This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Differentially Private Condorcet Voting

Abstract

Designing private voting rules is an important and pressing problem for trustworthy democracy. In this paper, under the framework of differential privacy, we propose a novel famliy of randomized voting rules based on the well-known Condorcet method, and focus on three classes of voting rules in this family: Laplacian Condorcet method (CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}), exponential Condorcet method (CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}), and randomized response Condorcet method (CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}), where λ\lambda represents the level of noise. We prove that all of our rules satisfy absolute monotonicity, lexi-participation, probabilistic Pareto efficiency, approximate probabilistic Condorcet criterion, and approximate SD-strategyproofness. In addition, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} satisfies (non-approximate) probabilistic Condorcet criterion, while CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} and CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfy strong lexi-participation. Finally, we regard differential privacy as a voting axiom, and discuss its relations to other axioms.

1 Introduction

Voting is a commonly used method for group decision making, where voters submit their preferences over a set of alternatives, and then a voting rule is applied to choose the winner. A major and classical paradigm behind the design and analysis of voting rules is the axiomatic approach (Plott 1976), under which voting rules are evaluated by their satisfaction to various normative properties, known as (voting) axioms. For example, the Condorcet criterion requires that whenever there exists a Condorcet winner, which is the alternative that beats all other alternatives in their head-to-head competitions, it must be selected as the winner.

Recently, privacy in voting has become a critical public concern. There are a series of works on examining the differential privacy (DP) (Dwork 2006) of voting (Shang et al. 2014; Hay, Elagina, and Miklau 2017; Yan, Li, and Liu 2020). These works mainly focused on applying several randomized mechanisms to existing voting rules, proving upper bounds on the privacy-preserving level (also called privacy budget, denoted by ϵ\epsilon throughout the paper), and then evaluating the utility loss (measured by accuracy or mean square error) due to randomness. However, the upper bounds on privacy in most of them are not tight, which means that the exact privacy-preserving level of the mechanisms is unclear. Moreover, we are not aware of a previous work on making voting private while maintaining the satisfaction to desirable voting axioms beyond strategyproofness (Lee 2015). Therefore, the following question remains largely open.

How can we design private voting rules that satisfy desirable axiomatic properties?

Our contributions.

We propose a novel class of randomized voting rules, denoted by CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda}, based on the celebrated Condorcet method, which chooses the Condorcet winner when it exists, where Rand is a randomized function (called a mechanism in DP literature) that introduces noises to pairwise comparisons between alternatives, and λ\lambda represents the level of noise. To choose a winner, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} applies Rand with parameter λ\lambda to the pairwise comparisons for the input profile until a Condorcet winner appears, and then chooses it as the winner.

We focus on three classes voting rules in this family, namely CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, and CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, which are obtained by applying the Laplace mechanism, exponential mechanism, and randomized response mechanism, respectively. Under these mechanisms, while it may take exponentially many iterations to obtain the winner by definition, we show that the winner can be efficiently sampled (Lemma 1).

p-Condorcet α\alpha-p-Condorcet p-Pareto a-Mono. α\alpha-SD-SP Lexi-Par. Strong Lexi-Par.
CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} eλ{\rm e}^{\lambda} e(22m)λ{\rm e}^{(2-2m)\lambda}
CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} 1+eλ/2(1+eλ/2)m1\frac{1+{\rm e}^{\lambda/2}}{\left(1+{\rm e}^{-\lambda/2}\right)^{m-1}} e(22m)λ{\rm e}^{(2-2m)\lambda}
CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} 2eλ(1eλ2)m12{\rm e}^{\lambda}\left(1-\frac{{\rm e}^{-\lambda}}{2}\right)^{m-1} e(22m)λ{\rm e}^{(2-2m)\lambda}
Table 1: The satisfaction of our mechanisms to the voting axioms, where “✓” indicates that the row rule satisfies the column axiom, and “✗” indicates that the rule does not satisfy the axiom. The expressions in the table represent the level of satisfaction to the approximate axioms (the α\alpha in α\alpha-p-Condorcet and α\alpha-SD-SP).

Our main technical contributions are three-fold. First, we prove that all the three classes of voting rules are differentially private by characterizing the upper and lower bounds on the privacy budget ϵ\epsilon (Theorem 1). Second, we study the satisfaction of our voting rules to probabilistic variants to Condorcet criterion (p-Condorcet, requiring the winning rate of the Condorcet winner is not lower than the other alternatives), Pareto efficiency (p-Pareto, which requires the winning rate of aa is not lower than bb, if aa Pareto dominates bb), monotonicity (a-monotonicity, which ensures the winning rate of each alternative does not decrease when her ranking is lifted by any voter simply), strategyproofness (SD-strategyproofness, SD-SP for short, which ensures that no voter can benefit herself in the sense of stochastic dominance by changing her vote), and participation (lexi-participation, which ensures that no voter can improve the result of the voting lexicographically by withdrawing her vote). Besides, we consider the approximate version of p-Condorcet (α\alpha-p-Condorcet, Definition 5) and SD-SP (α\alpha-SD-SP, Definition 7), and the strong version of lexi-participation (Definition 8). Our results suggest that CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} outperforms CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} in all aspects examined in the paper, while CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} sometimes achieves better p-Condorcet but only satisfies standard lexi-participation, instead of the strong version (Theorems 2 - 8). The results in the second part are summarized in Table 1. Third, we investigate the relations between DP and the voting axioms. We prove that Condorcet criterion and Pareto efficiency are incompatible with DP, and capture the upper bounds of satisfaction to p-Condorcet under ϵ\epsilon-DP (Proposition 4 - 6). Besides, we show that DP guarantees a lower bound of satisfaction to SD-strategyproofness (Proposition 7).

Related work and discussions.

To the best of our knowledge, DP was first applied to the rank aggregation problem in (Shang et al. 2014). They analyzed the error rates and derived upper bounds on them. Lee proposed an algorithm which is both differentially private and robust to strategic manipulation for tournament voting rules (Lee 2015). Hay et al. used Laplace mechanism and exponential mechanism to improve the privacy of Quicksort and Kemeny-Young method (Hay, Elagina, and Miklau 2017). Kohli and Laskowski explored DP, strategyproofness, and anonymity for voting on single-peaked preferences (Kohli and Laskowski 2018). Torra analyzed the privacy-preserving level of random dictatorship with DP, which is a well-known randomized voting rule (Torra 2019). He investigated the condition where random dictatorship is differentially private, and improved the mechanism to achieve DP for general cases. Yan et al. made tradeoff between accuracy and privacy in rank aggregation to achieve local DP via Laplace mechanism and randomized response (Yan, Li, and Liu 2020).

Most of the above works did not consider the tradeoffs between privacy and those desirable properties, and the privacy bounds of them are usually not tight. Ao et al. proposed the exact version of distributional DP (Bassily et al. 2013) and studied the privacy-preserving level of several voting rules, but they did not investigate how to improve the privacy (Liu et al. 2020). Beyond social choice, DP has also been considered in other topics of economics, such as mechanism design (Pai and Roth 2013; Xiao 2013), and matching and resource allocation (Hsu et al. 2016; Kannan et al. 2018).

There is a large literature on the analysis of randomized voting (Brandt 2017), most of them studied the satisfaction to axiomatic properties, e.g., complexity of manipulation (Walsh and Xia 2012), strategyproofness (Aziz, Brandl, and Brandt 2014, 2015), Pareto efficiency (Brandl, Brandt, and Hofbauer 2015; Gross, Anshelevich, and Xia 2017), participation (Brandl, Brandt, and Hofbauer 2019) and monotonicity (Brandl, Brandt, and Stricker 2018). The fairness properties of sortition have also been investigated (Benadè, Gölz, and Procaccia 2019; Flanigan et al. 2020, 2021).

The approximation of those properties was also studied. Procaccia discussed how much a strategyproof randomized rule could approximate a deterministic rule (Procaccia 2010). Birrell and Pass explored the approximate strategyproofness for randomized voting rules (Birrell and Pass 2011). They bounded the difference of the expectations of the utility function with a parameter, but the ratio seems to be more natural for DP.

2 Preliminaries

Let A={a1,a2,,am}A=\{a_{1},a_{2},\ldots,a_{m}\} denote a set of m2m\geqslant 2 alternatives. For any nn\in\mathbb{N}, let N={1,2,,n}N=\{1,2,\ldots,n\} be a set of voters. For each jNj\in N, the vote of voter jj is a linear order j(A)\succ_{j}\in\mathcal{L}(A), where (A)\mathcal{L}(A) denotes the set of all linear orders over AA, i.e., all transitive, antireflexive, antisymmetric, and complete binary relations. Let P={1,2,,n}P=\{\succ_{1},\succ_{2},\ldots,\succ_{n}\} denote the (preference) profile. For each jNj\in N, let PjP_{-j} denote the profile obtained from PP by removing j\succ_{j}. A (randomized) voting rule is a mapping r:(A)nΔ(A)r\colon\mathcal{L}(A)^{n}\to\Delta(A), where Δ(A)\Delta(A) denotes the set of all probability distributions on AA.

Given a profile P(A)nP\in\mathcal{L}(A)^{n}, let SP[a,b]S_{P}[a,b] denote the number of voters who prefer aa to bb, i.e., SP[a,b]=|{jN:ajb}|S_{P}[a,b]=|\{j\in N:a\succ_{j}b\}|. Let wP[a,b]=SP[a,b]SP[b,a]w_{P}[a,b]=S_{P}[a,b]-S_{P}[b,a] be the majority margin of aa over bb. Then the weighted majority graph (WMG) of PP can be defined: the vertices of WMG are alternatives in AA and there is a directed edge from aa to bb with weight wP[a,b]w_{P}[a,b] if and only if wP[a,b]>0w_{P}[a,b]>0. Similarly, letting UP[a,b]=Sgn(wP[a,b])U_{P}[a,b]=\operatorname{Sgn}(w_{P}[a,b]), the unweighted majority graph (UMG) of PP can also be defined: the set of vertices is AA and there is an unweighted directed edge from aa to bb if and only if UP[a,b]=1U_{P}[a,b]=1, where Sgn\operatorname{Sgn} denotes the sign function, i.e., Sgn(x)=x/|x|\operatorname{Sgn}(x)=x/|x| for all x0x\neq 0 and Sgn(0)=0\operatorname{Sgn}(0)=0. The Condorcet winner of PP is an alternative aAa\in A, such that UP[a,b]=1U_{P}[a,b]=1 for all bA\{a}b\in A\backslash\{a\}, denoted by CW(P)\operatorname{CW}(P). Notice that the Condorcet winner is completely determined by the UMG, we also use CW(UP)\operatorname{CW}(U_{P}) to denote the Condorcet winner claimed by the UMG.

Axioms of voting.

A voting rule rr satisfies Condorcet criterion, if [r(P)=CW(P)]=1\mathbb{P}[r(P)=\operatorname{CW}(P)]=1 holds for all profile PP that CW(P)\operatorname{CW}(P) exists. The rule rr satisfies Pareto efficiency, if [r(P)=b]=0\mathbb{P}[r(P)=b]=0 for all profile PP, where exists a,bAa,b\in A that ajba\succ_{j}b for all jNj\in N. And rr satisfies absolute monotonicity (Brandl, Brandt, and Stricker 2018), if [r(P)=a][r(P)=a]\mathbb{P}[r(P)=a]\leqslant\mathbb{P}[r(P^{\prime})=a] holds for all P,PP,P^{\prime}, such that Pj=PjP_{-j}=P^{\prime}_{-j}, jj\succ_{j}\neq\succ^{\prime}_{j}, and j\succ^{\prime}_{j} is a pushup of aa in j\succ_{j}, i.e., j\succ^{\prime}_{j} raises the position of aa in j\succ_{j}, and keeps the relative position of other alternatives unchanged. A randomized rule rr satisfies SD-Strategyproofness (Aziz, Brandt, and Brill 2013), if for all P,PP,P^{\prime} and jNj\in N that Pj=PjP_{-j}=P^{\prime}_{-j} and jj\succ_{j}\neq\succ^{\prime}_{j}, bja[r(P)=b]bja[r(P)=b]\sum_{b\succ_{j}a}\mathbb{P}[r(P)=b]\geqslant\sum_{b\succ_{j}a}\mathbb{P}[r(P^{\prime})=b], for all aAa\in A 111In fact, absolute monotonicity and SD-strategyproof are equivalent to the nonperverseness and the strategyproofness in (Gibbard 1977), respectively.. A voting rule satisfies lexi-participation if for all P,PP,P^{\prime} that P=P\{j}P^{\prime}=P\backslash\{\succ_{j}\}, there does not exist aAa\in A, such that [r(P)=a]<[r(P)=a]\mathbb{P}[r(P)=a]<\mathbb{P}[r(P^{\prime})=a] and [r(P)=b]=[r(P)=b]\mathbb{P}[r(P)=b]=\mathbb{P}[r(P^{\prime})=b] for all bjab\succ_{j}a.

Differential privacy (Dwork et al. 2006) requires a function to return similar outputs while receiving similar inputs.

Definition 1 (Differential privacy).

A function rr with domain 𝒟\mathcal{D} is ϵ\epsilon-differentially private (ϵ\epsilon-DP for short) if for all ORange(r)O\subseteq\operatorname{Range}(r) and P,P𝒟P,P^{\prime}\in\mathcal{D} differing on only one record,

[r(P)O]eϵ[r(P)O].\displaystyle\mathbb{P}[r(P)\in O]\leqslant{\rm e}^{\epsilon}\cdot\mathbb{P}[r(P^{\prime})\in O].

In other words, a function rr is ϵ\epsilon-DP, if the ratio between the probabilities for the outputs of any pair of neighboring datasets to be in any given set OO must be upper bounded by eϵ{\rm e}^{\epsilon}. In the context of social choice, rr is a voting rule and

𝒟=(A)=(A)(A)2,\displaystyle\mathcal{D}=\mathcal{L}(A)^{*}=\mathcal{L}(A)\cup\mathcal{L}(A)^{2}\cup\cdots,

and P,PP,P^{\prime} are two profiles differing on only one voter’s vote.

Notice that Definition 1 does not require the eϵ{\rm e}^{\epsilon} upper bound to be tight. The tight upper bound is captured by exact DP, formally defined as follows.

Definition 2 (Exact differential privacy (Dwork 2006)).

A voting rule rr is exact DP (ϵ\epsilon-eDP for short) if it is ϵ\epsilon-DP and there does not exist ϵ<ϵ\epsilon^{\prime}<\epsilon such that rr is ϵ\epsilon^{\prime}-DP.

For both DP and eDP, the privacy budget ϵ\epsilon usually is decided according to the users’ demand. For example, iOS 11 requires ϵ43\epsilon\leq 43 and iOS 10 requires ϵ14\epsilon\leq 14 (Orr 2017)222iOS has may have stronger privacy requirement for some specific data types (e.g., ϵ8\epsilon\leq 8 for Safari Auto-play intent detection data) (Apple Inc. 2017).. In the next section, we provide upper and lower bounds for the required noise level for any user-defined privacy budget.

3 Differentially Private Condorcet Methods

In this section, we propose a novel class of randomized voting rules. We apply three randomization mechanisms and obtain three classes of voting rules. By analyzing the worst cases, we prove that all of the three rules are differentially private, and our bounds of privacy budget are tight.

As mentioned in Section 2, the existence of Condorcet winner is completely determined by the UMG. In our mechanism, denoted by CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda}, a randomization mechanism Rand generates a noisy UMG for the given profile, and the voting rule outputs the Condorcet winner. If the Condorcet winner does not exist, the mechanism will generate another UMG, until the Condorcet winner exists, as shown in Mechanism 1.

Input: Profile PP, Parameter λ\lambda, Randomization Rand
Output: Winning alternative
1 Function Select_Rand(SS, λ\lambda):
2       Get randomized unweighted graph Uλ,PRandU_{\lambda,P}^{\texttt{Rand}} with randomized mechanism Rand ;
3       if There exists Condorcet winner aa for Uλ,PRandU_{\lambda,P}^{\texttt{Rand}} then
4             return aa;
5            
6       else
7             Select_Rand(SS,λ\lambda);
8            
9      
10Function CM_Rand(PP, λ\lambda):
11       Compute SP[a,b]S_{P}[a,b] for all a,bAa,b\in A;
12       Select_Rand(SPS_{P}, λ\lambda);
13      
Mechanism 1 Randomized Condorcet Method
Remark.

Notice that for each pair of alternatives a,bAa,b\in A, Uλ,PRand[a,b]U_{\lambda,P}^{\texttt{Rand}}[a,b] and Uλ,PRand[b,a]U_{\lambda,P}^{\texttt{Rand}}[b,a] are determined simultaneously, i.e., Uλ,PRand[a,b]=1U_{\lambda,P}^{\texttt{Rand}}[a,b]=1, if and only if Uλ,PRand[b,a]=1U_{\lambda,P}^{\texttt{Rand}}[b,a]=-1. Thus, any noisy UMG Uλ,PRandU_{\lambda,P}^{\texttt{Rand}} produced in Mechanism 1 claims at most one Condorcet winner. In other words, our mechanism is a well-defined map from (A)\mathcal{L}(A)^{*} to Δ(A)\Delta(A).

In the randomization process, we adopt three different methods, which are defined as follows.

Definition 3.

Given λ>0\lambda>0, the three randomization mechanisms are

  • Laplace mechanism: Given profile PP, for any ai,ajAa_{i},a_{j}\in A that i<ji<j, let w^P[ai,aj]=wP[ai,aj]+Xij\hat{w}_{P}[a_{i},a_{j}]=w_{P}[a_{i},a_{j}]+X_{ij} for all ai,ajAa_{i},a_{j}\in A and w^P[aj,ai]=w^P[ai,aj]\hat{w}_{P}[a_{j},a_{i}]=-\hat{w}_{P}[a_{i},a_{j}], where Xiji.i.dLap(1/λ)X_{ij}\overset{i.i.d}{\sim}\operatorname{Lap}(1/\lambda)333The Laplace distribution with scale parameter 1/λ1/\lambda, of which the probability density function (PDF) is fλ(x)=λ2eλ|x|f_{\lambda}(x)=\frac{\lambda}{2}{\rm e}^{-\lambda|x|}.. Under such a mechanism, the noisy UMG is

    Uλ,PLAP[a,b]=Sgn(w^P[a,b]).\displaystyle U_{\lambda,P}^{\text{\rm LAP}}[a,b]=\operatorname{Sgn}(\hat{w}_{P}[a,b]).
  • Exponential mechanism: For profile PP,

    [Uλ,PEXP[a,b]=1]eλSP[a,b]/2,\displaystyle\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a,b]=1]\propto{\rm e}^{\lambda\cdot S_{P}[a,b]/2},
    [Uλ,PEXP[a,b]=1]eλSP[b,a]/2.\displaystyle\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a,b]=-1]\propto{\rm e}^{\lambda\cdot S_{P}[b,a]/2}.
  • Randomized response: For the majority margin wPw_{P} of a given profile PP, if wP[a,b]0w_{P}[a,b]\neq 0,

    Uλ,PRR[a,b]={Sgn(wP[a,b]), w.p. eλ1+eλ,Sgn(wP[a,b]), w.p. 11+eλ.\displaystyle U_{\lambda,P}^{\text{\rm RR}}[a,b]=\begin{cases}\operatorname{Sgn}(w_{P}[a,b]),&\text{ w.p. }\frac{{\rm e}^{\lambda}}{1+{\rm e}^{\lambda}},\\ -\operatorname{Sgn}(w_{P}[a,b]),&\text{ w.p. }\frac{1}{1+{\rm e}^{\lambda}}.\\ \end{cases}

    If wP[a,b]=0w_{P}[a,b]=0, then

    [Uλ,PRR[a,b]=1]=[Uλ,PRR[a,b]=1]=1/2.\displaystyle\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a,b]=1]=\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a,b]=-1]=1/2.

The three randomization mechanisms above are denoted by LAP, EXP, and RR, respectively. For each Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, the Condorcet winner may not exist for the noisy UMG Uλ,PRandU^{\texttt{Rand}}_{\lambda,P}. Thus, our mechanism may need to perform the randomization for several times. In fact, for any given profile PP, the expected times of randomization is exp(Θ(m))\exp(\Theta(m)) (see Appendix). However, such a mechanism with high time complexity can be sampled efficiently, as shown in the following lemma.

Lemma 1.

For any Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\} and λ>0\lambda>0, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} can be sampled as follows:

  • For any P(A)P\in\mathcal{L}(A)^{*}, CMλLAP(P)\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P) is a probability distribution in Δ(A)\Delta(A), such that for any aAa\in A,

    [CMλLAP(P)=\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)= a]baFλ(wP[a,b]),\displaystyle a]\propto\prod_{b\neq a}F_{\lambda}(w_{P}[a,b]),

    where Fλ(x)=xfλ(t)dtF_{\lambda}(x)=\int_{-\infty}^{x}f_{\lambda}(t){\rm d}t is the cumulative distribution function (CDF) of Lap(1/λ)\operatorname{Lap}(1/\lambda).

  • For any P(A)P\in\mathcal{L}(A)^{*}, CMλEXP(P)\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P) is a probability distribution in Δ(A)\Delta(A), such that for any aAa\in A,

    [CMλEXP(P)=a]ba11+eλwP[a,b]/2.\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a]\propto\prod_{b\neq a}\frac{1}{1+{\rm e}^{-\lambda\cdot w_{P}[a,b]/2}}.
  • For any P(A)P\in\mathcal{L}(A)^{*}, CMλRR(P)\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P) is a probability distribution in Δ(A)\Delta(A), such that for any aAa\in A,

    [CMλRR(P)=a]eλ|B(a)|(1+eλ)m1,\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a]\propto\frac{{\rm e}^{\lambda\cdot|B(a)|}}{(1+{\rm e}^{\lambda})^{m-1}},

    where B(a)={bA:SP[a,b]>SP[b,a]}B(a)=\{b\in A:S_{P}[a,b]>S_{P}[b,a]\}.

Proof.

Since CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} will keep performing the randomization on SS until the Condorcet winner for Uλ,PRandU_{\lambda,P}^{\texttt{Rand}} exists, the winning probability of each aAa\in A is determined by the conditional probability [awins|CW(Uλ,PRand)exists]\mathbb{P}[a~{}\text{wins}~{}|~{}\operatorname{CW}(U_{\lambda,P}^{\texttt{Rand}})~{}\text{exists}]. First, for CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, we have

[awins|CW(Uλ,PLAP)exists]=bA\{a}[Uλ,PLAP[a,b]=1]\displaystyle\mathbb{P}[a~{}\text{wins}~{}|~{}\operatorname{CW}(U_{\lambda,P}^{\text{\rm LAP}})~{}\text{exists}]=\prod_{b\in A\backslash\{a\}}\mathbb{P}[U_{\lambda,P}^{\text{\rm LAP}}[a,b]=1]
=\displaystyle= bA\{a}[XbaXab<wP[a,b]].\displaystyle\prod_{b\in A\backslash\{a\}}\mathbb{P}[X_{ba}-X_{ab}<w_{P}[a,b]].

For any a,bAa,b\in A, the probability density function (PDF) of XabXbaX_{ab}-X_{ba} is (see Appendix A for the proof)

fλ(x)=λ+λ2|x|4eλ|x|.\displaystyle f_{\lambda}(x)=\frac{\lambda+\lambda^{2}|x|}{4}\cdot{\rm e}^{-\lambda|x|}.

Therefore, the cumulative distribution function (CDF) is

Fλ(x)=12+Sgn(x)(122+λ|x|4eλ|x|).\displaystyle F_{\lambda}(x)=\frac{1}{2}+\operatorname{Sgn}(x)\cdot\left(\frac{1}{2}-\frac{2+\lambda|x|}{4}{\rm e}^{-\lambda|x|}\right).

Then we have

[awins|CW(Uλ,PLAP)exists]=bA\{a}Fλ(wP[a,b]),\displaystyle\mathbb{P}[a~{}\text{wins}~{}|~{}\operatorname{CW}(U_{\lambda,P}^{\text{\rm LAP}})~{}\text{exists}]=\prod_{b\in A\backslash\{a\}}F_{\lambda}(w_{P}[a,b]),

For CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we have

[awins|CW(Uλ,PEXP)exists]=bA\{a}[Uλ,PEXP[a,b]=1]\displaystyle\mathbb{P}[a~{}\text{wins}~{}|~{}\operatorname{CW}(U_{\lambda,P}^{\text{\rm EXP}})~{}\text{exists}]=\prod_{b\in A\backslash\{a\}}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a,b]=1]
=\displaystyle= bA\{a}eλSP[a,b]/2eλSP[a,b]/2+eλSP[b,a]/2=bA\{a}11+eλwP[a,b]/2.\displaystyle\prod_{b\in A\backslash\{a\}}\frac{{\rm e}^{\lambda\cdot S_{P}[a,b]/2}}{{\rm e}^{\lambda\cdot S_{P}[a,b]/2}+{\rm e}^{\lambda\cdot S_{P}[b,a]/2}}=\prod_{b\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{-\lambda\cdot w_{P}[a,b]/2}}.

For CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, we have

[awins|CW(Uλ,PRR)exists]=bA\{a}[Uλ,PRR[a,b]=1]\displaystyle\mathbb{P}[a~{}\text{wins}~{}|~{}\operatorname{CW}(U_{\lambda,P}^{\text{\rm RR}})~{}\text{exists}]=\prod_{b\in A\backslash\{a\}}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a,b]=1]
=\displaystyle= bB(a)eλ1+eλbB(a)11+eλ=eλ|B(a)|(1+eλ)m1,\displaystyle\prod_{b\in B(a)}\frac{{\rm e}^{\lambda}}{1+{\rm e}^{\lambda}}\cdot\prod_{b\notin B(a)}\frac{1}{1+{\rm e}^{\lambda}}=\frac{{\rm e}^{\lambda\cdot|B(a)|}}{(1+{\rm e}^{\lambda})^{m-1}},

where B(a)={bA:SP[a,b]>SP[b,a]}B(a)=\{b\in A:S_{P}[a,b]>S_{P}[b,a]\}, which completes the proof. ∎

Since there are totally mm alternatives, and the value of [CMλRand(P)=a]\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a] for each aAa\in A in Lemma 1 can be computed in O(m)O(m) time, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} can be sampled in O(m2)O(m^{2}) time.

Now, we are ready to show the DP bounds of our rules. For simplicity , we use Gλ(x)G_{\lambda}(x) to denote [Uλ,PRand[a,b]=1]\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a,b]=1], where wP[a,b]=xw_{P}[a,b]=x. For example, when Rand=LAP\texttt{Rand}={\rm LAP}, Gλ(x)=Fλ(x)G_{\lambda}(x)=F_{\lambda}(x); when Rand=EXP\texttt{Rand}={\rm EXP}, Gλ(x)=11+eλx/2G_{\lambda}(x)=\frac{1}{1+{\rm e}^{-\lambda x/2}}.

Theorem 1.

Given λ>0\lambda>0 and Rand, suppose that CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} satisfies ϵ\epsilon-eDP. When Rand{LAP,EXP}\texttt{Rand}\in\{{\rm LAP},{\rm EXP}\}

ln(Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1)+(m1)λϵ2(m1)λ.\displaystyle\ln\left(\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}\right)+(m-1)\lambda\leqslant\epsilon\leqslant 2(m-1)\lambda.

When Rand=RR\texttt{Rand}={\rm RR}, (m1)λϵ2(m1)λ(m-1)\lambda\leqslant\epsilon\leqslant 2(m-1)\lambda.

Proof.

To prove the upper bound, we only need to prove that for each Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, and neighboring profiles P,PP,P^{\prime}, [CMλRand(P)=a][CMRand(P)=a]e2(m1)λ\frac{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P^{\prime})=a]}\leqslant{\rm e}^{2(m-1)\lambda}. W.l.o.g., we make comparison between the winning probabilities of a1a_{1} for profiles PP and PP^{\prime}. According to Lemma 1, for any Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, we have

[CMλRand(P)=a1][CMλRand(P)=a1]=\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a_{1}]}{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=a_{1}]}= i=2m[Uλ,PRand[a1,ai]=1]/j=1mij[Uλ,PRand[aj,ai]=1]i=2m[Uλ,PRand[a1,ai]=1]/j=1mij[Uλ,PRand[aj,ai]=1]\displaystyle\frac{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{1},a_{i}]=1]/\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{j},a_{i}]=1]}{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{1},a_{i}]=1]/\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{j},a_{i}]=1]}
=\displaystyle= i=2m[Uλ,PRand[a1,ai]=1]i=2m[Uλ,PRand[a1,ai]=1]j=1mij[Uλ,PRand[aj,ai]=1]j=1mij[Uλ,PRand[aj,ai]=1].\displaystyle\frac{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{1},a_{i}]=1]}{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{1},a_{i}]=1]}\cdot\frac{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{j},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{j},a_{i}]=1]}.

When Rand=LAP\texttt{Rand}={\rm LAP}, since for any ajAa_{j}\in A,

ij[Uλ,PLAP[aj,ai]=1]ij[Uλ,PLAP[aj,ai]=1]maxP,PijFλ(wP[aj,ai])ijFλ(wP[aj,ai])=maxP,PijFλ(wP[aj,ai])Fλ(wP[aj,ai])(maxP,PFλ(wP[aj,ai])Fλ(wP[aj,ai]))m1.\displaystyle\frac{\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm LAP}}[a_{j},a_{i}]=1]}{\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm LAP}}[a_{j},a_{i}]=1]}\leqslant\max_{P,P^{\prime}}\frac{\prod\limits_{i\neq j}F_{\lambda}(w_{P}[a_{j},a_{i}])}{\prod\limits_{i\neq j}F_{\lambda}(w_{P^{\prime}}[a_{j},a_{i}])}=\max_{P,P^{\prime}}\prod\limits_{i\neq j}\frac{F_{\lambda}(w_{P}[a_{j},a_{i}])}{F_{\lambda}(w_{P^{\prime}}[a_{j},a_{i}])}\leqslant\left(\max_{P,P^{\prime}}\frac{F_{\lambda}(w_{P}[a_{j},a_{i}])}{F_{\lambda}(w_{P^{\prime}}[a_{j},a_{i}])}\right)^{m-1}.

Letting x=wP[a1,ai]x=w_{P^{\prime}}[a_{1},a_{i}], we have wP[a1,ai][x2,x+2]w_{P}[a_{1},a_{i}]\in[x-2,x+2]. Due to the monotonicity of CDF, we have

maxP,P[CMλLAP(P)=a1][CMλLAP(P)=a1](maxxmax|tx|2Fλ(t)Fλ(x))m1=(maxxFλ(x+2)Fλ(x))m1=e(m1)λ.\displaystyle\max_{P,P^{\prime}}\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a_{1}]}{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a_{1}]}\leqslant\left(\max_{x\in\mathbb{Z}}\max_{|t-x|\leqslant 2}\frac{F_{\lambda}(t)}{F_{\lambda}(x)}\right)^{m-1}=\left(\max_{x\in\mathbb{Z}}\frac{F_{\lambda}(x+2)}{F_{\lambda}(x)}\right)^{m-1}={\rm e}^{(m-1)\lambda}.

Then it follows that

j=1mij[Uλ,PLAP[aj,ai]=1]j=1mij[Uλ,PLAP[aj,ai]=1]e(m1)λ.\displaystyle\frac{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm LAP}}[a_{j},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm LAP}}[a_{j},a_{i}]=1]}\leqslant{\rm e}^{(m-1)\lambda}.

Further, we have

[CMλLAP(P)=a1][CMλLAP(P)=a1]e(m1)λe(m1)λ=e2(m1)λ.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a_{1}]}{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a_{1}]}\leqslant{\rm e}^{(m-1)\lambda}\cdot{\rm e}^{(m-1)\lambda}={\rm e}^{2(m-1)\lambda}.

When Rand=EXP\texttt{Rand}={\rm EXP}, for any profile P(A)nP\in\mathcal{L}(A)^{n}, we have

[Uλ,PEXP[a1,ai]=1]=eλwP[a1,ai]/21+eλwP[a1,ai]/2,\displaystyle\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{1},a_{i}]=1]=\frac{{\rm e}^{\lambda\cdot w_{P}[a_{1},a_{i}]/2}}{1+{\rm e}^{\lambda\cdot w_{P}[a_{1},a_{i}]/2}},

which indicates that

i=2m[Uλ,PEXP[a1,ai]=1]i=2m[Uλ,PEXP[a1,ai]=1]\displaystyle\frac{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{1},a_{i}]=1]}{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm EXP}}[a_{1},a_{i}]=1]} maxP,Pi=2meλwP[a1,ai]/21+eλwP[a1,ai]/21+eλwP[a1,ai]/2eλwP[a1,ai]/2\displaystyle\leqslant\max_{P,P^{\prime}}\prod_{i=2}^{m}\frac{{\rm e}^{\lambda\cdot w_{P}[a_{1},a_{i}]/2}}{1+{\rm e}^{\lambda\cdot w_{P}[a_{1},a_{i}]/2}}\cdot\frac{1+{\rm e}^{\lambda\cdot w_{P^{\prime}}[a_{1},a_{i}]/2}}{{\rm e}^{\lambda\cdot w_{P^{\prime}}[a_{1},a_{i}]/2}}
=i=2mmaxxeλ(x+2)/21+eλ(x+2)/21+eλx/2eλx/2=(maxxeλ(1+eλx/2)1+eλ(2+x)/2)m1\displaystyle=\prod_{i=2}^{m}\max_{x\in\mathbb{Z}}\frac{{\rm e}^{\lambda(x+2)/2}}{1+{\rm e}^{\lambda(x+2)/2}}\cdot\frac{1+{\rm e}^{\lambda\cdot x/2}}{{\rm e}^{\lambda\cdot x/2}}=\left(\max_{x\in\mathbb{Z}}\frac{{\rm e}^{\lambda}(1+{\rm e}^{\lambda\cdot x/2})}{1+{\rm e}^{\lambda(2+x)/2}}\right)^{m-1}
(limxeλ(1+eλx/2)1+eλ(2+x)/2)m1=e(m1)λ.\displaystyle\leqslant\left(\lim\limits_{x\to-\infty}\frac{{\rm e}^{\lambda}(1+{\rm e}^{\lambda\cdot x/2})}{1+{\rm e}^{\lambda(2+x)/2}}\right)^{m-1}={\rm e}^{(m-1)\lambda}.

Further, we have

j=1mij[Uλ,PEXP[aj,ai]=1]j=1mij[Uλ,PEXP[aj,ai]=1]e(m1)λ.\displaystyle\frac{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm EXP}}[a_{j},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{j},a_{i}]=1]}\leqslant{\rm e}^{(m-1)\lambda}.

As a consequence,

[CMλEXP(P)=a1][CMλEXP(P)=a1]=i=2m[Uλ,PEXP[a1,ai]=1]i=2m[Uλ,PEXP[a1,ai]=1]j=1mij[Uλ,PEXP[aj,ai]=1]j=1mij[Uλ,PEXP[aj,ai]=1]e2(m1)λ.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a_{1}]}{\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a_{1}]}=\frac{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{1},a_{i}]=1]}{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm EXP}}[a_{1},a_{i}]=1]}\cdot\frac{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm EXP}}[a_{j},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{j},a_{i}]=1]}\leqslant{\rm e}^{2(m-1)\lambda}.

Finally, when Rand=RR\texttt{Rand}={\rm RR}, for any profile P(A)nP\in\mathcal{L}(A)^{n}, we have

i=2m[Uλ,PRR[a1,ai]=1]=eλ|{aiA:UP[a1,ai]>0}|(1+eλ)m1.\displaystyle\prod_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]=\frac{{\rm e}^{\lambda|\{a_{i}\in A:U_{P}[a_{1},a_{i}]>0\}|}}{(1+{\rm e}^{\lambda})^{m-1}}.

Thus, for any neighboring profiles P,PP,P^{\prime},

i=2m[Uλ,PRR[a1,ai]=1]i=2m[Uλ,PRR[a1,ai]=1]=eλ|{aiA:UP[a1,ai]>0}|eλ|{aiA:UP[a1,ai]>0}|maxP(A)neλ|{aiA:UP[a1,ai]>0}|minP(A)neλ|{aiA:UP[a1,ai]>0}|=e(m1)λ.\displaystyle\frac{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}=\frac{{\rm e}^{\lambda|\{a_{i}\in A:U_{P}[a_{1},a_{i}]>0\}|}}{{\rm e}^{\lambda|\{a_{i}\in A:U_{P^{\prime}}[a_{1},a_{i}]>0\}|}}\leqslant\frac{\max\limits_{P\in\mathcal{L}(A)^{n}}{\rm e}^{\lambda|\{a_{i}\in A:U_{P}[a_{1},a_{i}]>0\}|}}{\min\limits_{P^{\prime}\in\mathcal{L}(A)^{n}}{\rm e}^{\lambda|\{a_{i}\in A:U_{P^{\prime}}[a_{1},a_{i}]>0\}|}}={\rm e}^{(m-1)\lambda}.

Further,

j=1mij[Uλ,PRR[a1,ai]=1]j=1mij[Uλ,PRR[a1,ai]=1]j=1me(m1)λij[Uλ,PRR[a1,ai]=1]j=1mij[Uλ,PRR[a1,ai]=1]=e2(m2)λ.\displaystyle\frac{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}\leqslant\frac{\sum\limits_{j=1}^{m}{\rm e}^{(m-1)\lambda}\cdot\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}={\rm e}^{2(m-2)\lambda}.

Then we have

[CMλRR(P)=a1][CMλRR(P)=a1]=i=2m[Uλ,PRR[a1,ai]=1]i=2m[Uλ,PRR[a1,ai]=1]j=1mij[Uλ,PRR[aj,ai]=1]j=1mij[Uλ,PRR[aj,ai]=1]e2(m1)λ,\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a_{1}]}{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a_{1}]}=\frac{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{1},a_{i}]=1]}{\prod\limits_{i=2}^{m}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm RR}}[a_{1},a_{i}]=1]}\cdot\frac{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm RR}}[a_{j},a_{i}]=1]}{\sum\limits_{j=1}^{m}\prod\limits_{i\neq j}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a_{j},a_{i}]=1]}\leqslant{\rm e}^{2(m-1)\lambda},

which completes the proof for the upper bound.

For the lower bounds of CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} and CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we only need to show that there exists neighboring profiles P,PP,P^{\prime}, and alternative aa,

[CMRand(P)=a][CMRand(P)=a]Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1e(m1)λ.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P^{\prime})=a]}\geqslant\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}\cdot{\rm e}^{(m-1)\lambda}.

Consider the following profile PP (let m=2km=2k):

  • kk voters: a1a2ama_{1}\succ a_{2}\succ\cdots\succ a_{m};

  • k1k-1 voters: am1am2a1ama_{m-1}\succ a_{m-2}\succ\cdots a_{1}\succ a_{m};

  • 11 voter: amam1a1a_{m}\succ a_{m-1}\succ\cdots\succ a_{1}.

And another profile PP^{\prime}:

  • k+1k+1 voters: a1a2ama_{1}\succ^{\prime}a_{2}\succ^{\prime}\cdots\succ^{\prime}a_{m};

  • k1k-1 voters: am1am2a1ama_{m-1}\succ^{\prime}a_{m-2}\succ^{\prime}\cdots a_{1}\succ^{\prime}a_{m};

It is quite easy to verify that PP and PP^{\prime} are neighboring datasets. Further, we have

wP[ai,aj]={0,1i,jm1;n2,i<m,j=m;2n,i=m,j<m.wP[ai,aj]={2,1i<jm1;2,1j<im1;ni<m,j=m;ni=m,j<m.\displaystyle w_{P}[a_{i},a_{j}]=\begin{cases}0,&1\leqslant i,j\leqslant m-1;\\ n-2,&i<m,j=m;\\ 2-n,&i=m,j<m.\end{cases}\qquad w_{P^{\prime}}[a_{i},a_{j}]=\begin{cases}2,&1\leqslant i<j\leqslant m-1;\\ -2,&1\leqslant j<i\leqslant m-1;\\ n&i<m,j=m;\\ -n&i=m,j<m.\end{cases}

Therefore,

i=1mji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]=Gλ(n2)k=0m2Gλk(2)Gλmk2(2)+Gλm1(2n)(m1)Gλ(n)Gλm2(0)+Gλm1(n)\displaystyle\frac{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}=\frac{G_{\lambda}(n-2)\sum\limits_{k=0}^{m-2}G_{\lambda}^{k}(2)G_{\lambda}^{m-k-2}(-2)+G_{\lambda}^{m-1}(2-n)}{(m-1)G_{\lambda}(n)G_{\lambda}^{m-2}(0)+G_{\lambda}^{m-1}(-n)}

When n+n\to+\infty, we have G(n)1G(n)\to 1 and G(n)0G(-n)\to 0. Then

limn+i=1mji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]=k=0m2Gλk(2)Gλmk2(2)(m1)Gλm2(0)=Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1.\displaystyle\lim\limits_{n\to+\infty}\frac{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}=\frac{\sum\limits_{k=0}^{m-2}G_{\lambda}^{k}(2)G_{\lambda}^{m-k-2}(-2)}{(m-1)G_{\lambda}^{m-2}(0)}=\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}.

In other words, when Rand{LAP,EXP}\texttt{Rand}\in\{{\rm LAP},{\rm EXP}\},

i=1mji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1.\displaystyle\frac{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}\geqslant\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}.

Then we have

[CMRand(P)=am][CMRand(P)=am]\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P^{\prime})=a_{m}]}{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P)=a_{m}]} =ji[Uλ,PRand[ai,aj]=1]ji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]\displaystyle=\frac{\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}\cdot\frac{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}
Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1ji[Uλ,PRand[ai,aj]=1]ji[Uλ,PRand[ai,aj]=1]\displaystyle\geqslant\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}\cdot\frac{\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}
Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1(limn+Gλ(2n)Gλ(n))m1\displaystyle\geqslant\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}\cdot\left(\lim\limits_{n\to+\infty}\frac{G_{\lambda}(2-n)}{G_{\lambda}(-n)}\right)^{m-1}
=Gλm1(2)Gλm1(2)Gλ(2)Gλ(2)2m2m1e(m1)λ.\displaystyle=\frac{G_{\lambda}^{m-1}(2)-G_{\lambda}^{m-1}(-2)}{G_{\lambda}(2)-G_{\lambda}(-2)}\cdot\frac{2^{m-2}}{m-1}\cdot{\rm e}^{(m-1)\lambda}.

Finally, for CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, consider the following profile (let m=2k+1m=2k+1):

  • k+1k+1 voters: a1a2ama_{1}\succ a_{2}\succ\cdots\succ a_{m};

  • kk voters: amam1a1a_{m}\succ^{\prime}a_{m-1}\succ^{\prime}\cdots\succ^{\prime}a_{1}.

And its neighboring profile PP^{\prime}:

  • kk voters: a1a2ama_{1}\succ a_{2}\succ\cdots\succ a_{m};

  • k+1k+1 voters: amam1a1a_{m}\succ^{\prime}a_{m-1}\succ^{\prime}\cdots\succ^{\prime}a_{1}.

Then the majority margin of PP and PP^{\prime} should be

wP[ai,aj]={1,i<j,1,i>j.wP[ai,aj]={1,i<j,1,i>j.\displaystyle w_{P}[a_{i},a_{j}]=\begin{cases}1,&i<j,\\ -1,&i>j.\end{cases}\qquad w_{P^{\prime}}[a_{i},a_{j}]=\begin{cases}1,&i<j,\\ -1,&i>j.\end{cases}

Further, we have

[CMRand(P)=am][CMRand(P)=am]\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P^{\prime})=a_{m}]}{\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}(P)=a_{m}]} =ji[Uλ,PRand[ai,aj]=1]ji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]i=1mji[Uλ,PRand[ai,aj]=1]=e(m1)λ,\displaystyle=\frac{\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}\cdot\frac{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P^{\prime}}^{\texttt{Rand}}[a_{i},a_{j}]=1]}{\sum\limits_{i=1}^{m}\prod\limits_{j\neq i}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a_{i},a_{j}]=1]}={\rm e}^{(m-1)\lambda},

which completes the proof. ∎

With Theorem 1, we can get the upper and lower bounds of noise level λ\lambda for any given ϵ\epsilon. The relations between the lower and upper bounds when m=5m=5 and m=20m=20 are shown in Figure 1.

Refer to caption
Refer to caption
Figure 1: The lower and upper bounds of privacy budget (left: m=5m=5, right: m=20m=20).

4 Axioms-Privacy Tradeoff

In this section, we analyze our voting rules with axioms mentioned in Section 2. We show that our rules do not satisfy Condorcet criterion and Pareto efficiency. To address these challenges, we explore probabilistic variants of them. Then we discuss the satisfaction to absolute monotonicity, SD-strategyproofness, and lexi-participation.

To begin with, we analyze our voting rules with Condorcet criterion. But unfortunately, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} does not satisfy Condorcet criterion with any λ\lambda and Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, though it is based on the Condorcet method. Intuitively, for any P(A)nP\in\mathcal{L}(A)^{n} and a,bAa,b\in A, [Uλ,PRand[a,b]=1]<1\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}[a,b]=1]<1. Then

[CMλRand(P)=a]bA\{a}[Uλ,PRand[a,b]=1]<1,\displaystyle\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a]\leqslant\prod_{b\in A\backslash\{a\}}\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}[a,b]=1]<1,

even when aa is the Condorcet winner. To deal with this, we propose a probabilistic variant of Condorcet criterion, which is shown in the following definition.

Definition 4 (Probabilistic Condorcet criterion).

A randomized voting rule rr satisfies probabilistic Condorcet criterion (p-Condorcet) if for every profile PP that CW(P)\operatorname{CW}(P) exists and all aA\{CW(P)}a\in A\backslash\{\operatorname{CW}(P)\},

[r(P)=CW(P)][r(P)=a].\displaystyle\mathbb{P}[r(P)=\operatorname{CW}(P)]\geqslant\mathbb{P}[r(P)=a].

At a high level, Definition 4 is a relaxation of the Condorcet criterion, since it does not always require the voting rule rr to select the Condorcet winner. Further, the following theorem holds. The proof can be found in the full version.

Theorem 2.

For any λ>0\lambda>0, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} satisfies p-Condorcet.

Proof.

Since there are only one profile throughout the proof, we omit the normalization here, i.e., for profile PP, supposing CW(P)=a\operatorname{CW}(P)=a, we have

[CMλRR(P)=a]=(eλeλ+1)m1.\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a]=\left(\frac{{\rm e}^{\lambda}}{{\rm e}^{\lambda}+1}\right)^{m-1}.

For any bA\{a}b\in A\backslash\{a\}, since bb is not the Condorcet winner, there exists a nonempty set BAB\subseteq A, such that C[c,b]=1C[c,b]=1 if and only if cBc\in B. Hence,

[CMλRR(P)=b]=e(m|B|1)λ(eλ+1)m1[CMλRR(P)=a],\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=b]=\frac{{\rm e}^{(m-|B|-1)\lambda}}{({\rm e}^{\lambda}+1)^{m-1}}\leqslant\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a],

which completes the proof. ∎

In other words, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} satisfies a weak version of Condorcet criterion for any λ>0\lambda>0. However, the results for CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} and CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} are relatively negative.

Proposition 1.

CM0.5EXP\operatorname{CM}^{\text{\rm EXP}}_{0.5} and CM0.5LAP\operatorname{CM}^{\text{\rm LAP}}_{0.5} do not satisfy p-Condorcet.

Proof.

For CM0.5LAP\operatorname{CM}^{\text{\rm LAP}}_{0.5}, consider the voting instance where n=101n=101 voters and m=5m=5 alternatives. The ballots are as follows

  • 5151 voters: a1a2a3a4a5a_{1}\succ a_{2}\succ a_{3}\succ a_{4}\succ a_{5};

  • 5050 voters: a2a3a4a5a1a_{2}\succ a_{3}\succ a_{4}\succ a_{5}\succ a_{1};

Then we have

SP[a1,ai]=51,SP[ai,a1]=50,\displaystyle S_{P}[a_{1},a_{i}]=51,S_{P}[a_{i},a_{1}]=50, for all aiA\{a1},\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1}\},
SP[a2,ai]=101,SP[ai,a2]=0,\displaystyle S_{P}[a_{2},a_{i}]=101,S_{P}[a_{i},a_{2}]=0, for all aiA\{a1,a2}.\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1},a_{2}\}.

In other words,

wP[a1,ai]=1,\displaystyle w_{P}[a_{1},a_{i}]=1, for all aiA\{a1},\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1}\},
wP[a2,ai]=101,\displaystyle w_{P}[a_{2},a_{i}]=101, for all aiA\{a1,a2}.\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1},a_{2}\}.

As a result, CW(P)=a1\operatorname{CW}(P)=a_{1}. Since λ=1\lambda=1, we have

[CM0.5LAP(P)=a1]=i=25Fλ(1)=116(21e)40.2357.\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{0.5}(P)=a_{1}]=\prod_{i=2}^{5}F_{\lambda}(1)=\frac{1}{16}\left(2-\frac{1}{\sqrt{{\rm e}}}\right)^{4}\approx 0.2357.

However,

[CM0.5LAP(P)=a2]=Fλ(1)Fλ3(101)=116e(21e101/2)30.3033.\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{0.5}(P)=a_{2}]=F_{\lambda}(-1)\cdot F_{\lambda}^{3}(101)=\frac{1}{16\sqrt{{\rm e}}}\left(2-\frac{1}{{\rm e}^{101/2}}\right)^{3}\approx 0.3033.

In other words,

[CM0.5LAP(P)=a1]<[CM0.5LAP(P)=a2],\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{0.5}(P)=a_{1}]<\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{0.5}(P)=a_{2}],

which indicates that CM0LAP.5\operatorname{CM}^{\text{\rm LAP}}_{0}.5 does not satisfy p-Condorcet.

For CM0.5EXP\operatorname{CM}^{\text{\rm EXP}}_{0.5}, let n=101n=101, m=5m=5, and the profile PP be

  • 5151 voters: a1a2a3a4a5a_{1}\succ a_{2}\succ a_{3}\succ a_{4}\succ a_{5};

  • 5050 voters: a2a3a4a5a1a_{2}\succ a_{3}\succ a_{4}\succ a_{5}\succ a_{1}.

Then we have

SP[a1,ai]=51,\displaystyle S_{P}[a_{1},a_{i}]=51, SP[ai,a1]=50,\displaystyle S_{P}[a_{i},a_{1}]=50, for all aiA\{a1},\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1}\},
SP[a2,ai]=101,\displaystyle S_{P}[a_{2},a_{i}]=101, SP[ai,a2]=0,\displaystyle S_{P}[a_{i},a_{2}]=0, for all aiA\{a1,a2}.\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1},a_{2}\}.

In other words,

wP[a1,ai]=1,\displaystyle w_{P}[a_{1},a_{i}]=1, for all aiA\{a1},\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1}\},
wP[a2,ai]=101,\displaystyle w_{P}[a_{2},a_{i}]=101, for all aiA\{a1,a2}.\displaystyle\text{ for all }a_{i}\in A\backslash\{a_{1},a_{2}\}.

As a result, CW(P)=a1\operatorname{CW}(P)=a_{1} and

[CM0.5EXP(P)=a1]=i=25[Uλ,PEXP[a1,ai]=1]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{0.5}(P)=a_{1}]=\prod_{i=2}^{5}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{1},a_{i}]=1]
=\displaystyle= i=2511+ewP[a1,ai]/4=1(1+e1/4)40.0999.\displaystyle\prod_{i=2}^{5}\frac{1}{1+{\rm e}^{-w_{P}[a_{1},a_{i}]/4}}=\frac{1}{(1+{\rm e}^{-1/4})^{4}}\approx 0.0999.

However,

[CM0.5EXP(P)=a2]=i2[Uλ,PEXP[a2,ai]=1]=1(1+e1/4)(1+e101/4)30.4378.\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{0.5}(P)=a_{2}]=\prod_{i\neq 2}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[a_{2},a_{i}]=1]=\frac{1}{(1+{\rm e}^{1/4})(1+{\rm e}^{-101/4})^{3}}\approx 0.4378.

As a consequence,

[CM0.5EXP(P)=a1]<[CM0.5EXP(P)=a2],\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{0.5}(P)=a_{1}]<\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{0.5}(P)=a_{2}],

which completes the proof. ∎

To measure how much CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} and CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} deviate from p-Condorcet, we further extend the axiom.

Definition 5 (𝜶\alpha-Probabilistic Condorcet criterion).

A randomized voting rule rr satisfies α\alpha-probabilistic Condorcet criterion (α\alpha-p-Condorcet) if for every profile PP that CW(P)\operatorname{CW}(P) exists and for all aA\{CW(P)}a\in A\backslash\{\operatorname{CW}(P)\},

[r(P)=CW(P)]α[r(P)=a].\mathbb{P}[r(P)=\operatorname{CW}(P)]\geqslant\alpha\cdot\mathbb{P}[r(P)=a].

Note that a larger α\alpha is more desirable, as α\alpha-p-Condorcet is almost equivalent to the standard Condorcet criterion when α\alpha\to\infty. Especially, it reduces to p-Condorcet when α=1\alpha=1.

For CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} and CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, the following theorem holds.

Theorem 3.

For any λ>0\lambda>0,

  • CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies 1+eλ/2(1+eλ/2)m1\frac{1+{\rm e}^{\lambda/2}}{\left(1+{\rm e}^{-\lambda/2}\right)^{m-1}}-p-Condorcet;

  • CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfies 2eλ(1eλ2)m12{\rm e}^{\lambda}\left(1-\frac{{\rm e}^{-\lambda}}{2}\right)^{m-1}-p-Condorcet;

  • CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} satisfies eλ{\rm e}^{\lambda}-p-Condorcet.

Proof.

Since there is only one profile PP, the normalization factors in Lemma 1 are not necessarily considered anymore. In other words, we suppose for the sake of simplicity that

[CMλRand(P)=a]=bA\{a}[Uλ,PRand[a,b]=1].\displaystyle\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a]=\prod\limits_{b\in A\backslash\{a\}}\mathbb{P}[U_{\lambda,P}^{\texttt{Rand}}[a,b]=1].

First, we prove for CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}. For any PP, letting CW(P)=a\operatorname{CW}(P)=a, we have

[CMλEXP(P)=a]=cA\{a}11+eλwP[c,a]/2.\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a]=\prod_{c\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[c,a]/2}}.

Note that CW(P)=a\operatorname{CW}(P)=a. Then wP[a,c]1w_{P}[a,c]\geqslant 1 holds for any cA\{a}c\in A\backslash\{a\}. Hence

[CMλEXP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a] cA\{a}11+eλ/2=1(1+eλ/2)m1.\displaystyle\geqslant\prod_{c\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{-\lambda/2}}=\frac{1}{(1+{\rm e}^{-\lambda/2})^{m-1}}.

On the other hand, for any bA\{a}b\in A\backslash\{a\}, we have

[CMλEXP(P)=b]=[Uλ,PEXP[b,a]=1]cA\{a,b}[Uλ,PEXP[b,c]=1]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=b]=\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[b,a]=1]\cdot\prod_{c\in A\backslash\{a,b\}}\mathbb{P}[U_{\lambda,P}^{\text{\rm EXP}}[b,c]=1]
=\displaystyle=\; 11+eλwP[a,b]/2cA\{a,b}11+eλwP[c,b]/2.\displaystyle\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[a,b]/2}}\cdot\prod_{c\in A\backslash\{a,b\}}\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[c,b]/2}}.

Since bb is not the Condorcet winner, we have wP[a,b]1w_{P}[a,b]\geqslant 1 and wP[c,b]nw_{P}[c,b]\geqslant-n holds for any akA\{a,b}a_{k}\in A\backslash\{a,b\}. Therefore,

[CMλEXP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a] 11+eλ/2(11+enλ/2)m211+eλ/2.\displaystyle\leqslant\frac{1}{1+{\rm e}^{\lambda/2}}\cdot\left(\frac{1}{1+{\rm e}^{-n\lambda/2}}\right)^{m-2}\leqslant\frac{1}{1+{\rm e}^{\lambda/2}}.

Then, for every bab\neq a, we have

[CMλEXP(P)=a][CMλEXP(P)=b]1+eλ/2(1+eλ/2)m1.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=b]}\geqslant\frac{1+{\rm e}^{\lambda/2}}{\left(1+{\rm e}^{-\lambda/2}\right)^{m-1}}.

That is, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies 1+eλ/2(1+eλ/2)m1\frac{1+{\rm e}^{\lambda/2}}{\left(1+{\rm e}^{-\lambda/2}\right)^{m-1}}-p-Condorcet.

Next, we prove for CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}. For any profile P(A)nP\in\mathcal{L}(A)^{n}, supposing that CW(P)=a\operatorname{CW}(P)=a, we have

[CMλLAP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a] =cA\{a}[w^P[a,c]>0]=cA\{a}Fλ(wP[a,c]).\displaystyle=\prod_{c\in A\backslash\{a\}}\mathbb{P}[\hat{w}_{P}[a,c]>0]=\prod_{c\in A\backslash\{a\}}F_{\lambda}(w_{P}[a,c]).

Since CW(P)=a\operatorname{CW}(P)=a, S[a,c]1S[a,c]\geqslant 1 for any cA\{a}c\in A\backslash\{a\}. Then we have

[CMλLAP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a] cA\{a}Fλ(1)=(1eλ2)m1.\displaystyle\geqslant\prod_{c\in A\backslash\{a\}}F_{\lambda}(1)=\left(1-\frac{{\rm e}^{-\lambda}}{2}\right)^{m-1}.

On the other hand, for any bA\{a}b\in A\backslash\{a\}, we have

[CMλLAP(P)=b]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=b] =cA\{a}Fλ(wP[a,c]).\displaystyle=\prod_{c\in A\backslash\{a\}}F_{\lambda}(w_{P}[a,c]).

Since the Condorcet winner of PP is aia_{i}, wP[b,a]1w_{P}[b,a]\leqslant-1 and wP[b,c]nw_{P}[b,c]\leqslant n holds for any akA\{a,b}a_{k}\in A\backslash\{a,b\}. Therefore,

[CMλLAP(P)=b]Fλ(1)Fλm2(n)eλ2.\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=b]\leqslant F_{\lambda}(-1)F_{\lambda}^{m-2}(n)\leqslant\frac{{\rm e}^{-\lambda}}{2}.

As a result,

[CMλLAP(P)=a][CMλLAP(P)=b]2eλ(1eλ2)m1, for any bA\{a},\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=b]}\geqslant 2{\rm e}^{\lambda}\left(1-\frac{{\rm e}^{-\lambda}}{2}\right)^{m-1},\text{ for any }b\in A\backslash\{a\},

which means CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfies 2eλ(1eλ2)m12{\rm e}^{\lambda}\left(1-\frac{{\rm e}^{-\lambda}}{2}\right)^{m-1}-p-Condorcet.

Finally, for CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} and any profile PP, let CW(P)=a\operatorname{CW}(P)=a. Then, for any bab\neq a,

[CMλRR(P)=a][CMλRR(P)=b]=eλ|{cA:wP[a,c]>0}|eλ|{cA:wP[b,c]>0}|=e(m1)λeλ|{cA:wP[b,c]>0}|.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=b]}=\frac{{\rm e}^{\lambda\cdot|\{c\in A:w_{P}[a,c]>0\}|}}{{\rm e}^{\lambda\cdot|\{c\in A:w_{P}[b,c]>0\}|}}=\frac{{\rm e}^{(m-1)\lambda}}{{\rm e}^{\lambda\cdot|\{c\in A:w_{P}[b,c]>0\}|}}.

Since bb is not the Condorcet winner, we have |{cA:wP[b,c]>0}|m2|\{c\in A:w_{P}[b,c]>0\}|\leqslant m-2. Then

[CMλRR(P)=a][CMλRR(P)=b]e(m1)λe(m2)λ=eλ,\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=b]}\geqslant\frac{{\rm e}^{(m-1)\lambda}}{{\rm e}^{(m-2)\lambda}}={\rm e}^{\lambda},

which completes the proof. ∎

With Theorem 3, we can obtain a more general version of Proposition 1, of which the proof is shown in the full version.

Proposition 2.

Given λ>0\lambda>0, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies p-Condorcet when ln(eλ/2+1)ln(eλ/2+1)λ/2+1m\frac{\ln({\rm e}^{\lambda/2}+1)}{\ln({\rm e}^{\lambda/2}+1)-\lambda/2}+1\geqslant m; CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfies p-Condorcet when λ+ln2ln2ln(2eλ)+1m\frac{\lambda+\ln 2}{\ln 2-\ln(2-{\rm e}^{-\lambda})}+1\geqslant m.

Proof.

Let PP be a profile, of which the Condorcet winner CW(P)\operatorname{CW}(P) exists. First, we prove for CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}. Since mln(eλ/2+1)ln(eλ/2+1)λ/2+1m\leqslant\frac{\ln({\rm e}^{\lambda/2}+1)}{\ln({\rm e}^{\lambda/2}+1)-\lambda/2}+1, we have

m1ln(eλ/2+1)ln(eλ/2+1)λ/2=log1+eλ/2(1+eλ/2).\displaystyle m-1\leqslant\frac{\ln({\rm e}^{\lambda/2}+1)}{\ln({\rm e}^{\lambda/2}+1)-\lambda/2}=\log_{1+{\rm e}^{-\lambda/2}}\left(1+{\rm e}^{\lambda/2}\right).

Therefore, for all aCW(P)a\neq\operatorname{CW}(P),

[CMλEXP(P)=CW(P)]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=\operatorname{CW}(P)] =bCW(P)11+eλwP[CW(P),b]/2(11+eλ/2)m1\displaystyle=\prod\limits_{b\neq\operatorname{CW}(P)}\frac{1}{1+{\rm e}^{-\lambda\cdot w_{P}[\operatorname{CW}(P),b]/2}}\geqslant\left(\frac{1}{1+{\rm e}^{-\lambda/2}}\right)^{m-1}
11+eλ/2ji11+eλwP[a,b]/2=[CMλEXP(P)=a],\displaystyle\geqslant\frac{1}{1+{\rm e}^{\lambda/2}}\geqslant\prod\limits_{j\neq i}\frac{1}{1+{\rm e}^{-\lambda\cdot w_{P}[a,b]/2}}=\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a],

which means that CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies p-Condorcet.

Next, we prove for CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}. When mλ+ln2ln2ln(2eλ)+1m\leqslant\frac{\lambda+\ln 2}{\ln 2-\ln(2-{\rm e}^{-\lambda})}+1, we have

m1λ+ln2ln2ln(2eλ)=log1eλ/2(eλ2),\displaystyle m-1\leqslant\frac{\lambda+\ln 2}{\ln 2-\ln(2-{\rm e}^{-\lambda})}=\log_{1-{\rm e}^{-\lambda}/2}\left(\frac{{\rm e}^{-\lambda}}{2}\right),

which indicates that for any aCW(P)a\neq\operatorname{CW}(P),

[CMλLAP(P)=CW(P)][CMλLAP(P)=a]2eλ(1eλ2)m11.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=\operatorname{CW}(P)]}{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a]}\geqslant 2{\rm e}^{\lambda}\left(1-\frac{{\rm e}^{-\lambda}}{2}\right)^{m-1}\geqslant 1.

In other words, CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfies p-Condorcet in this case, which completes the proof. ∎

Notice that both of the LHS of the two inequalities in Proposition 2 are increasing functions of λ\lambda which diverge when λ\lambda\to\infty. Thus, for any mm, there must exist some λ\lambda satisfying the inequalities.

Since the upper and lower bounds of the privacy budget can completely be determined by λ\lambda, we use λ\lambda to denote the privacy level. Also, we use the parameter α\alpha in Definition 4 to denote the level of satisfaction to p-Condorcet, then the tradeoff curves when m=5m=5 are shown in Figure 2.

Refer to caption
Figure 2: The satisfaction of p-Condorcet with different λ\lambda.

Similar to the Condorcet criterion, our new class of voting rules do not satisfy Pareto efficiency either. Suppose there is an alternative bAb\in A, which is Pareto dominated by aAa\in A in profile PP, i.e., ajba\succ_{j}b for all jNj\in N. Then for any λ\lambda and Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, we have

[CMλRand(P)=b]cb[Uλ,PRand[b,c]=1].\displaystyle\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b]\leqslant\prod\limits_{c\neq b}\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}[b,c]=1].

According to the Definition of LAP, EXP, and RR, [Uλ,PRand(b,c)]>0\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}(b,c)]>0 for all cAc\in A, which indicates that CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} does not satisfy Pareto efficiency. However, aa still dominates bb in another way. Formally, we have the following definition.

Definition 6 (Probabilistic Pareto efficiency).

A randomized voting rule rr satisfies probabilistic Pareto efficiency (p-Pareto) if for each pair of alternatives a,bAa,b\in A that akba\succ_{k}b holds for all kNk\in N,

[r(P)=a][r(P)=b].\mathbb{P}[r(P)=a]\geqslant\mathbb{P}[r(P)=b].

This definition is a relaxation of Pareto efficiency. For our voting rules, the following theorem holds.

Theorem 4.

For any λ>0\lambda>0, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, and CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfy p-Pareto.

Proof.

Let a,bAa,b\in A be the pair of alternatives that ajba\succ_{j}b holds for any jNj\in N. Then for any jNj\in N and any cA\{a,b}c\in A\backslash\{a,b\} such that bjcb\succ_{j}c, we have ajca\succ_{j}c. Further, we have

S[a,c]\displaystyle S[a,c] =|{jN:ajc}||{jN:bjc}|=S[b,c].\displaystyle=|\{j\in N:a\succ_{j}c\}|\geqslant|\{j\in N:b\succ_{j}c\}|=S[b,c]. (1)

Hence, wP[a,c]wP[b,c]w_{P}[a,c]\geqslant w_{P}[b,c], for all cA\{a,b}c\in A\backslash\{a,b\}. Now, we are ready to give the proof.

For CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, let B(c)={bA:UP[c,b]=1}B(c)=\{b\in A:U_{P}[c,b]=1\} for every cAc\in A. Then Equation (1) indicates that B(b)B(a)B(b)\subseteq B(a), i.e., |B(b)||B(a)||B(b)|\leqslant|B(a)|. Hence

[CMλRR(P)=a]=cA\{a}[Uλ,PRR[a,c]=1]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a]=\prod_{c\in A\backslash\{a\}}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a,c]=1]
=\displaystyle= cB(a)[Uλ,PRR[a,c]=1]cA\B(a),ca[Uλ,PRR[a,c]=1]\displaystyle\prod_{c\in B(a)}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a,c]=1]\cdot\prod_{c\in A\backslash B(a),c\neq a}\mathbb{P}[U_{\lambda,P}^{\text{\rm RR}}[a,c]=1]
=\displaystyle= (eλ1+eλ)|B(a)|(11+eλ)m|B(a)|1\displaystyle\left(\frac{{\rm e}^{\lambda}}{1+{\rm e}^{\lambda}}\right)^{|B(a)|}\cdot\left(\frac{1}{1+{\rm e}^{\lambda}}\right)^{m-|B(a)|-1}
\displaystyle\geqslant (eλ1+eλ)|B(b)|(11+eλ)m|B(b)|1\displaystyle\left(\frac{{\rm e}^{\lambda}}{1+{\rm e}^{\lambda}}\right)^{|B(b)|}\cdot\left(\frac{1}{1+{\rm e}^{\lambda}}\right)^{m-|B(b)|-1}
=\displaystyle= [CMλRR(P)=b],\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=b],

For CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we have

[CMλEXP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a] =11+eλwP[a,b]/2cA\{a,b}11+eλwP[a,c]/2\displaystyle=\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[a,b]/2}}\cdot\prod_{c\in A\backslash\{a,b\}}\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[a,c]/2}}
11+eλwP[b,a]/2cA\{a,b}11+eλwP[b,c]/2=[CMλLAP(P)=b],\displaystyle\geqslant\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[b,a]/2}}\cdot\prod_{c\in A\backslash\{a,b\}}\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[b,c]/2}}=\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=b],

which means that CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies p-Pareto.

For CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, we have

[CMλLAP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a] =Fλ(wP[a,b])cA\{a,b}Fλ(wP[a,c])\displaystyle=F_{\lambda}(w_{P}[a,b])\cdot\prod_{c\in A\backslash\{a,b\}}F_{\lambda}(w_{P}[a,c])
Fλ(wP[b,a])cA\{a,b}Fλ(wP[b,c])=[CMλLAP(P)=b],\displaystyle\geqslant F_{\lambda}(w_{P}[b,a])\cdot\prod_{c\in A\backslash\{a,b\}}F_{\lambda}(w_{P}[b,c])=\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=b],

which completes the proof. ∎

Unlike Condorcet and Pareto, the definition of monotonicity, strategyproofness, and participation are related to two distinct profiles. For monotonicity, we use the notion of absolute monotonicity in (Brandl, Brandt, and Stricker 2018). Intuitively, in Mechanism 1, for any aAa\in A, whenever a voter ii switches i\succ_{i} to i\succ^{\prime}_{i} by lifting aa simply, aa will be more likely to defeat any bAb\in A in the one-on-one comparisons. As a consequence, aa will be more likely to be the winning alternative in our CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda}. Formally, the following theorem holds.

Theorem 5.

For any λ>0\lambda>0, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, and CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfy a-monotonicity.

Proof.

Let PP and PP be two profiles in (A)n\mathcal{L}(A)^{n}, such that Pj=PjP_{-j}=P^{\prime}_{-j} and j\succ^{\prime}_{j} is a pushup of aAa\in A in j\succ_{j}. Then we have, SP[a,b]SP[a,b]S_{P^{\prime}}[a,b]\geqslant S_{P}[a,b] for any bAb\in A. Hence, for CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda},

[CMλRR(P)=a][CMλRR(P)=a],\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a]\geqslant\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a],

which indicates that CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} satisfies a-monotonicity.

For CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we have

[CMλEXP(P)=a]=cA\{a}[Uλ,PEXP[a,c]=1]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a]=\prod_{c\in A\backslash\{a\}}\mathbb{P}[U_{\lambda,P^{\prime}}^{\text{\rm EXP}}[a,c]=1]
=\displaystyle= cA\{a}11+eλwP[a,c]/2cA\{a}11+eλwP[a,c]/2=[CMλEXP(P)=a].\displaystyle\prod_{c\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{\lambda\cdot w_{P^{\prime}}[a,c]/2}}\geqslant\prod_{c\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{\lambda\cdot w_{P}[a,c]/2}}=\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a].

For CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, we have

[CMλLAP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a] =cA\{a}Fλ(wP[a,c])cA\{a}Fλ(wP[a,c])=[CMλLAP(P)=a],\displaystyle=\prod_{c\in A\backslash\{a\}}F_{\lambda}(w_{P^{\prime}}[a,c])\geqslant\prod_{c\in A\backslash\{a\}}F_{\lambda}(w_{P}[a,c])=\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a],

which completes the proof. ∎

For strategyproofness, we use the notion of SD-strategyproofness (Aziz, Brandt, and Brill 2013), which implies the absolute monotonicity. However, the results for our rules are not so positive.

Proposition 3.

CM1RR\operatorname{CM}^{\text{\rm RR}}_{1}, CM1EXP\operatorname{CM}^{\text{\rm EXP}}_{1}, and CM1LAP\operatorname{CM}^{\text{\rm LAP}}_{1} do not satisfy SD-strategyproofness.

Proof.

For CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, let N={1,2,3}N=\{1,2,3\}, A={a1,a2,a3,a4,a5}A=\{a_{1},a_{2},a_{3},a_{4},a_{5}\}. Consider the profiles P={1,2,3}P=\{\succ_{1},\succ_{2},\succ_{3}\} and P={1,2,3}P^{\prime}=\{\succ_{1},\succ_{2},\succ^{\prime}_{3}\}, where

1:a3a4a5a1a2,2:a2a3a4a5a1,\displaystyle\succ_{1}:~{}~{}a_{3}\succ a_{4}\succ a_{5}\succ a_{1}\succ a_{2},\qquad\succ_{2}:~{}~{}a_{2}\succ a_{3}\succ a_{4}\succ a_{5}\succ a_{1},
3:a1a2a3a4a5,3:a2a3a4a5a1,\displaystyle\succ_{3}:~{}~{}a_{1}\succ a_{2}\succ a_{3}\succ a_{4}\succ a_{5},\qquad\succ^{\prime}_{3}:~{}~{}a_{2}\succ a_{3}\succ a_{4}\succ a_{5}\succ a_{1},

Then for PP, we have

  • wP[a1,a2]=1w_{P}[a_{1},a_{2}]=1, and wP[a1,ai]=1w_{P}[a_{1},a_{i}]=-1 for i=3,4,5i=3,4,5;

  • wP[a2,a1]=1w_{P}[a_{2},a_{1}]=-1, and wP[a2,ai]=1w_{P}[a_{2},a_{i}]=1 for i=3,4,5i=3,4,5.

Similarly, for PP^{\prime}, we have

  • wP[a1,ai]=1w_{P^{\prime}}[a_{1},a_{i}]=-1, for any i1i\neq 1;

  • wP[a2,ai]=1w_{P^{\prime}}[a_{2},a_{i}]=1, for any i2i\neq 2.

According to Theorem 1, we have

aj3a3[CMλRR(P)=aj]\displaystyle\sum\limits_{a_{j}\succ_{3}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a_{j}] =j=12[CMλRR(P)=aj]=e(1+e)4+e3(1+e)4,\displaystyle=\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a_{j}]=\frac{{\rm e}}{(1+{\rm e})^{4}}+\frac{{\rm e}^{3}}{(1+{\rm e})^{4}},
aj3a3[CMλRR(P)=aj]\displaystyle\sum\limits_{a_{j}\succ_{3}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a_{j}] =j=12[CMλRR(P)=aj]=1(1+e)4+e4(1+e)4,\displaystyle=\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a_{j}]=\frac{1}{(1+{\rm e})^{4}}+\frac{{\rm e}^{4}}{(1+{\rm e})^{4}},

which indicates that

j=12[CMλRR(P)=aj]<j=12[CMλRR(P)=aj],\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a_{j}]<\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a_{j}],

In other word, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} is not SD-strategyproof.

For CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, let N={1,2,,8}N=\{1,2,\ldots,8\}, A={a1,a2,a3,a4,a5}A=\{a_{1},a_{2},a_{3},a_{4},a_{5}\}. Consider the following profiles:

  • PP: a11a21a31a41a5a_{1}\succ_{1}a_{2}\succ_{1}a_{3}\succ_{1}a_{4}\succ_{1}a_{5}, and a2ja3ja4ja5ja1a_{2}\succ_{j}a_{3}\succ_{j}a_{4}\succ_{j}a_{5}\succ_{j}a_{1} for j=2,3,,8j=2,3,\ldots,8;

  • PP^{\prime}: a21a11a31a41a5a_{2}\succ_{1}a_{1}\succ_{1}a_{3}\succ_{1}a_{4}\succ_{1}a_{5}, and a2ja3ja4ja5ja1a_{2}\succ_{j}a_{3}\succ_{j}a_{4}\succ_{j}a_{5}\succ_{j}a_{1} for j=2,3,,8j=2,3,\ldots,8.

Then for PP, we have

  • wP[a1,ai]=6w_{P}[a_{1},a_{i}]=-6, for i=2,3,4,5i=2,3,4,5;

  • wP[a2,a1]=6w_{P}[a_{2},a_{1}]=6, and wP[a2,ai]=8w_{P}[a_{2},a_{i}]=8 for i=3,4,5i=3,4,5.

Similarly, for PP^{\prime}, we have

  • wP[a1,a2]=8w_{P^{\prime}}[a_{1},a_{2}]=-8, and wP[a1,ai]=6w_{P}[a_{1},a_{i}]=-6 for i=3,4,5i=3,4,5;

  • wP[a2,ai]=8w_{P^{\prime}}[a_{2},a_{i}]=8, for i=1,3,4,5i=1,3,4,5.

According to Theorem 1, we have

aj1a3[CMλEXP(P)=aj]\displaystyle\sum\limits_{a_{j}\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a_{j}] =j=12[CMλEXP(P)=aj]\displaystyle=\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a_{j}]
=(11+e3)4+11+e3(11+e4)30.9021,\displaystyle=\left(\frac{1}{1+{\rm e}^{3}}\right)^{4}+\frac{1}{1+{\rm e}^{-3}}\cdot\left(\frac{1}{1+{\rm e}^{-4}}\right)^{3}\approx 0.9021,
aj1a3[CMλEXP(P)=aj]\displaystyle\sum\limits_{a_{j}\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a_{j}] =j=12[CMλEXP(P)=aj]\displaystyle=\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a_{j}]
=11+e4(11+e3)3+(11+e4)40.9300,\displaystyle=\frac{1}{1+{\rm e}^{4}}\cdot\left(\frac{1}{1+{\rm e}^{3}}\right)^{3}+\left(\frac{1}{1+{\rm e}^{-4}}\right)^{4}\approx 0.9300,

which indicates that

a1a3[CMλEXP(P)=a]<a1a3[CMλEXP(P)=a],\displaystyle\sum\limits_{a\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a]<\sum\limits_{a\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a],

In other word, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} does not satisfy SD-strategyproofness.

For CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, considering the same PP and PP^{\prime} as CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we have

a1a3[CMλLAP(P)=a]\displaystyle\sum\limits_{a\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a] =j=12[CMλLAP(P)=a]=Fλ4(6)+Fλ(6)Fλ3(8)0.9983,\displaystyle=\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a]=F^{4}_{\lambda}(-6)+F_{\lambda}(6)\cdot F_{\lambda}^{3}(8)\approx 0.9983,
a1a3[CMλLAP(P)=a]\displaystyle\sum\limits_{a\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a] =j=12[CMλLAP(P)=a]=Fλ(8)Fλ3(6)+Fλ4(8)0.9993,\displaystyle=\sum\limits_{j=1}^{2}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a]=F_{\lambda}(-8)\cdot F_{\lambda}^{3}(-6)+F_{\lambda}^{4}(8)\approx 0.9993,

which indicates that

a1a3[CMλLAP(P)=a]<a1a3[CMλLAP(P)=a],\sum\limits_{a\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a]<\sum\limits_{a\succ_{1}a_{3}}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a],

In other word, CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} is not SD-strategyproof. That completes the proof. ∎

Similar to Definition 5, we extend the notion of SD-strategyproofness.

Definition 7 (𝜶\alpha-SD-Strategyproofness).

A voting rule rr satisfies α\alpha-SD-strategyproofness (α\alpha-SD-SP for short) if for all P,PP,P^{\prime} and jNj\in N, such that Pj=PjP_{-j}=P^{\prime}_{-j} and jj\succ_{j}\neq\succ^{\prime}_{j},

bja[r(P)=b]αbja[r(P)=b],for all aA.\sum\limits_{b\succ_{j}a}\mathbb{P}[r(P)=b]\geqslant\alpha\cdot\sum\limits_{b\succ^{\prime}_{j}a}\mathbb{P}[r(P^{\prime})=b],~{}~{}\text{for all }a\in A.

Especially, α\alpha-SD-strategyproofness reduces to the standard SD-strategyproofness when α=1\alpha=1. For our rules, the following theorem holds.

Theorem 6.

For any λ>0\lambda>0, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}, CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} and CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfy e(22m)λ{\rm e}^{(2-2m)\lambda}-SD-strategyproofness.

Proof.

W.l.o.g., for any neighboring profiles P={1,2,,n},P={1,2,,n}P=\{\succ_{1},\succ_{2},\ldots,\succ_{n}\},P^{\prime}=\{\succ_{1}^{\prime},\succ_{2},\ldots,\succ_{n}\} and aAa\in A, we have

[CMλLAP(P)=a][CMλLAP(P)=a](minP,PFλ(wP[a1,a])Fλ(wP[a1,a]))2(m1)e(22m)λ.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a]}\geqslant\left(\min_{P,P^{\prime}}\frac{F_{\lambda}(w_{P}[a_{1},a])}{F_{\lambda}(w_{P^{\prime}}[a_{1},a])}\right)^{2(m-1)}\geqslant{\rm e}^{(2-2m)\lambda}.

Therefore, for any aAa\in A,

b1a[CMλLAP(P)=b]e(22m)λb1a[CMλLAP(P)=b],\displaystyle\sum\limits_{b\succ_{1}a}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=b]\geqslant{\rm e}^{(2-2m)\lambda}\cdot\sum\limits_{b\succ_{1}^{\prime}a}\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=b],

which indicates that CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} satisfies e(22m)λ{\rm e}^{(2-2m)\lambda}-SD-strategyproofness.

For CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we have

[CMλEXP(P)=a][CMλEXP(P)=a](minP,PbA\{a}eλwP[a,b]/21+eλwP[a,b]/21+eλwP[a,b]/2eλwP[a,b]/2)2\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a]}\geqslant\left(\min_{P,P^{\prime}}\prod_{b\in A\backslash\{a\}}\frac{{\rm e}^{\lambda\cdot w_{P}[a,b]/2}}{1+{\rm e}^{\lambda\cdot w_{P}[a,b]/2}}\cdot\frac{1+{\rm e}^{\lambda\cdot w_{P^{\prime}}[a,b]/2}}{{\rm e}^{\lambda\cdot w_{P^{\prime}}[a,b]/2}}\right)^{2}
\displaystyle\geqslant (limxeλ(1+eλx/2)1+eλ(2+x)/2)22m=e(2m2)λ.\displaystyle\left(\lim\limits_{x\to-\infty}\frac{{\rm e}^{\lambda}(1+{\rm e}^{\lambda\cdot x/2})}{1+{\rm e}^{\lambda(2+x)/2}}\right)^{2-2m}={\rm e}^{(2m-2)\lambda}.

Then for any aAa\in A,

b1a[CMλEXP(P)=b]e(22m)λb1a[CMλEXP(P)=b].\displaystyle\sum\limits_{b\succ_{1}a}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=b]\geqslant{\rm e}^{(2-2m)\lambda}\cdot\sum\limits_{b\succ_{1}^{\prime}a}\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=b].

In other words, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies e(22m)λ{\rm e}^{(2-2m)\lambda}-SD-strategyproofness.

Finally, we prove for CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda}. For any aAa\in A, we have

[CMλRR(P)=a][CMλRR(P)=a](minP(A)neλ|{bA:UP[a,b]=1}|maxP(A)neλ|{bA:UP[a,b]=1}|)2=e(22m)λ.\displaystyle\frac{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a]}{\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a]}\geqslant\left(\frac{\min\limits_{P\in\mathcal{L}(A)^{n}}{\rm e}^{\lambda|\{b\in A:U_{P}[a,b]=1\}|}}{\max\limits_{P^{\prime}\in\mathcal{L}(A)^{n}}{\rm e}^{\lambda|\{b\in A:U_{P^{\prime}}[a,b]=1\}|}}\right)^{2}={\rm e}^{(2-2m)\lambda}.

Then for any aAa\in A,

b1a[CMλRR(P)=b]e(22m)λb1a[CMλRR(P)=b],\displaystyle\sum\limits_{b\succ_{1}a}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=b]\geqslant{\rm e}^{(2-2m)\lambda}\cdot\sum\limits_{b\succ_{1}^{\prime}a}\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=b],

which completes the proof. ∎

Finally, we discuss the participation of our voting rules. We use the notion of lexi-participation, which requires that a participating agent is always no worse off under lexicographical order. In our rules, each participating voter jj can benefit herself, since the majority margin w[a,b]w[a,b] for any ajba\succ_{j}b will increase due to her vote. Formally, the following theorem holds.

Theorem 7.

For any λ>0\lambda>0, CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda}, CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, and CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} satisfy lexi-participation.

Proof.

Let PP and PP^{\prime} be two profiles satisfying P=P\{j}P^{\prime}=P\backslash\{\succ_{j}\}. Suppose there is a nonempty set

B={aA:[CMλRand(P)=a]<[CMλRand(P)=a]}.\displaystyle B=\{a\in A:\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a]<\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=a]\}.

Let atopa_{top} denote the top-ranked alternative in j\succ_{j}. According to the definition, we have

SP[atop,a]=SP[atop,a]+1, for any aA\{atop}.\displaystyle S_{P}[a_{top},a]=S_{P^{\prime}}[a_{top},a]+1,\text{ for any }a\in A\backslash\{a_{top}\}.

Then for any Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, we have

[CMλRand(P)=atop][CMλRand(P)=atop],\displaystyle\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a_{top}]\geqslant\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=a_{top}],

which indicates that atopBa_{top}\notin B. Now, select the top-ranked alternative in BB, denoted by btopb_{top}. Then atopjbtopa_{top}\succ_{j}b_{top}. Since btopBb_{top}\in B, we have

bA\{btop}[Uλ,PRand[btop,b]=1]\displaystyle\prod_{b\in A\backslash\{b_{top}\}}\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}[b_{top},b]=1] =[CMλRand(P)=btop]\displaystyle=\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b_{top}]
<[CMλRand(P)=btop]=bA\{btop}[Uλ,PRand[btop,b]=1].\displaystyle<\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b_{top}]=\prod_{b\in A\backslash\{b_{top}\}}\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}[b_{top},b]=1].

Then there must exist some bjbtopb\succ_{j}b_{top}, such that

[Uλ,PRand[btop,b]=1]<[Uλ,PRand[btop,b]=1].\displaystyle\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P}[b_{top},b]=1]<\mathbb{P}[U^{\texttt{Rand}}_{\lambda,P^{\prime}}[b_{top},b]=1].

Noticing that btopb_{top} is the top-ranked alternative in BB, we have bBb\notin B, i.e.,

[CMλRand(P)=b][CMλRand(P)=b].\displaystyle\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b]\geqslant\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b].

If [CMλRand(P)=b]=[CMλRand(P)=b]\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b]=\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b], there must exist another alternative bjbb^{\prime}\succ_{j}b, such that [CMλRand(P)=b][CMλRand(P)=b]\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b^{\prime}]\geqslant\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b^{\prime}]. Next, if [CMλRand(P)=b]=[CMλRand(P)=b]\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b^{\prime}]=\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b^{\prime}], there will be some b′′jbb^{\prime\prime}\succ_{j}b^{\prime}… This process will terminate after several rounds, as there are only finite number of alternatives in AA. That is, there must exists an alternative bjbtopb\succ_{j}b_{top}, such that

[CMλRand(P)=b]>[CMλRand(P)=b].\displaystyle\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b]>\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b].

In other words, for any aAa\in A that [CMλRand(P)=a]<[CMλRand(P)=a]\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=a]<\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=a], there exists some bjab\succ_{j}a, such that [CMλRand(P)=b]>[CMλRand(P)=b]\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P)=b]>\mathbb{P}[\operatorname{CM}^{\texttt{Rand}}_{\lambda}(P^{\prime})=b]. Therefore, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} satisfies lexi-participation, for all Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\} and λ>0\lambda>0. ∎

Theorem 7 shows that for any Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} will not harm any participating voter under lexicographical order. Further more, CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} and CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfy a stronger notion, which is defined as follows.

Definition 8 (Strong lexi-participation).

A voting rule satisfies strong lexi-participation if for all P,PP,P^{\prime} that P=P\{j}P^{\prime}=P\backslash\{\succ_{j}\}, there exists aAa\in A, such that [r(P)=a]>[r(P)=a]\mathbb{P}[r(P)=a]>\mathbb{P}[r(P^{\prime})=a] and [r(P)=b]=[r(P)=b]\mathbb{P}[r(P)=b]=\mathbb{P}[r(P^{\prime})=b] for all bjab\succ_{j}a.

Intuitively, strong lexi-participation ensures that each voter can benefit from her vote, while lexi-participation only ensures that each voter will not be harmed by her vote. For CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} and CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, the following theorem holds.

Theorem 8.

For any λ>0\lambda>0, CMλLAP\operatorname{CM}^{\text{\rm LAP}}_{\lambda} and CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfy strong lexi-participation.

Proof.

Let P,PP,P^{\prime} be two profiles in (A)n\mathcal{L}(A)^{n}, such that P=P\{j}P^{\prime}=P\backslash\{\succ_{j}\}. Suppose the top-ranked alternative of j\succ_{j} is aa. Then for CMLAP\operatorname{CM}^{\text{\rm LAP}}, we have

[CMλLAP(P)=a]=bA\{a}Fλ(wP[a,b])>bA\{a}Fλ(wP[a,b])=[CMλLAP(P)=a],\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P)=a]=\prod\limits_{b\in A\backslash\{a\}}F_{\lambda}(w_{P}[a,b])>\prod\limits_{b\in A\backslash\{a\}}F_{\lambda}(w_{P^{\prime}}[a,b])=\mathbb{P}[\operatorname{CM}^{\text{\rm LAP}}_{\lambda}(P^{\prime})=a],

which indicates that CMLAP\operatorname{CM}^{\text{\rm LAP}} satisfies strong lexi-participation.

Similarly, for CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda}, we have

[CMλEXP(P)=a]\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P)=a] =bA\{a}11+eλwP[a,b]/2\displaystyle=\prod\limits_{b\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{-\lambda\cdot w_{P}[a,b]/2}}
>bA\{a}11+eλwP[a,b]/2=[CMλEXP(P)=a],\displaystyle>\prod\limits_{b\in A\backslash\{a\}}\frac{1}{1+{\rm e}^{-\lambda\cdot w_{P^{\prime}}[a,b]/2}}=\mathbb{P}[\operatorname{CM}^{\text{\rm EXP}}_{\lambda}(P^{\prime})=a],

i.e., CMλEXP\operatorname{CM}^{\text{\rm EXP}}_{\lambda} satisfies strong lexi-participation. ∎

However, CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} does not satisfy strong lexi-participation, since only one vote may be not able to increase the winning probability of any alternative. For example, consider the profile PP, where the votes of all n(n3)n~{}(n\geqslant 3) voters are exactly the same, a1a2ama_{1}\succ a_{2}\succ\cdots\succ a_{m}. Then for any i1<i2i_{1}<i_{2}, we have SP[ai1,ai2]=nS_{P}[a_{i_{1}},a_{i_{2}}]=n and SP[ai2,ai1]=0S_{P}[a_{i_{2}},a_{i_{1}}]=0. For any PP^{\prime} that P=P\{j}P^{\prime}=P\backslash\{\succ_{j}\}, we have SP[ai1,ai2]=n1S_{P^{\prime}}[a_{i_{1}},a_{i_{2}}]=n-1 and SP[ai2,ai1]=0S_{P^{\prime}}[a_{i_{2}},a_{i_{1}}]=0 for any i1<i2i_{1}<i_{2}. Then it follows that Uλ,PRR[ai1,ai2]=Uλ,PRR[ai1,ai2]U^{\text{\rm RR}}_{\lambda,P}[a_{i_{1}},a_{i_{2}}]=U^{\text{\rm RR}}_{\lambda,P^{\prime}}[a_{i_{1}},a_{i_{2}}], for all i1,i2{1,2,,m}i_{1},i_{2}\in\{1,2,\ldots,m\}. As a result, we have

[CMλRR(P)=ai]=[CMλRR(P)=ai], for all i,\displaystyle\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P)=a_{i}]=\mathbb{P}[\operatorname{CM}^{\text{\rm RR}}_{\lambda}(P^{\prime})=a_{i}],\text{ for all }i,

which indicates that CMλRR\operatorname{CM}^{\text{\rm RR}}_{\lambda} does not satisfy strong lexi-participation.

5 Differential Privacy as a Voting Axiom

In Section 4, we explore the tradeoffs between privacy and some voting axioms. In this section, differential privacy is regarded as an axiomatic property of voting rules. The relations between DP and some of the voting axioms are discussed. Our results are summarized in Figure 3.

Condorcet criterionPareto efficiencyIncompatibleϵ-Differential privacy\textstyle{\epsilon\text{-Differential privacy}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Incompatibileα-p-Condorcet\textstyle{\alpha\text{-p-Condorcet}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αeϵ\scriptstyle{\alpha\leqslant{\rm e}^{\epsilon}}eϵ-SD-Strategyproofness\textstyle{{\rm e}^{-\epsilon}\text{-SD-Strategyproofness}}
Figure 3: Relations between ϵ\epsilon-DP and other axioms, where XYX\Rightarrow Y indicates that XX implies YY, a solid line between XX and YY indicates that X,YX,Y are compatible with some condition, and a dash line between XX and YY means that X,YX,Y are incompatible.

As proved previously, for any Rand{LAP,EXP,RR}\texttt{Rand}\in\{\text{\rm LAP},\text{\rm EXP},\text{\rm RR}\}, CMλRand\operatorname{CM}^{\texttt{Rand}}_{\lambda} does not satisfy Condorcet criterion under DP. Furthermore, we can prove that they are incompatible.

Proposition 4.

There is no voting rule rr satisfying Condorcet criterion and ϵ\epsilon-DP for any ϵ>0\epsilon>0.

Proof.

Suppose r:(A)nΔ(A)r\colon\mathcal{L}(A)^{n}\to\Delta(A) is ϵ\epsilon-DP and satisfy Condorcet criterion. For any profile PP and alternative aAa\in A, we define the following operation with alternative bA\{a}b\in A\backslash\{a\}:

Op: Choose a voter iNi\in N, whose first choice is not bb, let bb be its first choice.

Then we will obtain a profile PP^{\prime} after at most n/2\lceil n/2\rceil times of operations, such that CW(P)=b\operatorname{CW}(P^{\prime})=b. Suppose there has been totally xx times of operations, each time of operation forms a new profile, named P1,P2,,PtP_{1},P_{2},\ldots,P_{t} i.e.,

POpP1OpP2OpOpPt=P.P\xrightarrow{\text{\bf Op}}P_{1}\xrightarrow{\text{\bf Op}}P_{2}\xrightarrow{\text{\bf Op}}\cdots\xrightarrow{\text{\bf Op}}P_{t}=P^{\prime}.

Since rr is ϵ\epsilon-DP, we have

[r(P)=a]eϵ[r(P1)=a]e2ϵ[r(P2)=a]etϵ[r(P)=a].\mathbb{P}[r(P)=a]\leqslant{\rm e}^{\epsilon}\cdot\mathbb{P}[r(P_{1})=a]\leqslant{\rm e}^{2\epsilon}\cdot\mathbb{P}[r(P_{2})=a]\leqslant\ldots\leqslant{\rm e}^{t\cdot\epsilon}\cdot\mathbb{P}[r(P^{\prime})=a].

However, the Condorcet criterion indicates that [r(P)=b]=1\mathbb{P}[r(P^{\prime})=b]=1, which follows [r(P)=a]=0\mathbb{P}[r(P^{\prime})=a]=0. Thus, [r(P)=a]=0\mathbb{P}[r(P)=a]=0, for any profile PP and alternative aa, which contradicts to the definition of randomized voting rule. ∎

Similarly, Pareto efficiency is also incompatible with DP, which indicates that the stronger notions of efficiency, e.g., PC-efficiency and SD-efficiency (Brandt 2017) are all incompatible with DP. Formally, we have the following result.

Proposition 5.

There is no voting rule rr satisfying Pareto efficiency and ϵ\epsilon-DP for any ϵ>0\epsilon>0.

Proof.

Suppose r:(A)nΔ(A)r\colon\mathcal{L}(A)^{n}\to\Delta(A) is ϵ\epsilon-DP and satisfy Pareto efficiency. For any profile PP and alternative aAa\in A, we define the following operation:

Op: Choose a voter iNi\in N, whose last choice is not aa, let aa be its last choice.

Then we will obtain a profile PP^{\prime} after at most nn times of operations, where each voter’s last choice is aa. Suppose there has been totally xx times of operations, each time of operation forms a new profile, named P1,P2,,PtP_{1},P_{2},\ldots,P_{t} i.e.,

POpP1OpP2OpOpPt=P.P\xrightarrow{\text{\bf Op}}P_{1}\xrightarrow{\text{\bf Op}}P_{2}\xrightarrow{\text{\bf Op}}\cdots\xrightarrow{\text{\bf Op}}P_{t}=P^{\prime}.

Since rr is ϵ\epsilon-DP, we have

[r(P)=a]eϵ[r(P1)=a]e2ϵ[r(P2)=a]etϵ[r(P)=a].\mathbb{P}[r(P)=a]\leqslant{\rm e}^{\epsilon}\cdot\mathbb{P}[r(P_{1})=a]\leqslant{\rm e}^{2\epsilon}\cdot\mathbb{P}[r(P_{2})=a]\leqslant\ldots\leqslant{\rm e}^{t\cdot\epsilon}\cdot\mathbb{P}[r(P^{\prime})=a].

However, the Pareto efficiency for randomized voting indicates that [r(P)=a]=0\mathbb{P}[r(P^{\prime})=a]=0, as aa is definitely Pareto dominated in PP^{\prime}. Thus, [r(P)=a]=0\mathbb{P}[r(P)=a]=0, for any profile PP and alternative aa, which contradicts to the definition of randomized voting rule. ∎

In fact, the proofs for Propositions 4 and 5 indicate that for any DP voting rule rr, there is no profile PP and alternative aa, such that [r(P)=a]=0\mathbb{P}[r(P)=a]=0. To measure the incompatibility between Condorcet criterion and DP, we use the notion of α\alpha-p-Condorcet. The result is shown as follows.

Proposition 6.

There is no voting rule satisfying ϵ\epsilon-DP and α\alpha-p-Condorcet with α>eϵ\alpha>{\rm e}^{\epsilon}.

Proof.

Let P,PP,P^{\prime} be profiles that CW(P)=a\operatorname{CW}(P)=a,CW(P)=b\operatorname{CW}(P^{\prime})=b, Pj=PjP_{-j}=P^{\prime}_{-j}, and jj\succ_{j}\neq\succ_{j}^{\prime}. Then

[f(P)=a]α[f(P)=b]αeϵ[f(P)=b]\displaystyle\mathbb{P}[f(P)=a]\geqslant\alpha\cdot\mathbb{P}[f(P)=b]\geqslant\alpha\cdot{\rm e}^{\epsilon}\cdot\mathbb{P}[f(P^{\prime})=b]
\displaystyle\geqslant α2eϵ[f(P)=a]α2e2kϵ[f(P)=a].\displaystyle\alpha^{2}\cdot{\rm e}^{\epsilon}\cdot\mathbb{P}[f(P^{\prime})=a]\geqslant\alpha^{2}\cdot{\rm e}^{-2k\epsilon}\cdot\mathbb{P}[f(P)=a].

Thus, α2e2ϵ1\alpha^{2}{\rm e}^{-2\epsilon}\leqslant 1, i.e., αeϵ\alpha\leqslant{\rm e}^{\epsilon}. ∎

The SD-strategyproofness is compatible with DP, as the trivial voting rule, i.e., [r(P)=a]=1/m\mathbb{P}[r(P)=a]=1/m, for all aAa\in A, satisfies SD-strategyproofness and 0-DP. In fact, DP admits a lower bound of satisfaction to strategyproofness. To be more precise, we use the notion of α\alpha-SD-strategyproofness.

Then the following proposition holds.

Proposition 7.

Any voting rule satisfying ϵ\epsilon-DP satisfies eϵ{\rm e}^{-\epsilon}-SD-strategyproofness.

Proof.

Suppose rr is a voting rule satisfying ϵ\epsilon-DP, PP and PP^{\prime} are profiles differing on only one voter’s ballot. Then, for any jNj\in N and any aAa\in A, DP indicates that

[r(P)=a]eϵ[r(P)=a].\displaystyle\mathbb{P}[r(P)=a]\leqslant{\rm e}^{-\epsilon}\cdot\mathbb{P}[r(P^{\prime})=a].

Then we have

bia[r(P)=b]\displaystyle\sum\limits_{b\succ_{i}a}\mathbb{P}[r(P)=b] eϵbia[r(P)=b],\displaystyle\leqslant{\rm e}^{-\epsilon}\cdot\sum\limits_{b\succ_{i}a}\mathbb{P}[r(P^{\prime})=b],

which completes the proof. ∎

As is shown in Proposition 7, the satisfaction to strategyproofness increases when ϵ\epsilon decreases. This is quite intuitive, since there is little motivation for an adversary to manipulate the voting process when the outcomes of neighboring datasets are very similar.

6 Conclusion and Future Work

In the paper, we proposed three classes of differentially private Condorcet methods and explored their accuracy-privacy tradeoff and axioms-privacy tradeoff. Further, we investivated the relations between DP and other axioms. For future work, we plan to explore more axioms for randomized voting rules and design new voting rules performing better on satisfaction to the axioms. The design and analysis of differentially private mechanisms for other social choice problems, such as multi-winner elections, fair division, and participatory budgeting, are also promising directions for future work.

References

  • Apple Inc. (2017) Apple Inc. 2017. Differential privacy overview.
  • Aziz, Brandl, and Brandt (2014) Aziz, H.; Brandl, F.; and Brandt, F. 2014. On the incompatibility of efficiency and strategyproofness in randomized social choice. In Proceedings of AAAI.
  • Aziz, Brandl, and Brandt (2015) Aziz, H.; Brandl, F.; and Brandt, F. 2015. Universal Pareto dominance and welfare for plausible utility functions. Journal of Mathematical Economics, 60: 123–133.
  • Aziz, Brandt, and Brill (2013) Aziz, H.; Brandt, F.; and Brill, M. 2013. On the tradeoff between economic efficiency and strategy proofness in randomized social choice. In Proceedings of AAMAS.
  • Bassily et al. (2013) Bassily, R.; Groce, A.; Katz, J.; and Smith, A. 2013. Coupled-worlds privacy: Exploiting adversarial uncertainty in statistical data privacy. In Proceedings of FOCS.
  • Benadè, Gölz, and Procaccia (2019) Benadè, G.; Gölz, P.; and Procaccia, A. D. 2019. No stratification without representation. In Proceedings of EC.
  • Birrell and Pass (2011) Birrell, E.; and Pass, R. 2011. Approximately strategy-proof voting. In Proceedings of IJCAI.
  • Brandl, Brandt, and Hofbauer (2015) Brandl, F.; Brandt, F.; and Hofbauer, J. 2015. Incentives for Participation and Abstention in Probabilistic Social Choice. In Proceedings of AAMAS.
  • Brandl, Brandt, and Hofbauer (2019) Brandl, F.; Brandt, F.; and Hofbauer, J. 2019. Welfare maximization entices participation. Games and Economic Behavior, 114: 308–314.
  • Brandl, Brandt, and Stricker (2018) Brandl, F.; Brandt, F.; and Stricker, C. 2018. An Analytical and Experimental Comparison of Maximal Lottery Schemes. In Proceedings of IJCAI.
  • Brandt (2017) Brandt, F. 2017. Rolling the Dice: Recent Results in Probabilistic Social Choice. In Endriss, U., ed., Trends in Computational Social Choice, chapter 1. AI Access.
  • Dwork (2006) Dwork, C. 2006. Differential Privacy. In Proceedings of ICALP.
  • Dwork et al. (2006) Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; and Naor, M. 2006. Our data, ourselves: Privacy via distributed noise generation. In Proceedings of Eurocrypt.
  • Flanigan et al. (2021) Flanigan, B.; Gölz, P.; Gupta, A.; Hennig, B.; and Procaccia, A. D. 2021. Fair algorithms for selecting citizens’ assemblies. Nature, 596(7873): 548–552.
  • Flanigan et al. (2020) Flanigan, B.; Gölz, P.; Gupta, A.; and Procaccia, A. D. 2020. Neutralizing self-selection bias in sampling for sortition. In Proceedings of NeurlPS.
  • Gibbard (1977) Gibbard, A. 1977. Manipulation of schemes that mix voting with chance. Econometrica: Journal of the Econometric Society, 45(3): 665–681.
  • Gross, Anshelevich, and Xia (2017) Gross, S.; Anshelevich, E.; and Xia, L. 2017. Vote until two of you agree: Mechanisms with small distortion and sample complexity. In Proceedings of AAAI.
  • Hay, Elagina, and Miklau (2017) Hay, M.; Elagina, L.; and Miklau, G. 2017. Differentially private rank aggregation. In Proceedings of SDM.
  • Hsu et al. (2016) Hsu, J.; Huang, Z.; Roth, A.; Roughgarden, T.; and Wu, Z. S. 2016. Private matchings and allocations. SIAM Journal on Computing, 45(6): 1953–1984.
  • Kannan et al. (2018) Kannan, S.; Morgenstern, J.; Rogers, R.; and Roth, A. 2018. Private Pareto optimal exchange. ACM Transactions on Economics and Computation, 6(3-4): 1–25.
  • Kohli and Laskowski (2018) Kohli, N.; and Laskowski, P. 2018. Epsilon voting: Mechanism design for parameter selection in differential privacy. In Proceedings of PAC.
  • Lee (2015) Lee, D. T. 2015. Efficient, private, and eps-strategyproof elicitation of tournament voting rules. In Proceedings of IJCAI.
  • Liu et al. (2020) Liu, A.; Lu, Y.; Xia, L.; and Zikas, V. 2020. How private are commonly-used voting rules? In Proceedings of UAI.
  • Orr (2017) Orr, A. 2017. Google’s differential privacy may be better than Apple’s. the Mac Observer.
  • Pai and Roth (2013) Pai, M. M.; and Roth, A. 2013. Privacy and mechanism design. ACM SIGecom Exchanges, 12(1): 8–29.
  • Plott (1976) Plott, C. R. 1976. Axiomatic Social Choice Theory: An Overview and Interpretation. American Journal of Political Science, 20(3): 511–596.
  • Procaccia (2010) Procaccia, A. D. 2010. Can Approximation Circumvent Gibbard-Satterthwaite? In Proceedings of AAAI.
  • Shang et al. (2014) Shang, S.; Wang, T.; Cuff, P.; and Kulkarni, S. R. 2014. The application of differential privacy for rank aggregation: Privacy and accuracy. In Proceedings of FUSION.
  • Torra (2019) Torra, V. 2019. Random dictatorship for privacy-preserving social choice. International Journal of Information Security, 19(4): 1–9.
  • Walsh and Xia (2012) Walsh, T.; and Xia, L. 2012. Lot-based voting rules. In Proceedings of AAMAS.
  • Xiao (2013) Xiao, D. 2013. Is privacy compatible with truthfulness? In Proceedings of ITCS.
  • Yan, Li, and Liu (2020) Yan, Z.; Li, G.; and Liu, J. 2020. Private rank aggregation under local differential privacy. International Journal of Intelligent Systems, 35(1): 1492–1519.