, ei​Λe_{i}\Lambda where eie_{i} is the primitive idempotent corresponding to i∈(Q𝒯)0i\in(Q_{\mathcal{T}})_{0} (the set of vertices of Q𝒯Q_{\mathcal{T}}).
Suppose we mutate Ξ›\Lambda to Ξ›β€²\Lambda^{\prime} via an elementary polygonal move, then we distinguish certain vertices in (Q𝒯)0({Q_{\mathcal{T}}})_{0}. We denote by m​u​tmut the mutation vertex. If there exist arrows in Q𝒯Q_{\mathcal{T}} whose target is m​u​tmut then we label the source i​ntin_{t} and the arrow iti_{t}, where 1β©½tβ©½21\leqslant t\leqslant 2 (since Ξ›\Lambda is gentle there can be at most two ingoing and two outgoing arrows). We denote by o​u​tuout_{u}, 1β©½uβ©½21\leqslant u\leqslant 2, the targets of any arrows out of m​u​tmut and label such arrows ouo_{u}. Since the mm-cluster-tilted algebras in this case are gentle we may adopt the convention that should the paths o2​i1o_{2}i_{1} and o1​i2o_{1}i_{2} exist they are zero.
Further, should there exist an arrow Ξ³\gamma such that it​γ=0i_{t}\gamma=0 then we label the source of Ξ³\gamma by p​r​etpre_{t}. Similarly, if there exists an arrow Ξ΄\delta such that δ​ou=0\delta o_{u}=0 then we label the target of Ξ΄\delta by p​o​s​tupost_{u}.
Next, P​(Ξ›)P(\Lambda) denotes the full subcategory of finitely generated projective right Ξ›\Lambda-modules; Kb​(P​(Ξ›))K^{b}(P(\Lambda)) denotes the homotopy category of bounded complexes of finitely generated projective right Ξ›\Lambda-modules; and π’Ÿb​(Ξ›)\mathcal{D}^{b}(\Lambda) is the bounded derived category of finitely generated Ξ›\Lambda-modules. Our last notational convention is that given an arrow Ξ±:iβ†’j\alpha:i\rightarrow j between any two vertices i,j∈(Q𝒯)0i,j\in(Q_{\mathcal{T}})_{0}, the map Piβ†’PjP_{i}\rightarrow P_{j} between the projective indecomposable Ξ›\Lambda-modules induced by left multiplication by Ξ±\alpha will also be denoted Ξ±\alpha.

Part of the proof of theorem 3.12 (and part of the proof of theorem 3.15) involves determining the existence of maps between certain indecomposable summands of a tilting complex. In order to do this we use Happel’s alternating sum formula [13, chapter III, 1.3, 1.4].

Theorem 3.11.

[13] For a finite dimensional kk-algebra Ξ›\Lambda let C=(Cr)rβˆˆβ„€C=(C^{r})_{r\in\mathbb{Z}} and D=(Ds)sβˆˆβ„€D=(D^{s})_{s\in\mathbb{Z}} be complexes in Kb​(P​(Ξ›))K^{b}(P(\Lambda)). Then,

βˆ‘i(βˆ’1)i​d​i​mk​HomKb​(P​(Ξ›))⁑(C,D​[i])=βˆ‘r,s(βˆ’1)rβˆ’s​d​i​mk​HomΛ⁑(Cr,Ds).\sum_{i}(-1)^{i}\,dim_{k}\operatorname{Hom}_{K^{b}(P(\Lambda))}(C,D[i])=\sum_{r,s}(-1)^{r-s}\,dim_{k}\operatorname{Hom}_{\Lambda}(C^{r},D^{s}).

. In particular if CC and DD are direct summands of a tilting complex then,

d​i​mk​HomKb​(P​(Ξ›))⁑(C,D)=βˆ‘r,s(βˆ’1)rβˆ’s​d​i​mk​HomΛ⁑(Cr,Ds).dim_{k}\operatorname{Hom}_{K^{b}(P(\Lambda))}(C,D)=\sum_{r,s}(-1)^{r-s}\,dim_{k}\operatorname{Hom}_{\Lambda}(C^{r},D^{s}).

The next two results prove that when the elementary polygonal move ΞΌm\mu_{m} defined in definition 3.4 is applied in the figures labeled (i)-(v),(viii)-(xiii),(ixx) and (xxi) above there is a derived equivalence between the initial algebra Ξ›\Lambda and the new algebra Ξ›β€²\Lambda^{\prime}.

Theorem 3.12.

Suppose Ξ›\Lambda is a connected mm-cluster-tilted algebra of type AnA_{n} in which we can perform ΞΌm\mu_{m} at a given vertex, m​u​tmut, and preserve the number of m+2m+2-cycles and connectedness. Then then following complex, TT, in Kb​(P​(Ξ›))K^{b}(P(\Lambda)), where Pm​u​tP_{mut} is in degree 1, is a tilting complex.

T:β‹―β†’0β†’Pi​n1βŠ•Pi​n2βŠ•(⨁iβ‰ m​u​tPi)⟢[i1,i2,0]Pm​u​tβ†’0β†’β‹―T:\cdots\rightarrow 0\rightarrow P_{in_{1}}\oplus P_{in_{2}}\oplus\left(\bigoplus_{i\neq mut}P_{i}\right)\stackrel{{\scriptstyle[i_{1},i_{2},0]}}{{\longrightarrow}}P_{mut}\rightarrow 0\rightarrow\cdots

Moreover, the endomorphism algebra, Endπ’Ÿb​(Ξ›)⁑(T)β‰…k​Qβ€²/Iβ€²=Ξ›β€²\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T)\cong kQ^{\prime}/I^{\prime}=\Lambda^{\prime}, of TT can be obtained from Ξ›\Lambda using the following algorithm:

  1. (1)

    reverse all arrows going into the mutation vertex.

  2. (2)

    if there exist arrows i​ntβ†’m​u​tβ†’o​u​ttin_{t}\rightarrow mut\rightarrow out_{t} (which is non-zero by definition), there must exist an arrow i​ntβ†’o​u​ttin_{t}\rightarrow out_{t} in Qβ€²Q^{\prime} and the arrow m​u​tβ†’o​u​ttmut\rightarrow out_{t} does not exist in Qβ€²Q^{\prime}, t=1,2t=1,2.

  3. (3)

    if there exist arrows p​r​etβ†’i​ntβ†’m​u​tpre_{t}\rightarrow in_{t}\rightarrow mut such that the composition is zero, the arrow p​r​etβ†’i​ntpre_{t}\rightarrow in_{t} factors over m​u​tβ†’i​ntmut\rightarrow in_{t} in Qβ€²Q^{\prime}, t=1,2t=1,2.

  4. (4)

    relations in Ξ›β€²\Lambda^{\prime} around the mutated vertex are described by the following diagrams. If arrows and relations exist around the mutation vertex in Ξ›\Lambda as shown in the first diagram then the second diagram shows the new arrows and relations between the corresponding vertices of Ξ›β€²\Lambda^{\prime}.

    [Uncaptioned image]
Remark 3.13.

In the last part of the algorithm to determine the endomorphism algebra of the tilting complex in theorem 3.12 it should be noted that we do not suggest that the local configurations shown must exist at the mutation vertex, rather we show the arrows and relation which, if they exist, are altered by the mutation. The second diagram describes the new configuration of arrows and relations. It is clear that the mutations in figures (i)-(v),(viii)-(xiii),(ixx) and (xxi) satisfy the conditions of theorem 3.12.

Proof.

First we prove that TT is indeed a tilting complex. In other words we prove that HomDb​(Ξ›)⁑(T,T​[k])=0\operatorname{Hom}_{D^{b}(\Lambda)}(T,T[k])=0, for all kβˆˆβ„€,kβ‰ 0k\in\mathbb{Z},k\neq 0 (recall HomKb​(P​(Ξ›))⁑(T,T​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T,T[k])=0 implies HomDb​(Ξ›)⁑(T,T​[k])=0\operatorname{Hom}_{D^{b}(\Lambda)}(T,T[k])=0, for all kβˆˆβ„€k\in\mathbb{Z} [17, 2.5]) and that the subcategory add⁑(T)\operatorname{add}(T) generates Kb​(P​(Ξ›))K^{b}(P(\Lambda)) as a triangulated category (see [17, 3.2] for definition of tilting complex).

The indecomposable direct summands of TT are:

Tm​u​t:⋯​0β†’Pi​n1βŠ•Pi​n2β†’[i1,i2]Pm​u​tβ†’0β†’β‹―T_{mut}:\,\,\cdots 0\rightarrow P_{in_{1}}\oplus P_{in_{2}}\stackrel{{\scriptstyle[i_{1},i_{2}]}}{{\rightarrow}}P_{mut}\rightarrow 0\rightarrow\cdots
Ti:⋯0→Pi→0→⋯i≠mutT_{i}:\,\,\cdots 0\rightarrow P_{i}\rightarrow 0\rightarrow\cdots\quad i\neq mut

where the PiP_{i}’s are in degree zero for iβ‰ m​u​ti\neq mut and Pm​u​tP_{mut} is in degree 1.
Obviously, HomKb​(P​(Ξ›))⁑(Ti,Tj​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i},T_{j}[k])=0 for some i,jβ‰ m​u​ti,j\neq mut and kβˆˆβ„€,kβ‰ 0k\in\mathbb{Z}\,,k\neq 0. It is also clear that HomKb​(P​(Ξ›))⁑(T,T​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T,T[k])=0 for all kβˆˆβ„€,|k|β©Ύ2k\in\mathbb{Z},\,|k|\geqslant 2.
Note that for mm-cluster categories of Dynkin type the dimension of the non-zero Hom\operatorname{Hom} spaces in the mm-cluster category is at most 1 by remark 2.11. When proving that certain Hom\operatorname{Hom} spaces are zero in Kb​(P​(Ξ›))K^{b}(P(\Lambda)) we consider basis elements and show they are homotopic to zero. For two vertices ii and jj of QQ such that there is a non-zero path from ii to jj in QQ we always choose the map Piβ†’PjP_{i}\rightarrow P_{j} induced by the path as our basis of Homπ’žm⁑(Pi,Pj)\operatorname{Hom}_{\mathcal{C}_{m}}(P_{i},P_{j}).
Consider HomKb​(P​(Ξ›))⁑(Tm​u​t,Ti​[βˆ’1])\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{mut},T_{i}[-1]) for all iβ‰ m​u​ti\neq mut and let Ξ³:Pm​u​tβ†’Pi\gamma:P_{mut}\rightarrow P_{i} be a basis. Since Ξ³\gamma must start with either Pm​u​tβ†’o1Po​u​t1P_{mut}\stackrel{{\scriptstyle o_{1}}}{{\rightarrow}}P_{out_{1}} or Pm​u​tβ†’o2Po​u​t2P_{mut}\stackrel{{\scriptstyle o_{2}}}{{\rightarrow}}P_{out_{2}} we have that the diagram,

⋯​0\textstyle{\cdots 0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ³\scriptstyle{\gamma}0​⋯\textstyle{0\cdots}⋯​0\textstyle{\cdots 0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0​⋯\textstyle{0\cdots}

commutes if and only if Ξ³\gamma is the zero map. Therefore, HomKb​(Ξ›)⁑(Tm​u​t,Ti​[βˆ’1])=0\operatorname{Hom}_{K^{b}(\Lambda)}(T_{mut},T_{i}[-1])=0 for all iβ‰ m​u​ti\neq mut.
Next consider HomKb​(Ξ›)⁑(Ti,Tm​u​t​[1])\operatorname{Hom}_{K^{b}(\Lambda)}(T_{i},T_{mut}[1]) for all iβ‰ m​u​ti\neq mut and let Ξ΄:Piβ†’Pm​u​t\delta:P_{i}\rightarrow P_{mut} be a basis. Since Ξ΄\delta must end with either Pi​n1β†’i1Pm​u​tP_{in_{1}}\stackrel{{\scriptstyle i_{1}}}{{\rightarrow}}P_{mut} or Pi​n2β†’i2Pm​u​tP_{in_{2}}\stackrel{{\scriptstyle i_{2}}}{{\rightarrow}}P_{mut} we have that chain map,

⋯​0\textstyle{\cdots 0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ΄\scriptstyle{\delta}h\scriptstyle{h}0​⋯\textstyle{0\cdots}⋯​0\textstyle{\cdots 0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0​⋯\textstyle{0\cdots}

is homotopic to zero via the homotopy h=Ξ½s​δ′h=\nu_{s}\delta^{\prime} where is​δ′=Ξ΄i_{s}\delta^{\prime}=\delta and Ξ½s\nu_{s} is the inclusion Pi​nsβ†’Pi​n1βŠ•Pi​n2P_{in_{s}}\rightarrow P_{in_{1}}\oplus P_{in_{2}}, s=1,2s=1,2. Thus, HomKb​(Ξ›)⁑(Ti,Tm​u​t​[1])=0\operatorname{Hom}_{K^{b}(\Lambda)}(T_{i},T_{mut}[1])=0 for all iβ‰ m​u​ti\neq mut.
Finally, we examine HomKb​(Ξ›)⁑(Tm​u​t,Tm​u​t​[1])\operatorname{Hom}_{K^{b}(\Lambda)}(T_{mut},T_{mut}[1]). Since the maps [i1,0][i_{1},0] and [0,i2][0,i_{2}] are a basis for HomΛ⁑(Pi​n1βŠ•Pi​n2,Pm​u​t)\operatorname{Hom}_{\Lambda}(P_{in_{1}}\oplus P_{in_{2}},P_{mut}) the homotopies,

      
⋯​0\textstyle{\cdots 0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[SS1SS0SS0SS0]\scriptstyle{\left[\begin{array}[]{cc}\SS 1&\SS 0\\ \SS 0&\SS 0\end{array}\right]}[i1,0]\scriptstyle{[i_{1},0]}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t​⋯\textstyle{P_{mut}\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}⋯​Pi​n1βŠ•Pi​n2\textstyle{\cdots P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0​⋯\textstyle{0\cdots}
      
⋯​0\textstyle{\cdots 0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[SS0SS0SS0SS1]\scriptstyle{\left[\begin{array}[]{cc}\SS 0&\SS 0\\ \SS 0&\SS 1\end{array}\right]}[0,i2]\scriptstyle{[0,i_{2}]}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t​⋯\textstyle{P_{mut}\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}⋯​Pi​n1βŠ•Pi​n2\textstyle{\cdots P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0​⋯\textstyle{0\cdots}

show that HomKb​(Ξ›)⁑(Tm​u​t,Tm​u​t​[1])=0\operatorname{Hom}_{K^{b}(\Lambda)}(T_{mut},T_{mut}[1])=0. Hence, HomDb​(Ξ›)⁑(T,T​[k])=0\operatorname{Hom}_{D^{b}(\Lambda)}(T,T[k])=0, for all kβˆˆβ„€k\in\mathbb{Z}, kβ‰ 0k\neq 0.
Now we check that add⁑(T)\operatorname{add}(T) generates Kb​(P​(Ξ›))K^{b}(P(\Lambda)) as a triangulated category. It is clear that the stalk complexes,

Pi⋅[0]:⋯→0→Pi→0→⋯P^{\cdot}_{i}[0]:\quad\cdots\rightarrow 0\rightarrow P_{i}\rightarrow 0\rightarrow\cdots

(where Pi⋅​[k]P^{\cdot}_{i}[k] denotes the complex concentrated in degree kk with PiP_{i} the only non-zero term) are in add⁑(T)\operatorname{add}(T), iβ‰ m​u​ti\neq mut, and therefore Pi⋅​[k],kβˆˆβ„€P^{\cdot}_{i}[k],\,k\in\mathbb{Z} are in the triangulated category generated by add⁑(T)\operatorname{add}(T). We require that Pm​u​t⋅​[k],kβˆˆβ„€P^{\cdot}_{mut}[k],\,k\in\mathbb{Z} are also in the triangulated category generated by add⁑(T)\operatorname{add}(T).
Consider the morphism Tm​u​tβ†’fTi​n1βŠ•Ti​n2T_{mut}\stackrel{{\scriptstyle f}}{{\rightarrow}}T_{in_{1}}\oplus T_{in_{2}},

β‹―0Pi​n1βŠ•Pi​n2[SS1SS0SS0SS1][i1,i2]Pm​u​t0β‹―β‹―0Pi​n1βŠ•Pi​n200β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\\&&&&&\\&&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.73447pt\raise-35.08334pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left[\begin{array}[]{cc}\SS 1&\SS 0\\ \SS 0&\SS 1\end{array}\right]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.73447pt\raise-62.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.54381pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[i_{1},i_{2}]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 198.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.29596pt\raise-62.55556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 198.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 233.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 233.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 33.25pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 90.73447pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 157.29596pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 201.37299pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 237.62299pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-6.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 154.79596pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 154.79596pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 198.87299pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 198.87299pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 233.87299pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 233.87299pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

The mapping cone, M​(f)M(f), of ff (see [17, section 2.3] for definition) is,

β‹―β†’0β†’Pi​n1βŠ•Pi​n2⟢[SSβˆ’i1SSβˆ’i2SS1SS0SS0SS1]Pm​u​tβŠ•Pi​n1βŠ•Pi​n2β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{in_{1}}\oplus P_{in_{2}}\stackrel{{\scriptstyle\left[\begin{array}[]{cc}\SS-i_{1}&\SS-i_{2}\\ \SS 1&\SS 0\\ \SS 0&\SS 1\end{array}\right]}}{{\longrightarrow}}P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\rightarrow 0\rightarrow\cdots

where Pi​n1βŠ•Pi​n2P_{in_{1}}\oplus P_{in_{2}} is in degree -1. So that,

dM​(f)=[SSβˆ’i1SSβˆ’i2SS1SS0SS0SS1]d_{M(f)}=\left[\begin{array}[]{cc}\SS-i_{1}&\SS-i_{2}\\ \SS 1&\SS 0\\ \SS 0&\SS 1\end{array}\right]

Define the following maps M​(f)β†’Ο•Pm​u​t⋅​[0]M(f)\stackrel{{\scriptstyle\phi}}{{\rightarrow}}P^{\cdot}_{mut}[0] and Pm​u​t⋅​[0]β†’ΟˆM​(f)P^{\cdot}_{mut}[0]\stackrel{{\scriptstyle\psi}}{{\rightarrow}}M(f):

β‹―Ο•0Pi​n1βŠ•Pi​n2dM​(f)Pm​u​tβŠ•Pi​n1βŠ•Pi​n2[1,i1,i2]0β‹―β‹―00Pm​u​t0β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\\&&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern-2.40416pt\raise-19.625pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\phi}$}}}}}\ignorespaces{}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.19125pt\raise 6.725pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13611pt\hbox{$\scriptstyle{d_{M(f)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 93.73447pt\raise-32.30556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 190.28041pt\raise-19.95834pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[1,i_{1},i_{2}]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 190.28041pt\raise-31.91669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-6.75pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 88.23447pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 88.23447pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 175.70338pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 175.70338pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise-39.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}
β‹―Οˆ00Pm​u​t[SS1SS0SS0]0β‹―β‹―0Pi​n1βŠ•Pi​n2dM​(f)Pm​u​tβŠ•Pi​n1βŠ•Pi​n20β‹―
\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\\&&&&&&\\&&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern-2.64584pt\raise-34.625pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\psi}$}}}}}\ignorespaces{}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 88.23447pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 88.23447pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 175.70338pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 93.73447pt\raise-61.91669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 175.70338pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 190.28041pt\raise-34.625pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left[\begin{array}[]{c}\SS 1\\ \SS 0\\ \SS 0\end{array}\right]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 190.28041pt\raise-61.91669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 33.25pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 90.73447pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 187.28041pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 261.34189pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 297.59189pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 331.34189pt\raise-34.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-6.75pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.19125pt\raise-62.525pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13611pt\hbox{$\scriptstyle{d_{M(f)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.71893pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise-69.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

Then Οˆβˆ˜Ο•\psi\circ\phi is:

β‹―Οˆβˆ˜Ο•0Pi​n1βŠ•Pi​n2dM​(f)0Pm​u​tβŠ•Pi​n1βŠ•Pi​n2[SS1SS​i1SS​i2SS0SS0SS0SS0SS0SS0]0β‹―β‹―0Pi​n1βŠ•Pi​n2dM​(f)Pm​u​tβŠ•Pi​n1βŠ•Pi​n20β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 7.09863pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\\&&&&&\\&&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern-7.09863pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\psi\circ\phi}$}}}}}\ignorespaces{}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.19125pt\raise 6.725pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13611pt\hbox{$\scriptstyle{d_{M(f)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.73447pt\raise-34.75pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{0}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.73447pt\raise-62.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 190.28041pt\raise-35.08334pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left[\begin{array}[]{ccc}\SS 1&\SS i_{1}&\SS i_{2}\\ \SS 0&\SS 0&\SS 0\\ \SS 0&\SS 0&\SS 0\end{array}\right]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 190.28041pt\raise-62.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 33.25pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 90.73447pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 187.28041pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 261.34189pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 297.59189pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-6.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.19125pt\raise-62.775pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13611pt\hbox{$\scriptstyle{d_{M(f)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.71893pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

so that 1βˆ’Οˆβˆ˜Ο•1-\psi\circ\phi is homotopic to zero by the following map,

β‹―1βˆ’Οˆβˆ˜Ο•0Pi​n1βŠ•Pi​n2dM​(f)[SS1SS0SS0SS1]0Pm​u​tβŠ•Pi​n1βŠ•Pi​n2[SS0SSβˆ’i1SSβˆ’i2SS0SS1SS0SS0SS0SS1]h0β‹―β‹―0Pi​n1βŠ•Pi​n2dM​(f)Pm​u​tβŠ•Pi​n1βŠ•Pi​n20β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 10.43892pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\\&&&&&\\&&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern-10.43892pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{1-\psi\circ\phi}$}}}}}\ignorespaces{}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.19125pt\raise 6.725pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13611pt\hbox{$\scriptstyle{d_{M(f)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.73447pt\raise-23.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left[\begin{array}[]{cc}\SS 1&\SS 0\\ \SS 0&\SS 1\end{array}\right]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.73447pt\raise-62.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 55.0061pt\raise-30.39775pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{0}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 41.75002pt\raise-62.85057pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 190.28041pt\raise-34.75pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left[\begin{array}[]{ccc}\SS 0&\SS-i_{1}&\SS-i_{2}\\ \SS 0&\SS 1&\SS 0\\ \SS 0&\SS 0&\SS 1\end{array}\right]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 190.28041pt\raise-62.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 140.50534pt\raise-40.18054pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{h}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 103.91803pt\raise-62.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 258.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 33.25pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 90.73447pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 187.28041pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 261.34189pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 297.59189pt\raise-34.75pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-6.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.19125pt\raise-76.22499pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13611pt\hbox{$\scriptstyle{d_{M(f)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.71893pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\oplus P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 258.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 258.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 293.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 293.84189pt\raise-69.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

where h=[SS0SS1SS0SS0SS0SS1]h=\left[\begin{array}[]{ccc}\SS 0&\SS 1&\SS 0\\ \SS 0&\SS 0&\SS 1\end{array}\right].
It is clear that Ο•βˆ˜Οˆ=1Pm​u​t⋅​[0]\phi\circ\psi=1_{P^{\cdot}_{mut}[0]}. Hence, in Kb​(P​(Ξ›)),M​(f)β‰…Pm​u​t⋅​[0]K^{b}(P(\Lambda))\,,M(f)\cong P^{\cdot}_{mut}[0].
It now follows that add⁑(T)\operatorname{add}(T) generates Kb​(P​(Ξ›))K^{b}(P(\Lambda)) as a triangulated category and so we have proven that TT is a tilting complex.

Since TT has finitely many indecomposable summands the endomorphism algebra, Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T), of TT can be expressed as a finite quiver with relations denoted by Ξ›β€²=k​Qβ€²/Iβ€²β‰…Endπ’Ÿb​(Ξ›)⁑(T)\Lambda^{\prime}=kQ^{\prime}/I^{\prime}\cong\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T). The vertices of the quiver are in one-to-one correspondence with the indecomposable summands, TiT_{i}, of TT. To see that the endomorphism algebra Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) is described by the algorithm in the statement of theorem 3.12 we examine each step separately. Let CΞ›=[ci​j]1β©½i,jβ©½nC_{\Lambda}=[c_{ij}]_{1\leqslant i,j\leqslant n} denote the Cartan matrix of Ξ›\Lambda and let C~Ξ›=[c~i​j]1β©½i,jβ©½n\tilde{C}_{\Lambda}=[\tilde{c}_{ij}]_{1\leqslant i,j\leqslant n}, where c~i​j=d​i​mk​HomKb​(P​(Ξ›))⁑(Ti,Tj)\tilde{c}_{ij}=dim_{k}\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i},T_{j}), be the Cartan matrix of Ξ›β€²=Endπ’Ÿb​(Ξ›)⁑(T)\Lambda^{\prime}=\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T).

βˆ™\bullet reverse all arrows going into the mutation vertex

Given an arrow i​n1β†’m​u​tin_{1}\rightarrow mut there is a morphism of complexes Tm​u​tβ†’Ti​n1T_{mut}\rightarrow T_{in_{1}} given by:

Tm​u​tβ‹―0Pi​n1βŠ•Pi​n2[i1,i2]Ο€1Pm​u​t0β‹―Ti​n1β‹―0Pi​n100β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.28883pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&&\\&&&&&&\crcr}}}\ignorespaces{\hbox{\kern-14.28883pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{T_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 38.28883pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 75.78883pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 75.78883pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 110.78883pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 110.78883pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 165.6298pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[i_{1},i_{2}]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 190.75777pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 138.7733pt\raise-19.75pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{\pi_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 138.7733pt\raise-32.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 190.75777pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 243.91182pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 205.3348pt\raise-32.55556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 243.91182pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 278.91182pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 278.91182pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-12.70404pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{T_{in_{1}}}$}}}}}}}{\hbox{\kern 38.28883pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 75.78883pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 75.78883pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 125.78107pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 125.78107pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 199.8348pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 199.8348pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 243.91182pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 243.91182pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 278.91182pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 278.91182pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

where Ο€1:Pi​n1βŠ•Pi​n2β†’Pi​n1\pi_{1}:P_{in_{1}}\oplus P_{in_{2}}\rightarrow P_{in_{1}} is the projection map. There is an arrow in the quiver Qβ€²Q^{\prime} of Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) corresponding to the morphisms Ο€1:Tm​u​tβ†’Ti​n1\pi_{1}:T_{mut}\rightarrow T_{in_{1}} since it is not possible for this morphism to factor non-trivially through another summand of TT.
Indeed if the morphism Tm​u​tβ†’Ti​n1T_{mut}\rightarrow T_{in_{1}} above factors non-trivially through another summand of TT then there will exist some vertex kβ‰ i​n1,m​u​tk\neq in_{1},mut in Qβ€²Q^{\prime} such that c~m​u​t,kβ‰ 0\tilde{c}_{mut,k}\neq 0 and c~k,i​n1β‰ 0\tilde{c}_{k,in_{1}}\neq 0.
Theorem 3.11 states that c~m​u​t,k=ci​n1,k+ci​n2,kβˆ’cm​u​t,k\tilde{c}_{mut,k}=c_{in_{1},k}+c_{in_{2},k}-c_{mut,k}, where the ci​jc_{ij}’s denote entries of the Cartan matrix of Ξ›\Lambda, and that c~k,i​n1=ck,i​n1\tilde{c}_{k,in_{1}}=c_{k,in_{1}}.
Suppose that c~k​i​n1β‰ 0\tilde{c}_{k\,in_{1}}\neq 0. Now there are two possible cases. If m=1m=1 then it is possible that ci​n2​k=cm​u​t​k=1c_{in_{2}\,k}=c_{mut\,k}=1, to see this consider two 3-cycles which share a vertex. Mutating at this shared vertex gives ci​n1,o​u​t1=0c_{in_{1},out_{1}}=0 and ci​n2,o​u​t1=cm​u​t,o​u​t1=1c_{in_{2},out_{1}}=c_{mut,out_{1}}=1. If mβ©Ύ2m\geqslant 2 then we must have that ci​n1,k=0c_{in_{1},k}=0 and ci​n2​k=cm​u​t​k=0c_{in_{2}\,k}=c_{mut\,k}=0. Therefore, c~m​u​t​k=0\tilde{c}_{mut\,k}=0 and so the morphism Ο€1:Tm​u​tβ†’Ti​n1\pi_{1}:T_{mut}\rightarrow T_{in_{1}} corresponds to an arrow in the quiver of Ξ›β€²\Lambda^{\prime}.
A similar argument shows that the morphism Ο€2:Tm​u​tβ†’Ti​n2\pi_{2}:T_{mut}\rightarrow T_{in_{2}} corresponds to an arrow in the quiver Qβ€²Q^{\prime} of Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T).

βˆ™\bullet if there exist arrows i​n1β†’m​u​tβ†’o​u​t1in_{1}\rightarrow mut\rightarrow out_{1}, there must exist an arrow i​n1β†’o​u​t1in_{1}\rightarrow out_{1} in Qβ€²Q^{\prime}.

Suppose that there is a non-zero path i​n1β†’m​u​tβ†’o​u​t1in_{1}\rightarrow mut\rightarrow out_{1} in Ξ›\Lambda. Then we have the following morphism:

Ti​n1β‹―0Pi​n1o1∘i100β‹―To​u​t1β‹―0Po​u​t100β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.6658pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&&\\&&&&&&\crcr}}}\ignorespaces{\hbox{\kern-12.70404pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{T_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 38.6658pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 76.1658pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.1658pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 113.12756pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 113.12756pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 126.1198pt\raise-19.75pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.81596pt\hbox{$\scriptstyle{o_{1}\circ i_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 126.1198pt\raise-32.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 165.07379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 165.07379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 200.07379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 170.57379pt\raise-32.55556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 200.07379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 235.07379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 235.07379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-14.6658pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{T_{out_{1}}}$}}}}}}}{\hbox{\kern 38.6658pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 76.1658pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.1658pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 111.1658pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 111.1658pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{out_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 165.07379pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 165.07379pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 200.07379pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 200.07379pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 235.07379pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 235.07379pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

We claim this morphism corresponds to an arrow i​n1β†’o​u​t1in_{1}\rightarrow out_{1} in the quiver Qβ€²Q^{\prime}. Again we must be sure that the morphism does not factor through another summand of TT. We look for a kβ‰ i​n1,o​u​t1k\neq in_{1},out_{1} such that c~i​n1,kβ‰ 0\tilde{c}_{in_{1},k}\neq 0 and c~k,o​u​t1β‰ 0\tilde{c}_{k,out_{1}}\neq 0. There are two cases.
First let k=m​u​tk=mut. Then by theorem 3.11 c~i​n1,k=ci​n1,i​n1+ci​n1,i​n2βˆ’ci​n1,m​u​t=1+0βˆ’1=0\tilde{c}_{in_{1},k}=c_{in_{1},in_{1}}+c_{in_{1},in_{2}}-c_{in_{1},mut}=1+0-1=0. Hence the morphism o1∘i1:Ti​n1β†’To​u​t1o_{1}\circ i_{1}:T_{in_{1}}\rightarrow T_{out_{1}} does not factor through m​u​tmut.
Now suppose that kβ‰ i​n1,o​u​t1,m​u​tk\neq in_{1},out_{1},mut and that c~i​n1​kβ‰ 0\tilde{c}_{in_{1}\,k}\neq 0. There must be a non-zero path i​n1in_{1} to kk in QQ. Such a path must be through m​u​tmut and o​u​t1out_{1} but cannot end at either of these vertices (since kβ‰ i​n1,o​u​t1,m​u​tk\neq in_{1},out_{1},mut). Therefore no non-zero path from this kk back to o​u​t1out_{1} exists so c~k​o​u​t1=0\tilde{c}_{k\,out_{1}}=0.
Hence we have shown that the morphism o1∘i1:Ti​n1β†’To​u​t1o_{1}\circ i_{1}:T_{in_{1}}\rightarrow T_{out_{1}} does not factor. Again, the same argument can be applied to non-zero paths i​n2β†’m​u​tβ†’o​u​t2in_{2}\rightarrow mut\rightarrow out_{2} in Ξ›\Lambda.

βˆ™\bullet if there exist arrows p​r​e1β†’i​n1β†’m​u​tpre_{1}\rightarrow in_{1}\rightarrow mut, the arrow p​r​e1β†’i​n1pre_{1}\rightarrow in_{1} factors over m​u​tβ†’i​n1mut\rightarrow in_{1} in Qβ€²Q^{\prime}

If Ξ·1:Pp​r​e1β†’Pi​n1\eta_{1}:P_{pre_{1}}\rightarrow P_{in_{1}} is the map induced by the arrow p​r​e1β†’i​n1pre_{1}\rightarrow in_{1} in QQ then the morphism:

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​r​e1\textstyle{P_{pre_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ·1\scriptstyle{\eta_{1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

can be factored,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​r​e1\textstyle{P_{pre_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[Ξ·10]\scriptstyle{\left[\begin{smallmatrix}\eta_{1}\\ 0\end{smallmatrix}\right]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Ο€1\scriptstyle{\pi_{1}}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

We must show that the morphism

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​r​e1\textstyle{P_{pre_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[Ξ·10]\scriptstyle{\left[\begin{smallmatrix}\eta_{1}\\ 0\end{smallmatrix}\right]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

corresponds to an arrow in Qβ€²Q^{\prime}. If this morphism were to factor non-trivially over a summand of TT then there exists some kβ‰ p​r​e1,m​u​t,i​n1k\neq pre_{1},mut,in_{1} such that c~p​r​e1​kβ‰ 0\tilde{c}_{pre_{1}\,k}\neq 0 and c~k​m​u​tβ‰ 0\tilde{c}_{k\,mut}\neq 0. Suppose that c~p​r​e1​kβ‰ 0\tilde{c}_{pre_{1}\,k}\neq 0 then we must have that ck​i​n1=ck​i​n2=ck​m​u​t=0c_{k\,in_{1}}=c_{k\,in_{2}}=c_{k\,mut}=0 (otherwise the quiver QQ of Ξ›\Lambda would have a cycle which is not oriented) so that c~k​m​u​t=0\tilde{c}_{k\,mut}=0. Similarly for arrows p​r​e2β†’i​n2β†’m​u​tpre_{2}\rightarrow in_{2}\rightarrow mut in QQ such that the composition is zero.

βˆ™\bullet other arrows

All other arrows in QQ are transferred directly to Qβ€²Q^{\prime} since theorem 3.11 gives that c~i​j=ci​j\tilde{c}_{ij}=c_{ij} for i,jβ‰ m​u​ti,j\neq mut.

βˆ™\bullet relations

To see that the relations described in theorem 3.12 occur in Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) we check them individually. We demonstrate the relations in Ξ›β€²\Lambda^{\prime} between arrows between the vertices p​r​e1,i​n1,m​u​t,o​u​t1,p​o​s​t1pre_{1},in_{1},mut,out_{1},post_{1}. The same arguments apply to the description of the relations between arrows between the vertices p​r​e2,i​n2,m​u​t,o​u​t2,p​o​s​t2pre_{2},in_{2},mut,out_{2},post_{2}.
Let Ξ·2\eta_{2} denote the arrow in the quiver of Ξ›\Lambda such that the path i2​η2=0i_{2}\eta_{2}=0. Then the arrow Ξ·2\eta_{2} induces a morphism,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​r​e2\textstyle{P_{pre_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[0Ξ·2]\scriptstyle{\left[\begin{smallmatrix}0\\ \eta_{2}\end{smallmatrix}\right]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

such that the composition,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​r​e2\textstyle{P_{pre_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[0Ξ·2]\scriptstyle{\left[\begin{smallmatrix}0\\ \eta_{2}\end{smallmatrix}\right]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Ο€1\scriptstyle{\pi_{1}}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

is zero.
Next let ΞΆ1\zeta_{1} denote the arrow in the quiver of Ξ›\Lambda such that the path ΞΆ1​o1=0\zeta_{1}o_{1}=0. Then the arrow ΞΆ1\zeta_{1} induces a morphism ΞΆ1:To​u​t1β†’Tp​o​s​t1\zeta_{1}:T_{out_{1}}\rightarrow T_{post_{1}},

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Po​u​t1\textstyle{P_{out_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΞΆ1\scriptstyle{\zeta_{1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​o​s​t1\textstyle{P_{post_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

so that the composition Ti​n1β†’o1∘i1To​u​t1β†’ΞΆ1Tp​o​s​t1T_{in_{1}}\stackrel{{\scriptstyle o_{1}\circ i_{1}}}{{\rightarrow}}T_{out_{1}}\stackrel{{\scriptstyle\zeta_{1}}}{{\rightarrow}}T_{post_{1}},

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}o1∘i1\scriptstyle{o_{1}\circ i_{1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Po​u​t1\textstyle{P_{out_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΞΆ1\scriptstyle{\zeta_{1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​o​s​t1\textstyle{P_{post_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

is zero.
Consider the composition of Ο€1∘(o1∘i1):Tm​u​tβ†’To​u​t1\pi_{1}\circ(o_{1}\circ i_{1}):T_{mut}\rightarrow T_{out_{1}},

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Ο€1\scriptstyle{\pi_{1}}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1\textstyle{P_{in_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}o1∘i1\scriptstyle{o_{1}\circ i_{1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Po​u​t1\textstyle{P_{out_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

We have the following homotopy,

β‹―0Pi​n1βŠ•Pi​n2[i1,i2][o1∘i1,0]Pm​u​to10β‹―β‹―0Po​u​t100β‹―\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\\&&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 120.59097pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[i_{1},i_{2}]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.73447pt\raise-15.79976pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[o_{1}\circ i_{1},0]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.73447pt\raise-32.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 41.75002pt\raise-35.71875pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 145.71893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 198.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.29596pt\raise-32.55556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 124.20193pt\raise-24.75694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{o_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 106.09511pt\raise-32.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 198.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 233.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 233.87299pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-6.75pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 78.78047pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 78.78047pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{P_{out_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 154.79596pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 154.79596pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 198.87299pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 198.87299pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 233.87299pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 233.87299pt\raise-39.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\cdots}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

Hence the composition is zero in Kb​(P​(Ξ›))K^{b}(P(\Lambda)) and, hence, in π’Ÿb​(Ξ›)\mathcal{D}^{b}(\Lambda).

We can now describe all relations in the endomorphism algebra of the complex TT. Since the class of gentle algebras is closed under derived equivalence, [20], Endπ’Ÿb​(Ξ›)⁑(T)β‰…k​Qβ€²/Iβ€²\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T)\cong kQ^{\prime}/I^{\prime} is gentle. Therefore Iβ€²I^{\prime} is generated by zero relations of length two and we have that for each arrow Ξ²\beta in the quiver of Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) there exists at most one arrow Ξ±\alpha such that β​α=0\beta\alpha=0 and at most one arrow Ξ³\gamma such that γ​β=0\gamma\beta=0.
Relations between the vertices of Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) not labeled by p​r​et,i​nt,m​u​t,pre_{t},in_{t},mut,
o​u​tt,p​o​s​ttout_{t},post_{t}, t=1,2t=1,2 are the same as those for Ξ›\Lambda. Indeed, let i,ji,j be two such vertices. The indecomposable summands of TT corresponding to these vertices are stalk complexes of the form,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pj\textstyle{P_{j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

where Pi,PjP_{i},P_{j} are the indecomposable projectives corresponding to vertices i,ji,j in Ξ›\Lambda.
For such i,ji,j, theorem 3.11 gives the entries of the Cartan matrix C~Endπ’Ÿb​(Ξ›)⁑(T)\tilde{C}_{\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T)} are c~i​j=ci​j\tilde{c}_{ij}=c_{ij}. Hence, zero relations between arrows connecting vertices not labeled p​r​et,i​nt,m​u​t,o​u​tt,p​o​s​ttpre_{t},in_{t},mut,out_{t},post_{t}, t=1,2t=1,2 in the quiver Qβ€²Q^{\prime} of Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) are exactly the same as those between arrows connecting vertices not labeled p​r​et,i​nt,m​u​t,o​u​tt,p​o​s​ttpre_{t},in_{t},mut,out_{t},post_{t}, t=1,2t=1,2 in Ξ›\Lambda.
Since we have already described the arrows and relations between the vertices of Qβ€²Q^{\prime} labeled p​r​et,i​nt,m​u​t,o​u​tt,p​o​s​ttpre_{t},in_{t},mut,out_{t},post_{t}, t=1,2t=1,2 it only remains to check relations which are compositions of arrows coming into p​r​etpre_{t}, t=1,2t=1,2 and the arrow p​r​etβ†’m​u​tpre_{t}\rightarrow mut and relations which are compositions of the arrow o​u​ttβ†’p​o​s​ttout_{t}\rightarrow post_{t} and arrows out of p​o​s​ttpost_{t}.
Suppose that the path xβ†’p​r​e1β†’i​n1x\rightarrow pre_{1}\rightarrow in_{1} is zero in Ξ›\Lambda then the following composition of morphisms,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Px\textstyle{P_{x}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​r​e1\textstyle{P_{pre_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[Ξ·10]\scriptstyle{\left[\begin{smallmatrix}\eta_{1}\\ 0\end{smallmatrix}\right]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi​n1βŠ•Pi​n2\textstyle{P_{in_{1}}\oplus P_{in_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[i1,i2]\scriptstyle{[i_{1},i_{2}]}Pm​u​t\textstyle{P_{mut}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

(which corresponds to arrows) is zero in Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T). Also if there is a zero path o​u​t1β†’p​o​s​t1β†’yout_{1}\rightarrow post_{1}\rightarrow y then the composition of morphisms,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Po​u​t1\textstyle{P_{out_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[ΞΆ10]\scriptstyle{\left[\begin{smallmatrix}\zeta_{1}\\ 0\end{smallmatrix}\right]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pp​o​s​t1\textstyle{P_{post_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Py\textstyle{P_{y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

(which corresponds to arrows) is zero in Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T). Similarly for t=2t=2.
Note that since Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) is gentle any relations involving arrows into, or out of, vertices labeled i​nt,m​u​t,o​u​ttin_{t},mut,out_{t} must be those we have already described. Hence we have described all possible relations in Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T).
This concludes the proof of 3.12. ∎

The next result relates the elementary moves and the associated algebra mutations to the tilting complex just defined.

Proposition 3.14.

Let Ξ›\Lambda be an mm-cluster-tilted algebra which has a local configuration of type (i)-(vi), (viii)-(x) or (xv). Then the mutated algebra Ξ›β€²\Lambda^{\prime} is isomorphic to Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T), where TT is the tilting complex in theorem 3.12. Hence Ξ›\Lambda and Ξ›β€²\Lambda^{\prime} are derived equivalent.

Proof.

We are required to prove that the elementary polygonal move ΞΌm\mu_{m} performed at the mutation vertex of Ξ›\Lambda produces an algebra Ξ›β€²\Lambda^{\prime} which is isomorphic to Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T).
We will show that the algorithm in theorem 3.12 describes exactly how to produce Ξ›β€²\Lambda^{\prime} from Ξ›\Lambda.
To see that the arrows going into m​u​tmut are reversed consider the following local situation,

[Uncaptioned image]

Here we have labeled the mm-allowable diagonals with the notations of theorem 3.12. We make no assumptions on the division of PP beyond what is shown, and as such we only show the three possible mm-allowable diagonals of relevance to this step. The same is true for the local configurations which correspond to the second and third parts of the algorithm in theorem 3.12.
Next we examine the second step of the algorithm which states that if the path i​n1β†’m​u​tβ†’o​u​t1in_{1}\rightarrow mut\rightarrow out_{1} exists in Ξ›\Lambda then we must have an arrow i​n1β†’o​u​t1in_{1}\rightarrow out_{1} in the quiver of Ξ›β€²\Lambda^{\prime}, the mutated algebra and the arrow m​u​tβ†’o​u​t1mut\rightarrow out_{1} does not exist in Ξ›β€²\Lambda^{\prime}. Again we show the local configuration of relevance in the division of PP, the regular (n+1)​m+2(n+1)m+2-gon.

[Uncaptioned image]

Finally, if the following vertices and arrows exist in Ξ›\Lambda,

p​r​e1β†’Ξ·1i​n1β†’i1m​u​tβ†’o1o​u​t1β†’ΞΆ1p​o​s​t1pre_{1}\stackrel{{\scriptstyle\eta_{1}}}{{\rightarrow}}in_{1}\stackrel{{\scriptstyle i_{1}}}{{\rightarrow}}mut\stackrel{{\scriptstyle o_{1}}}{{\rightarrow}}out_{1}\stackrel{{\scriptstyle\zeta_{1}}}{{\rightarrow}}post_{1}
p​r​e2β†’Ξ·2i​n2β†’i2m​u​tβ†’o2o​u​t2β†’ΞΆ2p​o​s​t2pre_{2}\stackrel{{\scriptstyle\eta_{2}}}{{\rightarrow}}in_{2}\stackrel{{\scriptstyle i_{2}}}{{\rightarrow}}mut\stackrel{{\scriptstyle o_{2}}}{{\rightarrow}}out_{2}\stackrel{{\scriptstyle\zeta_{2}}}{{\rightarrow}}post_{2}

where it​ηt=0i_{t}\eta_{t}=0, ΞΆt​ot=0\zeta_{t}o_{t}=0 and ot​itβ‰ 0o_{t}i_{t}\neq 0, 1β©½tβ©½21\leqslant t\leqslant 2. Then we have the following local configurations in PP before and after the application of ΞΌm\mu_{m},

[Uncaptioned image]

so that the relations in the last part of the algorithm in the statement of theorem 3.12 are satisfied.
Hence we have shown that Ξ›β€²\Lambda^{\prime} and Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) are isomorphic algebras. ∎

Thus we have demonstrated that in the local configurations labeled (i)-(vi),(viii)-(x),(xv) we have a derived equivalence between the algebra Ξ›\Lambda and the mutated algebra Ξ›β€²\Lambda^{\prime}.
It remains to prove the same result for moves (vi),(vii),(xiv)-(xviii),(xx), and (xxii)-(xxvi) which are applications of the elementary polygonal move ΞΌmβˆ’1\mu^{-1}_{m} defined in definition 3.4. The following two results achieve this. We will keep the notations used in theorem 3.12.

Theorem 3.15.

Suppose Ξ›\Lambda is a connected mm-cluster-tilted algebra of type AnA_{n} in which we can perform ΞΌmβˆ’1\mu^{-1}_{m} at a given vertex, m​u​tmut, and preserve the number of m+2m+2-cycles and connectedness. Then the following complex, Tβ€²T^{\prime} in Kb​(P​(Ξ›))K^{b}(P(\Lambda)), where Pm​u​tP_{mut} is in degree 0, is a tilting complex.

Tβ€²:⋯​0β†’Pm​u​t⟢[0,o1,o2](⨁iβ‰ m​u​tPi)βŠ•Po​u​t1βŠ•Po​u​t2β†’0β†’β‹―T^{\prime}:\,\,\cdots 0\rightarrow P_{mut}\stackrel{{\scriptstyle[0,o_{1},o_{2}]}}{{\longrightarrow}}\left(\bigoplus_{i\neq mut}P_{i}\right)\oplus P_{out_{1}}\oplus P_{out_{2}}\rightarrow 0\rightarrow\cdots

Moreover, the endomorphism algebra, Endπ’Ÿb​(Ξ›)⁑(Tβ€²)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T^{\prime}), of Tβ€²T^{\prime} can be obtained from Ξ›\Lambda using the following algorithm:

  1. (1)

    reverse all arrows outgoing from the mutation vertex.

  2. (2)

    if there exist arrows i​ntβ†’m​u​tβ†’o​u​ttin_{t}\rightarrow mut\rightarrow out_{t}, there must exist an arrow i​ntβ†’o​u​ttin_{t}\rightarrow out_{t} in Qβ€²Q^{\prime} and the arrow m​u​tβ†’o​u​ttmut\rightarrow out_{t} does not exist in qβ€²q^{\prime}, t=1,2t=1,2.

  3. (3)

    if there exist arrows m​u​tβ†’o​u​ttβ†’p​o​s​ttmut\rightarrow out_{t}\rightarrow post_{t}, the arrow m​u​tβ†’o​u​ttmut\rightarrow out_{t} factors over o​u​ttβ†’m​u​tout_{t}\rightarrow mut in Qβ€²Q^{\prime}, t=1,2t=1,2.

  4. (4)

    relations in Ξ›β€²\Lambda^{\prime} around the mutated vertex are described by the following diagrams. If arrows and relations exist around the mutation vertex in Ξ›\Lambda as shown in the first diagram then the second diagram shows the new arrows and relations between the corresponding vertices of Ξ›β€²\Lambda^{\prime}.

    [Uncaptioned image]
Remark 3.16.

The comments in the remark after the statement of theorem 3.12 are relevant to the statement of theorem 3.15, except that theorem 3.15 is applicable to local configurations (vi),(vii),(xiv)-(xviii),(xx), and (xxii)-(xxvi).

Proof.

The proof is exactly analogous to the proof of theorem 3.12. ∎

The next result is the analogue of proposition 3.14.

Proposition 3.17.

Let Ξ›\Lambda be an mm-cluster-tilted algebra which has a local configuration of type (vi),(vii),(xiv)-(xviii),(xx), and (xxii)-(xxvi). Then, if Ξ›β€²\Lambda^{\prime} denotes the mutated algebra, Ξ›β€²\Lambda^{\prime} is isomorphic to Endπ’Ÿb​(Ξ›)⁑(Tβ€²)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T^{\prime}), where Tβ€²T^{\prime} is the tilting complex in 3.15. Hence Ξ›\Lambda and Ξ›β€²\Lambda^{\prime} are derived equivalent.

We have now proven that in the algebra mutations described in the local configurations (i)-(xviii) Ξ›\Lambda and Ξ›β€²\Lambda^{\prime} are derived equivalent.

Now we describe a very useful tilting complex. Suppose the following local configuration in an mm-cluster-tilted algebra Ξ›=k​Q/I\Lambda=kQ/I,

[Uncaptioned image]

where there are no paths between the regions of QQ labeled XX and YY; Ξ±i+1​αi\alpha_{i+1}\alpha_{i} is a relation for 0β©½iβ©½qβˆ’20\leqslant i\leqslant q-2; and there are no arrows (other than those shown) incident at vertices 1,2,…,qβˆ’11,2,\ldots,q-1. We assume also that in the configuration shown the string of consecutive relations is maximal, that is if there is an arrow xx such that the composition,

qβˆ’1β†’Ξ±qβˆ’1qβ†’xj​⋯q-1\stackrel{{\scriptstyle\alpha_{q-1}}}{{\rightarrow}}q\stackrel{{\scriptstyle x}}{{\rightarrow}}j\cdots

is a relation then there must be some other arrow incident at vertex qq. Also, if there is an arrow ww such that the composition,

iβ†’w0β†’Ξ±01​⋯i\stackrel{{\scriptstyle w}}{{\rightarrow}}0\stackrel{{\scriptstyle\alpha_{0}}}{{\rightarrow}}1\cdots

is a relation there must exist another arrow incident at vertex 0. Notice that vertices 0 and qq lie in regions XX and YY respectively.
For a vertex i∈Xi\in X we define TiXT_{i}^{X} to be the stalk complex,

⋯​0β†’Piβ†’0​⋯\cdots 0\rightarrow P_{i}\rightarrow 0\cdots

where PiP_{i} is in degree 0. For a vertex j∈Yj\in Y we define TjYT_{j}^{Y} to be the stalk complex,

⋯​0β†’Pjβ†’0​⋯\cdots 0\rightarrow P_{j}\rightarrow 0\cdots

where PjP_{j} is in degree q. Next for 1β©½rβ©½qβˆ’11\leqslant r\leqslant q-1 define TrT_{r} to be the complex,

⋯​0β†’P0β†’Ξ±0P1β†’Ξ±1β‹―β†’Prβˆ’1β†’Ξ±rβˆ’1β‹―β†’Prβ†’Ξ±r0β†’β‹―.\cdots 0\rightarrow P_{0}\stackrel{{\scriptstyle\alpha_{0}}}{{\rightarrow}}P_{1}\stackrel{{\scriptstyle\alpha_{1}}}{{\rightarrow}}\cdots\rightarrow P_{r-1}\stackrel{{\scriptstyle\alpha_{r-1}}}{{\rightarrow}}\cdots\rightarrow P_{r}\stackrel{{\scriptstyle\alpha_{r}}}{{\rightarrow}}0\rightarrow\cdots.

Then we have the following proposition.

Proposition 3.18.

Let Ξ›\Lambda be an mm-cluster-tilted algebra where the local configuration described above exists. Then we have a tilting complex TT whose indecomposable summands are TiXT_{i}^{X}, TjYT_{j}^{Y} and TrT_{r}, 1β©½rβ©½qβˆ’11\leqslant r\leqslant q-1. The endomorphism algebra, Endπ’Ÿb​(Ξ›)⁑(T)=k​Qβ€²/I\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T)=kQ^{\prime}/I, is given by preserving all arrows and relations between the vertices of regions XX and YY and making the changes shown in the following figure to the arrows and relations between vertices 0,1,…,q0,1,\ldots,q.

[Uncaptioned image]
Remark 3.19.

This tilting complex will be used in section 4 to help reduce the connected components of mm-cluster-tilted algebras to the normal form. Its key feature is that it removes the relations Ξ±i+1​αi\alpha_{i+1}\alpha_{i}, 0β©½iβ©½qβˆ’20\leqslant i\leqslant q-2.

Proof.

First we prove that Homπ’Ÿb​(Ξ›)⁑(T,T​[k])=0\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T,T[k])=0, kβ‰ 0k\neq 0. It suffices to show that HomKb​P​((Ξ›))⁑(T,T​[k])=0\operatorname{Hom}_{K^{b}P((\Lambda))}(T,T[k])=0, kβ‰ 0k\neq 0.
Let ii be a vertex in the region XX. Then we claim that for k≠0k\neq 0,

HomKb​P​((Ξ›))⁑(TiX,TjY​[k])=0\operatorname{Hom}_{K^{b}P((\Lambda))}(T^{X}_{i},T^{Y}_{j}[k])=0

for all vertices j∈Yj\in Y. If k<0k<0 then it is clear that HomKb​P​((Ξ›))⁑(TiX,TjY​[k])=0\operatorname{Hom}_{K^{b}P((\Lambda))}(T^{X}_{i},T^{Y}_{j}[k])=0. If k>0k>0 then HomKb​P​((Ξ›))⁑(TiX,TjY​[k])=0\operatorname{Hom}_{K^{b}P((\Lambda))}(T^{X}_{i},T^{Y}_{j}[k])=0 since there are no non-zero paths from XX to YY in QQ.
Also for a vertex j∈Yj\in Y we claim that for kβ‰ 0k\neq 0,

HomKb​(P​(Ξ›))⁑(TjY,TiX​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T^{Y}_{j},T^{X}_{i}[k])=0

for all vertices i∈Xi\in X. If k>0k>0 then clearly HomKb​(P​(Ξ›))⁑(TjY,TiX​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T^{Y}_{j},T^{X}_{i}[k])=0. If k<0k<0 then we have HomKb​(P​(Ξ›))⁑(TjY,TiX​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T^{Y}_{j},T^{X}_{i}[k])=0 since there are no non-zero paths from region YY to region XX.
Now consider HomKb​(P​(Ξ›))⁑(TiX,Tr​[k])\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i}^{X},T_{r}[k]), 1β©½rβ©½qβˆ’11\leqslant r\leqslant q-1. If kβ©Ύ2k\geqslant 2 then HomKb​(P​(Ξ›))⁑(TiX,Tr​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i}^{X},T_{r}[k])=0 since there are no non-zero paths from an vertex ii in XX to vertices 2,3,…,qβˆ’12,3,\ldots,q-1. If k<0k<0 then clearly HomKb​(P​(Ξ›))⁑(TiX,Tr​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i}^{X},T_{r}[k])=0. It remains to check that HomKb​(P​(Ξ›))⁑(TiX,Tr​[1])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i}^{X},T_{r}[1])=0.
First, for any two vertices uu and vv of QQ such that there is a non-zero path in QQ from uu to vv we choose the map between PuP_{u} and PvP_{v} induced by the path to be a basis of Homπ’žm⁑(Pu,Pv)\operatorname{Hom}_{\mathcal{C}_{m}}(P_{u},P_{v}). We can always do this since the Hom\operatorname{Hom} spaces in the mm-cluster categories of type AnA_{n} have dimension at most 1.
So, if there exists a non-zero path from some vertex i∈Xi\in X to vertex 1 as follows,

i→ϡ1⋯→ϡsP0→α0P1i\stackrel{{\scriptstyle\epsilon_{1}}}{{\rightarrow}}\cdots\stackrel{{\scriptstyle\epsilon_{s}}}{{\rightarrow}}P_{0}\stackrel{{\scriptstyle\alpha_{0}}}{{\rightarrow}}P_{1}

then we have the following homotopy,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ο΅\scriptstyle{\epsilon}h\scriptstyle{h}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±0\scriptstyle{\alpha_{0}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±1\scriptstyle{\alpha_{1}}P2\textstyle{P_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±2\scriptstyle{\alpha_{2}}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Prβˆ’1\textstyle{P_{r-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±rβˆ’1\scriptstyle{\alpha_{r-1}}Pr\textstyle{P_{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

where Ο΅=Ο΅s∘ϡsβˆ’1βˆ˜β‹―βˆ˜Ο΅1​α0\epsilon=\epsilon_{s}\circ\epsilon_{s-1}\circ\cdots\circ\epsilon_{1}\alpha_{0} is a basis of and Homπ’žm⁑(Pi,P1)\operatorname{Hom}_{\mathcal{C}_{m}}(P_{i},P_{1}) and h=Ο΅s∘ϡsβˆ’1βˆ˜β‹―βˆ˜Ο΅1h=\epsilon_{s}\circ\epsilon_{s-1}\circ\cdots\circ\epsilon_{1}. Hence, HomKb​(P​(Ξ›))⁑(TiX,Tr​[1])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i}^{X},T_{r}[1])=0 and we have proven that HomKb​(P​(Ξ›))⁑(TiX,Tr​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{i}^{X},T_{r}[k])=0, kβ‰ 0k\neq 0.
Next we show that HomKb​(P​(Ξ›))⁑(Tr,TiX​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r},T_{i}^{X}[k])=0, kβ‰ 0k\neq 0, 1β©½rβ©½qβˆ’11\leqslant r\leqslant q-1 and i∈Xi\in X. If k>0k>0 then the claim is clearly true. If k<0k<0 then HomKb​(P​(Ξ›))⁑(Tr,TiX​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r},T_{i}^{X}[k])=0 since there are no non-zero paths in QQ from vertices 1,2,…,qβˆ’11,2,\ldots,q-1 to any vertex in region XX.
We also have that HomKb​(P​(Ξ›))⁑(Tr,TjY​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r},T_{j}^{Y}[k])=0, kβ‰ 0k\neq 0. If k<0k<0 then it is clear that HomKb​(P​(Ξ›))⁑(Tr,TjY​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r},T_{j}^{Y}[k])=0. If k>0k>0 then HomKb​(P​(Ξ›))⁑(Tr,TjY​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r},T_{j}^{Y}[k])=0 since there are no non-zero paths in QQ from vertices 1,2,…,qβˆ’21,2,\ldots,q-2 to any vertex in region YY. Next consider, HomKb​(P​(Ξ›))⁑(TjY,Tr​[k])\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{j}^{Y},T_{r}[k]) for any vertex j∈Yj\in Y. If k>0k>0 then it is clear that HomKb​(P​(Ξ›))⁑(TjY,Tr​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{j}^{Y},T_{r}[k])=0. If k<0k<0 then we have that HomKb​(P​(Ξ›))⁑(TjY,Tr​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{j}^{Y},T_{r}[k])=0 since there are no non-zero paths in QQ from the vertices in region YY to vertices
0,1,2,…,qβˆ’20,1,2,\ldots,q-2.

It remains to prove that HomKb​(P​(Ξ›))⁑(Tr1,Tr2​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r_{1}},T_{r_{2}}[k])=0, 1β©½r1,r2β©½qβˆ’11\leqslant r_{1},r_{2}\leqslant q-1. For kβ©Ύ2k\geqslant 2 or k<0k<0 there are no possible non-zero morphisms Tr1β†’Tr2​[k]T_{r_{1}}\rightarrow T_{r_{2}}[k] so in these cases HomKb​(P​(Ξ›))⁑(Tr1,Tr2​[k])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r_{1}},T_{r_{2}}[k])=0.
Next we consider HomKb​(P​(Ξ›))⁑(Tr1,Tr2​[1])\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r_{1}},T_{r_{2}}[1]). There are two separate cases. First let r2β©½r1r_{2}\leqslant r_{1} and let Ο•βˆˆHomKb​(P​(Ξ›))⁑(Tr1,Tr2​[1])\phi\in\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r_{1}},T_{r_{2}}[1]) be a non-zero morphism. We now prove that Ο•\phi is homotopic to zero. Let Ο•i=Ξ±i\phi_{i}=\alpha_{i}, 0β©½iβ©½r2βˆ’10\leqslant i\leqslant r_{2}-1 be the first non-zero component of the map Ο•\phi. We can assume that this is the case by scaling the morphism Ο•\phi appropriately.
The following figure illustrates the construction of the homotopy. The component hi:Piβ†’Pih_{i}:P_{i}\rightarrow P_{i} of the homotopy must be the zero map, therefore to satisfy the definition of a homotopy hi+1h_{i+1} must be the identity. There are now two possibilities for Ο•i+1=Ξ»i+1​αi+1\phi_{i+1}=\lambda_{i+1}\alpha_{i+1} either it is zero, in which case hi+2=βˆ’i​dh_{i+2}=-id, or it is not, in which case hi+2=(Ξ»i+1βˆ’1)​i​dh_{i+2}=(\lambda_{i+1}-1)id. In both cases we have that hi+2h_{i+2} is a scalar multiple of the identity so we can write hi+2=ΞΌi+2​i​dh_{i+2}=\mu_{i+2}id. We can continue to construct the components of the homotopy in this manner, at each stage we can deduce that hi+p=ΞΌi+p​i​dh_{i+p}=\mu_{i+p}id where pβ©Ύ1p\geqslant 1. The next figure shows the homotopy we have described.

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Piβˆ’1\textstyle{P_{i-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i\scriptstyle{\alpha_{i}}0\scriptstyle{0}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i\scriptstyle{\alpha_{i}}Ξ±i\scriptstyle{\alpha_{i}}0\scriptstyle{0}Pi+1\textstyle{P_{i+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+1\scriptstyle{\alpha_{i+1}}Ξ»i+1​αi+1\scriptstyle{\lambda_{i+1}\alpha_{i+1}}1\scriptstyle{1}Pi+2\textstyle{P_{i+2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+2\scriptstyle{\alpha_{i+2}}Ξ»i+2​αi+2\scriptstyle{\lambda_{i+2}\alpha_{i+2}}ΞΌi+2​1\scriptstyle{\mu_{i+2}1}Pi+3\textstyle{P_{i+3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+3\scriptstyle{\alpha_{i+3}}Ξ»i+3​αi+3\scriptstyle{\lambda_{i+3}\alpha_{i+3}}ΞΌi+3​1\scriptstyle{\mu_{i+3}1}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i\scriptstyle{\alpha_{i}}Pi+1\textstyle{P_{i+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+1\scriptstyle{\alpha_{i+1}}Pi+2\textstyle{P_{i+2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+2\scriptstyle{\alpha_{i+2}}Pi+3\textstyle{P_{i+3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+3\scriptstyle{\alpha_{i+3}}Pi+4\textstyle{P_{i+4}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i+4\scriptstyle{\alpha_{i+4}}β‹―\textstyle{\cdots}

Eventually we encounter the following situation.

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pr2βˆ’2\textstyle{P_{r_{2}-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±r2βˆ’2\scriptstyle{\alpha_{r_{2}-2}}Ξ»r2βˆ’2​αr2βˆ’2\scriptstyle{\lambda_{r_{2}-2}\alpha_{r_{2}-2}}Pr2βˆ’1\textstyle{P_{r_{2}-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±r2βˆ’1\scriptstyle{\alpha_{r_{2}-1}}Ξ»r2βˆ’1​αr2βˆ’1\scriptstyle{\lambda_{r_{2}-1}\alpha_{r_{2}-1}}ΞΌr2βˆ’1​1\scriptstyle{\mu_{r_{2}-1}1}Pr2\textstyle{P_{r_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±r2\scriptstyle{\alpha_{r_{2}}}0\scriptstyle{0}ΞΌr2​1\scriptstyle{\mu_{r_{2}}1}Pr2+1\textstyle{P_{r_{2}+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pr1\textstyle{P_{r_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pr2βˆ’1\textstyle{P_{r_{2}-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±r2βˆ’1\scriptstyle{\alpha_{r_{2}-1}}Pr2\textstyle{P_{r_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

So we have that setting hs=0h_{s}=0, sβ©Ύr2s\geqslant r_{2} defines a homotopy and therefore since Ο•\phi was arbitrary HomKb​(P​(Ξ›))⁑(Tr1,Tr2​[1])=0\operatorname{Hom}_{K^{b}(P(\Lambda))}(T_{r_{1}},T_{r_{2}}[1])=0.
Now we consider the second case, that is assume now that r2>r1r_{2}>r_{1}. By theorem 3.11 we have that,

(βˆ’1)​d​i​mk​Homπ’Ÿb​(Ξ›)⁑(Tr1,Tr2​[1])=βˆ‘a,b(βˆ’1)aβˆ’b​d​i​mk​HomΛ⁑(Tr1a,Tr2b)(-1)dim_{k}\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T_{r_{1}},T_{r_{2}}[1])=\sum_{a,b}(-1)^{a-b}dim_{k}\operatorname{Hom}_{\Lambda}(T_{r_{1}}^{a},T_{r_{2}}^{b})

where Tr1aT_{r_{1}}^{a} is the degree aa term of Tr1T_{r_{1}} and Tr2bT_{r_{2}}^{b} is the degree bb term of Tr2T_{r_{2}}.
It follows that,

(βˆ’1)​d​i​mk​Homπ’Ÿb​(Ξ›)⁑(Tr1,Tr2​[1])\displaystyle(-1)dim_{k}\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T_{r_{1}},T_{r_{2}}[1]) =\displaystyle= βˆ’c0,0+c0,1βˆ’c1,1+c1,2βˆ’c2,2+β‹―\displaystyle-c_{0,0}+c_{0,1}-c_{1,1}+c_{1,2}-c_{2,2}+\cdots{}
β‹―βˆ’ci,i+ci,i+1βˆ’β‹―\displaystyle{}\cdots-c_{i,i}+c_{i,i+1}-\cdots{}
β‹―βˆ’cr1βˆ’1,r1βˆ’1+cr1βˆ’1,r1βˆ’cr1,r1+cr1,r1+1\displaystyle{}\cdots-c_{r_{1}-1,r_{1}-1}+c_{r_{1}-1,r_{1}}-c_{r_{1},r_{1}}+c_{r_{1},r_{1}+1}
=\displaystyle= 0\displaystyle 0

where the cy,zc_{y,z} are entries of the Cartan matrix CΞ›C_{\Lambda} of Ξ›\Lambda. Note that for 0β©½y,zβ©½qβˆ’10\leqslant y,z\leqslant q-1 we have cy,z=0c_{y,z}=0 if y>zy>z. Also, cy,z=0c_{y,z}=0 if zβ©Ύy+2z\geqslant y+2. Therefore, if r2>r2r_{2}>r_{2} we have that d​i​mk​Homπ’Ÿb​(Ξ›)⁑(Tr1,Tr2​[1])=0dim_{k}\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T_{r_{1}},T_{r_{2}}[1])=0.
We have now proven that Homπ’Ÿb​(Ξ›)⁑(T,T​[k])=0\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T,T[k])=0, kβ‰ 0k\neq 0. Arguments similar to those used in theorems 3.12 and 3.15 give that a​d​d​(T)add(T) generates Kb​(P​(Ξ›))K^{b}(P(\Lambda)) as a triangulated category and so TT is a tilting complex.

Next we must describe Endπ’Ÿb⁑(T)\operatorname{End}_{\mathcal{D}^{b}}(T). First we note that arrows and relations between vertices of the quiver Qβ€²Q^{\prime} of Endπ’Ÿb⁑(T)\operatorname{End}_{\mathcal{D}^{b}}(T) corresponding to the TiXT_{i}^{X}s are the same as the arrows and relations between vertices of type XX in the quiver QQ of Ξ›\Lambda. Similarly, the vertices of the quiver Qβ€²Q^{\prime} corresponding to the TjYT_{j}^{Y}s are the same as the arrows and relations between vertices of type YY in QQ. To see this let c~y,z\tilde{c}_{y,z} denote the entries of the Cartan matrix C~\tilde{C} of Endπ’Ÿb⁑(T)\operatorname{End}_{\mathcal{D}^{b}}(T) and consider i1,i2∈Xi_{1},i_{2}\in X. By theorem 3.11 we have that c~i1,i2=ci1,i2\tilde{c}_{i_{1},i_{2}}=c_{i_{1},i_{2}}. Also for j1,j2∈Yj_{1},j_{2}\in Y theorem 3.11 gives c~j1,j2=cj1,j2\tilde{c}_{j_{1},j_{2}}=c_{j_{1},j_{2}}.
Next consider the following morphism Trβ†’ΞΈTrβˆ’1T_{r}\stackrel{{\scriptstyle\theta}}{{\rightarrow}}T_{r-1}, 1β©½rβ©½qβˆ’11\leqslant r\leqslant q-1,

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±0\scriptstyle{\alpha_{0}}ΞΈ0\scriptstyle{\theta_{0}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±1\scriptstyle{\alpha_{1}}ΞΈ1\scriptstyle{\theta_{1}}P2\textstyle{P_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±2\scriptstyle{\alpha_{2}}ΞΈ2\scriptstyle{\theta_{2}}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Prβˆ’1\textstyle{P_{r-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±rβˆ’1\scriptstyle{\alpha_{r-1}}ΞΈrβˆ’1\scriptstyle{\theta_{r-1}}Pr\textstyle{P_{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±0\scriptstyle{\alpha_{0}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±1\scriptstyle{\alpha_{1}}P2\textstyle{P_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±2\scriptstyle{\alpha_{2}}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Prβˆ’1\textstyle{P_{r-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

By theorem 3.11 we can easily deduce that d​i​mk​Homπ’Ÿb​(Ξ›)⁑(Tr,Trβˆ’1)=1dim_{k}\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T_{r},T_{r-1})=1 (the argument is similar to the argument above which shows that d​i​mk​Homπ’Ÿb​(Ξ›)⁑(Tr1,Tr2​[1])=1dim_{k}\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T_{r_{1}},T_{r_{2}}[1])=1). Therefore we can assume that ΞΈ\theta is a basis for Homπ’Ÿb​(Ξ›)⁑(Tr,Trβˆ’1)\operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(T_{r},T_{r-1}).
If ΞΈ\theta is to correspond to an arrow in Qβ€²Q^{\prime}we must show that it does not factor over another summand of TT.
If ΞΈ\theta were to factor over a summand of TT then there would exist some kβ‰ r,rβˆ’1k\neq r,r-1 such that c~r,kβ‰ 0\tilde{c}_{r,k}\neq 0 and c~k,rβˆ’1β‰ 0\tilde{c}_{k,r-1}\neq 0. Note that for any TjYT_{j}^{Y} there are no non-zero morphisms TjYβ†’Trβˆ’1T_{j}^{Y}\rightarrow T_{r-1}, hence its is not possible for Trβ†’ΞΈTrβˆ’1T_{r}\stackrel{{\scriptstyle\theta}}{{\rightarrow}}T_{r-1} to factor over any TjYT_{j}^{Y}.
Now let i∈Xi\in X and consider TiXT_{i}^{X}. Then by theorem 3.11 c~i,rβˆ’1=ci,0βˆ’ci,1\tilde{c}_{i,r-1}=c_{i,0}-c_{i,1}. There are two possible cases. The first is that ci,0=ci,1=1c_{i,0}=c_{i,1}=1 and the second is that ci,0=ci,1=0c_{i,0}=c_{i,1}=0. In either case c~i,rβˆ’1=0\tilde{c}_{i,r-1}=0 so that ΞΈ\theta does not factor over any TiXT_{i}^{X}.
It remains to show that ΞΈ\theta does not factor over any TsT_{s}, 1β©½sβ©½qβˆ’11\leqslant s\leqslant q-1, sβ‰ r,rβˆ’1s\neq r,r-1. Let s>rs>r and consider a morphism f:Trβ†’Tsf:T_{r}\rightarrow T_{s}. We claim that this morphism is zero. Suppose that ff is non-zero and that Piβ†’fiPiP_{i}\stackrel{{\scriptstyle f_{i}}}{{\rightarrow}}P_{i} is the last non-zero component of the morphism ff, then by scaling ΞΈ\theta we can assume that fif_{i} is the identity. The following diagram shows that ff cannot be a morphism and hence we have a contradiction.

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±iβˆ’1\scriptstyle{\alpha_{i-1}}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}Ξ±i\scriptstyle{\alpha_{i}}Pi+1\textstyle{P_{i+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pr\textstyle{P_{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±iβˆ’1\scriptstyle{\alpha_{i-1}}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±i\scriptstyle{\alpha_{i}}Pi+1\textstyle{P_{i+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pr\textstyle{P_{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pr+1\textstyle{P_{r+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ps\textstyle{P_{s}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

It follows that the map ΞΈ\theta does not factor over TsT_{s}, s>rs>r. Similarly, the map ΞΈ\theta cannot factor over TsT_{s}, s<rβˆ’1s<r-1 and so we have proven that ΞΈ:Trβ†’Trβˆ’1\theta:T_{r}\rightarrow T_{r}-1 corresponds to an arrow in the quiver Qβ€²Q^{\prime} of Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T), 1β©½rβ©½qβˆ’11\leqslant r\leqslant q-1.
Next consider the non-zero morphism Tqβˆ’1β†’TqT_{q-1}\rightarrow T_{q},

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pqβˆ’2\textstyle{P_{q-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±qβˆ’2\scriptstyle{\alpha_{q-2}}Pqβˆ’1\textstyle{P_{q-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±qβˆ’1\scriptstyle{\alpha_{q-1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pq\textstyle{P_{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

If this morphism were to factor over a summand of TT then there would exist some kβ‰ qβˆ’1,qk\neq q-1,q such that c~qβˆ’1,kβ‰ 0\tilde{c}_{q-1,k}\neq 0 and c~k,qβ‰ 0\tilde{c}_{k,q}\neq 0. It is clear that if kk is a vertex in region XX or if k=qβˆ’2,qβˆ’3,…,1k=q-2,q-3,\ldots,1 then c~k,q=0\tilde{c}_{k,q}=0. Now let kβ‰ qk\neq q be a vertex in region YY. Then by theorem 3.11 we have that c~qβˆ’1,k=cqβˆ’1,k\tilde{c}_{q-1,k}=c_{q-1,k}. Hence it is not possible that c~qβˆ’1,kβ‰ 0\tilde{c}_{q-1,k}\neq 0 and c~k,qβ‰ 0\tilde{c}_{k,q}\neq 0, since this would create an configuration in QQ, the quiver of Ξ›\Lambda, which would contradict the description of mm-cluster-tilted algebras in section 2.
It remains to state that there are no relations in Ξ›\Lambda of the form 1β†’0β†’i1\rightarrow 0\rightarrow i for some i∈Xi\in X and that any relation of the form qβˆ’1β†’qβ†’jq-1\rightarrow q\rightarrow j in Ξ›\Lambda is preserved in Ξ›β€²\Lambda^{\prime}. Both of these statements are clear when we consider the following compositions of morphisms. We have scaled the morphisms where we can.

β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±0\scriptstyle{\alpha_{0}}1\scriptstyle{1}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ½\scriptstyle{\nu}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi\textstyle{P_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}
β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pqβˆ’3\textstyle{P_{q-3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±qβˆ’3\scriptstyle{\alpha_{q-3}}Pqβˆ’2\textstyle{P_{q-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±qβˆ’2\scriptstyle{\alpha_{q-2}}Pqβˆ’1\textstyle{P_{q-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ±qβˆ’1\scriptstyle{\alpha_{q-1}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pq\textstyle{P_{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ½β€²\scriptstyle{\nu^{\prime}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}β‹―\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pj\textstyle{P_{j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β‹―\textstyle{\cdots}

We have now completed the proof of the proposition since by [20] we know that Endπ’Ÿb​(Ξ›)⁑(T)\operatorname{End}_{\mathcal{D}^{b}(\Lambda)}(T) is gentle, so there are no other possible relations to describe. ∎

This complex and the derived equivalence it induces will be important in our reduction of a connected component to the normal form.

Example 3.20.

We include explicit examples of one of each of the three types of tilting complexes we have outlined in this section. The figures are followed by the relevant tilting complex.

An example of the tilting complex in theorem 3.12.

[Uncaptioned image]
β‹―β†’0β†’P1βŠ•P6βŠ•(⨁iβ‰ 2Pi)⟢[Ξ±1,Ξ±6,0]P2β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{1}\oplus P_{6}\oplus(\bigoplus_{i\neq 2}P_{i})\stackrel{{\scriptstyle[\alpha_{1},\alpha_{6},0]}}{{\longrightarrow}}P_{2}\rightarrow 0\rightarrow\cdots

An example of the tilting complex in theorem 3.15.

[Uncaptioned image]
β‹―β†’0β†’P4⟢[0,Ξ²5,Ξ²3](⨁iβ‰ 4Pi)βŠ•P5βŠ•P3β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{4}\stackrel{{\scriptstyle[0,\beta_{5},\beta_{3}]}}{{\longrightarrow}}(\bigoplus_{i\neq 4}P_{i})\oplus P_{5}\oplus P_{3}\rightarrow 0\rightarrow\cdots

An example of the tilting complex in theorem 3.18.

[Uncaptioned image]

We give the indecomposable summands for the tilting complex relating to the above figure.

⋯→0→Pi→0→⋯\cdots\rightarrow 0\rightarrow P_{i}\rightarrow 0\rightarrow\cdots

0β©½iβ©½50\leqslant i\leqslant 5 and the PiP_{i} terms are in degree 0.

⋯→0→Pj→0→⋯\cdots\rightarrow 0\rightarrow P_{j}\rightarrow 0\rightarrow\cdots

9β©½jβ©½149\leqslant j\leqslant 14 and the PjP_{j} terms are in degree 4.

β‹―β†’0β†’P4β†’Ξ³4P6β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{4}\stackrel{{\scriptstyle\gamma_{4}}}{{\rightarrow}}P_{6}\rightarrow 0\rightarrow\cdots
β‹―β†’0β†’P4β†’Ξ³4P6β†’Ξ³6P7β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{4}\stackrel{{\scriptstyle\gamma_{4}}}{{\rightarrow}}P_{6}\stackrel{{\scriptstyle\gamma_{6}}}{{\rightarrow}}P_{7}\rightarrow 0\rightarrow\cdots
β‹―β†’0β†’P4β†’Ξ³4P6β†’Ξ³6P7β†’Ξ³7P8β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{4}\stackrel{{\scriptstyle\gamma_{4}}}{{\rightarrow}}P_{6}\stackrel{{\scriptstyle\gamma_{6}}}{{\rightarrow}}P_{7}\stackrel{{\scriptstyle\gamma_{7}}}{{\rightarrow}}P_{8}\rightarrow 0\rightarrow\cdots
β‹―β†’0β†’P4β†’Ξ³4P6β†’Ξ³6P7β†’Ξ³7P8β†’Ξ³8P9β†’0β†’β‹―\cdots\rightarrow 0\rightarrow P_{4}\stackrel{{\scriptstyle\gamma_{4}}}{{\rightarrow}}P_{6}\stackrel{{\scriptstyle\gamma_{6}}}{{\rightarrow}}P_{7}\stackrel{{\scriptstyle\gamma_{7}}}{{\rightarrow}}P_{8}\stackrel{{\scriptstyle\gamma_{8}}}{{\rightarrow}}P_{9}\rightarrow 0\rightarrow\cdots

where the P4P_{4} term always lies in degree zero.

4. Reduction to Normal Form

In this section we provide the procedure to reduce any connected component of an mm-cluster-tilted algebra, Ξ›\Lambda, to the normal form, defined in definition 3.9, using the local mutations (i)-(xxvi) from section 3. Once this procedure has been demonstrated, we will have proven theorem 1.2.

Theorem 4.1.

Every connected component Ξ›\Lambda with rβˆˆβ„•r\in\mathbb{N} m+2m+2-cycles and sβˆˆβ„•s\in\mathbb{N} simple modules is derived equivalent to the normal form,

[Uncaptioned image]

where there are rr cycles and a total of ss vertices.

Proof.

Let Ξ›\Lambda be as in theorem 4.1. The following algorithm proves theorem 1.2 when combined with theorems 3.12, 3.15 and proposition 3.18.
We assume that the quiver of Ξ›\Lambda contains at least one m+2m+2-cycle. We will see later how to deal with a connected component which has no m+2m+2-cycles.
Since every mm-cluster-tilted algebra, Ξ›\Lambda can be described by a maximal division of a regular convex (n+1)​m+2(n+1)m+2-gon, PP, by mm-allowable diagonals (see section 2) it follows that in the quiver, QQ, of Ξ›\Lambda there exists a m+2m+2-cycle which is connected by paths in QQ to other m+2m+2-cycles through at most one vertex. Such a cycle will be called an initial cycle. Notice that initial cycles need not be unique and if QQ has only one cycle this cycle is clearly initial.
It is important to note that in the following that whenever we apply the elementary polygonal move ΞΌm\mu_{m} in the polygon PP and consider the corresponding algebra mutation we achieve a derived equivalence via theorem 3.12. Similarly, whenever we apply the elementary polygonal move ΞΌmβˆ’1\mu_{m}^{-1} in PP and consider the corresponding algebra mutation we achieve a derived equivalence via theorem 3.15.

Now choose an initial cycle and label the vertices as follows. The vertex which is (potentially) connected to other cycles will be labeled 0 and the other vertices are labeled {1,2,…,m+1}\{1,2,\ldots,m+1\} in an anti-clockwise direction around the cycle (that is, in the opposite direction to the orientation which we take to be clockwise).
Starting at vertex i=1i=1 initiate the following algorithm:

  1. (1)

    if there exists an arrow into vertex ii which is not part of the initial cycle then perform ΞΌm\mu_{m} at this vertex. That is, apply the elementary move ΞΌm\mu_{m}, defined in definition 3.4, to the mm-allowable diagonal corresponding to vertex ii in the division of PP which is associated with Ξ›\Lambda. The possible local configurations and resultant algebras relevant to this step are shown in figures (ii) and (x)-(xiii).

    Remark 4.2.

    Note that figure (xiii) shows two m+2m+2-cycles which share a vertex. The mutation vertex is this shared vertex and the mutation shown corresponds to ΞΌm\mu_{m}. This situation is actually a special case of figure (xi), namely the case where the quivers labeled Q2Q_{2} and Q5Q_{5} join together. Figure (xii) is also a special case of figure (xi). The list of figures is extended for clarity, since it may not be immediately apparent that some figures are special cases of the others. For example, figures(i), (iii) and (iv) could also be united into a single diagram.

  2. (2)

    if there exists no such arrow, but there exists an arrow out of ii which is again not part of the initial cycle perform ΞΌm\mu_{m} at the target of this outgoing arrow, except where we encounter the configurations shown in (vi) and (vii). In the these cases we must apply ΞΌmβˆ’1\mu_{m}^{-1}. The possible local configurations and resultant algebras relevant to this step are shown in figures (i), (iii), (iv), (v), (vi), (vii), (viii) and (ix). There is one other situation which can occur and must be treated slightly differently. Suppose that the following local situation occurs:

    [Uncaptioned image]

    Namely, from vertex ii we have an oriented path of length ss where 2β©½sβ©½m+12\leqslant s\leqslant m+1 in which each composition of two consecutive arrows is a zero relation.
    We can apply proposition 3.18 to achieve a derived equivalence with an algebra with the following local configuration:

    [Uncaptioned image]

    and elsewhere has the same quiver with relations as our original algebra.

  3. (3)

    repeat steps one and two until there are no arrows into or out of ii which are not part of the initial cycle.

  4. (4)

    repeat the first three steps for vertex i+1i+1, unless i=m+1i=m+1 in which case stop.

    Remark 4.3.

    Suppose at a given vertex ii of the initial cycle we have an arrow out of ii which is not part of the initial cycle then the application of the second step always serves to create a situation where there is an arrow into ii which is not part of the initial cycle and so the first step can then be applied.

The algorithm halts when there are no arrows which are not part of the chosen initial cycle into or out of vertex m+1m+1. To complete the procedure we only use local moves (i)-(xiii), as listed in section 3, and proposition 3.18. After the application of the above steps only vertex 0 has any arrows incident or outgoing which are not part of the initial cycle. We say that we have cleared the initial cycle.

Now assume that further m+2m+2-cycles exist in Ξ›\Lambda. We must choose and be able to clear the second m+2m+2-cycle.
It is convenient to choose an m+2m+2-cycle which is closest to the initial cycle (that is, this second cycle is linked to the initial cycle by a shortest un-oriented path in the quiver, but in general the next procedure works for an arbitrary choice).
Once the second m+2m+2-cycle has been chosen label its vertices as follows. Label the vertex which is connected to the initial cycle with 0. Next label the remaining vertices {1,2,…,m+1}\{1,2,\ldots,m+1\} following the clockwise orientation of the cycle. Define vertices of type BB to be those which are numbered {1,2,…,(mβˆ’12)}\{1,2,\ldots,(\frac{m-1}{2})\} if mm is odd and those which are numbered {1,2,…,m2}\{1,2,\ldots,\frac{m}{2}\} if mm is even. Define vertices of type AA to be those labeled {(m+42),…,m+1}\{(\frac{m+4}{2}),\ldots,m+1\} if mm is even and to be those labeled {(m+32),…,m+1}\{(\frac{m+3}{2}),\ldots,m+1\} if mm is odd.

Remark 4.4.

We must ensure that our algorithm produces a quiver with the same arrangement of m+2m+2-cycles as in the normal form defined in definition 3.9. The above definition of vertices of types AA and BB will coincide with the definition of vertices of types AA and BB in definition 3.9. This is not clear now, but will become apparent in due course.

The algorithm used to clear the initial cycle is, in general, no longer sufficient to clear our chosen second cycle. However, it can still be applied to vertices in the second cycle of type AA. We must describe what to do at vertex 0 and at vertices of type BB in the second cycle.
At vertex 0 in the second cycle it is our aim to describe a procedure which results in the initial cycle and second cycle sharing a vertex, but which leaves the initial cycle otherwise unaffected. This procedure is made slightly more complicated by this requirement.
At vertex 0 in the second cycle initiate the following steps:

  1. (1)

    if there exists an arrow into the vertex 0 in the second cycle which is not part of the initial or second cycle then apply ΞΌmk\mu_{m}^{k} at 0 in the second cycle. If the arrow is the last arrow in a chain of tt consecutive relations, 1β©½tβ©½mβˆ’11\leqslant t\leqslant m-1, then the index k=t+1k=t+1. If the arrow is not the last arrow in a chain of relations then k=1k=1. The possible figures relevant to this step are (ii), (x), (xi), (xii) and (xiii).

    Remark 4.5.

    We saw in section 2 that outwith an m+2m+2-cycle there can be at most mβˆ’1m-1 consecutive relations.

  2. (2)

    if there exists an arrow out of the vertex 0 in the second cycle which is not part of the initial or second cycle then apply ΞΌmβˆ’k\mu_{m}^{-k} at 0 in the second cycle. If the arrow is the first arrow in a chain of tt consecutive relations, 1β©½tβ©½mβˆ’11\leqslant t\leqslant m-1, then the index k=t+1k=t+1. If the arrow is not the last arrow in a relation then k=1k=1. The possible figures relevant to this step are (xvi), (xxiii)-(xxvi).

  3. (3)

    repeat steps one and two until there are no arrows into or out of 0 which are not part of the initial cycle or second cycle.

The result is that now the quiver of Ξ›\Lambda consists of the initial m+2m+2-cycle which is connected at one vertex to the second m+2m+2-cycle. In the initial cycle there are no arrows into or out of vertices which are not part of the initial cycle (with the sole exception of the vertex connected to the second cycle). Notice that, unlike the initial cycle, the second m+2m+2-cycle can be connected to many other m+2m+2-cycles.

Next, to clear the vertices of type AA (that is vertex ii, (m+32)β©½iβ©½m+1(\frac{m+3}{2})\leqslant i\leqslant m+1 or (m+42)β©½iβ©½m+1(\frac{m+4}{2})\leqslant i\leqslant m+1, if mm is odd or even respectively) we apply exactly the same procedure as when clearing the initial cycle. We always begin with i=m+1i=m+1 and proceed to m,mβˆ’1,…,xm,m-1,\ldots,x where x=(m+32)x=(\frac{m+3}{2}) or x=(m+42)x=(\frac{m+4}{2}) if mm is odd or even respectively.
Once the process has been applied at all vertices of type AA there will be no arrows into or out of these vertices which are not part of the second cycle.

We require a different set of instructions to clear the vertices of type BB without affecting the already cleared initial cycle.
Starting at vertex j=1j=1 initiate the following procedure.

  1. (1)

    If at vertex jj there is an arrow out of jj which is not part of the second cycle then apply ΞΌmβˆ’1\mu_{m}^{-1} at jj. The possible local configurations and resultant algebras relevant to this step are shown in figures (xiv), (xv) and (xxiii)-(xxvi).

  2. (2)

    If there exists no such arrow, but there is an arrow into vertex jj which is not part of the second cycle then apply ΞΌmβˆ’1\mu_{m}^{-1} at the tail of this incoming arrow, except where we encounter the configurations shown in (ixx) and (xxi) where we must apply ΞΌm\mu_{m} at the tail of the arrow. The possible local configurations and resultant algebras relevant to this step are shown in figures (xvi)-(xxii).
    Note that not all configurations can be cleared from vertex jj using the above steps. In particular if we have a local configuration of the following type:

    [Uncaptioned image]

    Namely, into vertex jj we have an oriented path of length ss where 2β©½sβ©½m+12\leqslant s\leqslant m+1 in which each composition of two consecutive arrows is a zero relation.
    We can apply proposition 3.18 to achieve a derived equivalence with an algebra with the following local configuration:

    [Uncaptioned image]

    and elsewhere has the same quiver with relations as our original algebra.

  3. (3)

    repeat steps (1) and (2) for vertex j+1j+1, 1β©½jβ©½x1\leqslant j\leqslant x where x=(mβˆ’32)x=(\frac{m-3}{2}) if mm is odd and x=(mβˆ’22)x=(\frac{m-2}{2}) if mm is even.

Once we have applied the above algorithm for vertices of type BB to the second cycle we have shown that Ξ›\Lambda is derived equivalent to an algebra whose quiver has two m+2m+2-cycles which share a vertex. These two cycles are connected to other parts of the quiver only through one vertex of the second cycle in such a way that vertices of type AA and BB coincide with the definitions in 3.9.
Now we simply choose a third cycle (if it exists) in exactly the same way as we chose the second cycle. The same reduction algorithm can be applied to the third cycle. Indeed, we may continue to choose and clear cycles as described above until there are no more m+2m+2-cycles. Therefore, we have been able to apply successive mutations to Ξ›\Lambda to achieve,

[Uncaptioned image]

so that Ξ›\Lambda is derived equivalent to this algebra. Let Ξ›2\Lambda_{2} denote the above algebra. Finally, it remains to prove that we can reduce the portion of the quiver which contains no m+2m+2-cycles to the linear orientation with no relations, whilst maintaining derived equivalence at each step. We restrict to using the mutations induced by the elementary polygonal moves ΞΌm\mu_{m} and ΞΌmβˆ’1\mu_{m}^{-1} and so ensuring a derived equivalence at each stage by theorems 3.12 and 3.15 respectively. Notice that this part of the algorithm is the only part needed if Ξ›\Lambda has no m+2m+2-cycles, a possibility we have ignored till now.

Since Ξ›\Lambda is gentle (see results in section 2) and, by our reduction algorithm, is derived equivalent to Ξ›2\Lambda_{2} we have, by [20], that Ξ›2\Lambda_{2} is gentle. Therefore, the quiver of Ξ›2\Lambda_{2} which contains no m+2m+2-cycles is a tree. Since it is a finite quiver, we must have that there are a finite number of end points of the underlying tree. In order to show that we can reduce the cycle-free part of the quiver of Ξ›2\Lambda_{2} to the linear orientation on AsA_{s} (where s=m+2+(rβˆ’2)​(m+1)+ms=m+2+(r-2)(m+1)+m and rr in the number of cycles in the quiver of Ξ›2\Lambda_{2}) we will need the following argument.
Suppose that we have some orientation on the graph AsA_{s}. The path algebra of such a quiver (where we assume that there are no relations) certainly describes an mm-cluster-tilted algebra which has some corresponding division of the (n+1)​m+2(n+1)m+2-gon, PP. We claim that by using ΞΌm\mu_{m} and ΞΌmβˆ’1\mu_{m}^{-1} we can mutate the given orientation on AsA_{s} to an orientation where all arrows are oriented in the same direction.

Remark 4.6.

For our purposes we will need to consider both possible orientations where all arrows are in the same direction. This will become clear in due course.

First assume we have the following configuration occurring in some orientation of AsA_{s},

[Uncaptioned image]

Then we apply ΞΌmβˆ’1\mu_{m}^{-1} successively to the vertices 1,2,…,pβˆ’2,pβˆ’11,2,\ldots,p-2,p-1 to get,

[Uncaptioned image]
Remark 4.7.

Notice that it is always possible to ensure the existence of the arrow Ξ±\alpha in the left to right direction via a source/sink mutation if required. The effect of this series of mutations is to interchange the position of one arrow oriented from left to right with a collection of consecutive arrows oriented from right to left.

Repetition of this process will result in a configuration of the form,

[Uncaptioned image]

Now apply ΞΌmβˆ’1\mu_{m}^{-1} to the vertex ee to get,

[Uncaptioned image]

Next repeat the first step, that is, apply ΞΌmβˆ’1\mu_{m}^{-1} in turn to 1,2,…,pβˆ’2,pβˆ’11,2,\ldots,p-2,p-1. The result is,

[Uncaptioned image]

but now we have effectively reduced the number of arrows oriented from right to left by 1. Hence, we can eventually achieve the orientation of AsA_{s} where all arrows are oriented from left to right.
The proof that we mutate to the orientation where all arrows are oriented from right to left is similar, simply reverse the orientations of the arrows in the relevant figures above and apply ΞΌm\mu_{m} in place of ΞΌmβˆ’1\mu_{m}^{-1}. Notice that we never mutate at the left endpoint of AsA_{s}. This means that we can use this process to reduce the cycle-free part of Ξ›2\Lambda_{2} to the linear orientation if it has no zero relations.

Now we are ready to discuss relations in the cycle-free part of the quiver of Ξ›1\Lambda_{1} and how to reduce the number of them. First, notice that in the cycle free part of the quiver we have that,

number of relationsΒ β©ΎΒ number of endpoints -1(βˆ—)\textnormal{number of relations }\geqslant\textnormal{ number of endpoints -1}\qquad\qquad(\ast)

The equality holds where each relation occurs at a vertex of valency greater than 2. If relations occur around vertices of valency two then we will have an inequality.
Take any endpoint, ee, in the cycle-free part of the quiver of Ξ›1\Lambda_{1} and consider the following local situations which could occur,

[Uncaptioned image]

where Q1Q_{1} consists of some orientation of AtA_{t} for some tβˆˆβ„•t\in\mathbb{N} which has no relations and Q2Q_{2} and Q3Q_{3} are arbitrary. Note that Q1Q_{1}, Q2Q_{2} and Q3Q_{3} might all be empty, we do not discount this possibility. In effect we are considering the first relation encountered as we proceed back up the levels of the tree from an arbitrary endpoint.
We have the following algorithm for situations on the left in the above figure.
It has been demonstrated above that we can choose to orient Q1Q_{1} as follows and maintain a derived equivalence. Therefore, we can assume that Q1Q_{1} has the form shown in the following figure.

[Uncaptioned image]

Now for each arrow in Q1Q_{1} apply ΞΌm\mu_{m} once at vertex xx. The result is that we have mutated to,

[Uncaptioned image]

and maintained the derived equivalence.
Now perform ΞΌmβˆ’1\mu_{m}^{-1} at vertex yy to get,

[Uncaptioned image]

It is important to note that at no stage during these mutations have we created any relations in the cycle-free part of the quiver and at each stage we have ensured a derived equivalence.
Now, if in the initial configuration the vertex xx had valency greater than 2 then we have removed a relation and reduced the number of endpoints, if the vertex xx had valency 2 then we have removed a relation, but the number of endpoints is preserved. Therefore, we preserve the inequality (βˆ—\ast).
For the second situation where in the initial configuration we reverse the orientation of all arrows we can achieve the same result by applying ΞΌmβˆ’1\mu_{m}^{-1} in place of ΞΌm\mu_{m}.
Finally, one can now continue to choose end points and eliminate relations. Notice that eventually the number of end points will be 1 and the number of relations will be zero. In order to achieve an orientation of the cycle-free part of the quiver in which all arrows are oriented in the same direction we apply the arguments above. ∎

Remark 4.8.

Some remarks should be made following the proof of the theorem.
It should be noted that at no stage in the algorithm do we mutate to an algebra which is not an mm-cluster-tilted algebra, however in general it is certainly possible to do so. Using the inverse of the derived equivalence of proposition 3.18 it is possible for an mm-cluster-tilted algebra to be derived equivalent to an algebra which is not mm-cluster-tilted. For example, the first algebra shown here is a 4-cluster-tilted algebra and is derived equivalent to the second algebra. The second algebra is, however, not a 4-cluster-tilted algebra since it has 4 consecutive relations not in a cycle, contrary to remark 2.18.

[Uncaptioned image]

So while it is known that any algebra derived equivalent to an mm-cluster-tilted algebra of type AnA_{n} is gentle, by [20] it may not necessarily be mm-cluster-tilted. Hence the class of mm-cluster-tilted algebras of type AnA_{n} is not closed under derived equivalence.
Also note that, whilst developed independently, the final part of the algorithm which removes relations from the cycle-free part of the quiver of Ξ›1\Lambda_{1} features an argument similar to that used in [1] where generalized tilted algebras of type AnA_{n} are considered. Our method was developed from a derived equivalence viewpoint as opposed to the classical tilting theory approach in [1] and is motivated by the polygonal combinatorics which does not feature in [1].

Acknowledgements

I would like to thank my Ph.D. supervisor Dr. Thorsten Holm for many helpful discussions while preparing this paper.

References

  • [1] I. Assem and D. Happel, Generalized tilted algebras of type AnA_{n}, Comm. Alg. 9 (1981), 2101-2125.
  • [2] I. Assem and A. SkowroΕ„ski, Iterated tilted algebras of type A~n\widetilde{A}_{n}, Math. Z. 195 (1987), 269-290.
  • [3] D. Avella-Alaminos and C. Geiss, Combinatorial derived invariants for gentle algebras, J. Pure Appl. Alg. to appear, arXiv:math.RT/0607173.
  • [4] K. Baur and R.J. Marsh, A geometric description of m-cluster categories, Trans. Amer. Math. Soc. to appear, arXiv:math/0607151.
  • [5] C. Bessenrodt and T. Holm, q-Cartan matrices and combinatorial invariants of derived categories for skewed-gentle algebras, Pacific J. Math. 229 (2007), No.1, 25-48.
  • [6] A.B. Buan, R.J. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618.
  • [7] A.B. Buan, R.J. Marsh and I. Reiten, Cluster tilted algebras of finite representation type., J. Algebra 306 (2006), 412-431.
  • [8] A.B. Buan, R.J. Marsh and I. Reiten, Cluster tilted algebras of finite representation type, J. Algebra 306 (2006), 412-431.
  • [9] A.B. Buan and D. F. Vatne, Cluster-tilted algebras of type AnA_{n}, J. Algebra 319 (2008), 2723-2738.
  • [10] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (AnA_{n} case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364.
  • [11] S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not. 44 (2005), 2709-2757.
  • [12] S. Fomin and A. Zelevinsky, Cluster algebras I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
  • [13] D. Happel, Triangulated categories in the representation theory of finite
    dimensional algebras, LMS Lecture Note Series, no. 119, Cambridge University Press, 1988.
  • [14] O. Iyama, Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22 - 50.
  • [15] B. Keller, On triangulated orbit categories, Documenta Math. 10 (2005), 551-581.
  • [16] B. Keller and I. Reiten,Acyclic Calabi-Yau categories are cluster categories (with an appendix by Michel Van den Bergh), preprint (2006) math.RT/0610594.
  • [17] S. KΓΆnig and A. Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics, no. 1685, Springer-Verlag, 1998.
  • [18] G. Murphy, PhD thesis, University of Leeds.
  • [19] C. Riedtmann, Algebren, DarstellungskΓΆcher, Uberlagerungen und zurΓΌck, Comment. Math. Helvetici 55 (1980) 199-224.
  • [20] J. SchrΓΆer and A. Zimmermann, Stable endomorphism algebras of modules over special biserial algebras, Math. Z. 244 (2003), no. 3, 515-530.
  • [21] H. Thomas, Defining an mm-cluster category, J. Algebra to appear, arXiv:math.RT/0607173.
  • [22] B. Zhu, Generalized cluster complexes via quiver representations, J. Alg. Comb. 27 (2008), 25-54.