This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Determination of normalized extremal quasimodular forms of depth 1 with integral Fourier coefficients

Tomoaki Nakaya Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan t-nakaya@math.kyushu-u.ac.jp
Abstract.

The main purpose of this paper is to determine all normalized extremal quasimodular forms of depth 1 whose Fourier coefficients are integers. By changing the local parameter at infinity from q=e2πiτq=e^{2\pi i\tau} to the reciprocal of the elliptic modular jj-function, we prove that all normalized extremal quasimodular forms of depth 1 have a hypergeometric series expression and that integrality is not affected by this change of parameters. Furthermore, by transforming these hypergeometric series expressions into a certain manageable form related to the Atkin(-like) polynomials and using the lemmas that appeared in the study of pp-adic hypergeometric series by Dwork and Zudilin, the integrality problem can be reduced to the fact that a polynomial vanishes modulo a prime power, which we prove. We also prove that all extremal quasimodular forms of depth 1 with appropriate weight-dependent leading coefficients have integral Fourier coefficients by focusing on the hypergeometric expression of them.

Key words and phrases:
Extremal quasimodular forms; Fourier coefficients; hypergeometric series; modular differential equations.
2010 Mathematics Subject Classification:
11F11, 11F25, 11F30, 33C05, 34M03

1. Introduction

A quasimodular form of weight ww on the full modular group Γ=SL2()\Gamma=SL_{2}(\mathbb{Z}) is given as

2+4m+6n=w,m,n0C,m,nE2E4mE6nQM(Γ)[E2,E4,E6].\displaystyle\sum_{\begin{subarray}{c}2\ell+4m+6n=w\\ \ell,m,n\geq 0\end{subarray}}C_{\ell,m,n}E_{2}^{\,\ell}E_{4}^{\,m}E_{6}^{\,n}\in QM_{*}(\Gamma)\coloneqq\mathbb{C}[E_{2},E_{4},E_{6}].

Here Ek=Ek(τ)E_{k}=E_{k}(\tau) is the standard Eisenstein series on Γ\Gamma of weight kk defined by

Ek(τ)=12kBkn=1σk1(n)qn(q=e2πiτ),σk(n)=dndk,\displaystyle E_{k}(\tau)=1-\frac{2k}{B_{k}}\sum_{n=1}^{\infty}\sigma_{k-1}(n)q^{n}\;(q=e^{2\pi i\tau}),\quad\sigma_{k}(n)=\sum_{d\mid n}d^{k},

where τ\tau is a variable in the complex upper half plane \mathfrak{H}, and BkB_{k} is kk-th Bernoulli number, e.g., B2=16,B4=130,B6=142B_{2}=\tfrac{1}{6},B_{4}=-\tfrac{1}{30},B_{6}=\tfrac{1}{42}. For the intrinsic definition of the quasimodular forms on a non-cocompact discrete subgroup of SL2()SL_{2}(\mathbb{R}), we refer to [41, §5.3]. We denote the vector space of modular forms and cusp forms of weight kk on Γ\Gamma by Mk(Γ)M_{k}(\Gamma) and Sk(Γ)S_{k}(\Gamma), respectively. It is well known that EkMk(Γ)E_{k}\in M_{k}(\Gamma) for even k4k\geq 4, but E2E_{2} is not modular and is quasimodular. Any quasimodular form ff of weight ww can be uniquely written as

f==0rE2f,fMw2(Γ),fr0\displaystyle f=\sum_{\ell=0}^{r}E_{2}^{\,\ell}f_{\ell},\quad f_{\ell}\in M_{w-2\ell}(\Gamma),\quad f_{r}\not=0

with r0r\in\mathbb{Z}_{\geq 0} and we call it depth of ff. Hence E2E_{2} is the quasimodular form with minimum weight and depth on Γ\Gamma. Let QMw(r)=QMw(r)(Γ)QM_{w}^{(r)}=QM_{w}^{(r)}(\Gamma) denote the vector space of quasimodular forms of weight ww and depth r\leq r on Γ\Gamma. In particular, QMw(0)(Γ)QM_{w}^{(0)}(\Gamma) is equal to Mw(Γ)M_{w}(\Gamma). (In the following, we often omit the reference to the group Γ\Gamma.) From the fact dimQMw(r)==0rdimMw2\dim_{\mathbb{C}}QM_{w}^{(r)}=\sum_{\ell=0}^{r}\dim_{\mathbb{C}}M_{w-2\ell}, the generating function of the dimension of QMw(r)QM_{w}^{(r)} is given by the following (See [10] for the explicit formula of dimQMw(r)\dim_{\mathbb{C}}QM_{w}^{(r)}.):

k=0dimQM2k(r)T2k==0rT2(1T4)(1T6)\displaystyle{}\sum_{k=0}^{\infty}\dim_{\mathbb{C}}QM_{2k}^{(r)}\,T^{2k}=\frac{\sum_{\ell=0}^{r}T^{2\ell}}{(1-T^{4})(1-T^{6})}
=1T2(r+1)(1T2)(1T4)(1T6)(r0,|T|<1).\displaystyle=\frac{1-T^{2(r+1)}}{(1-T^{2})(1-T^{4})(1-T^{6})}\quad(r\in\mathbb{Z}_{\geq 0},\;|T|<1).

In particular, since there is no quasimodular form in which the depth exceeds half the weight, QM2k(k)=QM2k(k+1)=QM2k(k+2)=QM_{2k}^{(k)}=QM_{2k}^{(k+1)}=QM_{2k}^{(k+2)}=\dotsb holds, so by taking the limit rr\rightarrow\infty in the above equation, we have

k=0dimQM2k(k)T2k=1(1T2)(1T4)(1T6).\displaystyle\sum_{k=0}^{\infty}\dim_{\mathbb{C}}QM_{2k}^{(k)}\,T^{2k}=\frac{1}{(1-T^{2})(1-T^{4})(1-T^{6})}.

We denote by DD the differential operator D=12πiddτ=qddqD=\tfrac{1}{2\pi i}\tfrac{d}{d\tau}=q\tfrac{d}{dq}. It is well known that the Eisenstein series E2,E4E_{2},E_{4} and E6E_{6} satisfy the following differential relation (equation) by Ramanujan ([5, Thm. 0.21]. See also [24, §3] and [25, §4.1] for Halphen’s contribution.):

D(E2)=E22E412,D(E4)=E2E4E63,D(E6)=E2E6E422.\displaystyle D(E_{2})=\frac{E_{2}^{2}-E_{4}}{12},\quad D(E_{4})=\frac{E_{2}E_{4}-E_{6}}{3},\quad D(E_{6})=\frac{E_{2}E_{6}-E_{4}^{2}}{2}. (1)

Therefore, the ring QM(Γ)QM_{*}(\Gamma) is closed under the derivation DD.

For f[[q]]f\in\mathbb{C}[\![q]\!], we denote ν(f)=ordq=0(f)0{}\nu(f)=\mathrm{ord}_{q=0}(f)\in\mathbb{Z}_{\geq 0}\cup\{\infty\}. The notion of extremal quasimodular forms was introduced and studied by Kaneko and Koike in [19]. They defined it as follows using the vanishing order ν(f)\nu(f) of the quasimodular form ff.

Definition 1.

Let f=n=0anqnQMw(r)\QMw(r1)f=\sum_{n=0}^{\infty}a_{n}q^{n}\in QM_{w}^{(r)}\backslash QM_{w}^{(r-1)} and m=dimQMw(r)m=\dim_{\mathbb{C}}QM_{w}^{(r)}. We call ff extremal if ν(f)=m1\nu(f)=m-1. If, moreover, am1=1a_{m-1}=1, ff is said to be normalized. We denote by Gw(r)G_{w}^{(r)} the normalized extremal quasimodular form of weight ww and depth rr on Γ\Gamma (if exists).

We set

νmax(r,w)=max{n0 such that there exists fQMw(r)\{0} with ν(f)=n}.\displaystyle\nu_{\max}(r,w)=\max\{n\in\mathbb{Z}_{\geq 0}\text{ such that there exists }f\in QM_{w}^{(r)}\backslash\{0\}\text{ with }\nu(f)=n\}.

Pellarin gave an upper bound on νmax(r,w)\nu_{\max}(r,w) in [30, Thm. 2.3], which turns out to be νmax(r,w)=dimQMw(r)1\nu_{\max}(r,w)=\dim_{\mathbb{C}}QM_{w}^{(r)}-1 for the depth r{1,2,3,4}r\in\{1,2,3,4\}. In a recent paper [10] Grabner constructed inductively the normalized extremal quasimodular forms Gw(r)G_{w}^{(r)} of weight ww and depth r{1,2,3,4}r\in\{1,2,3,4\}. More precisely, he constructed the quasimodular form fw(r)f_{w}^{(r)} such that

fw(r)=qm1(1+O(q))QMw(r),m=dimQMw(r)\displaystyle f_{w}^{(r)}=q^{m-1}(1+O(q))\in QM_{w}^{(r)},\quad m=\dim QM_{w}^{(r)}

inductively by using the Serre derivative. From Definition 1 of the extremal quasimodular forms, it is necessary to confirm that fw(r)QMw(r)\QMw(r1)f_{w}^{(r)}\in QM_{w}^{(r)}\backslash QM_{w}^{(r-1)}, which follows from νmax(r,w)νmax(r1,w)>0\nu_{\max}(r,w)-\nu_{\max}(r-1,w)>0, and hence fw(r)=Gw(r)f_{w}^{(r)}=G_{w}^{(r)}. Moreover, these extremal quasimodular forms exist uniquely for r{1,2,3,4}r\in\{1,2,3,4\}. This is because if the two forms f,g=qm1+O(qm)QMw(r)f,g=q^{m-1}+O(q^{m})\in QM_{w}^{(r)} satisfy fg0f-g\not=0, then the vanishing order of fgQMw(r)f-g\in QM_{w}^{(r)} is given by ν(fg)m>νmax(r,w)\nu(f-g)\geq m>\nu_{\max}(r,w), which contradicts the definition of νmax(r,w)\nu_{\max}(r,w). In contrast to these cases of depth r4r\leq 4, the existence and the uniqueness of Gw(r)G_{w}^{(r)} for the depth r5r\geq 5 is still open.

Let r\mathcal{E}_{r} be the set of weights ww such that the normalized extremal quasimodular form of weight ww and depth rr on Γ\Gamma has integral Fourier coefficients. In [15], based on Grabner’s results, Kaminaka and Kato completely determined the sets 2={4,8},3={6},4=\mathcal{E}_{2}=\{4,8\},\mathcal{E}_{3}=\{6\},\mathcal{E}_{4}=\emptyset, and showed that the set 1\mathcal{E}_{1} is a subset of a finite set of cardinality 22. Our main theorem asserts that their finite set coincides with 1\mathcal{E}_{1}.

Theorem 1.

We have

1={2,6,8,10,12,14,16,18,20,22,24,28,30,32,34,38,54,58,68,80,114,118}.\displaystyle\mathcal{E}_{1}=\{2,6,8,10,12,14,16,18,20,22,24,28,30,32,34,38,54,58,68,80,114,118\}. (2)

Note that there is no quasimodular form of weight 44 and depth 11, since there is no modular form of weight 2 on Γ\Gamma. The minimum weight for the normalized extremal quasimodular forms with non-integral Fourier coefficients is 26, and the Fourier coefficients belong to 15\frac{1}{5}\mathbb{Z}:

G26(1)\displaystyle G_{26}^{(1)} =E2(E461640E43Δ+269280Δ2)E42E6(E43920Δ)69837768000\displaystyle=\frac{E_{2}(E_{4}^{6}-1640E_{4}^{3}\Delta+269280\Delta^{2})-E_{4}^{2}E_{6}(E_{4}^{3}-920\Delta)}{69837768000}
=q4+11765q5+18816q6++316607232q9+198459815685q10+O(q11).\displaystyle=q^{4}+\frac{1176}{5}q^{5}+18816q^{6}+\cdots+316607232q^{9}+\frac{19845981568}{5}q^{10}+O(q^{11}).

Here are some examples of the normalized extremal quasimodular forms of lower weight and depth 1. Obviously, the following forms have integral Fourier coefficients:

G2(1)\displaystyle G_{2}^{(1)} =E2=D(logΔ)=124n=1σ1(n)qn,\displaystyle=E_{2}=D(\log\Delta)=1-24\sum_{n=1}^{\infty}\sigma_{1}(n)q^{n},
G6(1)\displaystyle G_{6}^{(1)} =E2E4E6720=D(E4)240=n=1nσ3(n)qn,\displaystyle=\frac{E_{2}E_{4}-E_{6}}{720}=\frac{D(E_{4})}{240}=\sum_{n=1}^{\infty}n\sigma_{3}(n)q^{n},
G8(1)\displaystyle G_{8}^{(1)} =E42E2E61008=D(E6)504=n=1nσ5(n)qn,\displaystyle=\frac{E_{4}^{2}-E_{2}E_{6}}{1008}=-\frac{D(E_{6})}{504}=\sum_{n=1}^{\infty}n\sigma_{5}(n)q^{n},
G10(1)\displaystyle G_{10}^{(1)} =E4G6(1)=D(E8)480=n=1nσ7(n)qn,\displaystyle=E_{4}G_{6}^{(1)}=\frac{D(E_{8})}{480}=\sum_{n=1}^{\infty}n\sigma_{7}(n)q^{n},

where Δ\Delta is the “discriminant” cusp form of weight 12 on Γ\Gamma:

Δ(τ)=qn=1(1qn)24=E4(τ)3E6(τ)21728S12(Γ).\displaystyle\Delta(\tau)=q\prod_{n=1}^{\infty}(1-q^{n})^{24}=\frac{E_{4}(\tau)^{3}-E_{6}(\tau)^{2}}{1728}\in S_{12}(\Gamma).

Using this infinite product expression of Δ(τ)\Delta(\tau) or the differential relation (1), we see that D(logΔ)=D(Δ)/Δ=E2D(\log\Delta)=D(\Delta)/\Delta=E_{2}. The first few non-trivial examples of Gw(1)[[q]]G_{w}^{(1)}\in\mathbb{Z}[\![q]\!] are given below.

G12(1)\displaystyle G_{12}^{(1)} =E431008ΔE2E4E6332640=123527n=2(nσ9(n)τ(n))qn\displaystyle=\frac{E_{4}^{3}-1008\Delta-E_{2}E_{4}E_{6}}{332640}=\frac{1}{2\cdot 3\cdot 5^{2}\cdot 7}\sum_{n=2}^{\infty}(n\sigma_{9}(n)-\tau(n))q^{n}
=q2+56q3+1002q4+9296q5+57708q6+269040q7+O(q8),\displaystyle=q^{2}+56q^{3}+1002q^{4}+9296q^{5}+57708q^{6}+269040q^{7}+O(q^{8}),
G14(1)\displaystyle G_{14}^{(1)} =E2(E43720Δ)E42E6393120=123691n=2n(σ11(n)τ(n))qn\displaystyle=\frac{E_{2}(E_{4}^{3}-720\Delta)-E_{4}^{2}E_{6}}{393120}=\frac{1}{2\cdot 3\cdot 691}\sum_{n=2}^{\infty}n(\sigma_{11}(n)-\tau(n))q^{n}
=q2+128q3+4050q4+58880q5+525300q6+3338496q7+O(q8).\displaystyle=q^{2}+128q^{3}+4050q^{4}+58880q^{5}+525300q^{6}+3338496q^{7}+O(q^{8}).

In [15, Rem. 1.2], Grabner pointed out to Kato that the integrality of these Fourier coefficients can be proved by using a classical congruence formula between Ramanujan’s tau-function τ(n)\tau(n), defined by Δ=n=1τ(n)qn\Delta=\sum_{n=1}^{\infty}\tau(n)q^{n}, and σk(n)\sigma_{k}(n) (see also Section 5 for the integrality of G14(1)G_{14}^{(1)}).

Since G16(1)=E4G12(1)G_{16}^{(1)}=E_{4}G_{12}^{(1)} holds (see Proposition 2), we also see that G16(1)[[q]]G_{16}^{(1)}\in\mathbb{Z}[\![q]\!]. However, it is probably difficult to express the Fourier coefficients of, say, G118(1)G_{118}^{(1)} in terms of known number-theoretic functions and to show congruence formulas that they satisfy. The key idea that avoids this difficulty is to use the reciprocal of the elliptic modular function j(τ)1=Δ(τ)/E4(τ)3=q744q2+356652q3j(\tau)^{-1}=\Delta(\tau)/E_{4}(\tau)^{3}=q-744q^{2}+356652q^{3}-\dotsb instead of q=e2πiτq=e^{2\pi i\tau} as the local parameter at infinity (or equivalently, at the cusp of Γ\Gamma). As will be shown later, Lemma 1 guarantees that the integrality of the coefficients is equivalent when expanded for each local parameter. Furthermore, this idea also provides a unified method of proof for all weights by using generalized hypergeometric series.

Observing the examples of Gw(1)G_{w}^{(1)} above, we find that its Fourier coefficients are positive, except for G2(1)=E2G_{2}^{(1)}=E_{2}. More generally, Kaneko and Koike conjectured in [19] that the Fourier coefficients of Gw(r)G_{w}^{(r)} would be positive if w4w\geq 4 and 1r41\leq r\leq 4. For this positivity conjecture, Grabner showed in [11] that the conjecture is true if w200w\leq 200 and 1r41\leq r\leq 4, by proving the asymptotic formula for the Fourier coefficients of Gw(r)G_{w}^{(r)}. Thus, from Theorem 1, we can conclude that the Fourier coefficients of Gw(1)G_{w}^{(1)} are positive integers if and only if their weight ww belongs to 1\{2}\mathcal{E}_{1}\backslash\{2\}.

The paper is organized as follows. Sections 2 to 4 are related to the main theorem. In Section 2 we derive that the normalized extremal quasimodular forms of depth 1 have a hypergeometric expression, and rewrite them using the Atkin-like polynomials Am,a(X)A_{m,a}(X) and their adjoint polynomials Bm,a(X)B_{m,a}(X). Then the main theorem can be reduced to the fact that a formal power series vanishes modulo a prime power, since the polynomial part arising from the “factorization” of a formal power series vanishes. To “factorize” the formal power series, we use some results on pp-adic hypergeometric series by Dwork and Zudilin. In Section 3, we specialize their results and prove several propositions. In Section 4 we prove the main theorem of this paper by combining the results of the previous sections.

In Section 5 we explicitly construct extremal quasimodular forms of depth 1 with integral Fourier coefficients by focusing on their hypergeometric expression.

In Section 6 we summarize some previous work on the normalized extremal quasimodular forms of depth 2 to 4 and present some supplementary results, in particular from a hypergeometric point of view. We also present some previous work in which the group Γ\Gamma is replaced by a low-level congruence subgroup or Fricke group for (extremal) quasimodular forms of depth 1.

In Appendices we give: (i) A table of the integral Fourier coefficients of the normalized extremal quasimodular forms of depth 1. (ii) Explicit formulas for the coefficients of a certain formal power series that appears in the proof of the main theorem.

2. Gw(1)G_{w}^{(1)} as a formal power series of j1j^{-1}

Let p,qp,q be non-negative integers and ai,bja_{i},b_{j}\in\mathbb{C} with bj0b_{j}\not\in\mathbb{Z}_{\leq 0}. The generalized hypergeometric series Fqp{}_{p}F_{q} is defined by

Fqp(a1,,ap;b1,,bq;z)=n=0(a1)n(ap)n(b1)n(bq)nznn!,\displaystyle{}_{p}F_{q}\left(a_{1},\dots,a_{p};b_{1},\dots,b_{q};z\right)=\sum_{n=0}^{\infty}\frac{(a_{1})_{n}\dotsm(a_{p})_{n}}{(b_{1})_{n}\dotsm(b_{q})_{n}}\frac{z^{n}}{n!},

where (a)0=1,(a)n=a(a+1)(a+n1)(n1)(a)_{0}=1,(a)_{n}=a(a+1)\cdots(a+n-1)\;(n\geq 1) denotes the Pochhammer symbol. This series is clearly invariant under the interchange of each of the parameters aia_{i}, and the same is true for bjb_{j}. When q=p1q=p-1, the series F=Fp1p(a1,,ap;b1,,bp1;z)F={}_{p}F_{p-1}\left(a_{1},\dots,a_{p};b_{1},\dots,b_{p-1};z\right) satisfies the differential equation

zp1(1z)dpFdzp+n=1p1zn1(αnz+βn)dnFdzn+α0F=0,\displaystyle z^{p-1}(1-z)\frac{d^{p}F}{dz^{p}}+\sum_{n=1}^{p-1}z^{n-1}(\alpha_{n}z+\beta_{n})\frac{d^{n}F}{dz^{n}}+\alpha_{0}\,F=0,

where αn\alpha_{n} and βn\beta_{n} are some constants that depend on the parameters aia_{i} and bjb_{j}. Using the Euler operator Θ=zddz\Theta=z\tfrac{d}{dz}, the above differential equation can be rewritten as follows:

{Θ(Θ+b11)(Θ+bp11)z(Θ+a1)(Θ+ap)}F=0.\displaystyle\{\Theta(\Theta+b_{1}-1)\dotsm(\Theta+b_{p-1}-1)-z(\Theta+a_{1})\dotsm(\Theta+a_{p})\}F=0.

Here we collect some hypergeometric series identities that we will use in later discussions.

F12(α,β;γ;z)=(1z)γαβF12(γα,γβ;γ;z),\displaystyle{}_{2}F_{1}\left(\alpha,\beta;\gamma;z\right)=(1-z)^{\gamma-\alpha-\beta}{}_{2}F_{1}\left(\gamma-\alpha,\gamma-\beta;\gamma;z\right), (3)
F12(α+1,β;γ;z)=(1+1αzddz)F12(α,β;γ;z),\displaystyle{}_{2}F_{1}\left(\alpha+1,\beta;\gamma;z\right)=\left(1+\tfrac{1}{\alpha}\,z\tfrac{d}{dz}\right){}_{2}F_{1}\left(\alpha,\beta;\gamma;z\right), (4)
F12(α,β;α+β+12;z)2=F23(2α,α+β,2β;2α+2β,α+β+12;z)(Clausen’s formula),\displaystyle\begin{split}&{}_{2}F_{1}\left(\alpha,\beta;\alpha+\beta+\tfrac{1}{2};z\right)^{2}\\ &={}_{3}F_{2}\left(2\alpha,\alpha+\beta,2\beta;2\alpha+2\beta,\alpha+\beta+\tfrac{1}{2};z\right)\end{split}\quad\text{(Clausen's formula)}, (5)
F12(α,β;α+β12;z)F12(α,β1;α+β12;z)=F23(2α,2β1,α+β1;2α+2β2,α+β12;z)(Orr’s formula).\displaystyle\begin{split}&{}_{2}F_{1}\left(\alpha,\beta;\alpha+\beta-\tfrac{1}{2};z\right){}_{2}F_{1}\left(\alpha,\beta-1;\alpha+\beta-\tfrac{1}{2};z\right)\\ &={}_{3}F_{2}\left(2\alpha,2\beta-1,\alpha+\beta-1;2\alpha+2\beta-2,\alpha+\beta-\tfrac{1}{2};z\right)\end{split}\quad\text{(Orr's formula)}. (6)

See [2, pp. 85-86] for the proof and historical background of the equations (5) and (6).

Proposition 1.

For sufficiently large (τ)\Im(\tau), we have

E4(τ)\displaystyle E_{4}(\tau) =F12(112,512;1;1728j(τ))4,E4(τ)1/2=F23(16,12,56;1,1;1728j(τ)),\displaystyle={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j(\tau)}\right)^{4},\quad E_{4}(\tau)^{1/2}={}_{3}F_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6};1,1;\frac{1728}{j(\tau)}\right), (7)
E6(τ)\displaystyle E_{6}(\tau) =(11728j(τ))1/2F12(112,512;1;1728j(τ))6,\displaystyle=\left(1-\frac{1728}{j(\tau)}\right)^{1/2}{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j(\tau)}\right)^{6}, (8)
E2(τ)\displaystyle E_{2}(\tau) =F12(112,512;1;1728j(τ))F12(112,712;1;1728j(τ))\displaystyle={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j(\tau)}\right){}_{2}F_{1}\left(-\frac{1}{12},\frac{7}{12};1;\frac{1728}{j(\tau)}\right) (9)
=(11728j(τ))1/2F23(12,56,76;1,1;1728j(τ)).\displaystyle=\left(1-\frac{1728}{j(\tau)}\right)^{1/2}{}_{3}F_{2}\left(\frac{1}{2},\frac{5}{6},\frac{7}{6};1,1;\frac{1728}{j(\tau)}\right). (10)

The hypergeometric expressions of the Eisenstein series E4E_{4} and E6E_{6} are classical and well known, for the proof, see [36]. In particular, E41/4E_{4}^{1/4} is one of the solutions of a hypergeometric differential equation at j=j=\infty, and for the solution at j=0,1728j=0,1728, we refer to [1]. To obtain the second equation of (7), we use Clausen’s formula (5). See [41, §5.4] for a more general explanation of the fact that a (holomorphic or meromorphic) modular form satisfies a linear differential equation with a modular function as a variable.

In contrast to E4E_{4} and E6E_{6}, the hypergeometric expression (9) of E2E_{2} is less well known. To the best of the author’s knowledge, the expression can be found in the author’s Ph.D. thesis [27, Ch. 3] and [31, Thm. 5]. There is also an equivalent expression in [26, Ch. 2.6], although it looks a little different. For the convenience of the reader, we will briefly review the proof in [27] here; by calculating the logarithmic derivative of Δ=j1E43=j1F12(112,512;1;1728j)12\Delta=j^{-1}E_{4}^{3}=j^{-1}{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})^{12}, we have

E2\displaystyle E_{2} =D(logΔ)=D(j)j+12F12(112,512;1;1728j)1D(F12(112,512;1;1728j))\displaystyle=D(\log\Delta)=-\tfrac{D(j)}{j}+12\,{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})^{-1}D\left({}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})\right)
=D(j)j+12F12(112,512;1;1728j)1D(1728j)ddzF12(112,512;1;z)|z=1728/j\displaystyle=-\tfrac{D(j)}{j}+12\,{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})^{-1}D\left(\tfrac{1728}{j}\right)\tfrac{d}{dz}{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;z)\big{|}_{z=1728/j}
=D(j)jF12(112,512;1;1728j)1{(1+12zddz)F12(112,512;1;z)|z=1728/j}\displaystyle=-\tfrac{D(j)}{j}\,{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})^{-1}\left\{\left(1+12z\tfrac{d}{dz}\right){}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;z)\big{|}_{z=1728/j}\right\}
=E6E4F12(112,512;1;1728j)1F12(1312,512;1;1728j)(by (4))\displaystyle=\tfrac{E_{6}}{E_{4}}\,{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})^{-1}\,{}_{2}F_{1}(\tfrac{13}{12},\tfrac{5}{12};1;\tfrac{1728}{j})\quad\text{(by \eqref{eq:dHyp})}
=E6E4F12(112,512;1;1728j)1(11728j)1/2F12(112,712;1;1728j)(by (3))\displaystyle=\tfrac{E_{6}}{E_{4}}\,{}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})^{-1}\,\left(1-\tfrac{1728}{j}\right)^{-1/2}\,{}_{2}F_{1}(-\tfrac{1}{12},\tfrac{7}{12};1;\tfrac{1728}{j})\quad\text{(by \eqref{eq:Euler})}
=F12(112,512;1;1728j)F12(112,712;1;1728j).\displaystyle={}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})\,{}_{2}F_{1}(-\tfrac{1}{12},\tfrac{7}{12};1;\tfrac{1728}{j}).

In the fourth equality we used the fact that D(j)=jE6/E4D(j)=-jE_{6}/E_{4}, which can be calculated with (1). Equation (10) is obtained by transforming Equation (9) using Orr’s formula as (α,β)=(712,1112)(\alpha,\beta)=(\tfrac{7}{12},\tfrac{11}{12}) as follows.

E2\displaystyle E_{2} =F12(112,512;1;1728j)F12(112,712;1;1728j)\displaystyle={}_{2}F_{1}(\tfrac{1}{12},\tfrac{5}{12};1;\tfrac{1728}{j})\,{}_{2}F_{1}(-\tfrac{1}{12},\tfrac{7}{12};1;\tfrac{1728}{j})
=(11728j)1/2F12(1112,712;1;1728j)F12(112,712;1;1728j)\displaystyle=\left(1-\tfrac{1728}{j}\right)^{1/2}\,{}_{2}F_{1}(\tfrac{11}{12},\tfrac{7}{12};1;\tfrac{1728}{j})\,{}_{2}F_{1}(-\tfrac{1}{12},\tfrac{7}{12};1;\tfrac{1728}{j})
=(11728j)1/2F23(76,56,12;1,1;1728j).\displaystyle=\left(1-\tfrac{1728}{j}\right)^{1/2}\,{}_{3}F_{2}(\tfrac{7}{6},\tfrac{5}{6},\tfrac{1}{2};1,1;\tfrac{1728}{j}).

Alternatively, the expressions (9) and (10) can be obtained by setting n=0n=0 in equations (21) and (58), since E2=G2(1)=G2(2)E_{2}=G_{2}^{(1)}=G_{2}^{(2)}.

By setting t=1/j(τ)t=1/j(\tau), Proposition 1 immediately implies the following theorem, which is a generalization of Theorem 5 in [36] for M(Γ)=[E4,E6]M_{*}(\Gamma)=\mathbb{C}[E_{4},E_{6}].

Theorem 2.

Put 1(t)=F12(112,512;1;1728t),2(t)=F12(112,712;1;1728t)\mathcal{F}_{1}(t)={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right),\mathcal{F}_{2}(t)={}_{2}F_{1}\left(-\frac{1}{12},\frac{7}{12};1;1728t\right), and then we have the ring isomorphism

QM(Γ):=[1(t)2(t),1(t)4,(11728t)1/21(t)6].\displaystyle QM_{*}(\Gamma)\simeq\mathcal{F}:=\mathbb{C}[\mathcal{F}_{1}(t)\mathcal{F}_{2}(t),\mathcal{F}_{1}(t)^{4},(1-1728t)^{1/2}\mathcal{F}_{1}(t)^{6}]. (11)

Moreover, since QMQM_{*} is closed under the derivation DD, the ring \mathcal{F} is closed under the derivation D:=(11728t)1/21(t)2tddtD_{\mathcal{F}}:=(1-1728t)^{1/2}\mathcal{F}_{1}(t)^{2}\,t\frac{d}{dt}. In other words, the isomorphism (QM(Γ),D)(,D)(QM_{*}(\Gamma),D)\simeq(\mathcal{F},D_{\mathcal{F}}) holds as a graded differential algebra over \mathbb{C}.

Based on the ring isomorphism (11), we can consider the problem of the integrality of the Fourier coefficients of normalized extremal quasimodular forms as an equivalence problem in \mathcal{F}.

Example 1.

The formula in \mathcal{F} equivalent to the formula D(E2)=112(E22E4)D(E_{2})=\tfrac{1}{12}(E_{2}^{2}-E_{4}) in QMQM_{*} can be calculated as follows.

12tddt1(t)2(t)=(12tddt1(t))2(t)+1(t)(12tddt2(t))\displaystyle{}12t\frac{d}{dt}\mathcal{F}_{1}(t)\mathcal{F}_{2}(t)=\left(12t\frac{d}{dt}\mathcal{F}_{1}(t)\right)\mathcal{F}_{2}(t)+\mathcal{F}_{1}(t)\left(12t\frac{d}{dt}\mathcal{F}_{2}(t)\right)
=2(t)(1+12tddt)1(t)1(t)(112tddt)2(t)\displaystyle=\mathcal{F}_{2}(t)\left(1+12t\frac{d}{dt}\right)\mathcal{F}_{1}(t)-\mathcal{F}_{1}(t)\left(1-12t\frac{d}{dt}\right)\mathcal{F}_{2}(t)
=2(t)F12(1312,512;1;1728t)1(t)F12(1112,712;1;1728t)(by (4))\displaystyle=\mathcal{F}_{2}(t)\,{}_{2}F_{1}\left(\tfrac{13}{12},\tfrac{5}{12};1;1728t\right)-\mathcal{F}_{1}(t)\,{}_{2}F_{1}\left(\tfrac{11}{12},\tfrac{7}{12};1;1728t\right)\quad(\text{by \eqref{eq:dHyp}})
=(11728t)1/2(2(t)21(t)2)(by (3)).\displaystyle=(1-1728t)^{-1/2}\left(\mathcal{F}_{2}(t)^{2}-\mathcal{F}_{1}(t)^{2}\right)\quad(\text{by \eqref{eq:Euler}}).

Hence we obtain D(1(t)2(t))=112(1(t)22(t)21(t)4)D_{\mathcal{F}}(\mathcal{F}_{1}(t)\mathcal{F}_{2}(t))=\tfrac{1}{12}(\mathcal{F}_{1}(t)^{2}\mathcal{F}_{2}(t)^{2}-\mathcal{F}_{1}(t)^{4}). The equations corresponding to the remaining equations in (1) can be calculated in a similar way.

We introduce the Serre derivative (or Ramanujan–Serre derivative) k\partial_{k} defined by

k=Dk12E2.\displaystyle\partial_{k}=D-\frac{k}{12}E_{2}.

From this definition, it is clear that the Leibniz rule k+l(fg)=k(f)g+fl(g)\partial_{k+l}(fg)=\partial_{k}(f)g+f\partial_{l}(g) is satisfied. According to convention, we use the following symbols for the iterated Serre derivative:

k0(f)=f,kn+1(f)=k+2nkn(f)(n0).\displaystyle\partial_{k}^{0}(f)=f,\quad\partial_{k}^{n+1}(f)=\partial_{k+2n}\circ\partial_{k}^{n}(f)\quad(n\geq 0).

It is well known that kr:QMk(r)QMk+2(r)\partial_{k-r}:QM_{k}^{(r)}\rightarrow QM_{k+2}^{(r)} for even kk and r0r\in\mathbb{Z}_{\geq 0}, which is a special case of Proposition 3.3 in [19]. By rewriting (1) using the Serre derivative, we obtain the following useful consequences.

1(E2)=112E4,4(E4)=13E6,6(E6)=12E42.\displaystyle\partial_{1}(E_{2})=-\frac{1}{12}E_{4},\quad\partial_{4}(E_{4})=-\frac{1}{3}E_{6},\quad\partial_{6}(E_{6})=-\frac{1}{2}E_{4}^{2}. (12)

Note that the Serre derivative is not necessarily depth-preserving, as can be seen from the first equation in (12). Therefore, it is necessary to confirm the depth of the quasimodular form created by repeatedly applying a differential operator including the Serre derivative as in (17).

Now we consider the following differential equation, called the Kaneko–Zagier equation or, in a more general context, a second-order modular linear differential equation:

D2(f)w6E2D(f)+w(w1)12D(E2)f=0.\displaystyle D^{2}(f)-\frac{w}{6}E_{2}D(f)+\frac{w(w-1)}{12}D(E_{2})f=0. (13)

This differential equation (with ww replaced by k+1k+1) first appeared in the study of the jj-invariants of supersingular elliptic curves in [21] and was characterized in [17, §5]. Although we consider quasimodular form solutions of (13) in this paper, it should be emphasized that the Kaneko–Zagier equation (13) has modular form solutions of level 1,2,3,41,2,3,4 ([17]), and 55 ([16]) and mixed mock modular form solutions ([12]) for appropriate ww.

It is easy to rewrite the differential equation (13) as Lw(f)=0L_{w}(f)=0, where

Lww12w21144E4.\displaystyle L_{w}\coloneqq\partial_{w-1}^{2}-\frac{w^{2}-1}{144}E_{4}. (14)

We also define the differential operators KwupK_{w}^{\mathrm{up}} ([10]) and its “adjoint” Kwup^\widehat{K_{w}^{\mathrm{up}}} as follows:

KwupE4w1w+112E6,Kwup^E4w+3w+912E6.\displaystyle K_{w}^{\mathrm{up}}\coloneqq E_{4}\partial_{w-1}-\frac{w+1}{12}E_{6},\quad\widehat{K_{w}^{\mathrm{up}}}\coloneqq E_{4}\partial_{w+3}-\frac{w+9}{12}E_{6}. (15)

Then we have the following identity for the composition of the differential operators.

Lw+6Kwup=Kwup^Lw.\displaystyle L_{w+6}\circ K_{w}^{\mathrm{up}}=\widehat{K_{w}^{\mathrm{up}}}\circ L_{w}. (16)

We will not give the proof, since it is a simple calculation by using Ramanujan’s identity (1). However, this identity is important for investigating the inductive structure of the solutions of the differential equation Lw(f)=0L_{w}(f)=0. Indeed, if a function ff satisfies Lw(f)=0L_{w}(f)=0, we see that F:=Kwup(f)F:=K_{w}^{\mathrm{up}}(f) satisfies Lw+6(F)=0L_{w+6}(F)=0. Therefore, the identity (16) gives not only the structure of the quasimodular solution of (13), but also that of a modular solution, a logarithmic solution, and a formal qq-series solution.

The differential operator (16) can be considered as a third-order differential operator, so that the given second-order differential operators Lw+6L_{w+6} and LwL_{w} are in the left and right factors, respectively. From this point of view, the factors KwupK_{w}^{\mathrm{up}} and its adjoint are uniquely and independently determined from the Fourier coefficients of the extremal quasimodular forms, up to a constant multiple.

We define the sequence of power series GkG_{k}^{*} by the following differential recursions:

G0=1,Gw+6=w+672(w+1)(w+5)Kwup(Gw),\displaystyle{}G_{0}^{*}=1,\quad G_{w+6}^{*}=\frac{w+6}{72(w+1)(w+5)}K_{w}^{\mathrm{up}}(G_{w}^{*}), (17)
Gw+2=12w+1w1(Gw),Gw+4=E4Gw.\displaystyle{}G_{w+2}^{*}=\frac{12}{w+1}\partial_{w-1}(G_{w}^{*}),\quad G_{w+4}^{*}=E_{4}G_{w}^{*}. (18)

The proportionality constants appearing in the definition are chosen so that the leading coefficients of GwG_{w}^{*} and Gw+2G_{w+2}^{*} are 11 as follows. Since L0(G0)=L0(1)=0L_{0}(G_{0}^{*})=L_{0}(1)=0, we have Lw(Gw)=0L_{w}(G_{w}^{*})=0 for any w0(mod6)w\equiv 0\pmod{6} with the aid of (16). Then the Frobenius ansatz (see [10, §2.3]) gives

Gw=qw/6{1+4w(2w3)w+6q+O(q2)}.\displaystyle G_{w}^{*}=q^{w/6}\left\{1+\frac{4w(2w-3)}{w+6}q+O(q^{2})\right\}.

By applying the differential operators w1\partial_{w-1} and KwupK_{w}^{\mathrm{up}} act on this power series, we have

w1(Gw)\displaystyle\partial_{w-1}(G_{w}^{*}) =qw/6(w+112+O(q)),\displaystyle=q^{w/6}\left(\frac{w+1}{12}+O(q)\right),
Kwup(Gw)\displaystyle K_{w}^{\mathrm{up}}(G_{w}^{*}) =q(w+6)/6{72(w+1)(w+5)w+6+O(q)}.\displaystyle=q^{(w+6)/6}\left\{\frac{72(w+1)(w+5)}{w+6}+O(q)\right\}.

Note that Gw+4G_{w+4}^{*} can also be expressed as 12w1w+1(Gw+2)\frac{12}{w-1}\partial_{w+1}(G_{w+2}^{*}).

From this construction and the property of the Serre derivative w1:QMw(1)QMw+2(1)\partial_{w-1}:QM_{w}^{(1)}\rightarrow QM_{w+2}^{(1)}, it is clear that Gk=qm1(1+O(q))G_{k}^{*}=q^{m-1}(1+O(q)) for m=dimQMk(1)m=\dim_{\mathbb{C}}QM_{k}^{(1)} and GkQMk(1)G_{k}^{*}\in QM_{k}^{(1)} for even integer kk. Therefore, from the same discussion in Section 1, the power series GkG_{k}^{*} is nothing but the normalized extremal quasimodular form Gk(1)G_{k}^{(1)}, we have Lw(Gw(1))=0L_{w}(G_{w}^{(1)})=0 for w0(mod6)w\equiv 0\pmod{6}.

By changing the variables z=1728/j(τ)z=1728/j(\tau), the Kaneko–Zagier equation (13), which is equivalent to Lw(f)=0L_{w}(f)=0, is transformed into

z(1z)d2gdz2+(w66+w96z)dgdz(w1)(w5)144g=0\displaystyle z(1-z)\frac{d^{2}g}{dz^{2}}+\left(-\frac{w-6}{6}+\frac{w-9}{6}z\right)\frac{dg}{dz}-\frac{(w-1)(w-5)}{144}g=0

or equivalently (Recall that Θ=zddz\Theta=z\tfrac{d}{dz}.)

{Θ(Θw661)z(Θw112)(Θw512)}g=0,\displaystyle\left\{\Theta\left(\Theta-\frac{w-6}{6}-1\right)-z\left(\Theta-\frac{w-1}{12}\right)\left(\Theta-\frac{w-5}{12}\right)\right\}g=0,

where g(τ)=E4(τ)(w1)/4f(τ)g(\tau)=E_{4}(\tau)^{-(w-1)/4}f(\tau). This differential equation is a hypergeometric differential equation. Since we now assume w0(mod6)w\equiv 0\pmod{6}, the solution space of the above differential equation is spanned by the power series solution

zw/6F12(w+112,w+512;w6+1;z)\displaystyle z^{w/6}\,{}_{2}F_{1}\left(\frac{w+1}{12},\frac{w+5}{12};\frac{w}{6}+1;z\right) (19)

and a logarithmic solution. Therefore, since the extremal quasimodular forms contain no logarithmic terms, we obtain the hypergeometric expression of Gw(1)G_{w}^{(1)} for w0(mod6)w\equiv 0\pmod{6}.

Proposition 2.

The normalized extremal quasimodular forms of even weight and depth 11 on Γ\Gamma have the following hypergeometric expressions.

G6n(1)(τ)\displaystyle G_{6n}^{(1)}(\tau) =j(τ)nF12(112,512;1;1728j(τ))2(3n1)Pn(1j(τ)),\displaystyle=j(\tau)^{-n}{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j(\tau)}\right)^{2(3n-1)}P_{n}\left(\frac{1}{j(\tau)}\right),
G6n+2(1)(τ)\displaystyle G_{6n+2}^{(1)}(\tau) =j(τ)nF12(112,512;1;1728j(τ))6nQn(1j(τ)),\displaystyle=j(\tau)^{-n}{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j(\tau)}\right)^{6n}Q_{n}\left(\frac{1}{j(\tau)}\right),
G6n+4(1)(τ)\displaystyle G_{6n+4}^{(1)}(\tau) =E4(τ)G6n(1)(τ),\displaystyle=E_{4}(\tau)G_{6n}^{(1)}(\tau),

where

Pn(t)\displaystyle P_{n}(t) :=F12(112,512;1;1728t)F12(6n+112,6n+512;n+1;1728t),\displaystyle:={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)\,{}_{2}F_{1}\left(\frac{6n+1}{12},\frac{6n+5}{12};n+1;1728t\right), (20)
Qn(t)\displaystyle Q_{n}(t) :=F12(112,512;1;1728t)F12(6n112,6n+712;n+1;1728t).\displaystyle:={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)\,{}_{2}F_{1}\left(\frac{6n-1}{12},\frac{6n+7}{12};n+1;1728t\right). (21)
Proof.

The hypergeometric expression of G6n(1)(τ)G_{6n}^{(1)}(\tau) can be obtained by setting z=1728j(τ)z=\frac{1728}{j(\tau)} in (19) and multiplying by 1728nE4(6n1)/41728^{-n}E_{4}^{(6n-1)/4}. Similar expression of G6n+2(1)(τ)G_{6n+2}^{(1)}(\tau) can be obtained by applying the Serre derivative to G6n(1)(τ)G_{6n}^{(1)}(\tau) as follows (w=6nw=6n):

w+112Gw+2(1)=w1(Gw(1))=D(Gw(1))w112E2Gw(1)\displaystyle{}\frac{w+1}{12}G_{w+2}^{(1)}=\partial_{w-1}(G_{w}^{(1)})=D(G_{w}^{(1)})-\frac{w-1}{12}E_{2}G_{w}^{(1)}
=D(jw/6E4(w1)/4)F12(w+112,w+512;w6+1;1728j)\displaystyle=D(j^{-w/6}E_{4}^{(w-1)/4})\,{}_{2}F_{1}\left(\frac{w+1}{12},\frac{w+5}{12};\frac{w}{6}+1;\frac{1728}{j}\right)
+jw/6E4(w1)/4D(1728j)ddzF12(w+112,w+512;w6+1;z)|z=1728/j\displaystyle{}\quad+j^{-w/6}E_{4}^{(w-1)/4}D\left(\frac{1728}{j}\right)\frac{d}{dz}{}_{2}F_{1}\left(\frac{w+1}{12},\frac{w+5}{12};\frac{w}{6}+1;z\right)\Bigg{|}_{z=1728/j}
w112E2jw/6E4(w1)/4F12(w+112,w+512;w6+1;1728j)\displaystyle{}\quad-\frac{w-1}{12}E_{2}\,j^{-w/6}E_{4}^{(w-1)/4}\,{}_{2}F_{1}\left(\frac{w+1}{12},\frac{w+5}{12};\frac{w}{6}+1;\frac{1728}{j}\right)
=w+112jw/6E4(w5)/4E6F12(w+112,w+512;w6+1;1728j)\displaystyle=\frac{w+1}{12}j^{-w/6}E_{4}^{(w-5)/4}E_{6}\;{}_{2}F_{1}\left(\frac{w+1}{12},\frac{w+5}{12};\frac{w}{6}+1;\frac{1728}{j}\right)
+jw/6E4(w5)/4E6zddzF12(w+112,w+512;w6+1;z)|z=1728/j\displaystyle{}\quad+j^{-w/6}E_{4}^{(w-5)/4}E_{6}\;z\frac{d}{dz}{}_{2}F_{1}\left(\frac{w+1}{12},\frac{w+5}{12};\frac{w}{6}+1;z\right)\Bigg{|}_{z=1728/j}
=w+112jw/6E4(w5)/4E6F12(w+1312,w+512;w6+1;1728j)(by (4))\displaystyle=\frac{w+1}{12}j^{-w/6}E_{4}^{(w-5)/4}E_{6}\;{}_{2}F_{1}\left(\frac{w+13}{12},\frac{w+5}{12};\frac{w}{6}+1;\frac{1728}{j}\right)\quad(\text{by \eqref{eq:dHyp}})
=w+112jw/6E4(w+1)/4F12(w112,w+712;w6+1;1728j)(by (3)).\displaystyle=\frac{w+1}{12}j^{-w/6}E_{4}^{(w+1)/4}\;{}_{2}F_{1}\left(\frac{w-1}{12},\frac{w+7}{12};\frac{w}{6}+1;\frac{1728}{j}\right)\quad(\text{by \eqref{eq:Euler}}).

Remark 1.

When w=0w=0, the Kaneko–Zagier equation (13) becomes the equation D2(f)=0D^{2}(f)=0, which has 1 and 2πiτ=log(q)2\pi i\tau=\log(q) as independent solutions. In general, for w=6n(n0)w=6n\,(n\in\mathbb{Z}_{\geq 0}), the two-dimensional solution space of the differential equation (13) has already been discussed in [17, §5], and its basis is given by G6n(1)(τ)G_{6n}^{(1)}(\tau) and

H6n(1)(τ):={G12m(1)(τ)log(q)12Nm,0E4(τ)E6(τ)Δ(τ)m1Am,0(j(τ)) if n=2m(m0),G12m+6(1)(τ)log(q)+12Nm,6E4(τ)Δ(τ)mAm,6(j(τ)) if n=2m+1(m0),\displaystyle H_{6n}^{(1)}(\tau):=\begin{cases}G_{12m}^{(1)}(\tau)\log(q)-\dfrac{12}{N_{m,0}}E_{4}(\tau)E_{6}(\tau)\Delta(\tau)^{m-1}A_{m,0}(j(\tau))\\ \quad\text{ if $n=2m\,(m\in\mathbb{Z}_{\geq 0})$},\\ G_{12m+6}^{(1)}(\tau)\log(q)+\dfrac{12}{N_{m,6}}E_{4}(\tau)\Delta(\tau)^{m}A_{m,6}(j(\tau))\\ \quad\text{ if $n=2m+1\,(m\in\mathbb{Z}_{\geq 0})$},\end{cases}

where Am,0(X)A_{m,0}(X) and Am,6(X)A_{m,6}(X) are Atkin-like polynomials that appear later in this section, and the numbers Nm,0N_{m,0} and Nm,6N_{m,6} are defined by (27) and (28). The solution H6n(1)H_{6n}^{(1)} can also be obtained by the recurrence formula (17), where the initial value is replaced by H0(1)=log(q)H_{0}^{(1)}=\log(q).

It is well-known that the space Mk(Γ)M_{k}(\Gamma) has a basis {E43m+δE6ε,E43m+δ3E6εΔ,,E6εΔm}\{E_{4}^{3m+\delta}E_{6}^{\varepsilon},E_{4}^{3m+\delta-3}E_{6}^{\varepsilon}\Delta,\dotsc,E_{6}^{\varepsilon}\Delta^{m}\} for k=12m+4δ+6εk=12m+4\delta+6\varepsilon with m0,δ{0,1,2},ε{0,1}m\in\mathbb{Z}_{\geq 0},\delta\in\{0,1,2\},\varepsilon\in\{0,1\}. This basis is characterized by the fact that the leading terms of its Fourier expansion are 1,q,,qm1,q,\dotsc,q^{m}. We can construct a basis for QMk(1)(Γ)QM_{k}^{(1)}(\Gamma) with the same property using the normalized extremal quasimodular forms of depth 11.

Proposition 3.

For any even integer k2k\geq 2, a basis k(1)\mathcal{B}_{k}^{(1)} of the space QMk(1)(Γ)QM_{k}^{(1)}(\Gamma) is given by the following set: where the notation is that in Theorem 2 and Proposition 2.

12m(1)\displaystyle\mathcal{B}_{12m}^{(1)} =1(j1)12m2({j2P2(j1)}0m{j21Q2+1(j1)}0m1)\displaystyle=\mathcal{F}_{1}(j^{-1})^{12m-2}\left(\left\{j^{-2\ell}P_{2\ell}(j^{-1})\right\}_{0\leq\ell\leq m}\cup\left\{j^{-2\ell-1}Q_{2\ell+1}(j^{-1})\right\}_{0\leq\ell\leq m-1}\right)
={E43m,E43m2G8(1),E43m3G12(1),E43m5G20(1),E43m6G24(1),,G12m(1)},\displaystyle=\left\{E_{4}^{3m},E_{4}^{3m-2}G_{8}^{(1)},E_{4}^{3m-3}G_{12}^{(1)},E_{4}^{3m-5}G_{20}^{(1)},E_{4}^{3m-6}G_{24}^{(1)},\dotsc,G_{12m}^{(1)}\right\},
12m+2(1)\displaystyle\mathcal{B}_{12m+2}^{(1)} =1(j1)12m({j2Q2(j1)}0m{j21P2+1(j1)}0m1)\displaystyle=\mathcal{F}_{1}(j^{-1})^{12m}\left(\left\{j^{-2\ell}Q_{2\ell}(j^{-1})\right\}_{0\leq\ell\leq m}\cup\left\{j^{-2\ell-1}P_{2\ell+1}(j^{-1})\right\}_{0\leq\ell\leq m-1}\right)
={E43mG2(1),E43m2G10(1),E43m3G14(1),E43m5G22(1),E43m6G26(1),,G12m+2(1)},\displaystyle=\left\{E_{4}^{3m}G_{2}^{(1)},E_{4}^{3m-2}G_{10}^{(1)},E_{4}^{3m-3}G_{14}^{(1)},E_{4}^{3m-5}G_{22}^{(1)},E_{4}^{3m-6}G_{26}^{(1)},\dotsc,G_{12m+2}^{(1)}\right\},
12m+4(1)\displaystyle\mathcal{B}_{12m+4}^{(1)} =E412m(1),12m+6(1)=E412m+2(1){G12m+6(1)},\displaystyle=E_{4}\,\mathcal{B}_{12m}^{(1)},\quad\mathcal{B}_{12m+6}^{(1)}=E_{4}\,\mathcal{B}_{12m+2}^{(1)}\cup\left\{G_{12m+6}^{(1)}\right\},
12m+8(1)\displaystyle\mathcal{B}_{12m+8}^{(1)} =E4212m(1){G12m+8(1)},12m+10(1)=E412m+6(1).\displaystyle=E_{4}^{2}\,\mathcal{B}_{12m}^{(1)}\cup\left\{G_{12m+8}^{(1)}\right\},\quad\mathcal{B}_{12m+10}^{(1)}=E_{4}\,\mathcal{B}_{12m+6}^{(1)}.
Proof.

We give a proof only for the case of QM12m(1)(Γ)QM_{12m}^{(1)}(\Gamma), the remaining cases being similar. We put f0=E43m=1+O(q),f1=E43m2G8(1)=q+O(q2),,f2m=G12m(1)=q2m+O(q2m+1)f_{0}=E_{4}^{3m}=1+O(q),f_{1}=E_{4}^{3m-2}G_{8}^{(1)}=q+O(q^{2}),\dotsc,f_{2m}=G_{12m}^{(1)}=q^{2m}+O(q^{2m+1}). For any quasimodular form fQM12m(1)(Γ)f\in QM_{12m}^{(1)}(\Gamma), we can determine the coefficient ara_{r} such that F:=fr=02marfr=O(q2m+1)QM12m(1)(Γ)F:=f-\sum_{r=0}^{2m}a_{r}f_{r}=O(q^{2m+1})\in QM_{12m}^{(1)}(\Gamma). Since νmax(1,12m)=2m\nu_{\max}(1,12m)=2m, the form FF must be 0, and hence QM12m(1)(Γ)QM_{12m}^{(1)}(\Gamma) is spanned by {f0,,f2m}\{f_{0},\dotsc,f_{2m}\}. For the linear independence property, by comparing the Fourier coefficients, we have r=02marfr=0ar=0(0r2m)\sum_{r=0}^{2m}a_{r}f_{r}=0\Rightarrow a_{r}=0\,(0\leq r\leq 2m). ∎

Example 2.

Case of weight 1818: The following equation holds.

(E43E6E6ΔE2E44E2E4Δ)=1(j1)17A(F12(112,712;1;1728j)j1F12(712,1112;2;1728j)j2F12(1112,1912;3;1728j)j3F12(1912,2312;4;1728j))=A(E44G2(1)E43G6(1)E4G14(1)G18(1)),\displaystyle\begin{pmatrix}E_{4}^{3}E_{6}\\ E_{6}\Delta\\ E_{2}E_{4}^{4}\\ E_{2}E_{4}\Delta\end{pmatrix}=\mathcal{F}_{1}(j^{-1})^{17}\cdot A\begin{pmatrix}{}_{2}F_{1}(-\tfrac{1}{12},\tfrac{7}{12};1;\tfrac{1728}{j})\\ j^{-1}\,{}_{2}F_{1}(\tfrac{7}{12},\tfrac{11}{12};2;\tfrac{1728}{j})\\ j^{-2}\,{}_{2}F_{1}(\tfrac{11}{12},\tfrac{19}{12};3;\tfrac{1728}{j})\\ j^{-3}\,{}_{2}F_{1}(\tfrac{19}{12},\tfrac{23}{12};4;\tfrac{1728}{j})\end{pmatrix}=A\begin{pmatrix}E_{4}^{4}G_{2}^{(1)}\\ E_{4}^{3}G_{6}^{(1)}\\ E_{4}G_{14}^{(1)}\\ G_{18}^{(1)}\end{pmatrix},

where

A=(1720000112662692801000015460).\displaystyle A=\begin{pmatrix}1&-720&0&0\\ 0&1&-1266&269280\\ 1&0&0&0\\ 0&1&-546&0\end{pmatrix}.
Lemma 1.

The following claims hold.

  1. (1)

    f(t)[[t]](11728t)1/2f(t)Z[[t]]f(t)\in\mathbb{Z}[\![t]\!]\Leftrightarrow(1-1728t)^{-1/2}f(t)\in Z[\![t]\!].

  2. (2)

    j(τ)1q(1+q[[q]])j(\tau)^{-1}\in q(1+q\mathbb{Z}[\![q]\!]).

  3. (3)

    f(τ)[[q]]f(τ)[[j1]]f(\tau)\in\mathbb{Z}[\![q]\!]\Leftrightarrow f(\tau)\in\mathbb{Z}[\![j^{-1}]\!].

  4. (4)

    G6n(1)(τ)[[q]]G6n+4(1)(τ)[[q]]G_{6n}^{(1)}(\tau)\in\mathbb{Z}[\![q]\!]\Leftrightarrow G_{6n+4}^{(1)}(\tau)\in\mathbb{Z}[\![q]\!].

  5. (5)

    G6n(1)(τ)[[q]]Pn(t)[[t]]G_{6n}^{(1)}(\tau)\in\mathbb{Z}[\![q]\!]\Leftrightarrow P_{n}(t)\in\mathbb{Z}[\![t]\!] and G6n+2(1)(τ)[[q]]Qn(t)[[t]]G_{6n+2}^{(1)}(\tau)\in\mathbb{Z}[\![q]\!]\Leftrightarrow Q_{n}(t)\in\mathbb{Z}[\![t]\!].

Proof.
  1. (1)

    It is clear that the following facts imply the claim:

    (14x)1/2=r=0(2rr)xr[[x]],\displaystyle{}(1-4x)^{-1/2}=\sum_{r=0}^{\infty}\binom{2r}{r}x^{r}\in\mathbb{Z}[\![x]\!],
    (14x)1/2(=r=0112r(2rr)xr)=(14x)(14x)1/2[[x]].\displaystyle{}(1-4x)^{1/2}\left(=\sum_{r=0}^{\infty}\frac{1}{1-2r}\binom{2r}{r}x^{r}\right)=(1-4x)(1-4x)^{-1/2}\in\mathbb{Z}[\![x]\!].
  2. (2)

    Since E41+q[[q]]E_{4}\in 1+q\mathbb{Z}[\![q]\!], 1/E431+q[[q]]1/E_{4}^{3}\in 1+q\mathbb{Z}[\![q]\!] holds, and we have j1=Δ/E43q(1+q[[q]])j^{-1}=\Delta/E_{4}^{3}\in q(1+q\mathbb{Z}[\![q]\!]).

  3. (3)

    Using claim (2), we know that the coefficients satisfy am[b0,b1,,bm]a_{m}\in\mathbb{Z}[b_{0},b_{1},\dots,b_{m}] and bm[a0,a1,,am]b_{m}\in\mathbb{Z}[a_{0},a_{1},\dots,a_{m}] when the function ff is expressed in two ways as f=a0+a1q+a2q2+=b0+b1j1+b2j2+f=a_{0}+a_{1}q+a_{2}q^{2}+\cdots=b_{0}+b_{1}j^{-1}+b_{2}j^{-2}+\cdots. This gives us the assertion.

  4. (4)

    It is clear from the facts that E4,1/E41+q[[q]]E_{4},1/E_{4}\in 1+q\mathbb{Z}[\![q]\!] and G6n+4(1)=E4G6n(1)G_{6n+4}^{(1)}=E_{4}G_{6n}^{(1)}.

  5. (5)

    By combining (7), (29) and (30), we have E41/21+j1[[j1]]E_{4}^{1/2}\in 1+j^{-1}\mathbb{Z}[\![j^{-1}]\!] and hence E41/21+q[[q]]E_{4}^{1/2}\in 1+q\mathbb{Z}[\![q]\!] and E41/21+q[[q]]E_{4}^{-1/2}\in 1+q\mathbb{Z}[\![q]\!]. By Proposition 2, G6n(1)=jnE4(3n1)/2Pn(j1)G_{6n}^{(1)}=j^{-n}E_{4}^{(3n-1)/2}P_{n}(j^{-1}) holds, so if G6n[[q]]G_{6n}\in\mathbb{Z}[\![q]\!], then E4(3n1)/2G6n(1)[[q]]E_{4}^{-(3n-1)/2}G_{6n}^{(1)}\in\mathbb{Z}[\![q]\!] and hence jnPn(j1)[[j1]]j^{-n}P_{n}(j^{-1})\in\mathbb{Z}[\![j^{-1}]\!] (note (3)). And conversely, if Pn(t)[[t]]P_{n}(t)\in\mathbb{Z}[\![t]\!], we have G6n=jnE4(3n1)/2Pn(j1)[[j1]]G_{6n}=j^{-n}E_{4}^{(3n-1)/2}P_{n}(j^{-1})\in\mathbb{Z}[\![j^{-1}]\!] and therefore G6n(1)[[q]]G_{6n}^{(1)}\in\mathbb{Z}[\![q]\!] holds. The case of G6n+2(1)G_{6n+2}^{(1)} can be proved similarly.

Remark 2.

In the above proof we used that E41/21+q[[q]]E_{4}^{1/2}\in 1+q\mathbb{Z}[\![q]\!], but a stronger claim holds. The hypergeometric series F12{}_{2}F_{1} satisfies the following quadratic transformation of Gauss:

F12(α,β;α+β+12;4z(1z))=F12(2α,2β;α+β+12;z).\displaystyle{}_{2}F_{1}\left(\alpha,\beta;\alpha+\beta+\frac{1}{2};4z(1-z)\right)={}_{2}F_{1}\left(2\alpha,2\beta;\alpha+\beta+\frac{1}{2};z\right). (22)

By putting (α,β,4z(1z))=(112,512,1728j)(\alpha,\beta,4z(1-z))=(\tfrac{1}{12},\tfrac{5}{12},\tfrac{1728}{j}) in the above equation, we have

E41/4\displaystyle E_{4}^{1/4} =F12(112,512;1;1728j)=F12(16,56;1;z)=n=0(3nn)(6n3n)(z432)n,\displaystyle={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j}\right)={}_{2}F_{1}\left(\frac{1}{6},\frac{5}{6};1;z\right)=\sum_{n=0}^{\infty}\binom{3n}{n}\binom{6n}{3n}\left(\frac{z}{432}\right)^{n},
z432\displaystyle\frac{z}{432} =1864{1(11728j)1/2}=m=1432m1Cm1jmj1[[j1]],\displaystyle=\frac{1}{864}\left\{1-\left(1-\frac{1728}{j}\right)^{1/2}\right\}=\sum_{m=1}^{\infty}432^{m-1}C_{m-1}j^{-m}\in j^{-1}\mathbb{Z}[\![j^{-1}]\!],

where Cn:=1n+1(2nn)=(2nn)(2nn1)C_{n}:=\tfrac{1}{n+1}\tbinom{2n}{n}=\tbinom{2n}{n}-\tbinom{2n}{n-1} is the nn-th Catalan number. (The second equality holds for n1n\geq 1.) Thus we have E41/41+j1[[j1]]E_{4}^{1/4}\in 1+j^{-1}\mathbb{Z}[\![j^{-1}]\!] or equivalently E41/41+q[[q]]E_{4}^{1/4}\in 1+q\mathbb{Z}[\![q]\!]. Actually, it is known the stronger claim E41/81+q[[q]]E_{4}^{1/8}\in 1+q\mathbb{Z}[\![q]\!] holds. See [13] for more details and related results.

We classify each element of the set (2) according to the remainder of modulo 12 as follows:

𝒮0\displaystyle\mathcal{S}_{0} ={12,24},𝒮2={2,14,38},𝒮4=𝒮04={16,28},𝒮6={6,18,30,54,114},\displaystyle=\{12,24\},\;\mathcal{S}_{2}=\{2,14,38\},\;\mathcal{S}_{4}=\mathcal{S}_{0}\oplus 4=\{16,28\},\;\mathcal{S}_{6}=\{6,18,30,54,114\},
𝒮8\displaystyle\mathcal{S}_{8} ={8,20,32,68,80},𝒮10=𝒮64={10,22,34,58,118}.\displaystyle=\{8,20,32,68,80\},\;\mathcal{S}_{10}=\mathcal{S}_{6}\oplus 4=\{10,22,34,58,118\}.

Here the symbol {list}n\{\mathrm{list}\}\oplus n means that for each element in the list the number nn is added. From (4) of Lemma 1, it suffices to show that the function Gw(1)G_{w}^{(1)} has integral Fourier coefficients when the weight ww is an element of the set 𝒮0𝒮2𝒮6𝒮8\mathcal{S}_{0}\cup\mathcal{S}_{2}\cup\mathcal{S}_{6}\cup\mathcal{S}_{8}.

Put Pn(t)==0a(n)tP_{n}(t)=\sum_{\ell=0}^{\infty}a_{\ell}(n)t^{\ell} and Qn(t)==0b(n)tQ_{n}(t)=\sum_{\ell=0}^{\infty}b_{\ell}(n)t^{\ell}. The first few coefficients are given by

a1(n)\displaystyle a_{1}(n) =60+432n+60n+1,a2(n)=65700+305856n+93312n2+31320n+127720n+2,\displaystyle=60+432n+\frac{60}{n+1},\;a_{2}(n)=65700+305856n+93312n^{2}+\frac{31320}{n+1}-\frac{27720}{n+2},
b1(n)\displaystyle b_{1}(n) =60+432n84n+1,b2(n)=3492+305856n+93312n237800n+1+32760n+2.\displaystyle=60+432n-\frac{84}{n+1},\;b_{2}(n)=3492+305856n+93312n^{2}-\frac{37800}{n+1}+\frac{32760}{n+2}.

Consider the condition that these coefficients are integers. In such a case, the denominator must divide the numerator of the above equations, and so a1(n)a_{1}(n) and a2(n)a_{2}(n) are integers if n{0,1,2,3,4,5,9,19}n\in\{0,1,2,3,4,5,9,19\}. Similarly, if n{0,1,2,3,5,6,11,13}n\in\{0,1,2,3,5,6,11,13\}, b1(n)b_{1}(n) and b2(n)b_{2}(n) are integers. In these lists of nn, we exclude the case of P0(t)P_{0}(t), because it corresponds to the trivial case G0(1)=1G_{0}^{(1)}=1. From (5) of Lemma 1, in order to prove the main theorem, we should show that the power series Pn(t)P_{n}(t) and Qn(t)Q_{n}(t) are actually have integral coefficients for these lists of nn. That is, we prove that

  • n{1,2,3,4,5,9,19}Pn(t)[[t]]n\in\{1,2,3,4,5,9,19\}\Rightarrow P_{n}(t)\in\mathbb{Z}[\![t]\!], and then Gw(1)[[q]]G_{w}^{(1)}\in\mathbb{Z}[\![q]\!] for w𝒮0𝒮6w\in\mathcal{S}_{0}\cup\mathcal{S}_{6},

  • n{0,1,2,3,5,6,11,13}Qn(t)[[t]]n\in\{0,1,2,3,5,6,11,13\}\Rightarrow Q_{n}(t)\in\mathbb{Z}[\![t]\!], and then Gw(1)[[q]]G_{w}^{(1)}\in\mathbb{Z}[\![q]\!] for w𝒮2𝒮8w\in\mathcal{S}_{2}\cup\mathcal{S}_{8}.

To prove these assertions, we will now rewrite the formal power series Pn(t)P_{n}(t) and Qn(t)Q_{n}(t) into a more manageable form.

Although the symbols are slightly different, in their paper [19], Kaneko and Koike expressed the normalized extremal quasimodular forms by using the monic polynomials Am,a(X)A_{m,a}(X) and Bm,a(X)B_{m,a}(X) as follows:

G12m(1)=1Nm,0(E2E4E6Δm1Am,0(j)+ΔmBm,0(j)),\displaystyle{}G_{12m}^{(1)}=\frac{1}{N_{m,0}}\left(-E_{2}E_{4}E_{6}\Delta^{m-1}A_{m,0}(j)+\Delta^{m}B_{m,0}(j)\right), (23)
G12m+2(1)=1Nm,2(E2ΔmAm,2(j)E42E6Δm1Bm,2(j)),\displaystyle{}G_{12m+2}^{(1)}=\frac{1}{N_{m,2}}\left(E_{2}\Delta^{m}A_{m,2}(j)-E_{4}^{2}E_{6}\Delta^{m-1}B_{m,2}(j)\right), (24)
G12m+6(1)=1Nm,6(E2E4ΔmAm,6(j)E6ΔmBm,6(j)),\displaystyle{}G_{12m+6}^{(1)}=\frac{1}{N_{m,6}}\left(E_{2}E_{4}\Delta^{m}A_{m,6}(j)-E_{6}\Delta^{m}B_{m,6}(j)\right), (25)
G12m+8(1)=1Nm,8(E2E6ΔmAm,8(j)+E42ΔmBm,8(j)),\displaystyle{}G_{12m+8}^{(1)}=\frac{1}{N_{m,8}}\left(-E_{2}E_{6}\Delta^{m}A_{m,8}(j)+E_{4}^{2}\Delta^{m}B_{m,8}(j)\right), (26)

where the normalizing factor Nm,aN_{m,a} is given below for any m0m\geq 0 except for N0,0=N0,21N_{0,0}=N_{0,2}\coloneqq 1.

Nm,0\displaystyle N_{m,0} =24m(6m2m)(12m6m),Nm,2=12m+112m1Nm,0,\displaystyle=24m\binom{6m}{2m}\binom{12m}{6m},\quad N_{m,2}=\frac{12m+1}{12m-1}N_{m,0}, (27)
Nm,6\displaystyle N_{m,6} =Nm+1/2,0=12(2m+1)(6m+32m+1)(12m+66m+3),Nm,8=12m+712m+5Nm,6.\displaystyle=N_{m+1/2,0}=12(2m+1)\binom{6m+3}{2m+1}\binom{12m+6}{6m+3},\quad N_{m,8}=\frac{12m+7}{12m+5}N_{m,6}. (28)

Here, Nm,2N_{m,2} and Nm,8N_{m,8} are integers, since 112n(2nn)\tfrac{1}{1-2n}\tbinom{2n}{n}\in\mathbb{Z} from the proof of (1) of Corollary 1. In particular, the polynomial An,2(X)A_{n,2}(X) is equal to the original Atkin polynomial An(X)A_{n}(X) treated in [21]. We will refer to the polynomials Am,a(X)A_{m,a}(X) as the Atkin-like polynomials. Note that we have the polynomial corresponding to the quasimodular part as “AA”, which is different between us and [19]. The reason we do not follow the symbols of [21] is to write the best rational function approximation in a unified way, which we will discuss shortly afterwards. For the convenience of the reader, we provide below a comparison table of these symbols. In the table, polynomials in the same column are equal.

Table 1. Comparison table of the Atkin-like polynomials and its adjoint polynomials
Our symbols An,0A_{n,0} An,2A_{n,2} An,6A_{n,6} An,8A_{n,8} Bn,0B_{n,0} Bn,2B_{n,2} Bn,6B_{n,6} Bn,8B_{n,8}
Symbols in [19] BnB_{n}^{*} AnA_{n} A~n+1\widetilde{A}_{n+1} B~n+1\widetilde{B}_{n+1}^{*} AnA_{n}^{*} BnB_{n} B~n+1\widetilde{B}_{n+1} A~n+1\widetilde{A}_{n+1}^{*}

We also note that the polynomials Am,a(X)A_{m,a}(X) and Bm,a(X)B_{m,a}(X) are the denominator and numerator, respectively, of the best rational-function approximation111If it is not the best approximation, it contradicts the extremality of Gw(1)G_{w}^{(1)}. As a side note, for example, to get the rational function Bm,8(j)/Am,8(j)B_{m,8}(j)/A_{m,8}(j) by Mathematica for certain mm, we just have to enter PadeApproximant[(j1728)f1/(jf2),{j,Infinity,m}][(j-1728)f_{1}/(jf_{2}),\{j,\text{Infinity},m\}], where f1=F12(13/12,5/12;1;1728/j)f_{1}={}_{2}F_{1}\left(13/12,5/12;1;1728/j\right) and f2=F12(1/12,5/12;1;1728/j)f_{2}={}_{2}F_{1}\left(1/12,5/12;1;1728/j\right). of the following power series.

j(j1728)ΦBm,0(j)Am,0(j)\displaystyle j(j-1728)\Phi-\frac{B_{m,0}(j)}{A_{m,0}(j)} =Nm,0G12m(1)ΔmAm,0(j)=Nm,0j2m1+O(j2m),\displaystyle=-\frac{N_{m,0}\,G_{12m}^{(1)}}{\Delta^{m}A_{m,0}(j)}=-\frac{N_{m,0}}{j^{2m-1}}+O(j^{-2m}),
ΦBm,2(j)Am,2(j)\displaystyle\Phi-\frac{B_{m,2}(j)}{A_{m,2}(j)} =Nm,2G12m+2(1)E42E6Δm1Am,2(j)=Nm,2j2m+1+O(j2m2),\displaystyle=\frac{N_{m,2}\,G_{12m+2}^{(1)}}{E_{4}^{2}E_{6}\Delta^{m-1}A_{m,2}(j)}=\frac{N_{m,2}}{j^{2m+1}}+O(j^{-2m-2}),
jΦBm,6(j)Am,6(j)\displaystyle j\Phi-\frac{B_{m,6}(j)}{A_{m,6}(j)} =Nm,6G12m+6(1)E6ΔmAm,6(j)=Nm,6j2m+1+O(j2m2),\displaystyle=\frac{N_{m,6}\,G_{12m+6}^{(1)}}{E_{6}\Delta^{m}A_{m,6}(j)}=\frac{N_{m,6}}{j^{2m+1}}+O(j^{-2m-2}),
(j1728)ΦBm,8(j)Am,8(j)\displaystyle(j-1728)\Phi-\frac{B_{m,8}(j)}{A_{m,8}(j)} =Nm,8G12m+8(1)E42ΔmAm,8(j)=Nm,8j2m+1+O(j2m2),\displaystyle=-\frac{N_{m,8}\,G_{12m+8}^{(1)}}{E_{4}^{2}\Delta^{m}A_{m,8}(j)}=-\frac{N_{m,8}}{j^{2m+1}}+O(j^{-2m-2}),

where Φ=Φ(j1)=E2E4/(jE6)\Phi=\Phi(j^{-1})=E_{2}E_{4}/(jE_{6}) is the power series with j1j^{-1} as the variable (recall Proposition 1), and then (j1728)Φ=E2E6/E42(j-1728)\Phi=E_{2}E_{6}/E_{4}^{2}. More generally, for some suitable polynomial ψ(x)[x]\psi(x)\in\mathbb{Q}[x], the orthogonal polynomial that appears when approximating the function jψ(j)Φj\psi(j)\Phi has already been considered in [3] by Basha, Getz and Nover. However, they are treated in the context of a generalization of the Atkin orthogonal polynomials, and not from the point of view of extremal quasimodular forms.

Here and throughout this paper, the symbols uru_{r}, U(t)U(t), and V(t)V(t) are defined as the following positive integer and formal power series, respectively:

ur=(6r)!(3r)!r!3=(2rr)(3rr)(6r3r)=(4rr)(5rr)(6rr)(r0),\displaystyle{}u_{r}=\frac{(6r)!}{(3r)!\,r!^{3}}=\binom{2r}{r}\binom{3r}{r}\binom{6r}{3r}=\binom{4r}{r}\binom{5r}{r}\binom{6r}{r}\quad(r\in\mathbb{Z}_{\geq 0}), (29)
U(t)=F12(112,512;1;1728t)2=F23(16,12,56;1,1;1728t)=r=0urtr,\displaystyle{}U(t)={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)^{2}={}_{3}F_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6};1,1;1728t\right)=\sum_{r=0}^{\infty}u_{r}t^{r}, (30)
V(t)=F23(12,56,76;1,1;1728t)=(1+6tddt)U(t)=r=0(6r+1)urtr.\displaystyle{}V(t)={}_{3}F_{2}\left(\frac{1}{2},\frac{5}{6},\frac{7}{6};1,1;1728t\right)=\left(1+6t\frac{d}{dt}\right)U(t)=\sum_{r=0}^{\infty}(6r+1)u_{r}t^{r}. (31)

Note that by using Proposition 1, U(t)=P1(t)U(t)=P_{1}(t) and V(t)=(11728t)1/2Q0(t)V(t)=(1-1728t)^{-1/2}Q_{0}(t) hold. Therefore, G6(1)[[q]]G_{6}^{(1)}\in\mathbb{Z}[\![q]\!] and G2(1)[[q]]G_{2}^{(1)}\in\mathbb{Z}[\![q]\!] hold with the aid of Lemma 1.

For a given polynomial α\alpha, we denote its reciprocal polynomial as α~\widetilde{\alpha}, i.e.,

α(j)=k=0mckjk,α~(t):=tmα(1/t)=k=0mcktmk.\displaystyle\alpha(j)=\sum_{k=0}^{m}c_{k}j^{k},\quad\widetilde{\alpha}(t):=t^{m}\alpha(1/t)=\sum_{k=0}^{m}c_{k}t^{m-k}.

Comparing equations (23) to (26) with Proposition 2 and using the hypergeometric expression of Eisenstein series in Proposition 1, we have

Nm,0t2mP2m(t)=Am,0~(t)(11728t)V(t)+Bm,0~(t)U(t),\displaystyle{}N_{m,0}\,t^{2m}P_{2m}(t)=-\widetilde{A_{m,0}}(t)\,(1-1728t)V(t)+\widetilde{B_{m,0}}(t)U(t), (32)
Nm,2t2m(11728t)1/2Q2m(t)=Am,2~(t)V(t)Bm,2~(t)U(t),\displaystyle{}N_{m,2}\,t^{2m}(1-1728t)^{-1/2}Q_{2m}(t)=\widetilde{A_{m,2}}(t)V(t)-\widetilde{B_{m,2}}(t)U(t), (33)
Nm,6t2m+1(11728t)1/2P2m+1(t)=Am,6~(t)V(t)Bm,6~(t)U(t),\displaystyle{}N_{m,6}\,t^{2m+1}(1-1728t)^{-1/2}P_{2m+1}(t)=\widetilde{A_{m,6}}(t)V(t)-\widetilde{B_{m,6}}(t)U(t), (34)
Nm,8t2m+1Q2m+1(t)=Am,8~(t)(11728t)V(t)+Bm,8~(t)U(t).\displaystyle{}N_{m,8}\,t^{2m+1}Q_{2m+1}(t)=-\widetilde{A_{m,8}}(t)\,(1-1728t)V(t)+\widetilde{B_{m,8}}(t)U(t). (35)

As we will see later in Section 4, the polynomials Am,a(X)A_{m,a}(X) and Bm,a(X)B_{m,a}(X) are not necessarily elements of [X]\mathbb{Z}[X]. In such a case, multiply both sides of the above equation by an appropriate factor CC so that the right-hand side of (32) to (35) has integral coefficients. Under this normalization, if all the coefficients of the formal power series on the right-hand side are congruent to 0 modulo CNm,aCN_{m,a}, then we can conclude that the corresponding formal power series Pn(t)P_{n}(t) and Qn(t)Q_{n}(t) have integral coefficients. Here, for Q2m(t)Q_{2m}(t) and P2m+1(t)P_{2m+1}(t), note (1) in Lemma 1. Thus, in the next section we will investigate in detail the congruence formulas of the formal power series U(t)U(t) and V(t)V(t) modulo prime powers.

The above equations (32) to (35) are essentially the relations satisfied by a hypergeometric series F12{}_{2}F_{1}, and can be interpreted in the following two ways.

  1. (1)

    Focusing on the left-hand side, from the definitions of the series Pn(t)P_{n}(t) and Qn(t)Q_{n}(t), the term depending on mm is a hypergeometric series with a certain rational parameter shifted by an integer. Thus, the equations (32) to (35) are concrete expressions of certain contiguous relations (or three term relations) of a hypergeometric series F12{}_{2}F_{1}. For more general results of this kind, see [8] by Ebisu.

  2. (2)

    Focusing on the right-hand side, the polynomials of a certain degree or less that are multiplied by the series U(t)U(t) and V(t)V(t) are chosen so that the vanishing order for tt on the left-hand side is as large as possible. Therefore, such polynomials are Hermite–Padé approximations for U(t)U(t) and V(t)V(t), and the left-hand side is the corresponding remainder. For the Hermite–Padé approximation of generalized hypergeometric series Fp1p{}_{p}F_{p-1}, see [28] by Nesterenko.

Unfortunately, the case treated in the papers [8] and [28] is that the corresponding hypergeometric differential equation has no logarithmic solution, which does not include our case (recall Remark 1).

3. Congruence formulas for U(t)U(t) and V(t)V(t) modulo prime powers

First, note that in the prime factorization of the normalizing factor Nm,aN_{m,a}, which appears in the proof of the main theorem in Section 4, the exponents of all prime factors above 11 are 1. On the other hand, under the proper normalization described at the end of the previous section, the exponents of the prime factors 2, 3, 5, and 7 are at most 8, 5, 2, and 2, respectively. Therefore, to prove the main theorem, we need to calculate the specific congruence formulas for U(t)U(t) and V(t)V(t) modulo 28,35,52,722^{8},3^{5},5^{2},7^{2} and the appropriate prime p11p\geq 11. (Of course, results for the largest exponents are valid for smaller ones.) More specifically, in this section we will prove that U(t)/U(tp)U(t)/U(t^{p}) and V(t)/U(tp)V(t)/U(t^{p}) modulo these prime powers give some polynomials or rational functions. Throughout this section, for the formal power series X(t)X(t) and Y(t)Y(t), the symbol X(t)Y(t)(modps)X(t)\equiv Y(t)\pmod{p^{s}} means that all the power series coefficients of their difference X(t)Y(t)X(t)-Y(t) are congruent to 0 modulo psp^{s}.

If the prime pp is greater than or equal to 5, the following proposition corresponds to the special case of Lemma 2, but here we give a simpler alternative proof using Lucas’ theorem.

Proposition 4.

For any prime pp, we have

U(t)\displaystyle U(t) (m=0[p/6]umtm)U(tp)(modp),\displaystyle\equiv\left(\sum_{m=0}^{[p/6]}u_{m}t^{m}\right)U(t^{p})\pmod{p},
V(t)\displaystyle V(t) (m=0[p/6](6m+1)umtm)U(tp)(modp).\displaystyle\equiv\left(\sum_{m=0}^{[p/6]}(6m+1)u_{m}t^{m}\right)U(t^{p})\pmod{p}.

Thus, in particular, ur0(modp)u_{r}\equiv 0\pmod{p} for r1r\geq 1 and p{2,3,5}p\in\{2,3,5\}.

Proof.

We first recall Lucas’ theorem for the binomial coefficient modulo a prime pp; for some nonnegative integers n,m,an,m,a and bb such that 0a,bp10\leq a,b\leq p-1,

(np+amp+b)(nm)(ab)(modp)\displaystyle\binom{np+a}{mp+b}\equiv\binom{n}{m}\binom{a}{b}\pmod{p} (36)

holds under the usual convention (00)=1\tbinom{0}{0}=1, and (xy)=0\tbinom{x}{y}=0 if x<yx<y. For some generalizations of Lucas’ theorem, we refer to the extensive historical survey [22] by Meštrović.

To calculate ulp+mu_{lp+m} for l0l\geq 0 and 0mp10\leq m\leq p-1, we classify by the value of mm. From Lucas’ theorem, it is easy to see that if 0m<p/60\leq m<p/6, the following congruence holds:

ulp+m\displaystyle u_{lp+m} =(2(lp+m)lp+m)(3(lp+m)lp+m)(6(lp+m)3(lp+m))\displaystyle=\binom{2(lp+m)}{lp+m}\binom{3(lp+m)}{lp+m}\binom{6(lp+m)}{3(lp+m)}
(2ll)(3ll)(6l3l)(2mm)(3mm)(6m3m)\displaystyle\equiv\binom{2l}{l}\binom{3l}{l}\binom{6l}{3l}\binom{2m}{m}\binom{3m}{m}\binom{6m}{3m}
ulum(modp).\displaystyle\equiv u_{l}u_{m}\pmod{p}.

Similarly, if p/6m<p/3p/6\leq m<p/3, since 06mp<p0\leq 6m-p<p and 3m<p3m<p, so

(6(lp+m)3(lp+m))=((6l+1)p+(6mp)3lp+3m)(6l+13l)(6mp3m)(modp).\displaystyle\binom{6(lp+m)}{3(lp+m)}=\binom{(6l+1)p+(6m-p)}{3lp+3m}\equiv\binom{6l+1}{3l}\binom{6m-p}{3m}\pmod{p}.

Now we assume that m<p/3m<p/3, (6mp)3m=3mp<0(6m-p)-3m=3m-p<0 and thus the binomial coefficient (6mp3m)\tbinom{6m-p}{3m} vanishes. Also, if p/3m<p/2p/3\leq m<p/2 and p/2m<pp/2\leq m<p, (3(lp+m)(lp+m))\binom{3(lp+m)}{(lp+m)} and (2(lp+m)lp+m)\binom{2(lp+m)}{lp+m} vanish, respectively. Therefore, we have

U(t)=l=0m=0p1ulp+mtlp+ml=0m=0[p/6]ulumtlp+m=(m=0[p/6]umtm)U(tp)(modp).\displaystyle U(t)=\sum_{l=0}^{\infty}\sum_{m=0}^{p-1}u_{lp+m}t^{lp+m}\equiv\sum_{l=0}^{\infty}\sum_{m=0}^{[p/6]}u_{l}u_{m}t^{lp+m}=\left(\sum_{m=0}^{[p/6]}u_{m}t^{m}\right)U(t^{p})\pmod{p}.

The claim for V(t)V(t) is obtained from a similar calculation, noting that if 0m<p/60\leq m<p/6, then (6(lp+m)+1)ulp+m(6m+1)umul(modp)(6(lp+m)+1)u_{lp+m}\equiv(6m+1)u_{m}u_{l}\pmod{p}. If p{2,3,5}p\in\{2,3,5\} then U(t)U(tp)U(tp2)(modp)U(t)\equiv U(t^{p})\equiv U(t^{p^{2}})\equiv\dotsb\pmod{p} holds, we see that U(t)1(modp)U(t)\equiv 1\pmod{p} and hence ur0(modp)u_{r}\equiv 0\pmod{p} for r1r\geq 1. ∎

Remark 3.

For p=2p=2, we can prove that ur0(mod23)u_{r}\equiv 0\pmod{2^{3}}. Since E41+240q[[q]]E_{4}\in 1+240q\mathbb{Z}[\![q]\!], E41/21+120q[[q]]E_{4}^{1/2}\in 1+120q\mathbb{Z}[\![q]\!] and so E41/21+120j1[[j1]]E_{4}^{1/2}\in 1+120j^{-1}\mathbb{Z}[\![j^{-1}]\!] holds. By comparing (7) and (30), we have U(t)1+120t[[t]]U(t)\in 1+120t\mathbb{Z}[\![t]\!] and obtain the desired result.

Lemma 2.

Let p5p\geq 5 be a prime number. Let

F(x)=F23(16,12,56;1,1;x)=m=0B(m)xm,Fs(x)=m=0ps1B(m)xm\displaystyle F(x)={}_{3}F_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6};1,1;x\right)=\sum_{m=0}^{\infty}B(m)x^{m},\quad F_{s}(x)=\sum_{m=0}^{p^{s}-1}B(m)x^{m}

and f(n)(t)=dndtnf(t)f^{(n)}(t)=\tfrac{d^{n}}{dt^{n}}f(t) denotes the nn-th derivative (n0)(n\geq 0). Then the following congruence formulas hold for any s0s\in\mathbb{Z}_{\geq 0}:

F(x)F(xp)Fs+1(x)Fs(xp)(modps+1),F(n)(x)F(x)Fs+1(n)(x)Fs+1(x)(modps+1).\displaystyle\frac{F(x)}{F(x^{p})}\equiv\frac{F_{s+1}(x)}{F_{s}(x^{p})}\pmod{p^{s+1}},\quad\frac{F^{(n)}(x)}{F(x)}\equiv\frac{F^{(n)}_{s+1}(x)}{F_{s+1}(x)}\pmod{p^{s+1}}.
Proof.

These assertions correspond to the special cases of Lemma 3.4 (i) and (ii) in [7, p. 45], respectively. The lemma requires the following three assumptions:

  1. a)

    B(0)=1B(0)=1.

  2. b)

    B(n+mps+1)/B([n/p]+mps)B(n)/B([n/p])(modps+1)B(n+mp^{s+1})/B([n/p]+mp^{s})\equiv B(n)/B([n/p])\pmod{p^{s+1}} for all n,m,s0n,m,s\in\mathbb{Z}_{\geq 0}.

  3. c)

    B(n)/B([n/p])pB(n)/B([n/p])\in\mathbb{Z}_{p} for all n0n\in\mathbb{Z}_{\geq 0}.

Note that since we now consider F(x)F(x) to be the formal power series, a domain 𝔒\mathfrak{O} in the original assumption c) can simply be the ring of pp-adic integers p\mathbb{Z}_{p}.

First, the assumption a) clearly holds. Following [7, p. 30], for a given prime number pp and some θp\theta\in\mathbb{Z}_{p}\cap\mathbb{Q}, the symbol θ\theta^{\prime} denotes the unique element p\mathbb{Z}_{p}\cap\mathbb{Q} such that pθθ[0,p1]p\theta^{\prime}-\theta\in[0,p-1]. Put (θ1,θ2,θ3)=(16,12,56)(\theta_{1},\theta_{2},\theta_{3})=(\tfrac{1}{6},\tfrac{1}{2},\tfrac{5}{6}) and then

(θ1,θ2,θ3)={(16,12,56) if p1(mod6)(56,12,16) if p5(mod6)\displaystyle(\theta_{1}^{\prime},\theta_{2}^{\prime},\theta_{3}^{\prime})=\begin{cases}(\tfrac{1}{6},\tfrac{1}{2},\tfrac{5}{6})&\text{ if }p\equiv 1\pmod{6}\\ (\tfrac{5}{6},\tfrac{1}{2},\tfrac{1}{6})&\text{ if }p\equiv 5\pmod{6}\end{cases}

holds. Therefore, this corresponds to the case of A(n)=B(n)A(n)=B(n) in Corollary 2 of [7, p. 36], it can be seen that assumptions b) and c) hold. ∎

We rewrite the result of this lemma for F(x)F(x) into the following statement for U(t)U(t) and V(t)V(t) by changing the variables.

Proposition 5.

The following congruence formulas are valid.

U(t)\displaystyle U(t) (1+20t+10t2)U(t5)(mod52),\displaystyle\equiv(1+20t+10t^{2})U(t^{5})\pmod{5^{2}}, (37)
V(t)\displaystyle V(t) (1+15t+5t2)U(t5)(mod52),\displaystyle\equiv(1+15t+5t^{2})U(t^{5})\pmod{5^{2}}, (38)
U(t)\displaystyle U(t) 1+22t+7t2+21t3+t7+36t81+t7U(t7)(mod72),\displaystyle\equiv\frac{1+22t+7t^{2}+21t^{3}+t^{7}+36t^{8}}{1+t^{7}}\,U(t^{7})\pmod{7^{2}}, (39)
V(t)\displaystyle V(t) 1+7t+42t2+7t3+43t71+t7U(t7)(mod72).\displaystyle\equiv\frac{1+7t+42t^{2}+7t^{3}+43t^{7}}{1+t^{7}}\,U(t^{7})\pmod{7^{2}}. (40)
Proof.

Assuming that p=5p=5 and s=1s=1 in Lemma 2, the direct calculation gives

F2(x)1+15x+15x2+15x5+15x10(mod52),\displaystyle{}F_{2}(x)\equiv 1+15x+15x^{2}+15x^{5}+15x^{10}\pmod{5^{2}},
F1(x5)1+15x5+15x10(mod52),\displaystyle{}F_{1}(x^{5})\equiv 1+15x^{5}+15x^{10}\pmod{5^{2}},
(1+10x5+10x10)F1(x5)1(mod52),\displaystyle{}(1+10x^{5}+10x^{10})F_{1}(x^{5})\equiv 1\pmod{5^{2}},

and so

F2(x)F1(x5)(1+10x5+10x10)F2(x)1+15x+15x2(mod52).\displaystyle\frac{F_{2}(x)}{F_{1}(x^{5})}\equiv(1+10x^{5}+10x^{10})F_{2}(x)\equiv 1+15x+15x^{2}\pmod{5^{2}}.

On the other hand, ur0(mod5)u_{r}\equiv 0\pmod{5} for r1r\geq 1 from Proposition 4, and 17284r1(mod5)1728^{4r}\equiv 1\pmod{5} holds, thus we have

U(t5)F(17285t5)=r=1ur(117284r)t5r0(mod52).\displaystyle U(t^{5})-F(1728^{5}t^{5})=\sum_{r=1}^{\infty}u_{r}\cdot(1-1728^{4r})t^{5r}\equiv 0\pmod{5^{2}}.

Hence, with the help of Lemma 2, we obtain the congruence formula (37) for U(t)U(t):

U(t)U(t5)F(1728t)F(17285t5)F2(1728t)F1(17285t5)1+20t+10t2(mod52).\displaystyle\frac{U(t)}{U(t^{5})}\equiv\frac{F(1728t)}{F(1728^{5}t^{5})}\equiv\frac{F_{2}(1728t)}{F_{1}(1728^{5}t^{5})}\equiv 1+20t+10t^{2}\pmod{5^{2}}. (41)

Similarly, we have

(1+10x+10x2+10x5+10x10)F2(x)1(mod52),\displaystyle{}(1+10x+10x^{2}+10x^{5}+10x^{10})F_{2}(x)\equiv 1\pmod{5^{2}},
ddxF2(x)15+5x(mod52),\displaystyle{}\frac{d}{dx}F_{2}(x)\equiv 15+5x\pmod{5^{2}},

and so

ddxF(x)F(x)ddxF2(x)F2(x)15+5x(mod52).\displaystyle\frac{\tfrac{d}{dx}F(x)}{F(x)}\equiv\frac{\tfrac{d}{dx}F_{2}(x)}{F_{2}(x)}\equiv 15+5x\pmod{5^{2}}.

Note that changing the variables x=1728tx=1728t, since 1728ddxF(x)=ddtU(t)1728\tfrac{d}{dx}F(x)=\tfrac{d}{dt}U(t), we have

ddtU(t)U(t)1728(15+51728t)20+20t(mod52).\displaystyle\frac{\tfrac{d}{dt}U(t)}{U(t)}\equiv 1728(15+5\cdot 1728t)\equiv 20+20t\pmod{5^{2}}. (42)

By combining (41) and (42), we obtain the congruence formula (38) for V(t)V(t):

V(t)U(t5)\displaystyle\frac{V(t)}{U(t^{5})} =1U(t5)(1+6tddt)U(t)=(1+6tddtU(t)U(t))U(t)U(t5)\displaystyle=\frac{1}{U(t^{5})}\left(1+6t\frac{d}{dt}\right)U(t)=\left(1+6t\frac{\frac{d}{dt}U(t)}{U(t)}\right)\frac{U(t)}{U(t^{5})}
(1+6t(20+20t))(1+20t+10t2)1+15t+5t2(mod52).\displaystyle\equiv(1+6t(20+20t))(1+20t+10t^{2})\equiv 1+15t+5t^{2}\pmod{5^{2}}.

Next, assuming that p=7p=7 and s=1s=1 in Lemma 2, the direct calculation gives

F2(x)1+13x+7x2+28x3+27x7+22x8\displaystyle{}F_{2}(x)\equiv 1+13x+7x^{2}+28x^{3}+27x^{7}+22x^{8}
+7x14+42x15+28x21+21x22(mod72),\displaystyle{}\qquad\qquad+7x^{14}+42x^{15}+28x^{21}+21x^{22}\pmod{7^{2}},
F1(x7)1+13x7+7x14+28x21(1+48x7)(1+14x7+21x14)(mod72),\displaystyle{}F_{1}(x^{7})\equiv 1+13x^{7}+7x^{14}+28x^{21}\equiv(1+48x^{7})(1+14x^{7}+21x^{14})\pmod{7^{2}},
(1+35x7+28x14)F1(x7)1+48x7(mod72),\displaystyle{}(1+35x^{7}+28x^{14})F_{1}(x^{7})\equiv 1+48x^{7}\pmod{7^{2}},

and so

F2(x)F1(x7)\displaystyle\frac{F_{2}(x)}{F_{1}(x^{7})} (1+35x7+28x14)F2(x)1+48x7\displaystyle\equiv\frac{(1+35x^{7}+28x^{14})F_{2}(x)}{1+48x^{7}}
1+13x+7x2+28x3+13x7+36x81+48x7(mod72).\displaystyle\equiv\frac{1+13x+7x^{2}+28x^{3}+13x^{7}+36x^{8}}{1+48x^{7}}\pmod{7^{2}}.

Unlike the case of p=5p=5, U(t7)F(17287t7)U(t^{7})-F(1728^{7}t^{7}) is not congruent 0 modulo 727^{2}, so we first calculate the following congruence relation. Noting that the congruence 172871(mod72)1728^{7}\equiv-1\pmod{7^{2}},

F(t)F(1728t)\displaystyle\frac{F(-t)}{F(1728t)} =F(17287t7)F(1728t)F(t)F(17287t7)(F(1728t)F(17287t7))1F(t)F(t7)\displaystyle=\frac{F(1728^{7}t^{7})}{F(1728t)}\cdot\frac{F(-t)}{F(1728^{7}t^{7})}\equiv\left(\frac{F(1728t)}{F(1728^{7}t^{7})}\right)^{-1}\frac{F(-t)}{F(-t^{7})}
(F2(1728t)F1(17287t7))1F2(t)F1(t7)F2(t)F2(1728t)1+48t21+35t+13t2(mod72).\displaystyle\equiv\left(\frac{F_{2}(1728t)}{F_{1}(1728^{7}t^{7})}\right)^{-1}\frac{F_{2}(-t)}{F_{1}(-t^{7})}\equiv\frac{F_{2}(-t)}{F_{2}(1728t)}\equiv\frac{1+48t^{2}}{1+35t+13t^{2}}\pmod{7^{2}}.

Replacing tt with t7t^{7} in the above equation, we have

F(17287t7)U(t7)F(t7)F(1728t7)1+48t141+35t7+13t14(mod72)\displaystyle\frac{F(1728^{7}t^{7})}{U(t^{7})}\equiv\frac{F(-t^{7})}{F(1728t^{7})}\equiv\frac{1+48t^{14}}{1+35t^{7}+13t^{14}}\pmod{7^{2}}

and hence

U(t)U(t7)\displaystyle\frac{U(t)}{U(t^{7})} =F(17287t7)U(t7)F(1728t)F(17287t7)1+48t141+35t7+13t14F2(1728t)F1(17287t7)\displaystyle=\frac{F(1728^{7}t^{7})}{U(t^{7})}\cdot\frac{F(1728t)}{F(1728^{7}t^{7})}\equiv\frac{1+48t^{14}}{1+35t^{7}+13t^{14}}\cdot\frac{F_{2}(1728t)}{F_{1}(1728^{7}t^{7})}
1+22t+7t2+21t3+t7+36t81+t7(mod72).\displaystyle\equiv\frac{1+22t+7t^{2}+21t^{3}+t^{7}+36t^{8}}{1+t^{7}}\pmod{7^{2}}.

The calculation for V(t)V(t) is the same as for the case of p=5p=5. By substituting

ddtU(t)U(t)\displaystyle\frac{\tfrac{d}{dt}U(t)}{U(t)} 1728ddxF2(x)|x=1728tF2(1728t)\displaystyle\equiv 1728\frac{\left.\tfrac{d}{dx}F_{2}(x)\middle|_{x=1728t}\right.}{F_{2}(1728t)}
22+14t+14t2+7t6+15t7+7t14+21t21F2(1728t)(mod72)\displaystyle\equiv\frac{22+14t+14t^{2}+7t^{6}+15t^{7}+7t^{14}+21t^{21}}{F_{2}(1728t)}\pmod{7^{2}}

into the corresponding part, we obtain

V(t)U(t7)\displaystyle\frac{V(t)}{U(t^{7})} =1U(t7)(1+6tddt)U(t)=(1+6tddtU(t)U(t))U(t)U(t7)\displaystyle=\frac{1}{U(t^{7})}\left(1+6t\frac{d}{dt}\right)U(t)=\left(1+6t\frac{\frac{d}{dt}U(t)}{U(t)}\right)\frac{U(t)}{U(t^{7})}
1+7t+42t2+7t3+15t7+7t14+21t21F2(1728t)U(t)U(t7)\displaystyle\equiv\frac{1+7t+42t^{2}+7t^{3}+15t^{7}+7t^{14}+21t^{21}}{F_{2}(1728t)}\cdot\frac{U(t)}{U(t^{7})}
1+7t+42t2+7t3+43t71+t7(mod72).\displaystyle\equiv\frac{1+7t+42t^{2}+7t^{3}+43t^{7}}{1+t^{7}}\pmod{7^{2}}.

This completes the proof of the proposition. ∎

Unfortunately, since 122\tfrac{1}{2}\not\in\mathbb{Z}_{2}\cap\mathbb{Q} and 16,563\tfrac{1}{6},\tfrac{5}{6}\not\in\mathbb{Z}_{3}\cap\mathbb{Q}, Lemma 2 cannot be applied directly to p=2p=2 and 33. Therefore, we consider the following formal power series to which Lemma 2 can be applied:

F(z)\displaystyle F(z) =F12(16,56;1;432z)=m=0A(m)zm,Fs(z)=m=0ps1A(m)zm,\displaystyle={}_{2}F_{1}\left(\frac{1}{6},\frac{5}{6};1;432z\right)=\sum_{m=0}^{\infty}A(m)z^{m},\quad F_{s}(z)=\sum_{m=0}^{p^{s}-1}A(m)z^{m}, (43)
A(m)\displaystyle A(m) =A6(m)=(6m)!(3m)!(2m)!m!=(3mm)(6m3m)(m0).\displaystyle=A_{6}(m)=\frac{(6m)!}{(3m)!(2m)!m!}=\binom{3m}{m}\binom{6m}{3m}\quad(m\in\mathbb{Z}_{\geq 0}). (44)
Lemma 3.

Suppose that the sequence of integers A(m)A(m) defined by (44) and let p{2,3}p\in\{2,3\}. Then for all nonnegative integers a,b,sa,b,s, one has

A(a+bps+1)A([a/p]+bps)A(a)A([a/p])(modps+1),A(a)A([a/p])p.\displaystyle\frac{A(a+bp^{s+1})}{A([a/p]+bp^{s})}\equiv\frac{A(a)}{A([a/p])}\pmod{p^{s+1}},\quad\frac{A(a)}{A([a/p])}\in\mathbb{Z}_{p}. (45)

Although it looks a slightly different, this lemma corresponds (partially) to the case of N=6N=6 of Lemmas 11 and 12 in [42] by Zudilin. We will not prove the above lemma again here, but will explain below how to rewrite the calculation in [42]. From the equation that appeared in the proof of Lemma 12 in [42], for all nonnegative integers u,v,n,su,v,n,s such that 0u<ps0\leq u<p^{s} and 0v<p0\leq v<p, we have

A(v+up+nps+1)A(u+nps)=A(v+up)A(u)(1+O(ps+1)).\displaystyle\frac{A(v+up+np^{s+1})}{A(u+np^{s})}=\frac{A(v+up)}{A(u)}\left(1+O(p^{s+1})\right).

By putting n=n1+n2,a=v+up+n1ps+10n=n_{1}+n_{2},\,a=v+up+n_{1}p^{s+1}\in\mathbb{Z}_{\geq 0} and b=n20b=n_{2}\in\mathbb{Z}_{\geq 0} in this equation, we obtain

A(a+bps+1)A([a/p]+bps)A(v+up)A(u)(modps+1).\displaystyle\frac{A(a+bp^{s+1})}{A([a/p]+bp^{s})}\equiv\frac{A(v+up)}{A(u)}\pmod{p^{s+1}}.

Since this congruence formula holds even when b=0b=0, we obtain the first assertion in (45). Next, by combining [42, Eq. (34)] and the definition of a constant kk [42, Eq. (1)] depending on NN, we have

ordpA(v+mp)A(mp)=kvp10\displaystyle\mathrm{ord}_{p}\frac{A(v+mp)}{A(mp)}=\frac{kv}{p-1}\in\mathbb{Z}_{\geq 0}

for all nonnegative integers v,mv,m such that 0v<p0\leq v<p. The second assertion in (45) can be obtained by rewriting v+mpv+mp as aa in this equation. Consequently, Lemma 3 guarantees assumptions b) and c) of Lemma 3.4 in [7, p. 45], and hence the following lemma holds.

Lemma 4.

Let F(z)F(z) and Fs(z)F_{s}(z) be the formal power series and polynomials defined by (43) respectively. For p{2,3}p\in\{2,3\}, the following congruence formulas hold for any s0s\in\mathbb{Z}_{\geq 0}:

F(z)F(zp)Fs+1(z)Fs(zp)(modps+1),F(n)(z)F(z)Fs+1(n)(z)Fs+1(z)(modps+1).\displaystyle\frac{F(z)}{F(z^{p})}\equiv\frac{F_{s+1}(z)}{F_{s}(z^{p})}\pmod{p^{s+1}},\quad\frac{F^{(n)}(z)}{F(z)}\equiv\frac{F^{(n)}_{s+1}(z)}{F_{s+1}(z)}\pmod{p^{s+1}}.

Here, F(n)(z)=dndznF(z)F^{(n)}(z)=\tfrac{d^{n}}{dz^{n}}F(z) denotes the nn-th derivative (n0)(n\geq 0).

Proposition 6.

The following congruence formulas are valid.

U(t)\displaystyle U(t) (1+120t+96t2+128t3)U(t2)(mod28),\displaystyle\equiv(1+120t+96t^{2}+128t^{3})U(t^{2})\pmod{2^{8}}, (46)
V(t)\displaystyle V(t) (1+72t+128t2+128t3+64t4+128t8)U(t2)(mod28),\displaystyle\equiv(1+72t+128t^{2}+128t^{3}+64t^{4}+128t^{8})U(t^{2})\pmod{2^{8}}, (47)
U(t)(1+120t+54t2+189t3+135t4+81t5+162t6+81t7+162t10)×U(t3)(mod35),\displaystyle\begin{split}U(t)&\equiv(1+120t+54t^{2}+189t^{3}+135t^{4}+81t^{5}+162t^{6}+81t^{7}+162t^{10})\\ &{}\quad\times U(t^{3})\pmod{3^{5}},\end{split} (48)
V(t)(1+111t+216t2+162t3+135t4+81t5+81t7+162t9+162t10)×U(t3)(mod35).\displaystyle\begin{split}V(t)&\equiv(1+111t+216t^{2}+162t^{3}+135t^{4}+81t^{5}+81t^{7}+162t^{9}+162t^{10})\\ &{}\quad\times U(t^{3})\pmod{3^{5}}.\end{split} (49)
Proof.

By putting t=z(1432z)t=z(1-432z) and using the quadratic transformation (22), we have

U(t)=F12(112,512;1;1728t)2=F12(16,56;1;432z)2=F(z)2.\displaystyle U(t)={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)^{2}={}_{2}F_{1}\left(\frac{1}{6},\frac{5}{6};1;432z\right)^{2}=F(z)^{2}.

and then

F(z2)2\displaystyle F(z^{2})^{2} =F12(16,56;1;432z2)2=F12(112,512;1;1728z2(1432z2))2\displaystyle={}_{2}F_{1}\left(\frac{1}{6},\frac{5}{6};1;432z^{2}\right)^{2}={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728z^{2}(1-432z^{2})\right)^{2}
=F23(16,12,56;1,1;1728z2(1432z2))=r=0urz2r(1432z2)r\displaystyle={}_{3}F_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6};1,1;1728z^{2}(1-432z^{2})\right)=\sum_{r=0}^{\infty}u_{r}z^{2r}(1-432z^{2})^{r}
r=0urz2r(1+80rz2)(mod28),\displaystyle\equiv\sum_{r=0}^{\infty}u_{r}z^{2r}(1+80rz^{2})\pmod{2^{8}},
U(t2)\displaystyle U(t^{2}) F23(16,12,56;1,1;1728z2(1+160z))r=0urz2r(1+160z)r\displaystyle\equiv{}_{3}F_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6};1,1;1728z^{2}(1+160z)\right)\equiv\sum_{r=0}^{\infty}u_{r}z^{2r}(1+160z)^{r}
r=0urz2r(1+160rz)(mod28).\displaystyle\equiv\sum_{r=0}^{\infty}u_{r}z^{2r}(1+160rz)\pmod{2^{8}}.

To explicitly calculate the difference between these formal power series, we focus on the following congruence formula. By changing the variable z2=xz^{2}=x, we have

2zddzF(z2)F(z2)\displaystyle\frac{2z\tfrac{d}{dz}F(z^{2})}{F(z^{2})} =4xddxF(x)F(x)4xddxF8(x)F8(x)240x+224x2+192x4+128x8\displaystyle=4x\frac{\tfrac{d}{dx}F(x)}{F(x)}\equiv 4x\frac{\tfrac{d}{dx}F_{8}(x)}{F_{8}(x)}\equiv 240x+224x^{2}+192x^{4}+128x^{8}
240z2+224z4+192z8+128z16(mod28)\displaystyle\equiv 240z^{2}+224z^{4}+192z^{8}+128z^{16}\pmod{2^{8}}

and then

zddzF(z2)2=F(z2)22zddzF(z2)F(z2)\displaystyle{}z\frac{d}{dz}F(z^{2})^{2}=F(z^{2})^{2}\cdot\frac{2z\tfrac{d}{dz}F(z^{2})}{F(z^{2})}
(240z2+224z4+192z8+128z16)F(z2)2(mod28).\displaystyle\equiv(240z^{2}+224z^{4}+192z^{8}+128z^{16})F(z^{2})^{2}\pmod{2^{8}}.

On the other hand, from the power series expansion of F(z2)2F(z^{2})^{2} calculated above,

zddzF(z2)2\displaystyle z\frac{d}{dz}F(z^{2})^{2} zddzr=0urz2r(1+80rz2)\displaystyle\equiv z\frac{d}{dz}\sum_{r=0}^{\infty}u_{r}z^{2r}(1+80rz^{2})
r=02rurz2r+160r=0r(r+1)urz2r+2(mod28).\displaystyle\equiv\sum_{r=0}^{\infty}2ru_{r}z^{2r}+160\sum_{r=0}^{\infty}r(r+1)u_{r}z^{2r+2}\pmod{2^{8}}.

Since we know that ur0(mod23)u_{r}\equiv 0\pmod{2^{3}} as mentioned in Remark 3, 160ur0(mod28)160u_{r}\equiv 0\pmod{2^{8}} holds for r0r\geq 0, that is, the second term of the above equation is congruent to 0 modulo 282^{8}. Therefore,

F(z2)2U(t2)\displaystyle F(z^{2})^{2}-U(t^{2}) 40z(z2)r=02rurzr\displaystyle\equiv 40z(z-2)\sum_{r=0}^{\infty}2ru_{r}z^{r}
40z(z2)zddzF(z2)2128z4F(z2)2(mod28).\displaystyle\equiv 40z(z-2)\cdot z\frac{d}{dz}F(z^{2})^{2}\equiv 128z^{4}F(z^{2})^{2}\pmod{2^{8}}.

Hence we have (1128z4)F(z2)2U(t2)(mod28)(1-128z^{4})F(z^{2})^{2}\equiv U(t^{2})\pmod{2^{8}} and so F(z2)2(1+128z4)U(t2)(mod28)F(z^{2})^{2}\equiv(1+128z^{4})U(t^{2})\pmod{2^{8}}. By combining these congruences, we obtain the congruence formula (46) for U(t)U(t):

U(t)U(t2)\displaystyle\frac{U(t)}{U(t^{2})} =F(z2)2U(t2)(F(z)F(z2))2(1+128z4)(F8(z)F7(z2))2\displaystyle=\frac{F(z^{2})^{2}}{U(t^{2})}\cdot\left(\frac{F(z)}{F(z^{2})}\right)^{2}\equiv(1+128z^{4})\left(\frac{F_{8}(z)}{F_{7}(z^{2})}\right)^{2}
1+120z+224z2+128z31+120t+96t2+128t3(mod28).\displaystyle\equiv 1+120z+224z^{2}+128z^{3}\equiv 1+120t+96t^{2}+128t^{3}\pmod{2^{8}}.

Note that the last equality uses the congruence relation zt(1+176t)(mod28)z\equiv t(1+176t)\pmod{2^{8}}. To obtain the formula (47), we calculate the change of the variable t=z(1432z)t=z(1-432z) with the following:

ddtU(t)U(t)\displaystyle\frac{\tfrac{d}{dt}U(t)}{U(t)} (1+96z)ddzF(z)2F(z)22(1+96z)ddzF(z)F(z)2(1+96z)ddzF8(z)F8(z)\displaystyle\equiv\frac{(1+96z)\tfrac{d}{dz}F(z)^{2}}{F(z)^{2}}\equiv 2(1+96z)\frac{\tfrac{d}{dz}F(z)}{F(z)}\equiv 2(1+96z)\frac{\tfrac{d}{dz}F_{8}(z)}{F_{8}(z)}
120+112z+128z2+224z3+192z7+128z15\displaystyle\equiv 120+112z+128z^{2}+224z^{3}+192z^{7}+128z^{15}
120+112t+128t2+224t3+192t7+128t15(mod28).\displaystyle\equiv 120+112t+128t^{2}+224t^{3}+192t^{7}+128t^{15}\pmod{2^{8}}.

Hence we have

V(t)U(t2)\displaystyle\frac{V(t)}{U(t^{2})} =1U(t2)(1+6tddt)U(t)=(1+6tddtU(t)U(t))U(t)U(t2)\displaystyle=\frac{1}{U(t^{2})}\left(1+6t\frac{d}{dt}\right)U(t)=\left(1+6t\frac{\frac{d}{dt}U(t)}{U(t)}\right)\frac{U(t)}{U(t^{2})}
1+72t+128t2+128t3+64t4+128t8(mod28).\displaystyle\equiv 1+72t+128t^{2}+128t^{3}+64t^{4}+128t^{8}\pmod{2^{8}}.

Since equations (48) and (49) can be obtained by the similar calculation with p=3p=3 and s=4s=4 in Lemma 4, we omit the proof. ∎

From Propositions 5 and 6, we obtain the following corollary.

Corollary 1.

The following formal infinite product expressions hold.

U(t)\displaystyle U(t) k=0(1+120t2k+96t2k+1+128t32k)(mod28),\displaystyle\equiv\prod_{k=0}^{\infty}(1+120t^{2^{k}}+96t^{2^{k+1}}+128t^{3\cdot 2^{k}})\pmod{2^{8}},
U(t)\displaystyle U(t) k=0(1+120t3k+54t23k+189t3k+1+135t43k+81t53k+162t63k+81t73k+162t103k)(mod35),\displaystyle\equiv\prod_{k=0}^{\infty}\genfrac{(}{)}{0.0pt}{}{1+120t^{3^{k}}+54t^{2\cdot 3^{k}}+189t^{3^{k+1}}+135t^{4\cdot 3^{k}}}{+81t^{5\cdot 3^{k}}+162t^{6\cdot 3^{k}}+81t^{7\cdot 3^{k}}+162t^{10\cdot 3^{k}}}\pmod{3^{5}},
U(t)\displaystyle U(t) k=0(1+20t5k+10t25k)(mod52),\displaystyle\equiv\prod_{k=0}^{\infty}(1+20t^{5^{k}}+10t^{2\cdot 5^{k}})\pmod{5^{2}},
U(t)\displaystyle U(t) k=0(1+22t7k+7t27k+21t37k+t7k+1+36t87k)(1+t7k+1)(mod72).\displaystyle\equiv\prod_{k=0}^{\infty}\frac{(1+22t^{7^{k}}+7t^{2\cdot 7^{k}}+21t^{3\cdot 7^{k}}+t^{7^{k+1}}+36t^{8\cdot 7^{k}})}{(1+t^{7^{k+1}})}\pmod{7^{2}}.
Question 1.

Recall that U(j(τ)1)=E4(τ)1/2U(j(\tau)^{-1})=E_{4}(\tau)^{1/2} and V(j(τ)1)=E2(τ)E4(τ)3/2E6(τ)1V(j(\tau)^{-1})=E_{2}(\tau)E_{4}(\tau)^{3/2}E_{6}(\tau)^{-1}. What are the counterparts of the above congruence formulas in the (quasi) modular form side?

We still cannot answer this vague question, but we can prove the following assertion as a closely related result. (Recall that U(t)=1(t)2U(t)=\mathcal{F}_{1}(t)^{2}.)

Proposition 7.

Let μ(n)\mu(n) be the Möbius function and (,)(\cdot,\cdot) be the Atkin inner product defined as

(f,g)=constant term of fgE2 as a Laurent series in q.(f(τ),g(τ)[j(τ)]).\displaystyle(f,g)=\text{constant term of $fgE_{2}$ as a Laurent series in $q$.}\quad(f(\tau),g(\tau)\in\mathbb{C}[j(\tau)]).

Then the formal power series 1(t)\mathcal{F}_{1}(t) can be expressed formally as follows:

1(t)\displaystyle\mathcal{F}_{1}(t) =2F1(112,512;1;1728t)=n=1(1tn)c(n),c(n)=112nd|nμ(nd)(jd,1),\displaystyle={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)=\prod_{n=1}^{\infty}(1-t^{n})^{-c(n)},\quad c(n)=\frac{1}{12n}\sum_{d|n}\mu(\tfrac{n}{d})\,(j^{d},1), (50)
1(t)\displaystyle\mathcal{F}_{1}(t) =exp(m=1112(jm,1)tmm).\displaystyle=\exp\left(\sum_{m=1}^{\infty}\frac{1}{12}(j^{m},1)\,\frac{t^{m}}{m}\right). (51)

Here are some examples of exponents c(n)c(n).

{c(n)}n1={60,37950,36139180,40792523310,50608476466548,}.\{c(n)\}_{n\geq 1}=\{60,37950,36139180,40792523310,50608476466548,\cdots\}.
Proof.

As already mentioned in [21, §5], the moment-generating function of the Atkin inner product is given by

E2(τ)E4(τ)j(τ)E6(τ)=m=0(jm,1)j(τ)m+1=1j(τ)+720j(τ)2+911520j(τ)3+1301011200j(τ)4+.\displaystyle\frac{E_{2}(\tau)E_{4}(\tau)}{j(\tau)E_{6}(\tau)}=\sum_{m=0}^{\infty}\frac{(j^{m},1)}{j(\tau)^{m+1}}=\frac{1}{j(\tau)}+\frac{720}{j(\tau)^{2}}+\frac{911520}{j(\tau)^{3}}+\frac{1301011200}{j(\tau)^{4}}+\cdots. (52)

By transforming the left-hand side of the above equation using the hypergeometric expressions of the Eisenstein series in Proposition 1, we have

m=0(jm,1)tm\displaystyle\sum_{m=0}^{\infty}(j^{m},1)\,t^{m} =(11728t)1/22F1(112,712;1;1728t)2F1(112,512;1;1728t)=2F1(1312,512;1;1728t)2F1(112,512;1;1728t)\displaystyle=(1-1728t)^{-1/2}\cdot\frac{{}_{2}F_{1}\left(-\frac{1}{12},\frac{7}{12};1;1728t\right)}{{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)}=\frac{{}_{2}F_{1}\left(\frac{13}{12},\frac{5}{12};1;1728t\right)}{{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)}
={(1+12tddt)2F1(112,512;1;1728t)}2F1(112,512;1;1728t)1\displaystyle=\left\{\left(1+12t\frac{d}{dt}\right){}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)\right\}{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)^{-1}
=1+12tddtlog2F1(112,512;1;1728t)\displaystyle=1+12t\frac{d}{dt}\log{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)
=1+12tddtlogn=1(1tn)c(n)\displaystyle=1+12t\frac{d}{dt}\log\prod_{n=1}^{\infty}(1-t^{n})^{-c(n)}
=1+12n=1c(n)ntn1tn.\displaystyle=1+12\sum_{n=1}^{\infty}c(n)\frac{nt^{n}}{1-t^{n}}.

Therefore, we have (jm,1)=12d|mdc(d)(j^{m},1)=12\sum_{d|m}d\cdot c(d) by comparing the coefficients of tmt^{m} on both sides of the above equation, and obtain the desired expression (50) of c(n)c(n) by using the Möbius inversion formula. Equation (51) is obtained by dividing both sides of the equation

tddtlog2F1(112,512;1;1728t)=m=1112(jm,1)tm\displaystyle t\frac{d}{dt}\log{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right)=\sum_{m=1}^{\infty}\frac{1}{12}(j^{m},1)\,t^{m}

by tt and then integrating with respect to tt. ∎

Remark 4.

Equation (52), and therefore equation (51), is equivalent to:

Δ(τ)=j(τ)1exp(m=1(jm,1)j(τ)mm).\displaystyle\Delta(\tau)=j(\tau)^{-1}\exp\left(\sum_{m=1}^{\infty}(j^{m},1)\,\frac{j(\tau)^{-m}}{m}\right).

4. Proof of the main theorem

First, we summarize the normalizing factors Nm,aN_{m,a} and the polynomials Am,a(X)A_{m,a}(X) and Bm,a(X)B_{m,a}(X) that appear in the main theorem. From the definition of the normalizing factor in Section 1, we see that its prime factors do not exceed the weight of the corresponding normalized extremal quasimodular form.

\bullet Case of weight w𝒮0={12,24}w\in\mathcal{S}_{0}=\{12,24\}.
Prime factorization of normalizing factors.

N1,0\displaystyle N_{1,0} =25335711,\displaystyle=2^{5}\cdot 3^{3}\cdot 5\cdot 7\cdot 11,
N2,0\displaystyle N_{2,0} =2633571113171923.\displaystyle=2^{6}\cdot 3^{3}\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23.

Atkin-like polynomials.

A1,0(X)=1,A2,0(X)=X824.\displaystyle A_{1,0}(X)=1,\;A_{2,0}(X)=X-824.

Adjoint polynomials.

B1,0(X)=X1008,B2,0(X)=X21832X+497952.\displaystyle B_{1,0}(X)=X-1008,\;B_{2,0}(X)=X^{2}-1832X+497952.

\bullet Case of weight w𝒮2={2,14,38}w\in\mathcal{S}_{2}=\{2,14,38\}.
Prime factorization of normalizing factors.

N0,2\displaystyle N_{0,2} =1,\displaystyle=1,
N1,2\displaystyle N_{1,2} =25335713,\displaystyle=2^{5}\cdot 3^{3}\cdot 5\cdot 7\cdot 13,
5N3,2\displaystyle 5N_{3,2} =27345271113171923293137.\displaystyle=2^{7}\cdot 3^{4}\cdot 5^{2}\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 37.

(Original) Atkin polynomials.

A0,2(X)\displaystyle A_{0,2}(X) =1,A1,2(X)=X720,\displaystyle=1,\;A_{1,2}(X)=X-720,
A3,2(X)\displaystyle A_{3,2}(X) =X3125765X2+1526958X107765856.\displaystyle=X^{3}-\frac{12576}{5}X^{2}+1526958X-107765856.

Adjoint polynomials.

B0,2(X)=0,B1,2(X)=1,B3,2(X)=X289765X+627534.\displaystyle B_{0,2}(X)=0,\;B_{1,2}(X)=1,\;B_{3,2}(X)=X^{2}-\frac{8976}{5}X+627534.

\bullet Case of weight w𝒮6={6,18,30,54,114}w\in\mathcal{S}_{6}=\{6,18,30,54,114\}.
Prime factorization of normalizing factors.

N0,6\displaystyle N_{0,6} =24325,\displaystyle=2^{4}\cdot 3^{2}\cdot 5,
N1,6\displaystyle N_{1,6} =263357111317,\displaystyle=2^{6}\cdot 3^{3}\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17,
N2,6\displaystyle N_{2,6} =2634527111317192329,\displaystyle=2^{6}\cdot 3^{4}\cdot 5^{2}\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29,
2N4,6\displaystyle 2N_{4,6} =27345272111317192329313741434753,\displaystyle=2^{7}\cdot 3^{4}\cdot 5^{2}\cdot 7^{2}\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 37\cdot 41\cdot 43\cdot 47\cdot 53,
51N9,6\displaystyle 51N_{9,6} =2835527211131719232931374143475359\displaystyle=2^{8}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 37\cdot 41\cdot 43\cdot 47\cdot 53\cdot 59
6167717379838997101103107109113.\displaystyle{}\quad\cdot 61\cdot 67\cdot 71\cdot 73\cdot 79\cdot 83\cdot 89\cdot 97\cdot 101\cdot 103\cdot 107\cdot 109\cdot 113.

Atkin-like polynomials.

A0,6(X)\displaystyle A_{0,6}(X) =1,A1,6(X)=X1266,A2,6(X)=X22115X+870630,\displaystyle=1,\quad A_{1,6}(X)=X-1266,\quad A_{2,6}(X)=X^{2}-2115X+870630,
A4,6(X)\displaystyle A_{4,6}(X) =X476712X3+4871313X22260803660X+273189722310,\displaystyle=X^{4}-\frac{7671}{2}X^{3}+4871313X^{2}-2260803660X+273189722310,
A9,6(X)\displaystyle A_{9,6}(X) =X9244543X8+47497929617X788880445720517X6\displaystyle=X^{9}-\frac{24454}{3}X^{8}+\frac{474979296}{17}X^{7}-\frac{888804457205}{17}X^{6}
+58002865348421X538759471954111394X4\displaystyle{}\quad+58002865348421X^{5}-38759471954111394X^{4}
+15135088185868167792X33173598010686486090312X2\displaystyle{}\quad+15135088185868167792X^{3}-3173598010686486090312X^{2}
+297473555337690122052390X7840346480159903987708940.\displaystyle{}\quad+297473555337690122052390X-7840346480159903987708940.

Adjoint polynomials.

B0,6(X)\displaystyle B_{0,6}(X) =1,B1,6(X)=X546,B2,6(X)=X21395X+259350,\displaystyle=1,\quad B_{1,6}(X)=X-546,\quad B_{2,6}(X)=X^{2}-1395X+259350,
B4,6(X)\displaystyle B_{4,6}(X) =X462312X3+3021273X2948582060X+53723885670,\displaystyle=X^{4}-\frac{6231}{2}X^{3}+3021273X^{2}-948582060X+53723885670,
B9,6(X)\displaystyle B_{9,6}(X) =X9222943X8+39070281617X765101393080517X6\displaystyle=X^{9}-\frac{22294}{3}X^{8}+\frac{390702816}{17}X^{7}-\frac{651013930805}{17}X^{6}
+37180279576181X521228003877921074X4\displaystyle{}\quad+37180279576181X^{5}-21228003877921074X^{4}
+6835398004395374832X31114698418843177975752X2\displaystyle{}\quad+6835398004395374832X^{3}-1114698418843177975752X^{2}
+72322444486635699257190X919318930586739576036780.\displaystyle{}\quad+72322444486635699257190X-919318930586739576036780.

\bullet Case of weight w𝒮8={8,20,32,68,80}w\in\mathcal{S}_{8}=\{8,20,32,68,80\}.
Prime factorization of normalizing factors.

N0,8\displaystyle N_{0,8} =24327,\displaystyle=2^{4}\cdot 3^{2}\cdot 7,
N1,8\displaystyle N_{1,8} =263357111319,\displaystyle=2^{6}\cdot 3^{3}\cdot 5\cdot 7\cdot 11\cdot 13\cdot 19,
N2,8\displaystyle N_{2,8} =2634527111317192331,\displaystyle=2^{6}\cdot 3^{4}\cdot 5^{2}\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 31,
5N5,8\displaystyle 5N_{5,8} =2834527211131719232931374143475359\displaystyle=2^{8}\cdot 3^{4}\cdot 5^{2}\cdot 7^{2}\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 37\cdot 41\cdot 43\cdot 47\cdot 53\cdot 59
6167,\displaystyle{}\quad\cdot 61\cdot 67,
11N6,8\displaystyle 11N_{6,8} =2834527211131719232931374143475359\displaystyle=2^{8}\cdot 3^{4}\cdot 5^{2}\cdot 7^{2}\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 37\cdot 41\cdot 43\cdot 47\cdot 53\cdot 59
6167717379.\displaystyle{}\quad\cdot 61\cdot 67\cdot 71\cdot 73\cdot 79.

Atkin-like polynomials.

A0,8(X)\displaystyle A_{0,8}(X) =1,A1,8(X)=X330,A2,8(X)=X21215X+129030,\displaystyle=1,\quad A_{1,8}(X)=X-330,\quad A_{2,8}(X)=X^{2}-1215X+129030,
A5,8(X)\displaystyle A_{5,8}(X) =X5190985X4+250154085X3129590373225X2+441761976414X\displaystyle=X^{5}-\frac{19098}{5}X^{4}+\frac{25015408}{5}X^{3}-\frac{12959037322}{5}X^{2}+441761976414X
9018997829292,\displaystyle{}\quad-9018997829292,
A6,8(X)\displaystyle A_{6,8}(X) =X64685X5+8934939011X46372443376X3+2195718854056X2\displaystyle=X^{6}-4685X^{5}+\frac{89349390}{11}X^{4}-6372443376X^{3}+2195718854056X^{2}
261120476348550X+3783879543834780.\displaystyle{}\quad-261120476348550X+3783879543834780.

Adjoint polynomials.

B0,8(X)\displaystyle B_{0,8}(X) =1,B1,8(X)=X1338,B2,8(X)=X22223X+1021110,\displaystyle=1,\quad B_{1,8}(X)=X-1338,\quad B_{2,8}(X)=X^{2}-2223X+1021110,
B5,8(X)\displaystyle B_{5,8}(X) =X5241385X4+426029925X3331922866665X2+107345407548065X\displaystyle=X^{5}-\frac{24138}{5}X^{4}+\frac{42602992}{5}X^{3}-\frac{33192286666}{5}X^{2}+\frac{10734540754806}{5}X
202399435400844,\displaystyle{}\quad-202399435400844,
B6,8(X)\displaystyle B_{6,8}(X) =X65693X5+13763763011X414603350881611X3+6911247661864X2\displaystyle=X^{6}-5693X^{5}+\frac{137637630}{11}X^{4}-\frac{146033508816}{11}X^{3}+6911247661864X^{2}
1568906774156358X+105994437115386300.\displaystyle{}\quad-1568906774156358X+105994437115386300.
Proof of Theorem 1.

We prove only the non-trivial and highest weight case w=114𝒮6w=114\in\mathcal{S}_{6}. The remaining cases can be proved in a similar way.

Since G114(1)(τ)[[q]]P19(t)[[t]]G_{114}^{(1)}(\tau)\in\mathbb{Z}[\![q]\!]\Leftrightarrow P_{19}(t)\in\mathbb{Z}[\![t]\!] holds from (5) of Lemma 1, we transform the formal power series P19(t)P_{19}(t) according to (34) as follows:

N9,6t19(11728t)1/2P19(t)=A9,6~(t)V(t)B9,6~(t)U(t).\displaystyle N_{9,6}\,t^{19}(1-1728t)^{-1/2}P_{19}(t)=\widetilde{A_{9,6}}(t)V(t)-\widetilde{B_{9,6}}(t)U(t).

Since the polynomials A9,6(X)A_{9,6}(X) and B9,6(X)B_{9,6}(X) belong to 151[X]\frac{1}{51}\mathbb{Z}[X], we multiply the both sides of the above equation by 5151, so that the right-hand side is the power series with integral coefficients. Using Proposition 4, we obtain the following congruence formula for prime numbers p11p\geq 11:

51(A9,6~(t)V(t)B9,6~(t)U(t))\displaystyle{}51\left(\widetilde{A_{9,6}}(t)V(t)-\widetilde{B_{9,6}}(t)U(t)\right)
{51A9,6~(t)m=0[p/6](6m+1)umtm51B9,6~(t)m=0[p/6]umtm}U(tp)(modp).\displaystyle\equiv\left\{51\widetilde{A_{9,6}}(t)\sum_{m=0}^{[p/6]}(6m+1)u_{m}t^{m}-51\widetilde{B_{9,6}}(t)\sum_{m=0}^{[p/6]}u_{m}t^{m}\right\}U(t^{p})\pmod{p}.

By direct calculation using Mathematica, we can see that the polynomial part of the right-hand side of the above equation is congruent to 0 modulo p(11p113)p\;(11\leq p\leq 113). To perform similar calculations for modulo 28,35,522^{8},3^{5},5^{2}, and 727^{2}, we use Propositions 5 and 6. For example, from (46) and (47), we have

51(A9,6~(t)V(t)B9,6~(t)U(t))\displaystyle{}51\left(\widetilde{A_{9,6}}(t)V(t)-\widetilde{B_{9,6}}(t)U(t)\right)
{51A9,6~(t)(1+72t+128t2+128t3+64t4+128t8)\displaystyle\equiv\left\{51\widetilde{A_{9,6}}(t)(1+72t+128t^{2}+128t^{3}+64t^{4}+128t^{8})\right.
51B9,6~(t)(1+120t+96t2+128t3)}U(t2)(mod28)\displaystyle{}\quad\left.-51\widetilde{B_{9,6}}(t)(1+120t+96t^{2}+128t^{3})\right\}U(t^{2})\pmod{2^{8}}

and then the polynomial part of the right-hand side is congruent to 0 modulo 282^{8}. The same assertion holds for the remaining cases. Combining the results for each of these primes, we have the desired congruence

51N9,6t19(11728t)1/2P19(t)\displaystyle{}51N_{9,6}\,t^{19}(1-1728t)^{-1/2}P_{19}(t)
=51(A9,6~(t)V(t)B9,6~(t)U(t))0(mod51N9,6)\displaystyle=51\left(\widetilde{A_{9,6}}(t)V(t)-\widetilde{B_{9,6}}(t)U(t)\right)\equiv 0\pmod{51N_{9,6}}

and hence t19(11728t)1/2P19(t)[[t]]t^{19}(1-1728t)^{-1/2}P_{19}(t)\in\mathbb{Z}[\![t]\!], and so P19(t)[[t]]P_{19}(t)\in\mathbb{Z}[\![t]\!] holds from (1) in Lemma 1. ∎

Question 2.

The proof of Theorem 1 in this paper is a “hypergeometric” proof. Can this theorem be proved using only the theory of modular forms?

5. Other choice of the leading coefficients

Why did we choose the leading coefficient as 1 in Definition 1 of the normalized extremal quasimodular form? Was it really a natural choice? Of course, the set of weights ww of cGw(r)c\,G_{w}^{(r)} with integral Fourier coefficients changes if we choose a number cc other than 1 as the leading coefficient. In this section we show that cGw(1)c\,G_{w}^{(1)} has integral Fourier coefficients if we choose a constant cc based on the hypergeometric expressions of Gw(1)G_{w}^{(1)} in Proposition 2.

The reason we often focus on (positive) integers is that we can expect them to count “something”, such as the dimension or degree or order of some mathematical objects, the number of curves or points with certain arithmetic or geometric properties, and so on. Interestingly, Nebe proved the integrality of the Fourier coefficients of G14(1)G_{14}^{(1)} by using the properties of the automorphism group of the Leech lattice Λ24\Lambda_{24} in the appendix of [30]222The author speculates that Nebe probably uses qq to mean eπiτe^{\pi i\tau} in the proof of Theorem A.1. Hence the correct expression of f1,14f_{1,14} for q=e2πiτq=e^{2\pi i\tau} is given by A1a=1a2|La|qa/2A^{-1}\sum_{a=1}^{\infty}\tfrac{a}{2}|L_{a}|q^{a/2}.:

θΛ24\displaystyle\theta_{\Lambda_{24}} =λΛ24eπiτλ2=n=0|{λΛ24λ2=n}|qn/2\displaystyle=\sum_{\lambda\in\Lambda_{24}}e^{\pi i\tau\|\lambda\|^{2}}=\sum_{n=0}^{\infty}|\{\lambda\in\Lambda_{24}\mid\|\lambda\|^{2}=n\}|\,q^{n/2}
=E43720Δ=E1265520691Δ\displaystyle=E_{4}^{3}-720\Delta=E_{12}-\frac{65520}{691}\Delta
=1+196560q2+16773120q3+398034000q4+4629381120q5+O(q6),\displaystyle=1+196560q^{2}+16773120q^{3}+398034000q^{4}+4629381120q^{5}+O(q^{6}),
G14(1)\displaystyle G_{14}^{(1)} =E2(E43720Δ)E42E6393120=D(θΛ24)393120\displaystyle=\frac{E_{2}(E_{4}^{3}-720\Delta)-E_{4}^{2}E_{6}}{393120}=\frac{D(\theta_{\Lambda_{24}})}{393120}
=q2+128q3+4050q4+58880q5+525300q6+O(q7).\displaystyle=q^{2}+128q^{3}+4050q^{4}+58880q^{5}+525300q^{6}+O(q^{7}).

Therefore, the number 393120 is twice the number of lattice vectors of squared norm 4 in Λ24\Lambda_{24}, and N1,2N_{1,2} is exactly equal to this number. It is known that the Eisenstein series E4E_{4} is the theta series of the E8E_{8}-lattice. Since G6(1)=D(E4)/240=D(θE8)/240G_{6}^{(1)}=D(E_{4})/240=D(\theta_{E_{8}})/240, as with G14(1)G_{14}^{(1)}, the Fourier coefficients of G6(1)G_{6}^{(1)} are related to the number of lattice vectors in the E8E_{8}-lattice. Note that although G6(1)G_{6}^{(1)} and G14(1)G_{14}^{(1)} were obtained as derivatives of a certain modular form, the only such Gw(1)G_{w}^{(1)} that can be obtained this way are for w=6,8,10,14w=6,8,10,14. This fact is easily seen by comparing the dimension formulas of MwM_{w} and QMw+2(1)QM_{w+2}^{(1)}.

Inspired by these coincidences333The modular solutions of the Kaneko–Zagier equation (13) with small weights are also closely related to the theta series of the ADE-type root lattice. For more details, see [17, p. 158]. 13N0,6G6(1)=D(θE8)[[q]]\tfrac{1}{3}N_{0,6}\,G_{6}^{(1)}=D(\theta_{E_{8}})\in\mathbb{Z}[\![q]\!] and N1,2G14(1)=D(θΛ24)[[q]]N_{1,2}\,G_{14}^{(1)}=D(\theta_{\Lambda_{24}})\in\mathbb{Z}[\![q]\!], although we still do not know what the Fourier coefficients of these forms counting up, we have arrived at the following theorem.

Theorem 3.

Let Nm,aN_{m,a} be the normalizing factor defined by (27) and (28). Then, for any m0m\geq 0, the Fourier coefficients of the following extremal quasimodular forms are all integers:

Nm,024mG12m(1),Nm,224mG12m+2(1),Nm,612(2m+1)G12m+6(1),Nm,812(2m+1)G12m+8(1).\displaystyle\frac{N_{m,0}}{24m}\,G_{12m}^{(1)},\;\frac{N_{m,2}}{24m}\,G_{12m+2}^{(1)},\;\frac{N_{m,6}}{12(2m+1)}\,G_{12m+6}^{(1)},\;\frac{N_{m,8}}{12(2m+1)}\,G_{12m+8}^{(1)}.

Furthermore, since G6n+4(1)=E4G6n(1)G_{6n+4}^{(1)}=E_{4}G_{6n}^{(1)}, the forms 124mNm,0G12m+4(1)\tfrac{1}{24m}N_{m,0}\,G_{12m+4}^{(1)} and 112(2m+1)Nm,6G12m+10(1)\tfrac{1}{12(2m+1)}N_{m,6}\,G_{12m+10}^{(1)} have the same properties. (Note: Since the factors Nm,0N_{m,0} and Nm,2N_{m,2} are defined by the product of binomial coefficients (27), we substitute m=0m=0 after dividing by mm and reducing.)

In the proof of this theorem, we use the following power series instead of qq as the local parameter at infinity, based on the method of Remark 2:

z(q)432=1864{1(11728j(q))1/2}=1864(1E4(q)3/2E6(q))\displaystyle{}\frac{z(q)}{432}=\frac{1}{864}\left\{1-\left(1-\frac{1728}{j(q)}\right)^{1/2}\right\}=\frac{1}{864}\left(1-E_{4}(q)^{-3/2}E_{6}(q)\right) (53)
=q312q2+87084q323067968q4+5930898126q5+O(q6).\displaystyle=q-312q^{2}+87084q^{3}-23067968q^{4}+5930898126q^{5}+O(q^{6}).
Proof.

Throughout this proof, we consider zz to be z=12{1(11728t)1/2}432t[[t]]z=\tfrac{1}{2}\{1-(1-1728t)^{1/2}\}\in 432t\mathbb{Z}[\![t]\!] and t=j1t=j^{-1}. From Proposition 2, the normalized extremal quasimodular forms Gw(1)G_{w}^{(1)} are the product of the power of 1(t)=2F1(112,512;1;1728t)\mathcal{F}_{1}(t)={}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;1728t\right) and a hypergeometric series. Furthermore, since 1(t)1+t[[t]]\mathcal{F}_{1}(t)\in 1+t\mathbb{Z}[\![t]\!] holds from Remark 2, we have 1(t)w11+t[[t]]\mathcal{F}_{1}(t)^{w-1}\in 1+t\mathbb{Z}[\![t]\!]. Therefore, as already mentioned in Lemma 1 (3), it suffices to show that Cw1(t)1wGw(1)[[t]]C_{w}\mathcal{F}_{1}(t)^{1-w}G_{w}^{(1)}\in\mathbb{Z}[\![t]\!] to prove the theorem, where the constant CwC_{w} is an appropriate normalization constant.

First we calculate the case of w=12mw=12m. From the quadratic transformation formula (22) we have

Nm,024m2F1(m+112,m+512;2m+1;1728t)\displaystyle{}\frac{N_{m,0}}{24m}\,{}_{2}F_{1}\left(m+\frac{1}{12},m+\frac{5}{12};2m+1;1728t\right)
=(12m)!(2m)!(4m)!(6m)!2F1(2m+16,2m+56;2m+1;z)\displaystyle=\frac{(12m)!}{(2m)!(4m)!(6m)!}\,{}_{2}F_{1}\left(2m+\frac{1}{6},2m+\frac{5}{6};2m+1;z\right)
=(12m)!(2m)!(4m)!(6m)!(1)2m(16)2m(56)2md2mdz2m2F1(16,56;1;z)\displaystyle=\frac{(12m)!}{(2m)!(4m)!(6m)!}\cdot\frac{(1)_{2m}}{(\tfrac{1}{6})_{2m}(\tfrac{5}{6})_{2m}}\cdot\frac{d^{2m}}{dz^{2m}}{}_{2}F_{1}\left(\frac{1}{6},\frac{5}{6};1;z\right)
=n=0(2m+nn)(6m+3n2m+n)(12m+6n6m+3n)(z432)n[[t]].\displaystyle=\sum_{n=0}^{\infty}\binom{2m+n}{n}\binom{6m+3n}{2m+n}\binom{12m+6n}{6m+3n}\left(\frac{z}{432}\right)^{n}\in\mathbb{Z}[\![t]\!]. (54)

It is convenient to use the following formulas to calculate the last equality:

432k(16)k(56)k=Γ(k)Γ(6k)Γ(2k)Γ(3k)=Γ(k+1)Γ(6k+1)Γ(2k+1)Γ(3k+1),(α+k)=(α)k+(α)k.\displaystyle 432^{k}\left(\frac{1}{6}\right)_{k}\left(\frac{5}{6}\right)_{k}=\frac{\Gamma(k)\Gamma(6k)}{\Gamma(2k)\Gamma(3k)}=\frac{\Gamma(k+1)\Gamma(6k+1)}{\Gamma(2k+1)\Gamma(3k+1)},\quad(\alpha+k)_{\ell}=\frac{(\alpha)_{k+\ell}}{(\alpha)_{k}}.

A similar calculation for w=12m+6w=12m+6 yields

Nm,612(2m+1)2F1(m+712,m+1112;2m+2;1728t)\displaystyle{}\frac{N_{m,6}}{12(2m+1)}\,{}_{2}F_{1}\left(m+\frac{7}{12},m+\frac{11}{12};2m+2;1728t\right)
=n=0(2m+n+1n)(6m+3n+32m+n+1)(12m+6n+66m+3n+3)(z432)n[[t]].\displaystyle=\sum_{n=0}^{\infty}\binom{2m+n+1}{n}\binom{6m+3n+3}{2m+n+1}\binom{12m+6n+6}{6m+3n+3}\left(\frac{z}{432}\right)^{n}\in\mathbb{Z}[\![t]\!]. (55)

To prove the assertions about G12m+2(1)G_{12m+2}^{(1)} and G12m+8(1)G_{12m+8}^{(1)}, we recall 112n(2nn)\tfrac{1}{1-2n}\tbinom{2n}{n}\in\mathbb{Z}. Then, we can see that the coefficient of (z/432)n(z/432)^{n} of the following formal power series is an integer:

2F1(16,76;1;z)=n=0(6n+1)(3nn)116n(6n3n)(z432)n[[t]].\displaystyle{}_{2}F_{1}\left(-\frac{1}{6},\frac{7}{6};1;z\right)=\sum_{n=0}^{\infty}(6n+1)\binom{3n}{n}\cdot\frac{1}{1-6n}\binom{6n}{3n}\cdot\left(\frac{z}{432}\right)^{n}\in\mathbb{Z}[\![t]\!].

Hence we have

Nm,224m2F1(m112,m+712;2m+1;1728t)\displaystyle{}\frac{N_{m,2}}{24m}\,{}_{2}F_{1}\left(m-\frac{1}{12},m+\frac{7}{12};2m+1;1728t\right)
=Nm,224m2F1(2m16,2m+76;2m+1;z)\displaystyle=\frac{N_{m,2}}{24m}{}_{2}F_{1}\left(2m-\frac{1}{6},2m+\frac{7}{6};2m+1;z\right)
=Nm,224m(1)2m(16)2m(76)2md2mdz2m2F1(16,76;1;z)\displaystyle=\frac{N_{m,2}}{24m}\cdot\frac{(1)_{2m}}{(-\tfrac{1}{6})_{2m}(\tfrac{7}{6})_{2m}}\cdot\frac{d^{2m}}{dz^{2m}}{}_{2}F_{1}\left(-\frac{1}{6},\frac{7}{6};1;z\right)
=n=012m+6n+112m+6n1(2m+nn)(6m+3n2m+n)(12m+6n6m+3n)(z432)n[[t]]\displaystyle=\sum_{n=0}^{\infty}\frac{12m+6n+1}{12m+6n-1}\binom{2m+n}{n}\binom{6m+3n}{2m+n}\binom{12m+6n}{6m+3n}\left(\frac{z}{432}\right)^{n}\in\mathbb{Z}[\![t]\!]

and also have

Nm,812(2m+1)2F1(m+512,m+1312;2m+2;1728t)\displaystyle{}\frac{N_{m,8}}{12(2m+1)}\,{}_{2}F_{1}\left(m+\frac{5}{12},m+\frac{13}{12};2m+2;1728t\right)
=n=012m+6n+712m+6n+5(2m+n+1n)(6m+3n+32m+n+1)(12m+6n+66m+3n+3)(z432)n[[t]].\displaystyle=\sum_{n=0}^{\infty}\frac{12m+6n+7}{12m+6n+5}\binom{2m+n+1}{n}\binom{6m+3n+3}{2m+n+1}\binom{12m+6n+6}{6m+3n+3}\left(\frac{z}{432}\right)^{n}\in\mathbb{Z}[\![t]\!].

This completes the proof of Theorem 3. ∎

Considering the divisors of the normalizing factors Nm,aN_{m,a}, Theorem 3 implies the following claim.

Corollary 2.

The denominators of the Fourier coefficients of the normalized extremal quasimodular forms Gw(1)G_{w}^{(1)} are only divisible by prime numbers <w<w.

This claim was originally stated as Gw(r)[1p:p<w][[q]](1r4)G_{w}^{(r)}\in\mathbb{Z}\bigl{[}\tfrac{1}{p}:p<w\bigr{]}[\![q]\!]\;(1\leq r\leq 4) in [19]. When (w,r)=(6n,1)(w,r)=(6n,1) and (w,r)=(6n+2,1),(6n+4,1)(w,r)=(6n+2,1),(6n+4,1), they are proved in [30, Thm. 3.3] and [23, Thm. 1.8, Thm. 1.9], respectively, and the original claim is proved in [10]. Note that our proof is mainly based on hypergeometric expressions of Gw(1)G_{w}^{(1)}, which is different from their proof.

According to Theorem 3, there exists a constant cwc_{w} such that cwGw(1)[[q]]c_{w}\,G_{w}^{(1)}\in\mathbb{Z}[\![q]\!]. However, this constant is probably too large, and integrality holds for smaller numbers. For example, although 148N2,2G26(1)=1454953500G26(1)[[q]]\tfrac{1}{48}N_{2,2}\,G_{26}^{(1)}=1454953500\,G_{26}^{(1)}\in\mathbb{Z}[\![q]\!] holds, we can show that the stronger claim 5G26(1)[[q]]5G_{26}^{(1)}\in\mathbb{Z}[\![q]\!] holds in the similar way as in the proof of Theorem 1. As a more general setting, we define the number cw(r)c_{w}^{(r)} as cw(r):=min{c|cGw(r)[[q]]}c_{w}^{(r)}:=\min\{\,c\,|\,c\,G_{w}^{(r)}\in\mathbb{Z}[\![q]\!]\}. How do such numbers depend on weight and depth?

Remark 5.

In the study of the denominator of Atkin polynomials [21, §9], the formal power series Φn(t)\Phi_{n}(t) and Ψn(t)\Psi_{n}(t), which are defined as follows, play a central role:

Φn+1(t)=Φn(t)λntΦn1(t),Ψn+1(t)=Ψn(t)λn+tΨn1(t)(n1),\displaystyle\Phi_{n+1}(t)=\Phi_{n}(t)-\lambda_{n}^{-}\,t\,\Phi_{n-1}(t),\quad\Psi_{n+1}(t)=\Psi_{n}(t)-\lambda_{n}^{+}\,t\,\Psi_{n-1}(t)\quad(n\geq 1),

where λ1=84,λ1+=60\lambda_{1}^{-}=84,\;\lambda_{1}^{+}=-60 and for n>1n>1,

λn=12(6(1)nn1)(6(1)nn).\displaystyle\lambda_{n}^{\mp}=12\left(6\mp\dfrac{(-1)^{n}}{n-1}\right)\left(6\mp\dfrac{(-1)^{n}}{n}\right).

The initial power series are given by the following.

Φ0(t)\displaystyle\Phi_{0}(t) =2F1(112,512;1;1728t)2,\displaystyle={}_{2}F_{1}\left(\tfrac{1}{12},\tfrac{5}{12};1;1728t\right)^{2},
Φ1(t)\displaystyle\Phi_{1}(t) =84t2F1(112,512;1;1728t)2F1(512,1312;2;1728t),\displaystyle=84t\,{}_{2}F_{1}\left(\tfrac{1}{12},\tfrac{5}{12};1;1728t\right){}_{2}F_{1}\left(\tfrac{5}{12},\tfrac{13}{12};2;1728t\right),
Ψ0(t)\displaystyle\Psi_{0}(t) =2F1(112,512;1;1728t)2F1(112,712;1;1728t),\displaystyle={}_{2}F_{1}\left(\tfrac{1}{12},\tfrac{5}{12};1;1728t\right){}_{2}F_{1}\left(-\tfrac{1}{12},\tfrac{7}{12};1;1728t\right),
Ψ1(t)\displaystyle\Psi_{1}(t) =60t2F1(112,512;1;1728t)2F1(712,1112;2;1728t).\displaystyle=-60t\,{}_{2}F_{1}\left(\tfrac{1}{12},\tfrac{5}{12};1;1728t\right){}_{2}F_{1}\left(\tfrac{7}{12},\tfrac{11}{12};2;1728t\right).

Although the definition for the power series Ψn(t)\Psi_{n}(t) is not given in [21], the details are omitted here because it can be derived from the same consideration as Φn(t)\Phi_{n}(t). In fact, these power series and the power series Pn(t)P_{n}(t) and Qn(t)Q_{n}(t) defined by (20) and (21) have the following correspondences:

Φ2m(t)\displaystyle\Phi_{2m}(t) =112Nm,0t2mP2m(t),Φ2m+1(t)=112Nm,8t2m+1Q2m+1(t),\displaystyle=\tfrac{1}{12}N_{m,0}\,t^{2m}P_{2m}(t),\quad\Phi_{2m+1}(t)=\tfrac{1}{12}N_{m,8}\,t^{2m+1}Q_{2m+1}(t),
Ψ2m(t)\displaystyle\Psi_{2m}(t) =112Nm,2t2mQ2m(t),Ψ2m+1(t)=112Nm,6t2m+1P2m+1(t).\displaystyle=-\tfrac{1}{12}N_{m,2}\,t^{2m}Q_{2m}(t),\quad\Psi_{2m+1}(t)=-\tfrac{1}{12}N_{m,6}\,t^{2m+1}P_{2m+1}(t).

These correspondences can be proved by using a contiguous relation of a certain hypergeometric series. In [21, p. 120], it is stated without proof that “the power series Φn(t)\Phi_{n}(t) has integral coefficients and is divisible by tnt^{n} for all nn”, which is essentially equivalent to a weaker version of our Theorem 3. However, it should be emphasized that essentially the equivalent forms appeared in [21] before the introduction of the normalized extremal quasimodular forms in [19].

6. Further directions

Up to the previous section we have discussed the extremal quasimodular forms of depth 11 on Γ=SL2()\Gamma=SL_{2}(\mathbb{Z}). It is therefore natural to consider a generalization that changes these factors. The case of depth 22 on Γ\Gamma has already been considered in [19, 10, 15], but we note that in these papers there is no perspective of using a generalized hypergeometric series. Therefore, we focus mainly on these hypergeometric aspects and present in this section some complementary results of previous studies without detailed proofs.

To describe the case of depth 2\geq 2, we introduce the Rankin–Cohen brackets ([41, §5.2], see also [40, 4]), which is defined for integers k,,n0k,\ell,n\geq 0 and functions f,gf,g on \mathfrak{H} by

[f,g]n(k,):=i=0n(1)i(n+k1ni)(n+1i)Di(f)Dni(g).\displaystyle[f,g]_{n}^{(k,\ell)}:=\sum_{i=0}^{n}(-1)^{i}\binom{n+k-1}{n-i}\binom{n+\ell-1}{i}D^{i}(f)D^{n-i}(g).

We then define the (r+1)(r+1)-th order differential operator θk(r)\theta_{k}^{(r)} as follows.

θk(r)(f)\displaystyle\theta_{k}^{(r)}(f) :=Dr+1(f)k+r12[E2,f]r(2,k)\displaystyle:=D^{r+1}(f)-\frac{k+r}{12}[E_{2},f]_{r}^{(2,k)}
=Dr+1(f)k+r12i=0r(1)i(r+1i+1)(k+r1i)Di(E2)Dri(f).\displaystyle=D^{r+1}(f)-\frac{k+r}{12}\sum_{i=0}^{r}(-1)^{i}\binom{r+1}{i+1}\binom{k+r-1}{i}D^{i}(E_{2})D^{r-i}(f).

In particular, when r=0,1r=0,1, this operator gives the Serre derivative k\partial_{k} and the differential operator Lk+1L_{k+1} defined by (14), respectively. Also, by specializing Proposition 3.3 in [19], we can see that fQMk(r)θkr(r)(f)QMk+2(r+1)(r)f\in QM_{k}^{(r)}\Rightarrow\theta_{k-r}^{(r)}(f)\in QM_{k+2(r+1)}^{(r)}.

The following identity holds for the integer r{2,3,4}r\in\{2,3,4\}:

θk(r)=(k+r1)(k+2r)2(r1)(k+r)θk+2(r1)kk(k+r+1)2(r1)(k+r)k+2rθk(r1).\displaystyle\theta_{k}^{(r)}=\frac{(k+r-1)(k+2r)}{2(r-1)(k+r)}\theta_{k+2}^{(r-1)}\circ\partial_{k}-\frac{k(k+r+1)}{2(r-1)(k+r)}\partial_{k+2r}\circ\theta_{k}^{(r-1)}. (56)

The proof of this identity by direct calculation is long and tedious, but by using (56) repeatedly, we can easily rewrite the differential operator θk(r)\theta_{k}^{(r)} into a form using the Serre derivative k\partial_{k} for r{2,3,4}r\in\{2,3,4\}. As will be described later, some extremal quasimodular forms are annihilated by the differential operator θk(r)\theta_{k}^{(r)}. Therefore, such rewriting is useful to derive an inductive structure of extremal quasimodular forms according to Grabner’s method. Incidentally, the identity (56) does not seem to hold for r5r\geq 5, for example, we have the following identities for r=5r=5 and 66:

θk(5){(k+4)(k+10)8(k+5)θk+2(4)kk(k+6)8(k+5)k+10θk(4)}\displaystyle{}\theta_{k}^{(5)}-\left\{\frac{(k+4)(k+10)}{8(k+5)}\theta_{k+2}^{(4)}\circ\partial_{k}-\frac{k(k+6)}{8(k+5)}\partial_{k+10}\circ\theta_{k}^{(4)}\right\}
=k(k+4)(k+6)(k+10)(k2+10k+36)1440Δ,\displaystyle=\frac{k(k+4)(k+6)(k+10)(k^{2}+10k+36)}{1440}\Delta,
θk(6){(k+5)(k+12)10(k+6)θk+2(5)kk(k+7)10(k+6)k+12θk(5)}\displaystyle{}\theta_{k}^{(6)}-\left\{\frac{(k+5)(k+12)}{10(k+6)}\theta_{k+2}^{(5)}\circ\partial_{k}-\frac{k(k+7)}{10(k+6)}\partial_{k+12}\circ\theta_{k}^{(5)}\right\}
=k(k+5)(k+7)(k+12)(k2+12k+47)300Δk.\displaystyle=\frac{k(k+5)(k+7)(k+12)(k^{2}+12k+47)}{300}\Delta\partial_{k}.

In [19] Kaneko and Koike showed that θw1(1)(Gw(1))=0(w0(mod6))\theta_{w-1}^{(1)}(G_{w}^{(1)})=0\;(w\equiv 0\pmod{6}) (Recall the Kaneko–Zagier equation (13).) and θw2(2)(Gw(2))=0(w0(mod4))\theta_{w-2}^{(2)}(G_{w}^{(2)})=0\;(w\equiv 0\pmod{4}), and conjectured that θw3(3)(Gw(3))=0(w0(mod6))\theta_{w-3}^{(3)}(G_{w}^{(3)})=0\;(w\equiv 0\pmod{6}) and θw4(4)(Gw(4))=0(w0(mod12))\theta_{w-4}^{(4)}(G_{w}^{(4)})=0\;(w\equiv 0\pmod{12}). Hence, for r{1,2,3,4}r\in\{1,2,3,4\}, we also call the differential equation θwr(r)(f)=0\theta_{w-r}^{(r)}(f)=0 the Kaneko–Zagier equation. Recently, Grabner [10] gave an affirmative answer for their conjecture, more precisely, he gave a concrete form of the differential equation satisfied by the balanced quasimodular forms. By specializing his results, we can find the concrete form of the differential equation satisfied by the normalized extremal quasimodular forms Gw(r)G_{w}^{(r)} for any even integer w0w\geq 0 and r{1,2,3}r\in\{1,2,3\} and G12n(4)G_{12n}^{(4)}. Of course, for w0(mod12)w\equiv 0\pmod{12} and a{2,4,6,8,10}a\in\{2,4,6,8,10\}, there is a fifth-order differential operator Lw,a(4)L_{w,a}^{(4)} such that Lw,a(4)(Gw+a(4))=0L_{w,a}^{(4)}(G_{w+a}^{(4)})=0. The specific form of Lw,a(4)L_{w,a}^{(4)} is not described here, but is of the form shown below:

Lw,a(4)=faw+a45+(lower-order terms on )M(Γ)[],\displaystyle L_{w,a}^{(4)}=f_{a}\,\partial_{w+a-4}^{5}+(\text{lower-order terms on $\partial_{*}$})\in M_{*}(\Gamma)[\partial_{*}],

where (a,fa)=(2,E10),(4,E8),(6,E6),(8,E4),(10,E14)(a,f_{a})=(2,E_{10}),(4,E_{8}),(6,E_{6}),(8,E_{4}),(10,E_{14}).

6.1. Case of depth r2r\geq 2

Depth 2. The Kaneko–Zagier equation θw2(2)(f)=0\theta_{w-2}^{(2)}(f)=0 is transformed into

z2(1z)d3gdz3+z(w124+w184z)d2gdz2\displaystyle{}z^{2}(1-z)\frac{d^{3}g}{dz^{3}}+z\left(-\frac{w-12}{4}+\frac{w-18}{4}z\right)\frac{d^{2}g}{dz^{2}}
+(w443w272w+452144z)dgdz+(w2)(w6)(w10)1728g=0\displaystyle{}\quad+\left(-\frac{w-4}{4}-\frac{3w^{2}-72w+452}{144}z\right)\frac{dg}{dz}+\frac{(w-2)(w-6)(w-10)}{1728}g=0

or equivalently

{Θ2(Θw441)t(Θw212)(Θw612)(Θw1012)}g=0,\displaystyle\left\{\Theta^{2}\left(\Theta-\frac{w-4}{4}-1\right)-t\left(\Theta-\frac{w-2}{12}\right)\left(\Theta-\frac{w-6}{12}\right)\left(\Theta-\frac{w-10}{12}\right)\right\}g=0,

where g(τ)=E4(τ)(w2)/4f(τ)g(\tau)=E_{4}(\tau)^{-(w-2)/4}f(\tau) and z=1728/j(τ)z=1728/j(\tau). Since this differential equation is a hypergeometric differential equation, a similar statement as in Proposition 2 holds for depth 22.

Proposition 8.

The normalized extremal quasimodular forms of even weight and depth 22 on Γ\Gamma have the following hypergeometric expressions.

G4n(2)(τ)=j(τ)nE4(τ)(2n1)/2×3F2(4n+16,4n+36,4n+56;n+1,n+1;1728j(τ)),\displaystyle\begin{split}G_{4n}^{(2)}(\tau)&=j(\tau)^{-n}E_{4}(\tau)^{(2n-1)/2}\\ &{}\quad\times{}_{3}F_{2}\left(\frac{4n+1}{6},\frac{4n+3}{6},\frac{4n+5}{6};n+1,n+1;\frac{1728}{j(\tau)}\right),\end{split} (57)
G4n+2(2)(τ)=j(τ)nE4(τ)(2n3)/2E6(τ)×3F2(4n+36,4n+56,4n+76;n+1,n+1;1728j(τ)).\displaystyle\begin{split}G_{4n+2}^{(2)}(\tau)&=j(\tau)^{-n}E_{4}(\tau)^{(2n-3)/2}E_{6}(\tau)\\ &{}\quad\times{}_{3}F_{2}\left(\frac{4n+3}{6},\frac{4n+5}{6},\frac{4n+7}{6};n+1,n+1;\frac{1728}{j(\tau)}\right).\end{split} (58)

From Grabner’s result [10], the relation G4n+2(2)=64n+14n2(G4n(2))G_{4n+2}^{(2)}=\frac{6}{4n+1}\partial_{4n-2}(G_{4n}^{(2)}) holds, so the latter expression can be obtained from the former after a little calculation. We omit the proof because it is similar to Proposition 2. It is known from [15] that 2={4,8}\mathcal{E}_{2}=\{4,8\}, and the Fourier coefficients of the corresponding normalized extremal quasimodular forms are given below:

G4(2)\displaystyle G_{4}^{(2)} =E4E22288=D(E2)24=n=1nσ1(n)qn\displaystyle=\frac{E_{4}-E_{2}^{2}}{288}=-\frac{D(E_{2})}{24}=\sum_{n=1}^{\infty}n\sigma_{1}(n)q^{n}
=q+6q2+12q3+28q4+30q5+72q6+56q7+120q8+O(q9),\displaystyle=q+6q^{2}+12q^{3}+28q^{4}+30q^{5}+72q^{6}+56q^{7}+120q^{8}+O(q^{9}),
G8(2)\displaystyle G_{8}^{(2)} =5E42+2E2E67E22E4362880=130n=2n(σ5(n)nσ3(n))qn\displaystyle=\frac{5E_{4}^{2}+2E_{2}E_{6}-7E_{2}^{2}E_{4}}{362880}=\frac{1}{30}\sum_{n=2}^{\infty}n(\sigma_{5}(n)-n\sigma_{3}(n))q^{n}
=q2+16q3+102q4+416q5+1308q6+3360q7+7772q8+O(q9).\displaystyle=q^{2}+16q^{3}+102q^{4}+416q^{5}+1308q^{6}+3360q^{7}+7772q^{8}+O(q^{9}).

The positivity of the Fourier coefficients of G8(2)G_{8}^{(2)} can also be seen from the fact that D(G8(2))=2G6(1)G4(2)D(G_{8}^{(2)})=2G_{6}^{(1)}G_{4}^{(2)}. In these cases, it is easier to show the integrality by calculating the Fourier coefficients directly, but here we introduce a proof using a hypergeometric series as in the case of depth 1. We define

Rn(t)=3F2(4n+16,4n+36,4n+56;n+1,n+1;1728t),\displaystyle R_{n}(t)={}_{3}F_{2}\left(\frac{4n+1}{6},\frac{4n+3}{6},\frac{4n+5}{6};n+1,n+1;1728t\right),

and then R1(t)[[t]]G4(2)[[q]]R_{1}(t)\in\mathbb{Z}[\![t]\!]\Leftrightarrow G_{4}^{(2)}\in\mathbb{Z}[\![q]\!] and R2(t)[[t]]G8(2)[[q]]R_{2}(t)\in\mathbb{Z}[\![t]\!]\Leftrightarrow G_{8}^{(2)}\in\mathbb{Z}[\![q]\!] hold. Since

R1(t)\displaystyle R_{1}(t) =r=0(2r+1r)(3r+1r+1)(6r+13r)tr,\displaystyle=\sum_{r=0}^{\infty}\binom{2r+1}{r}\binom{3r+1}{r+1}\binom{6r+1}{3r}\,t^{r},
R2(t)\displaystyle R_{2}(t) =r=01210(2r+2r)(3r+4r+2)(6r+73r+3)tr,\displaystyle=\sum_{r=0}^{\infty}\frac{1}{210}\binom{2r+2}{r}\binom{3r+4}{r+2}\binom{6r+7}{3r+3}\,t^{r},

the integrality of the former is obvious, while that of the latter is not. Noticing that the exponents of the prime factors of 210=2357210=2\cdot 3\cdot 5\cdot 7 are all 11, we can prove the latter integrality using the Lucas’ theorem in (36). For p=5,7p=5,7 we set r=p+m(0,0mp1)r=\ell p+m\;(\ell\in\mathbb{Z}_{\geq 0},0\leq m\leq p-1) and use Lucas’ theorem only once, but for p=2,3p=2,3, we have to use it several times. For example, the calculation for p=2p=2 and r=8+2r=8\ell+2 is performed as follows.

(16+68+2)(24+108+4)(48+1924+9)(00)2(11)(8+34+1)(12+54+2)(24+912+4)\displaystyle{}\binom{16\ell+6}{8\ell+2}\binom{24\ell+10}{8\ell+4}\binom{48\ell+19}{24\ell+9}\equiv\binom{0}{0}^{2}\binom{1}{1}\binom{8\ell+3}{4\ell+1}\binom{12\ell+5}{4\ell+2}\binom{24\ell+9}{12\ell+4}
(11)(10)2(4+12)(6+22+1)(12+46+2)(10)(01)(00)(2)(3+1)(6+23+1)\displaystyle\equiv\binom{1}{1}\binom{1}{0}^{2}\binom{4\ell+1}{2\ell}\binom{6\ell+2}{2\ell+1}\binom{12\ell+4}{6\ell+2}\equiv\binom{1}{0}\binom{0}{1}\binom{0}{0}\binom{2\ell}{\ell}\binom{3\ell+1}{\ell}\binom{6\ell+2}{3\ell+1}
0(mod2)(note (01)=0).\displaystyle\equiv 0\pmod{2}\;\left(\text{note }\tbinom{0}{1}=0\right).

The following assertions are the depth 22 counterparts of Proposition 3. The proof is the same, so it is omitted.

Proposition 9.

For each even integer k2k\geq 2, a basis k(2)\mathcal{B}_{k}^{(2)} of the space QMk(2)(Γ)QM_{k}^{(2)}(\Gamma) is given by the following set:

4n(2)\displaystyle\mathcal{B}_{4n}^{(2)} ={E4n,E4n1G4(2),,E4G4n4(2),G4n(2)},\displaystyle=\left\{E_{4}^{n},E_{4}^{n-1}G_{4}^{(2)},\cdots,E_{4}G_{4n-4}^{(2)},G_{4n}^{(2)}\right\},
4n+2(2)\displaystyle\mathcal{B}_{4n+2}^{(2)} ={E4nG2(2),E4n1G6(2),,E4G4n2(2),G4n+2(2)}.\displaystyle=\left\{E_{4}^{n}G_{2}^{(2)},E_{4}^{n-1}G_{6}^{(2)},\cdots,E_{4}G_{4n-2}^{(2)},G_{4n+2}^{(2)}\right\}.

Depth 3. The Kaneko–Zagier equation θw3(3)(f)=0\theta_{w-3}^{(3)}(f)=0 is transformed into

z3(1z)2d4gdz4+z2(1z)(w183+w273z)d3gdz3\displaystyle{}z^{3}(1-z)^{2}\frac{d^{4}g}{dz^{4}}+z^{2}(1-z)\left(-\frac{w-18}{3}+\frac{w-27}{3}z\right)\frac{d^{3}g}{dz^{3}}
+z(w+73w2198w+182572z+3w2126w+137572z2)d2gdz2\displaystyle+z\left(-w+7-\frac{3w^{2}-198w+1825}{72}z+\frac{3w^{2}-126w+1375}{72}z^{2}\right)\frac{d^{2}g}{dz^{2}}
+{w33+w336w2+781w3540432z(w15)(w230w+241)432z2}dgdz\displaystyle+\left\{-\frac{w-3}{3}+\frac{w^{3}-36w^{2}+781w-3540}{432}z-\frac{(w-15)(w^{2}-30w+241)}{432}z^{2}\right\}\frac{dg}{dz}
+(w3){4(w33w2+62w180)+(w7)(w11)(w15)z}20736g=0,\displaystyle+\frac{(w-3)\left\{-4(w^{3}-3w^{2}+62w-180)+(w-7)(w-11)(w-15)z\right\}}{20736}g=0,

where g(τ)=E4(τ)w34f(τ)g(\tau)=E_{4}(\tau)^{-\frac{w-3}{4}}f(\tau) and z=1728/j(τ)z=1728/j(\tau). This differential equation is not a hypergeometric differential equation. However, noting the “accidental relation” G6(3)=130(D(G4(2))E2G4(2))G_{6}^{(3)}=\tfrac{1}{30}(D(G_{4}^{(2)})-E_{2}G_{4}^{(2)}), we obtain the following expression of G6(3)G_{6}^{(3)} using a hypergeometric series:

G6(3)\displaystyle G_{6}^{(3)} =j2(11728j)1/2E43/4\displaystyle=j^{-2}\left(1-\frac{1728}{j}\right)^{1/2}E_{4}^{3/4}
×{212F1(112,512;1;1728j)3F2(116,136,52;3,3;1728j)\displaystyle{}\quad\times\left\{21\,{}_{2}F_{1}\left(\frac{1}{12},\frac{5}{12};1;\frac{1728}{j}\right){}_{3}F_{2}\left(\frac{11}{6},\frac{13}{6},\frac{5}{2};3,3;\frac{1728}{j}\right)\right.
202F1(1312,1712;2;1728j)3F2(56,76,32;2,2;1728j)}\displaystyle{}\qquad\left.-20\,{}_{2}F_{1}\left(\frac{13}{12},\frac{17}{12};2;\frac{1728}{j}\right){}_{3}F_{2}\left(\frac{5}{6},\frac{7}{6},\frac{3}{2};2,2;\frac{1728}{j}\right)\right\}
=t2+1496t3+2072262t4+2893548528t5+O(t6)(t=1/j).\displaystyle=t^{2}+1496t^{3}+2072262t^{4}+2893548528t^{5}+O(t^{6})\quad(t=1/j).

It is known from [15] that 3={6}\mathcal{E}_{3}=\{6\}, more specifically, we have

G6(3)\displaystyle G_{6}^{(3)} =5E233E2E42E651840=16n=2n(σ3(n)nσ1(n))qn\displaystyle=\frac{5E_{2}^{3}-3E_{2}E_{4}-2E_{6}}{51840}=\frac{1}{6}\sum_{n=2}^{\infty}n(\sigma_{3}(n)-n\sigma_{1}(n))q^{n}
=q2+8q3+30q4+80q5+180q6+336q7+620q8+960q9+O(q10)[[q]].\displaystyle=q^{2}+8q^{3}+30q^{4}+80q^{5}+180q^{6}+336q^{7}+620q^{8}+960q^{9}+O(q^{10})\in\mathbb{Z}[\![q]\!].

The positivity of the Fourier coefficients of G6(3)G_{6}^{(3)} can also be seen from the fact that D(G6(3))=2(G4(2))2D(G_{6}^{(3)})=2(G_{4}^{(2)})^{2}. In considering the meaning of integrality of Fourier coefficients, it is worth noting that the dd-th Fourier coefficient of G6(3)G_{6}^{(3)} gives the number of simply ramified coverings of genus 22 and degree dd of an elliptic curve over \mathbb{C}. See [6, 20] for more details on this claim.

Proposition 10.

For any even integer k2k\geq 2, a basis k(3)\mathcal{B}_{k}^{(3)} of the space QMk(3)(Γ)QM_{k}^{(3)}(\Gamma) is given by the following set:

12m(3)\displaystyle\mathcal{B}_{12m}^{(3)} ={E43(m)G12(3)}0m{E43(m)1G12+4(3)}0m1\displaystyle=\left\{E_{4}^{3(m-\ell)}G_{12\ell}^{(3)}\right\}_{0\leq\ell\leq m}\cup\left\{E_{4}^{3(m-\ell)-1}G_{12\ell+4}^{(3)}\right\}_{0\leq\ell\leq m-1}
{E43(m)2G12+8(3)}0m1{E43(m)4E6G12+10(3)}0m2\displaystyle{}\quad\cup\left\{E_{4}^{3(m-\ell)-2}G_{12\ell+8}^{(3)}\right\}_{0\leq\ell\leq m-1}\cup\left\{E_{4}^{3(m-\ell)-4}E_{6}G_{12\ell+10}^{(3)}\right\}_{0\leq\ell\leq m-2}
{E6G12m6(3)},\displaystyle{}\quad\cup\left\{E_{6}G_{12m-6}^{(3)}\right\},
12m+2(3)\displaystyle\mathcal{B}_{12m+2}^{(3)} ={E43(m)G12+2(3)}0m{E43(m)2E6G12+4(3)}0m1\displaystyle=\left\{E_{4}^{3(m-\ell)}G_{12\ell+2}^{(3)}\right\}_{0\leq\ell\leq m}\cup\left\{E_{4}^{3(m-\ell)-2}E_{6}G_{12\ell+4}^{(3)}\right\}_{0\leq\ell\leq m-1}
{E43(m)1G12+6(3)}0m1{E43(m)2G12+10(3)}0m1,\displaystyle{}\quad\cup\left\{E_{4}^{3(m-\ell)-1}G_{12\ell+6}^{(3)}\right\}_{0\leq\ell\leq m-1}\cup\left\{E_{4}^{3(m-\ell)-2}G_{12\ell+10}^{(3)}\right\}_{0\leq\ell\leq m-1},
12m+4(3)\displaystyle\mathcal{B}_{12m+4}^{(3)} =E412m(3){G12m+4(3)},12m+6(3)=E412m+2(3){E6G12m(3),G12m+6(3)},\displaystyle=E_{4}\mathcal{B}_{12m}^{(3)}\cup\left\{G_{12m+4}^{(3)}\right\},\quad\mathcal{B}_{12m+6}^{(3)}=E_{4}\mathcal{B}_{12m+2}^{(3)}\cup\left\{E_{6}G_{12m}^{(3)},G_{12m+6}^{(3)}\right\},
12m+8(3)\displaystyle\mathcal{B}_{12m+8}^{(3)} =E412m+4(3){G12m+8(3)},12m+10(3)=E412m+6(3){G12m+10(3)}.\displaystyle=E_{4}\mathcal{B}_{12m+4}^{(3)}\cup\left\{G_{12m+8}^{(3)}\right\},\quad\mathcal{B}_{12m+10}^{(3)}=E_{4}\mathcal{B}_{12m+6}^{(3)}\cup\left\{G_{12m+10}^{(3)}\right\}.

Note that the Fourier expansion of each element of the basis 12m+6(3)\mathcal{B}_{12m+6}^{(3)} is slightly different from that of depths 1 and 2. More specifically, there are two forms E4G12m+2(3)E_{4}G_{12m+2}^{(3)} and E6G12m(3)E_{6}G_{12m}^{(3)} whose Fourier expansion is q4m(1+O(q))q^{4m}(1+O(q)). Therefore, the form fQM12m+6(3)f\in QM_{12m+6}^{(3)} such that f=q4m+1(1+O(q))f=q^{4m+1}(1+O(q)) is expressed as a linear combination of E4G12m+2(3),E6G12m(3)E_{4}G_{12m+2}^{(3)},E_{6}G_{12m}^{(3)}, and G12m+6(3)=q4m+2(1+O(q))G_{12m+6}^{(3)}=q^{4m+2}(1+O(q)).

Depth 4. The Kaneko–Zagier equation θw4(4)(f)=0\theta_{w-4}^{(4)}(f)=0 is transformed into

z4(1z)2d5gdz5+5z3(1z)(w2412+w3612z)d4gdz4\displaystyle{}z^{4}(1-z)^{2}\frac{d^{5}g}{dz^{5}}+5z^{3}(1-z)\left(-\frac{w-24}{12}+\frac{w-36}{12}z\right)\frac{d^{4}g}{dz^{4}}
+5z2(w102w296w+123472z+w260w+92872z2)d3gdz3\displaystyle{}+5z^{2}\left(-\frac{w-10}{2}-\frac{w^{2}-96w+1234}{72}z+\frac{w^{2}-60w+928}{72}z^{2}\right)\frac{d^{3}g}{dz^{3}}
5z{7w3612w354w2+2118w14796864z+(w24)(w248w+624)864z2}d2gdz2\displaystyle{}-5z\left\{\frac{7w-36}{12}-\frac{w^{3}-54w^{2}+2118w-14796}{864}z+\frac{(w-24)(w^{2}-48w+624)}{864}z^{2}\right\}\frac{d^{2}g}{dz^{2}}
+{5w12125(w5)(w37w2+216w3600)5184z\displaystyle{}+\left\{-\frac{5w-12}{12}-\frac{5(w-5)(w^{3}-7w^{2}+216w-3600)}{5184}z\right.
+5(w16)(w20)(w236w+352)20736z2}dgdz\displaystyle{}\left.\qquad+\frac{5(w-16)(w-20)(w^{2}-36w+352)}{20736}z^{2}\right\}\frac{dg}{dz}
(w4)(w8){12(w3+2w2+27w90)+(w12)(w16)(w20)z}248832g=0,\displaystyle{}-\frac{(w-4)(w-8)\left\{-12(w^{3}+2w^{2}+27w-90)+(w-12)(w-16)(w-20)z\right\}}{248832}g=0,

where g(τ)=E4(τ)(w4)/4f(τ)g(\tau)=E_{4}(\tau)^{-(w-4)/4}f(\tau) and z=1728/j(τ)z=1728/j(\tau). This differential equation is not a hypergeometric differential equation. It is known from [15] that 4=\mathcal{E}_{4}=\emptyset, that is, there are no normalized extremal quasimodular forms with integral Fourier coefficients. However, we note that D(G8(4))=3G4(2)G6(3)D(G_{8}^{(4)})=3G_{4}^{(2)}G_{6}^{(3)} holds as for depths 2 and 3.

Remark 6.

The fourth- and fifth-order differential equations that appear for depths 33 and 44, respectively, are “rigid” in the sense of Katz (see [9, Rem. 17]).

Proposition 11.

For any even integer k2k\geq 2, a basis k(4)\mathcal{B}_{k}^{(4)} of the space QMk(4)(Γ)QM_{k}^{(4)}(\Gamma) is given by the following set:

12m(4)\displaystyle\mathcal{B}_{12m}^{(4)} ={E43(m)G12(4)}0m{E43(m)1G12+4(4)}0m1\displaystyle=\left\{E_{4}^{3(m-\ell)}G_{12\ell}^{(4)}\right\}_{0\leq\ell\leq m}\cup\left\{E_{4}^{3(m-\ell)-1}G_{12\ell+4}^{(4)}\right\}_{0\leq\ell\leq m-1}
{E43(m1)E6G12+6(4)}0m1{E43(m)2G12+8(4)}0m1\displaystyle{}\quad\cup\left\{E_{4}^{3(m-\ell-1)}E_{6}G_{12\ell+6}^{(4)}\right\}_{0\leq\ell\leq m-1}\cup\left\{E_{4}^{3(m-\ell)-2}G_{12\ell+8}^{(4)}\right\}_{0\leq\ell\leq m-1}
{E43(m)4E6G12+10(4)}0m2{E4E6G12m10(4)},\displaystyle{}\quad\cup\left\{E_{4}^{3(m-\ell)-4}E_{6}G_{12\ell+10}^{(4)}\right\}_{0\leq\ell\leq m-2}\cup\left\{E_{4}E_{6}G_{12m-10}^{(4)}\right\},
12m+2(4)\displaystyle\mathcal{B}_{12m+2}^{(4)} ={E43(m)G12+2(4)}0m{E43(m)2E6G12+4(4)}0m1\displaystyle=\left\{E_{4}^{3(m-\ell)}G_{12\ell+2}^{(4)}\right\}_{0\leq\ell\leq m}\cup\left\{E_{4}^{3(m-\ell)-2}E_{6}G_{12\ell+4}^{(4)}\right\}_{0\leq\ell\leq m-1}
{E43(m)1G12+6(4)}0m1{E43(m1)E6G12+8(4)}0m1\displaystyle{}\quad\cup\left\{E_{4}^{3(m-\ell)-1}G_{12\ell+6}^{(4)}\right\}_{0\leq\ell\leq m-1}\cup\left\{E_{4}^{3(m-\ell-1)}E_{6}G_{12\ell+8}^{(4)}\right\}_{0\leq\ell\leq m-1}
{E43(m)2G12+10(4)}0m1,\displaystyle{}\quad\cup\left\{E_{4}^{3(m-\ell)-2}G_{12\ell+10}^{(4)}\right\}_{0\leq\ell\leq m-1},
12m+4(4)\displaystyle\mathcal{B}_{12m+4}^{(4)} =E412m(4){G12m+4(4)},\displaystyle=E_{4}\mathcal{B}_{12m}^{(4)}\cup\left\{G_{12m+4}^{(4)}\right\},
12m+6(4)\displaystyle\mathcal{B}_{12m+6}^{(4)} =E412m+2(4){E6G12m(4),G12m+6(4)},\displaystyle=E_{4}\mathcal{B}_{12m+2}^{(4)}\cup\left\{E_{6}G_{12m}^{(4)},G_{12m+6}^{(4)}\right\},
12m+8(4)\displaystyle\mathcal{B}_{12m+8}^{(4)} =E412m+4(4){E6G12m+2(4),G12m+8(4)},\displaystyle=E_{4}\mathcal{B}_{12m+4}^{(4)}\cup\left\{E_{6}G_{12m+2}^{(4)},G_{12m+8}^{(4)}\right\},
12m+10(4)\displaystyle\mathcal{B}_{12m+10}^{(4)} =E412m+6(4){G12m+10(4)}.\displaystyle=E_{4}\mathcal{B}_{12m+6}^{(4)}\cup\left\{G_{12m+10}^{(4)}\right\}.

The same (but slightly more complicated) phenomenon as in the case of depth 33 occurs for the Fourier expansion of each element of these bases. For instance, there is no element in the set 12m(4)\mathcal{B}_{12m}^{(4)} for which q5+4(1+O(q))(0m1)q^{5\ell+4}(1+O(q))\;(0\leq\ell\leq m-1), but there are two elements for which q5+3(1+O(q))(0m2)q^{5\ell+3}(1+O(q))\;(0\leq\ell\leq m-2). However, there is only one element for which q5m2(1+O(q))q^{5m-2}(1+O(q)), and there are two elements for which q5m5(1+O(q))q^{5m-5}(1+O(q)).

For a given even integer 12n+a(n0,a20)12n+a\;(n\in\mathbb{Z}_{\geq 0},a\in 2\mathbb{Z}_{\geq 0}) and depth r1r\geq 1, let 12n+a2r=4s+6t+12u(s{0,1,2},t{0,1},u0)12n+a-2r=4s+6t+12u\;(s\in\{0,1,2\},t\in\{0,1\},u\in\mathbb{Z}_{\geq 0}) as before, and express the normalized extremal quasimodular form G12n+a(r)G_{12n+a}^{(r)} as follows:

G12n+a(r)=1Nn,a(r)E2rE4sE6tΔuAu,a(r)(j)+(lower order terms on E2),\displaystyle G_{12n+a}^{(r)}=\frac{1}{N_{n,a}^{(r)}}E_{2}^{r}E_{4}^{s}E_{6}^{t}\Delta^{u}A_{u,a}^{(r)}(j)+(\text{lower order terms on $E_{2}$}),

where the number Nn,a(r)N_{n,a}^{(r)} is chosen so that the polynomial Au,a(r)(X)A_{u,a}^{(r)}(X) of degree uu is the monic polynomial. We call this polynomial the generalized Atkin polynomial. Although it is possible to calculate the polynomial Au,a(r)(X)A_{u,a}^{(r)}(X) separately for a given n,an,a and rr, as already mentioned in Section 1, the existence and uniqueness of Gw(r)G_{w}^{(r)} for the depth r5r\geq 5 are still open, it is not yet clear whether the polynomial Au,a(r)(X)A_{u,a}^{(r)}(X) determined by the above equation always exists for r5r\geq 5.

The following conjecture is suggested by numerical experiments .

Conjecture 1.

Let p5p\geq 5 be a prime number and put p1=12m+4δ+6ε(m0,δ,ε{0,1})p-1=12m+4\delta+6\varepsilon\;(m\in\mathbb{Z}_{\geq 0},\delta,\varepsilon\in\{0,1\}). Then we have Am+δ+ε,2(1)(X)Am+δ+ε,2r(r)(X)(modp)A_{m+\delta+\varepsilon,2}^{(1)}(X)\equiv A_{m+\delta+\varepsilon,2r}^{(r)}(X)\pmod{p} for r2r\geq 2.

Example 3.

The case of m+δ+ε=2m+\delta+\varepsilon=2, that is, the case of p{11,17,19}p\in\{11,17,19\}:

A2,2(1)(X)\displaystyle A_{2,2}^{(1)}(X) =X21640X+269280{X(X+10)(mod11)X(X+9)(mod17)(X+1)(X+12)(mod19),\displaystyle=X^{2}-1640X+269280\equiv\begin{cases}X(X+10)\pmod{11}\\ X(X+9)\pmod{17}\\ (X+1)(X+12)\pmod{19},\end{cases}
A2,4(2)(X)\displaystyle A_{2,4}^{(2)}(X) =X2+53675644847X+977486404847,\displaystyle=X^{2}+\frac{5367564}{4847}X+\frac{97748640}{4847},
A2,6(3)(X)\displaystyle A_{2,6}^{(3)}(X) =X21009252854006736603X+1847204924400006736603,\displaystyle=X^{2}-\frac{100925285400}{6736603}X+\frac{184720492440000}{6736603},
A2,8(4)(X)\displaystyle A_{2,8}^{(4)}(X) =X2+13326301537125303744733X+8760324756150000303744733,\displaystyle=X^{2}+\frac{13326301537125}{303744733}X+\frac{8760324756150000}{303744733},
A2,10(5)(X)\displaystyle A_{2,10}^{(5)}(X) =X25672747699250557045880007988288882724700441X\displaystyle=X^{2}-\frac{567274769925055704588000}{7988288882724700441}X
+3026012991247282702248000007988288882724700441,\displaystyle{}\quad+\frac{302601299124728270224800000}{7988288882724700441},
A2,12(6)(X)\displaystyle A_{2,12}^{(6)}(X) =X2+67508245504783855161034500000433955868750758754759533X\displaystyle=X^{2}+\frac{67508245504783855161034500000}{433955868750758754759533}X
163976620145430859347886034400000433955868750758754759533.\displaystyle{}\quad-\frac{163976620145430859347886034400000}{433955868750758754759533}.

For the prime p{11,17,19}p\in\{11,17,19\}, these polynomials satisfy the above conjecture.

For the depths greater than 5, almost nothing is known. For example, we do not even know what differential equation the extremal quasimodular form satisfies. Unlike the case of depth r4r\leq 4, as already pointed out in [19], any extremal modular form of weight ww and depth r5r\geq 5 cannot satisfy the differential equation θwr(r)(f)=0\theta_{w-r}^{(r)}(f)=0. Of course, it is possible to calculate specific examples separately, e.g., the normalized extremal quasimodular form of weight 1010 and depth 55

G10(5)\displaystyle G_{10}^{(5)} =140E2535E23E465E22E633E2E427E4E61437004800\displaystyle=\frac{140E_{2}^{5}-35E_{2}^{3}E_{4}-65E_{2}^{2}E_{6}-33E_{2}E_{4}^{2}-7E_{4}E_{6}}{1437004800}
=q4+14411q5+93611q6+416011q7+1449011q8+4243211q9+O(q10)\displaystyle=q^{4}+\frac{144}{11}q^{5}+\frac{936}{11}q^{6}+\frac{4160}{11}q^{7}+\frac{14490}{11}q^{8}+\frac{42432}{11}q^{9}+O(q^{10})

is the solution of the following modular linear differential equation:

(E437310874380623E62)56(f)+36495364380623E42E655(f)\displaystyle{}\left(E_{4}^{3}-\frac{731087}{4380623}E_{6}^{2}\right)\partial_{5}^{6}(f)+\frac{3649536}{4380623}E_{4}^{2}E_{6}\partial_{5}^{5}(f)
5E4(845736619E43170572459E62)63080971254(f)\displaystyle{}-\frac{5E_{4}(845736619E_{4}^{3}-170572459E_{6}^{2})}{630809712}\partial_{5}^{4}(f)
5E6(2032753837E43164191405E62)94621456853(f)\displaystyle{}-\frac{5E_{6}(2032753837E_{4}^{3}-164191405E_{6}^{2})}{946214568}\partial_{5}^{3}(f)
+E42(262935868013E43746094289517E62)9083659852852(f)\displaystyle{}+\frac{E_{4}^{2}(262935868013E_{4}^{3}-746094289517E_{6}^{2})}{90836598528}\partial_{5}^{2}(f)
+E4E6(80592093937E43122767956721E62)454182992645(f)\displaystyle{}+\frac{E_{4}E_{6}(80592093937E_{4}^{3}-122767956721E_{6}^{2})}{45418299264}\partial_{5}(f)
+55(3672965829E467414522789E43E625174923040E64)13080470188032f=0.\displaystyle{}+\frac{55(3672965829E_{4}^{6}-7414522789E_{4}^{3}E_{6}^{2}-5174923040E_{6}^{4})}{13080470188032}f=0.

As can be expected from this example, as the weights or depths increases, the coefficients of the differential equation become more complex and the calculations rapidly become unmanageable. From the observation of some specific examples, it seems that the coefficients cannot be a simple polynomial with ww as a variable. We also note that the denominator 11 of the Fourier coefficients of G10(5)G_{10}^{(5)} is greater than the weight 10. (cf. Corollary 2)

At the end of Section 2, we pointed out that the normalized extremal quasimodular forms of depth 1 are essentially the remainder of some Hermite–Padé approximation. In fact, with the help of the ring isomorphism in Theorem 2, the extremal quasimodular forms of any depth can be regarded as the remainder of some Hermite–Padé approximation (of the first kind) for a suitable function. On the other hand, there is an approximation called the Hermite–Padé approximation of the second kind (or simultaneous Padé approximation) [28]. For the depth r=1r=1, these two approximations are essentially the same, but not for the depth 2\geq 2. What are the properties of the quasimodular forms derived from the simultaneous Padé approximation?

6.2. Case of other groups

In this subsection we summarize previous works on Atkin orthogonal polynomials and extremal quasimodular forms of depth 1 on the congruence subgroup Γ0(N)\Gamma_{0}(N) and the Fricke group Γ0(N)\Gamma_{0}^{*}(N) of low-levels. If the level is less than or equal to 4, the corresponding quasimodular Eisenstein series of weight 2 can be expressed using the hypergeometric series 2F1{}_{2}F_{1} (see [27, Ch. 3]), so it is probably possible to treat the normalized extremal quasimodular forms in the same way as in this paper. On the other hand, for the Fricke groups of levels 5 and 7, the local Heun function appears instead of the hypergeometric series 2F1{}_{2}F_{1}. Because of this difference, it may be difficult to obtain various concrete expressions for these levels as in this paper. Note also that in the case of level 1, the Atkin polynomials and the normalized extremal quasimodular forms are directly connected as in (24), but this is not necessarily the case for level 2\geq 2.

The next table summarizes the previous works by Tsutsumi, Kaneko, Koike, Sakai, and Shimizu. Note that some extremal quasimodular forms also appear in [33], and the Kaneko–Zagier equation for Γ0(2)\Gamma_{0}^{*}(2) is treated in [18], but its quasimodular solution is the quasimodular form on Γ0(2)\Gamma_{0}(2).

Table 2. The previous works related to this paper (with levels).
Atkin inner product Modular linear differential equation
Atkin polynomials (Extremal) quasimodular forms
Γ0(N)\Gamma_{0}(N) Tsutsumi [37, 38] (N=2,3,4)(N=2,3,4) Sakai–Tsutsumi [35] (N=2,3,4)(N=2,3,4)
Sakai–Shimizu [34] (N=2,3,4)(N=2,3,4)
Γ0(N)\Gamma_{0}^{*}(N) Sakai [33] (N=5,7)(N=5,7) Kaneko–Koike [18] (N=2)(N=2)
Sakai [32] (N=2,3)(N=2,3)

Here we mention a few problems.

  • In the case of level 1, three differential equations appeared in [19, Thm. 2.1], but since there are relations (17) and (18), it is essentially sufficient to consider only the differential equation (13). Extend this result to level 2\geq 2 and clarify the relationship between quasimodular solutions of some differential equations using Grabner’s method.

  • Extend Theorem 1 to level 2\geq 2 and depth 1\geq 1.

Although of little relevance to quasimodular forms, it is worth noting that a certain basis of the vector space of modular forms of weight 2n/7(n1)2n/7\;(n\in\mathbb{Z}_{\geq 1}) on Γ(7)\Gamma(7) is expressed by a generalized hypergeometric series 3F2{}_{3}F_{2}. For more details on this fact, see [14, 9, 39] and its references.

Acknowledgement

The author thanks to Professor Masanobu Kaneko for many valuable comments on reading an early draft of this paper.

Appendix A Appendices

A.1. Table of the integral Fourier coefficients of Gw(1)G_{w}^{(1)}

Put Gw(1)=q[w/6](1+n=1aw(n)qn)G_{w}^{(1)}=q^{[w/6]}\left(1+\sum_{n=1}^{\infty}a_{w}(n)\,q^{n}\right) and then the first few terms of the integral Fourier coefficients of Gw(1)G_{w}^{(1)} are given in the following table.

Table 3. The first few integral Fourier coefficients aw(n)a_{w}(n)
w\nw\backslash n 1 2 3 4 5
2 24-24 72-72 96-96 168-168 144-144
6 18 84 292 630 1512
8 66 732 4228 15630 48312
10 258 6564 66052 390630 1693512
12 56 1002 9296 57708 269040
14 128 4050 58880 525300 3338496
16 296 16602 377456 4846908 41943120
18 99 3510 64944 764874 6478758
20 183 10134 269832 4326546 47862918
22 339 29430 1127904 24615834 355679478
24 144 7944 235840 4451130 59405952
28 384 44664 2460160 79196970 1693028352
30 190 14460 608570 16463120 314562708
32 286 29988 1652834 56608952 1335336084
34 430 62220 4496090 195047840 5680752948
38 336 43587 3065648 136437750 4219436160
54 378 62532 6109740 401161950 19083824856
58 618 155412 21940620 2005126350 128986599096
68 581 147042 21956168 2203554570 160242315903
80 678 204756 37135249 4592036697 416237464122
114 855 341886 85507600 15092041050 2010698806050
118 1095 549246 169413760 36358101930 5819797557810

A.2. Explicit formulas for the coefficients of Pn(t)P_{n}(t) and Qn(t)Q_{n}(t)

We give explicit formulas for the coefficients of the power series Pn(t)P_{n}(t) and Qn(t)Q_{n}(t) that appear in the proof of Theorem 1. However, as we have already seen in equations (33) and (34), we multiply the power series Podd(t)P_{\text{odd}}(t) and Qeven(t)Q_{\text{even}}(t) by the factor (11728t)1/2(1-1728t)^{-1/2}. Our main theorem is equivalent to the fact that the following power series belong to [[t]]\mathbb{Z}[\![t]\!].

\bullet Gw(1)[[q]],w𝒮0={12,24}G_{w}^{(1)}\in\mathbb{Z}[\![q]\!],\,w\in\mathcal{S}_{0}=\{12,24\}. The coefficients of the power series P0(t)P_{0}(t) and P2(t)P_{2}(t) correspond to the sequences A001421 and A145493 in the Online Encyclopedia of Integer Sequences (OEIS) [29], respectively.

P0(t)\displaystyle P_{0}(t) =r=0(6r)!(3r)!r!3tr=3F2(16,12,56;1,1;1728t)(G0(1)=1)\displaystyle=\sum_{r=0}^{\infty}\frac{(6r)!}{(3r)!\,r!^{3}}\,t^{r}={}_{3}F_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6};1,1;1728t\right)\quad(\Leftrightarrow G_{0}^{(1)}=1)
=1+120t+83160t2+81681600t3+93699005400t4+O(t5),\displaystyle=1+120t+83160t^{2}+81681600t^{3}+93699005400t^{4}+O(t^{5}),
P2(t)\displaystyle P_{2}(t) =r=0(41r+77)(6r+6)!2310(3r+3)!r!(r+2)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{(41r+77)\,(6r+6)!}{2310\,(3r+3)!\,r!\,(r+2)!^{2}}\,t^{r}
=1+944t+1054170t2+1297994880t3+1700941165560t4+O(t5),\displaystyle=1+944t+1054170t^{2}+1297994880t^{3}+1700941165560t^{4}+O(t^{5}),
P4(t)\displaystyle P_{4}(t) =r=0(17377r2+117219r+193154)(6r+12)!223092870(3r+6)!r!(r+4)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{(17377r^{2}+117219r+193154)\,(6r+12)!}{223092870\,(3r+6)!\,r!\,(r+4)!^{2}}\,t^{r}
=1+1800t+2783760t2+4183182720t3+6274984354650t4+O(t5).\displaystyle=1+1800t+2783760t^{2}+4183182720t^{3}+6274984354650t^{4}+O(t^{5}).

\bullet Gw(1)[[q]],w𝒮6={6,18,30,54,114}G_{w}^{(1)}\in\mathbb{Z}[\![q]\!],\,w\in\mathcal{S}_{6}=\{6,18,30,54,114\}.

(11728t)1/2P1(t)=r=0(6r+6)!120(3r+3)!r!(r+1)!2tr\displaystyle{}(1-1728t)^{-1/2}P_{1}(t)=\sum_{r=0}^{\infty}\frac{(6r+6)!}{120\,(3r+3)!\,r!\,(r+1)!^{2}}\,t^{r}
=3F2(76,32,116;2,2;1728t)\displaystyle{}\quad={}_{3}F_{2}\left(\frac{7}{6},\frac{3}{2},\frac{11}{6};2,2;1728t\right)
=1+1386t+2042040t2+3123300180t3+4891088081880t4+O(t5),\displaystyle{}\quad=1+1386t+2042040t^{2}+3123300180t^{3}+4891088081880t^{4}+O(t^{5}),
(11728t)1/2P3(t)=r=0(77r+221)(6r+12)!4084080(3r+6)!r!(r+3)!2tr\displaystyle{}(1-1728t)^{-1/2}P_{3}(t)=\sum_{r=0}^{\infty}\frac{(77r+221)\,(6r+12)!}{4084080\,(3r+6)!\,r!\,(r+3)!^{2}}\,t^{r}
=1+2235t+4129650t2+7217526960t3+12344776903800t4+O(t5),\displaystyle{}\quad=1+2235t+4129650t^{2}+7217526960t^{3}+12344776903800t^{4}+O(t^{5}),
(11728t)1/2P5(t)=r=0(33649r2+294051r+633650)(6r+18)!776363187600(3r+9)!r!(r+5)!2tr\displaystyle{}(1-1728t)^{-1/2}P_{5}(t)=\sum_{r=0}^{\infty}\frac{(33649r^{2}+294051r+633650)\,(6r+18)!}{776363187600\,(3r+9)!\,r!\,(r+5)!^{2}}\,t^{r}
=1+3094t+6975504t2+13953546090t3+26319290241530t4+O(t5),\displaystyle{}\quad=1+3094t+6975504t^{2}+13953546090t^{3}+26319290241530t^{4}+O(t^{5}),
(11728t)1/2P9(t)=r=0p9(r)(6r+30)!(3r+15)!r!(r+9)!2tr\displaystyle{}(1-1728t)^{-1/2}P_{9}(t)=\sum_{r=0}^{\infty}\frac{p_{9}(r)\,(6r+30)!}{(3r+15)!\,r!\,(r+9)!^{2}}\,t^{r}
=1+4818t+14913288t2+37889152860t3+86182007602320t4+O(t5),\displaystyle{}\quad=1+4818t+14913288t^{2}+37889152860t^{3}+86182007602320t^{4}+O(t^{5}),
(11728t)1/2P19(t)=r=0p19(r)(6r+60)!(3r+30)!r!(r+19)!2tr\displaystyle{}(1-1728t)^{-1/2}P_{19}(t)=\sum_{r=0}^{\infty}\frac{p_{19}(r)\,(6r+60)!}{(3r+30)!\,r!\,(r+19)!^{2}}\,t^{r}
=1+9135t+47828730t2+188818914000t3+625280243661000t4+O(t5),\displaystyle{}\quad=1+9135t+47828730t^{2}+188818914000t^{3}+625280243661000t^{4}+O(t^{5}),

where

p9(r)\displaystyle p_{9}(r) =11303566339087601789200\displaystyle=\frac{1}{1303566339087601789200}
×(301163357r4+8876894690r3+97346883895r2\displaystyle{}\times(301163357r^{4}+8876894690r^{3}+97346883895r^{2}
+470641033450r+846250112568),\displaystyle{}\quad+470641033450r+846250112568),
p19(r)\displaystyle p_{19}(r) =17586413113700225869154849509970478998385924877600\displaystyle=\frac{1}{7586413113700225869154849509970478998385924877600}
×(116055861444395385601913r9\displaystyle{}\times(116055861444395385601913r^{9}
+15530138946748752922984725r8\displaystyle{}\quad+15530138946748752922984725r^{8}
+920111315629981006299003510r7\displaystyle{}\quad+920111315629981006299003510r^{7}
+31676880792353832401375777850r6\displaystyle{}\quad+31676880792353832401375777850r^{6}
+698329420677409164956468289249r5\displaystyle{}\quad+698329420677409164956468289249r^{5}
+10222801871323855615909703388405r4\displaystyle{}\quad+10222801871323855615909703388405r^{4}
+99369498641304011775924341700640r3\displaystyle{}\quad+99369498641304011775924341700640r^{3}
+618440343527755839046417085216700r2\displaystyle{}\quad+618440343527755839046417085216700r^{2}
+2236089229125717720580535903583888r\displaystyle{}\quad+2236089229125717720580535903583888r
+3578581860690243122001381266421120)\displaystyle{}\quad+3578581860690243122001381266421120)

and these polynomials are irreducible over \mathbb{Q}.

\bullet Gw(1)[[q]],w𝒮2={2,14,38}G_{w}^{(1)}\in\mathbb{Z}[\![q]\!],\,w\in\mathcal{S}_{2}=\{2,14,38\}.

(11728t)1/2Q0(t)=r=0(6r+1)!(3r)!r!3tr=3F2(12,56,76;1,1;1728t)\displaystyle{}(1-1728t)^{-1/2}Q_{0}(t)=\sum_{r=0}^{\infty}\frac{(6r+1)!}{(3r)!\,r!^{3}}\,t^{r}={}_{3}F_{2}\left(\frac{1}{2},\frac{5}{6},\frac{7}{6};1,1;1728t\right)
=1+840t+1081080t2+1551950400t3+2342475135000t4+O(t5),\displaystyle{}\quad=1+840t+1081080t^{2}+1551950400t^{3}+2342475135000t^{4}+O(t^{5}),
(11728t)1/2Q2(t)=r=0(7r+13)(6r+7)!2730(3r+3)!r!(r+2)!2tr\displaystyle{}(1-1728t)^{-1/2}Q_{2}(t)=\sum_{r=0}^{\infty}\frac{(7r+13)\,(6r+7)!}{2730\,(3r+3)!\,r!\,(r+2)!^{2}}\,t^{r}
=1+1760t+2877930t2+4667789280t3+7590443164920t4+O(t5),\displaystyle{}\quad=1+1760t+2877930t^{2}+4667789280t^{3}+7590443164920t^{4}+O(t^{5}),
(11728t)1/2Q6(t)\displaystyle{}(1-1728t)^{-1/2}Q_{6}(t)
=r=0(1043119r3+15220608r2+72947639r+114757350)(6r+19)!74207381348100(3r+9)!r!(r+6)!2tr\displaystyle{}\quad=\sum_{r=0}^{\infty}\frac{(1043119r^{3}+15220608r^{2}+72947639r+114757350)\,(6r+19)!}{74207381348100\,(3r+9)!\,r!\,(r+6)!^{2}}\,t^{r}
=1+3504t+8597259t2+18287498240t3+36144224452050t4+O(t5).\displaystyle{}\quad=1+3504t+8597259t^{2}+18287498240t^{3}+36144224452050t^{4}+O(t^{5}).

\bullet Gw(1)[[q]],w𝒮8={8,20,32,68,80}G_{w}^{(1)}\in\mathbb{Z}[\![q]\!],\,w\in\mathcal{S}_{8}=\{8,20,32,68,80\}. The coefficients of the power series Q1(t)Q_{1}(t) and Q3(t)Q_{3}(t) correspond to the sequences A145492 and A145494 in OEIS, respectively.

Q1(t)\displaystyle Q_{1}(t) =r=0(8r+7)(6r+1)!7(3r)!r!(r+1)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{(8r+7)\,(6r+1)!}{7(3r)!\,r!\,(r+1)!^{2}}\,t^{r}
=1+450t+394680t2+429557700t3+522037315800t4+O(t5),\displaystyle=1+450t+394680t^{2}+429557700t^{3}+522037315800t^{4}+O(t^{5}),
Q3(t)\displaystyle Q_{3}(t) =r=0(1528r2+7231r+8151)(6r+7)!190190(3r+3)!r!(r+3)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{(1528r^{2}+7231r+8151)\,(6r+7)!}{190190\,(3r+3)!\,r!\,(r+3)!^{2}}\,t^{r}
=1+1335t+1757970t2+2386445040t3+3336565609080t4+O(t5),\displaystyle=1+1335t+1757970t^{2}+2386445040t^{3}+3336565609080t^{4}+O(t^{5}),
Q5(t)\displaystyle Q_{5}(t) =r=0(1070744r3+12418991r2+46901365r+57574750)(6r+13)!34579394850(3r+6)!r!(r+5)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{(1070744r^{3}+12418991r^{2}+46901365r+57574750)\,(6r+13)!}{34579394850\,(3r+6)!\,r!\,(r+5)!^{2}}\,t^{r}
=1+2206t+3863952t2+6319180098t3+10079991804410t4+O(t5),\displaystyle=1+2206t+3863952t^{2}+6319180098t^{3}+10079991804410t^{4}+O(t^{5}),
Q11(t)\displaystyle Q_{11}(t) =r=0q11(r)(6r+31)!(3r+15)!r!(r+11)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{q_{11}(r)\,(6r+31)!}{(3r+15)!\,r!\,(r+11)!^{2}}\,t^{r}
=1+4805t+14658030t2+36441948000t3+80761720666320t4+O(t5),\displaystyle=1+4805t+14658030t^{2}+36441948000t^{3}+80761720666320t^{4}+O(t^{5}),
Q13(t)\displaystyle Q_{13}(t) =r=0q13(r)(6r+37)!(3r+18)!r!(r+13)!2tr\displaystyle=\sum_{r=0}^{\infty}\frac{q_{13}(r)\,(6r+37)!}{(3r+18)!\,r!\,(r+13)!^{2}}\,t^{r}
=1+5670t+19748832t2+54741797937t3+132878837538099t4+O(t5),\displaystyle=1+5670t+19748832t^{2}+54741797937t^{3}+132878837538099t^{4}+O(t^{5}),

where

q11(r)\displaystyle q_{11}(r) =115716643102160534111758180\displaystyle=\frac{1}{15716643102160534111758180}
×(13252649705176r6+665298552506263r5\displaystyle{}\times(13252649705176r^{6}+665298552506263r^{5}
+13797873461407945r4+151287554887490515r3\displaystyle{}\quad+13797873461407945r^{4}+151287554887490515r^{3}
+924734694751472239r2+2986992686186751022r\displaystyle{}\quad+924734694751472239r^{2}+2986992686186751022r
+3982438425105968520),\displaystyle{}\quad+3982438425105968520),
q13(r)\displaystyle q_{13}(r) =132176447673406729078990845541300\displaystyle=\frac{1}{32176447673406729078990845541300}
×(74198322973160504r7+5124808625350611463r6\displaystyle{}\times(74198322973160504r^{7}+5124808625350611463r^{6}
+150642927750066254963r5+2442571823969345600665r4\displaystyle{}\quad+150642927750066254963r^{5}+2442571823969345600665r^{4}
+23590276457107577780801r3+135688184492311416306712r2\displaystyle{}\quad+23590276457107577780801r^{3}+135688184492311416306712r^{2}
+430315970858396108150652r+580367220881648001413040)\displaystyle{}\quad+430315970858396108150652r+580367220881648001413040)

and these polynomials are irreducible over \mathbb{Q}.

References

  • [1] N. Archinard. Exceptional sets of hypergeometric series. J. Number Theory, 101(2):244–269, 2003.
  • [2] W. N. Bailey. Generalized hypergeometric series. Cambridge Tracts in Mathematics and Mathematical Physics, No. 32. Stechert-Hafner, Inc., New York, 1964.
  • [3] S. Basha, J. Getz, H. Nover, and E. Smith. Systems of orthogonal polynomials arising from the modular jj-function. J. Math. Anal. Appl., 289(1):336–354, 2004.
  • [4] P. B. Cohen, Y. Manin, and D. Zagier. Automorphic pseudodifferential operators. In Algebraic aspects of integrable systems, volume 26 of Progr. Nonlinear Differential Equations Appl., pages 17–47. Birkhäuser Boston, Boston, MA, 1997.
  • [5] S. Cooper. Ramanujan’s theta functions. Springer, Cham, 2017.
  • [6] R. Dijkgraaf. Mirror symmetry and elliptic curves. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 149–163. Birkhäuser Boston, Boston, MA, 1995.
  • [7] B. Dwork. pp-adic cycles. Inst. Hautes Études Sci. Publ. Math., (37):27–115, 1969.
  • [8] A. Ebisu. Three term relations for the hypergeometric series. Funkcial. Ekvac., 55(2):255–283, 2012.
  • [9] C. Franc and G. Mason. Hypergeometric series, modular linear differential equations and vector-valued modular forms. Ramanujan J., 41(1-3):233–267, 2016.
  • [10] P. J. Grabner. Quasimodular forms as solutions of modular differential equations. Int. J. Number Theory, 16(10):2233–2274, 2020.
  • [11] P. J. Grabner. Asymptotic expansions for the coefficients of extremal quasimodular forms and a conjecture of Kaneko and Koike. Ramanujan J., 57(3):1021–1041, 2022.
  • [12] P. Guerzhoy. A mixed mock modular solution of the Kaneko-Zagier equation. Ramanujan J., 36(1-2):149–164, 2015.
  • [13] N. Heninger, E. M. Rains, and N. J. A. Sloane. On the integrality of nnth roots of generating functions. J. Combin. Theory Ser. A, 113(8):1732–1745, 2006.
  • [14] T. Ibukiyama. Modular forms of rational weights and modular varieties. Abh. Math. Sem. Univ. Hamburg, 70:315–339, 2000.
  • [15] T. Kaminaka and F. Kato. Extremal quasimodular forms of lower depth with integral Fourier coefficients. Kyushu J. Math., 75(2):351–364, 2021.
  • [16] M. Kaneko. On modular forms of weight (6n+1)/5(6n+1)/5 satisfying a certain differential equation. In Number theory, volume 15 of Dev. Math., pages 97–102. Springer, New York, 2006.
  • [17] M. Kaneko and M. Koike. On modular forms arising from a differential equation of hypergeometric type. volume 7, pages 145–164. 2003. Rankin memorial issues.
  • [18] M. Kaneko and M. Koike. Quasimodular solutions of a differential equation of hypergeometric type. In Galois theory and modular forms, volume 11 of Dev. Math., pages 329–336. Kluwer Acad. Publ., Boston, MA, 2004.
  • [19] M. Kaneko and M. Koike. On extremal quasimodular forms. Kyushu J. Math., 60(2):457–470, 2006.
  • [20] M. Kaneko and D. Zagier. A generalized Jacobi theta function and quasimodular forms. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 165–172. Birkhäuser Boston, Boston, MA, 1995.
  • [21] M. Kaneko and D. Zagier. Supersingular jj-invariants, hypergeometric series, and Atkin’s orthogonal polynomials. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 97–126. Amer. Math. Soc., Providence, RI, 1998.
  • [22] R. Meštrović. Lucas’ theorem: its generalizations, extensions and applications (1878–2014), 2014. arXiv:1409.3820v1[math.NT].
  • [23] A. Mono. On a conjecture of Kaneko and Koike, 2020. arXiv:2005.06882v1[math.NT].
  • [24] J. A. C. Morales, H. Movasati, Y. Nikdelan, R. Roychowdhury, and M. A. C. Torres. Manifold ways to Darboux-Halphen system. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 003, 14 pages, 2018.
  • [25] H. Movasati. Quasi-modular forms attached to elliptic curves, I. Ann. Math. Blaise Pascal, 19(2):307–377, 2012.
  • [26] H. Movasati. Gauss-Manin connection in disguise: Calabi-Yau modular forms, volume 13 of Surveys of Modern Mathematics. International Press, Somerville, MA; Higher Education Press, Beijing, 2017. Appendix C by Hossein Movasati and Khosro M. Shokri; Appendix D by Carlos Matheus.
  • [27] T. Nakaya. A Study on Supersingular Polynomials, Modular Differential Equations, and Hypergeometric Series. PhD thesis, 2018. https://doi.org/10.15017/1931729.
  • [28] Y. V. Nesterenko. Hermite-Padé approximants of generalized hypergeometric functions. Russian Acad. Sci. Sb. Math., 83(1):189–219, 1995.
  • [29] OEIS Foundation Inc. (2023). The On-Line Encyclopedia of Integer Sequences. https://oeis.org.
  • [30] F. Pellarin. On extremal quasi-modular forms after Kaneko and Koike. Kyushu J. Math., 74(2):401–413, 2020. With an appendix by Gabriele Nebe.
  • [31] F. Pellarin, T. Rivoal, and J.-A. Weil. Some remarks on classical modular forms and hypergeometric series. http://rivoal.perso.math.cnrs.fr/articles/modhyp.pdf, 2020.
  • [32] Y. Sakai. The Atkin orthogonal polynomials for the low-level Fricke groups and their application. Int. J. Number Theory, 7(6):1637–1661, 2011.
  • [33] Y. Sakai. The Atkin orthogonal polynomials for the Fricke groups of levels 5 and 7. Int. J. Number Theory, 10(8):2243–2255, 2014.
  • [34] Y. Sakai and K. Shimizu. Modular differential equations with regular singularities at elliptic points for the Hecke congruence subgroups of low-levels. Math. J. Okayama Univ., 57:1–12, 2015.
  • [35] Y. Sakai and H. Tsutsumi. Extremal quasimodular forms for low-level congruence subgroups. J. Number Theory, 132(9):1896–1909, 2012.
  • [36] P. F. Stiller. Classical automorphic forms and hypergeometric functions. J. Number Theory, 28(2):219–232, 1988.
  • [37] H. Tsutsumi. The Atkin inner product for Γ0(N)\Gamma_{0}(N). J. Math. Kyoto Univ., 40(4):751–773, 2000.
  • [38] H. Tsutsumi. The Atkin orthogonal polynomials for congruence subgroups of low levels. Ramanujan J., 14(2):223–247, 2007.
  • [39] R. Vidunas. Darboux evaluations for hypergeometric functions with the projective monodromy PSL(2,𝔽7){\rm PSL}(2,\mathbb{F}_{7}). Ramanujan J., 53(1):85–121, 2020.
  • [40] D. Zagier. Modular forms and differential operators. volume 104, pages 57–75. 1994. K. G. Ramanathan memorial issue.
  • [41] D. Zagier. Elliptic modular forms and their applications. In The 1-2-3 of modular forms, Universitext, pages 1–103. Springer, Berlin, 2008.
  • [42] V. V. Zudilin. Integrality of power expansions related to hypergeometric series. Math. Notes, 71(5):604–616, 2002.