This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Diagonal cubic forms and the large sieve

Victor Y. Wang Fine Hall, 304 Washington Road, Princeton, NJ 08540, USA Courant Institute, 251 Mercer Street, New York, NY 10012, USA IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria vywang@alum.mit.edu
Abstract.

Let N(X)N(X) be the number of integral zeros (x1,,x6)[X,X]6(x_{1},\dots,x_{6})\in[-X,X]^{6} of 1i6xi3\sum_{1\leq i\leq 6}x_{i}^{3}. Works of Hooley and Heath-Brown imply N(X)ϵX3+ϵN(X)\ll_{\epsilon}X^{3+\epsilon}, if one assumes automorphy and GRH for certain Hasse–Weil LL-functions. Assuming instead a natural large sieve inequality, we recover the same bound on N(X)N(X). This is part of a more general statement, for diagonal cubic forms in 4\geq 4 variables, where we allow approximations to Hasse–Weil LL-functions.

Key words and phrases:
Cubic form, circle method, rational points, Hasse–Weil LL-functions, large sieve
1991 Mathematics Subject Classification:
Primary 11D45; Secondary 11D25, 11G40, 11N35, 11P55

1. Introduction

Fix an integer m4m\geq 4. Fix integers F1,,Fm{0}F_{1},\dots,F_{m}\in\mathbb{Z}\setminus\{0\} and let

F(𝒙)\colonequals1imFixi3,{\textstyle F(\bm{x})\colonequals\sum_{1\leq i\leq m}F_{i}x_{i}^{3}},

where 𝒙=(x1,,xm)\bm{x}=(x_{1},\dots,x_{m}). We are interested in the behavior, as XX\to\infty, of the point count

NF(X)\colonequals|{𝒙m[X,X]m:F(𝒙)=0}|.N_{F}(X)\colonequals\lvert\{\bm{x}\in\mathbb{Z}^{m}\cap[-X,X]^{m}:F(\bm{x})=0\}\rvert.

Certain varieties, V𝒄,kV_{\bm{c},k}, play a key role. For each 𝒄=(c1,,cm)m\bm{c}=(c_{1},\dots,c_{m})\in\mathbb{Z}^{m} and field kk, let

V𝒄,k\colonequals{(ξ1,,ξm)km1:1imFiξi3=1imciξi=0},{\textstyle V_{\bm{c},k}\colonequals\{(\xi_{1},\dots,\xi_{m})\in\mathbb{P}^{m-1}_{k}:\sum_{1\leq i\leq m}F_{i}\xi_{i}^{3}=\sum_{1\leq i\leq m}c_{i}\xi_{i}=0\}},

where km1\mathbb{P}^{m-1}_{k} is the projective space with coordinates ξ1,,ξm\xi_{1},\dots,\xi_{m} over kk.

In the special case F=1i6xi3F=\sum_{1\leq i\leq 6}x_{i}^{3}, with m=6m=6, we abbreviate NF(X)N_{F}(X) to N(X)N(X). In this case, building on [hooley1986HasseWeil], the papers [hooley_greaves_harman_huxley_1997] and [heath1998circle] each proved

(1.1) N(X)ϵX3+ϵ,N(X)\ll_{\epsilon}X^{3+\epsilon},

assuming Hypothesis HW of [hooley1986HasseWeil]*§6; [heath1998circle]*§4 for the Hasse–Weil LL-function of each smooth variety V𝒄,V_{\bm{c},\mathbb{Q}} with 𝒄𝟎\bm{c}\neq\bm{0}. Unconditionally, by [vaughan2020some]*Theorem 1.2,

N(X)ϵX7/2/(logX)5/2ϵN(X)\ll_{\epsilon}X^{7/2}/(\log{X})^{5/2-\epsilon}

for X2X\geq 2, via methods stemming from work such as [vaughan1986waring, hall1988divisors, boklan1993reduction, brudern2010asymptotic].

Hypothesis HW practically amounts to automorphy, plus the Grand Riemann Hypothesis (GRH). Automorphy remains open [wang2022thesis]*Appendix A. Hooley suggests that a zero-density hypothesis would suffice in place of GRH [hooley1986HasseWeil]*p. 51. Following the usual paths laid out in [iwaniec2004analytic]*Theorem 10.4, a general such density hypothesis is provable assuming automorphy, a large sieve inequality, and progress on the Grand Lindelöf Hypothesis (GLH).

In the present paper, we show that a large sieve inequality by itself would imply (1.1). The precise large sieve inequality we need will be stated in §2, as Hypothesis 2.1.

Theorem 1.1.

Suppose m{5,6}m\in\{5,6\}. Assume Hypothesis 2.1. Then

(1.2) NF(X)ϵX3(m2)/4+ϵ,N_{F}(X)\ll_{\epsilon}X^{3(m-2)/4+\epsilon},

for all reals X1X\geq 1 and ϵ>0\epsilon>0.

For m=6m=6, the exponent in (1.2) matches (1.1). In §2, we state a more general result, Theorem 2.7, valid for all m4m\geq 4. Our methods might also apply elsewhere [wang2022thesis]*§9.1. For instance, [restricted_cubic_moments] explains how one may hope to use the modularity of elliptic curves over \mathbb{Q} to unconditionally produce an absolute constant δ>0\delta>0 such that

|{a:1aA}{x2+y3+z3:x,y,z0}|A6/7δ.\lvert\{a\in\mathbb{Z}:1\leq a\leq A\}\setminus\{x^{2}+y^{3}+z^{3}:x,y,z\in\mathbb{Z}_{\geq 0}\}\rvert\ll A^{6/7-\delta}.

This would then improve on the existing bound Oϵ(A6/7+ϵ)O_{\epsilon}(A^{6/7+\epsilon}) due to Brüdern [brudern1991ternary].

Conventions

We let c\colonequals{n:nc}\mathbb{Z}_{\geq c}\colonequals\{n\in\mathbb{Z}:n\geq c\}. We let 𝟏E\colonequals1\bm{1}_{E}\colonequals 1 if a statement EE holds, and 𝟏E\colonequals0\bm{1}_{E}\colonequals 0 otherwise. For integers n1n\geq 1, we let μ(n)\mu(n) denote the Möbius function.

We write fSgf\ll_{S}g, or gSfg\gg_{S}f, to mean |f|Cg\lvert f\rvert\leq Cg for some C=C(S)>0C=C(S)>0. The implied constant CC is always allowed to depend on mm and FF, in addition to SS. We let OS(g)O_{S}(g) denote a quantity that is Sg\ll_{S}g. We write fSgf\asymp_{S}g if fSgSff\ll_{S}g\ll_{S}f.

2. Framework and results

Let 𝔇\colonequals3(1imFi)2m2\mathfrak{D}\colonequals 3(\prod_{1\leq i\leq m}F_{i})^{2^{m-2}}\in\mathbb{Z}. For each 𝒄m\bm{c}\in\mathbb{Z}^{m}, let

(2.1) Δ(𝒄)\colonequals𝔇(υ2,,υm){1,1}m1((c13/F1)1/2+2imυi(ci3/Fi)1/2).\Delta(\bm{c})\colonequals\mathfrak{D}\,\prod_{(\upsilon_{2},\dots,\upsilon_{m})\in\{1,-1\}^{m-1}}\,\biggl{(}(c_{1}^{3}/F_{1})^{1/2}+\sum_{2\leq i\leq m}\upsilon_{i}(c_{i}^{3}/F_{i})^{1/2}\biggr{)}\in\mathbb{Z}.

For each field kk in which Δ(𝒄)\Delta(\bm{c}) is invertible, the variety V𝒄,kV_{\bm{c},k} is a smooth complete intersection, by the Jacobian criterion for smoothness. Let

(2.2) 𝒮\colonequals{𝒄m:Δ(𝒄)0},𝒮(C)\colonequals𝒮[C,C]m.\mathcal{S}\colonequals\{\bm{c}\in\mathbb{Z}^{m}:\Delta(\bm{c})\neq 0\},\qquad\mathcal{S}(C)\colonequals\mathcal{S}\cap[-C,C]^{m}.

For each 𝒄𝒮\bm{c}\in\mathcal{S} and prime pp, we define a local Euler factor Lp(s,𝒄)L_{p}(s,\bm{c}), following Serre [serre1969facteurs] and Kahn [kahn2020zeta]*§5.6. First, choose a prime p\ell\neq p, and let

M(𝒄,)\colonequalsHm3(V𝒄,¯,)/Hm3(¯m1,),M(\bm{c},\ell)\colonequals H^{m-3}(V_{\bm{c},\overline{\mathbb{Q}}},\mathbb{Q}_{\ell})/H^{m-3}(\mathbb{P}^{m-1}_{\overline{\mathbb{Q}}},\mathbb{Q}_{\ell}),

where Hi(W,)H^{i}(W,\mathbb{Q}_{\ell}) denotes the iith \ell-adic cohomology group of WW. Let M(𝒄,)IpM(𝒄,)M(\bm{c},\ell)^{I_{p}}\subseteq M(\bm{c},\ell) denote the group of inertia invariants of M(𝒄,)M(\bm{c},\ell). Let α𝒄,j(p)\alpha_{\bm{c},j}(p)\in\mathbb{C}, for 1jdimM(𝒄,)Ip1\leq j\leq\dim{M(\bm{c},\ell)^{I_{p}}}, be the geometric Frobenius eigenvalues on M(𝒄,)IpM(\bm{c},\ell)^{I_{p}}. Finally, let

(2.3) α~𝒄,j(p)\colonequalsα𝒄,j(p)p(m3)/2,Lp(s,𝒄)\colonequals1jdimM(𝒄,)Ip(1α~𝒄,j(p)ps)1.\tilde{\alpha}_{\bm{c},j}(p)\colonequals\frac{\alpha_{\bm{c},j}(p)}{p^{(m-3)/2}},\qquad L_{p}(s,\bm{c})\colonequals\prod_{1\leq j\leq\dim{M(\bm{c},\ell)^{I_{p}}}}(1-\tilde{\alpha}_{\bm{c},j}(p)p^{-s})^{-1}.

On multiplying over pp, we obtain for each 𝒄𝒮\bm{c}\in\mathcal{S} a global Hasse–Weil LL-function

(2.4) L(s,𝒄)\colonequalspLp(s,𝒄)=n1λ𝒄(n)ns,L(s,\bm{c})\colonequals\prod_{p}L_{p}(s,\bm{c})=\sum_{n\geq 1}\lambda_{\bm{c}}(n)n^{-s},

for some coefficients λ𝒄(n)\lambda_{\bm{c}}(n)\in\mathbb{C} defined by expanding the product over pp. We now state Hypothesis 2.1. It asserts a large sieve inequality, (2.5), in a certain range.

Hypothesis 2.1.

For all reals C,N,ϵ>0C,N,\epsilon>0 with NC3N\leq C^{3}, we have

(2.5) 𝒄𝒮(C)|nNvnλ𝒄(n)|2ϵCϵmax(Cm,N)nN|vn|2\sum_{\bm{c}\in\mathcal{S}(C)}\,\Bigl{\lvert}\sum_{n\leq N}v_{n}\,\lambda_{\bm{c}}(n)\Bigr{\rvert}^{2}\ll_{\epsilon}C^{\epsilon}\max(C^{m},N)\,\sum_{n\leq N}\lvert v_{n}\rvert^{2}

for all vectors (vn)1nNN(v_{n})_{1\leq n\leq N}\in\mathbb{C}^{\lfloor N\rfloor}.

We now make some general comments on L(s,𝒄)L(s,\bm{c}). By [kahn2020zeta]*§5.6.3, §5.6.4 and [laskar2017local]*Corollary 1.2, the factors Lp(s,𝒄)L_{p}(s,\bm{c}) are independent of the choice of \ell, and we have

(2.6) |α~𝒄,j(p)|1.\lvert\tilde{\alpha}_{\bm{c},j}(p)\rvert\leq 1.

By (2.6), the product and series in (2.4) converge absolutely for (s)>1\Re(s)>1.

We have dimM(𝒄,)IpdimM(𝒄,)m1\dim{M(\bm{c},\ell)^{I_{p}}}\leq\dim{M(\bm{c},\ell)}\ll_{m}1 by [katz2001sums]*Corollary of Theorem 3. Therefore, by (2.6), we have λ𝒄(n)ϵnϵ\lambda_{\bm{c}}(n)\ll_{\epsilon}n^{\epsilon} for all n1n\geq 1. Thus (2.5) is the large sieve inequality that one would naturally expect to hold. In fact, (2.5) could potentially hold in the range NCAN\leq C^{A} for any constant A>0A>0. However, we will only need it in the range NC3N\leq C^{3}.

The coefficients λ𝒄(n)\lambda_{\bm{c}}(n) can be interpreted geometrically, but it would take us too far afield to detail anything but the simplest case. For each 𝒄m\bm{c}\in\mathbb{Z}^{m} and prime pp, let

E𝒄(p)\colonequals|{𝒙𝔽pm:F(𝒙)=𝒄𝒙=0}|pm2p1,E𝒄(p)\colonequalsE𝒄(p)p(m3)/2,E_{\bm{c}}(p)\colonequals\frac{\lvert\{\bm{x}\in\mathbb{F}_{p}^{m}:F(\bm{x})=\bm{c}\cdot\bm{x}=0\}\rvert-p^{m-2}}{p-1},\qquad E^{\natural}_{\bm{c}}(p)\colonequals\frac{E_{\bm{c}}(p)}{p^{(m-3)/2}},

where 𝒄𝒙\colonequals1imcixi\bm{c}\cdot\bm{x}\colonequals\sum_{1\leq i\leq m}c_{i}x_{i}. If pΔ(𝒄)p\nmid\Delta(\bm{c}), then M(𝒄,)Ip=M(𝒄,)M(\bm{c},\ell)^{I_{p}}=M(\bm{c},\ell) and

(2.7) λ𝒄(p)=1jdimM(𝒄,)α~𝒄,j(p)=(1)m3E𝒄(p),\lambda_{\bm{c}}(p)=\sum_{1\leq j\leq\dim{M(\bm{c},\ell)}}\tilde{\alpha}_{\bm{c},j}(p)=(-1)^{m-3}E^{\natural}_{\bm{c}}(p),

by (2.3) and the Grothendieck–Lefschetz trace formula.

We emphasize that our LL-functions are normalized differently than in [hooley1986HasseWeil, heath1998circle]. If H(s,𝒄)H(s,\bm{c}) is the LL-function associated to V𝒄,V_{\bm{c},\mathbb{Q}} in [heath1998circle]*§4, then

H(s+m32,𝒄)=L(s,𝒄).H(s+\tfrac{m-3}{2},\bm{c})=L(s,\bm{c}).

Proof framework

We will analyze NF(X)N_{F}(X) using the delta method, due to [duke1993bounds, heath1996new]. This method features some complete exponential sums that we now recall. Let

(2.8) S𝒄(n)\colonequals1an:gcd(a,n)=11x1,,xmne2πi(aF(𝒙)+𝒄𝒙)/n,S𝒄(n)\colonequalsS𝒄(n)n(m+1)/2,S_{\bm{c}}(n)\colonequals\sum_{\begin{subarray}{c}1\leq a\leq n:\\ \gcd(a,n)=1\end{subarray}}\,\sum_{1\leq x_{1},\dots,x_{m}\leq n}e^{2\pi i(aF(\bm{x})+\bm{c}\cdot\bm{x})/n},\qquad S^{\natural}_{\bm{c}}(n)\colonequals\frac{S_{\bm{c}}(n)}{n^{(m+1)/2}},

for all 𝒄m\bm{c}\in\mathbb{Z}^{m} and integers n1n\geq 1. It is known that S𝒄(n)S_{\bm{c}}(n) is multiplicative in nn, meaning that S𝒄(1)=1S_{\bm{c}}(1)=1 and S𝒄(n1n2)=S𝒄(n1)S𝒄(n2)S_{\bm{c}}(n_{1}n_{2})=S_{\bm{c}}(n_{1})S_{\bm{c}}(n_{2}) whenever gcd(n1,n2)=1\gcd(n_{1},n_{2})=1 [heath1998circle]*Lemma 4.1. Thus S𝒄(n)S^{\natural}_{\bm{c}}(n) is also multiplicative in nn. For each 𝒄m\bm{c}\in\mathbb{Z}^{m}, let

Φ(𝒄,s)\colonequalsn1S𝒄(n)ns=pΦp(𝒄,s),\Phi(\bm{c},s)\colonequals\sum_{n\geq 1}S^{\natural}_{\bm{c}}(n)n^{-s}=\prod_{p}\Phi_{p}(\bm{c},s),

where Φp(𝒄,s)\colonequalsl0S𝒄(pl)pls\Phi_{p}(\bm{c},s)\colonequals\sum_{l\geq 0}S^{\natural}_{\bm{c}}(p^{l})p^{-ls}. Ultimately, we will see that S𝒄(n)S^{\natural}_{\bm{c}}(n) is related to λ𝒄(n)\lambda_{\bm{c}}(n) in a way that allows us to apply a large sieve inequality, like (2.5), to the delta method.

Before proceeding, we recall two basic definitions from the theory of Dirichlet series. For f,g:1f,g\colon\mathbb{Z}_{\geq 1}\to\mathbb{C}, the Dirichlet convolution fg:1f\ast g\colon\mathbb{Z}_{\geq 1}\to\mathbb{C} is defined by the formula

(fg)(n)\colonequalsab=nf(a)g(b).(f\ast g)(n)\colonequals\sum_{ab=n}f(a)g(b).

A Dirichlet series n1f(n)ns\sum_{n\geq 1}f(n)n^{-s} is said to be invertible if f(1)0f(1)\neq 0, or equivalently, if there exists g:1g\colon\mathbb{Z}_{\geq 1}\to\mathbb{C} with (fg)(n)=𝟏n=1(f\ast g)(n)=\bm{1}_{n=1}.

Our work is based on approximations of Dirichlet series. For each 𝒄𝒮\bm{c}\in\mathcal{S}, let Ψ(𝒄,s)\Psi(\bm{c},s) be an invertible Dirichlet series. The function 𝒄Ψ(𝒄,s)\bm{c}\mapsto\Psi(\bm{c},s), from 𝒮\mathcal{S} to the set of Dirichlet series, will be denoted simply by Ψ\Psi. For each 𝒄𝒮\bm{c}\in\mathcal{S} and integer n1n\geq 1, let

b𝒄(n),a𝒄(n),a𝒄(n)b_{\bm{c}}(n),\,a_{\bm{c}}(n),\,a^{\prime}_{\bm{c}}(n)

be the nsn^{-s} coefficients of the Dirichlet series

Ψ(𝒄,s),Ψ(𝒄,s)1,Φ(𝒄,s)/Ψ(𝒄,s),\Psi(\bm{c},s),\,\Psi(\bm{c},s)^{-1},\,\Phi(\bm{c},s)/\Psi(\bm{c},s),

respectively. In terms of Dirichlet convolution, this means that

(2.9) (a𝒄b𝒄)(n)=𝟏n=1,a𝒄=S𝒄a𝒄,S𝒄=a𝒄b𝒄.(a_{\bm{c}}\ast b_{\bm{c}})(n)=\bm{1}_{n=1},\qquad a^{\prime}_{\bm{c}}=S^{\natural}_{\bm{c}}\ast a_{\bm{c}},\qquad S^{\natural}_{\bm{c}}=a^{\prime}_{\bm{c}}\ast b_{\bm{c}}.

For us, the following particular definition of approximation will be convenient.

Definition 2.2.

Call Ψ\Psi an approximation of Φ\Phi if the following three conditions hold:

  1. (1)

    If 𝒄𝒮\bm{c}\in\mathcal{S}, then b𝒄(n)b_{\bm{c}}(n) is multiplicative in nn.

  2. (2)

    For all 𝒄𝒮\bm{c}\in\mathcal{S}, integers n1n\geq 1, and reals ϵ>0\epsilon>0, we have

    max(|b𝒄(n)|,|a𝒄(n)|)ϵnϵdn|S𝒄(d)|.\max(\lvert b_{\bm{c}}(n)\rvert,\lvert a^{\prime}_{\bm{c}}(n)\rvert)\ll_{\epsilon}n^{\epsilon}\sum_{d\mid n}\lvert S^{\natural}_{\bm{c}}(d)\rvert.
  3. (3)

    For all 𝒄𝒮\bm{c}\in\mathcal{S} and primes pΔ(𝒄)p\nmid\Delta(\bm{c}), we have a𝒄(p)p1/2a^{\prime}_{\bm{c}}(p)\ll p^{-1/2}.

Theorem 2.3.

Suppose that for each 𝐜𝒮\bm{c}\in\mathcal{S}, we have

Ψ(𝒄,s){Φ(𝒄,s),pΔ(𝒄)Φp(𝒄,s),pΔ(𝒄)Lp(s,𝒄)(1)m3,L(s,𝒄)(1)m3}.\Psi(\bm{c},s)\in\left\{\Phi(\bm{c},s),\quad\prod_{p\nmid\Delta(\bm{c})}\Phi_{p}(\bm{c},s),\quad\prod_{p\nmid\Delta(\bm{c})}L_{p}(s,\bm{c})^{(-1)^{m-3}},\quad L(s,\bm{c})^{(-1)^{m-3}}\right\}.

Then Ψ\Psi is an approximation of Φ\Phi.

Theorem 2.3 provides natural examples of approximations. It will not be used until §8, so we defer the proof to that section. For the rest of §2, fix an approximation Ψ\Psi of Φ\Phi.

Hypotheses

Our main general result, Theorem 2.7, will assume that either of two specific hypotheses holds. Our first hypothesis is the following:

Hypothesis 2.4.

For all reals C,N,ϵ>0C,N,\epsilon>0 with NC3N\leq C^{3}, we have

(2.10) 𝒄𝒮(C)|nIb𝒄(n)|2ϵCϵmax(Cm,N)N\sum_{\bm{c}\in\mathcal{S}(C)}\,\Bigl{\lvert}\sum_{n\in I}b_{\bm{c}}(n)\Bigr{\rvert}^{2}\ll_{\epsilon}C^{\epsilon}\max(C^{m},N)\,N

for all real intervals I(0,N]I\subseteq(0,N].

The following two remarks may help to clarify the nature of this hypothesis.

  1. (1)

    If Ψ=L(s,𝒄)1\Psi=L(s,\bm{c})^{-1}, then Hypothesis 2.4 would easily follow from GRH. On the other hand, if Ψ=L(s,𝒄)\Psi=L(s,\bm{c}), then Hypothesis 2.4 would follow from GLH plus a technical bound on |{𝒄𝒮(C):L(s,𝒄)has a pole ats=1}|\lvert\{\bm{c}\in\mathcal{S}(C):L(s,\bm{c})\;\textnormal{has a pole at}\;s=1\}\rvert.

  2. (2)

    A density bound, namely |{𝒄𝒮(C):|nIb𝒄(n)|Nσ}|ϵCm+ϵ/N2σ1\lvert\{\bm{c}\in\mathcal{S}(C):\lvert\sum_{n\in I}b_{\bm{c}}(n)\rvert\geq N^{\sigma}\}\rvert\ll_{\epsilon}C^{m+\epsilon}/N^{2\sigma-1} for NC3N\leq C^{3} and σ1/2\sigma\geq 1/2, would follow from Hypothesis 2.4. But Cm+ϵ/N2σ1C^{m+\epsilon}/N^{2\sigma-1} could be quite large even if N=C3N=C^{3} and σ=1\sigma=1. This is unlike in some density applications, e.g. [iwaniec2004analytic]*Theorem 10.5, where further input may be needed near σ=1\sigma=1.

If Ψ=L(s,𝒄)1\Psi=L(s,\bm{c})^{-1}, then Hypothesis 2.4 is perhaps unattractive in that b𝒄(n)b_{\bm{c}}(n) involves the Möbius function μ(n)\mu(n). We might thus wish to pass from b𝒄(n)b_{\bm{c}}(n) to a𝒄(n)a_{\bm{c}}(n). This is possible, to some extent, in the situation of the following definition:

Definition 2.5.

Call Ψ\Psi standard if for all 𝒄𝒮\bm{c}\in\mathcal{S}, integers n1n\geq 1, and reals ϵ>0\epsilon>0, we have

max(|b𝒄(n)|,|a𝒄(n)|)ϵnϵ.\max(\lvert b_{\bm{c}}(n)\rvert,\lvert a_{\bm{c}}(n)\rvert)\ll_{\epsilon}n^{\epsilon}.

Let ϑ{0,1}\vartheta\in\{0,1\} if Ψ\Psi is standard, and let ϑ\colonequals0\vartheta\colonequals 0 if Ψ\Psi is non-standard. Let

(2.11) γ𝒄(n)\colonequals(1ϑ)b𝒄(n)+ϑμ(n)2a𝒄(n).\gamma_{\bm{c}}(n)\colonequals(1-\vartheta)\cdot b_{\bm{c}}(n)+\vartheta\cdot\mu(n)^{2}a_{\bm{c}}(n).

We now come to our main hypothesis: a large sieve inequality for γ𝒄\gamma_{\bm{c}}, in a certain range.

Hypothesis 2.6.

For all reals C,N,ϵ>0C,N,\epsilon>0 with NC3N\leq C^{3}, we have

(2.12) 𝒄𝒮(C)|nNvnγ𝒄(n)|2ϵCϵmax(Cm,N)nN|vn|2\sum_{\bm{c}\in\mathcal{S}(C)}\,\Bigl{\lvert}\sum_{n\leq N}v_{n}\,\gamma_{\bm{c}}(n)\Bigr{\rvert}^{2}\ll_{\epsilon}C^{\epsilon}\max(C^{m},N)\,\sum_{n\leq N}\lvert v_{n}\rvert^{2}

for all vectors (vn)1nNN(v_{n})_{1\leq n\leq N}\in\mathbb{C}^{\lfloor N\rfloor}.

Again, some brief remarks may be helpful.

  1. (1)

    When ϑ=1\vartheta=1, the factor μ(n)2\mu(n)^{2} in (2.11) simply restricts us to square-free moduli nn.

  2. (2)

    Hypothesis 2.6 remains open in general [wang2022thesis]*Remark 4.1.10.

Results

Fix a smooth, compactly supported function w:mw\colon\mathbb{R}^{m}\to\mathbb{R}. Assume that

(2.13) 𝟎{𝒙m:w(𝒙)0}¯.\bm{0}\notin\overline{\{\bm{x}\in\mathbb{R}^{m}:w(\bm{x})\neq 0\}}.

For reals X1X\geq 1, let

(2.14) NF,w(X)\colonequals𝒙mw(𝒙/X) 1F(𝒙)=0.N_{F,w}(X)\colonequals\sum_{\bm{x}\in\mathbb{Z}^{m}}w(\bm{x}/X)\,\bm{1}_{F(\bm{x})=0}.

If m5m\geq 5, then let NF,w(X)\colonequalsNF,w(X)N^{\prime}_{F,w}(X)\colonequals N_{F,w}(X). If m=4m=4, then let Υ\Upsilon denote the set of 22-dimensional rational vector spaces LL with F|L=0F|_{L}=0, and let

(2.15) NF,w(X)\colonequals𝒙m(LΥL)w(𝒙/X) 1F(𝒙)=0.N^{\prime}_{F,w}(X)\colonequals\sum_{\bm{x}\in\mathbb{Z}^{m}\setminus(\bigcup_{L\in\Upsilon}L)}w(\bm{x}/X)\,\bm{1}_{F(\bm{x})=0}.
Theorem 2.7.

Assume Hypothesis 2.6 or Hypothesis 2.4. Then for some constant 𝔠(F,w)\mathfrak{c}(F,w)\in\mathbb{R}, we have

(2.16) NF,w(X)𝔠(F,w)Xm3ϵX3(m2)/4+ϵ,N^{\prime}_{F,w}(X)-\mathfrak{c}(F,w)X^{m-3}\ll_{\epsilon}X^{3(m-2)/4+\epsilon},

for all reals X1X\geq 1 and ϵ>0\epsilon>0.

Note that m,F,wm,F,w are fixed. In other words, the implied constant in (2.16) is allowed to depend on m,F,wm,F,w in addition to ϵ\epsilon. Also, for numerical reference,

3(m2)/4=1.5𝟏m=4+2.25𝟏m=5+3𝟏m=6+.3(m-2)/4=1.5\cdot\bm{1}_{m=4}+2.25\cdot\bm{1}_{m=5}+3\cdot\bm{1}_{m=6}+\cdots.

In particular, if 5m65\leq m\leq 6, then m33(m2)/4m-3\leq 3(m-2)/4, and (2.16) simply says

NF,w(X)ϵX3(m2)/4+ϵ.N_{F,w}(X)\ll_{\epsilon}X^{3(m-2)/4+\epsilon}.

The rest of the paper is devoted to the proof of Theorems 1.1, 2.3, and 2.7. In §3, we reduce Hypothesis 2.4 to Hypothesis 2.6. In §§47, we recall the delta method for NF,w(X)N_{F,w}(X), then analyze parts of it unconditionally and parts of it using Hypothesis 2.4. In §8, we tie together the previous sections to complete the proofs.

3. A conversion between standard coefficients

In this section, we prove a useful consequence of Hypothesis 2.6. First, we record some standard lemmas that will be repeatedly used throughout the paper.

Lemma 3.1.

Let N,h1N,h\in\mathbb{Z}_{\geq 1}. Then there are at most Oh(N1/h)O_{h}(N^{1/h}) integers n[N,2N)n\in[N,2N) such that vp(n)hv_{p}(n)\geq h holds for all primes pnp\mid n.

Proof.

This is classical; see e.g. [bateman1958theorem]. ∎

To proceed, we need to introduce some notation. We write uvu\mid v^{\infty} if there exists k1k\in\mathbb{Z}_{\geq 1} with uvku\mid v^{k}. For an integer c0c\neq 0, we let sq(c)\operatorname{sq}(c) (resp. cub(c)\operatorname{cub}(c)) denote the largest square-full (resp. cube-full) positive integer divisor of cc. We also let sq(0)\colonequals0\operatorname{sq}(0)\colonequals 0.

Lemma 3.2.

Let N,R1N,R\in\mathbb{Z}_{\geq 1}. Then there are at most Oϵ(NϵRϵ)O_{\epsilon}(N^{\epsilon}R^{\epsilon}) positive integers nNn\leq N with nRn\mid R^{\infty}.

Proof.

We have nR𝟏nNnR(N/n)ϵ=NϵpR(1pϵ)1ϵNϵRϵ\sum_{n\mid R^{\infty}}\bm{1}_{n\leq N}\leq\sum_{n\mid R^{\infty}}(N/n)^{\epsilon}=N^{\epsilon}\prod_{p\mid R}(1-p^{-\epsilon})^{-1}\ll_{\epsilon}N^{\epsilon}R^{\epsilon}. ∎

Lemma 3.3.

Let N1N\in\mathbb{Z}_{\geq 1}. Then the following hold:

  1. (1)

    We have

    nN:n=sq(n)n1/2ϵNϵ.\sum_{n\leq N:\,n=\operatorname{sq}(n)}n^{-1/2}\ll_{\epsilon}N^{\epsilon}.
  2. (2)

    We have

    |c|Nsq(c)1/2ϵN1+ϵ.\sum_{\lvert c\rvert\leq N}\operatorname{sq}(c)^{1/2}\ll_{\epsilon}N^{1+\epsilon}.
  3. (3)

    For any tt\in\mathbb{R}, we have

    1nNcub(n)tt,ϵNϵmax(N,N1/3+t).\sum_{1\leq n\leq N}\operatorname{cub}(n)^{t}\ll_{t,\epsilon}N^{\epsilon}\max(N,N^{1/3+t}).
Proof.

(1): By the h=2h=2 case of Lemma 3.1 in dyadic intervals n[2k,2k+1)n\in[2^{k},2^{k+1}), we have

nN:n=sq(n)n1/20klog2N(2k)1/2(2k)1/2ϵNϵ.\sum_{n\leq N:\,n=\operatorname{sq}(n)}n^{-1/2}\ll\sum_{0\leq k\leq\log_{2}{N}}(2^{k})^{1/2}(2^{k})^{-1/2}\ll_{\epsilon}N^{\epsilon}.

(2): There are at most N/dN/d positive integers nNn\leq N with sq(n)=d\operatorname{sq}(n)=d. Therefore,

|c|Nsq(c)1/2=21nNsq(n)1/22dN:d=sq(d)Ndd1/2ϵN1+ϵ,\sum_{\lvert c\rvert\leq N}\operatorname{sq}(c)^{1/2}=2\sum_{1\leq n\leq N}\operatorname{sq}(n)^{1/2}\leq 2\sum_{d\leq N:\,d=\operatorname{sq}(d)}\frac{N}{d}\cdot d^{1/2}\ll_{\epsilon}N^{1+\epsilon},

where the last inequality follows from (1).

(3): There are at most N/n3N/n_{3} positive integers nNn\leq N with cub(n)=n3\operatorname{cub}(n)=n_{3}. Thus

1nNcub(n)tn3N:n3=cub(n3)Nn3n3tt0klog2N(2k)1/3(2k)t1Nt,ϵNϵmax(N,N1/3+t),\begin{split}\sum_{1\leq n\leq N}\operatorname{cub}(n)^{t}&\leq\sum_{n_{3}\leq N:\,n_{3}=\operatorname{cub}(n_{3})}\frac{N}{n_{3}}\cdot n_{3}^{t}\\ &\ll_{t}\sum_{0\leq k\leq\log_{2}{N}}(2^{k})^{1/3}(2^{k})^{t-1}N\ll_{t,\epsilon}N^{\epsilon}\max(N,N^{1/3+t}),\end{split}

by the h=3h=3 case of Lemma 3.1 in dyadic intervals n3[2k,2k+1)n_{3}\in[2^{k},2^{k+1}). ∎

Proposition 3.4.

Fix an approximation Ψ\Psi of Φ\Phi. Assume Hypothesis 2.6. Then Hypothesis 2.4 holds.

Proof.

First suppose ϑ=0\vartheta=0. Then γ𝒄=b𝒄\gamma_{\bm{c}}=b_{\bm{c}} by (2.11). For C,N,IC,N,I as in Hypothesis 2.4, the bound (2.12) with vn\colonequals𝟏nIv_{n}\colonequals\bm{1}_{n\in I} thus trivially implies (2.10), as desired.

Now suppose ϑ=1\vartheta=1. Then in particular, Ψ\Psi is standard. For the rest of the proof, let C,d,NC,d,N denote positive variables. For integers dd and intervals II, let

A𝒄(d,I)\colonequalsnI𝟏gcd(d,n)=1μ(n)a𝒄(n).A_{\bm{c}}(d,I)\colonequals\sum_{n\in I}\bm{1}_{\gcd(d,n)=1}\,\mu(n)a_{\bm{c}}(n).

We have γ𝒄(n)=μ(n)2a𝒄(n)\gamma_{\bm{c}}(n)=\mu(n)^{2}a_{\bm{c}}(n) by (2.11). Taking vn\colonequals𝟏nI𝟏gcd(d,n)=1μ(n)v_{n}\colonequals\bm{1}_{n\in I}\bm{1}_{\gcd(d,n)=1}\,\mu(n) in (2.12), and observing that μ(n)3=μ(n)\mu(n)^{3}=\mu(n), we find that Hypothesis 2.6 implies

(3.1) 𝒄𝒮(C)|A𝒄(d,I)|2ϵCϵmax(Cm,N)N\sum_{\bm{c}\in\mathcal{S}(C)}\lvert A_{\bm{c}}(d,I)\rvert^{2}\ll_{\epsilon}C^{\epsilon}\max(C^{m},N)\,N

uniformly over reals CC, integers dd, reals NC3N\leq C^{3}, and real intervals I(0,N]I\subseteq(0,N].

To proceed, we rewrite b𝒄(n)b_{\bm{c}}(n) using multiplicativity. First, by (2.9), for primes pp we have

b𝒄(p)=a𝒄(p).b_{\bm{c}}(p)=-a_{\bm{c}}(p).

Furthermore, an integer n1n\geq 1 can be uniquely expressed in the form n1dn_{1}d, where dd is square-full, n1n_{1} is coprime to dd, and n1n_{1} is square-free. Therefore, for all n1n\geq 1, we have

(3.2) b𝒄(n)=n1d=n𝟏gcd(d,n1)=1μ(n1)a𝒄(n1)𝟏d=sq(d)b𝒄(d).b_{\bm{c}}(n)=\sum_{n_{1}d=n}\bm{1}_{\gcd(d,n_{1})=1}\,\mu(n_{1})a_{\bm{c}}(n_{1})\cdot\bm{1}_{d=\operatorname{sq}(d)}\,b_{\bm{c}}(d).

We note here that μ(n1)\mu(n_{1}) is supported on square-free integers n1n_{1}.

Consider a real CC, a real NC3N\leq C^{3}, and a real interval I(0,N]I\subseteq(0,N]. Let B𝒄(I)\colonequalsnIb𝒄(n)B_{\bm{c}}(I)\colonequals\sum_{n\in I}b_{\bm{c}}(n). By (3.2), we have

B𝒄(I)=n1dI𝟏gcd(d,n1)=1μ(n1)a𝒄(n1)𝟏d=sq(d)b𝒄(d)=dN:d=sq(d)b𝒄(d)A𝒄(d,I/d).\begin{split}B_{\bm{c}}(I)&=\sum_{n_{1}d\in I}\bm{1}_{\gcd(d,n_{1})=1}\,\mu(n_{1})a_{\bm{c}}(n_{1})\cdot\bm{1}_{d=\operatorname{sq}(d)}\,b_{\bm{c}}(d)\\ &=\sum_{d\leq N:\,d=\operatorname{sq}(d)}b_{\bm{c}}(d)\cdot A_{\bm{c}}(d,I/d).\end{split}

By the Cauchy–Schwarz inequality over dd, it follows that

(3.3) 𝒄𝒮(C)|B𝒄(I)|2𝒄𝒮(C)(dN:d=sq(d)|b𝒄(d)|2d1/2)(dN:d=sq(d)d1/2|A𝒄(d,I/d)|2)ϵNϵ𝒄𝒮(C)dN:d=sq(d)d1/2|A𝒄(d,I/d)|2,\begin{split}\sum_{\bm{c}\in\mathcal{S}(C)}\lvert B_{\bm{c}}(I)\rvert^{2}&\leq\sum_{\bm{c}\in\mathcal{S}(C)}\,\biggl{(}\,\sum_{d\leq N:\,d=\operatorname{sq}(d)}\lvert b_{\bm{c}}(d)\rvert^{2}d^{-1/2}\biggr{)}\biggl{(}\,\sum_{d\leq N:\,d=\operatorname{sq}(d)}d^{1/2}\lvert A_{\bm{c}}(d,I/d)\rvert^{2}\biggr{)}\\ &\ll_{\epsilon}N^{\epsilon}\sum_{\bm{c}\in\mathcal{S}(C)}\sum_{d\leq N:\,d=\operatorname{sq}(d)}d^{1/2}\lvert A_{\bm{c}}(d,I/d)\rvert^{2},\end{split}

by Lemma 3.3(1), since b𝒄(d)ϵdϵb_{\bm{c}}(d)\ll_{\epsilon}d^{\epsilon} by Definition 2.5. Yet for all integers dd, we have

𝒄𝒮(C)|A𝒄(d,I/d)|2ϵCϵmax(Cm,N/d)(N/d)\sum_{\bm{c}\in\mathcal{S}(C)}\lvert A_{\bm{c}}(d,I/d)\rvert^{2}\ll_{\epsilon}C^{\epsilon}\max(C^{m},N/d)\,(N/d)

by (3.1), since N/dNC3N/d\leq N\leq C^{3} and I/d(0,N/d]I/d\subseteq(0,N/d]. Plugging this into (3.3), we get

𝒄𝒮(C)|B𝒄(I)|2ϵNϵdN:d=sq(d)d1/2[Cϵmax(Cm,N/d)(N/d)]ϵN2ϵCϵmax(Cm,N)N,\begin{split}\sum_{\bm{c}\in\mathcal{S}(C)}\lvert B_{\bm{c}}(I)\rvert^{2}&\ll_{\epsilon}N^{\epsilon}\sum_{d\leq N:\,d=\operatorname{sq}(d)}d^{1/2}[C^{\epsilon}\max(C^{m},N/d)\,(N/d)]\\ &\ll_{\epsilon}N^{2\epsilon}C^{\epsilon}\max(C^{m},N)\,N,\end{split}

where the second inequality follows from Lemma 3.3(1) and the trivial bound max(Cm,N/d)max(Cm,N)\max(C^{m},N/d)\leq\max(C^{m},N). Thus (2.10) holds, uniformly over C,N,IC,N,I. ∎

4. Delta method ingredients

Let X1X\geq 1. Assume (2.13), i.e. that ww is supported away from 𝟎m\bm{0}\in\mathbb{R}^{m}. Such an assumption is implicit in some of the integral estimates in [heath1996new, heath1998circle]. Set

(4.1) Y\colonequalsX(degF)/2=X3/2.Y\colonequals X^{(\deg F)/2}=X^{3/2}.

Fix ϵ0(0,1010]\epsilon_{0}\in(0,10^{-10}] and set

(4.2) Z\colonequalsY/X1ϵ0=X1/2+ϵ0.Z\colonequals Y/X^{1-\epsilon_{0}}=X^{1/2+\epsilon_{0}}.

Let ϱ0(x)\colonequalsexp((1x2)1)\varrho_{0}(x)\colonequals\exp(-(1-x^{2})^{-1}) for |x|<1\lvert x\rvert<1, and ϱ0(x)\colonequals0\varrho_{0}(x)\colonequals 0 for |x|1\lvert x\rvert\geq 1. Let

ϱ(x)\colonequals4ϱ0(4x3)yϱ0(y)𝑑y.\varrho(x)\colonequals\frac{4\varrho_{0}(4x-3)}{\int_{y\in\mathbb{R}}\varrho_{0}(y)\,dy}.

For x>0x>0 and yy\in\mathbb{R}, let

h(x,y)\colonequalsj11xj(ϱ(xj)ϱ(|y|xj)).h(x,y)\colonequals\sum_{j\geq 1}\frac{1}{xj}\left(\varrho(xj)-\varrho{\left(\frac{\lvert y\rvert}{xj}\right)}\right).

This is precisely the function h(x,y)h(x,y) defined in [heath1996new]*§3. For 𝒄m\bm{c}\in\mathbb{Z}^{m} and n>0n>0, let

I𝒄(n)\colonequals𝒙mw(𝒙/X)h(n/Y,F(𝒙)/Y2)e2πi(𝒄𝒙/n)𝑑𝒙.I_{\bm{c}}(n)\colonequals\int_{\bm{x}\in\mathbb{R}^{m}}w(\bm{x}/X)\,h(n/Y,F(\bm{x})/Y^{2})\,e^{-2\pi i(\bm{c}\cdot\bm{x}/n)}\,d\bm{x}.

Let 𝒄\colonequalsmax1im(|ci|)\lVert\bm{c}\rVert\colonequals\max_{1\leq i\leq m}(\lvert c_{i}\rvert). We now recall two standard results on the integral I𝒄(n)I_{\bm{c}}(n).

Proposition 4.1 ([heath1996new]*par. 1 of §7).

The functions nI𝐜(n)n\mapsto I_{\bm{c}}(n) are supported on a range of the form nM0(F,w)Yn\leq M_{0}(F,w)Y, uniformly over 𝐜m\bm{c}\in\mathbb{Z}^{m}, for some constant M0(F,w)>0M_{0}(F,w)>0.

Lemma 4.2 ([heath1998circle]*(3.9)).

If 𝐜Z\lVert\bm{c}\rVert\geq Z and n1n\geq 1, then I𝐜(n)ϵ0,A𝐜AI_{\bm{c}}(n)\ll_{\epsilon_{0},A}\lVert\bm{c}\rVert^{-A}, for all A>0A>0.

Proposition 4.1 and Lemma 4.2, together with the trivial bound |S𝒄(n)|n1+m\lvert S_{\bm{c}}(n)\rvert\leq n^{1+m}, imply

(4.3) Y2n1𝒄>Znm|S𝒄(n)I𝒄(n)|ϵ0,AXA,Y^{-2}\sum_{n\geq 1}\sum_{\lVert\bm{c}\rVert>Z}n^{-m}\lvert S_{\bm{c}}(n)I_{\bm{c}}(n)\rvert\ll_{\epsilon_{0},A}X^{-A},

for all A>0A>0. Here S𝒄(n)S_{\bm{c}}(n) is defined as in (2.8). By [heath1996new]*Theorem 2, (1.2), we have

(4.4) (1+OA(YA))NF,w(X)=Y2n1𝒄mnmS𝒄(n)I𝒄(n).(1+O_{A}(Y^{-A}))\,N_{F,w}(X)=Y^{-2}\sum_{n\geq 1}\sum_{\bm{c}\in\mathbb{Z}^{m}}n^{-m}S_{\bm{c}}(n)I_{\bm{c}}(n).

Equivalently, in terms of S𝒄(n)S^{\natural}_{\bm{c}}(n), we have

(4.5) (1+OA(XA))NF,w(X)=X3n1𝒄mn(1m)/2S𝒄(n)I𝒄(n).(1+O_{A}(X^{-A}))\,N_{F,w}(X)=X^{-3}\sum_{n\geq 1}\sum_{\bm{c}\in\mathbb{Z}^{m}}n^{(1-m)/2}S^{\natural}_{\bm{c}}(n)I_{\bm{c}}(n).

In view of (4.3), analyzing NF,w(X)N_{F,w}(X) reduces to understanding the quantity

(4.6) Σ0\colonequalsX3n1𝒄[Z,Z]mn(1m)/2S𝒄(n)I𝒄(n).\Sigma_{0}\colonequals X^{-3}\sum_{n\geq 1}\sum_{\bm{c}\in[-Z,Z]^{m}}n^{(1-m)/2}S^{\natural}_{\bm{c}}(n)I_{\bm{c}}(n).

(Here I𝒄(n)=I𝒄(n) 1nM0(F,w)YI_{\bm{c}}(n)=I_{\bm{c}}(n)\,\bm{1}_{n\leq M_{0}(F,w)Y}. But it is more convenient to keep the factor 𝟏nM0(F,w)Y\bm{1}_{n\leq M_{0}(F,w)Y} implicit, in order to allow for more flexible technique later on.)

We now recall some standard formulas for S𝒄S_{\bm{c}} at primes pp and prime powers plp^{l}.

Proposition 4.3.

Say p𝐜p\nmid\bm{c}. Then S𝐜(p)=E𝐜(p)+O(p1/2)S^{\natural}_{\bm{c}}(p)=E^{\natural}_{\bm{c}}(p)+O(p^{-1/2}).

Proof.

Let

E(p)\colonequals|{𝒙𝔽pm:F(𝒙)=0}|pm1p1.E(p)\colonequals\frac{\lvert\{\bm{x}\in\mathbb{F}_{p}^{m}:F(\bm{x})=0\}\rvert-p^{m-1}}{p-1}.

By [heath1998circle]*p. 680, we have S𝒄(p)=p2E𝒄(p)pE(p)S_{\bm{c}}(p)=p^{2}E_{\bm{c}}(p)-pE(p) and E(p)p(m2)/2E(p)\ll p^{(m-2)/2}. Thus

S𝒄(p)=p2E𝒄(p)+O(pm/2).S_{\bm{c}}(p)=p^{2}E_{\bm{c}}(p)+O(p^{m/2}).

Now divide by p(m+1)/2p^{(m+1)/2}. ∎

Proposition 4.4.

Say pΔ(𝐜)p\nmid\Delta(\bm{c}). Then S𝐜(pl)=0S_{\bm{c}}(p^{l})=0 for all integers l2l\geq 2.

Proof.

This follows immediately from [heath1998circle]*Lemma 4.4. ∎

Fix an approximation Ψ\Psi of Φ\Phi. Recall the definition of 𝒮\mathcal{S} from (2.2). For each 𝒄𝒮\bm{c}\in\mathcal{S}, we have S𝒄=a𝒄b𝒄S^{\natural}_{\bm{c}}=a^{\prime}_{\bm{c}}\ast b_{\bm{c}} by (2.9). The following result controls the coefficients a𝒄a^{\prime}_{\bm{c}} and b𝒄b_{\bm{c}}.

Proposition 4.5.

Let 𝐜𝒮\bm{c}\in\mathcal{S}. Then a𝐜(n)a^{\prime}_{\bm{c}}(n) is multiplicative in nn. Moreover, for all primes pp and integers k1k\geq 1, we have

a𝒄(p)𝟏pΔ(𝒄)p1/2,max(|a𝒄(pk)|,|b𝒄(pk)|)ϵpkϵ+pkϵdpk|S𝒄(d)|𝟏pΔ(𝒄).\begin{split}a^{\prime}_{\bm{c}}(p)\cdot\bm{1}_{p\nmid\Delta(\bm{c})}&\ll p^{-1/2},\\ \max(\lvert a^{\prime}_{\bm{c}}(p^{k})\rvert,\lvert b_{\bm{c}}(p^{k})\rvert)&\ll_{\epsilon}p^{k\epsilon}+p^{k\epsilon}\sum_{d\mid p^{k}}\lvert S^{\natural}_{\bm{c}}(d)\rvert\cdot\bm{1}_{p\mid\Delta(\bm{c})}.\end{split}
Proof.

By (2.9), we have (a𝒄b𝒄)(n)=𝟏n=1(a_{\bm{c}}\ast b_{\bm{c}})(n)=\bm{1}_{n=1} and a𝒄=S𝒄a𝒄a^{\prime}_{\bm{c}}=S^{\natural}_{\bm{c}}\ast a_{\bm{c}}. Since b𝒄,S𝒄b_{\bm{c}},S^{\natural}_{\bm{c}} are multiplicative, it follows that a𝒄,a𝒄a_{\bm{c}},a^{\prime}_{\bm{c}} are too. It remains to bound a𝒄(pk),b𝒄(pk)a^{\prime}_{\bm{c}}(p^{k}),b_{\bm{c}}(p^{k}). When pΔ(𝒄)p\mid\Delta(\bm{c}), there is nothing to prove, since condition (2) in Definition 2.2 already gives what we want. Now assume pΔ(𝒄)p\nmid\Delta(\bm{c}). Then condition (3) in Definition 2.2 gives a𝒄(p)p1/2a^{\prime}_{\bm{c}}(p)\ll p^{-1/2}. On the other hand, E𝒄(p)1E^{\natural}_{\bm{c}}(p)\ll 1 by (2.7) and (2.6). Therefore, condition (2) in Definition 2.2 gives

b𝒄(pk),a𝒄(pk)ϵpkϵdpk|S𝒄(d)|pkϵ,b_{\bm{c}}(p^{k}),a^{\prime}_{\bm{c}}(p^{k})\ll_{\epsilon}p^{k\epsilon}\sum_{d\mid p^{k}}\lvert S^{\natural}_{\bm{c}}(d)\rvert\ll p^{k\epsilon},

because S𝒄(p)=E𝒄(p)+O(p1/2)1S^{\natural}_{\bm{c}}(p)=E^{\natural}_{\bm{c}}(p)+O(p^{-1/2})\ll 1 by Proposition 4.3 and S𝒄(pl)𝟏l2=0S^{\natural}_{\bm{c}}(p^{l})\cdot\bm{1}_{l\geq 2}=0 by Proposition 4.4. This completes the proof. ∎

Let ω(n)\omega(n) denote the number of distinct prime factors of nn. The following result, which is due to [hooley1986HasseWeil, heath1998circle], gives a general pointwise bound on S𝒄(n)S^{\natural}_{\bm{c}}(n).

Proposition 4.6.

For some constant AF>0A_{F}>0, we have

n1/2|S𝒄(n)|AFω(n)1imgcd(cub(n)2,gcd(cub(n),sq(ci))3)1/12n^{-1/2}\lvert S^{\natural}_{\bm{c}}(n)\rvert\leq A_{F}^{\omega(n)}\prod_{1\leq i\leq m}\gcd\bigl{(}\operatorname{cub}(n)^{2},\gcd(\operatorname{cub}(n),\operatorname{sq}(c_{i}))^{3}\bigr{)}^{1/12}

for all 𝐜m\bm{c}\in\mathbb{Z}^{m} and integers n1n\geq 1.

Proof.

By definition, S𝒄(n)=n(m+1)/2S𝒄(n)S^{\natural}_{\bm{c}}(n)=n^{-(m+1)/2}S_{\bm{c}}(n). Moreover, since FF is diagonal, we have

S𝒄(pl)Fpl(1+m/2)1imgcd(cub(pl)2,gcd(cub(pl),sq(ci))3)1/12,S_{\bm{c}}(p^{l})\ll_{F}p^{l(1+m/2)}\prod_{1\leq i\leq m}\gcd\bigl{(}\operatorname{cub}(p^{l})^{2},\gcd(\operatorname{cub}(p^{l}),\operatorname{sq}(c_{i}))^{3}\bigr{)}^{1/12},

by [heath1998circle]*(5.1) and (5.2) for l2l\geq 2 and [heath1983cubic]*Lemma 11 for l=1l=1. The desired result follows immediately from the multiplicativity of S𝒄S_{\bm{c}}. ∎

We have stated Proposition 4.6 uniformly over 𝒄m\bm{c}\in\mathbb{Z}^{m}. We proceed to analyze the vectors 𝒄\bm{c} in sets based on which coordinates cic_{i} are nonzero. For the rest of §4, we fix a set

(4.7) {1,2,,m}.\mathcal{I}\subseteq\{1,2,\dots,m\}.

Let

(4.8) \colonequals{𝒄m[Z,Z]m:𝟏ci0=𝟏i for all i{1,2,,m}}.\mathcal{R}\colonequals\{\bm{c}\in\mathbb{Z}^{m}\cap[-Z,Z]^{m}:\bm{1}_{c_{i}\neq 0}=\bm{1}_{i\in\mathcal{I}}\textnormal{ for all $i\in\{1,2,\dots,m\}$}\}.

By definition, if 𝒄\bm{c}\in\mathcal{R}, then ci0c_{i}\neq 0 if and only if ii\in\mathcal{I}.

Proposition 4.6 implies that for all 𝒄\bm{c}\in\mathcal{R} and integers n1n\geq 1, we have

(4.9) n1/2S𝒄(n)ϵnϵcub(n)(m||)/6igcd(cub(n),sq(ci))1/4.n^{-1/2}S^{\natural}_{\bm{c}}(n)\ll_{\epsilon}n^{\epsilon}\operatorname{cub}(n)^{(m-\lvert\mathcal{I}\rvert)/6}\prod_{i\in\mathcal{I}}\gcd(\operatorname{cub}(n),\operatorname{sq}(c_{i}))^{1/4}.

We will repeatedly use (4.9) later in the present paper. We now turn to I𝒄(n)I_{\bm{c}}(n).

Lemma 4.7 ([heath1996new, heath1998circle]).

Assume ||1\lvert\mathcal{I}\rvert\geq 1. Then uniformly over 𝐜\bm{c}\in\mathcal{R}, reals n1n\geq 1, and integers k{0,1}k\in\{0,1\}, we have

nk(/n)kI𝒄(n)k,ϵXm+ϵ(X𝒄n)1(m+||)/4i(𝒄|ci|)1/2.n^{k}(\partial/\partial n)^{k}I_{\bm{c}}(n)\ll_{k,\epsilon}X^{m+\epsilon}\left(\frac{X\lVert\bm{c}\rVert}{n}\right)^{1-(m+\lvert\mathcal{I}\rvert)/4}\prod_{i\in\mathcal{I}}\left(\frac{\lVert\bm{c}\rVert}{\lvert c_{i}\rvert}\right)^{1/2}.
Proof.

By [heath1998circle]*Lemma 3.2, since FF is diagonal, we have

(4.10) nk(/n)kI𝒄(n)k,ϵ(X𝒄n)Xm+ϵ1immin[(nX|ci|)1/2,(nX𝒄)1/4](X𝒄n)Xm+ϵi(nX|ci|)1/2i(nX𝒄)1/4.\begin{split}n^{k}(\partial/\partial n)^{k}I_{\bm{c}}(n)&\ll_{k,\epsilon}\left(\frac{X\lVert\bm{c}\rVert}{n}\right)X^{m+\epsilon}\prod_{1\leq i\leq m}\min\left[\left(\frac{n}{X\lvert c_{i}\rvert}\right)^{1/2},\left(\frac{n}{X\lVert\bm{c}\rVert}\right)^{1/4}\right]\\ &\leq\left(\frac{X\lVert\bm{c}\rVert}{n}\right)X^{m+\epsilon}\prod_{i\in\mathcal{I}}\left(\frac{n}{X\lvert c_{i}\rvert}\right)^{1/2}\prod_{i\notin\mathcal{I}}\left(\frac{n}{X\lVert\bm{c}\rVert}\right)^{1/4}.\end{split}

After writing (nX|ci|)1/2=(nX𝒄)1/2(𝒄|ci|)1/2(\frac{n}{X\lvert c_{i}\rvert})^{1/2}=(\frac{n}{X\lVert\bm{c}\rVert})^{1/2}\,(\frac{\lVert\bm{c}\rVert}{\lvert c_{i}\rvert})^{1/2} in the final line of (4.10), the desired inequality follows from the fact that 1||/2(m||)/4=1(m+||)/41-\lvert\mathcal{I}\rvert/2-(m-\lvert\mathcal{I}\rvert)/4=1-(m+\lvert\mathcal{I}\rvert)/4. ∎

For later convenience, we now make a definition: for 𝒄m\bm{c}\in\mathbb{Z}^{m} and integers N1N\geq 1, let

(4.11) I𝒄1,;N\colonequalssupn:Nn4N(|I𝒄(n)|+|n(/n)I𝒄(n)|).\lVert I_{\bm{c}}\rVert_{1,\infty;N}\colonequals\sup_{n\in\mathbb{R}:\,N\leq n\leq 4N}\left(\lvert I_{\bm{c}}(n)\rvert+\lvert n(\partial/\partial n)I_{\bm{c}}(n)\rvert\right).

In the rest of §4, we will concern ourselves only with 𝒄\bm{c}\in\mathcal{R} such that Δ(𝒄)0\Delta(\bm{c})\neq 0. If ||=0\lvert\mathcal{I}\rvert=0, then no such 𝒄\bm{c} exist, because ={𝟎}\mathcal{R}=\{\bm{0}\} by (4.8). Therefore, we may and do assume ||1\lvert\mathcal{I}\rvert\geq 1 for the rest of §4. To proceed further, we break \mathcal{R} into dyadic pieces. For each ii\in\mathcal{I}, let Ci{2t:t0}C_{i}\in\{2^{t}:t\in\mathbb{Z}_{\geq 0}\} with 1CiZ1\leq C_{i}\leq Z. Write

(4.12) 𝒞\colonequals{𝒄:|ci|[Ci,2Ci) for all i},C\colonequalsmaxi(Ci).\mathcal{C}\colonequals\{\bm{c}\in\mathcal{R}:\lvert c_{i}\rvert\in[C_{i},2C_{i})\textnormal{ for all $i\in\mathcal{I}$}\},\qquad C\colonequals\max_{i\in\mathcal{I}}(C_{i}).
Proposition 4.8.

Suppose N01N_{0}\in\mathbb{Z}_{\geq 1} and N0XO(1)N_{0}\ll X^{O(1)}. Then

𝒄𝒞:Δ(𝒄)0(n0[N0,2N0)|a𝒄(n0)|)2ϵXϵN01+(m||)/3iCi.\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})\neq 0}\biggl{(}\,\sum_{n_{0}\in[N_{0},2N_{0})}\lvert a^{\prime}_{\bm{c}}(n_{0})\rvert\biggr{)}^{\!2}\ll_{\epsilon}X^{\epsilon}N_{0}^{1+(m-\lvert\mathcal{I}\rvert)/3}\prod_{i\in\mathcal{I}}C_{i}.
Proof.

Consider an integer n0[N0,2N0)n_{0}\in[N_{0},2N_{0}). If n𝒄\colonequalspΔ(𝒄)pvp(n0)n_{\bm{c}}\colonequals\prod_{p\mid\Delta(\bm{c})}p^{v_{p}(n_{0})} and n2\colonequalssq(n0/n𝒄)n_{2}\colonequals\operatorname{sq}(n_{0}/n_{\bm{c}}), then Proposition 4.5 implies

a𝒄(n0)=a𝒄(n0n𝒄n2)a𝒄(n2)a𝒄(n𝒄)ϵ(n0n𝒄n2)1/2+ϵn2ϵ|a𝒄(n𝒄)|n01/2+ϵ(n𝒄n2)1/2|a𝒄(n𝒄)|.\begin{split}a^{\prime}_{\bm{c}}(n_{0})&=a^{\prime}_{\bm{c}}(\tfrac{n_{0}}{n_{\bm{c}}n_{2}})\cdot a^{\prime}_{\bm{c}}(n_{2})\cdot a^{\prime}_{\bm{c}}(n_{\bm{c}})\\ &\ll_{\epsilon}(\tfrac{n_{0}}{n_{\bm{c}}n_{2}})^{-1/2+\epsilon}\cdot n_{2}^{\epsilon}\cdot\lvert a^{\prime}_{\bm{c}}(n_{\bm{c}})\rvert\\ &\leq n_{0}^{-1/2+\epsilon}(n_{\bm{c}}n_{2})^{1/2}\lvert a^{\prime}_{\bm{c}}(n_{\bm{c}})\rvert.\end{split}

Since n𝒄Δ(𝒄)n_{\bm{c}}\mid\Delta(\bm{c})^{\infty} and n2n_{2} is square-full, we find, upon summing over n0n_{0}, that

n0[N0,2N0)|a𝒄(n0)|ϵn𝒄n22N0:n𝒄Δ(𝒄),n2=sq(n2)N0n𝒄n2N01/2+ϵ(n𝒄n2)1/2|a𝒄(n𝒄)|ϵN01/2+2ϵn𝒄2N0:n𝒄Δ(𝒄)n𝒄1/2|a𝒄(n𝒄)|ϵN01/2+2ϵ(N0C)ϵmaxn𝒄2N0:n𝒄Δ(𝒄)n𝒄1/2|a𝒄(n𝒄)|,\begin{split}\sum_{n_{0}\in[N_{0},2N_{0})}\lvert a^{\prime}_{\bm{c}}(n_{0})\rvert&\ll_{\epsilon}\sum_{\begin{subarray}{c}n_{\bm{c}}n_{2}\leq 2N_{0}:\\ n_{\bm{c}}\mid\Delta(\bm{c})^{\infty},\;n_{2}=\operatorname{sq}(n_{2})\end{subarray}}\frac{N_{0}}{n_{\bm{c}}n_{2}}\cdot N_{0}^{-1/2+\epsilon}(n_{\bm{c}}n_{2})^{1/2}\lvert a^{\prime}_{\bm{c}}(n_{\bm{c}})\rvert\\ &\ll_{\epsilon}N_{0}^{1/2+2\epsilon}\sum_{\begin{subarray}{c}n_{\bm{c}}\leq 2N_{0}:\\ n_{\bm{c}}\mid\Delta(\bm{c})^{\infty}\end{subarray}}n_{\bm{c}}^{-1/2}\lvert a^{\prime}_{\bm{c}}(n_{\bm{c}})\rvert\\ &\ll_{\epsilon}N_{0}^{1/2+2\epsilon}(N_{0}C)^{\epsilon}\max_{\begin{subarray}{c}n_{\bm{c}}\leq 2N_{0}:\\ n_{\bm{c}}\mid\Delta(\bm{c})^{\infty}\end{subarray}}n_{\bm{c}}^{-1/2}\lvert a^{\prime}_{\bm{c}}(n_{\bm{c}})\rvert,\end{split}

where we have used Lemma 3.3(1) to sum over n22N0/n𝒄n_{2}\leq 2N_{0}/n_{\bm{c}}, and then used Lemma 3.2 to bound the sum over n𝒄n_{\bm{c}} by a maximum. Furthermore,

maxn𝒄2N0:n𝒄Δ(𝒄)n𝒄1/2|a𝒄(n𝒄)|ϵN02ϵmaxd2N0:dΔ(𝒄)d1/2|S𝒄(d)|,\max_{\begin{subarray}{c}n_{\bm{c}}\leq 2N_{0}:\\ n_{\bm{c}}\mid\Delta(\bm{c})^{\infty}\end{subarray}}n_{\bm{c}}^{-1/2}\lvert a^{\prime}_{\bm{c}}(n_{\bm{c}})\rvert\ll_{\epsilon}N_{0}^{2\epsilon}\max_{\begin{subarray}{c}d\leq 2N_{0}:\\ d\mid\Delta(\bm{c})^{\infty}\end{subarray}}d^{-1/2}\lvert S^{\natural}_{\bm{c}}(d)\rvert,

since a𝒄(n𝒄)ϵn𝒄ϵdn𝒄|S𝒄(d)|a^{\prime}_{\bm{c}}(n_{\bm{c}})\ll_{\epsilon}n_{\bm{c}}^{\epsilon}\sum_{d\mid n_{\bm{c}}}\lvert S^{\natural}_{\bm{c}}(d)\rvert by condition (2) in Definition 2.2. But

𝒄𝒞:Δ(𝒄)0maxd2N0:dΔ(𝒄)d1|S𝒄(d)|2𝒄𝒞maxd2N0d1|S𝒄(d)|2ϵN0(m||)/3+2ϵ𝒄𝒞isq(ci)1/2\begin{split}\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})\neq 0}\,\max_{\begin{subarray}{c}d\leq 2N_{0}:\\ d\mid\Delta(\bm{c})^{\infty}\end{subarray}}d^{-1}\lvert S^{\natural}_{\bm{c}}(d)\rvert^{2}&\leq\sum_{\bm{c}\in\mathcal{C}}\max_{d\leq 2N_{0}}d^{-1}\lvert S^{\natural}_{\bm{c}}(d)\rvert^{2}\\ &\ll_{\epsilon}N_{0}^{(m-\lvert\mathcal{I}\rvert)/3+2\epsilon}\sum_{\bm{c}\in\mathcal{C}}\prod_{i\in\mathcal{I}}\operatorname{sq}(c_{i})^{1/2}\end{split}

by (4.9), since gcd(cub(d),sq(ci))1/4sq(ci)1/4\gcd(\operatorname{cub}(d),\operatorname{sq}(c_{i}))^{1/4}\leq\operatorname{sq}(c_{i})^{1/4}. Yet

(4.13) 𝒄𝒞isq(ci)1/2ϵiCi1+ϵ,\sum_{\bm{c}\in\mathcal{C}}\prod_{i\in\mathcal{I}}\operatorname{sq}(c_{i})^{1/2}\ll_{\epsilon}\prod_{i\in\mathcal{I}}C_{i}^{1+\epsilon},

by Lemma 3.3(2). Proposition 4.8 follows upon combining the previous four displays. ∎

We are now prepared to prove a crucial bound for §5.

Lemma 4.9.

Suppose N0,N1N_{0},N\in\mathbb{Z}_{\geq 1} and N0,NXO(1)N_{0},N\ll X^{O(1)}. Let

Q𝒄=I𝒄1,;Nn0[N0,2N0)|a𝒄(n0)|.Q_{\bm{c}}=\lVert I_{\bm{c}}\rVert_{1,\infty;N}\,\sum_{n_{0}\in[N_{0},2N_{0})}\lvert a^{\prime}_{\bm{c}}(n_{0})\rvert.

Then

(𝒄:Δ(𝒄)0Q𝒄2)1/2ϵXm+ϵN01/2+(m||)/6(X/N)1(m+||)/4max[Z1+(||m)/4,1].\biggl{(}\,\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}Q_{\bm{c}}^{2}\biggr{)}^{\!1/2}\ll_{\epsilon}X^{m+\epsilon}N_{0}^{1/2+(m-\lvert\mathcal{I}\rvert)/6}(X/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1].
Proof.

With notation as in Proposition 4.8, consider an element 𝒄𝒞\bm{c}\in\mathcal{C}. Then by (4.12), we have |ci|Ci\lvert c_{i}\rvert\asymp C_{i} for all ii\in\mathcal{I}, whence 𝒄C\lVert\bm{c}\rVert\asymp C. Now (4.11) and Lemma 4.7 imply

I𝒄1,;NϵXm+ϵ(XC/N)1(m+||)/4i(C/Ci)1/2,\lVert I_{\bm{c}}\rVert_{1,\infty;N}\ll_{\epsilon}X^{m+\epsilon}(XC/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\prod_{i\in\mathcal{I}}(C/C_{i})^{1/2},

since ||1\lvert\mathcal{I}\rvert\geq 1. By Proposition 4.8, it follows that

𝒄𝒞:Δ(𝒄)0Q𝒄2ϵX2m+3ϵN01+(m||)/3(XC/N)2(m+||)/2iC.\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})\neq 0}Q_{\bm{c}}^{2}\ll_{\epsilon}X^{2m+3\epsilon}N_{0}^{1+(m-\lvert\mathcal{I}\rvert)/3}(XC/N)^{2-(m+\lvert\mathcal{I}\rvert)/2}\prod_{i\in\mathcal{I}}C.

By (4.12) we have 1CZ1\leq C\leq Z, since 1CiZ1\leq C_{i}\leq Z for all ii. The quantity C2(m+||)/2iC=C2+(||m)/2C^{2-(m+\lvert\mathcal{I}\rvert)/2}\prod_{i\in\mathcal{I}}C=C^{2+(\lvert\mathcal{I}\rvert-m)/2} is maximized either at C=ZC=Z or C=1C=1, so we conclude that

𝒄𝒞:Δ(𝒄)0Q𝒄2ϵX2m+3ϵN01+(m||)/3(X/N)2(m+||)/2max[Z2+(||m)/2,1].\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})\neq 0}Q_{\bm{c}}^{2}\ll_{\epsilon}X^{2m+3\epsilon}N_{0}^{1+(m-\lvert\mathcal{I}\rvert)/3}(X/N)^{2-(m+\lvert\mathcal{I}\rvert)/2}\max[Z^{2+(\lvert\mathcal{I}\rvert-m)/2},1].

Summing over all possibilities for 𝒞\mathcal{C}, we get

𝒄:Δ(𝒄)0Q𝒄2ϵX2m+4ϵN01+(m||)/3(X/N)2(m+||)/2max[Z2+(||m)/2,1].\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}Q_{\bm{c}}^{2}\ll_{\epsilon}X^{2m+4\epsilon}N_{0}^{1+(m-\lvert\mathcal{I}\rvert)/3}(X/N)^{2-(m+\lvert\mathcal{I}\rvert)/2}\max[Z^{2+(\lvert\mathcal{I}\rvert-m)/2},1].

Lemma 4.9 follows upon taking a square root. ∎

Having analyzed I𝒄I_{\bm{c}} and a𝒄a^{\prime}_{\bm{c}} above, we now concentrate on b𝒄b_{\bm{c}} for the rest of §4.

Proposition 4.10.

Let the CiC_{i}, as well as 𝒞\mathcal{C} and CC, be as specified before Proposition 4.8. Suppose N11N_{1}\in\mathbb{Z}_{\geq 1} and N1XO(1)N_{1}\ll X^{O(1)}. Then

𝒄𝒞:Δ(𝒄)0(n1[N1,2N1]|b𝒄(n1)|)2ϵXϵN1max(2,1+(m||)/3)iCi.\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})\neq 0}\biggl{(}\,\sum_{n_{1}\in[N_{1},2N_{1}]}\lvert b_{\bm{c}}(n_{1})\rvert\biggr{)}^{\!2}\ll_{\epsilon}X^{\epsilon}N_{1}^{\max(2,1+(m-\lvert\mathcal{I}\rvert)/3)}\prod_{i\in\mathcal{I}}C_{i}.
Proof.

We mimic the proof of Proposition 4.8. Consider an integer n1[N1,2N1]n_{1}\in[N_{1},2N_{1}]. If n𝒄\colonequalspΔ(𝒄)pvp(n1)n_{\bm{c}}\colonequals\prod_{p\mid\Delta(\bm{c})}p^{v_{p}(n_{1})}, then by Proposition 4.5 and the multiplicativity of b𝒄b_{\bm{c}}, we have

b𝒄(n1)=b𝒄(n1/n𝒄)b𝒄(n𝒄)ϵ(n1/n𝒄)ϵ|b𝒄(n𝒄)|n1ϵ|b𝒄(n𝒄)|.b_{\bm{c}}(n_{1})=b_{\bm{c}}(n_{1}/n_{\bm{c}})\,b_{\bm{c}}(n_{\bm{c}})\ll_{\epsilon}(n_{1}/n_{\bm{c}})^{\epsilon}\,\lvert b_{\bm{c}}(n_{\bm{c}})\rvert\leq n_{1}^{\epsilon}\,\lvert b_{\bm{c}}(n_{\bm{c}})\rvert.

Upon summing over n1n_{1}, then,

n1[N1,2N1]|b𝒄(n1)|ϵn𝒄2N1:n𝒄Δ(𝒄)N1n𝒄N1ϵ|b𝒄(n𝒄)|ϵN11+2ϵCϵmaxn2N1n1|b𝒄(n)|\begin{split}\sum_{n_{1}\in[N_{1},2N_{1}]}\lvert b_{\bm{c}}(n_{1})\rvert&\ll_{\epsilon}\sum_{n_{\bm{c}}\leq 2N_{1}:\,n_{\bm{c}}\mid\Delta(\bm{c})^{\infty}}\frac{N_{1}}{n_{\bm{c}}}\cdot N_{1}^{\epsilon}\,\lvert b_{\bm{c}}(n_{\bm{c}})\rvert\\ &\ll_{\epsilon}N_{1}^{1+2\epsilon}C^{\epsilon}\max_{n\leq 2N_{1}}n^{-1}\lvert b_{\bm{c}}(n)\rvert\end{split}

by Lemma 3.2. Condition (2) in Definition 2.2 implies

maxn2N1n1|b𝒄(n)|ϵN12ϵmaxn2N1n1|S𝒄(n)|.\max_{n\leq 2N_{1}}n^{-1}\lvert b_{\bm{c}}(n)\rvert\ll_{\epsilon}N_{1}^{2\epsilon}\max_{n\leq 2N_{1}}n^{-1}\lvert S^{\natural}_{\bm{c}}(n)\rvert.

But by (4.9), we have

𝒄𝒞maxn2N1n2|S𝒄(n)|2ϵN12ϵmax(1,N11+(m||)/3)𝒄𝒞isq(ci)1/2.\sum_{\bm{c}\in\mathcal{C}}\max_{n\leq 2N_{1}}n^{-2}\lvert S^{\natural}_{\bm{c}}(n)\rvert^{2}\ll_{\epsilon}N_{1}^{2\epsilon}\max(1,N_{1}^{-1+(m-\lvert\mathcal{I}\rvert)/3})\sum_{\bm{c}\in\mathcal{C}}\prod_{i\in\mathcal{I}}\operatorname{sq}(c_{i})^{1/2}.

The desired result follows upon combining the last three displays with (4.13). ∎

Lemma 4.11.

Suppose N11N_{1}\in\mathbb{Z}_{\geq 1} and N1XO(1)N_{1}\ll X^{O(1)}. Then

𝒄:Δ(𝒄)0(n1[N1,2N1]|b𝒄(n1)|)2ϵXϵN1max(2,1+(m||)/3)Z||.\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}\biggl{(}\,\sum_{n_{1}\in[N_{1},2N_{1}]}\lvert b_{\bm{c}}(n_{1})\rvert\biggr{)}^{\!2}\ll_{\epsilon}X^{\epsilon}N_{1}^{\max(2,1+(m-\lvert\mathcal{I}\rvert)/3)}Z^{\lvert\mathcal{I}\rvert}.
Proof.

This follows from Proposition 4.10 upon summing over all possibilities for 𝒞\mathcal{C}. ∎

We need the following lemma in §5. Let

(4.14) β\colonequals1+10M0(F,w)1.\beta\colonequals 1+10\cdot M_{0}(F,w)\ll 1.
Lemma 4.12.

Assume Hypothesis 2.4. Then

(4.15) 𝒄:Δ(𝒄)0|n1Ib𝒄(n1)|2ϵmin(XϵZmN1,XϵZ||N1max(2,1+(m||)/3)),\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}\,\Bigl{\lvert}\sum_{n_{1}\in I}b_{\bm{c}}(n_{1})\Bigr{\rvert}^{2}\ll_{\epsilon}\min\left(X^{\epsilon}Z^{m}N_{1},X^{\epsilon}Z^{\lvert\mathcal{I}\rvert}N_{1}^{\max(2,1+(m-\lvert\mathcal{I}\rvert)/3)}\right),

for all positive integers N1βYN_{1}\leq\beta Y and real intervals I[N1,2N1]I\subseteq[N_{1},2N_{1}].

Proof.

The bound XϵZmN1X^{\epsilon}Z^{m}N_{1} in (4.15) follows upon applying (2.10) with C=(2β)1/3ZC=(2\beta)^{1/3}Z and N=2N1N=2N_{1}. Meanwhile, XϵZ||N1max(2,1+(m||)/3)X^{\epsilon}Z^{\lvert\mathcal{I}\rvert}N_{1}^{\max(2,1+(m-\lvert\mathcal{I}\rvert)/3)} comes from Lemma 4.11. ∎

5. Contribution from smooth hyperplane sections

Recall the key quantity Σ0\Sigma_{0} from (4.6), involving a sum over 𝒄[Z,Z]m\bm{c}\in[-Z,Z]^{m}. In this section, we concentrate on vectors 𝒄𝒮(Z)=𝒮[Z,Z]m\bm{c}\in\mathcal{S}(Z)=\mathcal{S}\cap[-Z,Z]^{m}, in the notation of (2.2). Let

Σ1\colonequalsX3𝒄𝒮(Z)n1n(1m)/2S𝒄(n)I𝒄(n).\Sigma_{1}\colonequals X^{-3}\sum_{\bm{c}\in\mathcal{S}(Z)}\,\sum_{n\geq 1}n^{(1-m)/2}S^{\natural}_{\bm{c}}(n)I_{\bm{c}}(n).

We will prove the following result:

Theorem 5.1.

Assume Hypothesis 2.4. Then

(5.1) Σ1ϵ0X3(m2)/4+O(ϵ0).\Sigma_{1}\ll_{\epsilon_{0}}X^{3(m-2)/4+O(\epsilon_{0})}.

For each n1n\geq 1, we have S𝒄(n)=n0n1=na𝒄(n0)b𝒄(n1)S^{\natural}_{\bm{c}}(n)=\sum_{n_{0}n_{1}=n}a^{\prime}_{\bm{c}}(n_{0})b_{\bm{c}}(n_{1}), since S𝒄=a𝒄b𝒄S^{\natural}_{\bm{c}}=a^{\prime}_{\bm{c}}\ast b_{\bm{c}} by (2.9). Thus

(5.2) Σ1=X3𝒄𝒮(Z)n01a𝒄(n0)n11(n0n1)(1m)/2I𝒄(n0n1)b𝒄(n1).\Sigma_{1}=X^{-3}\sum_{\bm{c}\in\mathcal{S}(Z)}\,\sum_{n_{0}\geq 1}a^{\prime}_{\bm{c}}(n_{0})\sum_{n_{1}\geq 1}(n_{0}n_{1})^{(1-m)/2}I_{\bm{c}}(n_{0}n_{1})b_{\bm{c}}(n_{1}).

By Proposition 4.1, we have I𝒄(n)=0I_{\bm{c}}(n)=0 when n>βY/10n>\beta Y/10, where β\beta is as in (4.14). Thus

(5.3) Σ1=X3𝒄𝒮(Z)(N0,N1)𝒜𝒄,N0,N1,\Sigma_{1}=X^{-3}\sum_{\bm{c}\in\mathcal{S}(Z)}\,\sum_{(N_{0},N_{1})\in\mathcal{A}}\,\Diamond_{\bm{c},N_{0},N_{1}},

where

𝒜\colonequals{(N0,N1){2t:t0}2:N0N1βY/10},𝒄,N0,N1\colonequalsn0[N0,2N0)a𝒄(n0)n1[N1,2N1)(n0n1)(1m)/2I𝒄(n0n1)b𝒄(n1).\begin{split}\mathcal{A}&\colonequals\{(N_{0},N_{1})\in\{2^{t}:t\in\mathbb{Z}_{\geq 0}\}^{2}:N_{0}N_{1}\leq\beta Y/10\},\\ \Diamond_{\bm{c},N_{0},N_{1}}&\colonequals\sum_{n_{0}\in[N_{0},2N_{0})}a^{\prime}_{\bm{c}}(n_{0})\sum_{n_{1}\in[N_{1},2N_{1})}(n_{0}n_{1})^{(1-m)/2}I_{\bm{c}}(n_{0}n_{1})b_{\bm{c}}(n_{1}).\end{split}

For convenience, let N\colonequalsN0N1N\colonequals N_{0}N_{1}, let B𝒄(J)\colonequalsn1Jb𝒄(n1)B_{\bm{c}}(J)\colonequals\sum_{n_{1}\in J}b_{\bm{c}}(n_{1}) for intervals JJ, and let

𝒄,n0,N1\colonequalsn1[N1,2N1)(n0n1)(1m)/2I𝒄(n0n1)b𝒄(n1).\heartsuit_{\bm{c},n_{0},N_{1}}\colonequals\sum_{n_{1}\in[N_{1},2N_{1})}(n_{0}n_{1})^{(1-m)/2}I_{\bm{c}}(n_{0}n_{1})b_{\bm{c}}(n_{1}).

Recall I𝒄1,;N\lVert I_{\bm{c}}\rVert_{1,\infty;N} from (4.11). We now have enough notation to state a key lemma:

Lemma 5.2.

Let (N0,N1)𝒜(N_{0},N_{1})\in\mathcal{A}. Then there exists a probability measure ν=νN0,N1\nu=\nu_{N_{0},N_{1}}, supported on the real interval [N1,2N1][N_{1},2N_{1}], such that for all 𝐜𝒮\bm{c}\in\mathcal{S} and n0[N0,2N0)n_{0}\in\mathbb{Z}\cap[N_{0},2N_{0}), we have

(5.4) 𝒄,n0,N1N(1m)/2I𝒄1,;Nx[N1,2N1]|B𝒄([N1,x))|𝑑ν(x).\heartsuit_{\bm{c},n_{0},N_{1}}\ll N^{(1-m)/2}\,\lVert I_{\bm{c}}\rVert_{1,\infty;N}\,\int_{x\in[N_{1},2N_{1}]}\lvert B_{\bm{c}}([N_{1},x))\rvert\,d\nu(x).
Proof.

Let 𝒄𝒮\bm{c}\in\mathcal{S} and n0[N0,2N0)n_{0}\in\mathbb{Z}\cap[N_{0},2N_{0}). For brevity, let I(n)=n(1m)/2I𝒄(n)I(n)=n^{(1-m)/2}I_{\bm{c}}(n). Then

𝒄,n0,N1=n1[N1,2N1)I(n0n1)b𝒄(n1).\heartsuit_{\bm{c},n_{0},N_{1}}=\sum_{n_{1}\in[N_{1},2N_{1})}I(n_{0}n_{1})\cdot b_{\bm{c}}(n_{1}).

By partial summation over n1n_{1}, it follows that

|𝒄,n0,N1|I(r)L([N,4N])|B𝒄([N1,2N1))|+n0I(r)L([N,4N])k[N1,2N1)|B𝒄([N1,k))|I(r)L([N,4N])|B𝒄([N1,2N1))|+NN1I(r)L([N,4N])k[N1,2N1)|B𝒄([N1,k))|,\begin{split}\lvert\heartsuit_{\bm{c},n_{0},N_{1}}\rvert&\leq\lVert I(r)\rVert_{L^{\infty}([N,4N])}\,\lvert B_{\bm{c}}([N_{1},2N_{1}))\rvert+n_{0}\,\lVert I^{\prime}(r)\rVert_{L^{\infty}([N,4N])}\,\sum_{k\in[N_{1},2N_{1})}\lvert B_{\bm{c}}([N_{1},k))\rvert\\ &\ll\lVert I(r)\rVert_{L^{\infty}([N,4N])}\,\lvert B_{\bm{c}}([N_{1},2N_{1}))\rvert+\frac{N}{N_{1}}\,\lVert I^{\prime}(r)\rVert_{L^{\infty}([N,4N])}\,\sum_{k\in[N_{1},2N_{1})}\lvert B_{\bm{c}}([N_{1},k))\rvert,\end{split}

where f(r)L([N,4N])\colonequalssupr[N,4N]|f(r)|\lVert f(r)\rVert_{L^{\infty}([N,4N])}\colonequals\sup_{r\in[N,4N]}\lvert f(r)\rvert for continuous functions f:[N,4N]f\colon[N,4N]\to\mathbb{C}. Here

max(I(r)L([N,4N]),NI(r)L([N,4N]))N(1m)/2I𝒄1,;N\max(\lVert I(r)\rVert_{L^{\infty}([N,4N])},N\,\lVert I^{\prime}(r)\rVert_{L^{\infty}([N,4N])})\ll N^{(1-m)/2}\,\lVert I_{\bm{c}}\rVert_{1,\infty;N}

by (4.11). Finally, let

ν\colonequals12(δ2N1+1N1k[N1,2N1)δk),\nu\colonequals\frac{1}{2}\biggl{(}\delta_{2N_{1}}+\frac{1}{N_{1}}\sum_{k\in[N_{1},2N_{1})}\delta_{k}\biggr{)},

where δk\delta_{k} is the Dirac measure supported on the singleton set {k}\{k\}. Then ν\nu is a probability measure supported on [N1,2N1][N_{1},2N_{1}]. Also, the last three displays imply (5.4). ∎

Let (N0,N1)𝒜(N_{0},N_{1})\in\mathcal{A}. Let \mathcal{I} and \mathcal{R} be as in (4.7) and (4.8), respectively. Since we are presently only interested in 𝒄𝒮\bm{c}\in\mathcal{S}, we may and do assume ||1\lvert\mathcal{I}\rvert\geq 1. For each 𝒄𝒮\bm{c}\in\mathcal{S}, we have

|𝒄,N0,N1|n0[N0,2N0)|a𝒄(n0)𝒄,n0,N1|N(1m)/2I𝒄1,;Nn0[N0,2N0)|a𝒄(n0)|x[N1,2N1]|B𝒄([N1,x))|𝑑ν(x),\begin{split}\lvert\Diamond_{\bm{c},N_{0},N_{1}}\rvert&\leq\sum_{n_{0}\in[N_{0},2N_{0})}\lvert a^{\prime}_{\bm{c}}(n_{0})\,\heartsuit_{\bm{c},n_{0},N_{1}}\rvert\\ &\ll N^{(1-m)/2}\,\lVert I_{\bm{c}}\rVert_{1,\infty;N}\,\sum_{n_{0}\in[N_{0},2N_{0})}\lvert a^{\prime}_{\bm{c}}(n_{0})\rvert\,\int_{x\in[N_{1},2N_{1}]}\lvert B_{\bm{c}}([N_{1},x))\rvert\,d\nu(x),\end{split}

where the first and second inequality are justified by the triangle inequality and Lemma 5.2, respectively. Abbreviating B𝒄([N1,x))B_{\bm{c}}([N_{1},x)) to B𝒄(x)B_{\bm{c}}(x) for convenience, we deduce that

(5.5) 𝒄:Δ(𝒄)0|𝒄,N0,N1|ϵXm+ϵQ1(𝒄:Δ(𝒄)0(x[N1,2N1]|B𝒄(x)|𝑑ν)2)1/2\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}\lvert\Diamond_{\bm{c},N_{0},N_{1}}\rvert\ll_{\epsilon}X^{m+\epsilon}Q_{1}\,\biggl{(}\,\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}\left(\int_{x\in[N_{1},2N_{1}]}\lvert B_{\bm{c}}(x)\rvert\,d\nu\right)^{\!2}\,\biggr{)}^{\!1/2}

by the Cauchy–Schwarz inequality and Lemma 4.9, where

(5.6) Q1\colonequalsN(1m)/2N01/2+(m||)/6(X/N)1(m+||)/4max[Z1+(||m)/4,1].Q_{1}\colonequals N^{(1-m)/2}N_{0}^{1/2+(m-\lvert\mathcal{I}\rvert)/6}(X/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1].

Now, for the rest of §5, we assume Hypothesis 2.4. We have

(x[N1,2N1]|B𝒄(x)|𝑑ν)2x[N1,2N1]|B𝒄(x)|2𝑑ν\left(\int_{x\in[N_{1},2N_{1}]}\lvert B_{\bm{c}}(x)\rvert\,d\nu\right)^{\!2}\ll\int_{x\in[N_{1},2N_{1}]}\lvert B_{\bm{c}}(x)\rvert^{2}\,d\nu

by the Cauchy–Schwarz inequality, so

(𝒄:Δ(𝒄)0(x[N1,2N1]|B𝒄(x)|𝑑ν)2)1/2(x[N1,2N1]𝒄:Δ(𝒄)0|B𝒄(x)|2dν)1/2ϵXϵQ2\begin{split}\biggl{(}\,\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}\left(\int_{x\in[N_{1},2N_{1}]}\lvert B_{\bm{c}}(x)\rvert\,d\nu\right)^{\!2}\,\biggr{)}^{\!1/2}&\ll\biggl{(}\,\int_{x\in[N_{1},2N_{1}]}\sum_{\bm{c}\in\mathcal{R}:\,\Delta(\bm{c})\neq 0}\lvert B_{\bm{c}}(x)\rvert^{2}\,d\nu\biggr{)}^{\!1/2}\\ &\ll_{\epsilon}X^{\epsilon}Q_{2}\end{split}

by (4.15), where

(5.7) Q2\colonequalsmin(ZmN1,Z||N1max(2,1+(m||)/3))1/2.Q_{2}\colonequals\min\left(Z^{m}N_{1},Z^{\lvert\mathcal{I}\rvert}N_{1}^{\max(2,1+(m-\lvert\mathcal{I}\rvert)/3)}\right)^{1/2}.
Lemma 5.3.

We have Q1Q2ϵ0X3/2m/4+O(ϵ0)Q_{1}Q_{2}\ll_{\epsilon_{0}}X^{3/2-m/4+O(\epsilon_{0})}.

Proof.

We split the proof into four cases.

Case 1: ||=m\lvert\mathcal{I}\rvert=m. Then Q2=(ZmN1)1/2Q_{2}=(Z^{m}N_{1})^{1/2}, since ||=m\lvert\mathcal{I}\rvert=m and N11N_{1}\geq 1. Therefore, Q1Q2=Q3Q_{1}Q_{2}=Q_{3}, where

(5.8) Q3\colonequalsZm/2N11/2N(1m)/2N01/2(X/N)1m/2max[Z,1].Q_{3}\colonequals Z^{m/2}N_{1}^{1/2}\cdot N^{(1-m)/2}N_{0}^{1/2}(X/N)^{1-m/2}\max[Z,1].

But Q3=Zm/2X1m/2max[Z,1]Q_{3}=Z^{m/2}X^{1-m/2}\max[Z,1], since N1N0=NN_{1}N_{0}=N. By (4.2) we have Z=X1/2+ϵ01Z=X^{1/2+\epsilon_{0}}\geq 1, so

Q3=X1m/2Z1+m/2=X3/2m/4+(1+m/2)ϵ0.Q_{3}=X^{1-m/2}Z^{1+m/2}=X^{3/2-m/4+(1+m/2)\epsilon_{0}}.

Thus Q1Q2=Q3ϵ0X3/2m/4+O(ϵ0)Q_{1}Q_{2}=Q_{3}\ll_{\epsilon_{0}}X^{3/2-m/4+O(\epsilon_{0})}.

Case 2: ||=m1\lvert\mathcal{I}\rvert=m-1 and N1ZN_{1}\geq Z. Then Q2=(ZmN1)1/2Q_{2}=(Z^{m}N_{1})^{1/2}, by (5.7). Therefore, Q1Q2=Q4Q_{1}Q_{2}=Q_{4}, where

Q4\colonequalsZm/2N1m/2N0(m||)/6(X/N)1(m+||)/4max[Z1+(||m)/4,1],Q_{4}\colonequals Z^{m/2}N^{1-m/2}N_{0}^{(m-\lvert\mathcal{I}\rvert)/6}(X/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1],

since N1N0=NN_{1}N_{0}=N. Since (m||)/60(m-\lvert\mathcal{I}\rvert)/6\geq 0 and N0=N/N1N/ZN_{0}=N/N_{1}\leq N/Z, we have

(5.9) Q4Zm/2N1m/2(N/Z)(m||)/6(X/N)1(m+||)/4max[Z1+(||m)/4,1].Q_{4}\leq Z^{m/2}N^{1-m/2}(N/Z)^{(m-\lvert\mathcal{I}\rvert)/6}(X/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1].

The right-hand side of (5.9) is decreasing as a function of NN, because

(5.10) 1m/2+(m||)/61+(m+||)/4=(||m)/12<0.1-m/2+(m-\lvert\mathcal{I}\rvert)/6-1+(m+\lvert\mathcal{I}\rvert)/4=(\lvert\mathcal{I}\rvert-m)/12<0.

Since NN1ZN\geq N_{1}\geq Z, it follows that

Q4Zm/2Z1m/2(Z/Z)(m||)/6(X/Z)1(m+||)/4max[Z1+(||m)/4,1]ϵ0XO(ϵ0)X1(m+||)/8max[X1/2+(||m)/8,1],\begin{split}Q_{4}&\leq Z^{m/2}Z^{1-m/2}(Z/Z)^{(m-\lvert\mathcal{I}\rvert)/6}(X/Z)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1]\\ &\ll_{\epsilon_{0}}X^{O(\epsilon_{0})}X^{1-(m+\lvert\mathcal{I}\rvert)/8}\max[X^{1/2+(\lvert\mathcal{I}\rvert-m)/8},1],\end{split}

since Z=X1/2+ϵ0Z=X^{1/2+\epsilon_{0}}. But ||=m1\lvert\mathcal{I}\rvert=m-1, so

(5.11) X1(m+||)/8max[X1/2+(||m)/8,1]=max[X3/2m/4,X9/8m/4]=X3/2m/4.X^{1-(m+\lvert\mathcal{I}\rvert)/8}\max[X^{1/2+(\lvert\mathcal{I}\rvert-m)/8},1]=\max[X^{3/2-m/4},X^{9/8-m/4}]=X^{3/2-m/4}.

Thus Q1Q2=Q4ϵ0X3/2m/4+O(ϵ0)Q_{1}Q_{2}=Q_{4}\ll_{\epsilon_{0}}X^{3/2-m/4+O(\epsilon_{0})}.

Case 3: 1||m21\leq\lvert\mathcal{I}\rvert\leq m-2. By (5.7), we have Q2(Z||N1max(2,1+(m||)/3))1/2Q_{2}\leq(Z^{\lvert\mathcal{I}\rvert}N_{1}^{\max(2,1+(m-\lvert\mathcal{I}\rvert)/3)})^{1/2}. Since N1N0=NN_{1}N_{0}=N, it follows that Q1Q2Q5Q_{1}Q_{2}\leq Q_{5}, where

Q5\colonequalsZ||/2N1max(1/2,(m||)/6)N1m/2N0(m||)/6(X/N)1(m+||)/4max[Z1+(||m)/4,1].Q_{5}\colonequals Z^{\lvert\mathcal{I}\rvert/2}N_{1}^{\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)}N^{1-m/2}N_{0}^{(m-\lvert\mathcal{I}\rvert)/6}(X/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1].

Since N01N_{0}\geq 1 and N1N0=NN_{1}N_{0}=N, we have N1max(1/2,(m||)/6)N0(m||)/6Nmax(1/2,(m||)/6)N_{1}^{\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)}N_{0}^{(m-\lvert\mathcal{I}\rvert)/6}\leq N^{\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)}. Thus

(5.12) Q5Z||/2Nmax(1/2,(m||)/6)N1m/2(X/N)1(m+||)/4max[Z1+(||m)/4,1].Q_{5}\leq Z^{\lvert\mathcal{I}\rvert/2}N^{\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)}N^{1-m/2}(X/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1].

The right-hand side of (5.12) is weakly decreasing in NN, because

max(1/2,(m||)/6)+1m/21+(m+||)/4=max(1/2,(m||)/6)+(||m)/40,\begin{split}\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)+1-m/2-1+(m+\lvert\mathcal{I}\rvert)/4&=\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)+(\lvert\mathcal{I}\rvert-m)/4\\ &\leq 0,\end{split}

in view of the inequality ||m2\lvert\mathcal{I}\rvert-m\leq-2. Since N1N\geq 1 and ||m\lvert\mathcal{I}\rvert\leq m, it follows that

Q5Z||/2X1(m+||)/4max[Z1+(||m)/4,1]Z||/2X1(m+||)/4Zϵ0XO(ϵ0)X3/2m/4,\begin{split}Q_{5}&\leq Z^{\lvert\mathcal{I}\rvert/2}X^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1]\\ &\leq Z^{\lvert\mathcal{I}\rvert/2}X^{1-(m+\lvert\mathcal{I}\rvert)/4}Z\\ &\ll_{\epsilon_{0}}X^{O(\epsilon_{0})}X^{3/2-m/4},\end{split}

since Z=X1/2+ϵ0Z=X^{1/2+\epsilon_{0}}. Thus Q1Q2Q5ϵ0X3/2m/4+O(ϵ0)Q_{1}Q_{2}\leq Q_{5}\ll_{\epsilon_{0}}X^{3/2-m/4+O(\epsilon_{0})}.

Case 4: ||=m1\lvert\mathcal{I}\rvert=m-1 and N1ZN_{1}\leq Z. Arguing as in Case 3, we have Q1Q2Q5Q_{1}Q_{2}\leq Q_{5}. But if we hold N1N_{1} constant, and plug N0=N/N1N_{0}=N/N_{1} into Q5Q_{5}, then Q5Q_{5} is decreasing in NN, by (5.10). Since NN1N\geq N_{1}, it follows that Q5Q6Q_{5}\leq Q_{6}, where

Q6\colonequalsZ||/2N1max(1/2,(m||)/6)N11m/2(X/N1)1(m+||)/4max[Z1+(||m)/4,1].Q_{6}\colonequals Z^{\lvert\mathcal{I}\rvert/2}N_{1}^{\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)}N_{1}^{1-m/2}(X/N_{1})^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1].

But Q6Q_{6} is increasing in N1N_{1}, because

max(1/2,(m||)/6)+1m/21+(m+||)/4=1/4>0,\max(1/2,(m-\lvert\mathcal{I}\rvert)/6)+1-m/2-1+(m+\lvert\mathcal{I}\rvert)/4=1/4>0,

in view of the equality ||=m1\lvert\mathcal{I}\rvert=m-1. Since N1ZN_{1}\leq Z and ||=m1\lvert\mathcal{I}\rvert=m-1, it follows that

Q6Z||/2Z1/2Z1m/2(X/Z)1(m+||)/4max[Z1+(||m)/4,1]=Z(X/Z)1(m+||)/4max[Z1+(||m)/4,1]ϵ0XO(ϵ0)X1(m+||)/8max[X1/2+(||m)/8,1],\begin{split}Q_{6}&\leq Z^{\lvert\mathcal{I}\rvert/2}Z^{1/2}Z^{1-m/2}(X/Z)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1]\\ &=Z\,(X/Z)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max[Z^{1+(\lvert\mathcal{I}\rvert-m)/4},1]\\ &\ll_{\epsilon_{0}}X^{O(\epsilon_{0})}X^{1-(m+\lvert\mathcal{I}\rvert)/8}\max[X^{1/2+(\lvert\mathcal{I}\rvert-m)/8},1],\end{split}

since Z=X1/2+ϵ0Z=X^{1/2+\epsilon_{0}}. But ||=m1\lvert\mathcal{I}\rvert=m-1, so it follows from (5.11) that Q6ϵ0XO(ϵ0)X3/2m/4Q_{6}\ll_{\epsilon_{0}}X^{O(\epsilon_{0})}X^{3/2-m/4}. Thus Q1Q2Q5Q6ϵ0X3/2m/4+O(ϵ0)Q_{1}Q_{2}\leq Q_{5}\leq Q_{6}\ll_{\epsilon_{0}}X^{3/2-m/4+O(\epsilon_{0})}. ∎

Remark 5.4.

Interestingly, the quantity Q3Q_{3} in (5.8) is constant over (N0,N1)𝒜(N_{0},N_{1})\in\mathcal{A}.

By Lemma 5.3, the left-hand side of (5.5) is ϵ0Xm+O(ϵ0)X3/2m/4\ll_{\epsilon_{0}}X^{m+O(\epsilon_{0})}X^{3/2-m/4}. Upon summing over (N0,N1)𝒜(N_{0},N_{1})\in\mathcal{A} and the set of 2m12^{m}-1 possible sets \mathcal{R}, it follows from (5.3) that

Σ1ϵ0X3Xm+O(ϵ0)X3/2m/4=X3(m2)/4+O(ϵ0).\Sigma_{1}\ll_{\epsilon_{0}}X^{-3}X^{m+O(\epsilon_{0})}X^{3/2-m/4}=X^{3(m-2)/4+O(\epsilon_{0})}.

This yields the desired inequality, (5.1).

6. Contribution from the central terms

Here we address the 𝒄=𝟎\bm{c}=\bm{0} contribution to (4.6), using the theory of I𝟎(n)I_{\bm{0}}(n) developed in [heath1996new]. We roughly follow [heath1996new]*§12, par. 2. Let

(6.1) Σ2\colonequalsX3n1n(1m)/2S𝟎(n)I𝟎(n).\Sigma_{2}\colonequals X^{-3}\sum_{n\geq 1}n^{(1-m)/2}S^{\natural}_{\bm{0}}(n)I_{\bm{0}}(n).

We begin with a slight extension of [vaughan1997hardy]*Lemma 4.9.

Lemma 6.1.

If N1N\geq 1, then n[N,2N)nm|S𝟎(n)|ϵN(4m)/3+ϵ\sum_{n\in[N,2N)}n^{-m}\lvert S_{\bm{0}}(n)\rvert\ll_{\epsilon}N^{(4-m)/3+\epsilon}.

Proof.

We have S𝟎(n)ϵn1/2+ϵcub(n)m/6S^{\natural}_{\bm{0}}(n)\ll_{\epsilon}n^{1/2+\epsilon}\operatorname{cub}(n)^{m/6} by Proposition 4.6. Thus

nmS𝟎(n)ϵn1m/2+ϵcub(n)m/6.n^{-m}S_{\bm{0}}(n)\ll_{\epsilon}n^{1-m/2+\epsilon}\operatorname{cub}(n)^{m/6}.

Taking t=m/6t=m/6 in Lemma 3.3(3), we get

n[N,2N)nm|S𝟎(n)|ϵN1m/2+ϵmax(N,N1/3+m/6)=N(4m)/3+ϵ,\sum_{n\in[N,2N)}n^{-m}\lvert S_{\bm{0}}(n)\rvert\ll_{\epsilon}N^{1-m/2+\epsilon}\max(N,N^{1/3+m/6})=N^{(4-m)/3+\epsilon},

where we note that max(N,N1/3+m/6)=N1/3+m/6\max(N,N^{1/3+m/6})=N^{1/3+m/6} because N1N\geq 1 and m4m\geq 4. ∎

Lemma 6.1 implies, in particular, the familiar fact that the singular series

(6.2) 𝔖\colonequalsn1nmS𝟎(n)\mathfrak{S}\colonequals\sum_{n\geq 1}n^{-m}S_{\bm{0}}(n)

converges absolutely for m5m\geq 5. It is also known that the real density

(6.3) σ,w\colonequalslimϵ0(2ϵ)1|F(𝒙)|ϵw(𝒙)𝑑𝒙\sigma_{\infty,w}\colonequals\lim_{\epsilon\to 0}{(2\epsilon)^{-1}\int_{\lvert F(\bm{x})\rvert\leq\epsilon}w(\bm{x})\,d\bm{x}}

exists; see e.g. [heath1996new]*Theorem 3. Yet for all nYn\ll Y, [heath1996new]*Lemma 13 implies

(6.4) XmI𝟎(n)=σ,w+OA((n/Y)A),X^{-m}I_{\bm{0}}(n)=\sigma_{\infty,w}+O_{A}((n/Y)^{A}),

for all A>0A>0. If m5m\geq 5, then via (6.4) with A=(m4)/3A=(m-4)/3, we get

nM0(F,w)YnmS𝟎(n)XmI𝟎(n)=σ,wnM0(F,w)YnmS𝟎(n)+nM0(F,w)YO((n/Y)(m4)/3nm|S𝟎(n)|)=σ,w𝔖+Oϵ(Y(4m)/3+ϵ),\begin{split}&\sum_{n\leq M_{0}(F,w)Y}n^{-m}S_{\bm{0}}(n)X^{-m}I_{\bm{0}}(n)\\ &=\sigma_{\infty,w}\sum_{n\leq M_{0}(F,w)Y}n^{-m}S_{\bm{0}}(n)+\sum_{n\leq M_{0}(F,w)Y}O((n/Y)^{(m-4)/3}n^{-m}\lvert S_{\bm{0}}(n)\rvert)\\ &=\sigma_{\infty,w}\mathfrak{S}+O_{\epsilon}(Y^{(4-m)/3+\epsilon}),\end{split}

by Lemma 6.1 and (6.2). Also, by Proposition 4.1, we have I𝟎(n)=0I_{\bm{0}}(n)=0 for all n>M0(F,w)Yn>M_{0}(F,w)Y. Since nmS𝟎(n)=n(1m)/2S𝟎(n)n^{-m}S_{\bm{0}}(n)=n^{(1-m)/2}S^{\natural}_{\bm{0}}(n) and Y=X3/2Y=X^{3/2}, it follows that if m5m\geq 5, then

(6.5) Σ2=Xm3[σ,w𝔖+Oϵ(X(4m)/2+ϵ)]=σ,w𝔖Xm3+Oϵ(X(m2)/2+ϵ),\Sigma_{2}=X^{m-3}\,[\sigma_{\infty,w}\mathfrak{S}+O_{\epsilon}(X^{(4-m)/2+\epsilon})]=\sigma_{\infty,w}\mathfrak{S}X^{m-3}+O_{\epsilon}(X^{(m-2)/2+\epsilon}),

where Σ2\Sigma_{2} is the quantity defined in (6.1). On the other hand, for all m4m\geq 4,

(6.6) Σ2Xm3nM0(F,w)Ynm|S𝟎(n)|ϵXm3+ϵ\Sigma_{2}\ll X^{m-3}\sum_{n\leq M_{0}(F,w)Y}n^{-m}\lvert S_{\bm{0}}(n)\rvert\ll_{\epsilon}X^{m-3+\epsilon}

by Proposition 4.1 and Lemma 6.1, since I𝟎(n)XmI_{\bm{0}}(n)\ll X^{m} by [heath1996new]*Lemma 16.

7. Contribution from singular hyperplane sections

In this section, we study the quantity

(7.1) Σ3\colonequalsX3n1𝒄[Z,Z]m:Δ(𝒄)=0,𝒄𝟎n(1m)/2S𝒄(n)I𝒄(n).\Sigma_{3}\colonequals X^{-3}\sum_{n\geq 1}\,\sum_{\bm{c}\in[-Z,Z]^{m}:\,\Delta(\bm{c})=0,\;\bm{c}\neq\bm{0}}n^{(1-m)/2}S^{\natural}_{\bm{c}}(n)I_{\bm{c}}(n).

We will prove the following result, extending work of Heath-Brown. Recall the definitions of NF,w(X)N_{F,w}(X) and NF,w(X)N^{\prime}_{F,w}(X) from (2.14) and (2.15), respectively.

Theorem 7.1.

If m5m\geq 5, then

(7.2) Σ3ϵ0X3(m2)/4+O(ϵ0).\Sigma_{3}\ll_{\epsilon_{0}}X^{3(m-2)/4+O(\epsilon_{0})}.

If m=4m=4, then

(7.3) Σ3=NF,w(X)NF,w(X)+Oϵ0(X3(m2)/4+O(ϵ0)).\Sigma_{3}=N_{F,w}(X)-N^{\prime}_{F,w}(X)+O_{\epsilon_{0}}(X^{3(m-2)/4+O(\epsilon_{0})}).

The cases m=4m=4 and m=6m=6 of this result are due to Heath-Brown. For instance, the estimate (7.3) for m=4m=4 follows directly from [heath1998circle]*Lemmas 7.2 and 8.1, in view of the tail estimate (4.3). Therefore, we may and do assume m5m\geq 5, for the rest of §7.

We combine ideas from [hooley1986HasseWeil] and [heath1998circle]. Let \mathcal{I} and \mathcal{R} be as in (4.7) and (4.8), respectively. Since we are only interested in 𝒄𝟎\bm{c}\neq\bm{0}, we may and do assume ||1\lvert\mathcal{I}\rvert\geq 1. Let 𝒞\mathcal{C} and CC be as in (4.12), for some Ci{2t:t0}C_{i}\in\{2^{t}:t\in\mathbb{Z}_{\geq 0}\} with 1CiZ1\leq C_{i}\leq Z.

By Proposition 4.1, the sum Σ3\Sigma_{3} from (7.1) is supported on nM0(F,w)Yn\leq M_{0}(F,w)Y. Let

(7.4) Σ4\colonequalsX3nM0(F,w)Y𝒄𝒞:Δ(𝒄)=0n(1m)/2S𝒄(n)I𝒄(n).\Sigma_{4}\colonequals X^{-3}\sum_{n\leq M_{0}(F,w)Y}\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})=0}n^{(1-m)/2}S^{\natural}_{\bm{c}}(n)I_{\bm{c}}(n).

Now consider an element 𝒄𝒞\bm{c}\in\mathcal{C} with Δ(𝒄)=0\Delta(\bm{c})=0, assuming such a 𝒄\bm{c} exists. Denote the nonempty fibers of the map ×/(×)2,iFicimod(×)2\mathcal{I}\to\mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^{2},\;i\mapsto F_{i}c_{i}\bmod{(\mathbb{Q}^{\times})^{2}} by

(k)\colonequals{i:Ficigkmod(×)2},\mathcal{I}(k)\colonequals\{i\in\mathcal{I}:F_{i}c_{i}\equiv g_{k}\bmod{(\mathbb{Q}^{\times})^{2}}\},

for 1kK1\leq k\leq K, say, where the gkg_{k} are signed, nonzero square-free integers. Trivially, we have 1kK|(k)|=||\sum_{1\leq k\leq K}\lvert\mathcal{I}(k)\rvert=\lvert\mathcal{I}\rvert. For each i(k)i\in\mathcal{I}(k), we may write

(7.5) ci=gkFi1ei2c_{i}=g_{k}F_{i}^{-1}e_{i}^{2}

with eie_{i}\in\mathbb{Z}. Moreover, by (2.1) and the \mathbb{Q}-linear independence of square roots of distinct square-free integers, we may choose the signs of the integers eie_{i} so that

(7.6) i(k)Fi(ei/Fi)3=0.\sum_{i\in\mathcal{I}(k)}F_{i}(e_{i}/F_{i})^{3}=0.

Since ci0c_{i}\neq 0 implies ei0e_{i}\neq 0 for all i(k)i\in\mathcal{I}(k), we immediately deduce from (7.6) that

(7.7) |(k)|2.\lvert\mathcal{I}(k)\rvert\geq 2.

We now prove a general lemma that will allow us, in Lemma 7.3, to exploit the structure uncovered in the previous paragraph.

Lemma 7.2.

Let J2J\in\mathbb{Z}_{\geq 2}, let d1,,dJ1d_{1},\dots,d_{J}\in\mathbb{Z}_{\geq 1}, and let G,E1,,EJ>0G,E_{1},\dots,E_{J}\in\mathbb{R}_{>0}. Then

1gG:μ(g)2=11iJ1eiEi:disq(gei2)di1/21iJ(2ω(di)G1/2Ei).\sum_{\begin{subarray}{c}1\leq g\leq G:\\ \mu(g)^{2}=1\end{subarray}}\,\prod_{1\leq i\leq J}\sum_{\begin{subarray}{c}1\leq e_{i}\leq E_{i}:\\ d_{i}\mid\operatorname{sq}(ge_{i}^{2})\end{subarray}}d_{i}^{1/2}\leq\prod_{1\leq i\leq J}(2^{\omega(d_{i})}G^{1/2}E_{i}).
Proof.

By Hölder’s inequality over gg, we may assume that E1==EJ=EE_{1}=\dots=E_{J}=E and d1==dJ=dd_{1}=\dots=d_{J}=d, say. Let S\colonequals{hd:μ(h)2=1}S\colonequals\{h\mid d:\mu(h)^{2}=1\}. Now consider integers g,e1g,e\geq 1 with gg square-free. Then sq(ge2)=gcd(g,e)e2\operatorname{sq}(ge^{2})=\gcd(g,e)e^{2}. Therefore, if dsq(ge2)d\mid\operatorname{sq}(ge^{2}), and we let h\colonequalsgcd(g,e,d)h\colonequals\gcd(g,e,d), then

hS,(d/h)e2,h\in S,\qquad(d/h)\mid e^{2},

whence ee is divisible by the integer p(d/h)pvp(d/h)/2(d/h)1/2\prod_{p\mid(d/h)}p^{\lceil v_{p}(d/h)/2\rceil}\geq(d/h)^{1/2}. Thus, given hSh\in S, the number of possible e[1,E]e\in[1,E] is at most E/(d/h)1/2E/(d/h)^{1/2}. It follows that

(7.8) 1eE:dsq(ge2)d1/2hS(d1/2𝟏hgE/(d/h)1/2)=hS(𝟏hgh1/2E),\sum_{\begin{subarray}{c}1\leq e\leq E:\\ d\mid\operatorname{sq}(ge^{2})\end{subarray}}d^{1/2}\leq\sum_{h\in S}(d^{1/2}\cdot\bm{1}_{h\mid g}\cdot E/(d/h)^{1/2})=\sum_{h\in S}(\bm{1}_{h\mid g}\cdot h^{1/2}E),

for every square-free g1g\geq 1. By (7.8), and Hölder’s inequality over hh, we get

1gG:μ(g)2=1(1eE:dsq(ge2)d1/2)J1gG:μ(g)2=1(hS(𝟏hgh1/2E))J1gG:μ(g)2=1|S|J1hS(𝟏hgh1/2E)J|S|J1hS:hG(G/h)(h1/2E)J|S|JGJ/2EJ,\begin{split}\sum_{\begin{subarray}{c}1\leq g\leq G:\\ \mu(g)^{2}=1\end{subarray}}\,\biggl{(}\,\sum_{\begin{subarray}{c}1\leq e\leq E:\\ d\mid\operatorname{sq}(ge^{2})\end{subarray}}d^{1/2}\biggr{)}^{\!J}&\leq\sum_{\begin{subarray}{c}1\leq g\leq G:\\ \mu(g)^{2}=1\end{subarray}}\,\biggl{(}\,\sum_{h\in S}(\bm{1}_{h\mid g}\cdot h^{1/2}E)\biggr{)}^{\!J}\\ &\leq\sum_{\begin{subarray}{c}1\leq g\leq G:\\ \mu(g)^{2}=1\end{subarray}}\,\lvert S\rvert^{J-1}\sum_{h\in S}(\bm{1}_{h\mid g}\cdot h^{1/2}E)^{J}\\ &\leq\lvert S\rvert^{J-1}\sum_{\begin{subarray}{c}h\in S:\\ h\leq G\end{subarray}}(G/h)(h^{1/2}E)^{J}\\ &\leq\lvert S\rvert^{J}G^{J/2}E^{J},\end{split}

where in the last step we note that hJ/21GJ/21h^{J/2-1}\leq G^{J/2-1}. This suffices, since |S|=2ω(d)\lvert S\rvert=2^{\omega(d)}. ∎

Lemma 7.3.

Let n1n\geq 1 be an integer. Then

𝒄𝒞:Δ(𝒄)0n1|S𝒄(n)|2ϵnϵcub(n)(m||)/3iCi1/2+ϵ.\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})\neq 0}n^{-1}\lvert S^{\natural}_{\bm{c}}(n)\rvert^{2}\ll_{\epsilon}n^{\epsilon}\operatorname{cub}(n)^{(m-\lvert\mathcal{I}\rvert)/3}\prod_{i\in\mathcal{I}}C_{i}^{1/2+\epsilon}.
Proof.

Let n3\colonequalscub(n)n_{3}\colonequals\operatorname{cub}(n). Fix a set 𝒥\mathcal{J}\subseteq\mathcal{I} with |𝒥|2\lvert\mathcal{J}\rvert\geq 2. Let G{2t:t0}G\in\{2^{t}:t\in\mathbb{Z}_{\geq 0}\}, and let Ei\colonequals(2FiCi/G)1/2E_{i}\colonequals(2F_{i}C_{i}/G)^{1/2} for each i𝒥i\in\mathcal{J}. Let τ()\tau(\cdot) be the divisor function. Then

|g|[G,2G):μ(|g|)2=1i𝒥|ei|(2FiCi/|g|)1/2:gFi1ei2{0}gcd(n3,sq(gFi1ei2))1/221+|𝒥|g[G,2G):μ(g)2=1i𝒥1eiEigcd(n3,sq(gei2))1/221+|𝒥|g[G,2G):μ(g)2=1i𝒥din31eiEi:disq(gei2)di1/221+|𝒥|i𝒥(τ(n3)2G1/2Ei)=21+|𝒥|τ(n3)2|𝒥|i𝒥(2FiCi)1/2,\begin{split}&\sum_{\begin{subarray}{c}\lvert g\rvert\in[G,2G):\\ \mu(\lvert g\rvert)^{2}=1\end{subarray}}\,\prod_{i\in\mathcal{J}}\sum_{\begin{subarray}{c}\lvert e_{i}\rvert\leq(2F_{i}C_{i}/\lvert g\rvert)^{1/2}:\\ gF_{i}^{-1}e_{i}^{2}\in\mathbb{Z}\setminus\{0\}\end{subarray}}\gcd(n_{3},\operatorname{sq}(gF_{i}^{-1}e_{i}^{2}))^{1/2}\\ &\leq 2^{1+\lvert\mathcal{J}\rvert}\sum_{\begin{subarray}{c}g\in[G,2G):\\ \mu(g)^{2}=1\end{subarray}}\,\prod_{i\in\mathcal{J}}\sum_{1\leq e_{i}\leq E_{i}}\gcd(n_{3},\operatorname{sq}(ge_{i}^{2}))^{1/2}\\ &\leq 2^{1+\lvert\mathcal{J}\rvert}\sum_{\begin{subarray}{c}g\in[G,2G):\\ \mu(g)^{2}=1\end{subarray}}\,\prod_{i\in\mathcal{J}}\sum_{d_{i}\mid n_{3}}\sum_{\begin{subarray}{c}1\leq e_{i}\leq E_{i}:\\ d_{i}\mid\operatorname{sq}(ge_{i}^{2})\end{subarray}}d_{i}^{1/2}\\ &\leq 2^{1+\lvert\mathcal{J}\rvert}\prod_{i\in\mathcal{J}}(\tau(n_{3})^{2}G^{1/2}E_{i})\\ &=2^{1+\lvert\mathcal{J}\rvert}\tau(n_{3})^{2\lvert\mathcal{J}\rvert}\prod_{i\in\mathcal{J}}(2F_{i}C_{i})^{1/2},\end{split}

where in the penultimate step we use Lemma 7.2 for each possible choice of divisors din3d_{i}\mid n_{3}, and we note that 2ω(di)2ω(n3)τ(n3)2^{\omega(d_{i})}\leq 2^{\omega(n_{3})}\leq\tau(n_{3}). Moreover, if G>mini𝒥(2FiCi)G>\min_{i\in\mathcal{J}}(2F_{i}C_{i}), then

|g|[G,2G):μ(|g|)2=1i𝒥|ei|(2FiCi/|g|)1/2:gFi1ei2{0}gcd(n3,sq(gFi1ei2))1/2=0,\sum_{\begin{subarray}{c}\lvert g\rvert\in[G,2G):\\ \mu(\lvert g\rvert)^{2}=1\end{subarray}}\,\prod_{i\in\mathcal{J}}\sum_{\begin{subarray}{c}\lvert e_{i}\rvert\leq(2F_{i}C_{i}/\lvert g\rvert)^{1/2}:\\ gF_{i}^{-1}e_{i}^{2}\in\mathbb{Z}\setminus\{0\}\end{subarray}}\gcd(n_{3},\operatorname{sq}(gF_{i}^{-1}e_{i}^{2}))^{1/2}=0,

since the sum over one of the variables ei{0}e_{i}\in\mathbb{Z}\setminus\{0\} is empty. On summing the penultimate display over all G{2t:t0}G\in\{2^{t}:t\in\mathbb{Z}_{\geq 0}\} with Gmini𝒥(2FiCi)G\leq\min_{i\in\mathcal{J}}(2F_{i}C_{i}), we conclude that

(7.9) g{0}:μ(|g|)2=1i𝒥|ei|(2FiCi/|g|)1/2:gFi1ei2{0}gcd(n3,sq(gFi1ei2))1/2|𝒥|,ϵn3ϵi𝒥(2FiCi)1/2+ϵ.\sum_{\begin{subarray}{c}g\in\mathbb{Z}\setminus\{0\}:\\ \mu(\lvert g\rvert)^{2}=1\end{subarray}}\,\prod_{i\in\mathcal{J}}\sum_{\begin{subarray}{c}\lvert e_{i}\rvert\leq(2F_{i}C_{i}/\lvert g\rvert)^{1/2}:\\ gF_{i}^{-1}e_{i}^{2}\in\mathbb{Z}\setminus\{0\}\end{subarray}}\gcd(n_{3},\operatorname{sq}(gF_{i}^{-1}e_{i}^{2}))^{1/2}\ll_{\lvert\mathcal{J}\rvert,\epsilon}n_{3}^{\epsilon}\prod_{i\in\mathcal{J}}(2F_{i}C_{i})^{1/2+\epsilon}.

Recall the constraints (7.5) and (7.7) on {𝒄𝒞:Δ(𝒄)=0}\{\bm{c}\in\mathcal{C}:\Delta(\bm{c})=0\}. Applying (7.9) with 𝒥=(k)\mathcal{J}=\mathcal{I}(k), for each k[1,K]k\in[1,K], and multiplying the resulting KK inequalities, we get

(7.10) 1kKgk{0}:μ(|gk|)2=1i(k)|ei|(2FiCi/|gk|)1/2:gkFi1ei2{0}gcd(n3,sq(gkFi1ei2))1/2ϵn3ϵiCi1/2+ϵ,\prod_{1\leq k\leq K}\sum_{\begin{subarray}{c}g_{k}\in\mathbb{Z}\setminus\{0\}:\\ \mu(\lvert g_{k}\rvert)^{2}=1\end{subarray}}\,\prod_{i\in\mathcal{I}(k)}\sum_{\begin{subarray}{c}\lvert e_{i}\rvert\leq(2F_{i}C_{i}/\lvert g_{k}\rvert)^{1/2}:\\ g_{k}F_{i}^{-1}e_{i}^{2}\in\mathbb{Z}\setminus\{0\}\end{subarray}}\,\gcd(n_{3},\operatorname{sq}(g_{k}F_{i}^{-1}e_{i}^{2}))^{1/2}\\ \ll_{\epsilon}n_{3}^{\epsilon}\prod_{i\in\mathcal{I}}C_{i}^{1/2+\epsilon},

since K||mK\leq\lvert\mathcal{I}\rvert\leq m, and the variables m,Fim,F_{i} are fixed. On summing (7.10) over all possible choices for the sets (k)\mathcal{I}(k)\subseteq\mathcal{I}, we deduce that

(7.11) 𝒄𝒞:Δ(𝒄)=0igcd(n3,sq(ci))1/2ϵn3ϵiCi1/2+ϵ.\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})=0}\prod_{i\in\mathcal{I}}\gcd(n_{3},\operatorname{sq}(c_{i}))^{1/2}\ll_{\epsilon}n_{3}^{\epsilon}\prod_{i\in\mathcal{I}}C_{i}^{1/2+\epsilon}.

Lemma 7.3 follows immediately from (4.9) and (7.11). ∎

Remark 7.4.

Interestingly, the proof of (7.11) uses the constraint (7.6) only through (7.7).

Taking n3=1n_{3}=1 in (7.11) implies

|{𝒄𝒞:Δ(𝒄)=0}|ϵiCi1/2+ϵ.\lvert\{\bm{c}\in\mathcal{C}:\Delta(\bm{c})=0\}\rvert\ll_{\epsilon}\prod_{i\in\mathcal{I}}C_{i}^{1/2+\epsilon}.

Therefore, Lemma 7.3 implies

(7.12) 𝒄𝒞:Δ(𝒄)=0n1/2|S𝒄(n)|ϵnϵcub(n)(m||)/6iCi1/2+ϵ,\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})=0}n^{-1/2}\lvert S^{\natural}_{\bm{c}}(n)\rvert\ll_{\epsilon}n^{\epsilon}\operatorname{cub}(n)^{(m-\lvert\mathcal{I}\rvert)/6}\prod_{i\in\mathcal{I}}C_{i}^{1/2+\epsilon},

by the Cauchy–Schwarz inequality over 𝒄\bm{c}.

Let N{2t:t0}N\in\{2^{t}:t\in\mathbb{Z}_{\geq 0}\} with 1NM0(F,w)Y1\leq N\leq M_{0}(F,w)Y. By Lemma 4.7, (7.12), and the t=(m||)/6t=(m-\lvert\mathcal{I}\rvert)/6 case of Lemma 3.3(3), the sum

Σ5\colonequalsX3n[N,2N)𝒄𝒞:Δ(𝒄)=0n(1m)/2|S𝒄(n)I𝒄(n)|\Sigma_{5}\colonequals X^{-3}\sum_{n\in[N,2N)}\sum_{\bm{c}\in\mathcal{C}:\,\Delta(\bm{c})=0}n^{(1-m)/2}\lvert S^{\natural}_{\bm{c}}(n)I_{\bm{c}}(n)\rvert

satisfies the bound Σ5ϵXm3+ϵQ7\Sigma_{5}\ll_{\epsilon}X^{m-3+\epsilon}Q_{7}, where

Q7\colonequalsN1m/2(XC/N)1(m+||)/4max(N,N1/3+(m||)/6)C||/2=X1(||+m)/4max(N1+(||m)/4,N1/3+(||m)/12)C1+(||m)/4.\begin{split}Q_{7}&\colonequals N^{1-m/2}(XC/N)^{1-(m+\lvert\mathcal{I}\rvert)/4}\max(N,N^{1/3+(m-\lvert\mathcal{I}\rvert)/6})\,C^{\lvert\mathcal{I}\rvert/2}\\ &=X^{1-(\lvert\mathcal{I}\rvert+m)/4}\max(N^{1+(\lvert\mathcal{I}\rvert-m)/4},N^{1/3+(\lvert\mathcal{I}\rvert-m)/12})\,C^{1+(\lvert\mathcal{I}\rvert-m)/4}.\end{split}

Since N1+(||m)/4=(N1/3+(||m)/12)3N^{1+(\lvert\mathcal{I}\rvert-m)/4}=(N^{1/3+(\lvert\mathcal{I}\rvert-m)/12})^{3}, we will analyze Q7Q_{7} according to the sign of

𝔢\colonequals1+(||m)/4.\mathfrak{e}\colonequals 1+(\lvert\mathcal{I}\rvert-m)/4.

Case 1: 𝔢0\mathfrak{e}\leq 0. Then, since N,C1N,C\gg 1, we have

Q7X1(||+m)/4X(6m)/4,Q_{7}\ll X^{1-(\lvert\mathcal{I}\rvert+m)/4}\leq X^{(6-m)/4},

where the final inequality holds because X1X\geq 1 and ||2\lvert\mathcal{I}\rvert\geq-2.

Case 2: 𝔢0\mathfrak{e}\geq 0. Then, since NYN\ll Y and CZC\ll Z, we have

Q7X1(||+m)/4Y1+(||m)/4Z1+(||m)/4.Q_{7}\ll X^{1-(\lvert\mathcal{I}\rvert+m)/4}Y^{1+(\lvert\mathcal{I}\rvert-m)/4}Z^{1+(\lvert\mathcal{I}\rvert-m)/4}.

Plugging in (4.1) and (4.2), we get

Q7ϵ0X1(||+m)/4+O(ϵ0)(X2)1+(||m)/4=X3+(||3m)/4+O(ϵ0).Q_{7}\ll_{\epsilon_{0}}X^{1-(\lvert\mathcal{I}\rvert+m)/4+O(\epsilon_{0})}(X^{2})^{1+(\lvert\mathcal{I}\rvert-m)/4}=X^{3+(\lvert\mathcal{I}\rvert-3m)/4+O(\epsilon_{0})}.

Moreover, if ||2m6\lvert\mathcal{I}\rvert\leq 2m-6, then 3+(||3m)/4(6m)/43+(\lvert\mathcal{I}\rvert-3m)/4\leq(6-m)/4.

If m6m\geq 6, then 1||m2m61\leq\lvert\mathcal{I}\rvert\leq m\leq 2m-6, so regardless of what ||\lvert\mathcal{I}\rvert is, it follows that

Σ5ϵ0Xm3+ϵ0Q7ϵ0Xm3+ϵ0X(6m)/4+O(ϵ0)=X3(m2)/4+O(ϵ0),\begin{split}\Sigma_{5}&\ll_{\epsilon_{0}}X^{m-3+\epsilon_{0}}Q_{7}\\ &\ll_{\epsilon_{0}}X^{m-3+\epsilon_{0}}X^{(6-m)/4+O(\epsilon_{0})}\\ &=X^{3(m-2)/4+O(\epsilon_{0})},\end{split}

whence by summing over all possibilities for NN and 𝒞\mathcal{C} we get

Σ3,Σ4ϵ0X3(m2)/4+O(ϵ0),\Sigma_{3},\Sigma_{4}\ll_{\epsilon_{0}}X^{3(m-2)/4+O(\epsilon_{0})},

where Σ3,Σ4\Sigma_{3},\Sigma_{4} are as defined in (7.1) and (7.4), respectively. This completes the proof of (7.2) for m6m\geq 6. For the rest of §7, we relinquish the previous definitions of 𝒞\mathcal{C} and CC.

For m=5m=5, we first show that a natural extension of [heath1998circle]*Lemma 7.1 holds.

Lemma 7.5.

If 5m65\leq m\leq 6 and C1C\gg 1, then |{𝐜m[C,C]m:Δ(𝐜)=0}|ϵCm3+ϵ\lvert\{\bm{c}\in\mathbb{Z}^{m}\cap[-C,C]^{m}:\Delta(\bm{c})=0\}\rvert\ll_{\epsilon}C^{m-3+\epsilon}.

Proof.

For m=6m=6, this follows directly from [heath1998circle]*Lemma 7.1. Now suppose m=5m=5. A partition of mm is an infinite, weakly decreasing sequence of nonnegative integers λ1,λ2,\lambda_{1},\lambda_{2},\dots, such that k1λk=m\sum_{k\geq 1}\lambda_{k}=m. For any partition of mm, let

ek\colonequals2𝟏2λk4+(λk2)𝟏λk5e_{k}\colonequals 2\cdot\bm{1}_{2\leq\lambda_{k}\leq 4}+(\lambda_{k}-2)\cdot\bm{1}_{\lambda_{k}\geq 5}

for k1k\geq 1. Let θ\theta denote the maximum value of 12k1ek\frac{1}{2}\sum_{k\geq 1}e_{k} over all partitions of mm. By [heath1998circle]*p. 687, we have |{𝒄m[C,C]m:Δ(𝒄)=0}|ϵCθ+ϵ\lvert\{\bm{c}\in\mathbb{Z}^{m}\cap[-C,C]^{m}:\Delta(\bm{c})=0\}\rvert\ll_{\epsilon}C^{\theta+\epsilon}.

Clearly λ3m/3=1\lambda_{3}\leq\lfloor m/3\rfloor=1, so ek=0e_{k}=0 for all k3k\geq 3. If λ21\lambda_{2}\leq 1, then ek=0e_{k}=0 for all k2k\geq 2, so k1ek=e1m2\sum_{k\geq 1}e_{k}=e_{1}\leq m-2. If λ22\lambda_{2}\geq 2, then λ1mλ23\lambda_{1}\leq m-\lambda_{2}\leq 3, so ek2e_{k}\leq 2 for all k1k\geq 1, whence k1ek=e1+e24\sum_{k\geq 1}e_{k}=e_{1}+e_{2}\leq 4. In either case, k1ek4\sum_{k\geq 1}e_{k}\leq 4. Therefore, θ2=m3\theta\leq 2=m-3. ∎

We now recall a bound from [heath1998circle] that is valid for all m4m\geq 4.

Lemma 7.6.

Fix ε>0\varepsilon>0. Suppose 1NX3/21\ll N\ll X^{3/2} and 1CX1/2+ε1\ll C\ll X^{1/2+\varepsilon}. Let

A=N<q2NC<𝒄2C:Δ(𝒄)=0qmS𝒄(q)I𝒄(q).A=\sum_{N<q\leq 2N}\,\sum_{C<\lVert\bm{c}\rVert\leq 2C:\,\Delta(\bm{c})=0}\,q^{-m}S_{\bm{c}}(q)I_{\bm{c}}(q).

Then there exist reals X1,X2,X31X_{1},X_{2},X_{3}\gg 1 and an integer H1H\geq 1 such that X1X2X3NX_{1}X_{2}X_{3}\asymp N and

AεXm+4εNmX11+m/2X22/3+2m/3X31+2m/3H1/2(NXC)(m2)/4𝒩1𝒩2(H),A\ll_{\varepsilon}X^{m+4\varepsilon}N^{-m}X_{1}^{1+m/2}X_{2}^{2/3+2m/3}X_{3}^{1+2m/3}H^{1/2}\left(\frac{N}{XC}\right)^{\!(m-2)/4}\mathcal{N}_{1}\mathcal{N}_{2}(H),

where in terms of the quantity 𝔇=3(1imFi)2m2\mathfrak{D}=3(\prod_{1\leq i\leq m}F_{i})^{2^{m-2}} from §2, we let

𝒩1\colonequals(q1,q2,q3):Xi<qi2Xi𝟏cub(q1)=1𝟏q2=cub(q2)𝟏q3𝔇,𝒩2(H)\colonequalsC<𝒄2C𝟏H𝒄𝟏Δ(𝒄)=0.\begin{split}\mathcal{N}_{1}&\colonequals\sum_{(q_{1},q_{2},q_{3}):\,X_{i}<q_{i}\leq 2X_{i}}\bm{1}_{\operatorname{cub}(q_{1})=1}\bm{1}_{q_{2}=\operatorname{cub}(q_{2})}\bm{1}_{q_{3}\mid\mathfrak{D}^{\infty}},\\ \mathcal{N}_{2}(H)&\colonequals\sum_{C<\lVert\bm{c}\rVert\leq 2C}\bm{1}_{H\mid\bm{c}}\bm{1}_{\Delta(\bm{c})=0}.\end{split}
Proof.

This is immediate from [heath1998circle]*pp. 688–689, from the definition of AA on p. 688 to the definition of 𝒩2(H)\mathcal{N}_{2}(H) on p. 689. What Heath-Brown calls PP (resp. XX), we call XX (resp. NN). Moreover, in terms of Heath-Brown’s notation nn and GG, our mm and Δ\Delta satisfy m=nm=n and Δ(𝒄)=3G(𝒄)\Delta(\bm{c})=3G(\bm{c}). However, our C,q,𝒄,X1,X2,X3,HC,q,\bm{c},X_{1},X_{2},X_{3},H match Heath-Brown’s notation. ∎

Applying Lemma 3.1 to q2q_{2} and Lemma 3.2 to q3q_{3}, it is clear that

𝒩1εX1X21/3X3ε.\mathcal{N}_{1}\ll_{\varepsilon}X_{1}X_{2}^{1/3}X_{3}^{\varepsilon}.

Now assume 5m65\leq m\leq 6. Then 𝒩2(H)=0\mathcal{N}_{2}(H)=0 unless H2CH\leq 2C, in which case

𝒩2(H)ε(C/H)m3+ε\mathcal{N}_{2}(H)\ll_{\varepsilon}(C/H)^{m-3+\varepsilon}

by Lemma 7.5. Plugging the last two displays into Lemma 7.6, with ε\colonequalsϵ0\varepsilon\colonequals\epsilon_{0}, we get

Aϵ0Xm+O(ϵ0)NmX12+m/2X21+2m/3X31+2m/3H1/2(NXC)(m2)/4(CH)m3.A\ll_{\epsilon_{0}}X^{m+O(\epsilon_{0})}N^{-m}X_{1}^{2+m/2}X_{2}^{1+2m/3}X_{3}^{1+2m/3}H^{1/2}\left(\frac{N}{XC}\right)^{\!(m-2)/4}\left(\frac{C}{H}\right)^{\!m-3}.

Since m31/2m-3\geq 1/2, we have H1/2(C/H)m3Cm3H^{1/2}(C/H)^{m-3}\leq C^{m-3}. Moreover, m6m\leq 6 implies 2+m/21+2m/32+m/2\geq 1+2m/3, so X12+m/2X21+2m/3X31+2m/3(X1X2X3)2+m/2N2+m/2X_{1}^{2+m/2}X_{2}^{1+2m/3}X_{3}^{1+2m/3}\ll(X_{1}X_{2}X_{3})^{2+m/2}\asymp N^{2+m/2}. Thus

(7.13) Aϵ0Xm+O(ϵ0)N2m/2(NXC)(m2)/4Cm3.A\ll_{\epsilon_{0}}X^{m+O(\epsilon_{0})}N^{2-m/2}\left(\frac{N}{XC}\right)^{\!(m-2)/4}C^{m-3}.

Since 2m/2+(m2)/4=(6m)/402-m/2+(m-2)/4=(6-m)/4\geq 0 (resp. since m3(m2)/4m-3\geq(m-2)/4), the right-hand side of (7.13) is weakly increasing in NN (resp. in CC). Therefore

Aϵ0Xm+O(ϵ0)(X3/2)2m/2(X1/2)m3=X3m/4+3/2+O(ϵ0).A\ll_{\epsilon_{0}}X^{m+O(\epsilon_{0})}(X^{3/2})^{2-m/2}(X^{1/2})^{m-3}=X^{3m/4+3/2+O(\epsilon_{0})}.

Summing over 1N=M0(F,w)Y/2k11\ll N=M_{0}(F,w)Y/2^{k_{1}} and 1C=Z/2k21\ll C=Z/2^{k_{2}} with k1,k21k_{1},k_{2}\in\mathbb{Z}_{\geq 1}, we get

Σ3X3X3m/4+3/2+O(ϵ0)=X3(m2)/4+O(ϵ0),\Sigma_{3}\ll X^{-3}X^{3m/4+3/2+O(\epsilon_{0})}=X^{3(m-2)/4+O(\epsilon_{0})},

where Σ3\Sigma_{3} is the quantity defined in (7.1). This completes the proof of (7.2).

8. Proof of main results

In this section, we first prove Theorem 2.7, because it builds directly on our work in §§47 on the delta method. We then prove Theorem 2.3 using (2.6), (2.7), and Proposition 4.3. Finally, we combine Theorems 2.3 and 2.7 to prove Theorem 1.1.

Proof of Theorem 2.7.

By Proposition 3.4, we see that Hypothesis 2.6 implies Hypothesis 2.4. Therefore, we may and do assume Hypothesis 2.4. Now recall the quantity Σ0\Sigma_{0} from (4.6). By (4.5) and the tail estimate (4.3), we have

NF,w(X)Σ0A,ϵ0XA.N_{F,w}(X)-\Sigma_{0}\ll_{A,\epsilon_{0}}X^{-A}.

Case 1: m=4m=4. Then adding (5.1), (6.6), and (7.3) together, we get

Σ0=Σ1+Σ2+Σ3=NF,w(X)NF,w(X)+Oϵ0(X3(m2)/4+O(ϵ0))+Oϵ0(Xm3+ϵ0).\Sigma_{0}=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}=N_{F,w}(X)-N^{\prime}_{F,w}(X)+O_{\epsilon_{0}}(X^{3(m-2)/4+O(\epsilon_{0})})+O_{\epsilon_{0}}(X^{m-3+\epsilon_{0}}).

It follows that NF,w(X)ϵ0X3(m2)/4+O(ϵ0)N^{\prime}_{F,w}(X)\ll_{\epsilon_{0}}X^{3(m-2)/4+O(\epsilon_{0})}. Let 𝔠(F,w)\colonequals0\mathfrak{c}(F,w)\colonequals 0.

Case 2: m5m\geq 5. Then adding (5.1), (6.5), and (7.2) together, we get

Σ0=Σ1+Σ2+Σ3=𝔠(F,w)Xm3+Oϵ0(X3(m2)/4+O(ϵ0))+Oϵ0(X(m2)/2+ϵ0),\Sigma_{0}=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}=\mathfrak{c}(F,w)X^{m-3}+O_{\epsilon_{0}}(X^{3(m-2)/4+O(\epsilon_{0})})+O_{\epsilon_{0}}(X^{(m-2)/2+\epsilon_{0}}),

where 𝔠(F,w)\colonequalsσ,w𝔖\mathfrak{c}(F,w)\colonequals\sigma_{\infty,w}\mathfrak{S}. It follows that NF,w(X)𝔠(F,w)Xm3ϵ0X3(m2)/4+O(ϵ0)N_{F,w}(X)-\mathfrak{c}(F,w)X^{m-3}\ll_{\epsilon_{0}}X^{3(m-2)/4+O(\epsilon_{0})}.

In each case, taking ϵ00\epsilon_{0}\to 0 gives the desired result, (2.16). ∎

Proof of Theorem 2.3.

Let 𝒄𝒮\bm{c}\in\mathcal{S}. Since Ψ(𝒄,s)\Psi(\bm{c},s) has an Euler product, condition (1) in Definition 2.2 clearly holds. It remains to prove that conditions (2) and (3) hold.

Case 1: Ψ(𝐜,s)=Φ(𝐜,s)\Psi(\bm{c},s)=\Phi(\bm{c},s). Then conditions (2) and (3) are trivial, since

(b𝒄(n),a𝒄(n))=(S𝒄(n),𝟏n=1).(b_{\bm{c}}(n),a^{\prime}_{\bm{c}}(n))=(S^{\natural}_{\bm{c}}(n),\bm{1}_{n=1}).

Case 2: Ψ(𝐜,s)=pΔ(𝐜)Φp(𝐜,s)\Psi(\bm{c},s)=\prod_{p\nmid\Delta(\bm{c})}\Phi_{p}(\bm{c},s). Then conditions (2) and (3) are trivial, since

(b𝒄(n),a𝒄(n))=(S𝒄(n)𝟏gcd(n,Δ(𝒄))=1,S𝒄(n)𝟏nΔ(𝒄)).(b_{\bm{c}}(n),a^{\prime}_{\bm{c}}(n))=(S^{\natural}_{\bm{c}}(n)\cdot\bm{1}_{\gcd(n,\Delta(\bm{c}))=1},S^{\natural}_{\bm{c}}(n)\cdot\bm{1}_{n\mid\Delta(\bm{c})^{\infty}}).

Case 3: Ψ(𝐜,s){pΔ(𝐜)Lp(s,𝐜)(1)m3,L(s,𝐜)(1)m3}\Psi(\bm{c},s)\in\{\prod_{p\nmid\Delta(\bm{c})}L_{p}(s,\bm{c})^{(-1)^{m-3}},L(s,\bm{c})^{(-1)^{m-3}}\}. Then by (2.6), we have

(8.1) b𝒄(n),a𝒄(n)ϵnϵ.b_{\bm{c}}(n),a_{\bm{c}}(n)\ll_{\epsilon}n^{\epsilon}.

But a𝒄=S𝒄a𝒄a^{\prime}_{\bm{c}}=S^{\natural}_{\bm{c}}\ast a_{\bm{c}}, by (2.9). Therefore, condition (2) holds. Furthermore, if pΔ(𝒄)p\nmid\Delta(\bm{c}), then a𝒄(p)=b𝒄(p)a_{\bm{c}}(p)=-b_{\bm{c}}(p) by (2.9) and b𝒄(p)=(1)m3λ𝒄(p)=E𝒄(p)b_{\bm{c}}(p)=(-1)^{m-3}\lambda_{\bm{c}}(p)=E^{\natural}_{\bm{c}}(p) by (2.7), so

a𝒄(p)=S𝒄(p)+a𝒄(p)=S𝒄(p)E𝒄(p)p1/2a^{\prime}_{\bm{c}}(p)=S^{\natural}_{\bm{c}}(p)+a_{\bm{c}}(p)=S^{\natural}_{\bm{c}}(p)-E^{\natural}_{\bm{c}}(p)\ll p^{-1/2}

by Proposition 4.3. Therefore, condition (3) also holds. ∎

Proof of Theorem 1.1.

Let Ψ\colonequalsL(s,𝒄)(1)m3\Psi\colonequals L(s,\bm{c})^{(-1)^{m-3}}. Then Ψ\Psi is an approximation of Φ\Phi, by Theorem 2.3. Moreover, Ψ\Psi is standard by (8.1) and Definition 2.5. Now let ϑ\colonequals1\vartheta\colonequals 1. Then γ𝒄(n)=μ(n)mλ𝒄(n)\gamma_{\bm{c}}(n)=\mu(n)^{m}\lambda_{\bm{c}}(n) by (2.11), since for all primes pp we have a𝒄(p)=(1)m2λ𝒄(p)a_{\bm{c}}(p)=(-1)^{m-2}\lambda_{\bm{c}}(p) by the definition of a𝒄a_{\bm{c}}. Upon plugging in μ(n)mvn\mu(n)^{m}v_{n} for vnv_{n} in Hypothesis 2.1, we immediately find that Hypothesis 2.6 holds. Let ς:\varsigma\colon\mathbb{R}\to\mathbb{R} be a nonnegative, smooth, compactly supported function such that ς(t)=1\varsigma(t)=1 for all t[1,4]t\in[1,4], and ς(t)=0\varsigma(t)=0 for all t[12,8]t\notin[\frac{1}{2},8]. Let

w(𝒙)\colonequalsς(1imxi2).w(\bm{x})\colonequals\varsigma({\textstyle\sum_{1\leq i\leq m}x_{i}^{2}}).

Then Theorem 2.7 implies NF,w(X)ϵX3(m2)/4+ϵN_{F,w}(X)\ll_{\epsilon}X^{3(m-2)/4+\epsilon} for all X1X\geq 1. Since w(𝒙/2k)=1w(\bm{x}/2^{k})=1 for all 𝒙m\bm{x}\in\mathbb{Z}^{m} in the annulus 4k1imxi24k+14^{k}\leq\sum_{1\leq i\leq m}x_{i}^{2}\leq 4^{k+1}, it follows that

NF(X)1=|{𝒙m[X,X]m:F(𝒙)=0,𝒙𝟎}|0klog4(4mX2)NF,w(2k)ϵ0klog4(4mX2)(2k)3(m2)/4+ϵ((4mX2)1/2)3(m2)/4+ϵϵX3(m2)/4+ϵ,\begin{split}N_{F}(X)-1&=\lvert\{\bm{x}\in\mathbb{Z}^{m}\cap[-X,X]^{m}:F(\bm{x})=0,\;\bm{x}\neq\bm{0}\}\rvert\\ &\leq\sum_{0\leq k\leq\log_{4}(4mX^{2})}N_{F,w}(2^{k})\\ &\ll_{\epsilon}\sum_{0\leq k\leq\log_{4}(4mX^{2})}(2^{k})^{3(m-2)/4+\epsilon}\\ &\ll((4mX^{2})^{1/2})^{3(m-2)/4+\epsilon}\\ &\ll_{\epsilon}X^{3(m-2)/4+\epsilon},\end{split}

for all X1X\geq 1. This implies Theorem 1.1. ∎

Acknowledgements

I thank Peter Sarnak for suggesting projects that ultimately led to the present paper.This work was partially supported by NSF grant DMS-1802211, and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 101034413. I also thank him for many encouraging discussions, helpful comments, and references. Thanks also to Tim Browning, Trevor Wooley, and Nina Zubrilina for helpful comments, and to Levent Alpöge and Will Sawin for some interesting old discussions. I thank Yang Liu, Evan O’Dorney, Ashwin Sah, and Mark Sellke for conversations illuminating the combinatorics of an older, counting version of the present Lemma 4.9. Finally, special thanks are due to the editors and referees for their patience and help with the exposition.

References