This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Corresponding author: junlimath@buaa.edu.cnthanks: Corresponding author: linchen@buaa.edu.cn

Detection of genuine multipartite entanglement based on local sum uncertainty relations

Jun Li School of Mathematical Sciences, Beihang University, Beijing 100191, China    Lin Chen School of Mathematical Sciences, Beihang University, Beijing 100191, China International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Abstract

Genuine multipartite entanglement (GME) offers more significant advantages in quantum information compared with entanglement. We propose a sufficient criterion for the detection of GME based on local sum uncertainty relations for chosen observables of subsystems. We apply the criterion to detect the GME properties of noisy nn-partite W state when n=3,4,5n=3,4,5 and 66, and find that the criterion can detect more noisy W states when nn ranges from 4 to 6. Moreover, the criterion is also used to detect the genuine entanglement of 33-qutrit state. The result is stronger than that based on GME concurrence and fisher information.

I INTRODUCTION

Quantum entanglement MAN ; RPMK ; FMA ; KSS is a remarkable resource in the theory of quantum information, which is one of the most distinctive features of quantum theory as compared to classical theory. Entangled states play the essential roles in quantum cryptography AKE , teleportation chbg and dense coding chbs . Genuine multipartite entanglement has more significant advantages compared with entanglement. It is beneficial in various quantum communication protocols, such as secret sharing nggr , extreme spin squeezing assk , quantum computing using cluster states rrhj , high sensitivity in general metrology tasks phwl , and multiparty quantum network mhvb ; vsng . To certify GME, Bell-like inequalities jdbn , various entanglement witness MF1 ; JI2 ; JY3 ; JS4 ; CKM5 ; CEJ6 , and generalized concurrence for multi genuine entanglement ZH11 ; YT12 ; TF13 ; LM14 ; LM15 were derived. Some entanglement criteria for bipartite entangled state and multipartite non fully separable states have been also proposed HPBO ; JIV ; CYSG . In particular, the entanglement criteria based on local sum uncertainty relations (LUR) have been proposed for bipartite systems CJZ and tripartite systems YAMA . Although non-fully separable states contain genuinely entangled states, the criterion of GME based on LUR has not been studied.

In this paper, we study the criterion of GME based on LUR and obtain the sufficient conditions in Theorems 3 and 5. First, for any quantum states, we show that we can always find the lower bound of LUR. Second, we apply the sum of local observables to the multipartite biseparable state, and obtain the lower bound of LUR by using the method in CJZ ; YAMA . The converse negative process is the criterion of detecting GME. When we choose spin observables, the criterion is better than that in RYMD . Third, we use the criterion detect 33-qutrit state and noisy W state for nn-qubit system (n=3,4,5,6n=3,4,5,6) and find that the criterion is strong than the exiting ones LM14 ; QIP2020 . Moreover, it can detect more noisy W states when nn changes from 4 to 6, which is consistent with the fully-separability of noisy W states xyc2020 .

In the rest of this paper, we will introduce the criterion of bipartite separability and tripartite fully separability based on LUR in Sec. II. We investigate the GME criterion based on LUR in Sec. III, that is, Theorem 3 and Theorem 5. In Sec. IV, we apply the criterion to noisy W state and 33-qutrit state to verify its effectiveness. We conclude in Sec. V.

II PRELIMINARIES

A multipartite state that is not the convex sum of bipartite product states is said to be genuine multipartite entangled OGGT . Take the tripartite system as an example. Let HAdH^{d}_{A}, HBdH^{d}_{B}, HCdH^{d}_{C} denote d\emph{d}- dimensional Hilbert spaces of system AA, BB, CC, respectively. A tripartite state ρ𝔅(HAdHBdHCd)\rho\in\mathfrak{B}(H^{d}_{A}\otimes H^{d}_{B}\otimes H^{d}_{C}) is biseparable if it can be expressed

ρBS=P1RηR(1)ρ1Rρ23R+P2RηR(2)ρ2Rρ13R+P3R′′ηR′′(3)ρ3R′′ρ12R′′,\displaystyle\rho_{BS}=P_{1}\sum_{R}\eta_{R}^{(1)}\rho_{1}^{R}\otimes\rho_{23}^{R}+P_{2}\sum_{R^{\prime}}\eta_{R^{\prime}}^{(2)}\rho_{2}^{R^{\prime}}\otimes\rho_{13}^{R^{\prime}}+P_{3}\sum_{R^{\prime\prime}}\eta_{R^{\prime\prime}}^{(3)}\rho_{3}^{R^{\prime\prime}}\otimes\rho_{12}^{R^{\prime\prime}}, (1)

where k=13Pk=1,Pk0,\sum_{k=1}^{3}P_{k}=1,P_{k}\geq 0, and RηR(k)=1.\sum_{R}\eta_{R}^{(k)}=1. Here ρmnR\rho_{mn}^{R} is an arbitrary density operator for the subsystems mm and nn. Otherwise, ρ\rho is called genuinely tripartite entangled. The definition can be extended to genuine multipartite entangled states. Next, we introduce the criterion of bipartite separability and tripartite fully separability based on local sum uncertainty relations. They can also be detected for the criterion of GME.

Consider the set of local observables {Ak}\{A_{k}\} and {Bk}\{B_{k}\} for systems AA and BB respectively. The sum uncertainty relations for arbitrary state ρ\rho are as follows

kΔAk2UA,kΔBk2UB,\displaystyle\sum_{k}\Delta A^{2}_{k}\geq U_{A},\quad\quad\quad\sum_{k}\Delta B^{2}_{k}\geq U_{B}, (2)

where the non-negative constants UAU_{A} and UBU_{B} are independent of ρ\rho and ΔOk2=Ok2Ok2=Tr(Ok2ρ)Tr2(Okρ)\Delta O^{2}_{k}=\langle O^{2}_{k}\rangle-\langle O_{k}\rangle^{2}=\mathop{\rm Tr}(O^{2}_{k}\rho)-\mathop{\rm Tr}^{2}(O_{k}\rho) with O{A,B}O\in\{A,B\}. An entanglement criterion based on local sum uncertainty relation was introduced for bipartite system ABAB.

Lemma 1

CJZ For bipartite separable state ρAB\rho_{AB}, the following inequality holds,

FρABAB\displaystyle F^{AB}_{\rho_{AB}} :=kΔ(AkI+IBk)2(UA+UB+MAB2)\displaystyle:=\sum_{k}\Delta(A_{k}\otimes I+I\otimes B_{k})^{2}-(U_{A}+U_{B}+M^{2}_{AB}) (3)
0,\displaystyle\geq 0,

where MAB=kΔAk2UAkΔBk2UBM_{AB}=\sqrt{\sum_{k}\Delta A^{2}_{k}-U_{A}}-\sqrt{\sum_{k}\Delta B^{2}_{k}-U_{B}}. The violation of inequality implies entanglement of ρAB\rho_{AB}.

For tripartite system, we consider the set of local observables {Ak}\{A_{k}\}, {Bk}\{B_{k}\} and {Ck}\{C_{k}\} for subsystem AA, BB and CC, respectively. Suppose that the sum uncertainty relations for these observables have non-negative constants bounds UAU_{A}, UBU_{B} and UCU_{C} independent of states, i. e.

kΔAk2UA,kΔBk2UB,kΔCk2UC.\displaystyle\sum_{k}\Delta A^{2}_{k}\geq U_{A},\quad\sum_{k}\Delta B^{2}_{k}\geq U_{B},\quad\sum_{k}\Delta C^{2}_{k}\geq U_{C}. (4)

Recently, the criterion (3) has been extended to a non-fully separability criterion for the tripartite system based on local sum uncertainty relations as follows.

Lemma 2

YAMA For any tripartite fully separable state ρABC\rho_{ABC},

ρABC=ipiρiAρiBρiC,\displaystyle\rho_{ABC}=\sum_{i}p_{i}\rho^{A}_{i}\otimes\rho^{B}_{i}\otimes\rho^{C}_{i}, (5)

the reduced states ρAB\rho_{AB}, ρAC\rho_{AC} and ρBC\rho_{BC} are also separable. Therefore, ρAB\rho_{AB} must satisfy the inequality (3) and also similar statements must hold for ρAC\rho_{AC} and ρBC\rho_{BC}. That is,

FρABAB0,FρACAC0,FρBCBC0,\displaystyle F_{\rho_{AB}}^{AB}\geq 0,\quad F_{\rho_{AC}}^{AC}\geq 0,\quad F_{\rho_{BC}}^{BC}\geq 0, (6)

where FρACACF_{\rho_{AC}}^{AC} and FρBCBCF_{\rho_{BC}}^{BC} have similar definitions with FρABABF_{\rho_{AB}}^{AB}. So the following inequalities must hold simultaneously,

FρABCAB|C0,FρABCAC|B0,FρABCBC|A0,\displaystyle F_{\rho_{ABC}}^{AB|C}\geq 0,\quad F_{\rho_{ABC}}^{AC|B}\geq 0,\quad F_{\rho_{ABC}}^{BC|A}\geq 0, (7)

with

FρABCAB|C=FρABC(UA+UB+UC+MAB2+MABC2),F_{\rho_{ABC}}^{AB|C}=F_{\rho_{ABC}}-(U_{A}+U_{B}+U_{C}+M^{2}_{AB}+M^{2}_{ABC}),
FρABCAC|B=FρABC(UA+UB+UC+MAC2+MACB2),F_{\rho_{ABC}}^{AC|B}=F_{\rho_{ABC}}-(U_{A}+U_{B}+U_{C}+M^{2}_{AC}+M^{2}_{ACB}),
FρABCBC|A=FρABC(UA+UB+UC+MBC2+MBCA2),F_{\rho_{ABC}}^{BC|A}=F_{\rho_{ABC}}-(U_{A}+U_{B}+U_{C}+M^{2}_{BC}+M^{2}_{BCA}),

where

FρABC=kΔ(AkIBC+BkIAC+IABCk)ρ2,\displaystyle F_{\rho_{ABC}}=\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho}, (8)

and

MABC=FρABABkΔCk2UC,M_{ABC}=\sqrt{F_{\rho_{AB}}^{AB}}-\sqrt{\sum_{k}\Delta C^{2}_{k}-U_{C}},

and MACBM_{ACB} and MBCAM_{BCA} have similar definitions. Violation of any inequality in Eqs. (6) and (7) implies non fully separability of ρABC\rho_{ABC}.

The method of Lemma 1 and 2 can be used to find the criterion of genuine entanglement in Theorem 3. It may be related to the lower bounds of quantum uncertainty relations for single system and bipartite system. In Eqs. (2) and (4), the lower bound of uncertainty relations UAU_{A}, UBU_{B} and UCU_{C} are also independent of states. Moreover, some lower bound related to states have also been studied. We know some well-known formula of uncertainty relation for two observables MLPA ,

(ΔA)2+(ΔB)2±iψ|[A,B]|ψ+|ψ|A+iB|ψ|2,\displaystyle(\Delta A)^{2}+(\Delta B)^{2}\geq\pm i\langle\psi|[A,B]|\psi\rangle+|\langle\psi|A+iB|\psi^{\bot}\rangle|^{2},
(ΔA)2+(ΔB)212|ψA+B|A+B|ψ|2=12[Δ(A+B)]2,\displaystyle(\Delta A)^{2}+(\Delta B)^{2}\geq\frac{1}{2}|\langle\psi_{A+B}^{\bot}|A+B|\psi\rangle|^{2}=\frac{1}{2}[\Delta(A+B)]^{2},

where ψ|ψ=0\langle\psi|\psi^{\bot}\rangle=0, |ψA+B(ABA+B)|ψ|\psi_{A+B}^{\bot}\rangle\varpropto(A-B-\langle A+B\rangle)|\psi\rangle, and the sign on the right hand side of the inequality takes +()+(-) while i[A,B]i[A,B] is positive (negative). Let us mark the right side of the inequality as UρU_{\rho}. Furthermore, some multiple observables uncertainty relations were proposed BCNP ; BCSM ; QCSL . We consider the local observables {Ak}\{A_{k}\} and {Bk}\{B_{k}\} for systems AA and BB respectively, the multi-observables sum uncertainty relations are as follows

kΔAk2UρA,kΔBk2UρB.\displaystyle\sum_{k}\Delta A^{2}_{k}\geq U_{\rho_{A}},\quad\quad\sum_{k}\Delta B^{2}_{k}\geq U_{\rho_{B}}. (9)

Similarly, for bipartite states, the multi-observables sum uncertainty relations are as follows

kΔ(AkI+IBk)2UρAB,\displaystyle\sum_{k}\Delta(A_{k}\otimes I+I\otimes B_{k})^{2}\geq U_{\rho_{AB}}, (10)

where UρAU_{\rho_{A}}, UρBU_{\rho_{B}}, and UρABU_{\rho_{AB}} can be obtained by the right side of multi-observables sum uncertainty relations in BCNP ; BCSM ; QCSL . We will use the forementioned notions and facts in the next section.

III MAIN RESULTS

In this section, we investigate the genuine tripartite and multipartite entanglement based on local sum uncertainty relations. We apply the observables in Eq. (8) to the tripartite biseparable state, and obtain the lower bound of inequality by using Eqs. (9) and (10). Thus, we construct a sufficient condition for genuine tripartite entanglement in Theorem 3. Further, we extend this criterion to multipartite system in Theorem 5.

III.1 CRITERIA FOR GENUINE TRIPARTITE ENTANGLEMENT

Theorem 3

For a tripartite quantum state ρABC\rho_{ABC}, let Eqs. (9) and (10) be satisfied. If ρABC\rho_{ABC} is biseparable, then

FρABCmin\displaystyle F_{\rho_{ABC}}\geq\min {UρA+UρBC+WABC2,\displaystyle\{U_{\rho_{A}}+U_{\rho_{BC}}+W^{2}_{ABC}, (11)
UρB+UρAC+WBAC2,\displaystyle U_{\rho_{B}}+U_{\rho_{AC}}+W^{2}_{BAC},
UρC+UρAB+WCAB2}\displaystyle U_{\rho_{C}}+U_{\rho_{AB}}+W^{2}_{CAB}\}

where FρABCF_{\rho_{ABC}} is defined in (8), and

WABC=kΔ(Ak)ρA2UρA\displaystyle W_{ABC}=\sqrt{\sum_{k}\Delta(A_{k})^{2}_{\rho_{A}}-U_{\rho_{A}}}
kΔ(BkIC+IBCk)ρBC2UρBC,\displaystyle-\sqrt{\sum_{k}\Delta(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})^{2}_{\rho_{BC}}-U_{\rho_{BC}}},

and WBACW_{BAC} and WCABW_{CAB} can be similarly defined.

Proof.

If ρABC\rho_{ABC} is biseparable, it can be written as Eq. (1) JDB ; BJTM ; RYMD ,

ρBS=\displaystyle\rho_{BS}= P1RηR1ρ1Rρ23R+P2RηR2ρ2Rρ13R\displaystyle P_{1}\sum_{R}\eta_{R}^{1}\rho_{1}^{R}\otimes\rho_{23}^{R}+P_{2}\sum_{R^{\prime}}\eta_{R^{\prime}}^{2}\rho_{2}^{R^{\prime}}\otimes\rho_{13}^{R^{\prime}}
+P3R′′ηR′′3ρ3R′′ρ12R′′\displaystyle+P_{3}\sum_{R^{\prime\prime}}\eta_{R^{\prime\prime}}^{3}\rho_{3}^{R^{\prime\prime}}\otimes\rho_{12}^{R^{\prime\prime}}

with 0Pk10\leq P_{k}\leq 1 , kPk=1\sum_{k}P_{k}=1 and RηRk=1\sum_{R}\eta_{R}^{k}=1.

For any mixture of type ρmix=R1PRρR\rho_{mix}=\sum_{R\geq 1}P_{R}\rho^{R}, the variance Δ2u\Delta^{2}u satisfies HFHS

Δ2uRPRΔuR2.\displaystyle\Delta^{2}u\geq\sum_{R}P_{R}\Delta^{2}_{u_{R}}. (12)

Hence for the biseparable state,

kΔ(AkIBC+BkIAC+IABCk)ρBS2\displaystyle\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{BS}}
P1kΔ(AkIBC+BkIAC+IABCk)ρR2\displaystyle\geq P_{1}\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R}}
+P2kΔ(AkIBC+BkIAC+IABCk)ρR2\displaystyle+P_{2}\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R^{{}^{\prime}}}}
+P3kΔ(AkIBC+BkIAC+IABCk)ρR′′2\displaystyle+P_{3}\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R^{{}^{\prime\prime}}}}
min{kΔ(AkIBC+BkIAC+IABCk)ρR2,\displaystyle\geq\min\{\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R}},
kΔ(AkIBC+BkIAC+IABCk)ρR2,\displaystyle\quad\quad\quad\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R^{{}^{\prime}}}},
kΔ(AkIBC+BkIAC+IABCk)ρR′′2}.\displaystyle\quad\quad\quad\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R^{{}^{\prime\prime}}}}\}. (13)

We can always choose as the lower bound the smallest value of kΔ(AkIBC+BkIAC+IABCk)ρζ2\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{\zeta}} in (III.1). So the second inequality can be obtained using the fact that kPk=1\sum_{k}P_{k}=1.

Then we consider kΔ(AkIBC+BkIAC+IABCk)2\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2} that corresponds to the bipartition RηR1ρ1Rρ23R\sum_{R}\eta_{R}^{1}\rho_{1}^{R}\otimes\rho_{23}^{R},

kΔ(AkIBC+BkIAC+IABCk)ρR2\displaystyle\sum_{k}\Delta(A_{k}\otimes I_{BC}+B_{k}\otimes I_{AC}+I_{AB}\otimes C_{k})^{2}_{\rho_{R}}
=k{[AkIBC+IA(BkIC+IBCk)]2\displaystyle=\sum_{k}\{\langle[A_{k}\otimes I_{BC}+I_{A}\otimes(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})]^{2}\rangle
AkIBC+IA(BkIC+IBCk)2}\displaystyle-\langle A_{k}\otimes I_{BC}+I_{A}\otimes(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})\rangle^{2}\}
=kΔ(Ak)ρA2+kΔ(BkIC+IBCk)ρBC2\displaystyle=\sum_{k}\Delta(A_{k})^{2}_{\rho_{A}}+\sum_{k}\Delta(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})^{2}_{\rho_{BC}}
+2k[Ak(BkIC+IBCk)\displaystyle+2\sum_{k}[\langle A_{k}\otimes(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})\rangle-
AkIBCIA(BkIC+IBCk)]\displaystyle\langle A_{k}\otimes I_{BC}\rangle\langle I_{A}\otimes(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})\rangle]
kΔ(Ak)ρA2+kΔ(BkIC+IBCk)ρBC2\displaystyle\geq\sum_{k}\Delta(A_{k})^{2}_{\rho_{A}}+\sum_{k}\Delta(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})^{2}_{\rho_{BC}}
2[kΔ(Ak)ρA2UρA][kΔ(BkIC+IBCk)ρBC2UρBC]\displaystyle-2\sqrt{[\sum_{k}\Delta(A_{k})^{2}_{\rho_{A}}-U_{\rho_{A}}]}\cdot\sqrt{[\sum_{k}\Delta(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})^{2}_{\rho_{BC}}-U_{\rho_{BC}}]}
=UρA+UρBC+WABC2,\displaystyle=U_{\rho_{A}}+U_{\rho_{BC}}+W^{2}_{ABC}, (14)

where WABC=kΔ(Ak)ρA2UρAkΔ(BkIC+IBCk)ρBC2UρBCW_{ABC}=\sqrt{\sum_{k}\Delta(A_{k})^{2}_{\rho_{A}}-U_{\rho_{A}}}-\sqrt{\sum_{k}\Delta(B_{k}\otimes I_{C}+I_{B}\otimes C_{k})^{2}_{\rho_{BC}}-U_{\rho_{BC}}}. The inequality is due to Lemma 1 in CJZ .

Combining Eq. (III.1) and Eq. (III.1), we can obtain Eq. (11). In Eq. (11), the first term in the bracket {}\{\}, namely, UρA+UρBC+WABC2U_{\rho_{A}}+U_{\rho_{BC}}+W^{2}_{ABC} is implied by the biseparable state RηR1ρ1Rρ23R\sum_{R}\eta_{R}^{1}\rho_{1}^{R}\otimes\rho_{23}^{R}. Similarly, the second term is implied by the biseparable state RηR2ρ2Rρ13R\sum_{R}\eta_{R^{\prime}}^{2}\rho_{2}^{R^{\prime}}\otimes\rho_{13}^{R^{\prime}}, and the third term is implied by the biseparable state RηR′′3ρ3R′′ρ12R′′\sum_{R}\eta_{R^{\prime\prime}}^{3}\rho_{3}^{R^{\prime\prime}}\otimes\rho_{12}^{R^{\prime\prime}}. Violation of the inequality (11) is sufficient to confirm genuine tripartite entanglement of ρABC\rho_{ABC}.    \square

When we choose spin observables as the observables AA, BB, and CC, the criteria in Theorem 3 require only the statistics of a set of observables. In this sense, it is state independent, which is similar to RYMD . In order to compare Theorem 3 with criterion 1 in RYMD , we consider the sum of Δ2u\Delta^{2}u and Δ2v\Delta^{2}v where

u=h1Jx,1+h2Jx,2+h3Jx,3\displaystyle u=h_{1}J_{x,1}+h_{2}J_{x,2}+h_{3}J_{x,3}
v=g1Jy,1+g2Jy,2+g3Jy,3\displaystyle v=g_{1}J_{y,1}+g_{2}J_{y,2}+g_{3}J_{y,3} (15)

and hkh_{k} and gkg_{k} (k=1,2,3)({k=1,2,3}) are real numbers. Here Jx,kJ_{x,k}, Jy,kJ_{y,k}, Jz,kJ_{z,k} are the spin operators for subsystem kk, satisfying [Jx,k,Jy,k]=Jz,k[J_{x,k},J_{y,k}]=J_{z,k}. Then FρABCF_{\rho_{ABC}} in Eq. (11) is equal to Δ2u+Δ2v\Delta^{2}u+\Delta^{2}v when A1=h1Jx,1A_{1}=h_{1}J_{x,1}, B1=h2Jx,2B_{1}=h_{2}J_{x,2}, C1=h3Jx,3C_{1}=h_{3}J_{x,3}, A2=g1Jy,1A_{2}=g_{1}J_{y,1}, B2=g2Jy,2B_{2}=g_{2}J_{y,2}, C2=g3Jy,3C_{2}=g_{3}J_{y,3} and k=2k=2. This leads us to the following criterion,

Corollary 4

Violation of the inequality

Δ2u+Δ2vmin\displaystyle\Delta^{2}u+\Delta^{2}v\geq\min {|g1h1Jz,1|+|g2h2Jz,2+g3h3Jz,3|+W1232,\displaystyle\{|g_{1}h_{1}\langle J_{z,1}\rangle|+|g_{2}h_{2}\langle J_{z,2}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle|+W^{2}_{123}, (16)
|g2h2Jz,2|+|g1h1Jz,1+g3h3Jz,3|+W2132,\displaystyle|g_{2}h_{2}\langle J_{z,2}\rangle|+|g_{1}h_{1}\langle J_{z,1}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle|+W^{2}_{213},
|g3h3Jz,3|+|g1h1Jz,1+g2h2Jz,2|+W3122}\displaystyle|g_{3}h_{3}\langle J_{z,3}\rangle|+|g_{1}h_{1}\langle J_{z,1}\rangle+g_{2}h_{2}\langle J_{z,2}\rangle|+W^{2}_{312}\}

is sufficient to confirm genuine tripartite entanglement. Here

W123=Δ2(h1Jx,1)+Δ2(g1Jy,1)|g1h1Jz,1|\displaystyle W_{123}=\sqrt{\Delta^{2}(h_{1}J_{x,1})+\Delta^{2}(g_{1}J_{y,1})-|g_{1}h_{1}\langle J_{z,1}\rangle|}-
Δ2(h2Jx,2+h3Jx,3)+Δ2(g2Jy,2+g3Jy,3)|g2h2Jz,2+g3h3Jz,3|,\displaystyle\sqrt{\Delta^{2}(h_{2}J_{x,2}+h_{3}J_{x,3})+\Delta^{2}(g_{2}J_{y,2}+g_{3}J_{y,3})-|g_{2}h_{2}\langle J_{z,2}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle|},

W213W_{213} and W312W_{312} can be similarly defined.

If W123=W213=W312=0W_{123}=W_{213}=W_{312}=0, Eq. (16) is reduced to the result in RYMD , so the above criterion is better than criterion 1 in RYMD . For the specific spin state, we can choose the optimal values for hkh_{k}, gkg_{k}.

III.2 CRITERIA FOR GENUINE MULTIPARTITE ENTANGLEMENT

Now we extend the method in previous section used to derive criteria for genuine tripartite entanglement to NN-partite system. One can show that the number of possible bipartition is 2N112^{N-1}-1. In order to investigate the criteria of genuine NN-partite entanglement, we should consider every bipartition. Here we generalize the criterion in Eq. (11) and Eq. (16) for NN-partite system. We denote every bipartition by SrSsS_{r}-S_{s}, where SrS_{r} and SsS_{s} are the sets of two part in a specific bipartition.

Theorem 5

If a NN-partite quantum state ρA1A2AN\rho_{A_{1}A_{2}\ldots A_{N}} is biseparable, then

FρA1A2ANmin{UBS},\displaystyle F_{\rho_{A_{1}A_{2}\ldots A_{N}}}\geq\min\{U_{BS}\}, (17)

where UBSU_{BS} is the set of the quantity Uρkr+Uρks+Wρkr|ks2U_{\rho_{k_{r}}}+U_{\rho_{k_{s}}}+W^{2}_{\rho_{k_{r}|k_{s}}} defined for each partition SrSsS_{r}-S_{s}, ρkr\rho_{k_{r}} and ρks\rho_{k_{s}} are the states in set SrS_{r} and SsS_{s} respectively. Violation of the inequality (17) is sufficient to confirm genuine NN-partite entanglement. The proof of the inequality follows from the proof in Eq. (11).

When the observables in Eq. (17) are spin observables, the following criterion can be obtained.

Corollary 6

Violation of the inequality

Δ2u+Δ2vmin{SB}\displaystyle\Delta^{2}u+\Delta^{2}v\geq\min\{S_{B}\} (18)

implies genuine NN-partite entanglement. Where SBS_{B} is the set of |Σkr=1mhkrgkrJz,kr|+|Σks=1nhksgksJz,ks|+Wρkr|ks2|\Sigma_{k_{r}=1}^{m}h_{k_{r}}g_{k_{r}}\langle J_{z,k_{r}}\rangle|+|\Sigma_{k_{s}=1}^{n}h_{k_{s}}g_{k_{s}}\langle J_{z,k_{s}}\rangle|+W^{2}_{\rho_{k_{r}|k_{s}}} defined for each partition SrSsS_{r}-S_{s}. When every Wρkr|ks=0W_{\rho_{k_{r}|k_{s}}}=0, the inequality is reduced to criterion 6 in RYMD .

For N=4N=4, there will be 2411=72^{4-1}-1=7 bipartition. They are 12341-234, 21342-134, 31243-124, 41234-123, 123412-34, 132413-24, 142314-23. Using them we obtain the criterion for genuine four-partite entanglement.

Corollary 7

If a four-partite quantum state is biseparable, then

Δ2u+Δ2vmin\displaystyle\Delta^{2}u+\Delta^{2}v\geq\min {|g1h1Jz,1|+|g2h2Jz,2+g3h3Jz,3+g4h4Jz,4|+W1|2342,\displaystyle\{|g_{1}h_{1}\langle J_{z,1}\rangle|+|g_{2}h_{2}\langle J_{z,2}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|+W^{2}_{1|234}, (19)
|g2h2Jz,2|+|g1h1Jz,1+g3h3Jz,3+g4h4Jz,4|+W2|1342,\displaystyle|g_{2}h_{2}\langle J_{z,2}\rangle|+|g_{1}h_{1}\langle J_{z,1}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|+W^{2}_{2|134},
|g3h3Jz,3|+|g1h1Jz,1+g2h2Jz,2+g4h4Jz,4|+W3|1242,\displaystyle|g_{3}h_{3}\langle J_{z,3}\rangle|+|g_{1}h_{1}\langle J_{z,1}\rangle+g_{2}h_{2}\langle J_{z,2}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|+W^{2}_{3|124},
|g4h4Jz,4|+|g1h1Jz,1+g2h2Jz,2+g3h3Jz,3|+W4|1232,\displaystyle|g_{4}h_{4}\langle J_{z,4}\rangle|+|g_{1}h_{1}\langle J_{z,1}\rangle+g_{2}h_{2}\langle J_{z,2}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle|+W^{2}_{4|123},
|g1h1Jz,1+g2h2Jz,2|+|g3h3Jz,3+g4h4Jz,4|+W12|342,\displaystyle|g_{1}h_{1}\langle J_{z,1}\rangle+g_{2}h_{2}\langle J_{z,2}\rangle|+|g_{3}h_{3}\langle J_{z,3}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|+W^{2}_{12|34},
|g1h1Jz,1+g3h3Jz,3|+|g2h2Jz,2+g4h4Jz,4|+W13|242,\displaystyle|g_{1}h_{1}\langle J_{z,1}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle|+|g_{2}h_{2}\langle J_{z,2}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|+W^{2}_{13|24},
|g1h1Jz,1+g4h4Jz,4|+|g2h2Jz,2+g3h3Jz,3|+W14|232}\displaystyle|g_{1}h_{1}\langle J_{z,1}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|+|g_{2}h_{2}\langle J_{z,2}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle|+W^{2}_{14|23}\}

where

W1|234=Δ2(h1Jx,1)+Δ2(g1Jy,1)|g1h1Jz,1|\displaystyle W_{1|234}=\sqrt{\Delta^{2}(h_{1}J_{x,1})+\Delta^{2}(g_{1}J_{y,1})-|g_{1}h_{1}\langle J_{z,1}\rangle|}-
Δ2(h2Jx,2+h3Jx,3+h4Jx,4)+Δ2(g2Jy,2+g3Jy,3+g4Jy,4)|g2h2Jz,2+g3h3Jz,3+g4h4Jz,4|,\displaystyle\sqrt{\Delta^{2}(h_{2}J_{x,2}+h_{3}J_{x,3}+h_{4}J_{x,4})+\Delta^{2}(g_{2}J_{y,2}+g_{3}J_{y,3}+g_{4}J_{y,4})-|g_{2}h_{2}\langle J_{z,2}\rangle+g_{3}h_{3}\langle J_{z,3}\rangle+g_{4}h_{4}\langle J_{z,4}\rangle|},

W2|134W_{2|134}, W3|124W_{3|124}, W4|123W_{4|123}, W12|34W_{12|34}, W13|24W_{13|24}, and W14|23W_{14|23} can be similarly defined.

The violation of the inequality in Eq. (19) implies genuine four-partite entanglement. If W1|234=W2|134=W3|124=W4|123=W12|34=W13|24=W14|23=0W_{1|234}=W_{2|134}=W_{3|124}=W_{4|123}=W_{12|34}=W_{13|24}=W_{14|23}=0, Eq. (19) is reduced to the criterion 8 in RYMD , so the above inequality is better than the result in RYMD .

IV EXAMPLE

In this section, we illustrate the utility of the criteria by a few examples.

Example 8

Consider the nn-qubit W state mixed with the white noise,

ρWn(q)=1q2nI+q|WnWn|,\rho_{W_{n}}(q)=\frac{1-q}{2^{n}}I+q|W_{n}\rangle\langle W_{n}|,

where 0q10\leq q\leq 1, |Wn=12(|1000+|0100++|0001)|W_{n}\rangle=\frac{1}{\sqrt{2}}(|10\ldots 00\rangle+|01\ldots 00\rangle+\ldots+|00\ldots 01\rangle) and II is the 2n×2n2^{n}\times 2^{n} identity matrix.

Set A1=B1=C1=σxA_{1}=B_{1}=-C_{1}=\sigma_{x}, A2=B2=C2=σyA_{2}=B_{2}=-C_{2}=\sigma_{y}, and A3=B3=C3=σzA_{3}=B_{3}=C_{3}=\sigma_{z}. The criterion in Theorem 3 is computed to be f(q)=q2143q+359(1919q249q2103q+349)2f(q)=-q^{2}-\frac{14}{3}q+\frac{35}{9}-(\sqrt{\frac{1}{9}-\frac{1}{9}q^{2}}-\sqrt{-\frac{4}{9}q^{2}-\frac{10}{3}q+\frac{34}{9}})^{2}, which means the left side of (11) minus the right of that, as shown in FIG 1. Comparing with the criterion in LM14 and QIP2020 , Theorem 3 can detect more genuinely tripartite entangled states.

Refer to caption
Figure 1: The abscissa and ordinate represent qq and f(q)f(q), respectively. Below the abscissa axis means that Theorem 3 can detect genuinely entangled state for 0.512q10.512\leq q\leq 1.

Now we consider genuine entanglement of ρWn(q)\rho_{W_{n}}(q) for three cases.

  1. 1.

    When n=4n=4, we set A1=B1=C1=D1=σxA_{1}=B_{1}=C_{1}=-D_{1}=\sigma_{x}, A2=B2=C2=D2=σyA_{2}=B_{2}=C_{2}=-D_{2}=\sigma_{y}, and A3=B3=C3=D3=σzA_{3}=B_{3}=C_{3}=D_{3}=\sigma_{z} in Theorem 5. By calculation, we can obtain f4(q)=4q2+3(q2+2qq22q+3)2f_{4}(q)=-4q^{2}+3-(\sqrt{-q^{2}+2q}-\sqrt{-q^{2}-2q+3})^{2}, which means the left side of (17) minus the right side.

  2. 2.

    when n=5n=5, we set A1=B1=C1=D1=E1=σxA_{1}=B_{1}=C_{1}=-D_{1}=-E_{1}=\sigma_{x}, A2=B2=C2=D2=E2=σyA_{2}=B_{2}=C_{2}=-D_{2}=-E_{2}=\sigma_{y}, and A3=B3=C3=D3=E3=σzA_{3}=B_{3}=C_{3}=D_{3}=E_{3}=\sigma_{z}. By calculation, we can obtain f5(q)=9q2+45q+9125(8125q225q+91253625q2+2q)2f_{5}(q)=-9q^{2}+\frac{4}{5}q+\frac{91}{25}-(\sqrt{-\frac{81}{25}q^{2}-\frac{2}{5}q+\frac{91}{25}}-\sqrt{-\frac{36}{25}q^{2}+2q})^{2}.

  3. 3.

    When n=6n=6, we set A1=B1=C1=D1=E1=F1=σxA_{1}=B_{1}=C_{1}=-D_{1}=-E_{1}=-F_{1}=\sigma_{x}, A2=B2=C2=D2=E2=F2=σyA_{2}=B_{2}=C_{2}=-D_{2}=-E_{2}=-F_{2}=\sigma_{y}, and A3=B3=C3=D3=E3=F3=σzA_{3}=B_{3}=C_{3}=D_{3}=E_{3}=F_{3}=\sigma_{z}. By calculation, we can obtain f6(q)=16q2+6q+779(1009q2+4q+6494949q2)2f_{6}(q)=-16q^{2}+6q+\frac{77}{9}-(\sqrt{-\frac{100}{9}q^{2}+4q+\frac{64}{9}}-\sqrt{\frac{4}{9}-\frac{4}{9}q^{2}})^{2}.

We describe the three cases in FIG 2. The same method can be used when n7n\geq 7 by choosing appropriate observables, but the calculation will become more and more complex.

Refer to caption
Figure 2: The abscissa and ordinate represent qq and fn(q)f_{n}(q), respectively. The blue, red and black lines represent f4(q)f_{4}(q), f5(q)f_{5}(q), and f6(q)f_{6}(q), respectively. Below the abscissa axis means that Theorem 5 can detect genuinely entangled state for 0.857q10.857\leq q\leq 1 when n=4n=4. Similarly, we have 0.651q10.651\leq q\leq 1 when n=5n=5, and 0.46q10.46\leq q\leq 1 when n=6n=6. With the increase of nn, more genuinely entangled states can be detected.
Refer to caption
Figure 3: The abscissa and ordinate represent critical value qq and the number of systemnn, respectively. Above the stars are entangled states that can be detected. With the increase of nn, the criterion can detect more states.

It is worth mentioning that xyc2020 the noisy WW state ρWn(q)\rho_{W_{n}}(q) is fully separable if

q{11+2nn12nif2n5;nn+(n2)2nifn6.\displaystyle q\leq\left\{\begin{array}[]{cc}\frac{1}{1+2^{n}\sqrt{\frac{n-1}{2n}}}&if\quad 2\leq n\leq 5;\\ \frac{n}{n+(n-2)2^{n}}&if\quad n\geq 6.\end{array}\right. (22)

The condition is necessary and sufficient when n5n\leq 5. This is similar to the genuine entanglement criterion in Theorems 3 and 5, that is, (22) can detect more states with the increase of nn. We describe these results in FIG 3.

This criterion can not only detect the GME of qubit states, but also detect that of qurit states. Here is an example of the 3-qutrit state.

Example 9

Consider a 33-qutrit state mixed with the white noise LM14 ,

ρ=1x27I+x|φφ|,\rho=\frac{1-x}{27}I+x|\varphi\rangle\langle\varphi|,

where 0x10\leq x\leq 1, |φ=13(|012+|021+|111)|\varphi\rangle=\frac{1}{\sqrt{3}}(|012\rangle+|021\rangle+|111\rangle) and II is the 33×333^{3}\times 3^{3} identity matrix.

Set A1=B1=C1=JxA_{1}=-B_{1}=-C_{1}=J_{x}, A2=B2=C2=JyA_{2}=-B_{2}=-C_{2}=J_{y}, and A3=B3=C3=JzA_{3}=B_{3}=C_{3}=J_{z}. Here JxJ_{x}, JyJ_{y}, JzJ_{z} are spin operators. The criterion in Theorem 3 is computed to be f(x)=2594x(x293x+289x29+x3+73)2f(x)=\frac{25}{9}-4x-(\sqrt{-\frac{x^{2}}{9}-3x+\frac{28}{9}}-\sqrt{-\frac{x^{2}}{9}+\frac{x}{3}+\frac{7}{3}})^{2}, which means the left side of (11) minus the right of that, as shown in FIG 4. The criterion can detect GME better than the criterion in LM14 .

Refer to caption
Figure 4: The abscissa and ordinate represent xx and f(x)f(x), respectively. Below the abscissa axis means that Theorem 3 can detect genuinely entangled state for 0.632x10.632\leq x\leq 1.

V CONCLUSION

The detection of GME is a basic and important object in quantum theory. In view of the bipartite entanglement and tripartite non-fully separable criteria based on LUR, we have studied the GME based on LUR. We have obtained an effective criterion to detecting the GME for tripartite system, which be extended to multipartite system. Comparing with some existing criteria, the criterion can detect more genuinely entangled states by theoretical analysis and numerical examples. Also, we found the relation of nn and genuinely entanglement for nn- qubit noisy W state. The method used in this paper can also be generalized to arbitrary multipartite qudit systems. It would be also worthwhile to investigate the kk-separability of multipartite systems.


Acknowledgments  Authors were supported by the NNSF of China (Grant No. 11871089), and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12080401 and ZG216S1902).

References

  • (1) M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  • (2) R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
  • (3) F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions, Phys. Rev. Lett. 92, 167902 (2004).
  • (4) K. Chen, S. Albeverio, and S. M. Fei, Concurrence of Arbitrary Dimensional Bipartite Quantum States, Phys. Rev. Lett. 95, 040504 (2005).
  • (5) A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67, 661 (1991).
  • (6) C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
  • (7) C. H. Bennett, and S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 (1992).
  • (8) N. Gisin, G. Rinordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phy. 74, 145 (2002).
  • (9) A. S. Srensen, and K. Mlmer, Entanglement and Extreme Spin Squeezing, Phys. Rev. Lett. 86, 4431 (2001).
  • (10) R. Raussendorf, and H. J. Briegel, A One-Way Quantum Computer, Phys. Rev. Lett. 86, 5188 (1999).
  • (11) P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, and H. Weinfurter et al, Fisher information and multiparticle entanglement, Phys. Rev. A, 85, 022321 (2012).
  • (12) M. Hillery, V. Buzek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A, 59, 1829 (1999).
  • (13) V. Scarani, and N. Gisin, Quantum Communication between N Partners and Bell’s Inequalities, Phys. Rev. Lett. 87, 117901 (2001).
  • (14) J. D. Bancal, N. Gisin, Y. C. Liang, and S. Pironio, Device-independent witnesses of genuine multipartite entanglement, Phys. Rev. Lett. 106, 250404 (2011).
  • (15) M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayr, Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010).
  • (16) Julio I. de Vicente, and Marcus Huber. Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011).
  • (17) J. Y. Wu, H. Kampermann, D. Bru𝔅\mathfrak{B}, C. Klo¨\ddot{o}ckl, and M.Huber, Determining lower bounds on a measure of multipartite entanglement from few local observables. Phys. Rev. A 86, 022319 (2012).
  • (18) J. Sperling, and W. Vogel, Multipartite entanglement witnesses. Phys. Rev. Lett. 111., 110503 (2013).
  • (19) C. Klo¨\ddot{o}ckl, and M, Huber, Characterizing multipartite entanglement without shared reference frames. Phys. Rev. A 91, 042339 (2015).
  • (20) C. Eltschka, and J. Siewert, Quantifying entanglement resources. Journal of Physics A Mathematical and Theoretical, 47: 424005 (2014).
  • (21) Z. H. Chen, Z. H. Ma, J. L. Chen, and S. Severini, Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012).
  • (22) Y. Hong, T. Gao, and F. Yan, Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012).
  • (23) T. Gao, F. Yan, and S. J. van Enk, Permutationally Invariant Part of a Density Matrix and Nonseparability of N-Qubit States. Phys. Rev. Lett. 112, 180501 (2014).
  • (24) M. Li, L. Jia, J. Wang, S. Shen, and S. M. Fei, Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017).
  • (25) M. Li, J.Wang, S. Shen, Z. Chen, and S. M. Fei, Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci Rep, 7, 17274 (2017).
  • (26) H. P. Breuer, Optimal Entanglement Criterion for Mixed Quantum States, Phys. Rev. Lett. 97, 080501 (2006).
  • (27) J. I. de Vicente, Lower bounds on concurrence and separability conditions, Phys. Rev. A 75, 052320 (2007).
  • (28) C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo, Optimal entanglement witnesses based on local orthogonal observables, Phys. Rev. A 76, 012334 (2007).
  • (29) C. J. Zhang, H. Nha, Y. S. Zhang, and Guo, G. C. Entanglement detection via tighter local uncertainty relations. Phys. Rev. A 81, 012424 (2009).
  • (30) Y. Akbari-Kourbolagh, and M. Azhdargalam, Entanglement criterion for tripartite systems based on local sum uncertainty relations. Phys. Rev. A 97, 042333 (2018).
  • (31) R. Y. Teh, and M. D. Reid, Criteria to detect genuine multipartite entanglement using spin measurements, Phys. Rev. A 100, 022126 (2019).
  • (32) L. M. Yang, B. Z. Sun, B. Chen, S. M. Fei, and Z. X. Wang, Quantum fisher information-based detection of genuine tripartite entanglement, Quan. Inf. Proc, 19: 262, (2020).
  • (33) X. Y. Chen, and L. Z. Jiang, Noise tolerance of Dicke states. Phys, Rev. A 101, 012308 (2020).
  • (34) O. Gu¨\ddot{u}hne, and G. To´\acute{o}th, Entanglement detection. Physics Reports, 474, 1-75 (2009).
  • (35) L. Maccone, and A. K. Pati, Strong uncertainty relations for all incompatible observables, Phys. Rev. Lett. 113,260401 (2014).
  • (36) B. Chen, N. P. Cao, S. M. Fei, and G. L. Long, Variance-based uncertainty relations for incompatible observables. Quantum Inf. Process 15,3909 (2016).
  • (37) B. Chen, and S. M. Fei, Sum uncertainty relations dor arbitrary N incompatible observables. Sci. Rep. 5,14238 (2015).
  • (38) Q. C. Song, J. L. Li, G. X. Peng, and C. F. Qiao, A Stronger Multi-observable Uncertainty Relation, Sci. Rep. 7,44764 (2017).
  • (39) J. -D. Bancal, N. Gisin, Y. -C. Liang, and S. Pironio, Device-Independent Witnesses of Genuine Multipartite Entanglement, Phys. Rev. Lett. 106,250404 (2011).
  • (40) B. Jungnitsch, T. Moroder, and O. Guhne, Taming Multiparticle Entanglement, Phys. Rev. Lett. 106,190502 (2011).
  • (41) H. F. Hofmann, and S. Takeuchi, Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003).