This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Differential inclusion systems with fractional competing operator and multivalued fractional convection term

Jinxia Cen111School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China. E-mail: jinxcen@163.com,  Salvatore A. Marano222Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy. E-mail: marano@dmi.unict.it,  Shengda Zeng333Corresponding author. National Center for Applied Mathematics in Chongqing and School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P.R. China. E-mail: zengshengda@163.com
Abstract

In this work, the existence of solutions (in a suitable sense) to a family of inclusion systems involving fractional, possibly competing, elliptic operators, fractional convection, and homogeneous Dirichlet boundary conditions is established. The technical approach exploits Galerkin’s method and a surjective results for multifunctions in finite dimensional spaces as well as approximating techniques.

Keywords: Differential inclusion system, fractional competing operator, fractional convection, Dirichlet boundary condition, generalized solution, Galerkin’s method.
MSC 2020: 35H30, 35J92, 35D30.

1 Introduction

Let Ω\Omega be a bounded domain in N\mathbb{R}^{N}, N3N\geq 3, with a smooth boundary Ω\partial\Omega, let μ1,μ2\mu_{1},\mu_{2}\in\mathbb{R}, and let F1,F2:Ω×2×2N2F_{1},F_{2}:\Omega\times\mathbb{R}^{2}\times\mathbb{R}^{2N}\to 2^{\mathbb{R}} be two compact convex-valued multifunctions. Consider the differential inclusion system

{(Δ)p1s1u1+μ1(Δ)q1t1u1F1(x,u1,u2,Dr1u1,Dr2u2) in Ω,(Δ)p2s2u2+μ2(Δ)q2t2u2F2(x,u1,u2,Dr1u1,Dr2u2) in Ω,u1=u2=0 in N\Ω,\left\{\begin{array}[]{lll}(-\Delta)_{p_{1}}^{s_{1}}u_{1}+\mu_{1}(-\Delta)_{q_{1}}^{t_{1}}u_{1}\in F_{1}(x,u_{1},u_{2},D^{r_{1}}u_{1},D^{r_{2}}u_{2})&\mbox{ in $\Omega$},\\ (-\Delta)_{p_{2}}^{s_{2}}u_{2}+\mu_{2}(-\Delta)_{q_{2}}^{t_{2}}u_{2}\in F_{2}(x,u_{1},u_{2},D^{r_{1}}u_{1},D^{r_{2}}u_{2})&\mbox{ in $\Omega$},\\ u_{1}=u_{2}=0&\mbox{ in $\mathbb{R}^{N}\backslash\Omega$},\end{array}\right. (1.1)

where

  • (H1)({\rm H}_{1})

    0<ti<ri<si10<t_{i}<r_{i}<s_{i}\leq 1 and 1<qi<pi<Nsi1<q_{i}<p_{i}<\frac{N}{s_{i}} for each i=1,2i=1,2.

The symbol (Δ)ps(-\Delta)_{p}^{s}, with p>1p>1 and 0<s<10<s<1, denotes the fractional pp-Laplacian, defined by setting, provided uu is smooth enough,

(Δ)psu(x):=2limε0+NBε(x)|u(x)u(y)|p2(u(x)u(y))|xy|N+psdy,xN(-\Delta)^{s}_{p}u(x):=2\lim_{\varepsilon\to 0^{+}}\int_{\mathbb{R}^{N}\setminus B_{\varepsilon}(x)}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+ps}}\,{\rm d}y,\quad x\in\mathbb{R}^{N}

with Bε(x):={zNzxN<ε}B_{\varepsilon}(x):=\{z\in\mathbb{R}^{N}\,\mid\,\|z-x\|_{\mathbb{R}^{N}}<\varepsilon\}. When s=1s=1 it becomes the classical pp-Laplacian, namely

Δpu:=div(|u|p2u).-\Delta_{p}u:=-\mathop{\rm div}\nolimits(|\nabla u|^{p-2}\nabla u).

Moreover, DsuD^{s}u indicates the distributional Riesz fractional gradient of uu in the sense of [19, 20]. If uu appropriately decays and is sufficiently smooth then, setting

cN,s:=2sΓ(N+s+12)πN2Γ(1s2),c_{N,s}:=-\frac{2^{s}\,\Gamma\left(\frac{N+s+1}{2}\right)}{\pi^{\frac{N}{2}}\,\Gamma\left(\frac{1-s}{2}\right)}\,,

one has [20, pp. 289 and 298]

Dsu(x):=cN,slimε0+NBε(x)u(x)u(y)|xy|N+sxy|xy|dy,xN.D^{s}u(x):=c_{N,s}\lim_{\varepsilon\to 0^{+}}\int_{\mathbb{R}^{N}\setminus B_{\varepsilon}(x)}\frac{u(x)-u(y)}{|x-y|^{N+s}}\,\frac{x-y}{|x-y|}{\rm d}y,\quad x\in\mathbb{R}^{N}.

The right-hand sides F1F_{1} and F2F_{2} satisfy the conditions below, where, to avoid cumbersome formulae, we shall write

y:=(y1,y2),z:=(z1,z2),pi:=NpiNsipi,i=1,2.y:=(y_{1},y_{2}),\quad z:=(z_{1},z_{2}),\quad p_{i}^{*}:=\frac{Np_{i}}{N-s_{i}p_{i}},\quad i=1,2. (1.2)
  • (H2)({\rm H}_{2})

    xFi(x,y,z)x\mapsto F_{i}(x,y,z) is measurable on Ω\Omega for all (y,z)2×2N(y,z)\in\mathbb{R}^{2}\times\mathbb{R}^{2N} and (y,z)Fi(x,y,z)(y,z)\mapsto F_{i}(x,y,z) is upper semi-continuous for a.e. xΩx\in\Omega.

  • (H3)({\rm H}_{3})

    There exist mi>0m_{i}>0, δiL(pi)(Ω)\delta_{i}\in L^{(p_{i}^{*})^{\prime}}(\Omega), i=1,2i=1,2, such that

    supwiFi(x,y,z)|wi|\displaystyle\sup_{w_{i}\in F_{i}(x,y,z)}|w_{i}|\leq m1(|y1|p1(pi)+|y2|p2(pi)+|z1|p1(pi)+|z2|p2(pi))+δi(x)\displaystyle m_{1}\left(|y_{1}|^{\frac{p_{1}^{*}}{(p_{i}^{*})^{\prime}}}+|y_{2}|^{\frac{p_{2}^{*}}{(p_{i}^{*})^{\prime}}}+|z_{1}|^{\frac{p_{1}}{(p_{i}^{*})^{\prime}}}+|z_{2}|^{\frac{p_{2}}{(p_{i}^{*})^{\prime}}}\right)+\delta_{i}(x)

    a.e. in Ω\Omega and for all (y,z)2×2N(y,z)\in\mathbb{R}^{2}\times\mathbb{R}^{2N}.

  • (H4)({\rm H}_{4})

    There are Mi,Mi>0M_{i},M_{i}^{\prime}>0, σiL1(Ω)+\sigma_{i}\in L^{1}(\Omega)_{+}, i=1,2i=1,2, fulfilling

    wiyiMi(|y1|p1+|y2|p2)+Mi(|z1|p1+|z2|p2)+σi(x)\displaystyle w_{i}y_{i}\leq M_{i}(|y_{1}|^{p_{1}}+|y_{2}|^{p_{2}})+M_{i}^{\prime}(|z_{1}|^{p_{1}}+|z_{2}|^{p_{2}})+\sigma_{i}(x)

    a.e. in Ω\Omega and for all (y,z)2×2N(y,z)\in\mathbb{R}^{2}\times\mathbb{R}^{2N}, wiFi(x,y,z)w_{i}\in F_{i}(x,y,z).

The involved differential operators are of the type

Aμ(u):=(Δ)psu+μ(Δ)qtu,uW0s,p(Ω),A_{\mu}(u):=(-\Delta)_{p}^{s}u+\mu(-\Delta)_{q}^{t}u,\quad u\in W^{s,p}_{0}(\Omega),

where μ\mu\in\mathbb{R}, 0<trs10<t\leq r\leq s\leq 1, 1<q<p<Ns1<q<p<\frac{N}{s}, while convection comes from the presence of fractional gradients DruD^{r}u at right-hand sides. AμA_{\mu} exhibits different behaviors depending on the values of t,s(0,1]t,s\in(0,1]. Precisely, if t=1t=1, then t=r=s=1t=r=s=1, Problem (1.1) falls inside the local framework, and has been already investigated in some recent works; see, e.g., [9] for single-valued reactions and [18, 4] as regards multi-valued ones. Moreover, the nature of AμA_{\mu} drastically changes depending on μ\mu. In fact, when μ>0\mu>0, the operator AμA_{\mu} is basically patterned after the (possibly) fractional (p,q)(p,q)-Laplacian, which turns out non-homogeneous because pqp\neq q. If μ=0\mu=0 it coincides with the fractional pp-Laplacian. Both cases have been widely investigated and meaningful results are by now available in the literature. On the contrary, for μ<0\mu<0 the operator AμA_{\mu} contains the difference between the fractional pp- and qq-Laplacians. It is usually called competitive and, as already pointed out in [14, 17], doesn’t comply with any ellipticity or monotonicity condition. In fact, given u0W0s,p(Ω){0}u_{0}\in W^{s,p}_{0}(\Omega)\setminus\{0\} and chosen u:=τu0u:=\tau u_{0}, τ>0\tau>0, the expression

Aμ(u),u=τpu0s,pp+μτqu0s,qq\langle A_{\mu}(u),u\rangle=\tau^{p}\|\nabla u_{0}\|_{s,p}^{p}+\mu\tau^{q}\|u_{0}\|_{s,q}^{q}

turns out negative for τ\tau small and positive when τ\tau is large. Therefore, nonlinear regularity theory, comparison principles, as well as existence theorems for pseudo-monotone maps cannot be employed. Moreover, since the reactions are multi-valued and contain the fractional gradient of the solutions, also variational techniques are no longer directly usable. To overcome these difficulties we first exploit Galerkin’s method, thus working with a sequence {En}\{E_{n}\} of finite dimensional functional spaces. For each nn\in\mathbb{N}, an approximate solution (u1,n,u2,n)En(u_{1,n},u_{2,n})\in E_{n} to (1.1) is obtained via a suitable version (cf. Proposition 3) of a classical surjectivity result. Next, letting n+n\to+\infty yields a solution in a generalized sense (cf. Definitions 8 and 10), which turns out weak sense once μ1μ20\mu_{1}\wedge\mu_{2}\geq 0.

Fractional gradients were first introduced more than sixty years ago by Horváth [12], but took a great interest especially after the works of Shieh and Spector [19, 20, 5]. The operator DsuD^{s}u appears as a natural non-local version of u\nabla u, to whom it formally tends when s1s\to 1^{-}. It enjoys good geometric and physical properties [2, 21], like invariance under translations or rotations, homogeneity of order ss, continuity, etc.

Section 2 contains some auxiliary results and the functional framework needed for handling both fractional gradients and the fractional pp-Laplacian. The existence of (generalized, strong generalized, or weak) solutions to (1.1) is established in Section 3.

2 Preliminaries

Let X,YX,Y be two nonempty sets. A multifunction Φ:X2Y\Phi:X\to 2^{Y} is a map from XX into the family of all nonempty subsets of YY. A function φ:XY\varphi:X\to Y is called a selection of Φ\Phi when φ(x)Φ(x)\varphi(x)\in\Phi(x) for every xXx\in X. Given BYB\subseteq Y, put Φ(B):={xXΦ(x)B}.\Phi^{-}(B):=\{x\in X\,\mid\,\Phi(x)\cap B\neq\emptyset\}. If X,YX,Y are topological spaces and Φ(B)\Phi^{-}(B) turns out closed in XX for all closed sets BYB\subseteq Y then we say that Φ\Phi is upper semi-continuous. Suppose (X,)(X,\mathcal{F}) is a measurable space and YY is a topological space. The multifunction Φ\Phi is called measurable when Φ(B)\Phi^{-}(B)\in\mathcal{F} for every open set BYB\subseteq Y. The result below, stated in [1, p. 215], will be repeatedly useful.

Proposition 1.

Let F:Ω×h2F:\Omega\times\mathbb{R}^{h}\to 2^{\mathbb{R}} be a closed-valued multifunction such that:

  • xF(x,ξ)x\mapsto F(x,\xi) is measurable for all ξh\xi\in\mathbb{R}^{h};

  • ξF(x,ξ)\xi\mapsto F(x,\xi) is upper semi-continuous for a.e. xΩx\in\Omega.

Let w:Ωhw:\Omega\to\mathbb{R}^{h} be measurable. Then the multifunction xF(x,w(x))x\mapsto F(x,w(x)) admits a measurable selection.

Let (X,)(X,\|\cdot\|) be a real normed space with topological dual XX^{*} and duality brackets ,\langle\cdot,\cdot\rangle. Given a nonempty set AXA\subseteq X, define |A|:=supxAx|A|:=\sup_{x\in A}\|x\|. We say that φ:XX\varphi:X\to X^{*} is monotone when

φ(x)φ(z),xz0x,zX,\langle\varphi(x)-\varphi(z),x-z\rangle\geq 0\quad\forall\,x,z\in X,

and of type (S)+(\mathrm{S})_{+} provided

xnxin X,lim supn+φ(xn),xnx0xnxin X.x_{n}\rightharpoonup x\;\;\mbox{in $X$,}\;\;\limsup_{n\to+\infty}\langle\varphi(x_{n}),x_{n}-x\rangle\leq 0\implies x_{n}\to x\;\;\mbox{in $X$.}

The next elementary result [8, Proposition 2.1] ensures that condition (S)+(\mathrm{S})_{+} holds true for the fractional (p,q)(p,q)-Laplacian.

Proposition 2.

Let φ:XX\varphi:X\to X^{*} be of type (S)+(\mathrm{S})_{+} and let ψ:XX\psi:X\to X^{*} be monotone. Then φ+ψ\varphi+\psi satisfies condition (S)+(\mathrm{S})_{+}.

A multifunction Φ:X2X\Phi:X\to 2^{X^{*}} is called coercive provided

limxinf{x,xxX,xΦ(x)}x=+.\lim_{\|x\|\to\infty}\frac{\inf\{\langle x^{*},x\rangle\,\mid\,x\in X,\,x^{*}\in\Phi(x)\}}{\|x\|}=+\infty\,.

The following result is a direct consequence of [11, Proposition 3.2.33].

Theorem 3.

Let XX be a finite-dimensional normed space and let Φ:X2X\Phi:X\to 2^{X^{*}} be a convex compact-valued multifunction. Suppose Φ\Phi is upper semi-continuous and coercive. Then there exists x^X\hat{x}\in X satisfying 0Φ(x^)0\in\Phi(\hat{x}).

Hereafter, if XX and YY are two topological spaces, the symbol XYX\hookrightarrow Y means that XX continuously embeds in YY. Given p>1p>1, put p:=pp1p^{\prime}:=\frac{p}{p-1}, denote by p\|\cdot\|_{p} the usual norm of Lp(Ω)L^{p}(\Omega), and indicate with 1,p\|\cdot\|_{1,p} the norm on W01,p(Ω)W^{1,p}_{0}(\Omega) arising from Poincaré’s inequality, namely

u1,p:=up,uW01,p(Ω).\|u\|_{1,p}:=\|\nabla u\|_{p}\,,\quad u\in W^{1,p}_{0}(\Omega).

If uW01,p(Ω)u\in W^{1,p}_{0}(\Omega), we set u(x)=0u(x)=0 on NΩ\mathbb{R}^{N}\setminus\Omega; cf. [6, Section 5]. Fix s(0,1)s\in(0,1). The Gagliardo seminorm of a measurable function u:Nu:\mathbb{R}^{N}\to\mathbb{R} is

[u]s,p:=(RN×N|u(x)u(y)|p|xy|N+psdxdy)1p,[u]_{s,p}:=\left(\int_{R^{N}\times\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}{{\rm d}x}{{\rm d}y}\right)^{\frac{1}{p}},

while Ws,p(N)W^{s,p}(\mathbb{R}^{N}) denotes the fractional Sobolev space

Ws,p(N):={uLp(N):[u]s,p<+},W^{s,p}(\mathbb{R}^{N}):=\left\{u\in L^{p}(\mathbb{R}^{N}):\ [u]_{s,p}<+\infty\right\},

endowed with the norm

uWs,p(N):=(uLp(N)p+[u]s,pp)1p.\|u\|_{W^{s,p}(\mathbb{R}^{N})}:=\left(\|u\|^{p}_{L^{p}(\mathbb{R}^{N})}+[u]_{s,p}^{p}\right)^{\frac{1}{p}}.

As usual, on the space

W0s,p(Ω):={uWs,p(N):u=0a.e. inNΩ}W^{s,p}_{0}(\Omega):=\{u\in W^{s,p}(\mathbb{R}^{N}):u=0\;\mbox{a.e. in}\;\mathbb{R}^{N}\setminus\Omega\}

we will consider the equivalent norm

us,p:=[u]s,p,uW0s,p(Ω).\|u\|_{s,p}:=[u]_{s,p},\quad u\in W^{s,p}_{0}(\Omega).

Let Ws,p(Ω):=(W0s,p(Ω))W^{-s,p^{\prime}}(\Omega):=(W^{s,p}_{0}(\Omega))^{*} and let psp^{*}_{s} be the fractional Sobolev critical exponent, i.e., ps=NpNspp^{*}_{s}=\frac{Np}{N-sp} when sp<Nsp<N, ps=+p^{*}_{s}=+\infty otherwise. Thanks to Propositions 2.1–2.2, Theorem 6.7, and Corollary 7.2 of [6] one has

Proposition 4.

If 1p<+1\leq p<+\infty then:

  • (a)

    0<ss′′1W0s′′,p(Ω)W0s,p(Ω)0<s^{\prime}\leq s^{\prime\prime}\leq 1\;\implies\;W^{s^{\prime\prime},p}_{0}(\Omega)\hookrightarrow W^{s^{\prime},p}_{0}(\Omega).

  • (b)

    W0s,p(Ω)Lr(Ω)W^{s,p}_{0}(\Omega)\hookrightarrow L^{r}(\Omega) for all r[1,ps]r\in[1,p^{*}_{s}].

  • (c)

    The embedding in (b) is compact once r<ps<+r<p^{*}_{s}<+\infty.

However, contrary to the non-fractional case, we know [15] that

1q<p+\centernotW0s,p(Ω)W0s,q(Ω).1\leq q<p\leq+\infty\;\;\centernot\implies W^{s,p}_{0}(\Omega)\subseteq W^{s,q}_{0}(\Omega).

Define, for every u,vW0s,p(Ω)u,v\in W^{s,p}_{0}(\Omega),

(Δ)psu,v:=N×N|u(x)u(y)|p2(u(x)u(y))(v(x)v(y))|xy|N+psdxdy.\langle(-\Delta)^{s}_{p}u,v\rangle:=\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+ps}}{\rm d}x{\rm d}y\,.

The operator (Δ)ps(-\Delta)_{p}^{s} is called (negative) ss-fractional pp-Laplacian. It possesses the following properties.

  • (p1)({\rm p}_{1})

    (Δ)ps:W0s,p(Ω)Ws,p(Ω)(-\Delta)^{s}_{p}:W^{s,p}_{0}(\Omega)\rightarrow W^{-s,p^{\prime}}(\Omega) turns out monotone, continuous, and of type (S)+({\rm S})_{+}; vide, e.g., [7, Lemma 2.1].

  • (p2)({\rm p}_{2})

    One has

    (Δ)psuWs,p(Ω)us,pp1uW0s,p(Ω).\|(-\Delta)^{s}_{p}u\|_{W^{-s,p^{\prime}}(\Omega)}\leq\|u\|_{s,p}^{p-1}\quad\forall\,u\in W^{s,p}_{0}(\Omega).

    Hence, (Δ)ps(-\Delta)^{s}_{p} maps bounded sets into bounded sets.

  • (p3)({\rm p}_{3})

    The first eigenvalue λ1,p,s\lambda_{1,p,s} of (Δ)ps(-\Delta)^{s}_{p} is given by (cf. [13])

    λ1,p,s=infuW0s,p(Ω),u0us,ppupp.\lambda_{1,p,s}=\inf_{u\in W_{0}^{s,p}(\Omega),u\neq 0}\frac{\|u\|_{s,p}^{p}}{\|u\|_{p}^{p}}\,.

To deal with distributional fractional gradients, we first introduce the Bessel potential spaces Lα,p(N)L^{\alpha,p}(\mathbb{R}^{N}), where α>0\alpha>0. Set, for every xNx\in\mathbb{R}^{N},

gα(x):=1(4π)α2Γ(α2)0+eπ|x|2δeδ4πδαN2dδδ.g_{\alpha}(x):=\frac{1}{(4\pi)^{\frac{\alpha}{2}}\Gamma\left(\frac{\alpha}{2}\right)}\int_{0}^{+\infty}e^{\frac{-\pi|x|^{2}}{\delta}}e^{\frac{-\delta}{4\pi}}\delta^{\frac{\alpha-N}{2}}\frac{{\rm d}\delta}{\delta}\,.

On account of [16, Section 7.1] one can assert that:

  • 1)

    gαL1(N)g_{\alpha}\in L^{1}(\mathbb{R}^{N}) and gαL1(N)=1\|g_{\alpha}\|_{L^{1}(\mathbb{R}^{N})}=1.

  • 2)

    gαg_{\alpha} enjoys the semi-group property, i.e., gαgβ=gα+βg_{\alpha}\ast g_{\beta}=g_{\alpha+\beta} for any α,β>0\alpha,\beta>0, with * being the convolution operator.

Now, put

Lα,p(N):={u:u=gαu~for someu~Lp(N)}L^{\alpha,p}(\mathbb{R}^{N}):=\{u:\,u=g_{\alpha}\ast\tilde{u}\;\mbox{for some}\;\tilde{u}\in L^{p}(\mathbb{R}^{N})\}

as well as

uLα,p(N)=u~Lp(N)wheneveru=gαu~.\|u\|_{L^{\alpha,p}(\mathbb{R}^{N})}=\|\tilde{u}\|_{L^{p}(\mathbb{R}^{N})}\;\;\mbox{whenever}\;\;u=g_{\alpha}\ast\tilde{u}.

Using 1) and 2) we easily get

0<α<βLβ,p(N)Lα,p(N)Lp(N).0<\alpha<\beta\;\implies\;L^{\beta,p}(\mathbb{R}^{N})\subseteq L^{\alpha,p}(\mathbb{R}^{N})\subseteq L^{p}(\mathbb{R}^{N}).

Moreover, by [19, Theorem 2.2], one has

Theorem 5.

If 1<p<+1<p<+\infty and 0<ε<α0<\varepsilon<\alpha then

Lα+ε,p(N)Wα,p(N)Lαε,p(N).L^{\alpha+\varepsilon,p}(\mathbb{R}^{N})\hookrightarrow W^{\alpha,p}(\mathbb{R}^{N})\hookrightarrow L^{\alpha-\varepsilon,p}(\mathbb{R}^{N}).

Finally, given s(0,1)s\in(0,1), define

L0s,p(Ω):={uLs,p(N):u=0a.e. inNΩ}.L^{s,p}_{0}(\Omega):=\{u\in L^{s,p}(\mathbb{R}^{N}):u=0\;\text{a.e. in}\;\mathbb{R}^{N}\setminus\Omega\}.

Thanks to Theorem 5 we infer

L0s+ε,p(Ω)W0s,p(Ω)L0sε,p(Ω)ε(0,s).L^{s+\varepsilon,p}_{0}(\Omega)\hookrightarrow W^{s,p}_{0}(\Omega)\hookrightarrow L^{s-\varepsilon,p}_{0}(\Omega)\quad\forall\,\varepsilon\in(0,s). (2.1)

The next basic notion is taken from [19]. For 0<α<N0<\alpha<N, let

γ(N,α):=Γ(Nα2)πN22αΓ(α2),Iα(x):=γ(N,α)|x|Nα,xN{0}.\gamma(N,\alpha):=\frac{\Gamma\left(\frac{N-\alpha}{2}\right)}{\pi^{\frac{N}{2}}2^{\alpha}\Gamma\left(\frac{\alpha}{2}\right)},\quad I_{\alpha}(x):=\frac{\gamma(N,\alpha)}{|x|^{N-\alpha}},\quad x\in\mathbb{R}^{N}\setminus\{0\}.

If uLp(N)u\in L^{p}(\mathbb{R}^{N}) and I1suI_{1-s}\ast u makes sense then the vector

Dsu:=(x1(I1su),,xN(I1su)),D^{s}u:=\left(\frac{\partial}{\partial x_{1}}(I_{1-s}\ast u),\ldots,\frac{\partial}{\partial x_{N}}(I_{1-s}\ast u)\right),

where partial derivatives are understood in a distributional sense, is called distributional Riesz ss-fractional gradient of uu. Theorem 1.2 in [19] ensures that

Dsu=I1sDuuCc(N).D^{s}u=I_{1-s}\ast Du\quad\forall\,u\in C^{\infty}_{c}(\mathbb{R}^{N}).

Further, DsuD^{s}u looks like the natural extension of u\nabla u to the fractional framework, In fact, it exhibits analogous properties and, roughly speaking, DsuuD^{s}u\to\nabla u when s1s\to 1^{-}; see, e.g., [10, Section 2].

According to [19, Definition 1.5], Xs,p(N)X^{s,p}(\mathbb{R}^{N}) denotes the completion of Cc(N)C^{\infty}_{c}(\mathbb{R}^{N}) with respect to the norm

uXs,p(N):=(uLp(N)p+DsuLp(N)p)1p.\|u\|_{X^{s,p}(\mathbb{R}^{N})}:=\left(\|u\|_{L^{p}(\mathbb{R}^{N})}^{p}+\|D^{s}u\|_{L^{p}(\mathbb{R}^{N})}^{p}\right)^{\frac{1}{p}}.

Since, by [19, Theorem 1.7], Xs,p(N)=Ls,p(N)X^{s,p}(\mathbb{R}^{N})=L^{s,p}(\mathbb{R}^{N}) we can deduce many facts about Xs,p(N)X^{s,p}(\mathbb{R}^{N}) from the existing literature on Ls,p(N)L^{s,p}(\mathbb{R}^{N}). Moreover, if

X0s,p(Ω):={uXs,p(N):u=0a.e. inNΩ},X^{s,p}_{0}(\Omega):=\{u\in X^{s,p}(\mathbb{R}^{N}):u=0\;\text{a.e. in}\;\mathbb{R}^{N}\setminus\Omega\},

then X0s,p(Ω)=L0s,p(Ω)X^{s,p}_{0}(\Omega)=L^{s,p}_{0}(\Omega).

3 Existence results

To shorten notation, for i=1,2i=1,2, we set Ui:=W0si,pi(Ω)U_{i}:=W^{s_{i},p_{i}}_{0}(\Omega) and denote by ,i\langle\cdot,\cdot\rangle_{i} the duality brackets of UiU_{i}. Lemma 2.6 in [3] guarantees that

Ui:=W0si,pi(Ω)W0ti,qi(Ω).U_{i}:=W^{s_{i},p_{i}}_{0}(\Omega)\hookrightarrow W^{t_{i},q_{i}}_{0}(\Omega). (3.1)

Hence, the differential operator u(Δ)pisiu+μi(Δ)qitiuu\mapsto(-\Delta)^{s_{i}}_{p_{i}}u+\mu_{i}(-\Delta)^{t_{i}}_{q_{i}}u turns out well-defined on UiU_{i}. Let Asi,ti:UiUiA_{s_{i},t_{i}}:U_{i}\to U^{*}_{i} be given by

Asi,ti(u),vi:=N×N|u(x)u(y)|pi2(u(x)u(y))(v(x)v(y))|xy|N+pisidxdy+μiN×N|u(x)u(y)|qi2(u(x)u(y))(v(x)v(y))|xy|N+qitidxdy\begin{split}\langle A_{s_{i},t_{i}}(u),v\rangle_{i}&:=\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{p_{i}-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+p_{i}s_{i}}}{\rm d}x\,{\rm d}y\\ &+\mu_{i}\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{q_{i}-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+q_{i}t_{i}}}{\rm d}x\,{\rm d}y\end{split}

for every u,vUiu,v\in U_{i}. Thanks to properties (p1)({\rm p}_{1})(p2)({\rm p}_{2}) stated in Section 2, Asi,tiA_{s_{i},t_{i}} is bounded and continuous. Consequently,

Lemma 6.

Under (H1)({\rm H}_{1}), the operator A:U1×U2U1×U2A:U_{1}\times U_{2}\to U^{*}_{1}\times U^{*}_{2} defined by

A(u1,u2):=(As1,t1(u1),As2,t2(u2))(u1,u2)U1×U2A(u_{1},u_{2}):=(A_{s_{1},t_{1}}(u_{1}),A_{s_{2},t_{2}}(u_{2}))\;\;\forall\,(u_{1},u_{2})\in U_{1}\times U_{2}

maps bounded sets into bounded sets and is continuous.

Next, put, provided (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2},

𝒮F1,F2(u1,u2):={(w1,w2)L(p1)(Ω)×L(p2)(Ω):wi()Fi(,u1,u2,Dr1u1,Dr2u2) a.e. in Ω,i=1,2},\begin{split}\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2}):=\{(w_{1},w_{2})&\in L^{({p_{1}^{*}})^{\prime}}(\Omega)\times L^{(p^{*}_{2})^{\prime}}(\Omega):\\ &w_{i}(\cdot)\in F_{i}(\cdot,u_{1},u_{2},D^{r_{1}}u_{1},D^{r_{2}}u_{2})\mbox{ a.e. in }\Omega,\;i=1,2\},\end{split}

with pip^{*}_{i} as in (1.2).

Lemma 7.

Let (H1)({\rm H}_{1})(H3)({\rm H}_{3}) be satisfied. Then:

  • (a1)({\rm a}_{1})

    𝒮F1,F2(u1,u2)\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2}) turns out nonempty, convex, closed for all (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2}.

  • (a2)({\rm a}_{2})

    The multifunction 𝒮F1,F2:U1×U22L(p1)(Ω)×L(p2)(Ω)\mathcal{S}_{F_{1},F_{2}}:U_{1}\times U_{2}\to 2^{L^{({p_{1}^{*}})^{\prime}}(\Omega)\times L^{(p^{*}_{2})^{\prime}}(\Omega)} is bounded and strongly-weakly upper semi-continuous.

Proof.

Since ri<sir_{i}<s_{i}, if ε(0,siri)\varepsilon\in(0,s_{i}-r_{i}), combining Proposition 4 with (2.1) yields

W0si,pi(Ω)W0ri+ε,pi(Ω)L0ri,pi(Ω).W^{s_{i},p_{i}}_{0}(\Omega)\hookrightarrow W^{r_{i}+\varepsilon,p_{i}}_{0}(\Omega)\hookrightarrow L^{r_{i},p_{i}}_{0}(\Omega).

Thus,

(u1,u2)U1×U2(Dr1u1,Dr2u2)Lp1(Ω)×Lp2(Ω).(u_{1},u_{2})\in U_{1}\times U_{2}\implies(D^{r_{1}}u_{1},D^{r_{2}}u_{2})\in L^{p_{1}}(\Omega)\times L^{p_{2}}(\Omega).

Now, pick any (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2}. Through (H2)({\rm H_{2}}) and Proposition 1 we realize that Fi(,u1,u2,Dr1u1,Dr2u2)F_{i}(\cdot,u_{1},u_{2},D^{r_{1}}u_{1},D^{r_{2}}u_{2}) admits a measurable selection wi:Ωw_{i}:\Omega\to\mathbb{R}. By (H3)({\rm H}_{3}) one has

w1(p1)(p1)\displaystyle\|w_{1}\|_{(p_{1}^{*})^{\prime}}^{(p_{1}^{*})^{\prime}} Ω[m1(|u1|p11+|u2|p2(p1)+|Dr1u1|p1(p1)+|Dr2u2|p2(p1))+δ1](p1)dx\displaystyle\leq\int_{\Omega}\Big{[}m_{1}\Big{(}|u_{1}|^{p_{1}^{*}-1}+|u_{2}|^{\frac{p_{2}^{*}}{(p_{1}^{*})^{\prime}}}+|D^{r_{1}}u_{1}|^{\frac{p_{1}}{(p_{1}^{*})^{\prime}}}+|D^{r_{2}}u_{2}|^{\frac{p_{2}}{(p_{1}^{*})^{\prime}}}\Big{)}+\delta_{1}\Big{]}^{(p_{1}^{*})^{\prime}}\,{\rm d}x
(m1+1)(δ1(p1)(p1)+u1p1p1+u2p2p2+Dr1u1p1p1+Dr2u2p2p2)<+\displaystyle\leq(m_{1}+1)\Big{(}\|\delta_{1}\|_{(p_{1}^{*})^{\prime}}^{(p_{1}^{*})^{\prime}}+\|u_{1}\|_{p_{1}^{*}}^{p_{1}^{*}}+\|u_{2}\|^{p_{2}^{*}}_{p_{2}^{*}}+\|D^{r_{1}}u_{1}\|_{p_{1}}^{p_{1}}+\|D^{r_{2}}u_{2}\|_{p_{2}}^{p_{2}}\Big{)}<+\infty

as well as w2(p2)<+\|w_{2}\|_{(p_{2}^{*})^{\prime}}<+\infty. Hence, 𝒮F1,F2(u1,u2)\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2})\neq\emptyset. This proves (a1)({\rm a}_{1}), because convexity and closing follow at once from the analogous properties of FiF_{i}.

Let us next verify (a2)({\rm a}_{2}). The above inequalities also guarantee that 𝒮F1,F2\mathcal{S}_{F_{1},F_{2}} maps bounded sets into bounded sets. If BB is a nonempty weakly closed subset of L(p1)(Ω)×L(p2)(Ω)L^{(p_{1}^{*})^{\prime}}(\Omega)\times L^{(p_{2}^{*})^{\prime}}(\Omega) while {(u1,n,u2,n)}𝒮F1,F2(B)\{(u_{1,n},u_{2,n})\}\subseteq\mathcal{S}_{F_{1},F_{2}}^{-}(B) converges to (u1,u2)(u_{1},u_{2}) in U1×U2U_{1}\times U_{2}, then {(u1,n,u2,n)}U1×U2\{(u_{1,n},u_{2,n})\}\subseteq U_{1}\times U_{2} turns out bounded. The same holds true concerning the set

n𝒮F1,F2(u1,n,u2,n)L(p1)(Ω)×L(p2)(Ω).\bigcup_{n\in\mathbb{N}}\mathcal{S}_{F_{1},F_{2}}(u_{1,n},u_{2,n})\subseteq L^{(p_{1}^{*})^{\prime}}(\Omega)\times L^{(p_{2}^{*})^{\prime}}(\Omega).

So, up to sub-sequences, there exists (w1,n,w2,n)𝒮F1,F2(u1,n,u2,n)B(w_{1,n},w_{2,n})\in\mathcal{S}_{F_{1},F_{2}}(u_{1,n},u_{2,n})\cap B, nn\in\mathbb{N}, such that

(w1,n,w2,n)(w1,w2)inL(p1)(Ω)×L(p2)(Ω).(w_{1,n},w_{2,n})\rightharpoonup(w_{1},w_{2})\quad\mbox{in}\quad L^{(p_{1}^{*})^{\prime}}(\Omega)\times L^{(p_{2}^{*})^{\prime}}(\Omega).

One evidently has (w1,w2)B(w_{1},w_{2})\in B, because BB is weakly closed. Mazur’s principle provides a sequence {(w~1,n,w~2,n)}\{(\tilde{w}_{1,n},\tilde{w}_{2,n})\} of convex combinations of {(w1,n,w2,n)}\{(w_{1,n},w_{2,n})\} satisfying

(w~1,n,w~2,n)(w1,w2)inL(p1)(Ω)×L(p2)(Ω).(\tilde{w}_{1,n},\tilde{w}_{2,n})\to(w_{1},w_{2})\;\;\mbox{in}\;\;L^{(p_{1}^{*})^{\prime}}(\Omega)\times L^{(p_{2}^{*})^{\prime}}(\Omega).

By (H2)({\rm H_{2}}), this easily entails

wi(x)Fi(x,u1(x),u2(x),Dr1u1(x),Dr2u2(x))for a.e.xΩ,i=1,2.w_{i}(x)\in F_{i}(x,u_{1}(x),u_{2}(x),D^{r_{1}}u_{1}(x),D^{r_{2}}u_{2}(x))\;\;\mbox{for a.e.}\;\;x\in\Omega,\;i=1,2.

Consequently, (w1,w2)𝒮F1,F2(u1,u2)B(w_{1},w_{2})\in\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2})\cap B, i.e., (u1,u2)𝒮F1,F2(B)(u_{1},u_{2})\in\mathcal{S}_{F_{1},F_{2}}^{-}(B), as desired. ∎

Our existence result can be established after introducing some suitable constants and the notion of generalized solution to (1.1). Since ri<sir_{i}<s_{i}, i=1,2i=1,2, embeddings (2.1) produce

Dr1u1p1p1c^1u1s1,p1p1u1U1,Dr2u2p2p2c^2u2s2,p2p2u2U2,\|D^{r_{1}}u_{1}\|_{p_{1}}^{p_{1}}\leq\hat{c}_{1}\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}\;\;\forall\,u_{1}\in U_{1},\quad\|D^{r_{2}}u_{2}\|_{p_{2}}^{p_{2}}\leq\hat{c}_{2}\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}\;\;\forall\,u_{2}\in U_{2}, (3.2)

with appropriate c^i>0\hat{c}_{i}>0. Via (3.1) and its analogue for couples (s2,p2)(s_{2},p_{2})(t2,q2)(t_{2},q_{2}) we next have

u1t1,q1q1c~1u1s1,p1p1u1U1,u2t2,q2q2c~2u2s2,p2p2u2U2,\|u_{1}\|_{t_{1},q_{1}}^{q_{1}}\leq\tilde{c}_{1}\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}\;\;\forall\,u_{1}\in U_{1},\quad\|u_{2}\|_{t_{2},q_{2}}^{q_{2}}\leq\tilde{c}_{2}\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}\;\;\forall\,u_{2}\in U_{2}, (3.3)

where c~i>0\tilde{c}_{i}>0. Finally, set

(u1,u2),(v1,v2):=u1,v11+u2,v22,(u1,u2)U1×U2,(v1,v2)U1×U2.\langle(u_{1},u_{2}),(v_{1},v_{2})\rangle:=\langle u_{1},v_{1}\rangle_{1}+\langle u_{2},v_{2}\rangle_{2},\quad(u_{1},u_{2})\in U_{1}\times U_{2},\;(v_{1},v_{2})\in U^{*}_{1}\times U^{*}_{2}.
Definition 8.

We say that (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2} is a generalized solution of (1.1) if there exist two sequences (u1,n,u2,n)U1×U2(u_{1,n},u_{2,n})\in U_{1}\times U_{2} and (w1,n,w2,n)𝒮F1,F2(u1,n,u2,n)(w_{1,n},w_{2,n})\in\mathcal{S}_{F_{1},F_{2}}(u_{1,n},u_{2,n}) fulfilling:

  • (i)

    (u1,n,u2,n)(u1,u2)(u_{1,n},u_{2,n})\rightharpoonup(u_{1},u_{2}) in U1×U2U_{1}\times U_{2};

  • (ii)

    A(u1,n,u2,n)(w1,n,w2,n)0A(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n})\rightharpoonup 0 in U1×U2U_{1}^{*}\times U_{2}^{*};

  • (iii)

    limnA(u1,n,u2,n)(w1,n,w2,n),(u1,nu1,u2,nu2)=0\displaystyle{\lim_{n\to\infty}}\langle A(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n}),(u_{1,n}-u_{1},u_{2,n}-u_{2})\rangle=0.

Theorem 9.

If (H1)({\rm H_{1}})(H4)({\rm H_{4}}) are satisfied and, moreover,

M1+M2λ1,pi,si+c^i(M1+M2)+|c~i|μi|<1,i=1,2,\frac{M_{1}+M_{2}}{\lambda_{1,p_{i},s_{i}}}+\hat{c}_{i}(M_{1}^{\prime}+M_{2}^{\prime})+|\tilde{c}_{i}|\mu_{i}|<1,\;\;i=1,2, (3.4)

then Problem (1.1) admits a generalized solution.

Proof.

The space U1×U2U_{1}\times U_{2} is separable, therefore it possesses a Galerkin’s basis, namely a sequence {En}\{E_{n}\} of linear sub-spaces of U1×U2U_{1}\times U_{2} such that:

  • (i1)({\rm i}_{1})

    dim(En)<n{\rm dim}(E_{n})<\infty\;\;\forall\,n\in\mathbb{N};

  • (i2)({\rm i}_{2})

    EnEn+1nE_{n}\subseteq E_{n+1}\;\;\forall\,n\in\mathbb{N};

  • (i3)({\rm i}_{3})

    n=1En¯=U1×U2\overline{\cup_{n=1}^{\infty}E_{n}}=U_{1}\times U_{2}.

Pick any nn\in\mathbb{N}. Consider the problem: Find (u1,u2)En(u_{1},u_{2})\in E_{n} fulfilling

A(u1,u2)𝒮F1,F2(u1,u2)0inEn.A(u_{1},u_{2})-\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2})\ni 0\;\;\mbox{in}\;\;E_{n}^{*}. (3.5)

By Lemma 7 the multifunction

(A𝒮F1,F2)En:En2En(A-\mathcal{S}_{F_{1},F_{2}})\lfloor_{E_{n}}:E_{n}\to 2^{E_{n}^{*}}

takes convex closed values, maps bounded sets into bounded sets, and is upper semi- continuous. If (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2} and (w1,w2)𝒮F1,F2(u1,u2)(w_{1},w_{2})\in\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2}) then, thanks to (H4)({\rm H}_{4}), we have

A(u1,u2)\displaystyle\langle A(u_{1},u_{2}) (w1,w2),(u1,u2)u1s1,p1p1+u2s2,p2p2|μ1|u1t1,q1q1|μ2|u2t2,q2q2\displaystyle-(w_{1},w_{2}),(u_{1},u_{2})\rangle\geq\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}+\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}-|\mu_{1}|\|u_{1}\|_{t_{1},q_{1}}^{q_{1}}-|\mu_{2}|\|u_{2}\|_{t_{2},q_{2}}^{q_{2}}
Ω[M1(|u1|p1+|u2|p2)+M1(|Dr1u1|p1+|Dr2u2|p2)+σ1]dx\displaystyle-\int_{\Omega}\left[M_{1}(|u_{1}|^{p_{1}}+|u_{2}|^{p_{2}})+M_{1}^{\prime}(|D^{r_{1}}u_{1}|^{p_{1}}+|D^{r_{2}}u_{2}|^{p_{2}})+\sigma_{1}\right]{\rm d}x
Ω[M2(|u1|p1+|u2|p2)+M2(|Dr1u1|p1+|Dr2u2|p2)+σ2]dx.\displaystyle-\int_{\Omega}\left[M_{2}(|u_{1}|^{p_{1}}+|u_{2}|^{p_{2}})+M_{2}^{\prime}(|D^{r_{1}}u_{1}|^{p_{1}}+|D^{r_{2}}u_{2}|^{p_{2}})+\sigma_{2}\right]{\rm d}x.

Using (p3)({\rm p}_{3}) yields

\displaystyle\langle A(u1,u2)(w1,w2),(u1,u2)\displaystyle A(u_{1},u_{2})-(w_{1},w_{2}),(u_{1},u_{2})\rangle
(1M1+M2λ1,p1,s1)u1s1,p1p1+(1M1+M2λ1,p2,s2)u2s2,p2p2|μ1|u1t1,q1q1|μ2|u2t2,q2q2\displaystyle\geq\left(1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{1},s_{1}}}\right)\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}+\left(1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{2},s_{2}}}\right)\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}-|\mu_{1}|\|u_{1}\|_{t_{1},q_{1}}^{q_{1}}-|\mu_{2}|\|u_{2}\|_{t_{2},q_{2}}^{q_{2}}
Ω(M1+M2)|Dr1u1|p1dxΩ(M1+M2)|Dr2u2|p2dxσ11σ21,\displaystyle\phantom{ppp}-\int_{\Omega}(M_{1}^{\prime}+M_{2}^{\prime})|D^{r_{1}}u_{1}|^{p_{1}}{\rm d}x-\int_{\Omega}(M_{1}^{\prime}+M_{2}^{\prime})|D^{r_{2}}u_{2}|^{p_{2}}{\rm d}x-\|\sigma_{1}\|_{1}-\|\sigma_{2}\|_{1},

whence, on account of (3.2),

\displaystyle\langle A(u1,u2)(w1,w2),(u1,u2)\displaystyle A(u_{1},u_{2})-(w_{1},w_{2}),(u_{1},u_{2})\rangle
[1M1+M2λ1,p1,s1c^1(M1+M2)]u1s1,p1p1+[1M1+M2λ1,p2,s2c^2(M1+M2)]u2s2,p2p2\displaystyle\geq\left[1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{1},s_{1}}}-\hat{c}_{1}(M_{1}^{\prime}+M_{2}^{\prime})\right]\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}+\left[1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{2},s_{2}}}-\hat{c}_{2}(M_{1}^{\prime}+M_{2}^{\prime})\right]\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}
|μ1|u1t1,q1q1|μ2|u2t2,q2q2σ11σ21.\displaystyle\phantom{ppp}-|\mu_{1}|\|u_{1}\|_{t_{1},q_{1}}^{q_{1}}-|\mu_{2}|\|u_{2}\|_{t_{2},q_{2}}^{q_{2}}-\|\sigma_{1}\|_{1}-\|\sigma_{2}\|_{1}.

Finally, through (3.3) we obtain

A(u1,u2)(w1,w2),(u1,u2)\displaystyle\langle A(u_{1},u_{2})-(w_{1},w_{2}),(u_{1},u_{2})\rangle
[1M1+M2λ1,p1,s1c^1(M1+M2)|μ1|c~1]u1s1,p1p1\displaystyle\geq\left[1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{1},s_{1}}}-\hat{c}_{1}(M_{1}^{\prime}+M_{2}^{\prime})-|\mu_{1}|\tilde{c}_{1}\right]\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}
+[1M1+M2λ1,p2,s2c^2(M1+M2)|μ2|c~2]u2s2,p2p2σ11σ21\displaystyle+\left[1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{2},s_{2}}}-\hat{c}_{2}(M_{1}^{\prime}+M_{2}^{\prime})-|\mu_{2}|\tilde{c}_{2}\right]\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}-\|\sigma_{1}\|_{1}-\|\sigma_{2}\|_{1}
mini=1,2[1M1+M2λ1,pi,sic^i(M1+M2)|μi|c~i](u1s1,p1p1+u2s2,p2p2)σ11σ21,\displaystyle\geq\min_{i=1,2}\left[1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{i},s_{i}}}-\hat{c}_{i}(M_{1}^{\prime}+M_{2}^{\prime})-|\mu_{i}|\tilde{c}_{i}\right]\left(\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}+\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}\right)-\|\sigma_{1}\|_{1}-\|\sigma_{2}\|_{1},

namely

A(u1,u2)(w1,w2),(u1,u2)α(u1s1,p1p1+u2s2,p2p2)β,\langle A(u_{1},u_{2})-(w_{1},w_{2}),(u_{1},u_{2})\rangle\geq\alpha\left(\|u_{1}\|_{s_{1},p_{1}}^{p_{1}}+\|u_{2}\|_{s_{2},p_{2}}^{p_{2}}\right)-\beta, (3.6)

where

α:=mini=1,2[1M1+M2λ1,pi,sic^i(M1+M2)|μi|c~i],β:=σ11+σ21.\alpha:=\min_{i=1,2}\left[1-\frac{M_{1}+M_{2}}{\lambda_{1,p_{i},s_{i}}}-\hat{c}_{i}(M_{1}^{\prime}+M_{2}^{\prime})-|\mu_{i}|\tilde{c}_{i}\right],\quad\beta:=\|\sigma_{1}\|_{1}+\|\sigma_{2}\|_{1}.

Since (3.4) holds, the multifunction (A𝒮F1,F2)En(A-\mathcal{S}_{F_{1},F_{2}})\lfloor_{E_{n}} turns out coercive. Now, Theorem 3 can be applied, and there exists a solution (u1,n,u2,n)En(u_{1,n},u_{2,n})\in E_{n} to Problem (3.5), i.e.,

A(u1,n,u2,n)(w1,n,w2,n)=0inEnA(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n})=0\;\;\mbox{in}\;\;E^{*}_{n} (3.7)

for suitable (w1,n,w2,n)𝒮F1,F2(u1,n,u2,n)(w_{1,n},w_{2,n})\in\mathcal{S}_{F_{1},F_{2}}(u_{1,n},u_{2,n}). From (3.6), written with (u1,u2):=(u1,n,u2,n)(u_{1},u_{2}):=(u_{1,n},u_{2,n}), and (3.7) it follows

0α(u1,ns1,p1p1+u2,ns2,p2p2)βn.0\geq\alpha\left(\|u_{1,n}\|_{s_{1},p_{1}}^{p_{1}}+\|u_{2,n}\|_{s_{2},p_{2}}^{p_{2}}\right)-\beta\quad\forall\,n\in\mathbb{N}.

Thus, {(u1,n,u2,n)}U1×U2\{(u_{1,n},u_{2,n})\}\subseteq U_{1}\times U_{2} is bounded. By reflexivity one has (u1,n,u2,n)(u1,u2)(u_{1,n},u_{2,n})\rightharpoonup(u_{1},u_{2}) in U1×U2U_{1}\times U_{2}, taking a sub-sequence when necessary. Consequently, (i) of Definition 8 holds. Through Lemma 6 and (3.7) we next infer that {(w1,n,w2,n)}L(p1)(Ω)×L(p3)(Ω)\{(w_{1,n},w_{2,n})\}\subseteq L^{(p_{1}^{*})^{\prime}}(\Omega)\times L^{(p_{3}^{*})^{\prime}}(\Omega) turns out bounded. Therefore, always up to sub-sequences,

A(u1,n,u2,n)(w1,n,w2,n)(φ1,φ2)inU1×U2.A(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n})\rightharpoonup(\varphi_{1},\varphi_{2})\;\;\mbox{in}\;\;U_{1}^{*}\times U_{2}^{*}. (3.8)

Now, given any (v1,v2)n=1En(v_{1},v_{2})\in\cup_{n=1}^{\infty}E_{n}, Property (i2)({\rm i}_{2}) and (3.7) yield

(φ1,φ2),(v1,v2)=limnA(u1,n,u2,n)(w1,n,w2,n),(v1,v2)=0.\langle(\varphi_{1},\varphi_{2}),(v_{1},v_{2})\rangle=\lim_{n\to\infty}\langle A(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n}),(v_{1},v_{2})\rangle=0.

Because of (i3)({\rm i}_{3}) this forces

(φ1,φ2)=0inU1×U2,(\varphi_{1},\varphi_{2})=0\;\;\mbox{in}\;\;U_{1}^{*}\times U_{2}^{*}, (3.9)

namely, condition (ii) is true. Using (3.7)–(3.9) entails

A(u1,n,u2,n)(w1,n,w2,n),(u1,nu1,u2,nu2)=A(u1,n,u2,n)(w1,n,w2,n),(u1,u2)0\begin{split}\langle A(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n}),&(u_{1,n}-u_{1},u_{2,n}-u_{2})\rangle\\ &=-\langle A(u_{1,n},u_{2,n})-(w_{1,n},w_{2,n}),(u_{1},u_{2})\rangle\to 0\end{split} (3.10)

as nn\to\infty, which shows (iii) in Definition 8. Summing up, the pair (u1,u2)(u_{1},u_{2}) turns out a generalized solution to (1.1). ∎

If we strengthen (H3)({\rm H}_{3}) as follows:

  • (H3)({\rm H}_{3})^{\prime}

    For each i=1,2i=1,2 there exist ρi,σi(1,pi)\rho_{i},\sigma_{i}\in(1,p^{*}_{i}), mi>0m_{i}>0, and δiLσi(Ω)\delta_{i}\in L^{\sigma_{i}^{\prime}}(\Omega) such that

    |Fi(x,y1,y2,z1,z2)|\displaystyle|F_{i}(x,y_{1},y_{2},z_{1},z_{2})|\leq mi(|y1|p1ρi+|y2|p2ρi+|z1|p1ρi+|z2|p2ρi)+δi(x)\displaystyle m_{i}\left(|y_{1}|^{\frac{p^{*}_{1}}{\rho_{i}^{\prime}}}+|y_{2}|^{\frac{p_{2}^{*}}{\rho_{i}^{\prime}}}+|z_{1}|^{\frac{p_{1}}{\rho_{i}^{\prime}}}+|z_{2}|^{\frac{p_{2}}{\rho_{i}^{\prime}}}\right)+\delta_{i}(x)

    a.e. in Ω\Omega and for all (y1,y2,z1,z2)2×2N(y_{1},y_{2},z_{1},z_{2})\in\mathbb{R}^{2}\times\mathbb{R}^{2N},

then the next notion of strongly generalized solution can be given. Obviously, (H3)({\rm H}_{3})^{\prime} implies (H3)({\rm H}_{3}), because ρi<pi\rho_{i}<p^{*}_{i} forces

κρi<κ(pi)κ{p1,p2,p1,p2}.\frac{\kappa}{\rho^{\prime}_{i}}<\frac{\kappa}{(p^{*}_{i})^{\prime}}\quad\forall\,\kappa\in\{p_{1},p_{2},p^{*}_{1},p^{*}_{2}\}.
Definition 10.

We say that (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2} is a strongly generalized solution to (1.1) if there exist two sequences (u1,n,u2,n)U1×U2(u_{1,n},u_{2,n})\in U_{1}\times U_{2} and (w1,n,w2,n)𝒮F1,F2(u1,n,u2,n)(w_{1,n},w_{2,n})\in\mathcal{S}_{F_{1},F_{2}}(u_{1,n},u_{2,n}) satisfying (i) and (ii) of Definition 8 and, moreover,

  • (iii){\rm(iii)}^{\prime}

    limnA(u1,n,u2,n),(u1,nu1,u2,nu2)=0\displaystyle{\lim_{n\to\infty}}\langle A(u_{1,n},u_{2,n}),(u_{1,n}-u_{1},u_{2,n}-u_{2})\rangle=0.

Theorem 11.

Under assumptions (H1)({\rm H}_{1})(H2)({\rm H}_{2}), (H3)({\rm H}_{3})^{\prime}, (H4)({\rm H}_{4}), and (3.4), Problem (1.1) admits a strongly generalized solution.

Proof.

Reasoning as in the proof of Theorem 9 yields both (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2} and two sequences (u1,n,u2,n)U1×U2(u_{1,n},u_{2,n})\in U_{1}\times U_{2}, (w1,n,w2,n)𝒮F1,F2(u1,n,u2,n)(w_{1,n},w_{2,n})\in\mathcal{S}_{F_{1},F_{2}}(u_{1,n},u_{2,n}) that comply with (i)–(ii) in Definition 8 as well as (3.10). Thus, it remains to show (iii){\rm(iii)}^{\prime}. By (H3)({\rm H}_{3})^{\prime} and Hölder’s inequality we have

|Ωwi,n(ui,nui)dx|miΩ(|u1,n|p1ρi+|u2,n|p2ρi+|u1,n|p1ρi+|u2,n|p2ρi)|ui,nui|dx+Ωδi|ui,nui|dxmi(u1,np1ρi+u2,np2ρi+u1,n1,p1ρi+u2,n1,p2ρi)ui,nuiρi+δiσiui.nuiσiCui,nuiρi+δiσiui,nuiσin,\begin{split}&\left|\int_{\Omega}w_{i,n}(u_{i,n}-u_{i}){\rm d}x\right|\\ &\leq m_{i}\int_{\Omega}\left(|u_{1,n}|^{\frac{p_{1}^{*}}{\rho_{i}^{\prime}}}+|u_{2,n}|^{\frac{p_{2}^{*}}{\rho_{i}^{\prime}}}+|\nabla u_{1,n}|^{\frac{p_{1}}{\rho_{i}^{\prime}}}+|\nabla u_{2,n}|^{\frac{p_{2}}{\rho_{i}^{\prime}}}\right)|u_{i,n}-u_{i}|{\rm d}x+\int_{\Omega}\delta_{i}|u_{i,n}-u_{i}|{\rm d}x\\ &\leq m_{i}\left(\|u_{1,n}\|^{\rho_{i}^{\prime}}_{p_{1}^{*}}+\|u_{2,n}\|^{\rho_{i}^{\prime}}_{p_{2}^{*}}+\|u_{1,n}\|^{\rho_{i}^{\prime}}_{1,p_{1}}+\|u_{2,n}\|^{\rho_{i}^{\prime}}_{1,p_{2}}\right)\|u_{i,n}-u_{i}\|_{\rho_{i}}+\|\delta_{i}\|_{\sigma_{i}^{\prime}}\|u_{i.n}-u_{i}\|_{\sigma_{i}}\\ &\leq C\|u_{i,n}-u_{i}\|_{\rho_{i}}+\|\delta_{i}\|_{\sigma_{i}^{\prime}}\|u_{i,n}-u_{i}\|_{\sigma_{i}}\quad\forall\,n\in\mathbb{N},\end{split}

because {ui,n}Ui\{u_{i,n}\}\subseteq U_{i} turns out bounded. The condition ρiσi<pi\rho_{i}\vee\sigma_{i}<p_{i}^{*}, then, forces ui,nuiu_{i,n}\to u_{i} in Lρi(Ω)Lσi(Ω)L^{\rho_{i}}(\Omega)\cap L^{\sigma_{i}}(\Omega), where a sub-sequence is considered if necessary; see Proposition 4. Hence,

limnΩwi,n(ui,nui)dx=0,i=1,2.\lim_{n\to\infty}\int_{\Omega}w_{i,n}(u_{i,n}-u_{i}){\rm d}x=0,\quad i=1,2. (3.11)

Through (3.10)–(3.11), we arrive at

limnA(u1,n,u2,n),(u1,nu1,u2,nu2)=0,\lim_{n\to\infty}\langle A(u_{1,n},u_{2,n}),(u_{1,n}-u_{1},u_{2,n}-u_{2})\rangle=0,

namely (iii)({\rm iii})^{\prime} of Definition 10 also holds. ∎

Finally, recall that (u1,u2)U1×U2(u_{1},u_{2})\in U_{1}\times U_{2} is called a weak solution to (1.1) when there exists (w1,w2)𝒮F1,F2(u1,u2)(w_{1},w_{2})\in\mathcal{S}_{F_{1},F_{2}}(u_{1},u_{2}) such that

A(u1,u2)=(w1,w2)inU1×U2.A(u_{1},u_{2})=(w_{1},w_{2})\;\;\mbox{in}\;\;U_{1}^{*}\times U_{2}^{*}. (3.12)
Corollary 12.

Let the hypotheses of Theorem 11 be satisfied and let μ1μ20\mu_{1}\wedge\mu_{2}\geq 0. Then Problem (1.1) possesses a weak solution.

Proof.

Keep the same notation of the previous proof. Since μi0\mu_{i}\geq 0, gathering (p1)({\rm p}_{1}) with Proposition 2 together ensures that Asi,tiA_{s_{i},t_{i}} is of type (S)+({\rm S})_{+}. Therefore, from (iii)({\rm iii})^{\prime} it follows (u1,n,u2,n)(u1,u2)(u_{1,n},u_{2,n})\to(u_{1},u_{2}) in U1×U2U_{1}\times U_{2}. On the other hand, (a2)({\rm a}_{2}) in Lemma 7 produces, up to subsequences, (w1,n,w2,n)(w1,w2)(w_{1,n},w_{2,n})\rightharpoonup(w_{1},w_{2}) in U1×U2U_{1}^{*}\times U_{2}^{*}. Now, through (ii)({\rm ii}) and Lemma 6 we easily arrive at (3.12). ∎

Acknowledgment

This work was supported in part by: 1) the Research project of MIUR Prin 2022 Nonlinear differential problems with applications to real phenomena (Grant No. 2022ZXZTN2); 2) the Natural Science Foundation of Guangxi (Grant Nos. 2021GXNSFFA196004 and 2024GXNSFBA010337); 3) the National Natural Science Foundation of China (Grant No. 12371312); 4) the Natural Science Foundation of Chongqing (Grant No. CSTB2024 NSCQ-JQX0033); 5) the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20241534); 6) the Systematic Project of Center for Applied Mathematics of Guangxi (Yulin Normal University) (Grant Nos. 2023CAM002 and 2023CAM003).

The second author is a member of the GNAMPA of INdAM.

References

  • [1] J. Appell, E. De Pascale, and P.P. Zabreiko, Multivalued superposition operators, Rend. Sem. Mat. Univ. Padova 86 (1991), 213–231.
  • [2] J.C. Bellido, J. Cueto, and C. Mora-Corral, Non-local gradients in bounded domains motivated by continuum mechanics: Fundamental theorem of calculus and embeddings, Adv. Nonlinear Anal. 12 (2023), paper no. 20220316.
  • [3] L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), 419–458.
  • [4] J. Cen, S.A. Marano, and S. Zeng, Differential inclusion systems with double phase competing operators, convection, and mixed boundary conditions, Appl. Math. Lett. 167 (2025), paper no. 109556.
  • [5] G.E. Comi and G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: Asymptotics I, Rev. Mat. Complut. 36 (2023), 491–569.
  • [6] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.
  • [7] S. Frassu and A. Iannizzotto, Extremal constant sign solutions and nodal solutions for the fractional pp-Laplacian, J. Math. Anal. Appl. 501 (2021), paper no. 124205.
  • [8] L. Gambera and S.A. Marano, Fractional Dirichlet problems with singular and non-locally convctive reaction, Adv. Nonlinear Anal., to appear.
  • [9] L. Gambera, S.A. Marano, and D. Motreanu, Quasilinear Dirichlet systems with competing operators and convection, J. Math. Anal. Appl. 530 (2024), paper no. 127718.
  • [10] L. Gambera, S.A. Marano, and D. Motreanu, Dirichlet problems with fractional competing operators and fractional convection, Fract. Calc. Appl. Anal. 27 (2024), 2203–2218.
  • [11] L. Gasinski and N.S. Papageorgiou, Nonlinear Analysis, Chapman and Hall /CRC, Boca Raton, FL, 2005.
  • [12] J. Horváth, On some composition formulas, Proc. Amer. Math. Soc. 10 (1959), 433–437.
  • [13] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), 795–826.
  • [14] Z. Liu, R. Livrea, D. Motreanu, and S. Zeng, Variational differential inclusions without ellipticity condition, Electron. J. Qual. Theory Differ. Equ. 43 (2020), 17 pp.
  • [15] P. Mironescu and W. Sickel, A Sobolev non embedding, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 26 (2015), 291–298.
  • [16] Y. Mizuta, Potential Theory in Euclidean Spaces, Gakkotosho, Tokyo, 1996.
  • [17] D. Motreanu, Quasilinear Dirichlet problems with competing operators and convection, Open Math. 18 (2020), 1510–1517.
  • [18] D. Motreanu, Systems of hemivariational inclusions with competing operators, Mathematics 12 (2024), paper no. 1766.
  • [19] T.T. Shieh and D. E. Spector, On a new class of fractional partial differential equations, Adv. Calc. Var. 8 (2015), 321–336.
  • [20] T.T. Shieh and D.E. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Var. 11 (2018), 289–307.
  • [21] M. S̆ilhavý, Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Contin. Mech. Thermodyn. 32 (2019), 207–228.