This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Department of Physics, Liaoning Normal University, Dalian 116029, China 22institutetext: Center for Theoretical and Experimental High Energy Physics, Liaoning Normal University, Dalian 116029, China
\thankstext

[\star]crCorresponding author \thankstexte1e-mail: 2802368240@qq.com \thankstexte2e-mail: 924038358@qq.com \thankstexte3e-mail: yangjichong@lnnu.edu.cn

Detect anomalous quartic gauge couplings at muon colliders with quantum kernel k-means

Shuai Zhang\thanksrefe1,addr1,addr2    Ke-Xin Chen\thanksrefe2,addr1,addr2    Ji-Chong Yang\thanksrefcr,e3,addr1,addr2
(Received: date / Revised version: date)
Abstract

In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics (NP) phenomenological research. In order to improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signals. It is well known that the kernel k-means algorithm can be carried out with the help of quantum computing, which suggests that quantum kernel k-means (QKKM) is also a potential tool for NP phenomenological studies in the future. This paper investigates how to search for NP signals using QKKM. Taking the μ+μνν¯γγ\mu^{+}\mu^{-}\to\nu\bar{\nu}\gamma\gamma process at a muon collider as an example, the dimension-8 operators contributing to anomalous quartic gauge couplings (aQGCs) are studied. The expected coefficient constraints obtained using the QKKM of three different forms of quantum kernels, as well as the constraints obtained by the classical k-means algorithm are presented, and it can be shown that QKKM can help to find the signal of aQGCs. Comparing the classical k-means anomaly detection algorithm with QKKM, it is indicated that the QKKM is able to archive a better cut efficiency.

journal: Eur. Phys. J. C

1 Introduction

Significant developments have been made in the field of quantum computing. The development of quantum computers has progressed from theoretical models to practical applications, with quantum processors now capable of performing complex calculations at significantly faster speeds than their classical counterparts. Researchers are continuing to advance the frontiers of quantum computing, resulting in groundbreaking developments in hardware, algorithms, and applications Arute:2019zxq . The capacity to process vast quantities of data at hitherto unattainable speeds renders quantum computing a potentially transformative force across a multitude of disciplines.

Meanwhile, as the large hadron collider (LHC) experiment enters the post-Higgs discovery era, physicists have begun to work on the search for new physics (NP) beyond the Standard Model (SM) Ellis:2012zz . The search for NP has now become one of the frontiers of high-energy physics (HEP), who frequently entails the examination of extensive datasets, generated by means of particle collisions or other experimental procedures. The potential for quantum computing to significantly accelerate data processing and analysis makes it an invaluable tool for advancing the detection of NP signals. Despite quantum computing is still in the era of noisy intermediate-scale quantum (NISQ) devices Preskill:2018jim ; Arute:2019zxq ; CG2023 , its applications in various aspects of HEP has already been discussed Zhu:2024own ; Carena:2022kpg ; Bauer:2022hpo ; Roggero:2018hrn ; Roggero:2019myu ; Gustafson:2022xdt ; Lamm:2024jnl ; Carena:2024dzu ; Atas:2021ext ; Li:2023vwx ; Cui:2019sfz ; Zou:2021pvl ; Georgescu:2013oza ; Lamm:2019uyc ; Li:2021kcs ; Echevarria:2020wct ; Jordan:2011ci ; Mueller:2019qqj ; Chou:2023hcc ; Bauer:2019qxa .

In the phenomenological studies of NP, the SM Effective Field Theory (SMEFT) is frequently used in recent years. The SMEFT framework extends the SM to incorporate high-dimensional operators that capture potential NP effects Weinberg:1979sa ; Grzadkowski:2010es ; Brivio:2017vri ; Buchmuller:1985jz . Research on SMEFT has focused on dimension-6 operators, however, from a phenomenological point of view, the dominant effect in many cases occurs in dimension-8 operators Ellis:2018cos ; Ellis:2019zex ; Ellis:2020ljj ; Gounaris:2000dn ; Gounaris:1999kf ; Senol:2018cks ; Fu:2021mub ; Degrande:2013kka ; Jahedi:2022duc ; Jahedi:2023myu ; Ellis:2017edi ; Gounaris:1999kf . In addition, dimension-8 operators are also important for convex geometric perspective operator spaces Bi:2019phv ; Zhang:2020jyn ; Yamashita:2020gtt . As a result, the dimension-8 operators are increasingly being focused on. For one generation of fermions, there are 895895 different baryon number conserving dimension-8 operators. It is necessary to conduct a detailed kinematic analysis of each of these operators. As the number of operators to be considered increases, the efficiency of the process tends to decline.

In order to facilitate the efficient analysis of data, anomaly detection (AD) machine learning (ML) algorithms have been employed in previous studies within the field of HEP to search for NP signals Zhang:2023khv ; Zhang:2023ykh ; Dong:2023nir ; Zhang:2023yfg ; Yang:2022fhw ; Yang:2021kyy ; Jiang:2021ytz ; Vaslin:2023lig ; Kuusela:2011aa ; Collins:2018epr ; Atkinson:2022uzb ; Kasieczka:2021xcg ; Farina:2018fyg ; Cerri:2018anq ; vanBeekveld:2020txa ; CrispimRomao:2020ucc ; Ren:2017ymm ; Abdughani:2018wrw ; Ren:2019xhp . This paper investigates the application of a quantum ML (QML) algorithm to search for NP, i.e., quantum kernel k-means (QKKM). The choice of the k-means algorithm among various ML algorithms is motivated by two factors. Firstly, it has been demonstrated to be effective in phenomenological studies of NP Zhang:2023yfg . Secondly, the kernel k-means algorithm is compatible with quantum computers. One potential advantage of QKKM is that, it is pointed out that multi-state swap test on quantum computers can compute inner products of multiple vectors simultaneously Liu:2022jsp ; Fanizza:2020qjq . At the same time, quantum kernels have the potential to transform nonlinear data into linearly separable forms through quantum feature mapping Liu:2020lhd . This paper aims to compare several different quantum kernel methods, all of which are inner products and have the potential to be accelerated by multi-state swap test.

In this paper, we take the study of dimension-8 operators contributing to anomalous quartic gauge couplings (aQGCs) as an example. The sensitivity of the vector boson scattering (VBS) process to aQGCs and the increasing phenomenological research on aQGCs have led to a wide interest in aQGCs Green:2016trm ; Chang:2013aya ; Anders:2018oin ; Zhang:2018shp ; Bi:2019phv ; Guo:2020lim ; Guo:2019agy ; Yang:2021pcf ; Yang:2020rjt . Meanwhile, LHC has been closely following the aQGCs ATLAS:2014jzl ; CMS:2020gfh ; ATLAS:2017vqm ; CMS:2017rin ; CMS:2020ioi ; CMS:2016gct ; CMS:2017zmo ; CMS:2018ccg ; ATLAS:2018mxa ; CMS:2019uys ; CMS:2016rtz ; CMS:2017fhs ; CMS:2019qfk ; CMS:2020ypo ; CMS:2020fqz . With the increasing luminosities on future colliders, the muon colliders can achieve higher energies and luminosities while providing a cleaner experimental environment that is less impacted by the QCD background than the hadron colliders Buttazzo:2018qqp ; Delahaye:2019omf ; Costantini:2020stv ; Lu:2020dkx ; AlAli:2021let ; Franceschini:2021aqd ; Palmer:1996gs ; Holmes:2012aei ; Liu:2021jyc ; Liu:2021akf . In order to study aQGCs, the process μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma at muon colliders is used as a testbed. This process not only lends itself to the study of aQGCs, a NP operator of widely interest, but also provides a place to validate ML algorithms due to the information lost by final-state neutrinos. The AD event selection strategy with QKKM is employed to search for aQGCs signals, and expected coefficient constraints, i.e. the projected sensitivities are analyzed. It is worth noting that, as an AD algorithm, using the QKKM to search for aQGCs signals does not depend on the studied process.

The rest of the paper is organized as follows. In Section 2, a brief introduction to aQGCs and the μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma process is given. The event selection strategy of QKKM is discussed in Section 3. Section 4 presents numerical results for the expected coefficient constraints. Section 5 is a summary of the conclusions.

2 aQGCs and the process of μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma at the muon colliders

Refer to caption
Figure 1: Typical Feynman diagrams for signal events. At lower energies, the tri-boson process (in the right panel) dominates, while at higher energies the VBS process (in the left panel) dominates Yang:2020rjt .
Refer to caption
Figure 2: Typical Feynman diagrams for background events.

The frequently used dimension-8 operators contributing to aQGCs can be classified into three categories, scalar//longitudinal operators OSiO_{S_{i}}, mixed transverse and longitudinal operators OMiO_{M_{i}} and transverse operators OTiO_{T_{i}}, respectively Eboli:2006wa ; Eboli:2016kko . The operators involved in the μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma process are OMiO_{M_{i}} and OTiO_{T_{i}},

aQGC=ifMiΛ4OM,i+jfTjΛ4OT,j,\begin{split}\mathcal{L}_{\rm aQGC}&=\sum_{i}\frac{f_{M_{i}}}{\Lambda^{4}}O_{M,i}+\sum_{j}\frac{f_{T_{j}}}{\Lambda^{4}}O_{T,j},\end{split} (1)

where fMif_{M_{i}} and fTjf_{T_{j}} are dimensionless Wilson coefficients, and Λ\Lambda is the NP energy scale. The process of μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma at the muon collider can be contributed by the operators OM0,1,2,3,4,5,7O_{M_{0,1,2,3,4,5,7}} and OT0,1,2,5,6,7O_{T_{0,1,2,5,6,7}}, where OM0,1,5,7O_{M_{0,1,5,7}} are not considered due to sensitivities within current coefficient constraints and,

OM,2\displaystyle O_{M,2} =[BμνBμν]×[(DβΦ)DβΦ],\displaystyle=\left[B_{\mu\nu}B^{\mu\nu}\right]\times\left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right], (2)
OM,3\displaystyle O_{M,3} =[BμνBνβ]×[(DβΦ)DμΦ],\displaystyle=\left[B_{\mu\nu}B^{\nu\beta}\right]\times\left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right],
OM,4\displaystyle O_{M,4} =[(DμΦ)W^ανDμΦ]×Bβν,\displaystyle=\left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\alpha\nu}D^{\mu}\Phi\right]\times B^{\beta\nu},
OT,0\displaystyle O_{T,0} =Tr[W^μνW^μν]×Tr[W^αβW^αβ],\displaystyle=\mathrm{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right]\times\mathrm{Tr}\left[\widehat{W}_{\alpha\beta}\widehat{W}^{\alpha\beta}\right],
OT,1\displaystyle O_{T,1} =Tr[W^ανW^μβ]×Tr[W^μβW^αν],\displaystyle=\mathrm{Tr}\left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}\right]\times\mathrm{Tr}\left[\widehat{W}_{\mu\beta}\widehat{W}^{\alpha\nu}\right],
OT,2\displaystyle O_{T,2} =Tr[W^αμW^μβ]×Tr[W^βνW^να],\displaystyle=\mathrm{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\right]\times\mathrm{Tr}\left[\widehat{W}_{\beta\nu}\widehat{W}^{\nu\alpha}\right],
OT,5\displaystyle O_{T,5} =Tr[W^μνW^μν]×BαβBαβ,\displaystyle=\mathrm{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right]\times B_{\alpha\beta}B^{\alpha\beta},
OT,6\displaystyle O_{T,6} =Tr[W^ανW^μβ]×BμβBαν,\displaystyle=\mathrm{Tr}\left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}\right]\times B_{\mu\beta}B^{\alpha\nu},
OT,7\displaystyle O_{T,7} =Tr[W^αμW^μβ]×BβνBνα,\displaystyle=\mathrm{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\right]\times B_{\beta\nu}B^{\nu\alpha},

where W^σW/2\widehat{W}\equiv\vec{\sigma}\cdot{\vec{W}}/2 with σ\sigma being the Pauli matrices and W={W1,W2,W3}{\vec{W}}=\{W^{1},W^{2},W^{3}\}, BμB_{\mu} and WμiW_{\mu}^{i} are U(1)YU(1)_{\rm Y} and SU(2)ISU(2)_{\rm I} gauge fields, BμνB_{\mu\nu} and WμνW_{\mu\nu} correspond to the field strength tensors, and DμD_{\mu} is the covariant derivative. For the process μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma, the diagrams induced by OMiO_{M_{i}} and OTiO_{T_{i}} operators are shown in the Fig. 1, and the Fig. 2 shows the typical diagrams in the SM. Since aQGC decouple from anomalous triple gauge couplings (aTGCs) starting from dimension-8, we consider only dimension-8 operators.

As a high-energy collider, the muon collider is also considered a gauge boson collider and is therefore well suited to the study of aQGCs. The operators that contribute independently to aQGCs and are not related to anomalous triple gauge couplings start at dimension-88. The muon collider is therefore well suited to study the signal of the dimension-8 aQGCs in the VBS processes. Among the many VBS processes, those in which the forward-moving particles are neutrinos have an advantage because there is no need to detect charged particles near the direction of the beams. These are processes that contain WWVVWW\to VV sub-processes. Among these processes, the one in which the final state VVVV are photons has the least electroweak vertices and is therefore more advantageous, which is the μ+μνν¯γγ\mu^{+}\mu^{-}\to\nu\bar{\nu}\gamma\gamma process that is the focus of this work. Since there are no indications of higher-dimensional operators yet, we restrict ourselves to focusing only on the projected sensitivities of the aQGCs, ignoring the effects of other SMEFT operators.

As an Effective Field Theory (EFT), the SMEFT is only valid under the NP energy scale. The high center-of-mass (c.m.) energy achievable at muon colliders offers an excellent opportunity to detect potential NP signals, while at the same time, raises concerns on the validity of the SMEFT. Previous studies have extensively employed partial wave unitarity as a criterion for assessing the validity of the SMEFT Dong:2023nir ; Yang:2021pcf ; Guo:2020lim ; Yue:2021snv ; Fu:2021mub ; Yang:2022ilt ; Layssac:1993vfp ; Corbett:2017qgl ; Almeida:2020ylr ; Kilian:2018bhs ; Kilian:2021whd ; Perez:2018kav . For the process Wλ1Wλ2+γλ3γλ4W^{-}_{\lambda_{1}}W^{+}_{\lambda_{2}}\rightarrow{\gamma}_{\lambda_{3}}{\gamma}_{\lambda_{4}} with λ1,2=±1,0\lambda_{1,2}=\pm 1,0 and λ3,4=±1\lambda_{3,4}=\pm 1 correspond to the helicities of the vector bosons, in the c.m. frame with z-axis along the flight direction of W{W}^{-} in the initial state, the amplitudes can be expanded as Jacob:1959at ,

(Wλ1Wλ2+γλ3γλ4)\displaystyle\mathcal{M}(W^{-}_{\lambda_{1}}W^{+}_{\lambda_{2}}\rightarrow\gamma_{\lambda_{3}}\gamma_{\lambda_{4}}) =\displaystyle= (3)
8πJ(2J+1)1+δλ3λ4ei(λλ)ϕdλλJ(θ)TJ,\displaystyle 8\pi\sum_{J}(2J+1)\sqrt{1+\delta_{\lambda_{3}\lambda_{4}}}e^{i(\lambda-\lambda^{{}^{\prime}})\phi}d^{J}_{\lambda\lambda^{{}^{\prime}}}(\theta)T^{J},

where θ\theta and ϕ\phi are zenith and azimuth angles of γλ3\gamma_{\lambda_{3}}, λ=λ1λ2\lambda=\lambda_{1}-\lambda_{2}, λ=λ3λ4\lambda^{{}^{\prime}}=\lambda_{3}-\lambda_{4} and dλλJ(θ)d^{J}_{\lambda\lambda^{{}^{\prime}}}(\theta) is the Wigner D-functions. The partial wave unitarity bound is |TJ|2|T^{J}|\leq 2 Corbett:2014ora .

In Refs. Guo:2019agy ; Yang:2021ukg , the results of partial wave unitarity bounds on coefficients of the γγWW\gamma\gamma WW vertices have been obtained in the study of γγW+W\gamma\gamma\to W^{+}W^{-} VBS process at the LHC. The dimension-8 operators contribute to five different WWγγWW\gamma\gamma vertices, with each vertex being contributed to by only one operator. Consequently, the partial wave unitarity bounds on coefficients of the γγWW\gamma\gamma WW vertices can be directly translated to the partial wave unitarity bounds on operator coefficients for the WWγγWW\to\gamma\gamma by assuming one operator at a time. The strongest partial wave unitarity bounds w.r.t. the WWγγWW\to\gamma\gamma process are,

|fM2Λ4|642πMW2sW2s2e2v2cW2,|fM3Λ4|2562πMW2sW2s2e2v2cW2,|fM4Λ4|1282πMW2sWs2e2v2cW,|fT0Λ4|82πs2sW2,|fT1Λ4|242πs2sW2,|fT2Λ4|322πs2sW2,|fT5Λ4|82πs2cW2,|fT6Λ4|242πs2cW2,|fT7Λ4|322πs2cW2.\begin{split}\begin{aligned} &\left|\frac{f_{M_{2}}}{\Lambda^{4}}\right|\leq\frac{64\sqrt{2}\pi M_{W}^{2}{s_{W}^{2}}}{{s}^{2}e^{2}v^{2}{c_{W}^{2}}},&&\left|\frac{f_{M_{3}}}{\Lambda^{4}}\right|\leq\frac{256\sqrt{2}\pi M_{W}^{2}{s_{W}^{2}}}{{s}^{2}e^{2}v^{2}{c_{W}^{2}}},\\ &\left|\frac{f_{M_{4}}}{\Lambda^{4}}\right|\leq\frac{128\sqrt{2}\pi M_{W}^{2}{s_{W}}}{{s}^{2}e^{2}v^{2}{c_{W}}},&&\left|\frac{f_{T_{0}}}{\Lambda^{4}}\right|\leq\frac{8\sqrt{2}\pi}{{s}^{2}{s_{W}^{2}}},\\ &\left|\frac{f_{T_{1}}}{\Lambda^{4}}\right|\leq\frac{24\sqrt{2}\pi}{{s}^{2}{s_{W}^{2}}},&&\left|\frac{f_{T_{2}}}{\Lambda^{4}}\right|\leq\frac{32\sqrt{2}\pi}{{s}^{2}{s_{W}^{2}}},\\ &\left|\frac{f_{T_{5}}}{\Lambda^{4}}\right|\leq\frac{8\sqrt{2}\pi}{{s}^{2}{c_{W}^{2}}},&&\left|\frac{f_{T_{6}}}{\Lambda^{4}}\right|\leq\frac{24\sqrt{2}\pi}{{s}^{2}{c_{W}^{2}}},\\ &\left|\frac{f_{T_{7}}}{\Lambda^{4}}\right|\leq\frac{32\sqrt{2}\pi}{{s}^{2}{c_{W}^{2}}}.\\ \end{aligned}\end{split} (4)
s\sqrt{s} 10 TeV 14 TeV
|fM2/Λ4|(TeV4)\left|f_{M_{2}}/\Lambda^{4}\right|(\rm TeV^{-4}) 9.8×1039.8\times 10^{-3} 7.0×1037.0\times 10^{-3}
|fM3/Λ4|(TeV4)\left|f_{M_{3}}/\Lambda^{4}\right|(\rm TeV^{-4}) 3.9×1023.9\times 10^{-2} 2.8×1022.8\times 10^{-2}
|fM4/Λ4|(TeV4)\left|f_{M_{4}}/\Lambda^{4}\right|(\rm TeV^{-4}) 3.6×1023.6\times 10^{-2} 2.6×1032.6\times 10^{-3}
|fT0/Λ4|(TeV4)\left|f_{T_{0}}/\Lambda^{4}\right|(\rm TeV^{-4}) 1.5×1021.5\times 10^{-2} 1.1×1031.1\times 10^{-3}
|fT1/Λ4|(TeV4)\left|f_{T_{1}}/\Lambda^{4}\right|(\rm TeV^{-4}) 4.6×1024.6\times 10^{-2} 3.3×1023.3\times 10^{-2}
|fT2/Λ4|(TeV4)\left|f_{T_{2}}/\Lambda^{4}\right|(\rm TeV^{-4}) 6.1×1026.1\times 10^{-2} 4.4×1024.4\times 10^{-2}
|fT5/Λ4|(TeV4)\left|f_{T_{5}}/\Lambda^{4}\right|(\rm TeV^{-4}) 4.6×1034.6\times 10^{-3} 3.3×1033.3\times 10^{-3}
|fT6/Λ4|(TeV4)\left|f_{T_{6}}/\Lambda^{4}\right|(\rm TeV^{-4}) 1.4×1021.4\times 10^{-2} 1.0×1031.0\times 10^{-3}
|fT7/Λ4|(TeV4)\left|f_{T_{7}}/\Lambda^{4}\right|(\rm TeV^{-4}) 1.8×1021.8\times 10^{-2} 1.3×1031.3\times 10^{-3}
Table 1: The values of the tightest partial wave unitarity bounds at s=10TeV\sqrt{s}=10\;\rm TeV and 14TeV14\;\rm TeV.

The maximum possible c.m. energy for the subprocess WWγγWW\rightarrow\gamma\gamma is identical to the c.m. energy of the process μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma. At muon colliders, we consider two cases of the expected energies, s=10TeV\sqrt{s}=10\;\rm{TeV} and s=14TeV\sqrt{s}=14\;\rm{TeV} Palmer:1996gs , the tightest unitarity bounds are listed in Table 1.

σ(pb)\sigma(\rm pb) s(TeV)\sqrt{s}(\rm TeV) s(TeV)\sqrt{s}(\rm TeV)
1010 1414
σSM\sigma_{\rm SM} 1.09×1011.09\times 10^{-1} 1.12×1011.12\times 10^{-1}
σOM2\sigma_{O_{M_{2}}} 2.08×1052.08\times 10^{-5} 1.03×1051.03\times 10^{-5}
σOM2int{\sigma}^{int}_{O_{M_{2}}} 1.89×106-1.89\times 10^{-6} 6.83×107-6.83\times 10^{-7}
σOM3\sigma_{O_{M_{3}}} 2.35×1052.35\times 10^{-5} 1.17×1051.17\times 10^{-5}
σOM3int{\sigma}^{int}_{O_{M_{3}}} 3.42×1063.42\times 10^{-6} 1.29×1061.29\times 10^{-6}
σOM4\sigma_{O_{M_{4}}} 2.14×1052.14\times 10^{-5} 1.08×1051.08\times 10^{-5}
σOM4int{\sigma}^{int}_{O_{M_{4}}} 1.78×106-1.78\times 10^{-6} 6.44×107-6.44\times 10^{-7}
σOT0\sigma_{O_{T_{0}}} 2.10×1042.10\times 10^{-4} 2.05×1042.05\times 10^{-4}
σOT0int{\sigma}^{int}_{O_{T_{0}}} 1.02×1041.02\times 10^{-4} 8.51×1058.51\times 10^{-5}
σOT1\sigma_{O_{T_{1}}} 2.11×1042.11\times 10^{-4} 2.13×1042.13\times 10^{-4}
σOT1int{\sigma}^{int}_{O_{T_{1}}} 6.92×1056.92\times 10^{-5} 5.79×1055.79\times 10^{-5}
σOT2\sigma_{O_{T_{2}}} 2.17×1042.17\times 10^{-4} 2.07×1042.07\times 10^{-4}
σOT2int{\sigma}^{int}_{O_{T_{2}}} 1.22×1041.22\times 10^{-4} 1.01×1041.01\times 10^{-4}
σOT5\sigma_{O_{T_{5}}} 2.08×1042.08\times 10^{-4} 2.13×1042.13\times 10^{-4}
σOT5int{\sigma}^{int}_{O_{T_{5}}} 2.09×1052.09\times 10^{-5} 1.71×1051.71\times 10^{-5}
σOT6\sigma_{O_{T_{6}}} 2.07×1042.07\times 10^{-4} 2.03×1042.03\times 10^{-4}
σOT6int{\sigma}^{int}_{O_{T_{6}}} 7.16×1057.16\times 10^{-5} 6.25×1056.25\times 10^{-5}
σOT7\sigma_{O_{T_{7}}} 2.11×1042.11\times 10^{-4} 2.21×1042.21\times 10^{-4}
σOT7int{\sigma}^{int}_{O_{T_{7}}} 1.37×1041.37\times 10^{-4} 1.71×1041.71\times 10^{-4}
Table 2: At s=10TeV\sqrt{s}=10\;\rm TeV and 14TeV14\;\rm TeV, the contribution from the SM, the operators OM2,3,4O_{M_{2,3,4}} and OT0,1,2,5,6,7O_{T_{0,1,2,5,6,7}}, and the interference between the SM and NP.

K-means AD algorithm can be utilized to address interference Zhang:2023yfg . However, in this paper, due to the limited computational resources, we do not consider the interference terms for simplicity. The contribution of the SM (denoted as σSM\sigma_{\rm SM}), the NP (denoted as σOX\sigma_{O_{X}} where XX is the name of operator), and the interference between the SM and NP (denoted as σOXint\sigma^{int}_{O_{X}}) for different operators when the coefficients are the upper bounds in Table 1 at s=10TeV\sqrt{s}=10\;\rm{TeV} and 14TeV14\;\rm{TeV} are listed in Table 2. We only study operators where the cross-sectional ratio of the interference term to the NP contribution is less than OM3O_{M_{3}} (for OM3O_{M_{3}}, σOMiint/σOMi\sigma^{int}_{O_{M_{i}}}/\sigma_{O_{M_{i}}} is 14.56%14.56\% at s=10TeV\sqrt{s}=10\;{\rm TeV}). That is, we focus on the operators OM2,3,4O_{M_{2,3,4}} and OT5O_{T_{5}}.

The smaller the coefficient, the more important the interference terms are. From Table 1, it can be seen that the unitarity bounds are not yet at a level where the interference terms become dominant. Dimensional analysis indicates that σNPintsfX/Λ4\sigma^{int}_{NP}\sim sf_{X}/\Lambda^{4} and σNPs3(fX/Λ4)2\sigma_{NP}\sim s^{3}\left(f_{X}/\Lambda^{4}\right)^{2}, when σNPintσNP\sigma^{int}_{NP}\approx\sigma_{NP}, fX/Λ4s2f_{X}/\Lambda^{4}\leq s^{-2}. At s=10TeV\sqrt{s}=10\;{\rm TeV}, the rough estimation is that, the interference terms become important when fX/Λ4104TeV4f_{X}/\Lambda^{4}\leq 10^{-4}\;{\rm TeV}^{-4}. From the numerical results that follow, the interference term can be ignored in the following sections. This is mainly due to the fact that the constraints on fXf_{X} are not small enough. Moreover, we mainly consider the OM,TO_{M,T} operators, where the dominant contributions come from the scattering of the transversely polarized WW, which is different from the the case of the SM where the contribution of scattering of longitudinally polarized WW dominants, and thus the interference terms are suppressed.

The relative contributions of the VBS processes to the annihilation process are contingent upon the specific process under consideration Chen:2022yiu ; Han:2024gan , particularly in scenarios where the interference term is important. For the process μ+μνν¯γγ\mu^{+}\mu^{-}\to\nu\bar{\nu}\gamma\gamma, a comparison of the contributions of the VBS and tri-boson induced by OT5O_{T_{5}} when the interference term is not considered is provided in Ref. Yang:2020rjt . In this case, the VBS contribution exceeds that of the tri-boson at approximately s=5TeV\sqrt{s}=5\;{\rm TeV}. For the OMO_{M} operators, the contributions are presented in the  A. The tri-boson contribution is at the next order of MZ2/sM_{Z}^{2}/s compared to the VBS. Consequently, it can be expected that at a smaller ss compared with OT5O_{T_{5}}, the VBS contribution will dominant. This also explains the focus on the OMO_{M} operators in this study, since the annihilation processes usually have larger interferences Chen:2022yiu ; Han:2024gan ; Yang:2020rjt which is ignored.

3 The event selection strategy of QKKM

As the luminosities of future colliders continue to increase, so does the quantity of data that must be processed which presents a significant challenge to conventional computing. Nevertheless, forecasts by IBM, Google, and IonQ indicate that within the next decade, it will become feasible to execute practical computational tasks using quantum computers with thousands of qubits. This coincides with the high luminosity upgrade of the LHC Apollinari:2015wtw and future colliders such as muon colliders. In recent years, numerous QML algorithms have been the subject of study within the field of HEP, such as QSVM, quantum variational classifiers etc Guan:2020bdl ; Wu:2021xsj ; Wu:2020cye ; Terashi:2020wfi ; Zhang:2023ykh

The inherent properties of coherence and entanglement in quantum systems endow quantum computers with powerful parallel computing capabilities. The main motivation for this study lies in its potential future applications. In contrast to classical computers, quantum computers are capable of storing and processing a greater quantity of data simultaneously. It is conceivable that in the future, the data that must be processed may originate directly from quantum computers. In addition, quantum computer can implement kernel functions that are difficult to achieve with classical computers Havlicek:2018nqz ; Liu:2020lhd ; Sherstov:2020qax . In this section, we use the QKKM to verify its feasibility in searching for NP.

3.1 Data preparation

In order to investigate the QKKM, the events are generated using coefficients that correspond to the upper bounds of the partial wave unitarity constraints. The Monte Carlo (MC) simulation is performed using the MadGraph5@NLO toolkit Alloul:2013bka ; Alwall:2014hca ; Christensen:2008py ; Degrande:2011ua , while the muon collider-like detector simulation is conducted with the Delphes deFavereau:2013fsa software. The analysis of the signals and the background is performed with the MLAnalysis MLAnalysis . To avoid infrared divergences, we use the basic cut as the default setting. The cut relevant to infrared divergences are,

pT,γ>10GeV,|ηγ|<2.5,ΔRγγ>0.4,\begin{split}&p_{T,\gamma}>10\;{\rm GeV},\;\;|\eta_{\gamma}|<2.5,\;\;\Delta R_{\gamma\gamma}>0.4,\end{split} (5)

where pT,γp_{T,\gamma} and ηγ\eta_{\gamma} are the transverse momentum and pseudo-rapidity for each photon, respectively, ΔRγγ=Δϕγγ2+Δηγγ2\Delta R_{\gamma\gamma}=\sqrt{\Delta\phi_{\gamma\gamma}^{2}+\Delta\eta_{\gamma\gamma}^{2}} where Δϕγγ\Delta\phi_{\gamma\gamma} and Δηγγ\Delta\eta_{\gamma\gamma} are differences between the azimuth angles and pseudo-rapidities of two photons. The signal events for are generated with one operator at a time.

p1p^{1} p2p^{2} p3p^{3} p4p^{4} p5p^{5} p6p^{6}
observables Eγ1E_{\gamma_{1}} pγ1xp^{x}_{\gamma_{1}} pγ1yp^{y}_{\gamma_{1}} pγ1zp^{z}_{\gamma_{1}} Eγ2E_{\gamma_{2}} pγ2xp^{x}_{\gamma_{2}}
p7p^{7} p8p^{8} p9p^{9} p10p^{10} p11p^{11} p12p^{12}
observables pγ2yp^{y}_{\gamma_{2}} pγ2zp^{z}_{\gamma_{2}} EmissE_{miss} pmissxp^{x}_{miss} pmissy{p}^{y}_{miss} pmissz{p}^{z}_{miss}
Table 3: The events are mapped into points in a 12-dimensional space, and a point is denoted as p\vec{p}. The components of p\vec{p} and the corresponding observables are listed.

In order to collect the features, we require that the final state contains at least two photons (which is denoted as NγN_{\gamma} cut). At a lepton collider, conservation of momentum can be employed to ascertain the full set of missing momentum components. In this paper, we choose the components of the four-momenta of the two hardest photons (the hardest photon is denoted as γ1\gamma_{1} and the second hardest photon is denoted as γ2\gamma_{2}, respectively) and the missing momentum. These observables form a 12-dimensional vector denoted by pp, of which the components pip^{i} are listed in Table  3.

s(TeV)\sqrt{s}({\rm TeV}) p¯1(GeV)\bar{p}^{1}({\rm GeV}) p¯2(GeV)\bar{p}^{2}({\rm GeV}) p¯3(GeV)\bar{p}^{3}({\rm GeV})
1010 3.500×1023.500\times 10^{2} 6.8586.858 3.2563.256
1414 4.140×1024.140\times 10^{2} 1.753-1.753 0.521-0.521
s(TeV)\sqrt{s}({\rm TeV}) p¯4(GeV)\bar{p}^{4}({\rm GeV}) p¯5(GeV)\bar{p}^{5}({\rm GeV}) p¯6(GeV)\bar{p}^{6}({\rm GeV})
1010 15.374-15.374 88.00688.006 0.2310.231
1414 2.280-2.280 96.03096.030 1.7891.789
s(TeV)\sqrt{s}({\rm TeV}) p¯7(GeV)\bar{p}^{7}({\rm GeV}) p¯8(GeV)\bar{p}^{8}({\rm GeV}) p¯9(GeV)\bar{p}^{9}({\rm GeV})
1010 0.440-0.440 1.2361.236 9.141×1039.141\times 10^{3}
1414 0.4540.454 2.9622.962 1.310×1041.310\times 10^{4}
s(TeV)\sqrt{s}({\rm TeV}) p¯10(GeV)\bar{p}^{10}({\rm GeV}) p¯11(GeV)\bar{p}^{11}({\rm GeV}) p¯12(GeV)\bar{p}^{12}({\rm GeV})
1010 14.133-14.133 5.718-5.718 27.88827.888
1414 1.211×1021.211\times 10^{-2} 0.2100.210 1.485-1.485
Table 4: The mean values of jj-th feature pjp^{j} over the SM training dataset at 10TeV10\;{\rm TeV} and 14TeV14\;{\rm TeV}, respectively.
s(TeV)\sqrt{s}({\rm TeV}) z1(GeV)z^{1}({\rm GeV}) z2(GeV)z^{2}({\rm GeV}) z3(GeV)z^{3}({\rm GeV})
1010 5.262×1025.262\times 10^{2} 2.022×1022.022\times 10^{2} 1.906×1021.906\times 10^{2}
1414 6.884×1026.884\times 10^{2} 2.338×1022.338\times 10^{2} 2.727×1022.727\times 10^{2}
s(TeV)\sqrt{s}({\rm TeV}) z4(GeV)z^{4}({\rm GeV}) z5(GeV)z^{5}({\rm GeV}) z6(GeV)z^{6}({\rm GeV})
1010 5.673×1025.673\times 10^{2} 1.462×1021.462\times 10^{2} 6.312×1016.312\times 10^{1}
1414 7.185×1027.185\times 10^{2} 1.839×1021.839\times 10^{2} 8.440×1018.440\times 10^{1}
s(TeV)\sqrt{s}({\rm TeV}) z7(GeV)z^{7}({\rm GeV}) z8(GeV)z^{8}({\rm GeV}) z9(GeV)z^{9}({\rm GeV})
1010 6.628×1016.628\times 10^{1} 1.440×1021.440\times 10^{2} 1.224×1031.224\times 10^{3}
1414 8.925×1018.925\times 10^{1} 1.672×1021.672\times 10^{2} 1.596×1031.596\times 10^{3}
s(TeV)\sqrt{s}({\rm TeV}) z10(GeV)z^{10}({\rm GeV}) z11(GeV)z^{11}({\rm GeV}) z12(GeV)z^{12}({\rm GeV})
1010 4.078×1024.078\times 10^{2} 3.782×1023.782\times 10^{2} 1.145×1031.145\times 10^{3}
1414 4.618×1024.618\times 10^{2} 5.407×1025.407\times 10^{2} 1.456×1031.456\times 10^{3}
Table 5: The standard deviations values of jj-th feature zjz^{j} over the SM training dataset at c.m. energies s=10TeV\sqrt{s}=10\;{\rm TeV} and 14TeV14\;{\rm TeV}, respectively.

Before training, the dataset is standardized by using z-score standardization Donoho_2004 ,

xij=pijp¯jzj,\begin{split}&x_{i}^{j}=\frac{{p_{i}^{j}-\bar{p}^{j}}}{z^{j}},\end{split} (6)

where p¯j\bar{p}^{j} and zjz^{j} represent the mean value and standard deviation of the jj-th feature over the SM training datasets. The values of p¯j\bar{p}^{j} and zjz^{j} at different c.m. energies are listed in Tables 4 and 5, respectively.

3.2 Using QKKM to search for aQGCs

In this paper, kernel k-means algorithm is used to replace the k-means algorithm. The number of clusters in the kernel k-means is denoted as ll. The steps to implement QKKM are shown as follows Zhang:2023yfg ,

  1. 1.

    Use the quantum circuits to calculate the kernel matrices.

  2. 2.

    Compute the centroids of the ll clusters by substituting the precomputed kernel matrices into the tslearn package JMLR:v21:20-091 .

  3. 3.

    Repeat steps 2 for mm times.

  4. 4.

    Calculate the anomaly score for each point, i.e., the distance (denoted by dd) from the point to the centroid with the same ll value (cluster assignment) as the point.

  5. 5.

    Calculate the average anomaly score (denoted by d¯\bar{d}) over mm iterations.

  6. 6.

    Use d¯>dth\bar{d}>{d}_{th} as a cut to select the events.

The only difference between this paper and Ref. Zhang:2023yfg is that the calculation of kernel matrix is implemented using a quantum circuit.

Refer to caption
Figure 3: The circuits used in this paper. The circuit for amplitude encoding using uniform rotation gates FRyFR_{y} is depicted in (a). The circuit for amplitude encoding using uniform rotation gates FRyFR_{y} and FRzFR_{z} is depicted in (b). The circuit for amplitude encoding using single qubit gates RyR_{y} and RzR_{z} is depicted in (c). The circuit to calculate |qi|qj||\langle\vec{q}_{i}|\vec{q}_{j}\rangle| is depicted in (d) where the probability of the outcome |000|0...00\rangle in the measurement is |qi|qj|2|\langle\vec{q}_{i}|\vec{q}_{j}\rangle|^{2}.
kernel single qubit gate CNOT gate
real vector kernel 2929 2626
complex vector kernel 2121 1616
hardware-efficient kernel 66 0
Table 6: The number of quantum gates to calculate the distance in the cases of three different kernels. The number of single qubit gates are counted as the number of combined UU gates.

Due to limited computational resources, the 5000 SM events are selected for training. To map the vector to a quantum state, we use both real and complex vector mapping, i.e., the quantum state presenting the event is denoted as,

|q=1ixi2+1(|0+n=1xn|n),|q=1ixi2+1[(1+x1i)|0+n=1(x2n+x2n+1i)|n],\begin{split}|\vec{q}\rangle&=\frac{1}{\sqrt{\sum_{i}x_{i}^{2}+1}}(|0\rangle+\sum_{n=1}x_{n}|n\rangle),\\ |\vec{q}\rangle&=\frac{1}{\sum_{i}x_{i}^{2}+1}[(1+x_{1}\rm{i})|0\rangle+\sum_{n=1}{(x_{2n}+x_{2n+1}\rm{i})}|n\rangle],\\ \end{split} (7)

where nn is the digital representing of a state, xix_{i} is the ii-th component of x\vec{x} defined in Eq. (6), and xi>12=0x_{i>12}=0. Using Eq. (7), the length of x\vec{x} is also encoded. An qq qubit state can encode a vector with 2q+122^{q+1}-2 degrees of freedom. Using Eq. (7), a complex vector can be encoded using three qubits, and a real vector can be encoded using four qubits. In this paper, we use amplitude encode which is denoted as UqcU^{c}_{\vec{q}}, such that Uqc|0=|qU^{c}_{\vec{q}}|0\rangle=|\vec{q}\rangle. The amplitude encode of Eq. (7) is implemented with the help of uniform rotation gates FRyFR_{y} and FRzFR_{z} Mottonen:2004vly as shown in Fig. 3. (a) and (b). Apart from Eq. (6), we also try the hardware-efficient encoding Wu:2020cye ; Fadol:2022umw ; Havlicek:2018nqz ; Bravo-Prieto:2019kld ; Kandala:2017vok ; Park:2024rim . The hardware-efficient encoding usually consists of multiple layers. Each layer consists of single qubit Ry,zR_{y,z} gates with the variables as degrees to be rotated, and the layers are separated by CNOT or controlled-Z gates connecting different qubits. The hardware-efficient encoding is difficult to be implemented using classical computers. Since there are only 1212 variables, a single layer is sufficient, necessitating the use of 66 qubits, as shown in Fig. 3. (c). The swap test can only calculate the absolute value of the inner product, therefore one cannot distinguish between inner product results of +1+1 and 1-1. To overcome this limitation, five cases are tested, i.e., we assign the angles to be rotated as xx, x/2x/2, x/4x/4, x/6x/6 and x/8x/8, and x/8x/8 yields the best performance. In the following, only the results with x/8x/8 are shown. The number of gates used in the three types of encodings are listed in Table 6.

To calculate the centroids, the distance needs to be defined, which is,

d(qi,qj)=1k(qi,qj),\begin{split}&d(\vec{q}_{i},\vec{q}_{j})=\sqrt{1-k(\vec{q}_{i},\vec{q}_{j})},\\ \end{split} (8)

where kk is the kernel function. The kernel function is k(qi,qj)=|qi|qj|k(\vec{q}_{i},\vec{q}_{j})=\left|\langle\vec{q}_{i}|\vec{q}_{j}\rangle\right|, which can be calculated using a circuit shown in Fig. 3. (d). The probability of the outcome |000|0\ldots 00\rangle in the measurements is |qi|qj|2\left|\langle\vec{q}_{i}|\vec{q}_{j}\rangle\right|^{2} in the circuit shown in Fig. 3. (d). The calculation of the kernel matrix is implemented using QuEST Jones:2019knd . The measurement is repeated for 10001000 times for each inner product.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Taking one collision event from the SM and NP contributions as examples, d¯\bar{d} as function of mm at l=30l=30. At 10TeV10\;\rm TeV (the first column) and 14TeV14\;\rm TeV (the second column), these diagrams correspond to real vector kernel (the first row), complex vector kernel (the second row) and hardware-efficient kernel (the third row), respectively. We find that d¯\bar{d} converges rapidly with increasing mm.

Due to the random nature of the k-means algorithm, the results of the centroids are not unique. To circumvent this issue, the process is repeated mm times, where mm is a tunable parameter. At s=10TeV\sqrt{s}=10\;{\rm TeV} and 14TeV14\;{\rm TeV}, one event is selected from the SM background and OM2,3,4O_{M_{2,3,4}} and OT5O_{T_{5}} signals, respectively, and d¯\bar{d} is shown as a function of mm at l=30l=30 in Fig. 4. We found that d¯\bar{d} rapidly converges with increasing mm, and when m=100m=100, the value of d¯\bar{d} begins to stabilize. Theoretically, the value of mm can be further increased to reduce the relative statistical error of d¯\bar{d}. However, due to limited computational power, we use m=100m=100 in this paper.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: For the complex vector kernel, the normalized distribution of anomaly score d¯\bar{d} when l=2l=2 (the first row), 1010 (the second row), and 3030 (the third row), at 10TeV10\;{\rm TeV} (the first column) and 14TeV14\;{\rm TeV} (the second column) for the SM and OM2,3,4O_{M_{2,3,4}} and OT5O_{T_{5}} induced contribution.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: The normalized distribution of anomaly score d¯\bar{d} when l=30l=30 for the real vector kernel (the first row) and hardware-efficient kernel (the second row), at 10TeV10\;{\rm TeV} (the first column) and 14TeV14\;{\rm TeV} (the second column) for the SM and OM2,3,4O_{M_{2,3,4}} and OT5O_{T_{5}} induced contribution.

Another tunable parameter is ll. In general, an increase in the value of ll leads to an improvement in the sampling of the background event distribution, as evidenced in reference Zhang:2023yfg . However, this comes at the cost of greater computational resources being required. Accordingly, an appropriate value of ll is selected to achieve an optimal balance between accuracy and computational efficiency. Fig. 5 shows the normalized distributions of anomaly scores for the SM and NP events under different ll values in the case of complex vector kernel. It is evident that the anomaly score distributions for the SM background and NP events are more distinct with larger ll. The value of ll is set to 3030 for all kernels in this study. The resulting normalized distributions of the real vector kernel and the hardware-efficient kernel are shown in Fig. 6. From the Figs. 5 and 6, it can be seen that the distributions of d¯\bar{d} for the SM background and the NP signals are different, the d¯\bar{d} of the SM events are generally less than those of the NP events. From Fig. 6, it can also be observed that while hardware-efficient kernel shows good discrimination between the SM and NP, there is a small tail for the SM events residuals within the NP region.

4 expected coefficient constraints on the coefficients

s=10TeV\sqrt{s}=10\;{\rm TeV}
Operator NN Nγ2N_{\gamma}\geq 2 ϵγ\epsilon_{\gamma}
SM 10610^{6} 830584830584 83.058%83.058\%
OM2O_{M_{2}} 10510^{5} 8526185261 85.261%85.261\%
OM3O_{M_{3}} 10510^{5} 8552785527 85.527%85.527\%
OM4O_{M_{4}} 10510^{5} 8548185481 85.481%85.481\%
OT5O_{T_{5}} 10510^{5} 8541485414 85.414%85.414\%
s=14TeV\sqrt{s}=14\;{\rm TeV}
Operator NN Nγ2N_{\gamma}\geq 2 ϵγ\epsilon_{\gamma}
SM 2.0×1062.0\times 10^{6} 16618901661890 83.095%83.095\%
OM2O_{M_{2}} 10510^{5} 8510185101 85.101%85.101\%
OM3O_{M_{3}} 10510^{5} 8559185591 85.591%85.591\%
OM4O_{M_{4}} 10510^{5} 8534785347 85.347%85.347\%
OT5O_{T_{5}} 10510^{5} 8521685216 85.216%85.216\%
Table 7: Contributions of SM and aQGCs after NγN_{\gamma} cut at different energies. NN and NγN_{\gamma} represent the number of events before and after NγN_{\gamma} cut, respectively. ϵγ\epsilon_{\gamma} is shown in the last row.

Ignoring the interference between the SM and the aQGCs, the cross-section after cut can be expressed as,

σ=ϵγSMϵαSMσSM+ϵγNPϵαNPf2f~2σNP\begin{split}&\sigma=\epsilon_{\gamma}^{\rm SM}\epsilon_{\alpha}^{\rm SM}\sigma_{\rm SM}+\epsilon_{\gamma}^{\rm NP}\epsilon_{\alpha}^{\rm NP}\frac{f^{2}}{\tilde{f}^{2}}\sigma_{\rm NP}\end{split} (9)

where σSM\sigma_{\rm SM} and σNP\sigma_{\rm NP} are cross-sections of the SM and NP contributions, respectively. The NP contribution is the one when fX=f~Xf_{X}=\tilde{f}_{X}, where fXf_{X} is the operator coefficient, and f~X\tilde{f}_{X} is the upper bounds of partial wave unitarity bounds listed in Table 1. ϵγSM\epsilon_{\gamma}^{\rm SM} and ϵγNP\epsilon_{\gamma}^{\rm NP} are the cut efficiencies of the NγN_{\gamma} cut, ϵαSM\epsilon_{\alpha}^{\rm SM} and ϵαNP\epsilon_{\alpha}^{\rm NP} are the cut efficiencies of the QKKM event selection strategy. Numerical results of σSM\sigma_{\rm SM} and σNP\sigma_{\rm NP} are listed in Table 2. ϵγSM\epsilon_{\gamma}^{\rm SM}, ϵγNP\epsilon_{\gamma}^{\rm NP} are listed in Table 7.

The expected coefficient constraints after cuts can be estimated by the signal significance defined as,

𝒮stat=2[(Nbg+Ns)ln(1+Ns/Nbg)Ns],\begin{split}&\mathcal{S}_{stat}=\sqrt{2\left[(N_{\rm bg}+N_{s})\ln(1+N_{s}/N_{\rm bg})-N_{s}\right]},\end{split} (10)

where Ns,bgN_{s,bg} are the event numbers of the signal and background, Ns=(ϵγNPϵαNPσNPf2/fi2)LN_{s}=(\epsilon_{\gamma}^{\rm NP}\epsilon_{\alpha}^{\rm NP}\sigma_{\rm NP}{f^{2}}/{f_{i}^{2}})L and Nbg=(ϵγSMϵαSMσSM)LN_{bg}=(\epsilon_{\gamma}^{\rm SM}\epsilon_{\alpha}^{\rm SM}\sigma_{\rm SM})L, and LL is the luminosity. The integrated luminosities in both “conservative” and “optimistic” cases Black:2022cth ; Accettura:2023ked are considered.

Refer to caption
Figure 7: SstatS_{stat} as a function of dthd_{th} for the real vector kernel in the case of OM2O_{M_{2}} at s=10TeV\sqrt{s}=10\;\rm TeV.
kernel 10TeV10\;\rm TeV 14TeV14\;\rm TeV
real vector kernel 0.790.79 0.790.79
complex vector kernel 0.740.74 0.740.74
hardware-efficient kernel 0.750.75 0.730.73
classical kernel 2626 3030
Table 8: Values of thresholds dthd_{th} for real vector, complex vector, hardware efficient and classical kernel for operators OM2,3,4O_{M_{2,3,4}} and OT5O_{T_{5}} at s=10TeV\sqrt{s}=10\;{\rm TeV} and 14TeV14\;{\rm TeV}.

To maximize signal significance, an appropriate threshold value dthd_{th} is selected. Taking the real vector kernel operator OM2O_{M_{2}} at 10TeV10\;\rm TeV as an example. As shown in Fig. 7, SstatS_{stat} varies with dthd_{th} within the given range. The corresponding dthd_{th} value is chosen as the final threshold when SstatS_{stat} reaches its maximum. The shape of the function Sstat(dth)S_{stat}(d_{th}) in other scenarios is similar to that shown in Fig. 7. The results of dthd_{th} for the real vector kernel, the complex vector kernel, and the hardware-efficient kernel are listed in Table 8. To compare the results of quantum and classical algorithm, the classical kernel is included. The expected coefficient constraints are calculated using the classical kernel from the scikit-learn Pedregosa:2011ork package, following the same steps as in Ref. Zhang:2023yfg . The dthd_{th} for the classical kernel is also listed in Table 8. In quantum computing, since the kernel is computed using inner products, the value of dthd_{th} always lies between 0 and 11, which is not the case for the classical k-means where the definition of dd is different which is the Euclidean distance Zhang:2023yfg .

real vector kernel
s\sqrt{s} 10TeV10\;{\rm TeV} 14TeV14\;{\rm TeV}
Operator ϵα\epsilon_{\alpha}(a>0.79a>0.79) ϵα\epsilon_{\alpha}(a>0.79a>0.79)
SM 0.000482%0.000482\% 0.0000602%0.0000602\%
OM2O_{M_{2}} 20.155%20.155\% 34.172%34.172\%
OM3O_{M_{3}} 21.773%21.773\% 36.135%36.135\%
OM4O_{M_{4}} 19.954%19.954\% 34.151%34.151\%
OT5O_{T_{5}} 9.713%9.713\% 16.620%16.620\%
complex vector kernel
s\sqrt{s} 10TeV10\;{\rm TeV} 14TeV14\;{\rm TeV}
Operator ϵα\epsilon_{\alpha}(a>0.74a>0.74) ϵα\epsilon_{\alpha}(a>0.74a>0.74)
SM 0.000120%0.000120\% 0.000602%0.000602\%
OM2O_{M_{2}} 4.987%4.987\% 10.708%10.708\%
OM3O_{M_{3}} 5.444%5.444\% 11.416%11.416\%
OM4O_{M_{4}} 4.828%4.828\% 10.689%10.689\%
OT5O_{T_{5}} 2.750%2.750\% 6.491%6.491\%
hardware-efficient kernel
s\sqrt{s} 10TeV10\;{\rm TeV} 14TeV14\;{\rm TeV}
Operator ϵα\epsilon_{\alpha}(a>0.75a>0.75) ϵα\epsilon_{\alpha}(a>0.73a>0.73)
SM 0.954%0.954\% 0.965%0.965\%
OM2O_{M_{2}} 71.063%71.063\% 68.378%68.378\%
OM3O_{M_{3}} 71.134%71.134\% 69.676%69.676\%
OM4O_{M_{4}} 71.264%71.264\% 69.823%69.823\%
OT5O_{T_{5}} 77.247%77.247\% 77.030%77.030\%
classical kernel
s\sqrt{s} 10TeV10\;{\rm TeV} 14TeV14\;{\rm TeV}
Operator ϵα\epsilon_{\alpha}(a>0.75a>0.75) ϵα\epsilon_{\alpha}(a>0.73a>0.73)
SM 0.321%0.321\% 0.223%0.223\%
OM2O_{M_{2}} 56.449%56.449\% 60.673%60.673\%
OM3O_{M_{3}} 57.896%57.896\% 62.163%62.163\%
OM4O_{M_{4}} 56.453%56.453\% 60.934%60.934\%
OT5O_{T_{5}} 61.635%61.635\% 65.577%65.577\%
Table 9: For the different kernels, contributions of SM and aQGCs after QKKM cut at different energies. The aa is the anomaly score and the efficiency of the event selection strategy ϵα\epsilon_{\alpha} is shown in the last row.

The ϵαSM\epsilon_{\alpha}^{\rm SM} and ϵαNP\epsilon_{\alpha}^{\rm NP} are defined as the cut efficiencies of QKKM event selection strategy. The cut efficiencies of the four different kernels when the dthd_{th} are chosen as the ones listed in Table 8 are listed in Table 9. As can be seen from Table 9, for the complex vector kernel, a relatively strict dthd_{th} is taken, which is due to the fact that the background can be suppressed to a very low level. For hardware-efficient kernel, a relatively loose dthd_{th} is taken due to the fact that the tail of the background events in the NP region. All the dthd_{th}s are chosen according to 𝒮stat\mathcal{S}_{stat}.

SstatS_{stat} 10 TeV 14 TeV 14 TeV
10ab110\;{\rm ab}^{-1} 10ab110\;{\rm ab}^{-1} 20ab120\;{\rm ab}^{-1}
(TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4})
22 <5.39×103<5.39\times 10^{-3} <1.89×103<1.89\times 10^{-3} <1.56×103<1.56\times 10^{-3}
fM2Λ4\frac{f_{M_{2}}}{\Lambda^{4}} 3 <6.91×103<6.91\times 10^{-3} <2.38×103<2.38\times 10^{-3} <1.96×103<1.96\times 10^{-3}
55 <9.63×103<9.63\times 10^{-3} <3.22×103<3.22\times 10^{-3} <2.62×103<2.62\times 10^{-3}
22 <1.93×103<1.93\times 10^{-3} <6.85×104<6.85\times 10^{-4} <5.67×104<5.67\times 10^{-4}
fM3Λ4\frac{f_{M_{3}}}{\Lambda^{4}} 33 <2.47×103<2.47\times 10^{-3} <8.62×104<8.62\times 10^{-4} <7.08×104<7.08\times 10^{-4}
55 <3.45×103<3.45\times 10^{-3} <1.17×103<1.17\times 10^{-3} <9.48×104<9.48\times 10^{-4}
22 <1.98×103<1.98\times 10^{-3} <6.85×103<6.85\times 10^{-3} <5.66×103<5.66\times 10^{-3}
fM4Λ4\frac{f_{M_{4}}}{\Lambda^{4}} 33 <2.54×103<2.54\times 10^{-3} <8.61×103<8.61\times 10^{-3} <3.54×103<3.54\times 10^{-3}
55 <4.00×103<4.00\times 10^{-3} <1.16×102<1.16\times 10^{-2} <9.48×103<9.48\times 10^{-3}
22 <5.16×104<5.16\times 10^{-4} <1.62×103<1.62\times 10^{-3} <1.34×103<1.34\times 10^{-3}
fT5Λ4\frac{f_{T_{5}}}{\Lambda^{4}} 33 <6.62×104<6.62\times 10^{-4} <2.04×103<2.04\times 10^{-3} <1.68×103<1.68\times 10^{-3}
55 <9.22×104<9.22\times 10^{-4} <2.76×103<2.76\times 10^{-3} <2.24×103<2.24\times 10^{-3}
Table 10: Projected sensitivity the coefficients of the OM2,3,4O_{M_{2,3,4}} and OT5O_{T_{5}} operators at muon colliders in the ‘conservative’ and ‘optimistic’ cases when the kernel function is complex vector kernel.
SstatS_{stat} 10 TeV 14 TeV 14 TeV
10ab110\;{\rm ab}^{-1} 10ab110\;{\rm ab}^{-1} 20ab120\;{\rm ab}^{-1}
(TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4})
2 <3.58×103<3.58\times 10^{-3} <6.58×104<6.58\times 10^{-4} <5.33×104<5.33\times 10^{-4}
fM2Λ4\frac{f_{M_{2}}}{\Lambda^{4}} 3 <4.52×103<4.52\times 10^{-3} <8.53×104<8.53\times 10^{-4} <6.83×104<6.83\times 10^{-4}
5 <6.14×103<6.14\times 10^{-3} <1.20×103<1.20\times 10^{-3} <9.51×104<9.51\times 10^{-4}
2 <1.29×103<1.29\times 10^{-3} <2.40×104<2.40\times 10^{-4} <1.94×104<1.94\times 10^{-4}
fM3Λ4\frac{f_{M_{3}}}{\Lambda^{4}} 3 <1.63×103<1.63\times 10^{-3} <3.10×104<3.10\times 10^{-4} <2.49×104<2.49\times 10^{-4}
5 <2.21×103<2.21\times 10^{-3} <4.38×104<4.38\times 10^{-4} <3.46×104<3.46\times 10^{-4}
2 <1.30×103<1.30\times 10^{-3} <2.38×103<2.38\times 10^{-3} <1.93×103<1.93\times 10^{-3}
fM4Λ4\frac{f_{M_{4}}}{\Lambda^{4}} 3 <1.64×103<1.64\times 10^{-3} <3.09×103<3.09\times 10^{-3} <2.47×103<2.47\times 10^{-3}
5 <2.23×103<2.23\times 10^{-3} <4.36×103<4.36\times 10^{-3} <3.44×103<3.44\times 10^{-3}
2 <3.67×104<3.67\times 10^{-4} <6.30×104<6.30\times 10^{-4} <5.09×104<5.09\times 10^{-4}
fT5Λ4\frac{f_{T_{5}}}{\Lambda^{4}} 3 <4.63×104<4.63\times 10^{-4} <8.16×104<8.16\times 10^{-4} <6.53×104<6.53\times 10^{-4}
5 <6.29×104<6.29\times 10^{-4} <1.15×103<1.15\times 10^{-3} <9.10×104<9.10\times 10^{-4}
Table 11: Same as Table 10, but for the real vector kernel.
SstatS_{stat} 10 TeV 14 TeV 14 TeV
10ab110\;{\rm ab}^{-1} 10ab110\;{\rm ab}^{-1} 20ab120\;{\rm ab}^{-1}
(TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4})
2 <1.19×102<1.19\times 10^{-2} <4.42×103<4.42\times 10^{-3} <3.72×103<3.72\times 10^{-3}
fM2Λ4\frac{f_{M_{2}}}{\Lambda^{4}} 3 <1.46×102<1.46\times 10^{-2} <5.42×103<5.42\times 10^{-3} <4.56×103<4.56\times 10^{-3}
5 <1.89×102<1.89\times 10^{-2} <7.01×103<7.01\times 10^{-3} <5.89×103<5.89\times 10^{-3}
2 <4.46×103<4.46\times 10^{-3} <1.65×103<1.65\times 10^{-3} <1.39×103<1.39\times 10^{-3}
fM3Λ4\frac{f_{M_{3}}}{\Lambda^{4}} 3 <5.46×103<5.46\times 10^{-3} <2.02×103<2.02\times 10^{-3} <1.70×103<1.70\times 10^{-3}
5 <7.07×103<7.07\times 10^{-3} <2.62×103<2.62\times 10^{-3} <2.20×103<2.20\times 10^{-3}
2 <4.30×103<4.30\times 10^{-3} <1.59×102<1.59\times 10^{-2} <1.34×102<1.34\times 10^{-2}
fM4Λ4\frac{f_{M_{4}}}{\Lambda^{4}} 3 <5.27×103<5.27\times 10^{-3} <1.96×102<1.96\times 10^{-2} <1.64×102<1.64\times 10^{-2}
5 <6.82×103<6.82\times 10^{-3} <2.53×102<2.53\times 10^{-2} <2.13×102<2.13\times 10^{-2}
2 <8.11×104<8.11\times 10^{-4} <2.80×103<2.80\times 10^{-3} <2.36×103<2.36\times 10^{-3}
fT5Λ4\frac{f_{T_{5}}}{\Lambda^{4}} 3 <9.95×104<9.95\times 10^{-4} <3.44×103<3.44\times 10^{-3} <2.89×103<2.89\times 10^{-3}
5 <1.29×103<1.29\times 10^{-3} <4.44×103<4.44\times 10^{-3} <3.73×103<3.73\times 10^{-3}
Table 12: Same as Table 10, but for the hardware-efficient kernel.
SstatS_{stat} 10 TeV 14 TeV 14 TeV
10ab110\;{\rm ab}^{-1} 10ab110\;{\rm ab}^{-1} 20ab120\;{\rm ab}^{-1}
(TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4}) (TeV4)(\rm TeV^{-4})
2 <5.77×103<5.77\times 10^{-3} <1.86×103<1.86\times 10^{-3} <1.56×103<1.56\times 10^{-3}
fM2Λ4\frac{f_{M_{2}}}{\Lambda^{4}} 3 <7.11×103<7.11\times 10^{-3} <2.29×103<2.29\times 10^{-3} <1.92×103<1.92\times 10^{-3}
5 <9.27×103<9.27\times 10^{-3} <2.99×103<2.99\times 10^{-3} <2.50×103<2.50\times 10^{-3}
2 <2.13×103<2.13\times 10^{-3} <6.88×104<6.88\times 10^{-4} <5.77×104<5.77\times 10^{-4}
fM3Λ4\frac{f_{M_{3}}}{\Lambda^{4}} 3 <2.62×103<2.62\times 10^{-3} <8.48×104<8.48\times 10^{-4} <7.10×104<7.10\times 10^{-4}
5 <3.41×103<3.41\times 10^{-3} <1.11×103<1.11\times 10^{-3} <9.23×104<9.23\times 10^{-4}
2 <2.09×103<2.09\times 10^{-3} <6.72×103<6.72\times 10^{-3} <5.63×103<5.63\times 10^{-3}
fM4Λ4\frac{f_{M_{4}}}{\Lambda^{4}} 3 <2.57×103<2.57\times 10^{-3} <8.28×103<8.28\times 10^{-3} <6.93×103<6.93\times 10^{-3}
5 <3.34×103<3.34\times 10^{-3} <1.08×102<1.08\times 10^{-2} <9.01×103<9.01\times 10^{-3}
2 <3.92×104<3.92\times 10^{-4} <1.20×103<1.20\times 10^{-3} <1.00×103<1.00\times 10^{-3}
fT5Λ4\frac{f_{T_{5}}}{\Lambda^{4}} 3 <4.83×104<4.83\times 10^{-4} <1.47×103<1.47\times 10^{-3} <1.23×103<1.23\times 10^{-3}
5 <6.29×104<6.29\times 10^{-4} <1.92×103<1.92\times 10^{-3} <1.60×103<1.60\times 10^{-3}
Table 13: The same as Table 10, but using classical k-means.
coefficient fM2/Λ4f_{M_{2}}/\Lambda^{4} fM3/Λ4f_{M_{3}}/\Lambda^{4} fM4/Λ4f_{M_{4}}/\Lambda^{4} fT5/Λ4f_{T_{5}}/\Lambda^{4}
constraint [2.8,2.8][-2.8,2.8] [4.4,4.4][-4.4,4.4] [5.0,5.0][-5.0,5.0] [0.5,0.5][-0.5,0.5]
Table 14: The constraints on the OMiO_{M_{i}} and OTiO_{T_{i}} coefficients (TeV4{\rm TeV}^{-4}) obtained at 95%95\% C.L at the LHC CMS:2019qfk ; CMS:2020ypo .

When dthd_{th} is chosen, the expected coefficient constraints can be obtained by using signal significance. The results of the expected coefficient constraints in the case of complex vector kernel, real vector kernel, hard-efficient kernel, and the classical kernel are shown in Tables 10, 11, 12, and 13, respectively. It can be seen that the muon collider with s10TeV\sqrt{s}\geq 10\;\rm TeV has tighter constraints than the ones at the LHC CMS:2019qfk ; CMS:2020ypo in Table 14. We speculate that this is due to the fact that, compared to the classical case, the Hilbert space in which the data resides is of higher dimensionality and thus the data is better separable. The sensitivities of the muon colliders to the aQGCs are competitive with future hadron colliders and even better at the same c.m. energy. The muon colliders are suitable to study the aQGCs because of the high energies and luminosities as well as having a cleaner experimental environment than hadron colliders.

Refer to caption
Figure 8: Comparison of the expected coefficient constraints obtained when the kernel function is classical kernel,real vector kernel and complex vector kernel, as well as hardware-efficient kernel, at s=10TeV\sqrt{s}=10\;\rm TeV, Sstat=2S_{stat}=2.

For comparison, we take s=10TeV\sqrt{s}=10\;\rm{TeV} and Sstat=2S_{stat}=2 as an example, as can be seen from the Fig. 8, the expected coefficient constraints are tightest for coefficients fM2,3,4f_{M_{2,3,4}} and fT5f_{T_{5}} when the kernel is real vector kernel. This shows that instead of affecting the performance of k-means, the quantum kernel function outperforms a classical kernel. While the SM and NP signals are most effectively distinguished when utilizing the hardware-efficient kernel, the fact that the SM leaves small residuals in the NP signals results in the least stringent constraints.

After all, it can be conclude that the QKKM algorithm is an effective tool to search for the NP signals. The real vector kernel works better than the classical kernel, not to mention the potential that the QKKM can cope with future developments in quantum computing for example when the MC data is generated by a quantum computer. Note that for all the quantum kernels, the matrix elements can be calculated using swap test, therefore can be accelerated by multi-state swap test Liu:2022jsp ; Fanizza:2020qjq .

At this stage, the effect of noise in quantum computing is unavoidable. In comparison with the Ref. Zhang:2023ykh , the quantum computer has the same task of computing the kernel matrix, two of the quantum kernel functions (real and complex vector kernels) used are the same, the dimensions of the vectors dealt with are of the same order of magnitude, and thus the number of qubits used is the same, and the size of the datasets are also of the same order of magnitude. Therefore, we directly borrow the results from the Ref. Zhang:2023ykh to estimate the effect of noise. According to Ref. Zhang:2023ykh , the noise-induced relative errors when using the real and complex vector kernels can be estimated to be about 6.25%6.25\%. In addition, the error from noise induced by the hardware-efficient kernel is expected to be even smaller, because the quantum circuit of the hardware-efficient kernel does not contain CNOT gates. Therefore, the above error value is the upper limit of the noise-induced error of the hardware-efficient kernel.

5 Summary

The search for new physics (NP) signals requires the processing of large volumes of data, and quantum computing has the potential to accelerate these computations in the future. This paper focuses on the μ+μνν¯γγ\mu^{+}\mu^{-}\rightarrow\nu\bar{\nu}\gamma\gamma process at a muon collider, a process highly sensitive to dimension-8 operators involved in anomalous quartic gauge couplings (aQGCs). We use kernel K-means AD to search for the signals of the NP. In this paper, three different types of quantum kernels and a classical kernel are used.

The results indicate that this process is indeed highly sensitive to the aQGCs. The kernel K-means AD algorithm, utilizing the three distinct quantum kernels (when a quantum kernel is used, it is QKKM), as well as the classical kernel-based algorithm, proved feasible for NP signal searches. Compared to the LHC, the muon collider offers more stringent coefficient constraints. Among the four kernels, the real vector kernel demonstrated the best performance. Therefore, it is suggested that the QKKM is well suited for the phenomenological study of the NP, especially when progress in quantum computing are anticipated.

Acknowledgements.
This work was supported in part by the National Natural Science Foundation of China under Grants No. 12147214, the Natural Science Foundation of the Liaoning Scientific Committee Nos. LJKZ0978 and LJKMZ20221431.

Appendix A Contributions of tri-boson and VBS processes for OMO_{M} operators

Contributions of tri-boson and VBS processes for OT5O_{T_{5}} operator is established in Ref. Yang:2020rjt . For OMO_{M} operators, using effective vector boson approximation Kane:1984bb ; Boos:1997gw ; Ruiz:2021tdt , at the leading order of 𝒪(MZ2/s)\mathcal{O}(M_{Z}^{2}/s),

σNPVBS=e8s3v436238786560π5MW4sW8[15(4cW2(4fM2fM3)+4cWsW(2fM4+fM5)+sW2(8fM0f17))2+2(4cW2fM3+4cWsWfM5sW2f17)2],\begin{split}&\sigma_{NP}^{VBS}=\frac{e^{8}s^{3}v^{4}}{36238786560\pi^{5}M_{W}^{4}s_{W}^{8}}\left[15\left(4c_{W}^{2}(4f_{M_{2}}-f_{M_{3}})\right.\right.\\ &\left.\left.+4c_{W}s_{W}(2f_{M_{4}}+f_{M_{5}})+s_{W}^{2}(8f_{M_{0}}-f_{17})\right)^{2}\right.\\ &\left.+2\left(-4c_{W}^{2}f_{M_{3}}+4c_{W}s_{W}f_{M_{5}}-s_{W}^{2}f_{17}\right)^{2}\right],\end{split} (11)

with f17=2fM1fM7f_{17}=2f_{M_{1}}-f_{M_{7}}. For the tri-boson case, at the leading order of 𝒪(MZ2/s)\mathcal{O}(M_{Z}^{2}/s),

σNPt.b.=Br(Zνν¯)×e2MZ2s2(cW42cW2sW2+5sW4)283115520π3cW2sW2×{16cW4(48fM2224fM2fM3+19fM32)32cW3sW[12fM2(2fM4+fM5)fM3(6fM4+19fM5)]+8cW2sW2[24fM0(4fM2fM3)+24fM42+24fM4fM5+38fM52f17(12fM219fM3)]8cWsW3[24fM0(2fM4+fM5)f17(6fM4+19fM5)]+sW4[192fM0248fM0f17+19f172]}.\begin{split}&\sigma_{NP}^{t.-b.}={\rm Br}(Z\to\nu\bar{\nu})\times\frac{e^{2}M_{Z}^{2}s^{2}\left(c_{W}^{4}-2c_{W}^{2}s_{W}^{2}+5s_{W}^{4}\right)}{283115520\pi^{3}c_{W}^{2}s_{W}^{2}}\\ &\times\left\{16c_{W}^{4}\left(48f_{M_{2}}^{2}-24f_{M_{2}}f_{M_{3}}+19f_{M_{3}}^{2}\right)\right.\\ &\left.-32c_{W}^{3}s_{W}\left[12f_{M_{2}}(2f_{M_{4}}+f_{M_{5}})-f_{M_{3}}(6f_{M_{4}}+19f_{M_{5}})\right]\right.\\ &\left.+8c_{W}^{2}s_{W}^{2}\left[24f_{M_{0}}(4f_{M_{2}}-f_{M_{3}})+24f_{M_{4}}^{2}+24f_{M_{4}}f_{M_{5}}\right.\right.\\ &\left.\left.+38f_{M_{5}}^{2}-f_{17}(12f_{M_{2}}-19f_{M_{3}})\right]\right.\\ &\left.-8c_{W}s_{W}^{3}\left[24f_{M_{0}}(2f_{M_{4}}+f_{M_{5}})-f_{17}(6f_{M_{4}}+19f_{M_{5}})\right]\right.\\ &\left.+s_{W}^{4}\left[192f_{M_{0}}^{2}-48f_{M_{0}}f_{17}+19f_{17}^{2}\right]\right\}.\end{split} (12)

References