This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Diffusive fluctuations of Long-range
symmetric exclusion with a slow barrier

Pedro Cardoso, Patrícia Gonçalves, Byron Jiménez-Oviedo
Abstract.

In this article we obtain the equilibrium fluctuations of a symmetric exclusion process in \mathbb{Z} with long jumps. The transition probability of the jump from xx to yy is proportional to |xy|γ1|x-y|^{-\gamma-1}. Here we restrict to the choice γ2\gamma\geq 2 so that the system has a diffusive behavior. Moreover, when particles move between \mathbb{Z}_{-}^{*} and \mathbb{N}, the jump rates are slowed down by a factor αnβ\alpha n^{-\beta}, where α>0\alpha>0, β0\beta\geq 0 and nn is the scaling parameter. Depending on the values of β\beta and γ\gamma, we obtain several stochastic partial differential equations, corresponding to a heat equation without boundary conditions, or with Robin boundary conditions or Neumann boundary conditions.

2010 Mathematics Subject Classification:
60K35, 35R11, 35S15

1. Introduction

Since Spitzer [14] introduced in the mathematical community the subject of Interacting Particle Systems (IPS), this has become quite an active field of research involving mathematicians and also theoretical physicists from different fields. The physical motivation to study this type of systems comes from Statistical Mechanics, where the goal is to study the global behavior of some thermodynamic quantity (ies) (for example, the density of a fluid) from the microscopic interactions between its constituent molecules/particles. Since the number of molecules is of the order of Avogrado’s number, one cannot give a complete description of the microscopic state of the system. Alternatively, the goal is to understand the macroscopic behavior of the system from the microscopic interactions, which are assumed to be random, i.e. each molecule/particle behaves as a continuous-time random walk, which evolves according to some prescribed dynamical rule. In this way, one can make a probabilistic analysis of the whole system. One of the goals in the literature of IPS is to describe the macroscopic evolution equations of some quantity(ies) by a scaling limit procedure. We fix then a scaling parameter nn which connects the macroscopic space, a continuous space where the solutions of the evolution equations will be defined, to the microscopic space, a discrete space where the particles will evolve (randomly).

In this setting two questions naturally appear: first, how to deduce the space-time evolution of the thermodynamic quantity of interest? This is known as the hydrodynamic limit, which gives a partial differential equation (PDE), a deterministic limit, for the space-time evolution of that quantity of interest. Second, how to describe the fluctuations around this deterministic limit? This is described by a stochastic PDE (SPDE). In the latter case, typically ones assumes to start the system from a stationary state, since otherwise the analysis is usually extremely intricate.

One of the most classical IPS is the exclusion process that we denote by ηt\eta_{t}. The dynamics of this process can be defined as follows. At each site of the microscopic space one can have at most one particle (exclusion rule) so that if for a site xx\in\mathbb{Z} and a time tt, the quantity ηt(x)\eta_{t}(x) denotes the quantity of particles at site xx then ηt(x){0,1}\eta_{t}(x)\in\{0,1\}. The dynamics is defined as follows: each particle waits a random time (which is exponentially distributed) after which it jumps to another position of the discrete space according to some transition probability p()p(\cdot). The process is said to be simple if jumps are restricted to nearest-neighbour sites. In this dynamics the number of particles is conserved and therefore it is the relevant quantity to investigate.

In this article, we analyse an exclusion process evolving on the discrete set \mathbb{Z} and particles jump according to the transition probability p:[0,1]p:\mathbb{Z}\mapsto[0,1], given by

p(x)={0,x=0;cγ|x|γ1,x0.p(x)=\begin{cases}0,\;\;&x=0;\\ c_{\gamma}|x|^{-\gamma-1},&x\neq 0.\end{cases} (1.1)

Above cγc_{\gamma} is a normalizing constant that turns p()p(\cdot) into a probability measure. There are two important regimes to distinguish the value of γ\gamma. When γ[2,)\gamma\in[2,\infty) the behavior of the system is diffusive, while for γ(0,2)\gamma\in(0,2), it is superdiffusive (in this work we only consider the former regime). This is a consequence of the fact that for γ(2,)\gamma\in(2,\infty), the transition probability p()p(\cdot) has finite variance since xx2p(x)<\sum_{x\in\mathbb{Z}}x^{2}p(x)<\infty and therefore, to observe a non-trivial evolution, we will speed up the process in the diffusive time scale tn2tn^{2}. Note also that for γ=2\gamma=2, despite the variance of p()p(\cdot) being infinite, by taking the time scale n2log(n)\frac{n^{2}}{\log(n)} we still see a diffusive behaviour.

On the exclusion dynamics defined above, we add a slow barrier and the goal is to understand its macroscopic effect at the level of the evolution equations for the density of particles. To properly introduce the barrier, we denote the set of bonds by B{\mathcalboondox B}, and we consider a set of slow bonds given by

SS0:={{x,y}B:x,y},{\mathcalboondox S}\subset{\mathcalboondox S}_{0}:=\big{\{}\{x,y\}\in{\mathcalboondox B}:x\in\mathbb{Z}_{-}^{*},y\in\mathbb{N}\big{\}},

and the complement of S{\mathcalboondox S} with respect to B{\mathcalboondox B} will be denoted by F{\mathcalboondox F}, the set of fast bonds. Now we fix two parameters α>0\alpha>0 and β0\beta\geq 0. At a bond {x,y}F\{x,y\}\in{\mathcalboondox F}, particles swap positions according to the transition probability p(yx)p(y-x), but when {x,y}S\{x,y\}\in{\mathcalboondox S}, then the jump rate becomes equal to αnβp(yx)\alpha n^{-\beta}p(y-x), see the figure below for a scheme of the dynamics.

8-87-76-65-54-43-32-21-101122334455667788p(14)αnβp(-14)\alpha n^{-\beta}p(12)αnβp(12)\alpha n^{-\beta}p(4)p(4)p(4)p(4)p(1)p(-1)
Figure 1. Exclusion process with long-jumps and a slow barrier for S=S0{\mathcalboondox S}={\mathcalboondox S}_{0}.

In [2] the hydrodynamic limit in the diffusive regime was obtained. To properly state it, let g:[0,1]{\mathcalboondox g}:\mathbb{R}\rightarrow[0,1] be a measurable function, which corresponds to the initial condition of the PDE. Since the density is the relevant quantity to look, then we consider the empirical measure given by

πtn(η,du):=1nxηt(x)δxn(du).\pi^{n}_{t}(\eta,du):=\frac{1}{n}\sum_{x}\eta_{t}(x)\delta_{\frac{x}{n}}(du). (1.2)

Let us now assume that the initial distribution of the process, denoted by μn\mu_{n}, is associated to g(){\mathcalboondox g}(\cdot), i.e. the initial empirical measure π0n(η,du)\pi_{0}^{n}(\eta,du) converges to the deterministic measure g(u)du{\mathcalboondox g}(u)du in probability with respect to μn\mu_{n}. This means that for every continuous function G:G:\mathbb{R}\to\mathbb{R} with compact support and for every δ>0\delta>0, it holds

limnμn(η:|π0n,GG(u)g(u)du|>δ)=0.\lim_{n\rightarrow\infty}\mu_{n}\left(\eta:\Big{|}\langle\pi_{0}^{n},G\rangle-\int_{\mathbb{R}}G(u){\mathcalboondox g}(u)du\Big{|}>\delta\right)=0.

The goal in the hydrodynamic limit consists in showing that the same result above holds at any time tt, i.e. for any tt, the sequence of random measures πtn(η,du)\pi_{t}^{n}(\eta,du) converges, as nn\rightarrow\infty, to the deterministic measure ρ(t,u)du\rho(t,u)du in probability with respect to the distribution of the system at time tt, where ρ(t,u)\rho(t,u) is the unique weak solution of a PDE, the hydrodynamic equation. The results of [2] can be summarized as follows.

  • I)

    if particles can move between \mathbb{Z}_{-}^{*} and \mathbb{N} using a path without slow bonds (this can only happen if SS0{\mathcalboondox S}\subsetneq{\mathcalboondox S}_{0}) then one gets the heat equation as hydrodynamic equation:

    {tϱ(t,u)=σ22Δϱ(t,u),(t,u)[0,T]×,ϱ(0,u)=g(u),u;\begin{cases}\partial_{t}\varrho(t,u)=\frac{\sigma^{2}}{2}\Delta\varrho(t,u),(t,u)\in[0,T]\times\mathbb{R},\\ \varrho(0,u)={\mathcalboondox g}(u),u\in\mathbb{R};\end{cases} (1.3)
  • II)

    if particles cannot move between \mathbb{Z}_{-}^{*} and \mathbb{N} without using at least one slow bond, then the hydrodynamic equation depends on the value of β\beta:

  • for 0β<10\leq\beta<1, it is the heat equation given in (1.3);

  • for β=1\beta=1, it is the heat equation with Robin (linear) boundary conditions:

    {tϱ(t,u)=σ22Δϱ(t,u),(t,u)[0,T]×,uϱ(t,0+)=uϱ(t,0)=κ[ϱ(t,0+)ϱ(t,0)],t(0,T],ϱ(0,u)=g(u),u;\begin{cases}\partial_{t}\varrho(t,u)=\frac{\sigma^{2}}{2}\Delta\varrho(t,u),(t,u)\in[0,T]\times\mathbb{R},\\ \partial_{u}\varrho(t,0^{+})=\partial_{u}\varrho(t,0^{-})=\kappa[\varrho(t,0^{+})-\varrho(t,0^{-})],t\in(0,T],\\ \varrho(0,u)={\mathcalboondox g}(u),u\in\mathbb{R};\end{cases} (1.4)
  • for β>1\beta>1, it is the heat equation with Neumann boundary conditions, i.e. (1.4) with κ=0\kappa=0.

We refer the reader to [2] for the proper notion of weak solutions that are obtained. In [3] it was analysed the superdiffusive case, corresponding to the regime γ(0,2)\gamma\in(0,2). There, the equations obtained at the hydrodynamic limit have the Laplacian operator replaced by the fractional Laplacian operator or a regional fractional Laplacian operator defined on an unbounded domain. We refer the interested reader to [3] for the exact statements.

In this article we are now interested in investigating the fluctuations around the deterministic limits (1.3) and (1.4), i.e. in the diffusive regime corresponding to γ[2,)\gamma\in[2,\infty). In order to observe some dependence on β\beta and obtain analogous results to II) above, we assume that S=S0{\mathcalboondox S}={\mathcalboondox S}_{0}, so exchanges of particles between \mathbb{Z}_{-}^{*} and \mathbb{N} always occur through slow bonds. Moreover, we assume that our system starts from an invariant measure, which is the Bernoulli product measure with a constant parameter b(0,1)b\in(0,1), that we denote by νb\nu_{b}. Therefore our quantity of interest is the density fluctuation field, which is given on a test function ff by

𝒴tn(f):=1nxf(xn)[ηtn(x)b].\mathcal{Y}_{t}^{n}(f):=\frac{1}{\sqrt{n}}\sum_{x}f(\tfrac{x}{n})\big{[}\eta_{t}^{n}(x)-b\big{]}.

Observe that the field above is centred with respect to the invariant measure since Eνb[ηt(x)]=bE_{\nu_{b}}[\eta_{t}(x)]=b for all xx\in\mathbb{Z} and t>0t>0. Typically, the density fluctuation field is described in terms of a solution to a SPDE, which depends strongly on the dynamics of the underlying microscopic system. To give some examples, the generalized Ornstein-Uhlenbeck process has been obtained in [6, 1]; the stochastic Burgers equation has been obtained in [8]; and fractional versions of those equations have been obtained in [9]. In [6] it was studied the same problem that we address here, but there the exclusion process was simple, since jumps were only allowed to nearest-neighbors and only a slow bond at {1,0}\{-1,0\} was present. Depending on the strength of the slow bond in [6] it was derived an Ornstein-Uhlenbeck process with several boundary conditions. Our goal is to extend those results to the exclusion with long-jumps and with a slow barrier.

In this work our space of test functions has to be carefully chosen, due to the slow barrier. Indeed, we need to impose conditions on these functions in order to control the evolution equations of the density field when the scaling parameter nn\rightarrow\infty. On the other hand, we cannot impose too strong assumptions, since this would lead to a very small space of test functions, and we would not be able to obtain the uniqueness of the solutions for the aforementioned equations.

Our results can be stated as follows. When the barrier is not very slow (more precisely, when 0β<10\leq\beta<1), we do not see any effect at the level of the fluctuations and they are described by a generalized Ornstein-Uhlenbeck process. For γ>2\gamma>2, when the intensity of the barrier attains a critical level (corresponding to β=1\beta=1) we see an effect at the level of the Ornstein-Uhlenbeck process, which now has Robin boundary conditions; and those boundary conditions are replaced by Neumann boundary conditions when the barrier is very slow (corresponding to β>1\beta>1). This behaviour is reminiscent from the choice of the space of test functions where the fluctuation field acts; and it has similarities to the results that were obtained at the level of the hydrodynamic limits. On the other hand, for γ=2\gamma=2, there is no value of β\beta for which Robin boundary conditions are present, and we have Neumann boundary conditions for every β1\beta\geq 1.

Now we give some comments about the proof. Since we are working with a model that is evolving in the full lattice \mathbb{Z}, our arguments in the proofs become lengthy and technical, since we have to control many tails from several series that appear involving the transition probability p()p(\cdot). Due to the fact that we have introduced a slow barrier, many boundary conditions have to be obtained from the microscopic level and this obliges us to use several replacement lemmas that allow closing the equations and take limits to reach the notions of solutions at the macroscopic level. We therefore successfully extend the results of [6] to the case when the exclusion process has long jumps and a slow barrier. Naturally, if we choose a transition probability which allows only jumps of size 11 to the left and to the right with probability 1/21/2, we recover the results of [6].

We leave some open problems for the future. The first one has to do with the understanding the limit of other observables of the process such as the fluctuations of either the current of the system or a tagged particle. In [6], the aforementioned results were obtained as a consequence of the fluctuations of the density of particles. The strategy was to use an identity relating the current of particles with the density fluctuation field evaluated at a proper test function (more precisely, an Heaviside function). Then since the density fluctuations are known for a large collection of test functions, by an approximation argument, one can obtain the density fluctuations for the Heaviside function and from this the current fluctuations. For the tagged particle, its position can be related with both the current and the density of particles, therefore the result for the tagged particle is a consequence of the corresponding results for the current and the density. We observe however that this procedure can only be used when all jumps are nearest-neighbor because it is crucial to have an order between particles. However, if jumps of size greater that 11 are allowed, the order of the particles can be destroyed, so one requires an alternative strategy. Another problem that can be addressed is the extension of our results to the superdiffusive regime, i.e. for γ(0,2)\gamma\in(0,2).

This article is divided as follows. In Section 2, we define precisely our model and we state our main result, namely Theorem 2.4. In Section 3, we prove tightness of the sequence of the density fluctuation fields. In Section 4, we characterize the limit points of the aforementioned sequence in terms of a martingale problem. In Section 5, we obtain some useful L2L^{2} estimates that are needed to prove our main theorem. Finally, in the Appendix A, we show a multitude of results related to the convergence of discrete operators to continuous ones for each of the space of test functions.

2. Statement of results

2.1. The model

Our goal is to study the evolution of the exclusion process in \mathbb{Z}: this is an IPS which allows at most one particle per site, therefore our space state is Ω:={0,1}\Omega:=\{0,1\}^{\mathbb{Z}}. The elements of \mathbb{Z} are called sites and will be denoted by Latin letters, such as xx, yy and zz. The elements of Ω\Omega are called configurations and will be denoted by Greek letters, such as η\eta. Moreover, we denote the number of particles at a site xx according to a configuration η\eta by η(x)\eta(x); this means that the site xx is empty if η(x)=0\eta(x)=0 and it is occupied if η(x)=1\eta(x)=1.

Recall the expression for pp given in (1.1). We denote m:=x1xp(x)<m:=\sum_{x\geq 1}xp(x)<\infty. Moreover, in the case γ>2\gamma>2, we denote σ2:=xx2p(x)<\sigma^{2}:=\sum_{x}x^{2}p(x)<\infty.

According to the exclusion rule, given x1,x2x_{1},x_{2}\in\mathbb{Z}, a particle jumps from x1x_{1} to x2x_{2} if x2x_{2} is empty and x1x_{1} is occupied, i.e. η(x2)=0\eta(x_{2})=0 and η(x1)=1\eta(x_{1})=1. This means that a movement between x1x_{1} and x2x_{2} (in one of the two directions) is only possible if η(x1)[1η(x2)]+η(x2)[1η(x1)]=1.\eta(x_{1})[1-\eta(x_{2})]+\eta(x_{2})[1-\eta(x_{1})]=1.

Therefore, the movement of a particle between xx and yy acts on an initial configuration ηΩ\eta\in\Omega and transforms it into ηx,yΩ\eta^{x,y}\in\Omega, which is defined by

ηx,y(z)={η(y),z=x;η(x),z=y;η(z),z{x,y}.\eta^{x,y}(z)=\begin{cases}\eta(y),\quad&z=x;\\ \eta(x),\quad&z=y;\\ \eta(z),\quad&z\notin\{x,y\}.\end{cases}

The elements of B:={{x,y}:xy}{\mathcalboondox B}:=\big{\{}\{x,y\}:x\neq y\in\mathbb{Z}\big{\}} are called bonds. We denote :={0,1,2,}\mathbb{N}:=\{0,1,2,\ldots\} and :=={1,2,}\mathbb{Z}_{-}^{*}:=\mathbb{Z}-\mathbb{N}=\{-1,-2,\ldots\}. We also denote S:={{x,y}B:x,y}{\mathcalboondox S}:=\big{\{}\{x,y\}\in{\mathcalboondox B}:x\in\mathbb{Z}_{-}^{*},y\in\mathbb{N}\big{\}} and F:=BS{\mathcalboondox F}:={\mathcalboondox B}-{\mathcalboondox S}.

Now we describe the effect of our slow barrier. Hereafter we fix α>0\alpha>0 and β0\beta\geq 0. Starting from a configuration η\eta, a particle jumps from xx to yy with rate η(x)[1η(y)]rx,yn\eta(x)[1-\eta(y)]r_{x,y}^{n}, where

rx,yn:={αnβ,{x,y}S;1,{x,y}F.r_{x,y}^{n}:=\begin{cases}\alpha n^{-\beta},\quad&\{x,y\}\in{\mathcalboondox S};\\ 1,\quad&\{x,y\}\in{\mathcalboondox F}.\end{cases} (2.1)

When β>0\beta>0, we have limnrx,yn=0\lim_{n\rightarrow\infty}r_{x,y}^{n}=0 for every {x,y}\{x,y\} in S{\mathcalboondox S}, creating a physical barrier between \mathbb{Z}_{-}^{*} and \mathbb{N}. Then S{\mathcalboondox S} and F{\mathcalboondox F} are the sets of slow and fast bonds, respectively.

We say that a function f:Ωf:\Omega\mapsto\mathbb{R} is local if there exists a finite set Λ\Lambda\subset\mathbb{Z} such that xΛ,η1(x)=η2(x)f(η1)=f(η2).\forall x\in\Lambda,\eta_{1}(x)=\eta_{2}(x)\Rightarrow f(\eta_{1})=f(\eta_{2}). The exclusion process with slow bonds is described by the infinitesimal generator Ln{\mathcalboondox L}_{n}, defined by

(Lnf)(η)=\displaystyle({\mathcalboondox L}_{n}f)(\eta)= x,yp(yx)η(x)[1η(y)]rx,ynx,yf(η)\displaystyle\sum_{x,y}p(y-x)\eta(x)[1-\eta(y)]r_{x,y}^{n}\nabla_{x,y}f(\eta) (2.2)
=\displaystyle= 12x,yp(yx)rx,ynx,yf(η),\displaystyle\frac{1}{2}\sum_{x,y}p(y-x)r_{x,y}^{n}\nabla_{x,y}f(\eta), (2.3)

where ff is a local function and for x,yx,y\in\mathbb{Z} we have x,yf(η):=[f(ηx,y)f(η)]\nabla_{x,y}f(\eta):=[f(\eta^{x,y})-f(\eta)]. From now on, unless it is stated differently, we will assume that our discrete variables in a summation always range over \mathbb{Z}.

2.2. Notation

If GC()G\in C^{\infty}(\mathbb{R}) (i.e., G:G:\mathbb{R}\rightarrow\mathbb{R} has continuous derivatives of all orders), uu\in\mathbb{R} and k1k\geq 1, we denote the kk-th derivative of GG at uu by G(k)(u)G^{(k)}(u). For k=0k=0, we denote G(0)(u)G^{(0)}(u) by G(u)G(u). Following Section V.3 of [12], the Schwartz space 𝒮()\mathcal{S}(\mathbb{R}) is the subspace of functions GC()G\in C^{\infty}(\mathbb{R}) such that for every (k,)2(k,\ell)\in\mathbb{N}^{2}, it holds

Gk,,𝒮():=supu|ukG()(u)|<.\|G\|_{k,\ell,\mathcal{S}(\mathbb{R})}:=\sup_{u\in\mathbb{R}}|u^{k}G^{(\ell)}(u)|<\infty.

Moreover, we denote by 𝒮()\mathcal{S}(\mathbb{R}^{*}) the space of functions G:G:\mathbb{R}\rightarrow\mathbb{R} such that there exist G,G+G_{-},G_{+} in 𝒮()\mathcal{S}(\mathbb{R}) satisfying G(u)=𝟙{u<0}G(u)+𝟙{u0}G+(u)G(u)=\mathbbm{1}_{\{u<0\}}G_{-}(u)+\mathbbm{1}_{\{u\geq 0\}}G_{+}(u), hence G(k)(u)𝟙{u0}=𝟙{u<0}G(k)(u)+𝟙{u>0}G+(k)(u)G^{(k)}(u)\mathbbm{1}_{\{u\neq 0\}}=\mathbbm{1}_{\{u<0\}}G_{-}^{(k)}(u)+\mathbbm{1}_{\{u>0\}}G_{+}^{(k)}(u) for every k0k\geq 0. By convention, we say that G(k)(0)=G+(k)(0)G^{(k)}(0)=G_{+}^{(k)}(0) for every k0k\geq 0. We denote by 𝒮Neu()\mathcal{S}_{Neu}(\mathbb{R}^{*}) the closed subspace of functions G𝒮()G\in\mathcal{S}(\mathbb{R}^{*}) such that

k0,G(2k+1)(0)=G+(2k+1)(0)=0.\displaystyle\forall k\geq 0,\quad G_{-}^{(2k+1)}(0)=G_{+}^{(2k+1)}(0)=0.

For the critical case γ>2\gamma>2 and β=1\beta=1, it will be useful to denote

α^:=2αmσ2=αmκγ,\hat{\alpha}:=2\frac{\alpha m}{\sigma^{2}}=\frac{\alpha m}{\kappa_{\gamma}}, (2.4)

where κγ\kappa_{\gamma} is given by

κγ:={c2,γ=2;σ2,γ>2.\kappa_{\gamma}:=\begin{cases}c_{2},&\gamma=2;\\ \sigma^{2},&\gamma>2.\end{cases} (2.5)

Moreover, we denote by 𝒮Rob()\mathcal{S}_{Rob}(\mathbb{R}^{*}) the closed subspace of functions G𝒮()G\in\mathcal{S}(\mathbb{R}^{*}) such that

k0,G(2k+1)(0)=G+(2k+1)(0)=α^[G+(2k)(0)G(2k)(0)].\displaystyle\forall k\geq 0,\quad G_{-}^{(2k+1)}(0)=G_{+}^{(2k+1)}(0)=\hat{\alpha}\Big{[}G_{+}^{(2k)}(0)-G_{-}^{(2k)}(0)\Big{]}.
Definition 2.1.

For every (β,γ)[0,)×[2,)(\beta,\gamma)\in[0,\infty)\times[2,\infty), we denote our space of test functions by 𝒮β,γ\mathcal{S}_{\beta,\gamma}, where 𝒮β,γ:=𝒮()\mathcal{S}_{\beta,\gamma}:=\mathcal{S}(\mathbb{R}) for (β,γ)[0,1)×[2,)(\beta,\gamma)\in[0,1)\times[2,\infty), 𝒮β,γ:=𝒮Rob()\mathcal{S}_{\beta,\gamma}:=\mathcal{S}_{Rob}(\mathbb{R}^{*}) for (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty) and 𝒮β,γ:=𝒮Neu()\mathcal{S}_{\beta,\gamma}:=\mathcal{S}_{Neu}(\mathbb{R}^{*}) otherwise. In particular, 𝒮β,γ\mathcal{S}_{\beta,\gamma} is always a closed subspace of 𝒮()\mathcal{S}(\mathbb{R}^{*}).

Furthermore, in order to state explicitly that certain results hold for all the possible values for (β,γ)(\beta,\gamma), it will be convenient to define R0:=[0,)×[2,)R_{0}:=[0,\infty)\times[2,\infty).

Remark 2.2.

First, we observe that 𝒮()\mathcal{S}(\mathbb{R}) is a nuclear Fréchet space; see Chapter 2, Section 4 (resp. Chapter 3, Section 7) of [13] for more details regarding the definition of Fréchet space (resp. nuclear space).

From Chapter 2, Section 4 (resp. Chapter 3, Section 7) of [13] we have that the every countable product of Fréchet spaces is also a Fréchet space (resp. every arbitrary product of nuclear spaces is also a nuclear space). Thus, since 𝒮()\mathcal{S}(\mathbb{R}^{*}) can be identified with 𝒮()×𝒮()\mathcal{S}(\mathbb{R})\times\mathcal{S}(\mathbb{R}), we have that 𝒮()\mathcal{S}(\mathbb{R}^{*}) is a nuclear Fréchet space.

Finally, from Chapter 2, Section 4 (resp. Chapter 3, Section 7) of [13] we have that the every closed subspace of a Fréchet space is also a Fréchet space (resp. every arbitrary subspace of a nuclear space is also a nuclear space). Combining this with Definition 2.1, we have that 𝒮β,γ\mathcal{S}_{\beta,\gamma} is a nuclear Fréchet space, for every (β,γ)R0(\beta,\gamma)\in R_{0}.

For every (β,γ)R0(\beta,\gamma)\in R_{0} we define the operator Δβ,γ:𝒮β,γ𝒮()\Delta_{\beta,\gamma}:\mathcal{S}_{\beta,\gamma}\rightarrow\mathcal{S}(\mathbb{R}^{*}) by

(Δβ,γG)(u)={G(2)(u),u<0;G+(2)(u),u0;(\Delta_{\beta,\gamma}G)(u)=\begin{cases}G_{-}^{(2)}(u),&u<0;\\ G_{+}^{(2)}(u),&u\geq 0;\end{cases} (2.6)

and the operator β,γ:𝒮β,γ𝒮()\nabla_{\beta,\gamma}:\mathcal{S}_{\beta,\gamma}\rightarrow\mathcal{S}(\mathbb{R}^{*}) by

(β,γG)(u)={G(1)(u),u<0;G+(1)(u),u0.(\nabla_{\beta,\gamma}G)(u)=\begin{cases}G_{-}^{(1)}(u),&u<0;\\ G_{+}^{(1)}(u),&u\geq 0.\end{cases} (2.7)

In particular, given (β,γ)R0(\beta,\gamma)\in R_{0} it holds Δβ,γG𝒮β,γ\Delta_{\beta,\gamma}G\in\mathcal{S}_{\beta,\gamma} for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. For every function G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, we define 2,β,γ\|\cdot\|_{2,\beta,\gamma} by

G2,β,γ2:=2κγ([G(u)]2𝑑u+1α^𝟙{γ>2}𝟙{β=1}[G(0)]2),\|G\|^{2}_{2,\beta,\gamma}:=2\kappa_{\gamma}\Big{(}\int_{\mathbb{R}}[G(u)]^{2}du+\frac{1}{\hat{\alpha}}\mathbbm{1}_{\{\gamma>2\}}\mathbbm{1}_{\{\beta=1\}}[G(0)]^{2}\Big{)},

where κγ\kappa_{\gamma} is given in (2.5). For every t>0t>0 and xx\in\mathbb{R}, let ϕt(x):=ex24t4πt\phi_{t}(x):=\frac{e^{-\frac{x^{2}}{4t}}}{\sqrt{4\pi t}} be the heat kernel. Then ϕt𝒮()\phi_{t}\in\mathcal{S}(\mathbb{R}) for every t>0t>0.

For every t0t\geq 0, we define the following semigroups:

  1. (1)
    Ptg(x):={g(x),t=0;(ϕtg)(x),t>0.\displaystyle P_{t}g(x):=\begin{cases}g(x),&t=0;\\ (\phi_{t}*g)(x),&t>0.\end{cases}
  2. (2)
    PtNeug(x):={g(x),(t,x){0}×;14πt0[e(xy)24t+e(x+y)24t]g(y)𝑑y,(t,x)(0,)×[0,);14πt0[e(xy)24t+e(x+y)24t]g(y)𝑑y,(t,x)(0,)×(,0).\displaystyle P_{t}^{Neu}g(x):=\begin{cases}g(x),&(t,x)\in\{0\}\times\mathbb{R};\\ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}\big{[}e^{-\frac{(x-y)^{2}}{4t}}+e^{-\frac{(x+y)^{2}}{4t}}]g(y)dy,&(t,x)\in(0,\infty)\times[0,\infty);\\ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}\big{[}e^{-\frac{(x-y)^{2}}{4t}}+e^{-\frac{(x+y)^{2}}{4t}}]g(-y)dy,&(t,x)\in(0,\infty)\times(-\infty,0).\end{cases}
  3. (3)
    PtDirg(x):={g(x),(t,x){0}×;0[ϕt(xy)ϕt(x+y)]g(y)𝑑y,(t,x)(0,)×.\displaystyle P_{t}^{Dir}g(x):=\begin{cases}g(x),&(t,x)\in\{0\}\times\mathbb{R};\\ \int_{0}^{\infty}[\phi_{t}(x-y)-\phi_{t}(x+y)]g(y)dy,&(t,x)\in(0,\infty)\times\mathbb{R}.\end{cases}
  4. (4)
    Ptα^g(x):=e2α^xxe2α^yPtDir(2α^gg(1))(y)𝑑y,(t,x)[0,)×.\displaystyle P_{t}^{\hat{\alpha}}g(x):=e^{2\hat{\alpha}x}\int_{x}^{\infty}e^{-2\hat{\alpha}y}P_{t}^{Dir}(2\hat{\alpha}g-g^{(1)})(y)dy,\quad(t,x)\in[0,\infty)\times\mathbb{R}.
  5. (5)
    PtRobg(x):={Pt(g)(x)+P~tα^(𝒪g)(x),(t,x)[0,)×[0,);Pt(g)(x)P~tα^(𝒪g)(x),(t,x)[0,)×(,0),\displaystyle P_{t}^{Rob}g(x):=\begin{cases}P_{t}(\mathcal{E}g)(x)+\tilde{P}_{t}^{\hat{\alpha}}(\mathcal{O}g)(x),&(t,x)\in[0,\infty)\times[0,\infty);\\ -P_{t}(\mathcal{E}g)(-x)-\tilde{P}_{t}^{\hat{\alpha}}(\mathcal{O}g)(x-),&(t,x)\in[0,\infty)\times(-\infty,0),\end{cases}

    where for any function g:g:\mathbb{R}\rightarrow\mathbb{R}, g:\mathcal{E}g:\mathbb{R}\rightarrow\mathbb{R} and 𝒪g:\mathcal{O}g:\mathbb{R}\rightarrow\mathbb{R} are defined by

    (g)(x)=g(x)+g(x)2,(𝒪g)(x)=g(x)g(x)2,\displaystyle(\mathcal{E}g)(x)=\frac{g(x)+g(-x)}{2},\quad\quad(\mathcal{O}g)(x)=\frac{g(x)-g(-x)}{2},

    for every xx\in\mathbb{R}.

Finally, for every (β,γ)R0(\beta,\gamma)\in R_{0}, we define the semigroup Ptβ,γP_{t}^{\beta,\gamma} acting on 𝒮β,γ\mathcal{S}_{\beta,\gamma} by Ptβ,γ:=PtP_{t}^{\beta,\gamma}:=P_{t} for (β,γ)[0,1)×[2,)(\beta,\gamma)\in[0,1)\times[2,\infty), Ptβ,γ:=PtRobP_{t}^{\beta,\gamma}:=P_{t}^{Rob} for (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty) and Ptβ:=PtNeuP_{t}^{\beta}:=P_{t}^{Neu} otherwise. From [7], we know that given t0t\geq 0 and (β,γ)[0,)×[2,)(\beta,\gamma)\in[0,\infty)\times[2,\infty), it holds Ptβ,γG𝒮β,γP_{t}^{\beta,\gamma}G\in\mathcal{S}_{\beta,\gamma} for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}.

Moreover, for every p[1,]p\in[1,\infty] let Lp():=Lp(,μ)L^{p}(\mathbb{R}):=L^{p}(\mathbb{R},\mu), where μ\mu is the Lebesgue measure in \mathbb{R}. We also denote the norm in Lp()L^{p}(\mathbb{R}) by p\|\cdot\|_{p} for p<p<\infty and by \|\cdot\|_{\infty} for p=p=\infty.

In order to observe a non-trivial macroscopic limit, our Markov process will be accelerated in time by a factor of Θ(n)\Theta(n), given by

Θ(n):={n2,γ>2;n2log(n),γ=2.\Theta(n):=\begin{cases}n^{2},&\gamma>2;\\ \frac{n^{2}}{\log(n)},&\gamma=2.\end{cases} (2.8)

We study the process ηtn():=ηtΘ(n)()\eta_{t}^{n}(\cdot):=\eta_{t\Theta(n)}(\cdot), whose infinitesimal generator is Θ(n)Ln\Theta(n){\mathcalboondox L}_{n}. We fix an arbitrary T>0T>0, which leads to a finite time horizon [0,T][0,T]. In particular, (ηtn)t[0,T]D[0,T],Ω)(\eta^{n}_{t})_{t\in[0,T]}\in{\mathcalboondox D}[0,T],\Omega), the space of the càdlàg (right-continuous and with left limits) trajectories in Ω\Omega. The goal of this work is to study the fluctuations of the empirical measure, denoted by πtn\pi_{t}^{n} and defined by (1.2). We denote the integral of a function GL1()G\in L^{1}(\mathbb{R}) with respect to the empirical measure by πtn,G\langle\pi_{t}^{n},G\rangle, so that

t[0,T],πtn,G:=1nxηtn(x)G(xn).\displaystyle\forall t\in[0,T],\quad\langle\pi_{t}^{n},G\rangle:=\frac{1}{n}\sum_{x}\eta_{t}^{n}(x)G(\tfrac{x}{n}). (2.9)

Next we introduce a measure on Ω\Omega which will be relevant in this work. Hereinafter, we fix b(0,1)b\in(0,1) and denote by νb\nu_{b} the Bernoulli product measure with marginals given by

x,1νb(η:η(x)=0)=νb(η:η(x)=1)=b.\displaystyle\forall x\in\mathbb{Z},\quad 1-\nu_{b}\big{(}\eta:\eta(x)=0\big{)}=\nu_{b}\big{(}\eta:\eta(x)=1\big{)}=b. (2.10)

Since νb(ηx,y)=νb(η)\nu_{b}(\eta^{x,y})=\nu_{b}(\eta) for every ηΩ\eta\in\Omega and every x,yx,y\in\mathbb{Z}, we conclude that νb\nu_{b} is reversible (and in particular invariant) with respect to Ln{\mathcalboondox L}_{n}. In particular,

t[0,T],xEνb[ηtn(x)]=bandEνb[(ηtn(x)b)2]=χ(b):=b(1b).\forall t\in[0,T],\forall x\in\mathbb{Z}\quad E_{\nu_{b}}[\eta_{t}^{n}(x)]=b\quad\textrm{and}\quad E_{\nu_{b}}\big{[}\big{(}\eta_{t}^{n}(x)-b\big{)}^{2}\big{]}=\chi(b):=b(1-b). (2.11)

Moreover, the random variables ((ηtn(x))x\big{(}(\eta_{t}^{n}(x)\big{)}_{x\in\mathbb{Z}} are independent under νb\nu_{b} for every t[0,T]t\in[0,T].

2.3. Main result

Hereinafter, we fix b(0,1)b\in(0,1). Before stating the main result of this article, we characterize the generalized Ornstein-Uhlenbeck process, which is a solution of

d𝒴t=κγΔβ,γ𝒴tdt+2χ(b)β,γd𝒲t,d\mathcal{Y}_{t}=\kappa_{\gamma}\Delta_{\beta,\gamma}\mathcal{Y}_{t}dt+\sqrt{2\chi(b)}\nabla_{\beta,\gamma}d\mathcal{W}_{t}, (2.12)

in terms of a martingale problem. Above 𝒲t\mathcal{W}_{t} is a space-time white noise of variance 11. In spite of having a dependence of 𝒴t\mathcal{Y}_{t} on β\beta and γ\gamma, in order to keep notation simpler, we do not index on these parameters.

In what follows, 𝒮β,γ\mathcal{S}_{\beta,\gamma}^{\prime} denotes the space of bounded linear functionals f:𝒮β,γf:\mathcal{S}_{\beta,\gamma}\rightarrow\mathbb{R}. Moreover, D([0,T],𝒮β,γ){\mathcalboondox D}([0,T],\mathcal{S}_{\beta,\gamma}^{\prime}) (respectively C([0,T],𝒮β,γ){\mathcalboondox C}([0,T],\mathcal{S}_{\beta,\gamma}^{\prime}) is the space of càdlàg functions (respectively continuous) 𝒮β,γ\mathcal{S}_{\beta,\gamma}-^{\prime} valued functions endowed with the Skorokod topology.

The proof of the next result is presented in Section 5 of [6] and Section 4 of [7], therefore we do not prove it here and we refer the interested reader to those articles.

Proposition 2.3.

There exists a unique random element 𝒴\mathcal{Y} taking values in C([0,T],𝒮β,γ){\mathcalboondox C}([0,T],\mathcal{S}_{\beta,\gamma}^{\prime}) such that:

  • For every function G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, the processes t(G)\mathcal{M}_{t}(G) and 𝒩t(G)\mathcal{N}_{t}(G) given by

    t(G)=𝒴t(G)𝒴0(G)κγ0t𝒴s(Δβ,γG)𝑑s\mathcal{M}_{t}(G)=\mathcal{Y}_{t}(G)-\mathcal{Y}_{0}(G)-\kappa_{\gamma}\int_{0}^{t}\mathcal{Y}_{s}(\Delta_{\beta,\gamma}G)ds (2.13)

    and

    𝒩t(G)=[t(G)]22χ(b)tβ,γG2,β,γ2\mathcal{N}_{t}(G)=[\mathcal{M}_{t}(G)]^{2}-2\chi(b)t\|\nabla_{\beta,\gamma}G\|_{2,\beta,\gamma}^{2} (2.14)

    are t\mathcal{F}_{t}-martingales, where for each t[0,T]t\in[0,T], t:=σ(𝒴s(G):(s,G)[0,t]×𝒮β,γ)\mathcal{F}_{t}:=\sigma(\mathcal{Y}_{s}(G):(s,G)\in[0,t]\times\mathcal{S}_{\beta,\gamma}).

  • 𝒴0\mathcal{Y}_{0} is a mean zero Gaussian field with covariance given on G1,G2𝒮β,γG_{1},G_{2}\in\mathcal{S}_{\beta,\gamma} by

    𝔼νb[𝒴0(G1)𝒴0(G2)]=χ(b)G1(u)G2(u)𝑑u.\mathbb{E}_{\nu_{b}}[\mathcal{Y}_{0}(G_{1})\mathcal{Y}_{0}(G_{2})]=\chi(b)\int_{\mathbb{R}}G_{1}(u)G_{2}(u)du. (2.15)

    Moreover for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, the stochastic process {𝒴t(G);t0}\{\mathcal{Y}_{t}(G);t\geq 0\} is Gaussian, being the distribution of 𝒴t(G)\mathcal{Y}_{t}(G) conditionally to s\mathcal{F}_{s}, for s<ts<t, normal of mean 𝒴s(Ptsβ,γG)\mathcal{Y}_{s}(P_{t-s}^{\beta,\gamma}G) and variance 0tsβ,γPrβ,γG2,β,γ2𝑑r\int_{0}^{t-s}\|\nabla_{\beta,\gamma}P_{r}^{\beta,\gamma}G\|_{2,\beta,\gamma}^{2}dr.

The random element 𝒴\mathcal{Y} is called the generalized Ornstein-Uhlenbeck process of characteristics Δβ,γ\Delta_{\beta,\gamma} and β,γ\nabla_{\beta,\gamma}, see (2.6) and (2.7). From (2.14) and Levy’s Theorem on the martingale characterization of Brownian motion, the process

t(G)2χ(b)β,γG2,β,γ\mathcal{M}_{t}(G)\sqrt{2\chi(b)}\|\nabla_{\beta,\gamma}G\|_{2,\beta,\gamma}

is a standard Brownian motion, for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma} fixed. Therefore, in view of Proposition 2.3, it makes sense to say that 𝒴\mathcal{Y} is the formal solution of (2.12).

Recall the definition of the νb\nu_{b} in (2.10). In order to state the Central Limit Theorem (CLT) for the empirical measure πtn\pi_{t}^{n} defined in (1.2), we introduce the density fluctuation field 𝒴tn\mathcal{Y}_{t}^{n}. It is defined as the 𝒮β,γ\mathcal{S}_{\beta,\gamma}^{\prime}-valued process {𝒴tn:t[0,T]}\{\mathcal{Y}_{t}^{n}:t\in[0,T]\} given on f𝒮β,γf\in\mathcal{S}_{\beta,\gamma} by

𝒴tn(f):=1nxf(xn)η¯tn(x),\mathcal{Y}_{t}^{n}(f):=\frac{1}{\sqrt{n}}\sum_{x}f(\tfrac{x}{n})\bar{\eta}_{t}^{n}(x),

for any t[0,T]t\in[0,T] and any n1n\geq 1. Above η¯tn(x):=ηtn(x)𝔼νb[ηtn(x)]=ηtn(x)b\bar{\eta}_{t}^{n}(x):=\eta_{t}^{n}(x)-\mathbb{E}_{\nu_{b}}[\eta_{t}^{n}(x)]=\eta_{t}^{n}(x)-b.

Finally we state the main result of this article.

Theorem 2.4.

(CLT for the density of particles) Assume (β,γ)R0(\beta,\gamma)\in R_{0}. Consider the Markov process {ηtn:t[0,T]}:={ηtΘ(n):t[0,T]}\{\eta_{t}^{n}:t\in[0,T]\}:=\{\eta_{t\Theta(n)}:t\in[0,T]\} with generator given by (2.2) and with Θ(n)\Theta(n) given by (2.8). Suppose that it starts from the invariant state νb\nu_{b}. Then, the sequence of processes (𝒴tn)n1(\mathcal{Y}_{t}^{n})_{n\geq 1} converges in distribution, as nn\rightarrow\infty, with respect to the Skorohod topology of D([0,T],𝒮β,γ){\mathcalboondox D}([0,T],\mathcal{S}_{\beta,\gamma}^{\prime}) to 𝒴t\mathcal{Y}_{t} in C([0,T],𝒮β,γ){\mathcalboondox C}([0,T],\mathcal{S}_{\beta,\gamma}^{\prime}), the generalized Ornstein-Uhlenbeck process 𝒴t\mathcal{Y}_{t} defined in Proposition 2.3.

We denote by νb\mathbb{P}_{\nu_{b}} be the probability measure on D([0,T],Ω){\mathcalboondox D}([0,T],\Omega) induced by the Markov process {ηtn;t0}\{\eta_{t}^{n};{t\geq 0}\} and the initial distribution νb\nu_{b}. Furthermore, we denote the expectation with respect to νb\mathbb{P}_{\nu_{b}} by 𝔼νb\mathbb{E}_{\nu_{b}}. In Section 3, we prove tightness of (𝒴tn)n1(\mathcal{Y}_{t}^{n})_{n\geq 1}, i.e., (𝒴tn)n1(\mathcal{Y}_{t}^{n})_{n\geq 1} converges (weakly) along subsequences. In Section 4, we characterize the limit points of (𝒴tn)n1(\mathcal{Y}_{t}^{n})_{n\geq 1} as random elements satisfying the three conditions stated in Proposition 2.3. The uniqueness established in Proposition 2.3 leads to the desired result. Finally, some L2(νb)L^{2}(\mathbb{P}_{\nu_{b}}) estimates that are used in the article are proved in Section 5.

3. Tightness of the sequence of fluctuation fields

From Dynkin’s formula (Appendix 1.5 of [10]), for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, the process {tn(G);t[0,T]}\{\mathcal{M}_{t}^{n}(G);t\in[0,T]\} defined by

tn(G):=𝒴tn(G)𝒴0n(G)0tΘ(n)Ln𝒴sn(G)𝑑s\mathcal{M}_{t}^{n}(G):=\mathcal{Y}_{t}^{n}(G)-\mathcal{Y}_{0}^{n}(G)-\int_{0}^{t}\Theta(n){\mathcalboondox L}_{n}\mathcal{Y}_{s}^{n}(G)ds (3.1)

is a martingale with respect to the natural filtration Ftn=σ(ηsn:0st){\mathcalboondox F}_{t}^{n}=\sigma(\eta_{s}^{n}:0\leq s\leq t), whose quadratic variation n(G)t\langle\mathcal{M}^{n}(G)\rangle_{t} is given by

n(G)t:=0tΘ(n)n{x,y}Fp(xy)[G(yn)G(xn)]2[ηsn(y)ηsn(x)]2ds+0tαΘ(n)n1β{x,y}Sp(xy)[G(yn)G(xn)]2[ηsn(y)ηsn(x)]2ds.\begin{split}\langle\mathcal{M}^{n}(G)\rangle_{t}:=&\int_{0}^{t}\frac{\Theta(n)}{n}\sum_{\{x,y\}\in{\mathcalboondox F}}p(x-y)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}[\eta_{s}^{n}(y)-\eta_{s}^{n}(x)]^{2}ds\\ +&\int_{0}^{t}\alpha\Theta(n)n^{-1-\beta}\sum_{\{x,y\}\in{\mathcalboondox S}}p(x-y)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}[\eta_{s}^{n}(y)-\eta_{s}^{n}(x)]^{2}ds.\end{split} (3.2)

Thus, 𝒩tn(G):=[tn(G)]2n(G)t\mathcal{N}_{t}^{n}(G):=[\mathcal{M}_{t}^{n}(G)]^{2}-\langle\mathcal{M}^{n}(G)\rangle_{t} is also a martingale with respect to Ftn{\mathcalboondox F}_{t}^{n}. The rightmost term on the right-hand side of (3.1) will be called the integral term and it will be denoted by tn\mathcal{I}_{t}^{n}. Hence from (3.1), we get

𝒴tn(G)=𝒴0n(G)+tn(G)+tn(G).\displaystyle\mathcal{Y}_{t}^{n}(G)=\mathcal{Y}_{0}^{n}(G)+\mathcal{M}_{t}^{n}(G)+\mathcal{I}_{t}^{n}(G).

Therefore, the tightness of (𝒴tn)n1(\mathcal{Y}_{t}^{n})_{n\geq 1} is a consequence of the tightness of the sequence of initial fields (𝒴0n(G))n1\big{(}\mathcal{Y}_{0}^{n}(G)\big{)}_{n\geq 1}, of the sequence of the martingale terms (tn(G))n1\big{(}\mathcal{M}_{t}^{n}(G)\big{)}_{n\geq 1} and of the sequence of integral terms (tn(G))n1\big{(}\mathcal{I}_{t}^{n}(G)\big{)}_{n\geq 1}. From Remark 2.2, we can use the Mitoma’s criterion (see [11]) in the same way as it was done in [6, 7] since for every (β,γ)R0(\beta,\gamma)\in R_{0}, our space of test functions 𝒮β,γ\mathcal{S}_{\beta,\gamma}, are nuclear and Fréchet spaces, see Remark 2.2.

Proposition 3.1.

Mitoma’s criterion. Let NN be a nuclear Fréchet space. A sequence {xtn;t[0,T]}n1\{x_{t}^{n};t\in[0,T]\}_{n\geq 1} in D([0,T],N){\mathcalboondox D}([0,T],N^{\prime}) of stochastic processes is tight with respect to the Skorohod topology if, and only if, the sequence of real-valued processes {xtn(G);t[0,T]}n1\{x_{t}^{n}(G);t\in[0,T]\}_{n\geq 1} is tight with respect to the Skorohod topology of D([0,T],){\mathcalboondox D}([0,T],\mathbb{R}), for every GNG\in N fixed.

3.1. Tightness of the initial field

Next result is analogous to Proposition 3.2 of [6], therefore its proof will be omitted.

Proposition 3.2.

(Convergence of the initial field) Let (β,γ)R0(\beta,\gamma)\in R_{0}. For every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, for every t>0t>0 and every λ\lambda\in\mathbb{R}, it holds

limn𝔼νb[exp{iλ𝒴tn(G)}]=exp{λ2χ(b)2G2(u)𝑑u}.\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}[exp\{i\lambda\mathcal{Y}_{t}^{n}(G)\}]=\exp\Big{\{}-\frac{\lambda^{2}\chi(b)}{2}\int_{\mathbb{R}}G^{2}(u)du\Big{\}}.

In particular, the sequence (𝒴tn(G))n1\big{(}\mathcal{Y}_{t}^{n}(G)\big{)}_{n\geq 1} converges in distribution to a mean zero Gaussian variable with variance λ2χ(b)G2,2\lambda^{2}\chi(b)\|G\|_{2,\mathbb{R}}^{2} and it is tight. Finally, (𝒴0n)n1(\mathcal{Y}_{0}^{n})_{n\geq 1} converges in distribution to 𝒴0\mathcal{Y}_{0}, where 𝒴0\mathcal{Y}_{0} is a mean zero Gaussian field with covariance given by (2.15).

Remark 3.3.

The result above is true for 𝒴t\mathcal{Y}_{t} for any t[0,T]t\in[0,T]. In particular, the Gaussian white noise is a stationary solution of (2.12), for any (β,γ)R0(\beta,\gamma)\in R_{0}.

3.2. Tightness of the martingale

Our goal now is to prove the following result.

Proposition 3.4.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. Then the sequence {tn(G);t[0,T]}n1\{\mathcal{M}_{t}^{n}(G);t\in[0,T]\}_{n\geq 1} is tight with respect to the Skorohod topology of D([0,T],){\mathcalboondox D}([0,T],\mathbb{R}), for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma} and every t>0t>0.

We will use Aldous’ criterion to prove last result.

Proposition 3.5.

(Aldous’ criterion)
The sequence {xtn;t[0,T]}n1\{x_{t}^{n};t\in[0,T]\}_{n\geq 1} is tight with respect to the Skorohod topology of D([0,T],){\mathcalboondox D}([0,T],\mathbb{R}) if

  1. (1)

    limAlim supnνb(supt[0,T]|xtn|>A)=0;\lim_{A\rightarrow\infty}\limsup_{n\rightarrow\infty}\mathbb{P}_{\nu_{b}}\big{(}\sup_{t\in[0,T]}|x_{t}^{n}|>A\big{)}=0;

  2. (2)

    For every ε>0\varepsilon>0, we have

    limω0+lim supnsupτ𝒯T,τ¯ωνb(|xτ+τ¯nxτn|>ε)=0,\displaystyle\lim_{\omega\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sup_{\tau\in\mathcal{T}_{T},\bar{\tau}\leq\omega}\mathbb{P}_{\nu_{b}}\big{(}|x_{\tau+\bar{\tau}}^{n}-x_{\tau}^{n}|>\varepsilon\big{)}=0,

    where 𝒯T\mathcal{T}_{T} denotes the set of stopping times bounded by TT.

We apply now last proposition to the sequence (tn(G))n1(\mathcal{M}_{t}^{n}(G))_{n\geq 1} of martingales. We begin with the next lemma.

Lemma 3.6.

Let (β,γ)R0(\beta,\gamma)\in R_{0}, t[0,T]t\in[0,T] and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

limn𝔼νb[n(G)t]=2χ(b)tβ,γG2,β,γ2.\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]=2\chi(b)t\|\nabla_{\beta,\gamma}G\|^{2}_{2,\beta,\gamma}.
Proof.

For every s0s\geq 0, for every xyx\neq y\in\mathbb{Z}, we have 𝔼νb[[ηsn(y)ηsn(x)]2]=2χ(b)\mathbb{E}_{\nu_{b}}\big{[}[\eta_{s}^{n}(y)-\eta_{s}^{n}(x)]^{2}\big{]}=2\chi(b). Combining Fubini’s Theorem and (3.2) we get

𝔼νb[n(G)t]=\displaystyle\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]= 2χ(b)tΘ(n)n{x,y}Fp(yx)[G(yn)G(xn)]2\displaystyle 2\chi(b)t\frac{\Theta(n)}{n}\sum_{\{x,y\}\in{\mathcalboondox F}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}
+\displaystyle+ 2χ(b)tαΘ(n)n1+β{x,y}Sp(yx)[G(yn)G(xn)]2\displaystyle 2\chi(b)t\alpha\frac{\Theta(n)}{n^{1+\beta}}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}
=\displaystyle= 2χ(b)t[𝒜n,β(G)+n,β(G)],\displaystyle 2\chi(b)t[\mathcal{A}_{n,\beta}(G)+\mathcal{B}_{n,\beta}(G)],

where

𝒜n,β(G):={Θ(n)nx,yp(yx)[G(yn)G(xn)]2,β[0,1);Θ(n)n{x,y}Fp(yx)[G(yn)G(xn)]2,β1;\mathcal{A}_{n,\beta}(G):=\begin{dcases}\frac{\Theta(n)}{n}\sum_{x,y}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2},&\beta\in[0,1);\\ \frac{\Theta(n)}{n}\sum_{\{x,y\}\in{\mathcalboondox F}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2},&\beta\geq 1;\\ \end{dcases} (3.3)

and

n,β(G):={(αnβ1)Θ(n)n{x,y}Sp(yx)[G(yn)G(xn)]2,β[0,1);αΘ(n)n1β{x,y}Sp(yx)[G(yn)G(xn)]2,β1.\mathcal{B}_{n,\beta}(G):=\begin{dcases}(\alpha n^{-\beta}-1)\frac{\Theta(n)}{n}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2},&\beta\in[0,1);\\ \alpha\Theta(n)n^{-1-\beta}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2},&\beta\geq 1.\end{dcases} (3.4)

Therefore the proof ends as a consequence of Propositions A.3 and A.5. ∎

Lemma 3.7.

Let (β,γ)R0(\beta,\gamma)\in R_{0} and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

supt[0,T]𝔼νb[(n(G)t𝔼νb[n(G)t])2]1.\displaystyle\sup_{t\in[0,T]}\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\langle\mathcal{M}^{n}(G)\rangle_{t}-\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]\Big{)}^{2}\Big{]}\lesssim 1. (3.5)
Proof.

Combining Fubini’s Theorem and (3.2) we obtain

n(G)t𝔼νb[n(G)t]=\displaystyle\langle\mathcal{M}^{n}(G)\rangle_{t}-\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]= 0tΘ(n)n{x,y}F[G(yn)G(xn)]2p(yx)Zx,y(ηsn)ds\displaystyle\int_{0}^{t}\frac{\Theta(n)}{n}\sum_{\{x,y\}\in{\mathcalboondox F}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}p(y-x)Z_{x,y}(\eta_{s}^{n})ds
+\displaystyle+ α0tΘ(n)n1+β{x,y}S[G(yn)G(xn)]2p(yx)Zx,y(ηsn)ds,\displaystyle\alpha\int_{0}^{t}\frac{\Theta(n)}{n^{1+\beta}}\sum_{\{x,y\}\in{\mathcalboondox S}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}p(y-x)Z_{x,y}(\eta_{s}^{n})ds,

where Zx,y(ηsn):=[ηsn(y)ηsn(x)]22χ(b)Z_{x,y}(\eta_{s}^{n}):=[\eta_{s}^{n}(y)-\eta_{s}^{n}(x)]^{2}-2\chi(b). Since (u+v)22(u2+v2)(u+v)^{2}\leq 2(u^{2}+v^{2}) for every u,vu,v\in\mathbb{R}, the expectation in (3.5) is bounded from above by a constant times the sum of

[Θ(n)]2n2𝔼νb[(0t{x,y}F[G(yn)G(xn)]2p(yx)Zx,y(ηsn)ds)2][\Theta(n)]^{2}n^{-2}\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\int_{0}^{t}\sum_{\{x,y\}\in{\mathcalboondox F}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}p(y-x)Z_{x,y}(\eta_{s}^{n})ds\Big{)}^{2}\Big{]} (3.6)

and

[Θ(n)]2n22β𝔼νb[(0t{x,y}S[G(yn)G(xn)]2p(yx)Zx,y(ηsn)ds)2].[\Theta(n)]^{2}n^{-2-2\beta}\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\int_{0}^{t}\sum_{\{x,y\}\in{\mathcalboondox S}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}p(y-x)Z_{x,y}(\eta_{s}^{n})ds\Big{)}^{2}\Big{]}. (3.7)

From the fact that 𝔼νb[Zx,y(ηsn)]=0=𝔼νb[Zx,y(ηsn)Zw,r(ηsn)]=0\mathbb{E}_{\nu_{b}}[Z_{x,y}(\eta_{s}^{n})]=0=\mathbb{E}_{\nu_{b}}[Z_{x,y}(\eta_{s}^{n})Z_{w,r}(\eta_{s}^{n})]=0 for disjoint sets {x,y}\{x,y\}, {w,r}\{w,r\}, together with Cauchy-Schwarz inequality and Fubini’s Theorem, the expectation in (3.6) is bounded from above by

t0t𝔼νb[({x,y}F[G(yn)G(xn)]2p(yx)Zx,y(ηsn))2]𝑑s\displaystyle t\int_{0}^{t}\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\sum_{\{x,y\}\in{\mathcalboondox F}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}p(y-x)Z_{x,y}(\eta_{s}^{n})\Big{)}^{2}\Big{]}ds
\displaystyle\lesssim 0t{x,y}F[G(yn)G(xn)]4[p(yx)]2𝔼νb[(Zx,y(ηsn))2]ds\displaystyle\int_{0}^{t}\sum_{\{x,y\}\in{\mathcalboondox F}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{4}[p(y-x)]^{2}\mathbb{E}_{\nu_{b}}\big{[}\big{(}Z_{x,y}(\eta_{s}^{n})\big{)}^{2}\big{]}ds
+\displaystyle+ 0t{x,y}Fw:{x,w}F[G(yn)G(xn)]2[G(wn)G(xn)]2p(yx)p(xw)𝔼νb[Zx,y(ηsn)Zx,w(ηsn)]ds.\displaystyle\int_{0}^{t}\sum_{\{x,y\}\in{\mathcalboondox F}}\sum_{w:\{x,w\}\in{\mathcalboondox F}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}[G(\tfrac{w}{n})-G(\tfrac{x}{n})]^{2}p(y-x)p(x-w)\mathbb{E}_{\nu_{b}}\big{[}Z_{x,y}(\eta_{s}^{n})Z_{x,w}(\eta_{s}^{n})\big{]}ds.

Since 𝔼νb[(Zx,y(ηsn))2]\mathbb{E}_{\nu_{b}}\big{[}\big{(}Z_{x,y}(\eta_{s}^{n})\big{)}^{2}\big{]} and 𝔼νb[Zx,y(ηsn)Zx,w(ηsn)]\mathbb{E}_{\nu_{b}}\big{[}Z_{x,y}(\eta_{s}^{n})Z_{x,w}(\eta_{s}^{n})\big{]} are constant and finite, last display is bounded from above by a constant times

[Θ(n)]2n2{{x,y}F[G(yn)G(xn)]4p2(yx)+x[y:{x,y}Fp(yx)[G(yn)G(xn)]2]2}.\displaystyle[\Theta(n)]^{2}n^{-2}\Big{\{}\sum_{\{x,y\}\in{\mathcalboondox F}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{4}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y:\{x,y\}\in{\mathcalboondox F}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}. (3.8)

Performing an analogous procedure, (3.7) is bounded from above by a constant times

[Θ(n)]2n22β{{x,y}S[G(yn)G(xn)]4p2(yx)+x[y:{x,y}Sp(yx)[G(yn)G(xn)]2]2}.\displaystyle[\Theta(n)]^{2}n^{-2-2\beta}\Big{\{}\sum_{\{x,y\}\in{\mathcalboondox S}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{4}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y:\{x,y\}\in{\mathcalboondox S}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}. (3.9)

If β[0,1)\beta\in[0,1), then G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}), and we bound the sum of (3.8) and (3.9) from above by

[Θ(n)]2n2{x,y[G(yn)G(xn)]4p2(yx)+x[yp(yx)[G(yn)G(xn)]2]2},\displaystyle[\Theta(n)]^{2}n^{-2}\Big{\{}\sum_{x,y}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{4}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}},

hence the proof ends in this regime as a consequence of Proposition A.6.

When β1\beta\geq 1 and γ2\gamma\geq 2 we get [Θ(n)]2n22β1[\Theta(n)]^{2}n^{-2-2\beta}\lesssim 1, hence (3.9) is bounded from above by

[Θ(n)]2n22β(2G)4{{x,y}Sp2(yx)+x[y:{x,y}Sp(yx)]2}\displaystyle[\Theta(n)]^{2}n^{-2-2\beta}(2\|G\|_{\infty})^{4}\Big{\{}\sum_{\{x,y\}\in{\mathcalboondox S}}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y:\{x,y\}\in{\mathcalboondox S}}p(y-x)\Big{]}^{2}\Big{\}}
\displaystyle\lesssim [Θ(n)]2n22β{{x,y}Sp(yx)+xy:{x,y}Sp(yx)}=2m[Θ(n)]2n22β1.\displaystyle[\Theta(n)]^{2}n^{-2-2\beta}\Big{\{}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)+\sum_{x}\sum_{y:\{x,y\}\in{\mathcalboondox S}}p(y-x)\Big{\}}=2m[\Theta(n)]^{2}n^{-2-2\beta}\lesssim 1.

Finally, we bound (3.8) from above by

[Θ(n)]2n2{x,y[G(yn)G(xn)]4p2(yx)+x[yp(yx)[G(yn)G(xn)]2]2}\displaystyle[\Theta(n)]^{2}n^{-2}\Big{\{}\sum_{x,y}[G_{-}(\tfrac{y}{n})-G_{-}(\tfrac{x}{n})]^{4}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y}p(y-x)[G_{-}(\tfrac{y}{n})-G_{-}(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}
+\displaystyle+ [Θ(n)]2n2{x,y[G+(yn)G+(xn)]4p2(yx)+x[yp(yx)[G+(yn)G+(xn)]2]2}.\displaystyle[\Theta(n)]^{2}n^{-2}\Big{\{}\sum_{x,y}[G_{+}(\tfrac{y}{n})-G_{+}(\tfrac{x}{n})]^{4}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y}p(y-x)[G_{+}(\tfrac{y}{n})-G_{+}(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}.

In last display, G,G+𝒮()G_{-},G_{+}\in\mathcal{S}(\mathbb{R}) are such that GGG\equiv G_{-} on (,0)(-\infty,0) and GG+G\equiv G_{+} on [0,)[0,\infty). Then the desired result comes in this regime from the application of Proposition A.6 to GG_{-} and G+G_{+}. ∎

A direct consequence of Lemma 3.6 is that

limn𝔼νb[(tn(G))2]=limn𝔼νb[n(G)t]=2χ(b)tκγβ,γG2,β,γ2<.\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\mathcal{M}_{t}^{n}(G)\big{)}^{2}\big{]}=\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]=2\chi(b)t\kappa_{\gamma}\|\nabla_{\beta,\gamma}G\|^{2}_{2,\beta,\gamma}<\infty. (3.10)

In particular, for every t[0,T]t\in[0,T] and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, we have

supt[0,T]𝔼νb[(tn(G))2]=supt[0,T]𝔼νb[n(G)t]1.\sup_{t\in[0,T]}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\mathcal{M}_{t}^{n}(G)\big{)}^{2}\big{]}=\sup_{t\in[0,T]}\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]\lesssim 1. (3.11)

Finally, we will prove Proposition 3.4 as a consequence of Proposition 3.5.

Proof of Proposition 3.4.

From Doob’s inequality and (3.11), the sequence of martingales {tn(G);t[0,T]}n1\{\mathcal{M}_{t}^{n}(G);t\in[0,T]\}_{n\geq 1} satisfies the first condition of Proposition 3.5. In order to verify the second one, we use Chebyshev’s inequality, which leads to

νb(|τ+τ¯n(G)τn(G)|>ε)1ε2𝔼νb[(τ+τ¯n(G)τn(G))2]\displaystyle\mathbb{P}_{\nu_{b}}\big{(}|\mathcal{M}_{\tau+\bar{\tau}}^{n}(G)-\mathcal{M}_{\tau}^{n}(G)|>\varepsilon\big{)}\leq\frac{1}{\varepsilon^{2}}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\mathcal{M}_{\tau+\bar{\tau}}^{n}(G)-\mathcal{M}_{\tau}^{n}(G)\big{)}^{2}\big{]}
=\displaystyle= 1ε2𝔼νb[ττ+τ¯n(G)s𝑑s]1ε2ττ+τ¯supt[0,T]𝔼νb[n(G)s]dsτ¯ε2ωε2,\displaystyle\frac{1}{\varepsilon^{2}}\mathbb{E}_{\nu_{b}}\Big{[}\int_{\tau}^{\tau+\bar{\tau}}\langle\mathcal{M}^{n}(G)\rangle_{s}ds\Big{]}\leq\frac{1}{\varepsilon^{2}}\int_{\tau}^{\tau+\bar{\tau}}\sup_{t\in[0,T]}\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{s}]ds\lesssim\frac{\bar{\tau}}{\varepsilon^{2}}\leq\frac{\omega}{\varepsilon^{2}},

which goes to zero as ω0\omega\rightarrow 0. Above we used Fubini’s Theorem and (3.11). ∎

3.3. Tightness of the integral term

Our goal is to prove the following result.

Proposition 3.8.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. Then the sequence {tn(G);t[0,T]}n1\{\mathcal{I}_{t}^{n}(G);t\in[0,T]\}_{n\geq 1} is tight with respect to the Skorohod topology of D([0,T],){\mathcalboondox D}([0,T],\mathbb{R}), for every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}.

By performing some algebraic manipulations, it holds tn(G)=𝒞tn(G)+tn(G)\mathcal{I}_{t}^{n}(G)=\mathcal{C}_{t}^{n}(G)+\mathcal{E}_{t}^{n}(G), where

𝒞tn(G):=\displaystyle\mathcal{C}_{t}^{n}(G):= 0t1nxκγΔβ,γG(xn)η¯sn(x)ds=κγ0t𝒴sn(Δβ,γG)𝑑s;\displaystyle\int_{0}^{t}\frac{1}{\sqrt{n}}\sum_{x}\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}^{n}(x)ds=\kappa_{\gamma}\int_{0}^{t}\mathcal{Y}_{s}^{n}(\Delta_{\beta,\gamma}G)ds; (3.12)
tn(G):=\displaystyle\mathcal{E}_{t}^{n}(G):= 0t1nx[Θ(n)Rn,βG(xn)+Θ(n)Kn,βG(xn)κγΔβ,γG(xn)]η¯sn(x)ds.\displaystyle\int_{0}^{t}\frac{1}{\sqrt{n}}\sum_{x}\big{[}\Theta(n){\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)+\Theta(n){\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right)-\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)\big{]}\bar{\eta}_{s}^{n}(x)ds. (3.13)

Above, Kn,β{\mathcalboondox K}_{n,\beta} and Rn,β{\mathcalboondox R}_{n,\beta} are defined by

Kn,βG(xn):={y[G(yn)G(xn)]p(yx)=r[G(x+rn)G(xn)]p(r),β[0,1);y=0[G(yn)G(xn)n1G+(0)(yx)]p(yx),β1,x0;y=1[G(yn)G(xn)n1G(0)(yx)]p(yx),β1,x1;{\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right):=\begin{dcases}\sum_{y}\left[G(\tfrac{y}{n})-G(\tfrac{x}{n})\right]p(y-x)=\sum_{r}[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]p(r),&\beta\in[0,1);\\ \sum_{y=0}^{\infty}\big{[}G(\tfrac{y}{n})-G(\tfrac{x}{n})-n^{-1}G_{+}^{{}^{\prime}}(0)(y-x)\big{]}p(y-x),&\beta\geq 1,x\geq 0;\\ \sum_{y=-\infty}^{-1}\big{[}G(\tfrac{y}{n})-G(\tfrac{x}{n})-n^{-1}G_{-}^{{}^{\prime}}(0)(y-x)\big{]}p(y-x),&\beta\geq 1,x\leq-1;\end{dcases} (3.14)

and

Rn,βG(xn):={(1αnβ)y:{x,y}S[G(yn)G(xn)]p(yx),β[0,1);αnβy=1[G(yn)G(xn)]p(yx)+G+(0)ny=0(yx)p(yx),β1,x0;αnβy=0[G(yn)G(xn)]p(yx)+G(0)ny=1(yx)p(yx),β1,x1.{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right):=\begin{dcases}(1-\alpha n^{-\beta})\sum_{y:\{x,y\}\in{\mathcalboondox S}}\left[G(\tfrac{y}{n})-G(\tfrac{x}{n})\right]p(y-x),&\beta\in[0,1);\\ \frac{\alpha}{n^{\beta}}\sum_{y=-\infty}^{-1}\left[G(\tfrac{y}{n})-G(\tfrac{x}{n})\right]p(y-x)+\frac{G_{+}^{{}^{\prime}}(0)}{n}\sum_{y=0}^{\infty}(y-x)p(y-x),&\beta\geq 1,x\geq 0;\\ \frac{\alpha}{n^{\beta}}\sum_{y=0}^{\infty}\left[G(\tfrac{y}{n})-G(\tfrac{x}{n})\right]p(y-x)+\frac{G_{-}^{{}^{\prime}}(0)}{n}\sum_{y=-\infty}^{-1}(y-x)p(y-x),&\beta\geq 1,x\leq-1.\end{dcases} (3.15)

Therefore we are done if we can prove the next result.

Proposition 3.9.

The sequences {𝒞tn(G);t[0,T]}n1\big{\{}\mathcal{C}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1} and {tn(G);t[0,T]}n1\big{\{}\mathcal{E}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1} are tight, for every (β,γ)R0(\beta,\gamma)\in R_{0} and every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}.

In Section 5 we will prove the next result, which is useful to treat {tn(G);t[0,T]}n1\big{\{}\mathcal{E}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1}.

Proposition 3.10.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. For every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, it holds

limn𝔼νb[supt[0,T](tn(G))2]=0.\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\big{(}\mathcal{E}_{t}^{n}(G)\big{)}^{2}\Big{]}=0.

Assuming last result, we now show Proposition (3.9).

Proof of Proposition 3.9.

Let G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. In order to treat {𝒞tn(G);t[0,T]}n1\big{\{}\mathcal{C}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1}, we follow the strategy of [9]. Since 𝒞0n(G)=0\mathcal{C}_{0}^{n}(G)=0, from Kolmogorov-Centsov’s criterion (see Proposition 4.3 of [9]), it is enough to verify that there exists K>0K>0 such that

r,t[0,T],𝔼νb[|𝒞tn(G)𝒞rn(G)|2]K|tr|2.\displaystyle\forall r,t\in[0,T],\quad\mathbb{E}_{\nu_{b}}[|\mathcal{C}_{t}^{n}(G)-\mathcal{C}_{r}^{n}(G)|^{2}]\leq K|t-r|^{2}.

Without loss of generality, we can assume that rtr\leq t. We observe that

K1:=\displaystyle K_{1}:= supt[0,T],n1𝔼νb[(𝒴tn(Δβ,γG))2]=supn1{χ(b)nx[Δβ,γG(xn)]2}<.\displaystyle\sup_{t\in[0,T],n\geq 1}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\mathcal{Y}_{t}^{n}(\Delta_{\beta,\gamma}G)\big{)}^{2}\big{]}=\sup_{n\geq 1}\Big{\{}\frac{\chi(b)}{n}\sum_{x}[\Delta_{\beta,\gamma}G(\tfrac{x}{n})]^{2}\Big{\}}<\infty.

Therefore, Cauchy-Schwarz’s inequality and Fubini’s Theorem lead to

𝔼νb[|𝒞tn(G)𝒞rn(G)|2]=𝔼νb[|κγrt𝒴sn(Δβ,γG)𝑑s|2]\displaystyle\mathbb{E}_{\nu_{b}}[|\mathcal{C}_{t}^{n}(G)-\mathcal{C}_{r}^{n}(G)|^{2}]=\mathbb{E}_{\nu_{b}}\Big{[}\Big{|}\kappa_{\gamma}\int_{r}^{t}\mathcal{Y}_{s}^{n}(\Delta_{\beta,\gamma}G)ds\Big{|}^{2}\Big{]}
\displaystyle\leq (κγ)2(tr)rtsupt[0,T],n1𝔼νb[(𝒴tn(Δβ,γG))2]dsK1(κγ)2(tr)2,\displaystyle(\kappa_{\gamma})^{2}(t-r)\int_{r}^{t}\sup_{t\in[0,T],n\geq 1}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\mathcal{Y}_{t}^{n}(\Delta_{\beta,\gamma}G)\big{)}^{2}\big{]}ds\leq K_{1}(\kappa_{\gamma})^{2}(t-r)^{2},

leading to the tightness of {𝒞tn(G);t[0,T]}n1\big{\{}\mathcal{C}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1}. It remains to analyse {tn(G);t[0,T]}n1\big{\{}\mathcal{E}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1} for G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. We do so by applying Aldous’ criterion. From Chebyshev’s inequality and Proposition 3.10, we get

lim supnνb(supt[0,T]|tn(G)|>A)\displaystyle\limsup_{n\rightarrow\infty}\mathbb{P}_{\nu_{b}}\big{(}\sup_{t\in[0,T]}|\mathcal{E}_{t}^{n}(G)|>A\big{)}\leq lim supn1A2𝔼νb[(supt[0,T]|tn(G)|)2]\displaystyle\limsup_{n\rightarrow\infty}\frac{1}{A^{2}}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\sup_{t\in[0,T]}|\mathcal{E}_{t}^{n}(G)|\big{)}^{2}\big{]}
=\displaystyle= lim supn1A2𝔼νb[supt[0,T](tn(G))2]=0\displaystyle\limsup_{n\rightarrow\infty}\frac{1}{A^{2}}\mathbb{E}_{\nu_{b}}\big{[}\sup_{t\in[0,T]}\big{(}\mathcal{E}_{t}^{n}(G)\big{)}^{2}\big{]}=0

for every A>0A>0, hence the first condition of Proposition 3.5 is satisfied. Another application of Chebyshev’s inequality and Proposition 3.10 leads to

lim supnsupτ𝒯T,τ¯ωνb(|τ+τ¯n(G)τn(G)|>ε)\displaystyle\limsup_{n\rightarrow\infty}\sup_{\tau\in\mathcal{T}_{T},\bar{\tau}\leq\omega}\mathbb{P}_{\nu_{b}}\big{(}|\mathcal{E}_{\tau+\bar{\tau}}^{n}(G)-\mathcal{E}_{\tau}^{n}(G)|>\varepsilon\big{)}\leq 1ε2lim supnsupτ𝒯T,τ¯ω𝔼νb[|τ+τ¯n(G)τn(G)|2]\displaystyle\frac{1}{\varepsilon^{2}}\limsup_{n\rightarrow\infty}\sup_{\tau\in\mathcal{T}_{T},\bar{\tau}\leq\omega}\mathbb{E}_{\nu_{b}}\big{[}|\mathcal{E}_{\tau+\bar{\tau}}^{n}(G)-\mathcal{E}_{\tau}^{n}(G)|^{2}\big{]}
\displaystyle\leq 2ε2lim supnsupτ𝒯T,τ¯ω𝔼νb[(τ+τ¯n(G))2+(τn(G))2]\displaystyle\frac{2}{\varepsilon^{2}}\limsup_{n\rightarrow\infty}\sup_{\tau\in\mathcal{T}_{T},\bar{\tau}\leq\omega}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\mathcal{E}_{\tau+\bar{\tau}}^{n}(G)\big{)}^{2}+\big{(}\mathcal{E}_{\tau}^{n}(G)\big{)}^{2}\big{]}
\displaystyle\leq 4ε2lim supnsupτ𝒯T,τ¯ω𝔼νb[supt[0,T](tn(G))2]=0\displaystyle\frac{4}{\varepsilon^{2}}\limsup_{n\rightarrow\infty}\sup_{\tau\in\mathcal{T}_{T},\bar{\tau}\leq\omega}\mathbb{E}_{\nu_{b}}\big{[}\sup_{t\in[0,T]}\big{(}\mathcal{E}_{t}^{n}(G)\big{)}^{2}\big{]}=0

for every ω,ε>0\omega,\varepsilon>0. Therefore the second condition of Proposition 3.5 is also satisfied and we conclude that {tn(G);t[0,T]}n1\big{\{}\mathcal{E}_{t}^{n}(G);t\in[0,T]\big{\}}_{n\geq 1} is tight. ∎

4. Characterization of limit points

From Propositions 3.2, 3.4 and 3.9, we know that there exists at least a subsequence (nj)j1(n_{j})_{j\geq 1} such that (𝒴0nj)j1(\mathcal{Y}_{0}^{n_{j}})_{j\geq 1}, (tnj)j1(\mathcal{M}_{t}^{n_{j}})_{j\geq 1} and (tnj)j1(\mathcal{I}_{t}^{n_{j}})_{j\geq 1} converge in distribution to 𝒴0\mathcal{Y}_{0}, t\mathcal{M}_{t} and t\mathcal{I}_{t}, respectively; in particular, (𝒴tnj)j1(\mathcal{Y}_{t}^{n_{j}})_{j\geq 1} converges in distribution to some limit point 𝒴t\mathcal{Y}_{t}. In this section we will characterize such limit point.

Fix (β,γ)R0(\beta,\gamma)\in R_{0} and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. From (3.11), t(G)\mathcal{M}_{t}(G) is the limit in distribution of the uniformly integrable sequence (tnj(G))j1\big{(}\mathcal{M}_{t}^{n_{j}}(G)\big{)}_{j\geq 1} of martingales; in particular, t(G)\mathcal{M}_{t}(G) is also a martingale.

Since 𝒩tnj(G)=[tnj(G)]2nj(G)t\mathcal{N}_{t}^{n_{j}}(G)=[\mathcal{M}_{t}^{n_{j}}(G)]^{2}-\langle\mathcal{M}^{n_{j}}(G)\rangle_{t} for every t[0,T]t\in[0,T] and j1j\geq 1, from Lemma 3.6 we get that 𝒩tn(G)\mathcal{N}_{t}^{n}(G) converges in distribution to

𝒩t(G):=[t(G)]22χ(b)tκγβ,γG2,β,γ.\displaystyle\mathcal{N}_{t}(G):=[\mathcal{M}_{t}(G)]^{2}-2\chi(b)t\kappa_{\gamma}\|\nabla_{\beta,\gamma}G\|_{2,\beta,\gamma}. (4.1)

We claim that 𝒩t(G)\mathcal{N}_{t}(G) is an t\mathcal{F}_{t}-martingale. Since it is the limit in distribution of the sequence of martingales (𝒩tn(G))n1\big{(}\mathcal{N}_{t}^{n}(G)\big{)}_{n\geq 1}, it is enough to prove the uniform integrability of the sequence. A sufficient condition is

supt[0,T],n1𝔼νb[(𝒩tn(G))2]=supt[0,T],n1𝔼νb[([tn(G)]2+n(G)t)2]<.\displaystyle\sup_{t\in[0,T],n\geq 1}\mathbb{E}_{\nu_{b}}\Big{[}\big{(}\mathcal{N}_{t}^{n}(G)\big{)}^{2}\Big{]}=\sup_{t\in[0,T],n\geq 1}\mathbb{E}_{\nu_{b}}\Big{[}\big{(}[\mathcal{M}_{t}^{n}(G)]^{2}+\langle\mathcal{M}^{n}(G)\rangle_{t}\big{)}^{2}\Big{]}<\infty.

Since (u+v)22(u2+v2)(u+v)^{2}\leq 2(u^{2}+v^{2}), last display is bounded from above by a constant times

supt[0,T],n1𝔼νb[(n(G)t)2]+supt[0,T],n1𝔼n[[tn(G)]4]\sup_{t\in[0,T],n\geq 1}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\langle\mathcal{M}^{n}(G)\rangle_{t}\big{)}^{2}\big{]}+\sup_{t\in[0,T],n\geq 1}\mathbb{E}_{n}\big{[}[\mathcal{M}_{t}^{n}(G)]^{4}\big{]} (4.2)

From Lemmas 3.6 and 3.7, we get

lim supn𝔼νb[(n(G)t)2]=\displaystyle\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\big{(}\langle\mathcal{M}^{n}(G)\rangle_{t}\big{)}^{2}\big{]}= limn(𝔼νb[n(G)t])2+lim supn𝔼νb[(n(G)t𝔼νb[n(G)t])2]\displaystyle\lim_{n\rightarrow\infty}\big{(}\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]\big{)}^{2}+\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\langle\mathcal{M}^{n}(G)\rangle_{t}-\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]\Big{)}^{2}\Big{]}
\displaystyle\lesssim [2χ(b)tκγβ,γG2,β,γ]2+11,\displaystyle\big{[}2\chi(b)t\kappa_{\gamma}\|\nabla_{\beta,\gamma}G\|_{2,\beta,\gamma}\big{]}^{2}+1\lesssim 1,

and then the first supremum in (4.2) is finite. From the definition of (3.1) we observe that

|tn(G)tn(G)|=|𝒴tn(G)𝒴tn(G)|=|1nxG(xn)[ηtn(x)ηtn(x)]|2Gn.|\mathcal{M}_{t-}^{n}(G)-\mathcal{M}_{t}^{n}(G)|=|\mathcal{Y}_{t-}^{n}(G)-\mathcal{Y}_{t}^{n}(G)|=\Big{|}\frac{1}{\sqrt{n}}\sum_{x}G(\tfrac{x}{n})[\eta_{t-}^{n}(x)-\eta_{t}^{n}(x)]\Big{|}\leq\frac{2\|G\|_{\infty}}{\sqrt{n}}.

The inequality holds since in an infinitesimal interval of time at most one jump occurs. Now we treat the second supremum by using Lemma 3 of [5], from where we know that there exists C>0C>0 such that

𝔼νb[[tn(G)]4]C(𝔼νb[[tn(G)]2]+𝔼νb[supt[0,T]|tn(G)tn(G)|4])\displaystyle\mathbb{E}_{\nu_{b}}\big{[}[\mathcal{M}_{t}^{n}(G)]^{4}\big{]}\leq C\Big{(}\mathbb{E}_{\nu_{b}}\big{[}[\mathcal{M}_{t}^{n}(G)]^{2}\big{]}+\mathbb{E}_{\nu_{b}}\big{[}\sup_{t\in[0,T]}|\mathcal{M}_{t-}^{n}(G)-\mathcal{M}_{t}^{n}(G)|^{4}\big{]}\Big{)}
C𝔼νb[n(G)t]+C𝔼νb[(2Gn)4]=C2b(1b)tκγβ,γG2,+16CG4n2,\displaystyle\leq C\mathbb{E}_{\nu_{b}}[\langle\mathcal{M}^{n}(G)\rangle_{t}]+C\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\frac{2\|G\|_{\infty}}{\sqrt{n}}\Big{)}^{4}\Big{]}=C2b(1-b)t\kappa_{\gamma}\|\nabla_{\beta,\gamma}G\|_{2,\mathbb{R}}+\frac{16C\|G\|_{\infty}^{4}}{n^{2}},

and then the second supremum in (4.2) is also finite. Therefore, 𝒩t(G)\mathcal{N}_{t}(G) is indeed an t\mathcal{F}_{t}-martingale.

Furthermore, combining (3.1), (3.12), (3.13) and Proposition 3.10, for every j1j\geq 1 it holds

tn(G):=𝒴tn(G)𝒴0n(G)κγ0t𝒴sn(Δβ,γG)𝑑s,\displaystyle\mathcal{M}_{t}^{n}(G):=\mathcal{Y}_{t}^{n}(G)-\mathcal{Y}_{0}^{n}(G)-\kappa_{\gamma}\int_{0}^{t}\mathcal{Y}_{s}^{n}(\Delta_{\beta,\gamma}G)ds,

plus a term that goes to zero in L2(νb)L^{2}(\mathbb{P}_{\nu_{b}}), as jj\rightarrow\infty. Therefore, we conclude that 𝒴\mathcal{Y} satisfies the conditions stated in Proposition 2.3. Therefore, in order to finish the proof of Theorem 2.4, it only remains to show Proposition 3.10, which is done in next section.

5. Useful L2(νb)L^{2}(\mathbb{P}_{\nu_{b}}) estimates

From the definition of tn(G)\mathcal{E}_{t}^{n}(G) given in (3.13), Proposition 3.10 is a direct consequence of next two results.

Proposition 5.1.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. For every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, it holds

limn𝔼νb[supt[0,T](0t1nx[Θ(n)Kn,βG(xn)κγΔβ,γG(xn)]η¯sn(x)ds)2]=0.\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{1}{\sqrt{n}}\sum_{x}\big{[}\Theta(n){\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right)-\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)\big{]}\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0. (5.1)
Proposition 5.2.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. For every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, it holds

limn𝔼νb[supt[0,T](0t1nx[Θ(n)Rn,βG(xn)]η¯sn(x)ds)2]=0.\displaystyle\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{1}{\sqrt{n}}\sum_{x}[\Theta(n){\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)]\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0.

We begin by proving the former result.

Proof of Proposition 5.1.

From Cauchy-Schwarz’s inequality and Fubini’s Theorem, the expectation in (5.1) is bounded from above by

T0T𝔼νb[(1nx[Θ(n)Kn,βG(xn)κγΔβ,γG(xn)]η¯sn(x))2]𝑑s\displaystyle T\int_{0}^{T}\mathbb{E}_{\nu_{b}}\Big{[}\Big{(}\frac{1}{\sqrt{n}}\sum_{x}\big{[}\Theta(n){\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right)-\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)\big{]}\bar{\eta}_{s}^{n}(x)\Big{)}^{2}\Big{]}ds
T0T1nx[Θ(n)Kn,βG(xn)κγΔβ,γG(xn)]2𝔼νb[(η¯sn(x))2]ds\displaystyle T\int_{0}^{T}\frac{1}{n}\sum_{x}\big{[}\Theta(n){\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right)-\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)\big{]}^{2}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\bar{\eta}_{s}^{n}(x)\big{)}^{2}\big{]}ds
\displaystyle\leq 2χ(b)T2supn1,x|Θ(n)Kn,βG(xn)κγΔβ,γG(xn)|1nx|Θ(n)Kn,βG(xn)κγΔβ,γG(xn)|,\displaystyle 2\chi(b)T^{2}\sup_{n\geq 1,x\in\mathbb{Z}}|\Theta(n){\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right)-\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)|\frac{1}{n}\sum_{x}|\Theta(n){\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right)-\kappa_{\gamma}\Delta_{\beta,\gamma}G\left(\tfrac{x}{n}\right)|,

which goes to zero as nn\rightarrow\infty, from Proposition A.1. ∎

To prove Proposition 5.2, we treat two cases separately: (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty), presented in Subsection 5.1 ; and (β,γ)R1:=R0{1}×(2,)(\beta,\gamma)\in R_{1}:=R_{0}-\{1\}\times(2,\infty), presented in Subsection 5.2.

5.1. Case (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty)

In this case, Proposition (5.2) is a direct consequence of Propositions 5.3, 5.4 and 5.5.

Proposition 5.3.

Let (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty) and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

limn𝔼νb[supt[0,T](0tΘ(n)nx=0Rn,βG(xn)η¯s(0)ds)2]=0,\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=0}^{\infty}{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}(0)ds\Big{)}^{2}\Big{]}=0, (5.2)
limn𝔼νb[supt[0,T](0tΘ(n)nx=1Rn,βG(xn)η¯s(1)ds)2]=0.\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=-\infty}^{-1}{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}(-1)ds\Big{)}^{2}\Big{]}=0. (5.3)
Proof.

We will prove only (5.2) but the proof of (5.3) is analogous. It is enough to prove that

limnsups[0,T]|Θ(n)nx=0Rn,βG(xn)η¯s(0)|=0.\displaystyle\lim_{n\rightarrow\infty}\sup_{s\in[0,T]}\Big{|}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=0}^{\infty}{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}(0)\Big{|}=0. (5.4)

Using the symmetry of p()p(\cdot) and the hypothesis that (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty), we can rewrite the expression inside the absolute value in (5.4) as

n3/2x=0Rn,βG(xn)η¯s(0)=\displaystyle n^{3/2}\sum_{x=0}^{\infty}{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}(0)= nη¯s(0)[αx=0y=1[G(yn)G(xn)]p(yx)+G+(0)x=0r=x+1rp(r)]\displaystyle\sqrt{n}\bar{\eta}_{s}(0)\Big{[}\alpha\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}\left[G(\tfrac{y}{n})-G(\tfrac{x}{n})\right]p(y-x)+G_{+}^{{}^{\prime}}(0)\sum_{x=0}^{\infty}\sum_{r=x+1}^{\infty}rp(r)\Big{]}
=\displaystyle= nη¯s(0)[α[G(0)G+(0)]x=0y=1p(yx)+G+(0)x=0r=x+1rp(r)]\displaystyle\sqrt{n}\bar{\eta}_{s}(0)\Big{[}\alpha\left[G_{-}(0)-G_{+}(0)\right]\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)+G_{+}^{{}^{\prime}}(0)\sum_{x=0}^{\infty}\sum_{r=x+1}^{\infty}rp(r)\Big{]} (5.5)
+\displaystyle+ nη¯s(0)[αx=0y=1([G(yn)G(0)]+[G+(0)G+(xn)])p(yx)].\displaystyle\sqrt{n}\bar{\eta}_{s}(0)\Big{[}\alpha\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}\big{(}\left[G_{-}(\tfrac{y}{n})-G_{-}(0)\right]+[G_{+}(0)-G_{+}(\tfrac{x}{n})]\big{)}p(y-x)\Big{]}. (5.6)

Since (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty), G𝒮Rob()G\in\mathcal{S}_{Rob}(\mathbb{R}^{*}) and we can rewrite (5.5) as

nη¯s(0)G+(0)[αα^x=0y=1p(yx)+x=0r=x+1rp(r)]=nη¯s(0)G+(0)[αα^m+σ22]=0,\displaystyle\sqrt{n}\bar{\eta}_{s}(0)G_{+}^{{}^{\prime}}(0)\Big{[}-\frac{\alpha}{\hat{\alpha}}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)+\sum_{x=0}^{\infty}\sum_{r=x+1}^{\infty}rp(r)\Big{]}=\sqrt{n}\bar{\eta}_{s}(0)G_{+}^{{}^{\prime}}(0)\Big{[}-\frac{\alpha}{\hat{\alpha}}m+\frac{\sigma^{2}}{2}\Big{]}=0,

hence we need only to treat (5.6). In last equality we used the definition of α^\hat{\alpha}, given in (2.4). Using the fact that |η¯sn()|1|\bar{\eta}^{n}_{s}(\cdot)|\leq 1 and Taylor expansions of first order on GG_{-} and G+G_{+}, the expression inside the limit in (5.4) is bounded from above by

1n[αx=0y=1(G|y|+G+x)p(yx)]1nx=0y=1(xy)p(xy)=1nσ22,\displaystyle\frac{1}{\sqrt{n}}\Big{[}\alpha\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}(\|G_{-}\|_{\infty}|y|+\|G_{+}\|_{\infty}x)p(y-x)\Big{]}\lesssim\frac{1}{\sqrt{n}}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}(x-y)p(x-y)=\frac{1}{\sqrt{n}}\frac{\sigma^{2}}{2},

which ends the proof. ∎

Proposition 5.4.

Let (β,γ)(1/2,)×[2,)(\beta,\gamma)\in(1/2,\infty)\times[2,\infty) and G𝒮()G\in\mathcal{S}(\mathbb{R}^{*}). Then

limn𝔼νb[supt[0,T](0tΘ(n)nx=0αnβy=1[G(yn)G(xn)]p(yx)[η¯s(x)η¯s(0)]ds)2]=0,\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=0}^{\infty}\alpha n^{-\beta}\sum_{y=-\infty}^{-1}[G\left(\tfrac{y}{n}\right)-G\left(\tfrac{x}{n}\right)]p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0)]ds\Big{)}^{2}\Big{]}=0, (5.7)
limn𝔼νb[supt[0,T](0tΘ(n)nx=1αnβy=1[G(yn)G(xn)]p(yx)[η¯s(x)η¯s(1)]ds)2]=0.\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=-\infty}^{-1}\alpha n^{-\beta}\sum_{y=-\infty}^{-1}[G\left(\tfrac{y}{n}\right)-G\left(\tfrac{x}{n}\right)]p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(-1)]ds\Big{)}^{2}\Big{]}=0. (5.8)
Proof.

We will prove only (5.7) but we the proof of (5.8) is analogous. From Lemma 4.3 of [4], the expectation in (5.7) is bounded from above by a constant times

supgL2(νb){Θ(n)n12+βx=0y=1[G(yn)G(xn)]p(yx)η¯(x)η¯(0),gνb+Θ(n)Lng,gνb},\displaystyle\sup_{g\in L^{2}(\nu_{b})}\Big{\{}\frac{\Theta(n)}{n^{\frac{1}{2}+\beta}}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}[G\left(\tfrac{y}{n}\right)-G\left(\tfrac{x}{n}\right)]p(y-x)\langle\bar{\eta}(x)-\bar{\eta}(0),g\rangle_{\nu_{b}}+\Theta(n)\langle{\mathcalboondox L}_{n}g,g\rangle_{\nu_{b}}\Big{\}}, (5.9)

Simple computations show that for gL2(νb)g\in L^{2}(\nu_{b}),

Θ(n)Lng,gνb=Θ(n)2Dn(g,νb),\displaystyle\Theta(n)\langle{\mathcalboondox L}_{n}g,g\rangle_{\nu_{b}}=-\frac{\Theta(n)}{2}D_{n}(g,\nu_{b}), (5.10)

where Dn(g,νb):=DF(g,νb)+αnβDS(g,νb)D_{n}(g,\nu_{b}):=D^{{\mathcalboondox F}}(g,\nu_{b})+\alpha n^{-\beta}D^{{\mathcalboondox S}}(g,\nu_{b}), and for K{F,S}{\mathcalboondox K}\in\{{\mathcalboondox F},{\mathcalboondox S}\}, we have

DK(g,νb):=12{x,y}Kp(yx)Ix,y(g,νb).\displaystyle D^{{\mathcalboondox K}}(g,\nu_{b}):=\frac{1}{2}\sum_{\{x,y\}\in{\mathcalboondox K}}p(y-x)I_{x,y}(g,\nu_{b}).

Above, Ix,y(g,νb):=Ω[g(ηx,y)g(η)]2𝑑νbI_{x,y}(g,\nu_{b}):=\int_{\Omega}[g\left(\eta^{x,y}\right)-g\left(\eta\right)]^{2}d\nu_{b}. Since νb(η)=νb(ηx,y)\nu_{b}(\eta)=\nu_{b}(\eta^{x,y}) for every x,yx,y\in\mathbb{Z} and every ηΩ\eta\in\Omega, with the change of variables ηηx,y\eta\rightarrow\eta^{x,y} and Young’s inequality, we obtain that

Ax,y>0,|Ω[η(x)η(y)]g(η)𝑑νb|Ix,y(g,νb)4Ax,y+Ax,y,\displaystyle\forall A_{x,y}>0,\quad\Big{|}\int_{\Omega}[\eta(x)-\eta(y)]g(\eta)d\nu_{b}\Big{|}\leq\frac{I_{x,y}(g,\nu_{b})}{4A_{x,y}}+A_{x,y}, (5.11)

for every gL2(Ω,νb)g\in L^{2}(\Omega,\nu_{b}). From (5.10), the second term inside the supremum in (5.9) is bounded from above by

Θ(n)4w=1p(1)Iw,w1(g,νb)\displaystyle-\frac{\Theta(n)}{4}\sum_{w=1}^{\infty}p(1)I_{w,w-1}(g,\nu_{b}) (5.12)

From a telescopic sum, it holds

x1,gL2(νb),η¯(x)η¯(0),gνb=w=0x1Ω[η(w+1)η(w)]g(η)𝑑νb.\forall x\geq 1,\forall g\in L^{2}(\nu_{b}),\quad\langle\bar{\eta}(x)-\bar{\eta}(0),g\rangle_{\nu_{b}}=\sum_{w=0}^{x-1}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}. (5.13)

From (5.13), the first term inside the supremum in (5.9) from above by

Θ(n)n12+βx=1y=12Gp(yx)w=0x1|Ω[η(w+1)η(w)]g(η)𝑑νb|\displaystyle\frac{\Theta(n)}{n^{\frac{1}{2}+\beta}}\sum_{x=1}^{\infty}\sum_{y=-\infty}^{-1}2\|G\|_{\infty}p(y-x)\sum_{w=0}^{x-1}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}
=\displaystyle= Θ(n)n12+βw=0|Ω[η(w+1)η(w)]g(η)𝑑νb|(2Gx=w+1y=1p(xy))\displaystyle\frac{\Theta(n)}{n^{\frac{1}{2}+\beta}}\sum_{w=0}^{\infty}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}\Big{(}2\|G\|_{\infty}\sum_{x=w+1}^{\infty}\sum_{y=-\infty}^{-1}p(x-y)\Big{)}
\displaystyle\lesssim CΘ(n)n12+βw=0|Ω[η(w+1)η(w)]g(η)𝑑νb|x=w+1xγ\displaystyle C\frac{\Theta(n)}{n^{\frac{1}{2}+\beta}}\sum_{w=0}^{\infty}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}\sum_{x=w+1}^{\infty}x^{-\gamma}
\displaystyle\leq CΘ(n)n12+βw=1w1γ|Ω[η(w)η(w1)]g(η)𝑑νb|,\displaystyle C\frac{\Theta(n)}{n^{\frac{1}{2}+\beta}}\sum_{w=1}^{\infty}w^{1-\gamma}\Big{|}\int_{\Omega}[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|},

for some C>0C>0. In the equality above we used Fubini’s Theorem. By choosing Aw,w1=Cw1γn12+βp(1)A_{w,w-1}=\frac{Cw^{1-\gamma}}{n^{\frac{1}{2}+\beta}p(1)} in (5.11) and using (5.12), the expression inside the supremum in (5.9) is bounded from above by a constant times

Θ(n)n1+2βw=1w22γ,\displaystyle\frac{\Theta(n)}{n^{1+2\beta}}\sum_{w=1}^{\infty}w^{2-2\gamma},

and this vanishes as nn\rightarrow\infty, since β>1/2\beta>1/2, γ2\gamma\geq 2 and last sum is convergent. This ends the proof. ∎

Proposition 5.5.

Let (β,γ)R0(\beta,\gamma)\in R_{0} and G𝒮()G\in\mathcal{S}(\mathbb{R}^{*}). Then

limn𝔼νb[supt[0,T](0tΘ(n)nx=0G+(0)ny=0(yx)p(yx)[η¯s(x)η¯s(0)]ds)2]=0,\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=0}^{\infty}\frac{G_{+}^{\prime}(0)}{n}\sum_{y=0}^{\infty}(y-x)p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0)]ds\Big{)}^{2}\Big{]}=0, (5.14)
limn𝔼νb[supt[0,T](0tΘ(n)nx=1G(0)ny=1(yx)p(yx)[η¯s(x)η¯s(1)]ds)2]=0.\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=-\infty}^{-1}\frac{G_{-}^{\prime}(0)}{n}\sum_{y=-\infty}^{-1}(y-x)p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(-1)]ds\Big{)}^{2}\Big{]}=0. (5.15)
Proof.

We will prove only (5.14) but the proof of (5.15) is analogous. From the inequality (u+v)22(u2+v2)(u+v)^{2}\leq 2(u^{2}+v^{2}), it is enough to prove that

limn𝔼νb[supt[0,T](0tΘ(n)nx=nG+(0)ny=0(yx)p(yx)[η¯s(x)η¯s(0)]ds)2]=0,\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=n}^{\infty}\frac{G_{+}^{\prime}(0)}{n}\sum_{y=0}^{\infty}(y-x)p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0)]ds\Big{)}^{2}\Big{]}=0, (5.16)
limn𝔼νb[supt[0,T](0tΘ(n)nx=0n1G+(0)ny=0(yx)p(yx)[η¯s(x)η¯s(0)]ds)2]=0.\lim_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=0}^{n-1}\frac{G_{+}^{\prime}(0)}{n}\sum_{y=0}^{\infty}(y-x)p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0)]ds\Big{)}^{2}\Big{]}=0. (5.17)

We begin by proving the former limit. Combining Cauchy-Schwarz inequality with Fubini’s Theorem and the fact that the random variables η¯s(x)η¯s(0)\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0) have mean zero for every s[0,T]s\in[0,T] and are independent, the expression inside the limit in (5.16) is bounded from above by

T𝔼νb[0T(Θ(n)nx=nG+(0)ny=0(yx)p(yx)[η¯s(x)η¯s(0)])2𝑑s]\displaystyle T\mathbb{E}_{\nu_{b}}\Big{[}\int_{0}^{T}\Big{(}\frac{\Theta(n)}{\sqrt{n}}\sum_{x=n}^{\infty}\frac{G_{+}^{\prime}(0)}{n}\sum_{y=0}^{\infty}(y-x)p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0)]\Big{)}^{2}ds\Big{]}
=\displaystyle= T[G+(0)]2Θ2(n)n3x=n[rn,+(x)]20T𝔼νb[(η¯s(x)η¯s(0))2]𝑑s\displaystyle T[G_{+}^{\prime}(0)]^{2}\frac{\Theta^{2}(n)}{n^{3}}\sum_{x=n}^{\infty}[r_{n,+}(x)]^{2}\int_{0}^{T}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\bar{\eta}_{s}(x)-\bar{\eta}_{s}(0)\big{)}^{2}\big{]}ds
=\displaystyle= 2χ(b)[TG+(0)]2Θ2(n)n3x=n[rn,+(x)]2Θ2(n)n21nx=anx22γ,\displaystyle 2\chi(b)[TG_{+}^{\prime}(0)]^{2}\frac{\Theta^{2}(n)}{n^{3}}\sum_{x=n}^{\infty}[r_{n,+}(x)]^{2}\lesssim\frac{\Theta^{2}(n)}{n^{2}}\frac{1}{n}\sum_{x=an}^{\infty}x^{2-2\gamma},

where for every x>0x>0, we have

rn,+(x):=y=0(yx)p(yx)=r=x+1rp(r)x1γ.\displaystyle r_{n,+}(x):=\sum_{y=0}^{\infty}(y-x)p(y-x)=\sum_{r=x+1}^{\infty}rp(r)\lesssim x^{1-\gamma}.

Then the expression inside the limit in (5.16) is bounded from above by a constant times

Θ2(n)n2n22γ1nx=n(xn)22γn42γΘ2(n)n2γ1u22γ𝑑uΘ2(n)n2γ,\displaystyle\frac{\Theta^{2}(n)}{n^{2}}n^{2-2\gamma}\frac{1}{n}\sum_{x=n}^{\infty}\Big{(}\frac{x}{n}\Big{)}^{2-2\gamma}\lesssim n^{4-2\gamma}\frac{\Theta^{2}(n)}{n^{2\gamma}}\int_{1}^{\infty}u^{2-2\gamma}du\lesssim\frac{\Theta^{2}(n)}{n^{2\gamma}},

and this vanishes as nn\rightarrow\infty, for every γ2\gamma\geq 2, leading to (5.16). It remains to treat (5.17).

From the symmetry of p()p(\cdot) and Lemma 4.3 of [4], the expectation in (5.14) is bounded from above by a constant times

supgL2(νb){Θ(n)n3/2x=0n1G+(0)r=x+1rp(r)η¯(x)η¯(0),gνb+Θ(n)Lng,gνb},\displaystyle\sup_{g\in L^{2}(\nu_{b})}\Big{\{}\frac{\Theta(n)}{n^{3/2}}\sum_{x=0}^{n-1}G_{+}^{\prime}(0)\sum_{r=x+1}^{\infty}rp(r)\langle\bar{\eta}(x)-\bar{\eta}(0),g\rangle_{\nu_{b}}+\Theta(n)\langle{\mathcalboondox L}_{n}g,g\rangle_{\nu_{b}}\Big{\}}, (5.18)

From (5.10), the second term inside this supremum is bounded from above by

Θ(n)4w=1n1p(1)Iw,w1(g,νb)\displaystyle-\frac{\Theta(n)}{4}\sum_{w=1}^{n-1}p(1)I_{w,w-1}(g,\nu_{b}) (5.19)

From (5.13), the first term inside the supremum in (5.18) is bounded from above by

Θ(n)n3/2x=0n1r=x+1G+rp(r)w=0x1|Ω[η(w+1)η(w)]g(η)𝑑νb|\displaystyle\frac{\Theta(n)}{n^{3/2}}\sum_{x=0}^{n-1}\sum_{r=x+1}^{\infty}\|G^{\prime}_{+}\|_{\infty}rp(r)\sum_{w=0}^{x-1}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}
=\displaystyle= Θ(n)n3/2w=0n2|Ω[η(w+1)η(w)]g(η)𝑑νb|(G+x=0n1r=x+1rp(r))\displaystyle\frac{\Theta(n)}{n^{3/2}}\sum_{w=0}^{n-2}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}\Big{(}\|G^{\prime}_{+}\|_{\infty}\sum_{x=0}^{n-1}\sum_{r=x+1}^{\infty}rp(r)\Big{)}
\displaystyle\lesssim Θ(n)n3/2w=0n2|Ω[η(w+1)η(w)]g(η)𝑑νb|x=w+1n1x1γ\displaystyle\frac{\Theta(n)}{n^{3/2}}\sum_{w=0}^{n-2}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}\sum_{x=w+1}^{n-1}x^{1-\gamma}
\displaystyle\leq CΘ(n)n3/2w=1n1w2γ|Ω[η(w)η(w1)]g(η)𝑑νb|,\displaystyle C\frac{\Theta(n)}{n^{3/2}}\sum_{w=1}^{n-1}w^{2-\gamma}\Big{|}\int_{\Omega}[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|},

for some C>0C>0. In the equality above we used Fubini’s Theorem. By choosing Aw,w1=Cw2γn3/2p(1)A_{w,w-1}=\frac{Cw^{2-\gamma}}{n^{3/2}p(1)} in (5.11) and using (5.19), the expression inside the supremum in (5.18) is bounded from above by a constant times

Θ(n)n3w=1n1w42γ.\displaystyle\frac{\Theta(n)}{n^{3}}\sum_{w=1}^{n-1}w^{4-2\gamma}. (5.20)

If γ>5/2\gamma>5/2, the sum is convergent and (5.20) is of order Θ(n)n3\Theta(n)n^{-3}. If γ=5/2\gamma=5/2, the sum is of order log(n)\log(n) and (5.20) is of order Θ(n)log(an)n3\Theta(n)\log(an)n^{-3}. Finally, if γ[2,5/2)\gamma\in[2,5/2), (5.20) is of order Θ(n)n22γa52γ\Theta(n)n^{2-2\gamma}a^{5-2\gamma}. Therefore (5.20) goes to zero when nn\rightarrow\infty, ending the proof. ∎

Next, we treat the case (β,γ)R1(\beta,\gamma)\in R_{1}.

5.2. Case (β,γ)R1(\beta,\gamma)\in R_{1}

In this case, it will be useful to introduce extra notation. Observe that when β1\beta\geq 1 and (β,γ)R1(\beta,\gamma)\in R_{1}, 𝒮β,γ:=𝒮Neu()\mathcal{S}_{\beta,\gamma}:=\mathcal{S}_{Neu}(\mathbb{R}^{*}), hence for G𝒮β,γG\in\mathcal{S}_{\beta,\gamma} we have G+(0)=G+(0)=0G_{+}^{{}^{\prime}}(0)=G_{+}^{{}^{\prime}}(0)=0. This motivates us to rewrite Rn,βG{\mathcalboondox R}_{n,\beta}G as

Rn,βG(xn)=Cα,β,ny=1[G(yn)G(xn)]p(yx),Missing Operator\displaystyle{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)=C_{\alpha,\beta,n}\sum_{y=-\infty}^{-1}\left[G(\tfrac{y}{n})-G(\tfrac{x}{n})\right]p(y-x),\quad x\geq 0,\;\beta\geq 0,

where Cα,β,nC_{\alpha,\beta,n} is given by

Cα,β,n:={1αnβnoβ,β[0,1);αnβnoβ,β1.C_{\alpha,\beta,n}:=\begin{cases}1-\alpha n^{-\beta}\lesssim n^{-o_{\beta}},&\beta\in[0,1);\\ \alpha n^{-\beta}\lesssim n^{-o_{\beta}},&\beta\geq 1.\end{cases} (5.21)

Above, oβ:=0o_{\beta}:=0 for β[0,1)\beta\in[0,1) and oβ:=βo_{\beta}:=\beta for β1\beta\geq 1. This extra notation is useful to treat the cases β[0,1)\beta\in[0,1) and β1\beta\geq 1 simultaneously. The following result will be useful to obtain Proposition 5.2.

Proposition 5.6.

Let (β,γ)R1(\beta,\gamma)\in R_{1} and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nn|x|εny=εn+11[G(yn)G(xn)]p(yx)[η¯s(0)η¯sn(0)]ds)2]=0,\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{|x|\geq\varepsilon n}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\bar{\eta}_{s}^{\rightarrow\ell}(0)-\bar{\eta}_{s}^{n}(0)]ds\Big{)}^{2}\Big{]}=0, (5.22)
lim supε0+lim supn𝔼νb[supt[0,T](0tCα,β,nn|x|<εnΘ(n)|y|εn:{x,y}S[G(yn)G(xn)]p(yx)η¯sn(x)ds)2]=0.\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{|x|<\varepsilon n}\Theta(n)\sum_{|y|\geq\varepsilon n:\{x,y\}\in{\mathcalboondox S}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0. (5.23)
Proof.

Since (u+v)22(u2+v2)(u+v)^{2}\leq 2(u^{2}+v^{2}), (5.22) is a consequence of

lim supε0+lim supn𝔼νb[supt[0,T](0t1nx=εnΘ(n)Rn,βG(xn)η¯sn(x)ds)2]=0,\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{1}{\sqrt{n}}\sum_{x=\varepsilon n}^{\infty}\Theta(n){\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0, (5.24)
lim supε0+lim supn𝔼νb[supt[0,T](0t1nx=εnΘ(n)Rn,βG(xn)η¯sn(x)ds)2]=0.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{1}{\sqrt{n}}\sum_{x=-\infty}^{-\varepsilon n}\Theta(n){\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0. (5.25)

We prove only (5.24), but the proof of (5.25) is analogous. From Cauchy-Schwarz’s inequality and Fubini’s Theorem, the expectation in (5.24) is bounded from above by

T0T1nx=εn[Θ(n)Rn,βG(xn)]2𝔼νb[(η¯sn(x))2]ds=2b(1b)[TΘ(n)]2nx=εn[Rn,βG(xn)]2.\displaystyle T\int_{0}^{T}\frac{1}{n}\sum_{x=\varepsilon n}^{\infty}\big{[}\Theta(n){\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\big{]}^{2}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\bar{\eta}_{s}^{n}(x)\big{)}^{2}\big{]}ds=2b(1-b)\frac{[T\Theta(n)]^{2}}{n}\sum_{x=\varepsilon n}^{\infty}\big{[}{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)\big{]}^{2}. (5.26)

From (5.21), for every β0\beta\geq 0 we get

|Rn,βG(xn)|noβy=1|G(yn)G(xn)|p(yx)\displaystyle|{\mathcalboondox R}_{n,\beta}G\left(\tfrac{x}{n}\right)|\lesssim n^{-o_{\beta}}\sum_{y=-\infty}^{-1}|G(\tfrac{y}{n})-G(\tfrac{x}{n})|p(y-x)\leq 2Gcγnγoβ1ny=1(xyn)γ1\displaystyle 2\|G\|_{\infty}c_{\gamma}n^{-\gamma-o_{\beta}}\frac{1}{n}\sum_{y=-\infty}^{-1}\Big{(}\frac{x-y}{n}\Big{)}^{-\gamma-1}
\displaystyle\lesssim nγoβ0(xnu)γ1dunoβxγ,\displaystyle n^{-\gamma-o_{\beta}}\int_{-\infty}^{0}\Big{(}\frac{x}{n}-u\Big{)}^{-\gamma-1}du\lesssim n^{-o_{\beta}}x^{-\gamma},

and (5.26) is bounded from above by a constant times

[Θ(n)]2nx=εnn2oβx2γ=[Θ(n)]2n2γ+2oβ1nx=εn(xn)2γ(Θ(n)nγ+oβ)2ε12γ(Θ(n)nγ)2ε12γ,\displaystyle\frac{[\Theta(n)]^{2}}{n}\sum_{x=\varepsilon n}^{\infty}n^{-2o_{\beta}}x^{-2\gamma}=\frac{[\Theta(n)]^{2}}{n^{2\gamma+2o_{\beta}}}\frac{1}{n}\sum_{x=\varepsilon n}^{\infty}\Big{(}\frac{x}{n}\Big{)}^{-2\gamma}\lesssim\Big{(}\frac{\Theta(n)}{n^{\gamma+o_{\beta}}}\Big{)}^{2}\varepsilon^{1-2\gamma}\lesssim\Big{(}\frac{\Theta(n)}{n^{\gamma}}\Big{)}^{2}\varepsilon^{1-2\gamma},

and this vanishes since we take first nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}. It remains to show (5.23). In order to do so, it is enough to prove that

lim supε0+lim supn𝔼νb[supt[0,T](0tCα,β,nnx=0εn1Θ(n)y=εn[G(yn)G(xn)]p(yx)η¯sn(x)ds)2]=0,\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\Theta(n)\sum_{y=-\infty}^{-\varepsilon n}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0, (5.27)
lim supε0+lim supn𝔼νb[supt[0,T](0tCα,β,nnx=εn+11Θ(n)y=εn[G(yn)G(xn)]p(yx)η¯sn(x)ds)2]=0.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=-\varepsilon n+1}^{-1}\Theta(n)\sum_{y=\varepsilon n}^{\infty}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}\Big{]}=0. (5.28)

We prove only (5.27), but the proof of (5.28) is analogous. Observe that |C(α,β,n)||C(\alpha,\beta,n)| is always bounded from above by 1+α1+\alpha. From Cauchy-Schwarz’s inequality and Fubini’s Theorem, the expectation in (5.27) is bounded from above by

t0t1nx=0εn1((α+1)Θ(n)y=εn|G(yn)G(xn)|p(yx))2𝔼νb[(η¯sn(x))2]ds\displaystyle t\int_{0}^{t}\frac{1}{n}\sum_{x=0}^{\varepsilon n-1}\Big{(}(\alpha+1)\Theta(n)\sum_{y=-\infty}^{-\varepsilon n}|G(\tfrac{y}{n})-G(\tfrac{x}{n})|p(y-x)\Big{)}^{2}\mathbb{E}_{\nu_{b}}\big{[}\big{(}\bar{\eta}_{s}^{n}(x)\big{)}^{2}\big{]}ds
\displaystyle\lesssim χ(b)[Gt]2[Θ(n)nγ]2nx=0εn1(1ny=εn(xyn)γ1)2\displaystyle\chi(b)[\|G\|_{\infty}t]^{2}\frac{[\Theta(n)n^{-\gamma}]^{2}}{n}\sum_{x=0}^{\varepsilon n-1}\Big{(}\frac{1}{n}\sum_{y=-\infty}^{-\varepsilon n}(\tfrac{x-y}{n})^{-\gamma-1}\Big{)}^{2}
\displaystyle\lesssim [Θ(n)nγ]2nx=0εn1(ε(xnu)γ1du)2[Θ(n)nγ]2nx=0εn1(xn+ε)γ(Θ(n)nγ)2ε1γ,\displaystyle\frac{[\Theta(n)n^{-\gamma}]^{2}}{n}\sum_{x=0}^{\varepsilon n-1}\Big{(}\int_{-\infty}^{-\varepsilon}(\tfrac{x}{n}-u)^{-\gamma-1}du\Big{)}^{2}\lesssim\frac{[\Theta(n)n^{-\gamma}]^{2}}{n}\sum_{x=0}^{\varepsilon n-1}(\tfrac{x}{n}+\varepsilon)^{-\gamma}\leq\Big{(}\frac{\Theta(n)}{n^{\gamma}}\Big{)}^{2}\varepsilon^{1-\gamma},

that vanishes since we take first nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}. This ends the proof. ∎

From a change of variables and the symmetry of p()p(\cdot), we have the following identity:

supt[0,T](0tΘ(n)Cα,β,nn|x|<εn|y|<εn:{x,y}S[G(yn)G(xn)]p(yx)η¯sn(x)ds)2\displaystyle\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{|x|<\varepsilon n}\sum_{|y|<\varepsilon n:\{x,y\}\in{\mathcalboondox S}}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\bar{\eta}_{s}^{n}(x)ds\Big{)}^{2}
=\displaystyle= supt[0,T](0tΘ(n)Cα,β,nnx=0εn1y=εn+11[G(yn)G(xn)]p(yx)[η¯sn(x)η¯sn(y)]ds)2.\displaystyle\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\bar{\eta}_{s}^{n}(x)-\bar{\eta}_{s}^{n}(y)]ds\Big{)}^{2}.

Therefore, the proof of Proposition (5.2) ends if we can show the next result.

Proposition 5.7.

Let (β,γ)R1(\beta,\gamma)\in R_{1} and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=0εn1y=εn+11[G(yn)G(xn)]p(yx)[η¯s(x)η¯s(y)]ds)2]=0.\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\bar{\eta}_{s}(x)-\bar{\eta}_{s}(y)]ds\Big{)}^{2}\Big{]}=0.

Proposition 5.7 is a direct consequence of Propositions 5.8, 5.9 and 5.10. For 01\ell_{0}\geq 1, define

η¯0(0):=10y=10η¯(y)andη¯0(0):=10y=01η¯(y).\overrightarrow{\bar{\eta}}^{\ell_{0}}(0):=\frac{1}{\ell_{0}}\sum_{y=1}^{\ell_{0}}\bar{\eta}(y)\;\;\text{and}\;\;\overleftarrow{\bar{\eta}}^{\ell_{0}}(0):=\frac{1}{\ell_{0}}\sum_{y=-\ell_{0}}^{-1}\bar{\eta}(y). (5.29)
Proposition 5.8.

Let (β,γ)R1(\beta,\gamma)\in R_{1}, G𝒮β,γG\in\mathcal{S}_{\beta,\gamma} and for ε>0\varepsilon>0 and n1n\geq 1, we define \ell by

(ε,n):=εΘ(n)n.\displaystyle\ell(\varepsilon,n):=\frac{\varepsilon\Theta(n)}{n}. (5.30)

Then

lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=0εn1y=εn+11[G(yn)G(xn)]p(yx)[η¯s(0)η¯sn(0)]ds)2]=0,\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\overrightarrow{\bar{\eta}}^{\ell}_{s}(0)-\bar{\eta}_{s}^{n}(0)]ds\Big{)}^{2}\Big{]}=0, (5.31)
lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=0εn1y=εn+11[G(yn)G(xn)]p(yx)[η¯sn(0)η¯s(0)]ds)2]=0.\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\bar{\eta}_{s}^{n}(0)-\overleftarrow{\bar{\eta}}^{\ell}_{s}(0)]ds\Big{)}^{2}\Big{]}=0. (5.32)
Proof.

We present here only the proof of (5.32), but the proof of (5.31) is analogous. From Lemma 4.3 of [4] and (5.21), the expectation in (5.32) is bounded from above by a constant times

supgL2(νb){Θ(n)nnoβx=0εn1y=εn+11[G(yn)G(xn)]p(yx)η¯(0)η¯(0),gνb+Θ(n)Lng,gνb}.\displaystyle\sup_{g\in L^{2}(\nu_{b})}\Big{\{}\frac{\Theta(n)}{\sqrt{n}n^{o_{\beta}}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\langle\bar{\eta}(0)-\overleftarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}+\Theta(n)\langle{\mathcalboondox L}_{n}g,g\rangle_{\nu_{b}}\Big{\}}. (5.33)

From (5.10), the second term inside last supremum is bounded from above by

Θ(n)4w=+11p(1)Iw,w1(g,νb)αΘ(n)4nβp(1)I0,1(g,νb).\displaystyle-\frac{\Theta(n)}{4}\sum_{w=-\ell+1}^{-1}p(1)I_{w,w-1}(g,\nu_{b})-\alpha\frac{\Theta(n)}{4n^{\beta}}p(1)I_{0,-1}(g,\nu_{b}). (5.34)

Now we will treat the first term inside the supremum in (5.33). From (5.29), we get

|η¯(0)η¯(0),gνb|=|1y=1[η(0)η(y)]g(η)dνb|\displaystyle|\langle\bar{\eta}(0)-\overleftarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|=\Big{|}\frac{1}{\ell}\sum_{y=-\ell}^{-1}\int[\eta(0)-\eta(y)]g(\eta)d\nu_{b}\Big{|}
=\displaystyle= |1y=1w=y+10[η(w)η(w1)]g(η)dνb|w=+10|[η(w)η(w1)]g(η)dνb|.\displaystyle\Big{|}\frac{1}{\ell}\sum_{y=-\ell}^{-1}\sum_{w=y+1}^{0}\int[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|}\leq\sum_{w=-\ell+1}^{0}\Big{|}\int[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|}.

For the remainder of the proof, we treat two cases separately: β[0,1)\beta\in[0,1) and β1\beta\geq 1.

I.) In this case β[0,1)\beta\in[0,1), oβ=0o_{\beta}=0 and G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}). Then by performing a Taylor expansion of first order on GG, the first term inside the supremum in (5.33) is bounded from above by

Θ(n)nnx=0εn1y=εn+11G(xy)p(xy)|η¯(0)η¯(0),gνb|\displaystyle\frac{\Theta(n)}{n\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}\|G^{\prime}\|_{\infty}(x-y)p(x-y)|\langle\bar{\eta}(0)-\overleftarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|
\displaystyle\lesssim nw=+10|[η(w)η(w1)]g(η)dνb|(Θ(n)n2x=0εn1y=εn+11(xy)p(xy))\displaystyle\sqrt{n}\sum_{w=-\ell+1}^{0}\Big{|}\int[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|}\Big{(}\frac{\Theta(n)}{n^{2}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}(x-y)p(x-y)\Big{)}
\displaystyle\lesssim nw=+10|[η(w)η(w1)]g(η)dνb|\displaystyle\sqrt{n}\sum_{w=-\ell+1}^{0}\Big{|}\int[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|}
=\displaystyle= nw=+11|[η(w)η(w1)]f(η)dνb|+n|[η(0)η(1)]f(η)dνb|.\displaystyle\sqrt{n}\sum_{w=-\ell+1}^{-1}\Big{|}\int[\eta(w)-\eta(w-1)]f(\eta)d\nu_{b}\Big{|}+\sqrt{n}\Big{|}\int[\eta(0)-\eta(-1)]f(\eta)d\nu_{b}\Big{|}.

Above we used (A.37). We treat [η(0)η(1)]g(η)dνb\int[\eta(0)-\eta(-1)]g(\eta)d\nu_{b} separately because only for w=0w=0 the set {w,w1}\{w,w-1\} corresponds to a slow bond. From (5.11), for any positive constants Aw,w1A_{w,w-1} and A0,1A_{0,-1} last display is bounded from above by

n{w=+11[Iw,w1(g,νb)4Aw,w1+Aw,w1]+[I0,1(g,νb)4A0,1+A0,1]}.\displaystyle\sqrt{n}\Big{\{}\sum_{w=-\ell+1}^{-1}\Big{[}\frac{I_{w,w-1}(g,\nu_{b})}{4A_{w,w-1}}+A_{w,w-1}\Big{]}+\Big{[}\frac{I_{0,-1}(g,\nu_{b})}{4A_{0,-1}}+A_{0,-1}\Big{]}\Big{\}}. (5.35)

Next, we choose Aw,w1A_{w,w-1} and A0,1A_{0,-1} carefully in order to cancel the negative terms in (5.34). More exactly, we choose Aw,w1=nΘ(n)p(1)A_{w,w-1}=\frac{\sqrt{n}}{\Theta(n)p(1)} and A0,1=nnβαΘ(n)p(1)A_{0,-1}=\frac{\sqrt{n}n^{\beta}}{\alpha\Theta(n)p(1)}. Hence we can bound the sum of (5.34) and (5.35) from above by a constant times

nΘ(n)+n1+βΘ(n).\displaystyle\frac{\ell n}{\Theta(n)}+\frac{n^{1+\beta}}{\Theta(n)}.

Last display is therefore an upper bound for the expression inside the supremum inside (5.33). Recalling (5.30), we can bound the expectation in (5.32) from above by a constant times ε+n1+β/Θ(n)\varepsilon+n^{1+\beta}/\Theta(n), that vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}.

II.) In this case β1\beta\geq 1 and oβ=βo_{\beta}=\beta, hence the first term inside the supremum in (5.33) is bounded from above by

Θ(n)nβnx=0εn1y=εn+11Gp(xy)|η¯(0)η¯(0),gνb|\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}\|G\|_{\infty}p(x-y)|\langle\bar{\eta}(0)-\overleftarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|
\displaystyle\lesssim Θ(n)nβnw=+10|[η(w)η(w1)]g(η)dνb|(x=0y=1p(xy))\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=-\ell+1}^{0}\Big{|}\int[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|}\Big{(}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(x-y)\Big{)}
\displaystyle\lesssim Θ(n)nβnw=+10|[η(w)η(w1)]g(η)dνb|\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=-\ell+1}^{0}\Big{|}\int[\eta(w)-\eta(w-1)]g(\eta)d\nu_{b}\Big{|}
=\displaystyle= Θ(n)nβnw=+11|[η(w)η(w1)]f(η)dνb|+Θ(n)nβn|[η(0)η(1)]f(η)dνb|,\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=-\ell+1}^{-1}\Big{|}\int[\eta(w)-\eta(w-1)]f(\eta)d\nu_{b}\Big{|}+\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\Big{|}\int[\eta(0)-\eta(-1)]f(\eta)d\nu_{b}\Big{|},

From (5.11), for any positive constants Aw,w1A_{w,w-1} and A0,1A_{0,-1} last display is bounded from above by

Θ(n)nβn{w=+11[Iw,w1(g,νb)4Aw,w1+Aw,w1]+[I0,1(g,νb)4A0,1+A0,1]}.\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\Big{\{}\sum_{w=-\ell+1}^{-1}\Big{[}\frac{I_{w,w-1}(g,\nu_{b})}{4A_{w,w-1}}+A_{w,w-1}\Big{]}+\Big{[}\frac{I_{0,-1}(g,\nu_{b})}{4A_{0,-1}}+A_{0,-1}\Big{]}\Big{\}}. (5.36)

Now we choose Aw,w1=1nβnp(1)A_{w,w-1}=\frac{1}{n^{\beta}\sqrt{n}p(1)} and A0,1=1αnp(1)A_{0,-1}=\frac{1}{\alpha\sqrt{n}p(1)}. Then applying (5.30), the sum of (5.34) and (5.36) is bounded from above by a constant times

Θ(n)n1+2β+Θ(n)n1+β=ε(Θ(n)n1+β)2+Θ(n)n1+β,\displaystyle\frac{\ell\Theta(n)}{n^{1+2\beta}}+\frac{\Theta(n)}{n^{1+\beta}}=\varepsilon\Big{(}\frac{\Theta(n)}{n^{1+\beta}}\Big{)}^{2}+\frac{\Theta(n)}{n^{1+\beta}},

which vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}, ending the proof. ∎

We prove next result with an analogous reasoning.

Proposition 5.9.

Let \ell be given by (5.30), (β,γ)R1(\beta,\gamma)\in R_{1} and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=01y=εn+11[G(yn)G(xn)]p(yx)[η¯s(x)η¯s(0)]ds)2]=0,\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\ell-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\bar{\eta}_{s}(x)-\overrightarrow{\bar{\eta}}^{\ell}_{s}(0)]ds\Big{)}^{2}\Big{]}=0, (5.37)
lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=0εn1y=+11[G(yn)G(xn)]p(yx)[η¯s(0)η¯sn(y)]ds)2]=0.\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\ell+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\overleftarrow{\bar{\eta}}^{\ell}_{s}(0)-\bar{\eta}_{s}^{n}(y)]ds\Big{)}^{2}\Big{]}=0. (5.38)
Proof.

We present here only the proof of (5.37), but the proof of (5.38) is analogous. From Lemma 4.3 of [4], the expectation in (5.37) is bounded from above by a constant times

supgL2(νb){Θ(n)nnoβx=01y=εn+11[G(yn)G(xn)]p(yx)η¯(x)η¯(0),gνb+Θ(n)Lng,gνb},\displaystyle\sup_{g\in L^{2}(\nu_{b})}\Big{\{}\frac{\Theta(n)}{\sqrt{n}n^{o_{\beta}}}\sum_{x=0}^{\ell-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}+\Theta(n)\langle{\mathcalboondox L}_{n}g,g\rangle_{\nu_{b}}\Big{\}}, (5.39)

From (5.10), the second term inside this supremum is bounded from above by

Θ(n)4w=01p(1)Iw,w+1(g,νb)\displaystyle-\frac{\Theta(n)}{4}\sum_{w=0}^{\ell-1}p(1)I_{w,w+1}(g,\nu_{b}) (5.40)

From (5.29) |η¯(x)η¯(0),gνb||\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}| is bounded from above by

1z=1x1w=1x1|Ω[η(w+1)η(w)]f(η)dνb|+1z=x+1w=xz1|Ω[η(w)η(w+1)]g(η)dνb|\displaystyle\frac{1}{\ell}\sum_{z=1}^{x-1}\sum_{w=1}^{x-1}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]f(\eta)d\nu_{b}\Big{|}+\frac{1}{\ell}\sum_{z=x+1}^{\ell}\sum_{w=x}^{z-1}\Big{|}\int_{\Omega}[\eta(w)-\eta(w+1)]g(\eta)d\nu_{b}\Big{|}
\displaystyle\leq 2w=01|Ω[η(w)η(w+1)]g(η)dνb|.\displaystyle 2\sum_{w=0}^{\ell-1}\Big{|}\int_{\Omega}[\eta(w)-\eta(w+1)]g(\eta)d\nu_{b}\Big{|}.

Above we used that 0x10\leq x\leq\ell-1. For the remainder of the proof, we treat two cases separately: β[0,1)\beta\in[0,1) and β1\beta\geq 1.

I.) In this case β[0,1)\beta\in[0,1), oβ=0o_{\beta}=0 and G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}). Then by performing a Taylor expansion of first order on GG, the first term inside the supremum in (5.39) is bounded from above by

Θ(n)nnx=01y=εn+11G(xy)p(xy)|η¯(x)η¯(0),gνb|\displaystyle\frac{\Theta(n)}{n\sqrt{n}}\sum_{x=0}^{\ell-1}\sum_{y=-\varepsilon n+1}^{-1}\|G^{\prime}\|_{\infty}(x-y)p(x-y)|\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|
\displaystyle\lesssim nw=01|Ω[η(w)η(w+1)]g(η)dνb|(Θ(n)n2x=0εn1y=εn+11(xy)p(xy))\displaystyle\sqrt{n}\sum_{w=0}^{\ell-1}\Big{|}\int_{\Omega}[\eta(w)-\eta(w+1)]g(\eta)d\nu_{b}\Big{|}\Big{(}\frac{\Theta(n)}{n^{2}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}(x-y)p(x-y)\Big{)}
\displaystyle\lesssim nw=01|Ω[η(w)η(w+1)]g(η)dνb|,\displaystyle\sqrt{n}\sum_{w=0}^{\ell-1}\Big{|}\int_{\Omega}[\eta(w)-\eta(w+1)]g(\eta)d\nu_{b}\Big{|},

From (5.11), for any positive Aw,w+1A_{w,w+1} last display is bounded from above by

nw=01[Iw,w+1(g,νb)4Aw,w+1+Aw,w+1].\displaystyle\sqrt{n}\sum_{w=0}^{\ell-1}\Big{[}\frac{I_{w,w+1}(g,\nu_{b})}{4A_{w,w+1}}+A_{w,w+1}\Big{]}. (5.41)

By choosing Aw,w+1=nΘ(n)p(1)A_{w,w+1}=\frac{\sqrt{n}}{\Theta(n)p(1)} and recalling (5.30), the sum of the expressions in (5.40) and (5.41) is bounded from above by a constant times n[Θ(n)]1=ε\ell n[\Theta(n)]^{-1}=\varepsilon, that vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}.

II.) In this case β1\beta\geq 1 and oβ=βo_{\beta}=\beta, hence the first term inside the supremum in (5.39) is bounded from above by

Θ(n)nβnx=0εn1y=εn+11Gp(xy)|η¯(x)η¯(0),gνb|\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}\|G\|_{\infty}p(x-y)|\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|
\displaystyle\lesssim Θ(n)nβnw=01|Ω[η(w)η(w+1)]g(η)dνb|(x=0y=1p(xy))\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=0}^{\ell-1}\Big{|}\int_{\Omega}[\eta(w)-\eta(w+1)]g(\eta)d\nu_{b}\Big{|}\Big{(}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(x-y)\Big{)}
\displaystyle\lesssim Θ(n)nβnw=01|Ω[η(w)η(w+1)]g(η)dνb|,\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=0}^{\ell-1}\Big{|}\int_{\Omega}[\eta(w)-\eta(w+1)]g(\eta)d\nu_{b}\Big{|},

By choosing Aw,w+1=1nβnp(1)A_{w,w+1}=\frac{1}{n^{\beta}\sqrt{n}p(1)} in (5.11) and recalling (5.30), the expression inside the supremum in (5.33) is bounded from above by

Θ(n)n1+2β=ε(Θ(n)n1+β)2,\displaystyle\frac{\ell\Theta(n)}{n^{1+2\beta}}=\varepsilon\Big{(}\frac{\Theta(n)}{n^{1+\beta}}\Big{)}^{2},

and this vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}, ending the proof. ∎

For γ=2\gamma=2, we have =εΘ(n)n1<εn\ell=\varepsilon\Theta(n)n^{-1}<\varepsilon n and we need a complementary result.

Proposition 5.10.

Let \ell be given by (5.30), γ=2\gamma=2 (this implies (β,γ)R1(\beta,\gamma)\in R_{1}) and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=εn1y=εn+11[G(yn)G(xn)]p(yx)[η¯s(x)η¯s(0)]ds)2]=0,\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=\ell}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\bar{\eta}_{s}(x)-\overrightarrow{\bar{\eta}}^{\ell}_{s}(0)]ds\Big{)}^{2}\Big{]}=0, (5.42)
lim supε0+lim supn𝔼νb[supt[0,T](0tΘ(n)Cα,β,nnx=0εn1y=εn+1[G(yn)G(xn)]p(yx)[η¯s(0)η¯sn(y)]ds)2]=0.\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\mathbb{E}_{\nu_{b}}\Big{[}\sup_{t\in[0,T]}\Big{(}\int_{0}^{t}\frac{\Theta(n)C_{\alpha,\beta,n}}{\sqrt{n}}\sum_{x=0}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-\ell}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)[\overleftarrow{\bar{\eta}}^{\ell}_{s}(0)-\bar{\eta}_{s}^{n}(y)]ds\Big{)}^{2}\Big{]}=0. (5.43)
Proof.

We present here only the proof of (5.42), but the proof of (5.43) is analogous. From Lemma 4.3 of [4], the expectation in (5.42) is bounded from above by a constant times

supgL2(νb){Θ(n)nnoβx=εn1y=εn+11[G(yn)G(xn)]p(yx)η¯(x)η¯(0),gνb+Θ(n)Lng,gνb},\displaystyle\sup_{g\in L^{2}(\nu_{b})}\Big{\{}\frac{\Theta(n)}{\sqrt{n}n^{o_{\beta}}}\sum_{x=\ell}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]p(y-x)\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}+\Theta(n)\langle{\mathcalboondox L}_{n}g,g\rangle_{\nu_{b}}\Big{\}}, (5.44)

Since γ=2\gamma=2, from (5.10), the second term inside this supremum is bounded from above by

Θ(n)4w=1εnp(1)Iw,w+1(g,νb)=n24log(n)w=1εnp(1)Iw,w+1(g,νb).\displaystyle-\frac{\Theta(n)}{4}\sum_{w=1}^{\varepsilon n}p(1)I_{w,w+1}(g,\nu_{b})=-\frac{n^{2}}{4\log(n)}\sum_{w=1}^{\varepsilon n}p(1)I_{w,w+1}(g,\nu_{b}).

From (5.29) |η¯(x)η¯(0),gνb||\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}| is bounded from above by

1z=1w=zx1|Ω[η(w+1)η(w)]f(η)dνb|w=1εn|Ω[η(w+1)η(w)]f(η)dνb|.\displaystyle\frac{1}{\ell}\sum_{z=1}^{\ell}\sum_{w=z}^{x-1}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]f(\eta)d\nu_{b}\Big{|}\leq\sum_{w=1}^{\varepsilon n}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]f(\eta)d\nu_{b}\Big{|}.

Since γ=2\gamma=2, =εn/log(n)\ell=\varepsilon n/\log(n) and we get

Θ(n)n2x=εn1y=εn+11c2(xy)2Θ(n)n2x=εn1x11log(n)(1+εnu1du)=1εn+1log(n)log(log(n))log(log(n))log(n),\begin{split}&\frac{\Theta(n)}{n^{2}}\sum_{x=\ell}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}c_{2}(x-y)^{-2}\lesssim\Theta(n)n^{-2}\sum_{x=\ell}^{\varepsilon n-1}x^{-1}\leq\frac{1}{\log(n)}\Big{(}\ell^{-1}+\int_{\ell}^{\varepsilon n}u^{-1}du\Big{)}\\ =&\frac{1}{\varepsilon n}+\frac{1}{\log(n)}\log\big{(}\log(n)\big{)}\lesssim\frac{\log\big{(}\log(n)\big{)}}{\log(n)},\end{split} (5.45)

since nn goes to infinity before ε\varepsilon goes to zero. For the remainder of the proof, we treat two cases separately: β[0,1)\beta\in[0,1) and β1\beta\geq 1.

I.) In this case β[0,1)\beta\in[0,1), oβ=0o_{\beta}=0 and G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}). Then by performing a Taylor expansion of first order on GG, the first term inside the supremum in (5.44) is bounded from above by

Θ(n)nnx=εn1y=εn+11G(xy)p(xy)|η¯(x)η¯(0),gνb|\displaystyle\frac{\Theta(n)}{n\sqrt{n}}\sum_{x=\ell}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}\|G^{\prime}\|_{\infty}(x-y)p(x-y)|\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|
\displaystyle\lesssim nw=1εn|Ω[η(w+1)η(w)]g(η)dνb|(Θ(n)n2x=εn1y=εn+11c2(xy)2)\displaystyle\sqrt{n}\sum_{w=1}^{\varepsilon n}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}\Big{(}\frac{\Theta(n)}{n^{2}}\sum_{x=\ell}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}c_{2}(x-y)^{-2}\Big{)}
\displaystyle\lesssim nlog(log(n))log(n)w=1εn|[η(w+1)η(w)]f(η)dνb|.\displaystyle\sqrt{n}\frac{\log\big{(}\log(n)\big{)}}{\log(n)}\sum_{w=1}^{\varepsilon n}\Big{|}\int[\eta(w+1)-\eta(w)]f(\eta)d\nu_{b}\Big{|}.

Above we used (5.45). By choosing Aw,w+1=log(log(n))p(1)nnA_{w,w+1}=\frac{\log(\log(n))}{p(1)n\sqrt{n}} for every 1wεn1\leq w\leq\varepsilon n in (5.11), the expression in (5.44) is bounded by a constant times

ε[log(log(n))]2log(n),\displaystyle\varepsilon\frac{\big{[}\log\big{(}\log(n)\big{)}\big{]}^{2}}{\log(n)},

that vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}.

II.) In this case β1\beta\geq 1 and oβ=βo_{\beta}=\beta, hence the first term inside the supremum in (5.44) is bounded from above by

Θ(n)nβnx=εn1y=εn+11Gp(xy)|η¯(x)η¯(0),gνb|\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{x=\ell}^{\varepsilon n-1}\sum_{y=-\varepsilon n+1}^{-1}\|G\|_{\infty}p(x-y)|\langle\bar{\eta}(x)-\overrightarrow{\bar{\eta}}^{\ell}(0),g\rangle_{\nu_{b}}|
\displaystyle\lesssim Θ(n)nβnw=1εn|Ω[η(w+1)η(w)]g(η)dνb|(x=0y=1p(xy))\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=1}^{\varepsilon n}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|}\Big{(}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(x-y)\Big{)}
\displaystyle\lesssim Θ(n)nβnw=1εn|Ω[η(w+1)η(w)]g(η)dνb|,\displaystyle\frac{\Theta(n)}{n^{\beta}\sqrt{n}}\sum_{w=1}^{\varepsilon n}\Big{|}\int_{\Omega}[\eta(w+1)-\eta(w)]g(\eta)d\nu_{b}\Big{|},

By choosing Aw,w+1=1nβnp(1)A_{w,w+1}=\frac{1}{n^{\beta}\sqrt{n}p(1)} in (5.11) and recalling (5.30), the expression inside the supremum in (5.33) is bounded from above by

εnΘ(n)n1+2β=εΘ(n)n2βεΘ(n)n2,\displaystyle\frac{\varepsilon n\Theta(n)}{n^{1+2\beta}}=\varepsilon\frac{\Theta(n)}{n^{2\beta}}\leq\varepsilon\frac{\Theta(n)}{n^{2}},

that vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}, ending the proof. ∎

Appendix A Auxiliary results

In this section we prove various results that were used along the text. Recall the definition of R0R_{0} and 𝒮β,γ\mathcal{S}_{\beta,\gamma} in Definition 2.1.

Proposition A.1.

Let (β,γ)R0(\beta,\gamma)\in R_{0} and G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}. Then

supx|Θ(n)(𝒦n,βG)(xn)|1\sup_{x\in\mathbb{Z}}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})|\lesssim 1 (A.1)

and

limn1nx|Θ(n)(𝒦n,βG)(xn)κγΔG(xn)|=0.\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{x}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta G(\tfrac{x}{n})|=0. (A.2)
Proof.

I.: Proof of (A.1).

If β[0,1)\beta\in[0,1), GG𝒮β,γ=𝒮()G\in G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}). Therefore, from the symmetry of pp and a Taylor expansion of second order on GG we get

|Θ(n)(𝒦n,βG)(xn)|Θ(n)|r|n|G(r+xn)G(xn)|p(r)+Θ(n)||r|<n[G(r+xn)G(xn)]p(r)|\displaystyle|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})|\leq\Theta(n)\sum_{|r|\geq n}|G(\tfrac{r+x}{n})-G(\tfrac{x}{n})|p(r)+\Theta(n)\Big{|}\sum_{|r|<n}[G(\tfrac{r+x}{n})-G(\tfrac{x}{n})]p(r)\Big{|}
\displaystyle\leq Θ(n)nγ2Gn2r=n(rn)1γ+GΘ(n)n2r=1n1cγr1γΘ(n)nγ+11,\displaystyle\frac{\Theta(n)}{n^{\gamma}}\frac{2\|G\|_{\infty}}{n}2\sum_{r=n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-1-\gamma}+\|G^{\prime\prime}\|_{\infty}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{n-1}c_{\gamma}r^{1-\gamma}\lesssim\frac{\Theta(n)}{n^{\gamma}}+1\lesssim 1,

leading to (A.1). In last line we used (A.37). Now we study the case β1\beta\geq 1 and x0x\geq 0. If x<nx<n, from some Taylor expansions on G+G_{+} and (A.37) we get

|Θ(n)(𝒦n,βG)(xn)|=|Θ(n)r=x[G+(x+rn)G+(zx)]p(r)Θ(n)nG+(0)r=xrp(r)|\displaystyle|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})|=\Big{|}\Theta(n)\sum_{r=-x}^{\infty}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{z}{x})]p(r)-\frac{\Theta(n)}{n}G_{+}^{\prime}(0)\sum_{r=-x}^{\infty}rp(r)\Big{|}
\displaystyle\leq 2Θ(n)n2Gr=1nr2p(r)+GΘ(n)nγ1nr=n(rn)γ1+GΘ(n)nγ1nr=n(rn)γ\displaystyle 2\frac{\Theta(n)}{n^{2}}\|G^{\prime\prime}\|_{\infty}\sum_{r=1}^{n}r^{2}p(r)+\|G\|_{\infty}\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n}\sum_{r=n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}+\|G^{\prime}\|_{\infty}\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n}\sum_{r=n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma}
\displaystyle\lesssim Θ(n)n2r=1nr2p(r)+Θ(n)nγ1uγ1du+Θ(n)nγ1uγdu1+2Θ(n)nγ1.\displaystyle\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{n}r^{2}p(r)+\frac{\Theta(n)}{n^{\gamma}}\int_{1}^{\infty}u^{-\gamma-1}du+\frac{\Theta(n)}{n^{\gamma}}\int_{1}^{\infty}u^{-\gamma}du\lesssim 1+2\frac{\Theta(n)}{n^{\gamma}}\lesssim 1.

On the other hand, if xnx\geq n, from Taylor expansions on G+G_{+} and (A.37) we get

|Θ(n)(𝒦n,βG)(xn)|=|Θ(n)r=x[G+(x+rn)G+(xn)]p(r)Θ(n)nG+(0)r=xrp(r)|\displaystyle|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})|=\Big{|}\Theta(n)\sum_{r=-x}^{\infty}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]p(r)-\frac{\Theta(n)}{n}G_{+}^{\prime}(0)\sum_{r=-x}^{\infty}rp(r)\Big{|}
\displaystyle\leq Θ(n)n|G+(0)|r=x+1rp(r)+Θ(n)n2Gr=1nr2p(r)+GΘ(n)nγ1nr=n(rn)γ1\displaystyle\frac{\Theta(n)}{n}|G_{+}^{\prime}(0)|\sum_{r=x+1}^{\infty}rp(r)+\frac{\Theta(n)}{n^{2}}\|G^{\prime\prime}\|_{\infty}\sum_{r=1}^{n}r^{2}p(r)+\|G\|_{\infty}\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n}\sum_{r=n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}
\displaystyle\lesssim Θ(n)n2γ1uγdu+1+Θ(n)n2γ1uγ1du1.\displaystyle\frac{\Theta(n)}{n^{2-\gamma}}_{1}^{\infty}u^{-\gamma}du+1+\frac{\Theta(n)}{n^{2-\gamma}}_{1}^{\infty}u^{-\gamma-1}du\lesssim 1.

In an analogous way, the result holds for x<0x<0 and β1\beta\geq 1. This ends the proof of (A.1). It remains to prove (A.2). We treat two cases separately: β[0,1)\beta\in[0,1) and β1\beta\geq 1.

II.: Proof of (A.2) for β[0,1)\beta\in[0,1).

In this case, G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}) and Δβ,γ\Delta_{\beta,\gamma} coincides with the usual Laplacian Δ\Delta. Therefore, if γ>2\gamma>2, (A.2) is a direct consequence of item (b)(b) of Lemma A.1 of [8]. It remains to prove it when γ=2\gamma=2. Since β[0,1)\beta\in[0,1), from (3.14) we have

Kn,βG(xn):=r[G(x+rn)G(xn)]p(r).\displaystyle{\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right):=\sum_{r}[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]p(r). (A.3)

Therefore, it is enough to prove that

lim supBlim supn1n|x|Bn|Θ(n)(𝒦n,βG)(xn)κγΔG(xn)|=0,\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta G(\tfrac{x}{n})|=0, (A.4)
lim supBlim supn1n|x|>Bn|Θ(n)(𝒦n,βG)(xn)κγΔG(xn)|=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|>Bn}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta G(\tfrac{x}{n})|=0. (A.5)

We begin with (A.4). From (A.3), for every fixed B>0B>0, it holds

lim supn1n|x|Bn|Θ(n)(𝒦n,βG)(xn)κγΔG(xn)|\displaystyle\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta G(\tfrac{x}{n})|
\displaystyle\leq lim supε0+lim supn1n|x|Bn|Θ(n)|r|εnp(r)[G(x+rn)G(xn)]|\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}\Big{|}\Theta(n)\sum_{|r|\geq\varepsilon n}p(r)\left[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})\right]\Big{|} (A.6)
+\displaystyle+ lim supε0+lim supn1n|x|Bn|Θ(n)|r|<εnp(r)[G(x+rn)G(xn)]κγΔG(xn)|.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}\Big{|}\Theta(n)\sum_{|r|<\varepsilon n}p(r)\left[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})\right]-\kappa_{\gamma}\Delta G(\tfrac{x}{n})\Big{|}. (A.7)

To treat (A.6), note that

1n|x|Bn|Θ(n)|r|εnp(r)[G(x+rn)G(xn)]|GΘ(n)n|x|Bn|r|εn|r|γ1\displaystyle\frac{1}{n}\sum_{|x|\leq Bn}\Big{|}\Theta(n)\sum_{|r|\geq\varepsilon n}p(r)\left[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})\right]\Big{|}\lesssim\frac{\|G\|_{\infty}\Theta(n)}{n}\sum_{|x|\leq Bn}\sum_{|r|\geq\varepsilon n}|r|^{-\gamma-1}
\displaystyle\lesssim Θ(n)nγ1n2|x|Bnr=εn(rn)γ1Θ(n)nγBBεvγ1dvduBΘ(n)nγεγ=Bεγlog(n),\displaystyle\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n^{2}}\sum_{|x|\leq Bn}\sum_{r=\varepsilon n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}\lesssim\frac{\Theta(n)}{n^{\gamma}}\int_{-B}^{B}\int_{\varepsilon}^{\infty}v^{-\gamma-1}dvdu\lesssim B\frac{\Theta(n)}{n^{\gamma}}\varepsilon^{-\gamma}=\frac{B\varepsilon^{-\gamma}}{\log(n)},

which goes to zero for every BB fixed, taking first nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}. In last equality we used the expression of Θ(n)\Theta(n) for γ=2\gamma=2. It remains to analyse (A.7). Due to the symmetry of pp, |r|<εnrp(r)=0\sum_{|r|<\varepsilon n}rp(r)=0 for every ε>0\varepsilon>0. Hence by performing a Taylor expansion of second order on GG, we can rewrite the expression inside the absolute value in (A.7) as

Θ(n)n2|r|<εnr2p(r)2ΔG(χnr,x)κγΔG(xn)\displaystyle\frac{\Theta(n)}{n^{2}}\sum_{|r|<\varepsilon n}\frac{r^{2}p(r)}{2}\Delta G(\chi^{n}_{r,x})-\kappa_{\gamma}\Delta G(\tfrac{x}{n})
=\displaystyle= κγΔG(xn)(1+Θ(n)2n2κγ|r|<εncγr1γ𝟙{r0})+Θ(n)2n2|r|<εncγr1γ𝟙{r0}[ΔG(χnr,x)ΔG(xn)],\displaystyle\kappa_{\gamma}\Delta G(\tfrac{x}{n})\Big{(}-1+\frac{\Theta(n)}{2n^{2}\kappa_{\gamma}}\sum_{|r|<\varepsilon n}c_{\gamma}r^{1-\gamma}\mathbbm{1}_{\{r\neq 0\}}\Big{)}+\frac{\Theta(n)}{2n^{2}}\sum_{|r|<\varepsilon n}c_{\gamma}r^{1-\gamma}\mathbbm{1}_{\{r\neq 0\}}[\Delta G(\chi^{n}_{r,x})-\Delta G(\tfrac{x}{n})],

where χnr,x\chi^{n}_{r,x} lies between xn\tfrac{x}{n} and x+rn\tfrac{x+r}{n}. Therefore the display in (A.7) is bounded from above by

lim supε0+limn1n|x|Bn|κγΔG(xn)(1+Θ(n)2n2κγ|r|<εncγr1γ𝟙{r0})|\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}\Big{|}\kappa_{\gamma}\Delta G(\tfrac{x}{n})\Big{(}-1+\frac{\Theta(n)}{2n^{2}\kappa_{\gamma}}\sum_{|r|<\varepsilon n}c_{\gamma}r^{1-\gamma}\mathbbm{1}_{\{r\neq 0\}}\Big{)}\Big{|} (A.8)
+\displaystyle+ lim supε0+limn1n|x|Bn|Θ(n)2n2|r|<εncγr1γ𝟙{r0}[ΔG(χnr,x)ΔG(xn)]|.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}\Big{|}\frac{\Theta(n)}{2n^{2}}\sum_{|r|<\varepsilon n}c_{\gamma}r^{1-\gamma}\mathbbm{1}_{\{r\neq 0\}}[\Delta G(\chi^{n}_{r,x})-\Delta G(\tfrac{x}{n})]\Big{|}. (A.9)

From (A.36), (A.8) is bounded from above by

3BΔGlim supε0+limn|1+Θ(n)2n2κγ|r|<εncγr1γ|=0,\displaystyle 3B\|\Delta G\|_{\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\lim_{n\rightarrow\infty}\Big{|}-1+\frac{\Theta(n)}{2n^{2}\kappa_{\gamma}}\sum_{|r|<\varepsilon n}c_{\gamma}r^{1-\gamma}\Big{|}=0,

for every B>0B>0 fixed. Next we bound (A.9) from above by

lim supε0+limn1n|x|BnΘ(n)2n2|r|<εncγr1γ𝟙{r0}supu,v:|uv|ε|ΔG(v)ΔG(u)|\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}\frac{\Theta(n)}{2n^{2}}\sum_{|r|<\varepsilon n}c_{\gamma}r^{1-\gamma}\mathbbm{1}_{\{r\neq 0\}}\sup_{u,v\in\mathbb{R}:|u-v|\leq\varepsilon}|\Delta G(v)-\Delta G(u)|
\displaystyle\lesssim Blim supε0+supu,v:|uv|ε|ΔG(v)ΔG(u)|=0,\displaystyle B\limsup_{\varepsilon\rightarrow 0^{+}}\sup_{u,v\in\mathbb{R}:|u-v|\leq\varepsilon}|\Delta G(v)-\Delta G(u)|=0,

for every B>0B>0 fixed. In last line we used the fact that ΔG𝒮()\Delta G\in\mathcal{S}(\mathbb{R}), hence it is uniformly continuous. Then we conclude that

B>0,lim supn1n|x|Bn|Θ(n)(𝒦n,βG)(xn)κγΔG(xn)|=0,\displaystyle\forall B>0,\quad\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|\leq Bn}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta G(\tfrac{x}{n})|=0,

which leads to (A.4). It remains to prove (A.5). Since G𝒮()G\in\mathcal{S}(\mathbb{R}), ΔG𝒮()L1()\Delta G\in\mathcal{S}(\mathbb{R})\subset L^{1}(\mathbb{R}) and we get

lim supBlim supn1n|x|>Bn|ΔG(xn)|limB|u|B|ΔG(u)|du=0,\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|>Bn}\big{|}\Delta G(\tfrac{x}{n})\big{|}\lesssim\lim_{B\rightarrow\infty}\int_{|u|\geq B}|\Delta G(u)|du=0,

then it is enough to prove that

lim supBlim supn1n|x|>Bn|Θ(n)(𝒦n,βG)(xn)|=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{|x|>Bn}|\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})|=0.

From (A.3), we are done if we can prove that

lim supBlim supnΘ(n)n|x|>n||r|>|x|/2[G(x+rn)G(xn)]p(r)|=0,\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n}\sum_{|x|>n}\big{|}\sum_{|r|>|x|/2}[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]p(r)\big{|}=0, (A.10)
lim supBlim supnΘ(n)n|x|>Bn||r||x|/2[G(x+rn)G(xn)]p(r)|=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n}\sum_{|x|>Bn}\big{|}\sum_{|r|\leq|x|/2}[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]p(r)\big{|}=0. (A.11)

We begin with the former display. The expression inside the double limit in (A.10) is bounded from above by a constant times

Θ(n)nγGn2|x|>Bnr>|x|/2(rn)γ1Θ(n)nγ1n|x|>Bn|x|2nuγ1du\displaystyle\frac{\Theta(n)}{n^{\gamma}}\frac{\|G\|_{\infty}}{n^{2}}\sum_{|x|>Bn}\sum_{r>|x|/2}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}\lesssim\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n}\sum_{|x|>Bn}\int_{\frac{|x|}{2n}}^{\infty}u^{-\gamma-1}du
\displaystyle\lesssim Θ(n)nγ1n|x|Bn(|x|n)γΘ(n)nγBuγduB1γ,\displaystyle\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n}\sum_{|x|\geq Bn}\Big{(}\frac{|x|}{n}\Big{)}^{-\gamma}\lesssim\frac{\Theta(n)}{n^{\gamma}}\int_{B}^{\infty}u^{-\gamma}du\lesssim B^{1-\gamma},

that (since γ>1\gamma>1) vanishes as BB\rightarrow\infty, leading to (A.10). In order to prove (A.11), define F1:F_{1}:\mathbb{R}\rightarrow\mathbb{R} by

F1(u):=sup|uv||u|/2|G(v)|.\displaystyle F_{1}(u):=\sup_{|u-v|\leq|u|/2}|G^{\prime\prime}(v)|.

Since G𝒮()G\in\mathcal{S}(\mathbb{R}), we have

lim supB1n|x|>BnF1(xn)(1+x2n2)|u|BF1(u)(1+u2)du=0.\limsup_{B\rightarrow\infty}\frac{1}{n}\sum_{|x|>Bn}F_{1}(\tfrac{x}{n})\Big{(}1+\frac{x^{2}}{n^{2}}\Big{)}\lesssim\int_{|u|\geq B}F_{1}(u)(1+u^{2})du=0. (A.12)

From the symmetry of pp and a Taylor expansion of second order on GG, the expression inside the double limit in (A.11) is bounded from above by

Θ(n)n|x|>Bn|r||x|/2r22n2F1(xn)p(r)Θ(n)n3|x|>BnF(zn)r=1|x|/2r1\displaystyle\frac{\Theta(n)}{n}\sum_{|x|>Bn}\sum_{|r|\leq|x|/2}\frac{r^{2}}{2n^{2}}F_{1}(\tfrac{x}{n})p(r)\lesssim\frac{\Theta(n)}{n^{3}}\sum_{|x|>Bn}F(\tfrac{z}{n})\sum_{r=1}^{|x|/2}r^{-1}
\displaystyle\leq Θ(n)n3|x|>BnF1(xn)[1+log(|x|)]1log(n)1n|x|>BnF(xn)(1+log(|x|n)+log(n))\displaystyle\frac{\Theta(n)}{n^{3}}\sum_{|x|>Bn}F_{1}(\tfrac{x}{n})[1+\log(|x|)]\leq\frac{1}{\log(n)}\frac{1}{n}\sum_{|x|>Bn}F(\tfrac{x}{n})\Big{(}1+\log\Big{(}\frac{|x|}{n}\Big{)}+\log(n)\Big{)}
\displaystyle\lesssim 1n|x|>BnF1(xn)(1+x2n2)|u|BF(u)(1+u2)du,\displaystyle\frac{1}{n}\sum_{|x|>Bn}F_{1}(\tfrac{x}{n})\Big{(}1+\frac{x^{2}}{n^{2}}\Big{)}\lesssim\int_{|u|\geq B}F(u)(1+u^{2})du,

which goes to zero as BB\rightarrow\infty, due to (A.12). Then we conclude that (A.2) holds for γ=2\gamma=2.

III.: Proof of (A.2) for β1\beta\geq 1. In this case, from (3.14) we have

Kn,βG(xn):={y=0[G(yn)G(xn)n1G+(0)(yx)]p(yx),x0;y=1[G(yn)G(xn)n1G(0)(yx)]p(yx),β1,x1.{\mathcalboondox K}_{n,\beta}G\left(\tfrac{x}{n}\right):=\begin{cases}\sum_{y=0}^{\infty}\big{[}G(\tfrac{y}{n})-G(\tfrac{x}{n})-n^{-1}G_{+}^{{}^{\prime}}(0)(y-x)\big{]}p(y-x),x\geq 0;\\ \sum_{y=-\infty}^{-1}\big{[}G(\tfrac{y}{n})-G(\tfrac{x}{n})-n^{-1}G_{-}^{{}^{\prime}}(0)(y-x)\big{]}p(y-x),\beta\geq 1,x\leq-1.\end{cases}

Therefore we are done if we can prove the following results:

limn|Θ(n)ny=0[[G+(yn)G+(0n)]1nG+(0)(y0)]p(y0)κγnΔG+(0n)|=0,\displaystyle\lim_{n\rightarrow\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{y=0}^{\infty}\big{[}[G_{+}(\tfrac{y}{n})-G_{+}(\tfrac{0}{n})]-\frac{1}{n}G^{\prime}_{+}(0)(y-0)\big{]}p(y-0)-\frac{\kappa_{\gamma}}{n}\Delta G_{+}(\tfrac{0}{n})\Big{|}=0, (A.13)
limnx=1|Θ(n)n[[G+(0n)G+(xn)]1nG+(0)(0x)]p(0x)|=0,\displaystyle\lim_{n\rightarrow\infty}\sum_{x=1}^{\infty}\Big{|}\frac{\Theta(n)}{n}\big{[}[G_{+}(\tfrac{0}{n})-G_{+}(\tfrac{x}{n})]-\frac{1}{n}G^{\prime}_{+}(0)(0-x)\big{]}p(0-x)\Big{|}=0, (A.14)
limnx=1|Θ(n)ny=1[[G+(yn)G+(xn)]1nG+(0)(yx)]p(yx)κγnΔG+(xn)|=0\displaystyle\lim_{n\rightarrow\infty}\sum_{x=1}^{\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{y=1}^{\infty}\big{[}[G_{+}(\tfrac{y}{n})-G_{+}(\tfrac{x}{n})]-\frac{1}{n}G^{\prime}_{+}(0)(y-x)\big{]}p(y-x)-\frac{\kappa_{\gamma}}{n}\Delta G_{+}(\tfrac{x}{n})\Big{|}=0 (A.15)

and

limnx=1|Θ(n)ny=1[[G(yn)G(xn)]1nG(0)(yx)]p(yx)κγnΔG(xn)|=0.\displaystyle\lim_{n\rightarrow\infty}\sum_{x=-\infty}^{-1}\Big{|}\frac{\Theta(n)}{n}\sum_{y=-\infty}^{-1}\big{[}[G_{-}(\tfrac{y}{n})-G_{-}(\tfrac{x}{n})]-\frac{1}{n}G^{\prime}_{-}(0)(y-x)\big{]}p(y-x)-\frac{\kappa_{\gamma}}{n}\Delta G_{-}(\tfrac{x}{n})\Big{|}=0. (A.16)

We begin by proving (A.13). We bound it from above by

limnκγnΔG++limn|Θ(n)ny=0[[G+(yn)G+(0)]ynG+(0)]p(y)|\displaystyle\lim_{n\rightarrow\infty}\frac{\kappa_{\gamma}}{n}\|\Delta G_{+}\|_{\infty}+\lim_{n\rightarrow\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{y=0}^{\infty}\big{[}[G_{+}(\tfrac{y}{n})-G_{+}(0)]-\frac{y}{n}G^{\prime}_{+}(0)\big{]}p(y)\Big{|}
=\displaystyle= limn|Θ(n)ny=0[[G+(yn)G+(0)]ynG+(0)]p(y)|.\displaystyle\lim_{n\rightarrow\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{y=0}^{\infty}\big{[}[G_{+}(\tfrac{y}{n})-G_{+}(0)]-\frac{y}{n}G^{\prime}_{+}(0)\big{]}p(y)\Big{|}. (A.17)

If γ=2\gamma=2, then G𝒮Neu()G\in\mathcal{S}_{Neu}(\mathbb{R}^{*}), G+(0)=0G^{\prime}_{+}(0)=0 and by performing a Taylor expansion of first order on G+G_{+}, (A.17) is bounded from above by

limnΘ(n)n2y=0yp(y)G+limn1log(n)y=1y2=0,\displaystyle\lim_{n\rightarrow\infty}\frac{\Theta(n)}{n^{2}}\sum_{y=0}^{\infty}yp(y)\|G^{\prime}_{+}\|_{\infty}\lesssim\lim_{n\rightarrow\infty}\frac{1}{\log(n)}\sum_{y=1}^{\infty}y^{-2}=0,

since the sum above converges. If γ>2\gamma>2, Θ(n)=n2\Theta(n)=n^{2} and by performing a Taylor expansion of second order on G+G_{+}, we bound (A.17) from above by

limnΘ(n)2n3y=0y2p(y)ΔG+limn1ny=1y1γ=0,\displaystyle\lim_{n\rightarrow\infty}\frac{\Theta(n)}{2n^{3}}\sum_{y=0}^{\infty}y^{2}p(y)\|\Delta G_{+}\|_{\infty}\lesssim\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{y=1}^{\infty}y^{1-\gamma}=0,

since the sum in last display converges. Analogously, performing a Taylor expansion of first order (resp. second order) on G+G_{+}, we conclude that the expression inside the limit in (A.14) vanishes as nn\rightarrow\infty for γ=2\gamma=2 (resp. γ>2\gamma>2).

We observe that the proof of (A.16) is analogous to the proof of (A.15), then we will prove only (A.15). For every ε>0\varepsilon>0, the expression inside the limit in (A.15) is bounded from above by the sum of

lim supε0+lim supnx=1εn|κγnΔG+(xn)|,\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{\varepsilon n}\Big{|}\frac{\kappa_{\gamma}}{n}\Delta G_{+}(\tfrac{x}{n})\Big{|}, (A.18)
lim supε0+lim supnx=1εn|Θ(n)ny=1[[G+(yn)G+(xn)]yxnG+(0)]p(yx)|,\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{\varepsilon n}\Big{|}\frac{\Theta(n)}{n}\sum_{y=1}^{\infty}\big{[}[G_{+}(\tfrac{y}{n})-G_{+}(\tfrac{x}{n})]-\frac{y-x}{n}G^{\prime}_{+}(0)\big{]}p(y-x)\Big{|}, (A.19)
lim supε0+lim supnx=εn+1Θ(n)n2|G+(0)y=1(yx)p(yx)|\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{\infty}\frac{\Theta(n)}{n^{2}}\Big{|}G^{\prime}_{+}(0)\sum_{y=1}^{\infty}(y-x)p(y-x)\Big{|} (A.20)

and

lim supε0+lim supnx=εn+1|Θ(n)ny=1[G+(yn)G+(xn)]p(yx)κγnΔG+(xn)|.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{y=1}^{\infty}[G_{+}(\tfrac{y}{n})-G_{+}(\tfrac{x}{n})]p(y-x)-\frac{\kappa_{\gamma}}{n}\Delta G_{+}(\tfrac{x}{n})\Big{|}. (A.21)

We begin by treating (A.18). We bound it from above by

lim supε0+lim supnx=1εnκγnΔG+=0.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{\varepsilon n}\frac{\kappa_{\gamma}}{n}\|\Delta G_{+}\|_{\infty}=0.

Next we bound (A.19) from above by the sum of

lim supε0+lim supnx=1εnΘ(n)n|r=1xx1[[G+(x+rn)G+(xn)]rnG+(0)]p(r)|,\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{\varepsilon n}\frac{\Theta(n)}{n}\Big{|}\sum_{r=1-x}^{x-1}\Big{[}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]-\frac{r}{n}G^{\prime}_{+}(0)\Big{]}p(r)\Big{|}, (A.22)
lim supε0+lim supnx=1εnΘ(n)n|r=xεn1[[G+(x+rn)G+(xn)]rnG+(0)]p(r)|,\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{\varepsilon n}\frac{\Theta(n)}{n}\Big{|}\sum_{r=x}^{\varepsilon n-1}\Big{[}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]-\frac{r}{n}G^{\prime}_{+}(0)\Big{]}p(r)\Big{|}, (A.23)

and

lim supε0+lim supnx=1εnΘ(n)n|r=εn[[G+(x+rn)G+(xn)]rnG+(0)]p(r)|.\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{\varepsilon n}\frac{\Theta(n)}{n}\Big{|}\sum_{r=\varepsilon n}^{\infty}\Big{[}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]-\frac{r}{n}G^{\prime}_{+}(0)\Big{]}p(r)\Big{|}. (A.24)

Due to the symmetry of pp, by performing a Taylor expansion of second order on G+G_{+} around xn\frac{x}{n}, the double limit in (A.22) is bounded from above by

lim supε0+lim supnΘ(n)ΔG+n3x=1εnr=1xx1r2p(r)lim supε0+lim supnΘ(n)n3x=1εnr=1εnr1γ\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{\Theta(n)\|\Delta G_{+}\|_{\infty}}{n^{3}}\sum_{x=1}^{\varepsilon n}\sum_{r=1-x}^{x-1}r^{2}p(r)\lesssim\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{3}}\sum_{x=1}^{\varepsilon n}\sum_{r=1}^{\varepsilon n}r^{1-\gamma}
=\displaystyle= lim supε0+lim supnεΘ(n)n2r=1εnr1γlim supε0+ε=0.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\varepsilon\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{\varepsilon n}r^{1-\gamma}\lesssim\limsup_{\varepsilon\rightarrow 0^{+}}\varepsilon=0.

From a Taylor expansion of first order on G+G_{+}, the double limit in (A.23) is bounded from above by

lim supε0+lim supnΘ(n)n2x=1εnr=xεn1rp(r)supu[0,2ε]|G+(u)G+(0)|\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{2}}\sum_{x=1}^{\varepsilon n}\sum_{r=x}^{\varepsilon n-1}rp(r)\sup_{u\in[0,2\varepsilon]}|G^{\prime}_{+}(u)-G^{\prime}_{+}(0)|
\displaystyle\leq lim supε0+lim supnΘ(n)n2x=1εnr2p(r)supu[0,2ε]|G+(u)G+(0)|\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{2}}\sum_{x=1}^{\varepsilon n}r^{2}p(r)\sup_{u\in[0,2\varepsilon]}|G^{\prime}_{+}(u)-G^{\prime}_{+}(0)|
\displaystyle\lesssim limε0+supu[0,2ε]|G+(u)G+(0)|=0.\displaystyle\lim_{\varepsilon\rightarrow 0^{+}}\sup_{u\in[0,2\varepsilon]}|G^{\prime}_{+}(u)-G^{\prime}_{+}(0)|=0.

The last limit is true due to the uniform continuity of G+G^{\prime}_{+}, since G+𝒮()G^{\prime}_{+}\in\mathcal{S}(\mathbb{R}). Above we used (A.37). Finally (A.24) is bounded from above by a constant times

lim supε0+lim supn[Gx=1εnΘ(n)nr=εnrγ1+x=1εnΘ(n)n2r=εncγrγ|G+(0)|]\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{[}\|G\|_{\infty}\sum_{x=1}^{\varepsilon n}\frac{\Theta(n)}{n}\sum_{r=\varepsilon n}^{\infty}r^{-\gamma-1}+\sum_{x=1}^{\varepsilon n}\frac{\Theta(n)}{n^{2}}\sum_{r=\varepsilon n}^{\infty}c_{\gamma}r^{-\gamma}|G^{\prime}_{+}(0)|\Big{]}
\displaystyle\lesssim lim supε0+lim supnεnΘ(n)nγ+1[1nr=εn(rn)γ1+1nr=εn(rn)γ]\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\varepsilon n\frac{\Theta(n)}{n^{\gamma+1}}\Big{[}\frac{1}{n}\sum_{r=\varepsilon n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}+\frac{1}{n}\sum_{r=\varepsilon n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma}\Big{]}
\displaystyle\lesssim lim supε0+lim supnΘ(n)nγε1γ(1+ε)=0.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{\gamma}}\varepsilon^{1-\gamma}\big{(}1+\varepsilon\big{)}=0.

Above we used the fact that that limnΘ(n)/nγ=0\lim_{n\rightarrow\infty}\Theta(n)/n^{\gamma}=0; then we conclude that (A.19) is equal to zero.

For γ=2\gamma=2, G+(0)=0G^{\prime}_{+}(0)=0 and (A.20) is zero. If γ>2\gamma>2, since pp is symmetric, we rewrite (A.20) as

lim supε0+lim supnx=εn+1|r=xG+(0)rp(r)|G+lim supε0+lim supnx=εn+1r=xrp(r).\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{\infty}\Big{|}\sum_{r=x}^{\infty}G^{\prime}_{+}(0)rp(r)\Big{|}\leq\|G^{\prime}_{+}\|_{\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{\infty}\sum_{r=x}^{\infty}rp(r).

For every x1x\geq 1, define ax:=r=xrp(r)a_{x}:=\sum_{r=x}^{\infty}rp(r). Since γ>2\gamma>2, x=1ax=σ2/2<\sum_{x=1}^{\infty}a_{x}=\sigma^{2}/2<\infty and we can rewrite last display as

G+lim supε0+lim supnx=εn+1ax=0,\displaystyle\|G^{\prime}_{+}\|_{\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{\infty}a_{x}=0,

since we deal with the tail of a convergent series. It remains to treat (A.21), which is bounded from above by the sum of

lim supBlim supnx=2Bn+1|Θ(n)nr=1x[G+(x+rn)G+(xn)]p(r)κγnΔG+(xn)|,\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\sum_{x=2Bn+1}^{\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{r=1-x}^{\infty}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]p(r)-\frac{\kappa_{\gamma}}{n}\Delta G_{+}^{\prime\prime}(\tfrac{x}{n})\Big{|}, (A.25)
lim supBlim supε0+lim supnx=εn+12BnΘ(n)n|r|εn2Gp(r)\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{2Bn}\frac{\Theta(n)}{n}\sum_{|r|\geq\varepsilon n}2\|G\|_{\infty}p(r) (A.26)

and

lim supBlim supε0+lim supnx=εn+12Bn|Θ(n)nr=1εnεn1[G+(x+rn)G+(xn)]p(r)κγnΔG+(xn)|.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=\varepsilon n+1}^{2Bn}\Big{|}\frac{\Theta(n)}{n}\sum_{r=1-\varepsilon n}^{\varepsilon n-1}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]p(r)-\frac{\kappa_{\gamma}}{n}\Delta G_{+}(\tfrac{x}{n})\Big{|}. (A.27)

We bound (A.25) from above by the sum of

lim supBlim supnx=2Bn+1|κγnΔG+(xn)|,\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\sum_{x=2Bn+1}^{\infty}\Big{|}\frac{\kappa_{\gamma}}{n}\Delta G_{+}(\tfrac{x}{n})\Big{|}, (A.28)
lim supBlim supnx=2Bn+1Θ(n)n|r|>x/2|G+(x+rn)G+(xn)|p(r),\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\sum_{x=2Bn+1}^{\infty}\frac{\Theta(n)}{n}\sum_{|r|>x/2}|G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})|p(r), (A.29)
lim supBlim supnx=2Bn+1|Θ(n)n|r|x/2[G+(x+rn)G+(xn)]p(r)|.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\sum_{x=2Bn+1}^{\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{|r|\leq x/2}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})]p(r)\Big{|}. (A.30)

Since ΔG+𝒮()L1()\Delta G_{+}\in\mathcal{S}(\mathbb{R})\subset L^{1}(\mathbb{R}), (A.28) is bounded by a constant times lim supB2B|ΔG+(u)|du=0\limsup_{B\rightarrow\infty}\int_{2B}^{\infty}|\Delta G_{+}(u)|du=0. We bound (A.29) from above by a constant times

lim supBlim supnG+Θ(n)nγ1n2x=2Bnr=x/2(rn)γ1\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\|G_{+}\|_{\infty}\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n^{2}}\sum_{x=2Bn}^{\infty}\sum_{r=x/2}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}
\displaystyle\lesssim lim supBlim supnΘ(n)nγ2Bu/2vγ1dvdulim supBlim supnΘ(n)nγB1γ=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{\gamma}}\int_{2B}^{\infty}\int_{u/2}^{\infty}v^{-\gamma-1}dvdu\lesssim\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{\gamma}}B^{1-\gamma}=0.

From the symmetry of p()p(\cdot), the expression in (A.30) can be rewritten as

lim supBlim supnx=2Bn+1|Θ(n)n|r|x/2[G+(x+rn)G+(xn)rn1G+(xn)]p(r)|\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\sum_{x=2Bn+1}^{\infty}\Big{|}\frac{\Theta(n)}{n}\sum_{|r|\leq x/2}[G_{+}(\tfrac{x+r}{n})-G_{+}(\tfrac{x}{n})-rn^{-1}G^{\prime}_{+}(\tfrac{x}{n})]p(r)\Big{|}
\displaystyle\leq lim supBlim supnx=2BnΘ(n)n3rx/2F2(xn)r2p(r),\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\sum_{x=2Bn}^{\infty}\frac{\Theta(n)}{n^{3}}\sum_{r\leq x/2}F_{2}(\tfrac{x}{n})r^{2}p(r), (A.31)

where F2:F_{2}:\mathbb{R}\rightarrow\mathbb{R} is defined by F2(u):=sup|v||x|/2|ΔG+(u+v)|F_{2}(u):=\sup_{|v|\leq|x|/2}|\Delta G_{+}(u+v)|. Since ΔG+𝒮()\Delta G_{+}\in\mathcal{S}(\mathbb{R}), we have that

limB2BF2(u)du=limB2BF2(u)[1+u2]du=0.\displaystyle\lim_{B\rightarrow\infty}\int_{2B}^{\infty}F_{2}(u)du=\lim_{B\rightarrow\infty}\int_{2B}^{\infty}F_{2}(u)[1+u^{2}]du=0. (A.32)

If γ>2\gamma>2, (A.31) is bounded from above by

lim supBlim supnΘ(n)n3x=2BnF2(xn)rr2p(r)=lim supBlim supnσ2nx=2BnF2(xn)limB2BF2(u)du=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{3}}\sum_{x=2Bn}^{\infty}F_{2}(\tfrac{x}{n})\sum_{r}r^{2}p(r)=\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\sigma^{2}}{n}\sum_{x=2Bn}^{\infty}F_{2}(\tfrac{x}{n})\lesssim\lim_{B\rightarrow\infty}\int_{2B}^{\infty}F_{2}(u)du=0.

Above we used (A.32). If γ=2\gamma=2, the expression inside (A.31) is bounded from above by

lim supBlim supnΘ(n)n3x=2BnF2(xn)r=1xr2p(r)lim supBlim supn1nlog(n)x=2BnF2(xn)[1+log(xn)+log(n)]\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{3}}\sum_{x=2Bn}^{\infty}F_{2}(\tfrac{x}{n})\sum_{r=1}^{x}r^{2}p(r)\lesssim\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{1}{n\log(n)}\sum_{x=2Bn}^{\infty}F_{2}(\tfrac{x}{n})[1+\log(\tfrac{x}{n})+\log(n)]
\displaystyle\lesssim lim supBlim supn1nx=2BnF2(xn)[1+(xn)2]limB2BF2(u)[1+u2]du=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{x=2Bn}^{\infty}F_{2}(\tfrac{x}{n})[1+(\tfrac{x}{n})^{2}]\lesssim\lim_{B\rightarrow\infty}\int_{2B}^{\infty}F_{2}(u)[1+u^{2}]du=0.

Above we used (A.32). Next we bound (A.26) from above by a constant times

lim supBlim supε0+lim supnx=12BnΘ(n)nγ+11nr=εnG+(rn)γlim supBlim supε0+lim supnΘ(n)nγBεγ=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\sum_{x=1}^{2Bn}\frac{\Theta(n)}{n^{\gamma+1}}\frac{1}{n}\sum_{r=\varepsilon n}^{\infty}\|G_{+}\|_{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma}\lesssim\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{\Theta(n)}{n^{\gamma}}B\varepsilon^{-\gamma}=0.

It only remains to treat (A.27). Performing a Taylor expansion of second order on G+G_{+}, for every r,xr,x\in\mathbb{Z}, there exists ξ¯nr,x\bar{\xi}^{n}_{r,x} between x+rn\frac{x+r}{n} and xn\frac{x}{n} such that

n[G+(r+xn)G+(xn)]=rG+(xn)+r22nΔG+(ξ¯nr,x).\displaystyle n[G_{+}(\tfrac{r+x}{n})-G_{+}(\tfrac{x}{n})]=rG^{\prime}_{+}(\tfrac{x}{n})+\frac{r^{2}}{2n}\Delta G_{+}(\bar{\xi}^{n}_{r,x}).

Since p()p(\cdot) is symmetric, G+(xn)|r|εn1rp(r)=0G^{\prime}_{+}(\tfrac{x}{n})\sum_{|r|\leq\varepsilon n-1}rp(r)=0 and we can rewrite (A.27) as

lim supBlim supε0+lim supn|1nx=εn+12Bn(Θ(n)n2r=εn+1εn1cγr1γΔG+(ξ¯nr,x)2κγΔG+(xn))|\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{|}\frac{1}{n}\sum_{x=\varepsilon n+1}^{2Bn}\Big{(}\frac{\Theta(n)}{n^{2}}\sum_{r=-\varepsilon n+1}^{\varepsilon n-1}c_{\gamma}r^{1-\gamma}\frac{\Delta G_{+}(\bar{\xi}^{n}_{r,x})}{2}-\kappa_{\gamma}\Delta G_{+}(\tfrac{x}{n})\Big{)}\Big{|}
\displaystyle\leq lim supBlim supε0+lim supn|1nx=εn+12BnΔG+(xn)(Θ(n)n2r=1εn1cγr1γκγ)|\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{|}\frac{1}{n}\sum_{x=\varepsilon n+1}^{2Bn}\Delta G_{+}(\tfrac{x}{n})\Big{(}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{\varepsilon n-1}c_{\gamma}r^{1-\gamma}-\kappa_{\gamma}\Big{)}\Big{|} (A.33)
+\displaystyle+ lim supBlim supε0+lim supn|1nx=εn+12BnΘ(n)n2r=εn+1εn1cγr1γΔG+(ξ¯nr,x)ΔG+(xn)2|.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{|}\frac{1}{n}\sum_{x=\varepsilon n+1}^{2Bn}\frac{\Theta(n)}{n^{2}}\sum_{r=-\varepsilon n+1}^{\varepsilon n-1}c_{\gamma}r^{1-\gamma}\frac{\Delta G_{+}(\bar{\xi}^{n}_{r,x})-\Delta G_{+}(\tfrac{x}{n})}{2}\Big{|}. (A.34)

From (A.36), (A.33) is bounded from above by

lim supBlim supε0+lim supn|1nx=12BnΔG+|Θ(n)n1+γε1γcγ+(Θ(n)n2r=1εncγr1γκγ)|=0.\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{|}\frac{1}{n}\sum_{x=1}^{2Bn}\|\Delta G_{+}\|_{\infty}\Big{|}\frac{\Theta(n)}{n^{1+\gamma}}\varepsilon^{1-\gamma}c_{\gamma}+\Big{(}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{\varepsilon n}c_{\gamma}r^{1-\gamma}-\kappa_{\gamma}\Big{)}\Big{|}=0.

Finally we bound (A.34) from above by

lim supBlim supε0+lim supn1nx=12BnΘ(n)n2r=1εncγr1γsup|uv|ε|ΔG+(v)ΔG+(u)|\displaystyle\limsup_{B\rightarrow\infty}\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{x=1}^{2Bn}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{\varepsilon n}c_{\gamma}r^{1-\gamma}\sup_{|u-v|\leq\varepsilon}|\Delta G_{+}(v)-\Delta G_{+}(u)|
\displaystyle\lesssim lim supBlimε0+2Bκγsup|uv|ε|ΔG+(v)ΔG+(u)|=0.\displaystyle\limsup_{B\rightarrow\infty}\lim_{\varepsilon\rightarrow 0^{+}}2B\kappa_{\gamma}\sup_{|u-v|\leq\varepsilon}|\Delta G_{+}(v)-\Delta G_{+}(u)|=0.

In the last line, we used the uniform continuity of ΔG+\Delta G_{+}, since ΔG+𝒮()\Delta G_{+}\in\mathcal{S}(\mathbb{R}). ∎

Next we state some auxiliary results that have been used along the article.

Proposition A.2.

It holds

{x,y}Sp(xy)=2m<;{x,y}S|xy|p(xy)=σ2<,ifγ>2.\displaystyle\sum_{\{x,y\}\in{\mathcalboondox S}}p(x-y)=2m<\infty;\quad\sum_{\{x,y\}\in{\mathcalboondox S}}|x-y|p(x-y)=\sigma^{2}<\infty,\;\text{if}\;\gamma>2. (A.35)

Moreover, for every C>0C>0 fixed, it holds

limnΘ(n)n2r=1Cnr2p(r)=limnΘ(n)n2r=1Cncγr1γ=κγ.\displaystyle\lim_{n\rightarrow\infty}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{Cn}r^{2}p(r)=\lim_{n\rightarrow\infty}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{Cn}c_{\gamma}r^{1-\gamma}=\kappa_{\gamma}. (A.36)

In particular, we get

Θ(n)n2x=0Cn1y=Cn+11(xy)p(xy)Θ(n)n2r=12Cnr2p(r)1.\displaystyle\frac{\Theta(n)}{n^{2}}\sum_{x=0}^{Cn-1}\sum_{y=-Cn+1}^{-1}(x-y)p(x-y)\leq\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{2Cn}r^{2}p(r)\lesssim 1. (A.37)

Finally,

limnΘ(n)n3x=0Cn1y=1Cn1(x+y)1γ=0.\lim_{n\rightarrow\infty}\frac{\Theta(n)}{n^{3}}\sum_{x=0}^{Cn-1}\sum_{y=1}^{Cn-1}(x+y)^{1-\gamma}=0. (A.38)
Proof.

First we prove (A.35) using the symmetry of pp. Since γ>1\gamma>1, we get

{x,y}Sp(xy)=2x=0y=1p(yx)=2r=1rp(r)=2m<.\displaystyle\sum_{\{x,y\}\in{\mathcalboondox S}}p(x-y)=2\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)=2\sum_{r=1}^{\infty}rp(r)=2m<\infty.

Moreover, if γ>2\gamma>2, we have

{x,y}S|yx|p(yx)=2x=0y=1(xy)p(xy)=2r=1r2p(r)=σ2<.\displaystyle\sum_{\{x,y\}\in{\mathcalboondox S}}|y-x|p(y-x)=2\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}(x-y)p(x-y)=2\sum_{r=1}^{\infty}r^{2}p(r)=\sigma^{2}<\infty.

Now we prove (A.36). For γ>2\gamma>2, it holds

limnΘ(n)n2r=1Cncγr1γ=limnr=1Cnr2p(r)=12rr2p(r)=σ22=κγ.\displaystyle\lim_{n\rightarrow\infty}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{Cn}c_{\gamma}r^{1-\gamma}=\lim_{n\rightarrow\infty}\sum_{r=1}^{Cn}r^{2}p(r)=\frac{1}{2}\sum_{r}r^{2}p(r)=\frac{\sigma^{2}}{2}=\kappa_{\gamma}.

Observe that

log(Cn+1)=r=1Cnrr+1u1dur=1Cnr1=1+r=2Cnr1ru1du=1+log(Cn).\displaystyle\log(Cn+1)=\sum_{r=1}^{Cn}\int_{r}^{r+1}u^{-1}du\leq\sum_{r=1}^{Cn}r^{-1}=\leq 1+\sum_{r=2}^{Cn}\int_{r-1}^{r}u^{-1}du=1+\log(Cn).

Then for γ=2\gamma=2 we get

c2log(Cn+1)log(n)Θ(n)n2r=1Cncγr1γ=c2log(n)r=1Cnr1c2[1+1+log(C)log(n)],n1.\displaystyle c_{2}\frac{\log(Cn+1)}{\log(n)}\leq\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{Cn}c_{\gamma}r^{1-\gamma}=\frac{c_{2}}{\log(n)}\sum_{r=1}^{Cn}r^{-1}\leq c_{2}\Big{[}1+\frac{1+\log(C)}{\log(n)}\Big{]},\forall n\geq 1.

When nn\rightarrow\infty, the left-hand and right-hand sides of the display above both go to c2=κγc_{2}=\kappa_{\gamma}, proving (A.36). It remains to prove (A.38). We bound it from above by

Θ(n)n3x=1Cnx1γ+Θ(n)n3x=1Cnxx+Cnu1γdu.\displaystyle\frac{\Theta(n)}{n^{3}}\sum_{x=1}^{Cn}x^{1-\gamma}+\frac{\Theta(n)}{n^{3}}\sum_{x=1}^{Cn}\int_{x}^{x+Cn}u^{1-\gamma}du. (A.39)

Let us treat the leftmost term in (A.39). For γ>2\gamma>2, it is equal to

n2n3x=1Cnx1γ1nx=1x1γ1n,\displaystyle\frac{n^{2}}{n^{3}}\sum_{x=1}^{Cn}x^{1-\gamma}\leq\frac{1}{n}\sum_{x=1}^{\infty}x^{1-\gamma}\lesssim\frac{1}{n},

that vanishes as nn\rightarrow\infty. For γ=2\gamma=2, it is equal to

n2log(n)n3x=0Cn1(x+1)121nlog(n)x=1Cnx1γ1+log(Cn)nlog(n),\displaystyle\frac{n^{2}\log(n)}{n^{3}}\sum_{x=0}^{Cn-1}(x+1)^{1-2}\leq\frac{1}{n\log(n)}\sum_{x=1}^{Cn}x^{1-\gamma}\leq\frac{1+\log(Cn)}{n\log(n)},

and this also vanishes as nn\rightarrow\infty. Now let us treat the rightmost term in (A.39). For γ>2\gamma>2, it is equal to

n2n3x=1Cnxx+Cnu1γ1nx=1Cnx2γ.\displaystyle\frac{n^{2}}{n^{3}}\sum_{x=1}^{Cn}\int_{x}^{x+Cn}u^{1-\gamma}\lesssim\frac{1}{n}\sum_{x=1}^{Cn}x^{2-\gamma}.

If γ(2,3)\gamma\in(2,3), we have

1nx=1Cnx2γ=n2γ1nx=1Cn(xn)2γn2γ0Cu2γdun2γ.\displaystyle\frac{1}{n}\sum_{x=1}^{Cn}x^{2-\gamma}=n^{2-\gamma}\frac{1}{n}\sum_{x=1}^{Cn}\Big{(}\frac{x}{n}\Big{)}^{2-\gamma}\lesssim n^{2-\gamma}\int_{0}^{C}u^{2-\gamma}du\lesssim n^{2-\gamma}.

If γ=3\gamma=3, it holds

1nx=1Cnx2γ=1nx=1Cnx11+log(Cn)n.\displaystyle\frac{1}{n}\sum_{x=1}^{Cn}x^{2-\gamma}=\frac{1}{n}\sum_{x=1}^{Cn}x^{-1}\leq\frac{1+\log(Cn)}{n}.

And if γ>3\gamma>3, we get

1nx=1Cnx2γ1nx=1x2γ1n,\displaystyle\frac{1}{n}\sum_{x=1}^{Cn}x^{2-\gamma}\leq\frac{1}{n}\sum_{x=1}^{\infty}x^{2-\gamma}\lesssim\frac{1}{n},

and we conclude that the second term in (A.39) vanishes as nn\rightarrow\infty for γ>2\gamma>2. Finally, it remains to treat it for γ=2\gamma=2. In this case, it can be rewritten as

n2n3log(n)x=1Cnxx+Cnu12du=1nlog(n)x=1Cn[log(x+Cn)log(x)]\displaystyle\frac{n^{2}}{n^{3}\log(n)}\sum_{x=1}^{Cn}\int_{x}^{x+Cn}u^{1-2}du=\frac{1}{n\log(n)}\sum_{x=1}^{Cn}[\log(x+Cn)-\log(x)]
=\displaystyle= 1nlog(n)x=Cn+12Cnlog(xn)+1nlog(n)x=1εnlog(nx)+1nlog(n)x=εn+1Cnlog(nx)\displaystyle\frac{1}{n\log(n)}\sum_{x=Cn+1}^{2Cn}\log(\tfrac{x}{n})+\frac{1}{n\log(n)}\sum_{x=1}^{\varepsilon n}\log(\tfrac{n}{x})+\frac{1}{n\log(n)}\sum_{x=\varepsilon n+1}^{Cn}\log(\tfrac{n}{x})
\displaystyle\lesssim 1log(n)C2Clog(u)du+1nlog(n)x=1εnlog(n)+Clog(ε1)log(n),\displaystyle\frac{1}{\log(n)}\int_{C}^{2C}\log(u)du+\frac{1}{n\log(n)}\sum_{x=1}^{\varepsilon n}\log(n)+\frac{C\log(\varepsilon^{-1})}{\log(n)},

and this vanishes as nn\rightarrow\infty and then ε0+\varepsilon\rightarrow 0^{+}, ending the proof. ∎

Next result was useful to prove Lemma 3.6. Recall from (3.4) the definition of n,β(G)\mathcal{B}_{n,\beta}(G).

Proposition A.3.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. For every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, we have

limnn,β(G)=𝟙{γ>2}𝟙{β=1}2κγα^[β,γG(0)]2.\displaystyle\lim_{n\rightarrow\infty}\mathcal{B}_{n,\beta}(G)=\mathbbm{1}_{\{\gamma>2\}}\mathbbm{1}_{\{\beta=1\}}\frac{2\kappa_{\gamma}}{\hat{\alpha}}[\nabla_{\beta,\gamma}G(0)]^{2}.
Proof.

we treat two cases separately: β[0,1)\beta\in[0,1) and β1\beta\geq 1.

I. In the case β[0,1)\beta\in[0,1), G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}) and

n,β(G)=(αnβ1)Θ(n)n{x,y}Sp(yx)[G(yn)G(xn)]2.\displaystyle\mathcal{B}_{n,\beta}(G)=(\alpha n^{-\beta}-1)\frac{\Theta(n)}{n}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}.

Since |αnβ1|α+1|\alpha n^{-\beta}-1|\leq\alpha+1, from the symmetry of pp it is enough to prove that

Θ(n)nx=ny=1p(yx)|G(yn)G(xn)|2+Θ(n)nx=0n1y=np(yx)|G(yn)G(xn)|2\displaystyle\frac{\Theta(n)}{n}\sum_{x=n}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)|G(\tfrac{y}{n})-G(\tfrac{x}{n})|^{2}+\frac{\Theta(n)}{n}\sum_{x=0}^{n-1}\sum_{y=-\infty}^{-n}p(y-x)|G(\tfrac{y}{n})-G(\tfrac{x}{n})|^{2} (A.40)
+\displaystyle+ Θ(n)nx=0n1y=n+11p(yx)|G(yn)G(xn)|2\displaystyle\frac{\Theta(n)}{n}\sum_{x=0}^{n-1}\sum_{y=-n+1}^{-1}p(y-x)|G(\tfrac{y}{n})-G(\tfrac{x}{n})|^{2} (A.41)

goes to zero as nn\rightarrow\infty. Since γ2>1\gamma\geq 2>1, the first term in (A.40) is bounded from above by a constant times

(G)2Θ(n)nγ1n2x=ny=1(xyn)γ1Θ(n)nγ10(uv)γ1dvduΘ(n)nγ.\displaystyle(\|G\|_{\infty})^{2}\frac{\Theta(n)}{n^{\gamma}}\frac{1}{n^{2}}\sum_{x=n}^{\infty}\sum_{y=-\infty}^{-1}\Big{(}\frac{x-y}{n}\Big{)}^{-\gamma-1}\lesssim\frac{\Theta(n)}{n^{\gamma}}\int_{1}^{\infty}\int_{-\infty}^{0}(u-v)^{-\gamma-1}dvdu\lesssim\frac{\Theta(n)}{n^{\gamma}}.

An analogous procedure leads to an upper bound of same order to the second term in (A.40). From a Taylor expansion of first order on GG, the term in (A.41) is bounded from above by

Θ(n)nx=0n1y=n+11p(yx)(G)2(xyn)2Θ(n)n3x=0n1y=1n1(x+y)1γ,\displaystyle\frac{\Theta(n)}{n}\sum_{x=0}^{n-1}\sum_{y=-n+1}^{-1}p(y-x)(\|G^{\prime}\|_{\infty})^{2}\Big{(}\frac{x-y}{n}\Big{)}^{2}\lesssim\frac{\Theta(n)}{n^{3}}\sum_{x=0}^{n-1}\sum_{y=1}^{n-1}(x+y)^{1-\gamma},

which goes to zero as nn\rightarrow\infty, due to (A.38).

II. In the case β1\beta\geq 1 we have

n,β(G)=αΘ(n)n1β{x,y}Sp(yx)[G(yn)G(xn)]2.\displaystyle\mathcal{B}_{n,\beta}(G)=\alpha\Theta(n)n^{-1-\beta}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}.

First we treat the case (β,γ)([1,)×{2})((1,)×(2,))(\beta,\gamma)\in\big{(}[1,\infty)\times\{2\}\big{)}\cup\big{(}(1,\infty)\times(2,\infty)\big{)}, where G𝒮β,γ=𝒮Neu()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}_{Neu}(\mathbb{R}^{*}) and G(0)=G+(0)=0G^{\prime}_{-}(0)=G^{\prime}_{+}(0)=0. From (A.35) n,β(G)\mathcal{B}_{n,\beta}(G) is bounded from above by a constant times

(G)2Θ(n)n1+β{x,y}Sp(yx)Θ(n)n1+βmΘ(n)n1+β,\displaystyle(\|G\|_{\infty})^{2}\frac{\Theta(n)}{n^{1+\beta}}\sum_{\{x,y\}\in{\mathcalboondox S}}p(y-x)\lesssim\frac{\Theta(n)}{n^{1+\beta}}m\lesssim\frac{\Theta(n)}{n^{1+\beta}},

which goes to zero as nn\rightarrow\infty. It remains to treat the case (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty), where G𝒮β,γ=𝒮Rob()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}_{Rob}(\mathbb{R}^{*}). Then n,β(G)\mathcal{B}_{n,\beta}(G) can be rewritten as

2αx=0y=1p(yx)[G(yn)G(xn)]2.\displaystyle 2\alpha\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}.

Above we used the symmetry of pp. Last display is equal to

4α[G(0)G+(0)]x=0y=1p(yx)[[G(yn)G(0)]+[G+(0)G+(xn)]]\displaystyle 4\alpha[G_{-}(0)-G_{+}(0)]\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)\big{[}[G_{-}(\tfrac{y}{n})-G_{-}(0)]+[G_{+}(0)-G_{+}(\tfrac{x}{n})]\big{]} (A.42)
+\displaystyle+ 2αx=0y=1p(yx)[[G(yn)G(0)]+[G+(0)G+(xn)]]2\displaystyle 2\alpha\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)\big{[}[G_{-}(\tfrac{y}{n})-G_{-}(0)]+[G_{+}(0)-G_{+}(\tfrac{x}{n})]\big{]}^{2} (A.43)
+\displaystyle+ 2α[G(0)G+(0)]2x=0y=1p(yx).\displaystyle 2\alpha[G_{-}(0)-G_{+}(0)]^{2}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x). (A.44)

We claim that (A.42) and (A.43) vanish as nn\rightarrow\infty. First we treat the former. From Taylor expansions on GG_{-} and G+G_{+}, (A.42) is bounded from above by a constant times

1nx=0y=1p(yx)[(y)G+xG+]1n{x,y}S|xy|p(xy)n1,\displaystyle\frac{1}{n}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)\big{[}(-y)\|G^{\prime}_{-}\|_{\infty}+x\|G^{\prime}_{+}\|_{\infty}\big{]}\lesssim\frac{1}{n}\sum_{\{x,y\}\in{\mathcalboondox S}}|x-y|p(x-y)\lesssim n^{-1},

and (A.42) goes to zero as nn\rightarrow\infty. In last bound we used (A.35). Now we rewrite (A.43) as

2αx=ny=1p(yx)[[G(yn)G(0)]+[G+(0)G+(xn)]]2\displaystyle 2\alpha\sum_{x=n}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)\big{[}[G_{-}(\tfrac{y}{n})-G_{-}(0)]+[G_{+}(0)-G_{+}(\tfrac{x}{n})]\big{]}^{2} (A.45)
+\displaystyle+ 2αx=0n1y=np(yx)[[G(yn)G(0)]+[G+(0)G+(xn)]]2\displaystyle 2\alpha\sum_{x=0}^{n-1}\sum_{y=-\infty}^{-n}p(y-x)\big{[}[G_{-}(\tfrac{y}{n})-G_{-}(0)]+[G_{+}(0)-G_{+}(\tfrac{x}{n})]\big{]}^{2} (A.46)
+\displaystyle+ 2αx=0n1y=n+11p(yx)[[G(yn)G(0)]+[G+(0)G+(xn)]]2.\displaystyle 2\alpha\sum_{x=0}^{n-1}\sum_{y=-n+1}^{-1}p(y-x)\big{[}[G_{-}(\tfrac{y}{n})-G_{-}(0)]+[G_{+}(0)-G_{+}(\tfrac{x}{n})]\big{]}^{2}. (A.47)

Since G,G+G_{-},G_{+} are bounded, (A.45) is bounded from above by a constant times

x=ny=1p(yx)n1γ1n2x=ny=1(xyn)γ1n1γ10(uv)γ1dvdun1γ,\displaystyle\sum_{x=n}^{\infty}\sum_{y=-\infty}^{-1}p(y-x)\lesssim n^{1-\gamma}\frac{1}{n^{2}}\sum_{x=n}^{\infty}\sum_{y=-\infty}^{-1}\Big{(}\frac{x-y}{n}\Big{)}^{-\gamma-1}\lesssim n^{1-\gamma}\int_{1}^{\infty}\int_{-\infty}^{0}(u-v)^{-\gamma-1}dvdu\lesssim n^{1-\gamma},

and we conclude that (A.45) goes to zero as nn\rightarrow\infty. With an analogous reasoning, we conclude that the same holds for (A.46). In order to treat (A.47), choose δ=1\delta=1 when γ>3\gamma>3 and δ=γ21\delta=\frac{\gamma}{2}-1 when γ(2,3]\gamma\in(2,3]. In particular, δ(0,1](0,γ12)\delta\in(0,1]\cap(0,\frac{\gamma-1}{2}). Since G,G+𝒮()G_{-},G_{+}\in\mathcal{S}(\mathbb{R}), then they are globally Lipschitz and δ\delta- Hölder on the compact [1,1][-1,1]. Therefore there exists CδC_{\delta} such that

|G(u)G(v)|+|G+(u)G+(v)|Cδ|uv|δ,u,v[1,1].\displaystyle|G_{-}(u)-G_{-}(v)|+|G_{+}(u)-G_{+}(v)|\leq C_{\delta}|u-v|^{\delta},\forall u,v\in[-1,1].

Then (A.47) is bounded from above by a constant times

n2δx=0n1y=n+11p(yx)[|y|δ+xδ]2n2δx=0y=1(xy)2δ1γ.\displaystyle n^{-2\delta}\sum_{x=0}^{n-1}\sum_{y=-n+1}^{-1}p(y-x)\big{[}|y|^{\delta}+x^{\delta}\big{]}^{2}\lesssim n^{-2\delta}\sum_{x=0}^{\infty}\sum_{y=-\infty}^{-1}(x-y)^{2\delta-1-\gamma}.

Since δ(0,γ12)\delta\in(0,\frac{\gamma-1}{2}), the double sum in last display is convergent and we conclude that (A.47) goes to zero as nn\rightarrow\infty. Finally from the symmetry of pp, (A.35) and (2.5) we rewrite (A.44) as

2αm[G+(0)G(0)]2=αmα^2α^[β,γG(0)]2=2κγα^[β,γG(0)]2,\displaystyle 2\alpha m[G_{+}(0)-G_{-}(0)]^{2}=\frac{\alpha m}{\hat{\alpha}}\frac{2}{\hat{\alpha}}[\nabla_{\beta,\gamma}G(0)]^{2}=\frac{2\kappa_{\gamma}}{\hat{\alpha}}[\nabla_{\beta,\gamma}G(0)]^{2},

ending the proof. Above we used the fact that α^[G+(0)G(0)]=β,γG(0)\hat{\alpha}[G_{+}(0)-G_{-}(0)]=\nabla_{\beta,\gamma}G(0), since G𝒮Rob()G\in\mathcal{S}_{Rob}(\mathbb{R}^{*}). ∎

Now we present a result which was useful in the case β=1\beta=1 and γ>2\gamma>2 in order to prove Proposition A.5.

Lemma A.4.

Let (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty) and G𝒮β,γ=𝒮Rob()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}_{Rob}(\mathbb{R}^{*}). It holds

limn{G+(0)x=0G(xn)r=x+1rp(r)+G(0)x=1G(xn)r=xrp(r)}=κγα^[β,γG(0)]2.\displaystyle\lim_{n\rightarrow\infty}\Big{\{}G_{+}^{\prime}(0)\sum_{x=0}^{\infty}G(\tfrac{x}{n})\sum_{r=x+1}^{\infty}rp(r)+G_{-}^{\prime}(0)\sum_{x=-\infty}^{-1}G(\tfrac{x}{n})\sum_{r=-\infty}^{x}rp(r)\Big{\}}=\frac{\kappa_{\gamma}}{\hat{\alpha}}[\nabla_{\beta,\gamma}G(0)]^{2}.
Proof.

We begin by claiming that for every ε>0\varepsilon>0, it holds

limn|G+(0)x=εnG(xn)r=x+1rp(r)|=0,\displaystyle\lim_{n\rightarrow\infty}\Big{|}G_{+}^{\prime}(0)\sum_{x=\varepsilon n}^{\infty}G(\tfrac{x}{n})\sum_{r=x+1}^{\infty}rp(r)\Big{|}=0, (A.48)
limn|G(0)x=εnG(xn)r=xrp(r)|=0.\displaystyle\lim_{n\rightarrow\infty}\Big{|}G_{-}^{\prime}(0)\sum_{x=-\infty}^{-\varepsilon n}G(\tfrac{x}{n})\sum_{r=-\infty}^{x}rp(r)\Big{|}=0. (A.49)

We prove only (A.48) but we observe that the proof of (A.49) is analogous. We bound the expression inside the limit in (A.48) from above by

G+Gx=εnr=x+1rp(r)x=εnr=x+1rp(r),\displaystyle\|G_{+}^{\prime}\|_{\infty}\|G\|_{\infty}\sum_{x=\varepsilon n}^{\infty}\sum_{r=x+1}^{\infty}rp(r)\lesssim\sum_{x=\varepsilon n}^{\infty}\sum_{r=x+1}^{\infty}rp(r),

Then (A.48) follows from the fact that last sum is the tail of a convergent series, since γ>2\gamma>2 and

x=0r=x+1rp(r)=r=1r2p(r)=σ22<.\displaystyle\sum_{x=0}^{\infty}\sum_{r=x+1}^{\infty}rp(r)=\sum_{r=1}^{\infty}r^{2}p(r)=\frac{\sigma^{2}}{2}<\infty. (A.50)

Now we claim that

lim supε0+lim supn|G+(0)x=0εn1[G+(0)G+(xn)]r=x+1rp(r)|=0,\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{|}G_{+}^{\prime}(0)\sum_{x=0}^{\varepsilon n-1}[G_{+}(0)-G_{+}(\tfrac{x}{n})]\sum_{r=x+1}^{\infty}rp(r)\Big{|}=0, (A.51)
lim supε0+lim supn|G(0)x=εn+11[G(0)G(xn)]r=xrp(r)|=0.\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{|}G_{-}^{\prime}(0)\sum_{x=-\varepsilon n+1}^{-1}[G_{-}(0)-G_{-}(\tfrac{x}{n})]\sum_{r=-\infty}^{x}rp(r)\Big{|}=0. (A.52)

We prove only (A.51) but the proof of (A.52) is analogous. We bound the expression in (A.51) from above by

lim supε0+lim supnG+x=0εn1supu[0,ε]|G+(0)G+(u)|r=x+1rp(r)\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\|G_{+}^{{}^{\prime}}\|_{\infty}\sum_{x=0}^{\varepsilon n-1}\sup_{u\in[0,\varepsilon]}|G_{+}(0)-G_{+}(u)|\sum_{r=x+1}^{\infty}rp(r)
\displaystyle\lesssim lim supε0+supu[0,ε]|G+(0)G+(u)|lim supnx=0r=x+1rp(r)\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\sup_{u\in[0,\varepsilon]}|G_{+}(0)-G_{+}(u)|\limsup_{n\rightarrow\infty}\sum_{x=0}^{\infty}\sum_{r=x+1}^{\infty}rp(r)
=\displaystyle= σ22lim supε0+supu[0,ε]|G+(0)G+(u)|=0.\displaystyle\frac{\sigma^{2}}{2}\limsup_{\varepsilon\rightarrow 0^{+}}\sup_{u\in[0,\varepsilon]}|G_{+}(0)-G_{+}(u)|=0.

In first equality (resp. last equality) we used (A.50) (resp. used the continuity of G+G_{+}). From (A.51) and (A.52), we get

lim supε0+lim supn{G+(0)x=0εn1G(xn)r=x+1rp(r)+G(0)x=εn+11G(xn)r=xrp(r)}\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{\{}G_{+}^{\prime}(0)\sum_{x=0}^{\varepsilon n-1}G(\tfrac{x}{n})\sum_{r=x+1}^{\infty}rp(r)+G_{-}^{\prime}(0)\sum_{x=-\varepsilon n+1}^{-1}G(\tfrac{x}{n})\sum_{r=-\infty}^{x}rp(r)\Big{\}}
=\displaystyle= lim supε0+lim supn{G+(0)x=0εn1G+(0)r=x+1rp(r)+G(0)x=εn+11G(0)r=xrp(r)}\displaystyle\limsup_{\varepsilon\rightarrow 0^{+}}\limsup_{n\rightarrow\infty}\Big{\{}G_{+}^{\prime}(0)\sum_{x=0}^{\varepsilon n-1}G_{+}(0)\sum_{r=x+1}^{\infty}rp(r)+G_{-}^{\prime}(0)\sum_{x=-\varepsilon n+1}^{-1}G_{-}(0)\sum_{r=-\infty}^{x}rp(r)\Big{\}}
=\displaystyle= G+(0)G+(0)σ22G(0)G(0)σ22=κγ[G+(0)G+(0)G(0)G(0)]=κγα^[β,γG(0)]2.\displaystyle G_{+}^{\prime}(0)G_{+}(0)\frac{\sigma^{2}}{2}-G_{-}^{\prime}(0)G_{-}(0)\frac{\sigma^{2}}{2}=\kappa_{\gamma}[G_{+}^{\prime}(0)G_{+}(0)-G_{-}^{\prime}(0)G_{-}(0)]=\frac{\kappa_{\gamma}}{\hat{\alpha}}[\nabla_{\beta,\gamma}G(0)]^{2}.

In last line we used (2.5) and the fact that G𝒮Rob()G\in\mathcal{S}_{Rob}(\mathbb{R}^{*}). Combining this with (A.48) and (A.49), we have the desired result. ∎

Next result was useful to prove Lemma 3.6. Recall the definition of 𝒜n,β(G)\mathcal{A}_{n,\beta}(G) from (3.3).

Proposition A.5.

Let (β,γ)R0(\beta,\gamma)\in R_{0}. For every G𝒮β,γG\in\mathcal{S}_{\beta,\gamma}, it holds

limn𝒜n,β(G)=2κγ[β,γG(u)]2du+2κγα^𝟙{γ>2}𝟙{β=1}[β,γG(0)]2=β,γG2.\displaystyle\lim_{n\rightarrow\infty}\mathcal{A}_{n,\beta}(G)=2\kappa_{\gamma}\int_{\mathbb{R}}[\nabla_{\beta,\gamma}G(u)]^{2}du+2\frac{\kappa_{\gamma}}{\hat{\alpha}}\mathbbm{1}_{\{\gamma>2\}}\mathbbm{1}_{\{\beta=1\}}[\nabla_{\beta,\gamma}G(0)]^{2}=\|\nabla_{\beta,\gamma}G\|^{2}_{\infty}.
Proof.

First we treat the case β[0,1)\beta\in[0,1). From the symmetry of pp and performing a change of variables, we can rewrite 𝒜n,β(G)\mathcal{A}_{n,\beta}(G) as

Θ(n)nx,yp(yx)[G(xn)]2+Θ(n)nx,yp(xy)[G(xn)]22Θ(n)nx,yp(yx)G(xn)G(yn)\displaystyle\frac{\Theta(n)}{n}\sum_{x,y}p(y-x)[G(\tfrac{x}{n})]^{2}+\frac{\Theta(n)}{n}\sum_{x,y}p(x-y)[G(\tfrac{x}{n})]^{2}-2\frac{\Theta(n)}{n}\sum_{x,y}p(y-x)G(\tfrac{x}{n})G(\tfrac{y}{n})
=\displaystyle= 2nxG(xn)[Θ(n)yp(yx)[G(yn)G(xn)]]\displaystyle-\frac{2}{n}\sum_{x}G(\tfrac{x}{n})\Big{[}\Theta(n)\sum_{y}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]\Big{]}
=\displaystyle= 2nxG(xn)[Θ(n)(Kn,βG)(xn)κγΔβ,γG(xn)]2κγnxG(xn)Δβ,γG(xn).\displaystyle-\frac{2}{n}\sum_{x}G(\tfrac{x}{n})\Big{[}\Theta(n)({\mathcalboondox K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta_{\beta,\gamma}G(\tfrac{x}{n})\Big{]}-\frac{2\kappa_{\gamma}}{n}\sum_{x}G(\tfrac{x}{n})\Delta_{\beta,\gamma}G(\tfrac{x}{n}). (A.53)

In an analogous way, for β1\beta\geq 1, performing a change of variables we can rewrite 𝒜n,β(G)\mathcal{A}_{n,\beta}(G) as

2nxG(xn)[Θ(n)y:{x,y}Fp(yx)[G(yn)G(xn)]]\displaystyle-\frac{2}{n}\sum_{x}G(\tfrac{x}{n})\Big{[}\Theta(n)\sum_{y:\{x,y\}\in{\mathcalboondox F}}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]\Big{]}
=\displaystyle= 2nxG(xn)[Θ(n)(Kn,βG)(xn)κγΔβ,γG(xn)]2κγnxG(xn)Δβ,γG(xn)\displaystyle-\frac{2}{n}\sum_{x}G(\tfrac{x}{n})\Big{[}\Theta(n)({\mathcalboondox K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta_{\beta,\gamma}G(\tfrac{x}{n})\Big{]}-\frac{2\kappa_{\gamma}}{n}\sum_{x}G(\tfrac{x}{n})\Delta_{\beta,\gamma}G(\tfrac{x}{n}) (A.54)
\displaystyle- 2{G+(0)x=0G(xn)r=x+1rp(r)+G(0)x=1G(xn)r=xrp(r)}.\displaystyle 2\Big{\{}G_{+}^{\prime}(0)\sum_{x=0}^{\infty}G(\tfrac{x}{n})\sum_{r=x+1}^{\infty}rp(r)+G_{-}^{\prime}(0)\sum_{x=-\infty}^{-1}G(\tfrac{x}{n})\sum_{r=-\infty}^{x}rp(r)\Big{\}}. (A.55)

For β1\beta\geq 1, we claim that (A.55) converges, as nn\rightarrow\infty, to

2κγα^𝟙{γ>2}𝟙{β=1}[β,γG(0)]2.\displaystyle-2\frac{\kappa_{\gamma}}{\hat{\alpha}}\mathbbm{1}_{\{\gamma>2\}}\mathbbm{1}_{\{\beta=1\}}[\nabla_{\beta,\gamma}G(0)]^{2}. (A.56)

Indeed, if (β,γ){1}×(2,)(\beta,\gamma)\in\{1\}\times(2,\infty), this convergence is a direct consequence of Lemma A.4. Otherwise, we get G𝒮Neu()G\in\mathcal{S}_{Neu}(\mathbb{R}^{*}), then G(0)=G+(0)=0G^{\prime}_{-}(0)=G^{\prime}_{+}(0)=0 and (A.55) is equal to zero.

Next, we bound the absolute value of the first term in both (A.53) and (A.54) from above by

2nx|G(xn)||Θ(n)(𝒦n,βG)(xn)κγΔβ,γG(xn)|2Gnx|Θ(n)(𝒦n,βG)(xn)κγΔβ,γG(xn)|,\displaystyle\frac{2}{n}\sum_{x}|G(\tfrac{x}{n})|\big{|}\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta_{\beta,\gamma}G(\tfrac{x}{n})\big{|}\leq\frac{2\|G\|_{\infty}}{n}\sum_{x}\big{|}\Theta(n)(\mathcal{K}_{n,\beta}G)(\tfrac{x}{n})-\kappa_{\gamma}\Delta_{\beta,\gamma}G(\tfrac{x}{n})\big{|},

which goes to zero as nn\rightarrow\infty, from Proposition A.1. For β<1\beta<1, it remains to treat the second term in (A.53); we do so by observing that G𝒮β,γ=𝒮()G\in\mathcal{S}_{\beta,\gamma}=\mathcal{S}(\mathbb{R}) and performing an integration by parts:

limn[2κγnxG(xn)Δβ,γG(xn)]=2κγG(u)Δβ,γG(u)du=2κγ[β,γG(u)]2du.\displaystyle\lim_{n\rightarrow\infty}\Big{[}-\frac{2\kappa_{\gamma}}{n}\sum_{x}G(\tfrac{x}{n})\Delta_{\beta,\gamma}G(\tfrac{x}{n})\Big{]}=-2\kappa_{\gamma}\int_{\mathbb{R}}G(u)\Delta_{\beta,\gamma}G(u)du=2\kappa_{\gamma}\int_{\mathbb{R}}[\nabla_{\beta,\gamma}G(u)]^{2}du.

Finally, for β1\beta\geq 1, we treat the second term in (A.54) by performing two integrations by parts:

limn[2κγnxG(xn)Δβ,γG(xn)]=2κγ[0G(u)Δβ,γG(u)du+0G+(u)Δβ,γG+(u)du]\displaystyle\lim_{n\rightarrow\infty}\Big{[}-\frac{2\kappa_{\gamma}}{n}\sum_{x}G(\tfrac{x}{n})\Delta_{\beta,\gamma}G(\tfrac{x}{n})\Big{]}=-2\kappa_{\gamma}\Big{[}\int_{-\infty}^{0}G_{-}(u)\Delta_{\beta,\gamma}G_{-}(u)du+\int_{0}^{\infty}G_{+}(u)\Delta_{\beta,\gamma}G_{+}(u)du\Big{]}
=\displaystyle= 2κγ[G+(0)G+(0)G(0)G(0)+0[G(u)]2du+0[G+(u)]2du]\displaystyle 2\kappa_{\gamma}\Big{[}G_{+}(0)G_{+}^{\prime}(0)-G_{-}(0)G_{-}^{\prime}(0)+\int_{-\infty}^{0}[G_{-}^{\prime}(u)]^{2}du+\int_{0}^{\infty}[G_{+}^{\prime}(u)]^{2}du\Big{]}
=\displaystyle= 2κγ[β,γG(u)]2du+2κγ[G+(0)G+(0)G(0)G(0)]\displaystyle 2\kappa_{\gamma}\int_{\mathbb{R}}[\nabla_{\beta,\gamma}G(u)]^{2}du+2\kappa_{\gamma}[G_{+}(0)G_{+}^{\prime}(0)-G_{-}(0)G_{-}^{\prime}(0)]
=\displaystyle= 2κγ[β,γG(u)]2du+2κγα^𝟙{γ>2}𝟙{β=1}[β,γG(0)]2.\displaystyle 2\kappa_{\gamma}\int_{\mathbb{R}}[\nabla_{\beta,\gamma}G(u)]^{2}du+2\frac{\kappa_{\gamma}}{\hat{\alpha}}\mathbbm{1}_{\{\gamma>2\}}\mathbbm{1}_{\{\beta=1\}}[\nabla_{\beta,\gamma}G(0)]^{2}.

Indeed, if γ>2\gamma>2 and β=1\beta=1 G𝒮Rob()G\in\mathcal{S}_{Rob}(\mathbb{R}^{*}) and the second term in the third line of last display is equal to 2κγ[β,γG(0)]2/α^2\kappa_{\gamma}[\nabla_{\beta,\gamma}G(0)]^{2}/\hat{\alpha}. Otherwise, we get G𝒮Neu()G\in\mathcal{S}_{Neu}(\mathbb{R}^{*}), then G(0)=G+(0)=0G^{\prime}_{-}(0)=G^{\prime}_{+}(0)=0 and the second term in the third line is equal to zero. By combining the expression in last line with (A.56), the proof ends. ∎

We end this section with a result that was useful to prove Lemma 3.7.

Proposition A.6.

For every G𝒮()G\in\mathcal{S}(\mathbb{R}), we have

limn[Θ(n)]2n2{x,y[G(yn)G(xn)]4p2(yx)+x[yp(yx)[G(yn)G(xn)]2]2}=0.\displaystyle\lim_{n\rightarrow\infty}\frac{[\Theta(n)]^{2}}{n^{2}}\Big{\{}\sum_{x,y}[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{4}p^{2}(y-x)+\sum_{x}\Big{[}\sum_{y}p(y-x)[G(\tfrac{y}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}=0. (A.57)
Proof.

Since (x1+x2)22(x12+x22)(x_{1}+x_{2})^{2}\leq 2(x_{1}^{2}+x_{2}^{2}), (A.57) is a consequence of the next three results:

limn[Θ(n)]2n2|x|=14n{|r|=np2(r)[G(x+rn)G(xn)]4+[|r|=np(r)[G(x+rn)G(xn)]2]2}=0,\displaystyle\lim_{n\rightarrow\infty}\frac{[\Theta(n)]^{2}}{n^{2}}\sum_{|x|=1}^{4n}\Big{\{}\sum_{|r|=n}^{\infty}p^{2}(r)[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]^{4}+\Big{[}\sum_{|r|=n}^{\infty}p(r)[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}=0, (A.58)
limn[Θ(n)]2n2|x|=4n{|r|=np2(r)[G(x+rn)G(xn)]4+[|r|=np(r)[G(x+rn)G(xn)]2]2}=0,\displaystyle\lim_{n\rightarrow\infty}\frac{[\Theta(n)]^{2}}{n^{2}}\sum_{|x|=4n}^{\infty}\Big{\{}\sum_{|r|=n}^{\infty}p^{2}(r)[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]^{4}+\Big{[}\sum_{|r|=n}^{\infty}p(r)[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}=0, (A.59)
limn[Θ(n)]2n2x{|r|=1np2(r)[G(x+rn)G(xn)]4+[|r|=1np(r)[G(x+rn)G(xn)]2]2}=0.\displaystyle\lim_{n\rightarrow\infty}\frac{[\Theta(n)]^{2}}{n^{2}}\sum_{x}\Big{\{}\sum_{|r|=1}^{n}p^{2}(r)[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]^{4}+\Big{[}\sum_{|r|=1}^{n}p(r)[G(\tfrac{x+r}{n})-G(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}=0. (A.60)

In order to prove (A.58), we bound the expression inside the limit from above by a constant times

[Θ(n)]2n2(G)4|x|=14n{|r|=n|r|2γ2+[|r|=n|r|γ1]2}\displaystyle\frac{[\Theta(n)]^{2}}{n^{2}}(\|G\|_{\infty})^{4}\sum_{|x|=1}^{4n}\Big{\{}\sum_{|r|=n}^{\infty}|r|^{-2\gamma-2}+\Big{[}\sum_{|r|=n}^{\infty}|r|^{-\gamma-1}\Big{]}^{2}\Big{\}}
\displaystyle\lesssim [Θ(n)]2n2x=14n{n2γ11nr=n(rn)2γ2+[nγ1nr=n(rn)γ1]2}\displaystyle\frac{[\Theta(n)]^{2}}{n^{2}}\sum_{x=1}^{4n}\Big{\{}n^{-2\gamma-1}\frac{1}{n}\sum_{r=n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-2\gamma-2}+\Big{[}n^{-\gamma}\frac{1}{n}\sum_{r=n}^{\infty}\Big{(}\frac{r}{n}\Big{)}^{-\gamma-1}\Big{]}^{2}\Big{\}}
\displaystyle\lesssim [Θ(n)]2n2x=14n{n2γ11u2γ2du+[nγ1uγ1du]2}[Θ(n)]2n2γ+1,\displaystyle\frac{[\Theta(n)]^{2}}{n^{2}}\sum_{x=1}^{4n}\Big{\{}n^{-2\gamma-1}\int_{1}^{\infty}u^{-2\gamma-2}du+\Big{[}n^{-\gamma}\int_{1}^{\infty}u^{-\gamma-1}du\Big{]}^{2}\Big{\}}\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}},

which goes to zero as nn\rightarrow\infty. Now we prove (A.59). Since (x1x2)kCk(x1k+x2k)(x_{1}-x_{2})^{k}\leq C_{k}(x_{1}^{k}+x_{2}^{k}) for some positive constant CkC_{k} depending only on kk, the expression inside the limit is bounded from above by a constant times

[Θ(n)]2n2γ+1|u|4[G(u)]4{n1|v|1|v|2γ2dv+[|v|1|v|γ1dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}[G(u)]^{4}\Big{\{}n^{-1}\int_{|v|\geq 1}|v|^{-2\gamma-2}dv+\Big{[}\int_{|v|\geq 1}|v|^{-\gamma-1}dv\Big{]}^{2}\Big{\}}du (A.61)
+\displaystyle+ [Θ(n)]2n2γ+1|u|4{n1|v||u|2[G(u+v)]4|v|2γ2dv+[|v||u|2[G(u+v)]2|v|γ1dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}\int_{|v|\geq\frac{|u|}{2}}[G(u+v)]^{4}|v|^{-2\gamma-2}dv+\Big{[}\int_{|v|\geq\frac{|u|}{2}}[G(u+v)]^{2}|v|^{-\gamma-1}dv\Big{]}^{2}\Big{\}}du (A.62)
+\displaystyle+ [Θ(n)]2n2γ+1|u|4{n11|v||u|2[G(u+v)]4|v|2γ2dv+[1|v||u|2[G(u+v)]2|v|γ1dv]2}du.\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}\int_{1\leq|v|\leq\frac{|u|}{2}}[G(u+v)]^{4}|v|^{-2\gamma-2}dv+\Big{[}\int_{1\leq|v|\leq\frac{|u|}{2}}[G(u+v)]^{2}|v|^{-\gamma-1}dv\Big{]}^{2}\Big{\}}du. (A.63)

We bound the expression in (A.61) from above by a constant times

[Θ(n)]2n2γ+1|u|4[G(u)]4{n1+1]2}du[Θ(n)]2n2γ+1|u|4[G(u)]4du[Θ(n)]2n2γ+1,\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}[G(u)]^{4}\Big{\{}n^{-1}+1]^{2}\Big{\}}du\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}[G(u)]^{4}du\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}},

and this goes to zero as nn\rightarrow\infty. Above we used G𝒮()L4()G\in\mathcal{S}(\mathbb{R})\subset L^{4}(\mathbb{R}). Finally, we bound the expression in (A.62) from above by

[Θ(n)]2n2γ+1|u|4{n1|v||u|2[G(u+v)]4(|u|2)2γ2dv+[|v||u|2[G(u+v)]2(|u|2)γ1dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}\int_{|v|\geq\frac{|u|}{2}}[G(u+v)]^{4}\Big{(}\frac{|u|}{2}\Big{)}^{-2\gamma-2}dv+\Big{[}\int_{|v|\geq\frac{|u|}{2}}[G(u+v)]^{2}\Big{(}\frac{|u|}{2}\Big{)}^{-\gamma-1}dv\Big{]}^{2}\Big{\}}du
\displaystyle\lesssim [Θ(n)]2n2γ+1|u|4{n1|u|2γ2|v||u|2[G(u+v)]4dv+[|u|γ1|v||u|2[G(u+v)]2dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}|u|^{-2\gamma-2}\int_{|v|\geq\frac{|u|}{2}}[G(u+v)]^{4}dv+\Big{[}|u|^{-\gamma-1}\int_{|v|\geq\frac{|u|}{2}}[G(u+v)]^{2}dv\Big{]}^{2}\Big{\}}du
\displaystyle\leq [Θ(n)]2n2γ+1|u|4{n1|u|2γ2[G(w)]4dw+[|u|γ1[G(w)]2dw]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}|u|^{-2\gamma-2}\int_{\mathbb{R}}[G(w)]^{4}dw+\Big{[}|u|^{-\gamma-1}\int_{\mathbb{R}}[G(w)]^{2}dw\Big{]}^{2}\Big{\}}du
\displaystyle\lesssim [Θ(n)]2n2γ+1|u|4{n1|u|2γ2+|u|2γ2}du[Θ(n)]2n2γ+1(n1+1)[Θ(n)]2n2γ+1,\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\{n^{-1}|u|^{-2\gamma-2}+|u|^{-2\gamma-2}\}du\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}(n^{-1}+1)\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}},

which goes to zero as nn\rightarrow\infty. Above we used G𝒮()L2()L4()G\in\mathcal{S}(\mathbb{R})\subset L^{2}(\mathbb{R})\cap L^{4}(\mathbb{R}). We bound the expression in (A.63) from above by

[Θ(n)]2n2γ+1|u|4{n11|v||u|2[G(u+v)(u+v)]4|v|2γ2(u+v)4dv+[1|v||u|2[G(u+v)(u+v)]2|v|γ1(u+v)2dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}\int_{1\leq|v|\leq\frac{|u|}{2}}[G(u+v)(u+v)]^{4}\frac{|v|^{-2\gamma-2}}{(u+v)^{4}}dv+\Big{[}\int_{1\leq|v|\leq\frac{|u|}{2}}[G(u+v)(u+v)]^{2}\frac{|v|^{-\gamma-1}}{(u+v)^{2}}dv\Big{]}^{2}\Big{\}}du
\displaystyle\leq [Θ(n)]2n2γ+1|u|4{n11|v||u|2[supw|wG(w)|]416|v|2γ2(u)4dv+[1|v||u|2[supw|wG(w)|]24|v|γ1(u)2dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}\int_{1\leq|v|\leq\frac{|u|}{2}}[\sup_{w\in\mathbb{R}}|wG(w)|]^{4}16\frac{|v|^{-2\gamma-2}}{(u)^{4}}dv+\Big{[}\int_{1\leq|v|\leq\frac{|u|}{2}}[\sup_{w\in\mathbb{R}}|wG(w)|]^{2}4\frac{|v|^{-\gamma-1}}{(u)^{2}}dv\Big{]}^{2}\Big{\}}du
\displaystyle\lesssim [Θ(n)]2n2γ+1|u|4{n1u4|v|1|v|2γ2dv+[u2|v|1|v|γ1dv]2}du\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}\Big{\{}n^{-1}u^{-4}\int_{|v|\geq 1}|v|^{-2\gamma-2}dv+\Big{[}u^{-2}\int_{|v|\geq 1}|v|^{-\gamma-1}dv\Big{]}^{2}\Big{\}}du
\displaystyle\lesssim [Θ(n)]2n2γ+1|u|4u4(n1+1)du[Θ(n)]2n2γ+1(n1+1)[Θ(n)]2n2γ+1,\displaystyle\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}\int_{|u|\geq 4}u^{-4}(n^{-1}+1)du\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}}(n^{-1}+1)\lesssim\frac{[\Theta(n)]^{2}}{n^{2\gamma+1}},

and this goes to zero as nn\rightarrow\infty. This ends the proof of (A.59). In order to prove (A.60), we define F3:F_{3}:\mathbb{R}\rightarrow\mathbb{R} by

F3(u):=sup|vu|1|G(v)|,u.\displaystyle F_{3}(u):=\sup_{|v-u|\leq 1}|G^{\prime}(v)|,\forall u\in\mathbb{R}.

From G𝒮()G^{\prime}\in\mathcal{S}(\mathbb{R}), we get F3L4()F_{3}\in L^{4}(\mathbb{R}). From the Mean Value Theorem the expression in (A.60) is bounded from above by

[Θ(n)]2n2x{|r|=1np2(r)[rn1F3(xn)]4+[|r|=1np(r)[rn1F3(xn)]2]2}\displaystyle\frac{[\Theta(n)]^{2}}{n^{2}}\sum_{x}\Big{\{}\sum_{|r|=1}^{n}p^{2}(r)[rn^{-1}F_{3}(\tfrac{x}{n})]^{4}+\Big{[}\sum_{|r|=1}^{n}p(r)[rn^{-1}F_{3}(\tfrac{x}{n})]^{2}\Big{]}^{2}\Big{\}}
=\displaystyle= [Θ(n)]2n6x[F3(xn)]4{|r|=1nr4p2(r)+[|r|=1nr2p(r)]2}\displaystyle\frac{[\Theta(n)]^{2}}{n^{6}}\sum_{x}[F_{3}(\tfrac{x}{n})]^{4}\Big{\{}\sum_{|r|=1}^{n}r^{4}p^{2}(r)+\Big{[}\sum_{|r|=1}^{n}r^{2}p(r)\Big{]}^{2}\Big{\}}
\displaystyle\lesssim 1nx[F3(xn)]4r=1r22γ+n11nx[F3(xn)]4{[Θ(n)n2r=1nr2p(r)]2\displaystyle\frac{1}{n}\sum_{x}[F_{3}(\tfrac{x}{n})]^{4}\sum_{r=1}^{\infty}r^{2-2\gamma}+n^{-1}\frac{1}{n}\sum_{x}[F_{3}(\tfrac{x}{n})]^{4}\Big{\{}\Big{[}\frac{\Theta(n)}{n^{2}}\sum_{r=1}^{n}r^{2}p(r)\Big{]}^{2}
\displaystyle\lesssim ([Θ(n)]2n5+n1)[F3(u)]4dun1,\displaystyle\Big{(}\frac{[\Theta(n)]^{2}}{n^{5}}+n^{-1}\Big{)}\int_{\mathbb{R}}[F_{3}(u)]^{4}du\lesssim n^{-1},

which goes to zero as nn\rightarrow\infty. In the third line we used (A.37). This ends the proof. ∎

Acknowledgements: P.C. thanks FCT/Portugal for financial support through the project Lisbon Mathematics PhD (LisMath), during which most of this work was done. P.C. and P.G. thank FCT/Portugal for financial support through the projects UIDB/04459/2020 and UIDP/04459/2020. B.J.O. thanks Universidad Nacional de Costa Rica for sponsoring the participation in this article. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (grant agreement n. 715734). Pedro Cardoso: Writing - Original Draft, Formal analysis, Investigation; Patrícia Gonçalves: Conceptualization, Methodology, Supervision, Investigation, Writing - Review and Editing Byron Jiménez-Oviedo: Writing - Review and Editing

References

  • [1] Cédric Bernardin, Patrícia Gonçalves, Milton Jara, and Stefano Scotta. Equilibrium fluctuations for diffusive symmetric exclusion with long jumps and infinitely extended reservoirs. Ann. Inst. Henri Poincaré Probab. Stat., 58(1):303–342, 2022.
  • [2] Pedro Cardoso, Patricia Gonçalves, and Byron Jiménez-Oviedo. Hydrodynamic behavior of long-range symmetric exclusion with a slow barrier: diffusive regime. arXiv preprint arXiv:2111.02868, 2021.
  • [3] Pedro Cardoso, Patricia Gonçalves, and Byron Jiménez-Oviedo. Hydrodynamic behavior of long-range symmetric exclusion with a slow barrier: superdiffusive regime. arXiv preprint arXiv:2201.10540, 2022.
  • [4] Chih-Chung Chang, Claudio Landim, and Stefano Olla. Equilibrium fluctuations of asymmetric simple exclusion processes in dimension d3d\geq 3. Probab. Theory Related Fields, 119(3):381–409, 2001.
  • [5] Peter Dittrich and Jürgen Gärtner. A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr., 151:75–93, 1991.
  • [6] Tertuliano Franco, Patrícia Gonçalves, and Adriana Neumann. Phase transition in equilibrium fluctuations of symmetric slowed exclusion. Stochastic Process. Appl., 123(12):4156–4185, 2013.
  • [7] Tertuliano Franco, Patrícia Gonçalves, and Adriana Neumann. Corrigendum to “Phase transition in equilibrium fluctuations of symmetric slowed exclusion” [Stochastic Process. Appl. 123(12) (2013) 4156–4185] [ MR3096351]. Stochastic Process. Appl., 126(10):3235–3242, 2016.
  • [8] Patrícia Gonçalves and Milton Jara. Stochastic Burgers equation from long range exclusion interactions. Stochastic Process. Appl., 127(12):4029–4052, 2017.
  • [9] Patrícia Gonçalves and Milton Jara. Density fluctuations for exclusion processes with long jumps. Probab. Theory Related Fields, 170(1-2):311–362, 2018.
  • [10] Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems, volume 320. Springer Science & Business Media, 1998.
  • [11] Itaru Mitoma. Tightness of probabilities on C([0,1];𝒮)C([0,1];{\mathcal{S}}^{\prime}) and D([0,1];𝒮)D([0,1];{\mathcal{S}}^{\prime}). Ann. Probab., 11(4):989–999, 1983.
  • [12] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, second edition, 1980. Functional analysis.
  • [13] Helmut H. Schaefer. Topological vector spaces. Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971. Third printing corrected.
  • [14] Frank Spitzer. Interaction of Markov processes. Advances in Math., 5:246–290 (1970), 1970.