This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: School of Physics, Korea Institute for Advanced Study,
Hoegiro 85, Seoul 02455, Korea
bbinstitutetext: Center for Geometry and Physics, Institute for Basic Science (IBS),
Pohang 37673, Korea

Dimers for Type D Relativistic Toda Model

Kimyeong Lee b    and Norton Lee klee@kias.re.kr, norton.lee@ibs.re.kr
Abstract

We construct dimer graphs for type D relativistic Toda models by introducing impurities into the Y2N,0Y^{2N,0} square dimer graphs. By properly placing the impurities and changing the canonical variables assigned to the 1-loops on the dimer graph, we perform a "folding" of the graphs, which yields the type D relativistic Toda lattice Hamiltonian and monodromy matrix.

preprint: KIAS-P24038, CGP24008

1 Introduction

The relativistic Toda lattice (RTL) was first introduced in ruijsenaars1990relativistic with a given Lie algebra 𝔤\mathfrak{g}. There are two Lax formalisms for RTL: the Lax triad, which consists of three N×NN\times N Lax matrices ragnisco1989periodic ; bruschi1989lax , and Sklyanin’s 2×22\times 2 RR-matrix formalism sklyanin1988boundary ; sklyanin1995separation .

Type-A RTL, which is defined based on the Lie algebra 𝔤=AN1\mathfrak{g}=A_{N-1}, belongs to a class of cluster integrable systems proposed by Goncharov and Kenyon Kenyon2011dimers : an integrable system corresponding to a periodic planar dimer placed on a torus Eager:2011dp . The dual graph of the dimer graph is a planar, periodic quiver. The quiver gauge theory, called Yp,qY^{p,q}, arises from a stack of D3 branes probing a single toric Calabi-Yau three-fold (CY3). Both the quiver and the dimer can be constructed based on the toric diagram of the CY3 Hanany:2005ve . Interestingly, recent studies show that there exist general dimer graphs on top of the "standard" dimer built from the Yp,qY^{p,q} quiver Lee:2023wbf . These dimer graphs share the same toric diagram but have different conserving Hamiltonians.

A natural question to ask is whether the correspondence between the dimer and RTL can be extended to RTLs defined on Lie algebras other than type A. In this note, we will focus on the type D RTL defined on the affine Lie algebra D^N\hat{D}_{N}. Our goal is to find the correct dimer graph whose perfect matching reproduces the commuting Hamiltonians of the type D RTL.

It turns out that the connection between relativistic integrable systems and five-dimensional 𝒩=1\mathcal{N}=1 supersymmetric gauge theory proves to be quite useful in the search for the correct dimer graph. The connection between supersymmetric gauge theories and algebraic integrable models, known as the Bethe/Gauge correspondence, was first observed between four-dimensional 𝒩=2\mathcal{N}=2 supersymmetric gauge theories and non-relativistic integrable systems. The geometry of the low-energy states of the four-dimensional 𝒩=2\mathcal{N}=2 supersymmetric gauge theory is identified with the phase space of an algebraic integrable system Gorsky:1999gx ; GorskyGM_1_N=2 ; GorskyM_Manybody ; Donagi:1995cf . The Seiberg-Witten curve of the supersymmetric gauge theory coincides with the spectral curve of the algebraic integrable model, thus sharing the same toric diagram.

The Bethe/Gauge correspondence can be extended to a supersymmetric gauge theory with gauge group GG and eight supercharges, compactified on a circle of radius rr. Its Seiberg-Witten curve corresponds to the spectral curve of the relativistic integrable system with 𝔤=Lie(G)\mathfrak{g}=\text{Lie}(G) algebra. The radius r=1cr=\frac{1}{c} acts as the inverse of the speed of light. Indeed, the Bethe/Gauge correspondence is how the Seiberg-Witten curve for five-dimensional 𝒩=1\mathcal{N}=1 theory was constructed Nekrasov:1996cz .

In this note, we will focus on finding the correct dimer graph for the D^N\hat{D}_{N} RTL. The Bethe/Gauge correspondence provides an advantage, as the corresponding gauge theory can be embedded into a larger SUSU gauge theory and then reduced in degrees of freedom by folding. In the case of type D, SO(2N)SO(2N) SYM shares the same toric diagram with SU(2N)+8FSU(2N)+8F gauge theory with eight fundamental hypermultiplets fine-tuned Hayashi:2023boy . The O5-plane in the brane construction of the SO(2N)SO(2N) gauge group indicates that a proper folding from SU(2N)+8FSU(2N)+8F is required to obtain the correct degrees of freedom. This also restricts how the dimer graph should be constructed.

In this note, we construct the dimer graph based on the type A square dimer with impurities or flavors introduced. By properly placing the impurities and identifying parameters through folding, we successfully construct the dimer graph for the D^N\hat{D}_{N} RTL. The monodromy matrix of the type D RTL is constructed from the Kasteleyn matrix of the dimer, thus recovering all the conserving Hamiltonians.

Outine

This paper is organized as follows: In Section. 2 we give a quick review on the type D RTL and its integrability in the Skyanin’s Lax formalism. In Section. 3 we review the construction of square dimer model for type A RTL. We intoduce impurity reflecting the modification based on the fundamental matter in the toric diagram SU(2N)+8FSU(2N)+8F. We construct the dimer graph that give rise to the correct first D^N\hat{D}_{N} RTL Hamiltonain after proper folding and change of canonical variables. In Section. 4 we recover Lax/monodromy matrix of D^N\hat{D}_{N} RTL based on the Kasteleyn matrix of the dimer we constructed.

Finally we point out our conclusion and furture direction in Section. 5

Acknowledgements.
The authors thank Saebyeok Jeong, Hee-cheol Kim, Minsung Kim, Yongchao Lu, Xin Wang for useful discussion and correspondence. The research of NL is supported by IBS project IBS-R003-D1. KL is supported in part by KIAS Grants PG006904 and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2017R1D1A1B06034369). KL also thanks KITP for the program What is String Theory? Weaving Perspectives Together. This research was supported in part by grant NSF PHY-2309135 to the Kavli Institute for Theoretical Physics (KITP).

2 Classical Relativistic Toda of type D

The relativistic Toda lattice describes NN particles on a line or a ring. The nn-th particle’s position and momentum are denoted by 𝚚n\mathtt{q}_{n} and 𝚙n\mathtt{p}_{n}, which satisfy the Poisson commutation relation:

{𝚚n,𝚙m}=δnm,n,m=1,,N.\displaystyle\{\mathtt{q}_{n},\mathtt{p}_{m}\}=\delta_{nm},\ n,m=1,\dots,N. (1)

For a given Lie algebra 𝔤\mathfrak{g}, the relativistic Toda lattice (RTL for short) is defined on its simple root system 𝔤\mathcal{R}_{\mathfrak{g}} ruijsenaars1990relativistic ; bogoyavlensky1976perturbations . In this paper, we focus on the Toda lattice defined on the affine Lie algebra of type D. The Hamiltonian of the relativistic Toda lattice associated with the root system of the D^N\hat{D}_{N} Lie algebra kuznetsov1992infinite ; Kuznetsov:1994ur is given by:

HD^N=H0+J1+JN\displaystyle{\rm H}_{\hat{D}_{N}}={\rm H}_{0}+{\rm J}_{1}+{\rm J}_{N} (2)

where H0{\rm H}_{0} is the open relativistic Toda lattice Hamiltonian of type AA:

H0=n=1N2cosh(𝚙n)+2g2n=1N1e𝚚n𝚚n+1cosh𝚙n+𝚙n+12,\displaystyle{\rm H}_{0}=\sum_{n=1}^{N}2\cosh(\mathtt{p}_{n})+2{g}^{2}\sum_{n=1}^{N-1}e^{\mathtt{q}_{n}-\mathtt{q}_{n+1}}\cosh\frac{\mathtt{p}_{n}+\mathtt{p}_{n+1}}{2}, (3)

and

J1=2g2e𝚚1𝚚2cosh𝚙1𝚙22+g4e2𝚚2,JN=2g2e𝚚N+𝚚N1cosh𝚙N𝚙N12+g4e2𝚚N1.\displaystyle\begin{split}{\rm J}_{1}&=2{g}^{2}e^{-\mathtt{q}_{1}-\mathtt{q}_{2}}\cosh\frac{\mathtt{p}_{1}-\mathtt{p}_{2}}{2}+{g}^{4}e^{-2\mathtt{q}_{2}},\\ {\rm J}_{N}&=2{g}^{2}e^{\mathtt{q}_{N}+\mathtt{q}_{N-1}}\cosh\frac{\mathtt{p}_{N}-\mathtt{p}_{N-1}}{2}+{g}^{4}e^{2\mathtt{q}_{N-1}}.\end{split} (4)

Here, g{g} is the coupling constant. The total number of terms (written individually in exponential form) in the D^N\hat{D}N RTL Hamiltonian (2) is 2N+2(N1)+3+3=4N+42N+2(N-1)+3+3=4N+4. Note that there are two additional terms, g4e2𝚚2{g}^{4}e^{-2\mathtt{q}_{2}} and g4e2𝚚N1{g}^{4}e^{2\mathtt{q}{N-1}}, which do not originate from the simple roots of D^N\hat{D}_{N}.

In the non-relativistic limit, we scale the coupling constant grgg\to rg and the momentum 𝚙r𝚙\mathtt{p}\to r\mathtt{p}, where rr is the inverse of the speed of light. The relativistic Hamiltonian can be expanded in powers of rr as follows:

HD^N\displaystyle{\rm H}_{\hat{D}_{N}} =2N+2r2[n=1N𝚙n22+g2n=1N1e𝚚n𝚚n+1+g2e𝚚1𝚚2+g2e𝚚N+𝚚N1]+𝒪(r4).\displaystyle=2N+2r^{2}\left[\sum_{n=1}^{N}\frac{\mathtt{p}_{n}^{2}}{2}+g^{2}\sum_{n=1}^{N-1}e^{\mathtt{q}_{n}-\mathtt{q}_{n+1}}+g^{2}e^{-\mathtt{q}_{1}-\mathtt{q}_{2}}+g^{2}e^{\mathtt{q}_{N}+\mathtt{q}_{N-1}}\right]+\mathcal{O}(r^{4}). (5)

The coefficient of r2r^{2} in this expansion corresponds precisely to the Hamiltonian of the type D non-relativistic Toda lattice.

2.1 Integrability

The integrability of relativistic Toda lattice (RTL) is characterized by the RR-matrix Rai,aj:VaiVajVaiVajR_{a_{i},a_{j}}:V_{a_{i}}\otimes V_{a_{j}}\to V_{a_{i}}\otimes V_{a_{j}}, which satisfies the Yang-Baxter equation:

Ra1,a2(xx)Ra1,a3(x)Ra2,a3(x)=Ra2,a3(x)Ra1,a3(x)Ra1,a2(xx).\displaystyle R_{a_{1},a_{2}}(x-x^{\prime})R_{a_{1},a_{3}}(x)R_{a_{2},a_{3}}(x^{\prime})=R_{a_{2},a_{3}}(x^{\prime})R_{a_{1},a_{3}}(x)R_{a_{1},a_{2}}(x-x^{\prime}). (6)

The 2×22\times 2 Lax matrix is a special case of this RR-matrix with the choice of:

Va1=Va2=2:=Vaux,Va3=nV_{a_{1}}=V_{a_{2}}=\mathbb{C}^{2}:=V_{\rm aux},\ V_{a_{3}}=\mathcal{H}_{n}

defined for the nn-th particle. n\mathcal{H}_{n} is the Hilbert space of a particle, and Vaux=2V_{\rm aux}=\mathbb{C}^{2} is called the auxiliary space. On each of the lattice site we define a 2×22\times 2 Lax operator as a GL2GL_{2}-valued function Kuznetsov:1994ur ; Iorgov:2007ks ; deVega:1993xi

Ln(x)=(2sinhx𝚙n2ge𝚚nge𝚚n0)End(nVaux)\displaystyle L_{n}(x)=\begin{pmatrix}2\sinh\frac{x-\mathtt{p}_{n}}{2}&-{g}e^{-\mathtt{q}_{n}}\\ {g}e^{\mathtt{q}_{n}}&0\end{pmatrix}\in\text{End}(\mathcal{H}_{n}\otimes V_{\text{aux}}) (7)

where 𝚙n=𝚚n\mathtt{p}_{n}=-\hbar\partial_{\mathtt{q}_{n}} and 𝚚n\mathtt{q}_{n} are the canonically conjugated momentum and coordinate of the nn-th particle. The RR-matrix is given by

Ra1,a2(xx)=(sinhxx+20000sinhxx2sinh200sinh2sinhxx20000sinhxx+2)End(VauxVaux).\displaystyle R_{a_{1},a_{2}}(x-x^{\prime})=\begin{pmatrix}\sinh\frac{x-x^{\prime}+\hbar}{2}&0&0&0\\ 0&\sinh\frac{x-x^{\prime}}{2}&\sinh\frac{\hbar}{2}&0\\ 0&\sinh\frac{\hbar}{2}&\sinh\frac{x-x^{\prime}}{2}&0\\ 0&0&0&\sinh\frac{x-x^{\prime}+\hbar}{2}\end{pmatrix}\in\text{End}(V_{\text{aux}}\otimes V_{\text{aux}}). (8)

The commutation relations between two matrix components of the Lax operator is governed by the Yang-Baxter RLL-relation (train track relation)

Ra1,a2(xx)La1(x)La2(x)=La2(x)La1(x)Ra1,a2(xx)\displaystyle R_{a_{1},a_{2}}(x-x^{\prime})L_{a_{1}}(x)L_{a_{2}}(x^{\prime})=L_{a_{2}}(x^{\prime})L_{a_{1}}(x)R_{a_{1},a_{2}}(x-x^{\prime}) (9)

which can be verified true by direct computation.

The monodromy matrix 𝐓(x)\mathbf{T}(x) of the type A relativistic Toda lattice (with periodic boundary conditions) is an ordered product of the Lax matrices across NN particles:

𝐓(x)=LN(x)LN1(x)L2(x)L1(x)End(n=1NVaux).\displaystyle\mathbf{T}(x)=L_{N}(x)L_{N-1}(x)\cdots L_{2}(x)L_{1}(x)\in\text{End}\left(\bigotimes_{n=1}^{N}\mathcal{E}\otimes V_{\text{aux}}\right). (10)

It is evident that the monodromy matrix 𝐓(x)\mathbf{T}(x) satisfies the same Yang-Baxter equation as the Lax operator:

Ra1,a2(xx)𝐓a1(x)𝐓a2(x)=𝐓a2(x)𝐓a1(x)Ra1,a2(xx)\displaystyle R_{a_{1},a_{2}}(x-x^{\prime})\mathbf{T}_{a_{1}}(x)\mathbf{T}_{a_{2}}(x^{\prime})=\mathbf{T}_{a_{2}}(x^{\prime})\mathbf{T}_{a_{1}}(x)R_{a_{1},a_{2}}(x-x^{\prime}) (11)

The spectral curve of the integrable system is defined by introducing the spectral parameter YY:

q-det(𝐓(x)Y)=Y2Tr(𝐓(x))Y+q-det(𝐓(x))=0.\displaystyle\text{q-det}(\mathbf{T}(x)-Y)=Y^{2}-\text{Tr}(\mathbf{T}(x))Y+\text{q-det}(\mathbf{T}(x))=0. (12)

2.2 RTL with boundary

E. Sklyanin points out that the monodromy matrix for type BCD relativistic Toda lattices (RTLs) can be obtained by introducing a reflection matrix as a boundary condition sklyanin1988boundary ; kuznetsov1992infinite . The transfer matrix of an RTL with boundary conditions is given by:

𝐓(x)=TrK+(x)𝐭(x)K(x)𝐭1(x)\displaystyle\mathbf{T}(x)={\rm Tr}K_{+}(x)\mathbf{t}(x)K_{-}(x)\mathbf{t}^{-1}(-x) (13)

where 𝐭(x)End(n=1NVaux)\mathbf{t}(x)\in\text{End}\left(\bigotimes_{n=1}^{N}\mathcal{E}\otimes V_{\text{aux}}\right) is the monodromy matrix of the type A RTL, and K±(x)End(Vaux)K_{\pm}(x)\in\text{End}(V_{\text{aux}}) are the reflection matrices obeying the reflection equations:

R12(xx)K,1(x)R21(x+x)K,2(x)=K,2(x)R12(x+x)K,1(x)R21(xx)\displaystyle\begin{split}&R_{12}(x-x^{\prime})K_{-,1}(x)R_{21}(x+x^{\prime}-\hbar)K_{-,2}(x^{\prime})\\ &=K_{-,2}(x^{\prime})R_{12}(x+x^{\prime}-\hbar)K_{-,1}(x)R_{21}(x-x^{\prime})\end{split} (14)

and

R12(x+x)K,1T(x)R21(xx)K,2T(x)=K+,2T(x)R12(xx)K+,1T(x)R21(x+x)\displaystyle\begin{split}&R_{12}(-x+x^{\prime})K^{T}_{-,1}(x)R_{21}(-x-x^{\prime}-\hbar)K^{T}_{-,2}(x^{\prime})\\ &=K^{T}_{+,2}(x^{\prime})R_{12}(-x-x^{\prime}-\hbar)K^{T}_{+,1}(x)R_{21}(-x+x^{\prime})\end{split} (15)

Given a simple solution K±(x)K_{\pm}(x) to the reflection equation, one can verify that:

U+T(x)\displaystyle U^{T}_{+}(x) =𝐭+T(x)K+T(x)(𝐭+1(x))T\displaystyle=\mathbf{t}_{+}^{T}(x)K_{+}^{T}(x)(\mathbf{t}^{-1}_{+}(-x))^{T} (16a)
U(x)\displaystyle U_{-}(x) =𝐭(x)K(x)𝐭1(x)\displaystyle=\mathbf{t}_{-}(x)K_{-}(x)\mathbf{t}_{-}^{-1}(-x) (16b)

satisfy the same reflection equation if 𝐓±(x)\mathbf{T}_{\pm}(x) satisfy the Yang-Baxter equation (11). The transfer matrix (trace of monodromy matrix) is the generating function of the integral of motion:

T(x)=TrU+U=TrK+(x)𝐭(x)K(x)𝐭(x)1=eN2x[1+n=1NHnenx]\displaystyle\begin{split}T(x)&={\rm Tr}\ U_{+}U_{-}={\rm Tr}K_{+}(x)\mathbf{t}(x)K_{-}(x)\mathbf{t}(-x)^{-1}\\ &=e^{\frac{N}{2}x}\left[1+\sum_{n=1}^{N}H_{n}e^{-nx}\right]\end{split} (17)

The reflection matrices K±K_{\pm} that satisfy the reflection equation are given by:

K+(𝚚1,𝚙1)\displaystyle K_{+}(\mathtt{q}_{1},\mathtt{p}_{1}) =(α1+ex2α2+ex2δ+(ex+ex)β+γ+δ+(ex+ex)α2+ex2α1+ex2)\displaystyle=\begin{pmatrix}\alpha_{1}^{+}e^{\frac{x}{2}}-\alpha_{2}^{+}e^{-\frac{x}{2}}&\delta^{+}(e^{x}+e^{-x})-\beta^{+}\\ \gamma^{+}-\delta^{+}(e^{x}+e^{-x})&\alpha_{2}^{+}e^{\frac{x}{2}}-\alpha_{1}^{+}e^{-\frac{x}{2}}\end{pmatrix} (18a)
K(𝚚N,𝚙N)\displaystyle K_{-}(\mathtt{q}_{N},\mathtt{p}_{N}) =(α1ex2+α2ex2γδ(ex+ex)δ(ex+ex)βα2ex2+α1ex2)\displaystyle=\begin{pmatrix}-\alpha_{1}^{-}e^{\frac{x}{2}}+\alpha_{2}^{-}e^{-\frac{x}{2}}&\gamma^{-}-\delta^{-}(e^{x}+e^{-x})\\ \delta^{-}(e^{x}+e^{-x})-\beta^{-}&-\alpha_{2}^{-}e^{\frac{x}{2}}+\alpha_{1}^{-}e^{-\frac{x}{2}}\end{pmatrix} (18b)

These reflection matrices lead to the following (first) Hamiltonian:

H1=j=2N12cosh𝚙j+j=2N2g2e𝚚j𝚚j+12cosh𝚙j+𝚙j+12+β++β+gα1+e𝚙22𝚚2+gα2+e𝚙22𝚚2+gα1e𝚙N12+𝚚N1+gα2e𝚙N12+𝚚N1+δ+g2e2𝚚2+δg2e2𝚚N1.\displaystyle\begin{split}H_{1}=&\sum_{j=2}^{N-1}2\cosh\mathtt{p}_{j}+\sum_{j=2}^{N-2}{g}^{2}e^{\mathtt{q}_{j}-\mathtt{q}_{j+1}}2\cosh\frac{\mathtt{p}_{j}+\mathtt{p}_{j+1}}{2}\\ &+\beta^{+}+\beta^{-}+{g}\alpha_{1}^{+}e^{-\frac{\mathtt{p}_{2}}{2}-\mathtt{q}_{2}}+{g}\alpha_{2}^{+}e^{\frac{\mathtt{p}_{2}}{2}-\mathtt{q}_{2}}+{g}\alpha_{1}^{-}e^{-\frac{\mathtt{p}_{N-1}}{2}+\mathtt{q}_{N-1}}+{g}\alpha_{2}^{-}e^{\frac{\mathtt{p}_{N-1}}{2}+\mathtt{q}_{N-1}}\\ &+\delta^{+}{g}^{2}e^{-2\mathtt{q}_{2}}+\delta^{-}{g}^{2}e^{2\mathtt{q}_{N-1}}.\\ \end{split} (19)

The boundary reflection matrices K±K_{\pm} for the RTL of type D, as discussed in Kuznetsov:1994ur , are given by:

K+\displaystyle K_{+} =(g[ex22cosh(𝚙1/2𝚚1)ex22cosh(𝚙1/2+𝚚1)]2coshx2cosh𝚙1g2[2cosh2𝚚12coshx]g[ex2cosh(𝚙1/2𝚚1)ex2cosh(𝚙1/2+𝚚1)]),\displaystyle=\begin{pmatrix}{g}[e^{\frac{x}{2}}2\cosh(\mathtt{p}_{1}/2-\mathtt{q}_{1})-e^{-\frac{x}{2}}2\cosh(\mathtt{p}_{1}/2+\mathtt{q}_{1})]&2\cosh x-2\cosh{\mathtt{p}_{1}}\\ {g}^{2}[2\cosh 2\mathtt{q}_{1}-2\cosh{x}]&{g}[e^{-\frac{x}{2}}\cosh(\mathtt{p}_{1}/2-\mathtt{q}_{1})-e^{\frac{x}{2}}\cosh(\mathtt{p}_{1}/2+\mathtt{q}_{1})]\end{pmatrix}, (20a)
K\displaystyle K_{-} =(g[ex2cosh(𝚙N/2𝚚N)ex2cosh(𝚙N/2+𝚚N)]g2[2cosh2𝚚Ncoshx]2coshx2cosh𝚙Ng2[ex2cosh(𝚙N/2𝚚N)ex2cosh(𝚙N/2+𝚚N)]).\displaystyle=\begin{pmatrix}{g}[e^{-\frac{x}{2}}\cosh(\mathtt{p}_{N}/2-\mathtt{q}_{N})-e^{\frac{x}{2}}\cosh(\mathtt{p}_{N}/2+\mathtt{q}_{N})]&{g}^{2}[2\cosh 2\mathtt{q}_{N}-\cosh x]\\ 2\cosh x-2\cosh{\mathtt{p}_{N}}&{g}^{2}[e^{\frac{x}{2}}\cosh(\mathtt{p}_{N}/2-\mathtt{q}_{N})-e^{-\frac{x}{2}}\cosh(\mathtt{p}_{N}/2+\mathtt{q}_{N})]\end{pmatrix}. (20b)

The monodromy matrix 𝐓(x)\mathbf{T}(x) of D^N\hat{D}_{N} RTL is defined by incorporating both the reflection matrices and the Lax operators. It is given by:

𝐓(x)=K+(x)L~2(x)L~N1(x)K(x)LN1(x)L2(x).\displaystyle\mathbf{T}(x)=K_{+}(x)\tilde{L}_{2}(x)\cdots\tilde{L}_{N-1}(x)K_{-}(x)L_{N-1}(x)\cdots L_{2}(x). (21)

where the L~n(x)\tilde{L}_{n}(x) operators are defined as:

L~n(x)=(0ge𝚚nge𝚚n2sinhx+𝚙n2)=g4Ln1(x).\displaystyle\tilde{L}_{n}(x)=\begin{pmatrix}0&-{g}e^{-\mathtt{q}_{n}}\\ {g}e^{\mathtt{q}_{n}}&2\sinh\frac{x+\mathtt{p}_{n}}{2}\end{pmatrix}=g^{4}L_{n}^{-1}(-x). (22)

These L~n(x)\tilde{L}_{n}(x) operators are related to the original Lax operators Ln(x)L_{n}(x) by

L~n(x)=g4Ln1(x).\displaystyle\tilde{L}_{n}(x)=g^{4}L_{n}^{-1}(-x). (23)

The construction of 𝐓(x)\mathbf{T}(x) involves alternating beteween the reflection matrices K+(x)K_{+}(x) and K(x)K_{-}(x) with the Lax operators and their inverses, reflecting the boundary conditions and the periodic structure of the D^N\hat{D}_{N} RTL.

The spectral curve of classical integrable system is defined by the characteristic polynomial of the monodromy matrix 𝐓(x)\mathbf{T}(x). For RTL, this is given by 111The determinant is replaced by q-determinant when quantizing the integrable system.

0=det(𝐓(x)Y)=Y2Tr𝐓(x)Y+det𝐓(x).\displaystyle 0=\det(\mathbf{T}(x)-Y)=Y^{2}-{\rm Tr}\mathbf{T}(x)Y+\det\mathbf{T}(x). (24)

To find the spectral curve, we first compute the determinant of the monodromy matrix 𝐓(x)\mathbf{T}(x). It is given by the product of the determinants of its individual building blocks:

det𝐓(x)=g4N8(XX1)4,X=ex.\det\mathbf{T}(x)={g}^{4N-8}\left(X-X^{-1}\right)^{4},\ X=e^{x}.

Next, we scale YYg2N4(XX1)2Y\to Y{g}^{2N-4}(X-X^{-1})^{2} to simplify the expression

g2N4(XX1)2YT(X)+g2N4(XX1)Y=0.\displaystyle{g}^{2N-4}(X-X^{-1})^{2}Y-T(X)+{g}^{2N-4}\frac{(X-X^{-1})}{Y}=0. (25)

where T(X)T(X) denotes the trace term related to 𝐓(X)\mathbf{T}(X). This equation represents the spectral curve associated with the relativistic Toda lattice in the given parameterization.

The Type D relativistic Toda provides insights to the description of Seiberg-Witten ansatz for SO(2N)SO(2N) pure gauge theory Martinec:1995by . For 5d 𝒩=1\mathcal{N}=1 SO(2N)SO(2N) pure super Yang-Mills (SYM) theory, the Seiberg-Witten curve is given by

(XX1)2Y+2α=1N(XUαX1Uα1)(XUα1X1Uα)+(XX1)2Y=0\displaystyle(X-X^{-1})^{2}Y+2\prod_{\alpha=1}^{N}(XU_{\alpha}-X^{-1}U_{\alpha}^{-1})(XU_{\alpha}^{-1}-X^{-1}U_{\alpha})+\frac{(X-X^{-1})^{2}}{Y}=0 (26)

To visualize the corresponding toric diagram 𝒯\mathcal{T}, one can refer to the D-brane and O-plane construction. The toric diagram encapsulates the geometric data relevant for the gauge theory. For an illustration of this toric diagram in the context of SO(8)SO(8), see Fig. 1.

O5+O5-O5+
Figure 1: The brane construction of SO(8)SO(8) gauge group with toric nodes indicated by the brane construction. Notice that O5+5^{+} branes are replaced by 3 nodes instead of 1. See Hayashi:2023boy for detail.

3 Dimer integrable system

The relativistic Toda lattice system is part of the broader class of cluster integrable models, which were explored in depth by Kenyon and others Kenyon2011dimers . These models can be constructed using the dimer model –also known as brane tiling– approach. In this framework, a dimer model on a torus is shown to define a relativistic integrable system.

The dimer model provides a graphical way to encode the integrable structure of these systems, where the interactions between particles or variables are represented through a tiling of the plane (or torus) with dimers, which are edges covering vertices in a bipartite graph.

Kenyon’s work establishes that any dimer model placed on a torus leads to an integrable system, thereby connecting the combinatorial and geometric aspects of dimer models to the theory of integrable systems.

Let us give a quick review on the dimer model.

A bipartite graph Γ=(B,W,E)\Gamma=(B,W,E) embedded on a oritented 2-manifold 𝒮\mathcal{S} is defined by the following components kenyon2003introduction :

  • Black nodes BB: a finite set of black nodes on 𝒮\mathcal{S}, each of which is assigned to the set BB.

  • White nodes WW: a finite set of white nodes on 𝒮\mathcal{S}, each of which is assigned to the set WW.

  • Edges EE: A finite set of edges that are embedded as closed intervals on 𝒮\mathcal{S}. Each edge connects a black node to a white node. Importantly, edges can only intersect each other at their endpoints.

For a bipartite graph Γ=(B,W,E)\Gamma=(B,W,E) to qualify as a dimer model it must satisfy the following conditions:

  • Every equivalent node is on the boundary of 𝒮\mathcal{S}.

  • Every faces of Γ\Gamma is simply-connected.

In this context, we focus on the case where 𝒮=T2\mathcal{S}=T^{2}(the torus). When embedded on the torus, a dimer model is characterized by a unit cell. This unit cell has periodicity in both the horizontal and vertical directions, aligning with the periodic boundary conditions of the torus. The boundary of the unit cell represents the two fundamental cycles of the torus:

  • Horizontal Cycle: Periodic boundary condition in the horizontal direction.

  • Vertical Cycle: Periodic boundary condition in the vertical direction.

Definition 3.1 (Perfect matching)

A perfect matching 𝕄E\mathbb{M}\subset E is a subset of edges such that each node (both black and white) is connected by exactly one edge in 𝕄\mathbb{M}. The edges in 𝕄\mathbb{M} are oriented from black nodes to white nodes by default.

Definition 3.2 (Opposite orientation)

For any perfect matching 𝕄\mathbb{M}, the notation 𝕄-\mathbb{M} refers to the same set of edges but with reversed orientation: edges are now oriented from white nodes to black nodes.

Definition 3.3 (Edge weights assignment)

Each oriented edges eEe\in E is assigned a weight wew_{e} based on its orientation and its interaction with the boundaries of the unit cell on the torus. The assignment of weights is defined as follows:

  • Vertical Boundary Crossings:

    • Positive Orientation (edge crosses from the left boundary to the right boundary of the unit cell): The weight is we=Xw_{e}=X.

    • Negative Orientation (edge crosses from the right boundary to the left boundary): The weight is we=X1w_{e}=X^{-1}.

  • Horizontal Boundary Crossings:

    • Positive Orientation (edge crosses from the bottom boundary to the top boundary of the unit cell): The weight is we=Yw_{e}=Y.

    • Negative Orientation (edge crosses from the top boundary to the bottom boundary): The weight is we=Y1w_{e}=Y^{-1}.

  • Within the Unit Cell:

    • Edges that do not cross any boundary: The weight is we=1w_{e}=1.

The weight assignment can be organized as

we={X,if edge crosses vertical boundary with positive orientation. X1,if edge crosses vertical boundary with negative orientation. Y,if edge crosses horizontal boundary with positive orientation. Y1,if edgees cross horizontal boundary with negative orientation 1,The edge lies within the unit cell.\displaystyle w_{e}=\begin{cases}X,&\text{if edge crosses vertical boundary with positive orientation. }\\ X^{-1},&\text{if edge crosses vertical boundary with negative orientation. }\\ Y,&\text{if edge crosses horizontal boundary with positive orientation. }\\ Y^{-1},&\text{if edgees cross horizontal boundary with negative orientation }\\ 1,&\text{The edge lies within the unit cell. }\end{cases} (27)

The weight of a perfect matching 𝕄\mathbb{M} is a product over the weights of all its edges:

W[𝕄]=e𝕄we\displaystyle W[\mathbb{M}]=\prod_{e\in\mathbb{M}}w_{e} (28)

The spectral curve 𝒞\mathcal{C} of the dimer graph Γ\Gamma is the ensemble of all possible perfect matchings’ weight:

𝒞={(X,Y)2|W(X,Y)={𝕄}W[𝕄]=0}\displaystyle\mathcal{C}=\left\{(X,Y)\in\mathbb{C}^{2}\left|W(X,Y)=\sum_{\{\mathbb{M}\}}W[\mathbb{M}]=0\right.\right\} (29)

The dual graph of the dimer graph is a planar, periodic quiver Franco:2005rj . Quiver gauge theories described by dimer graphs arise from the worldvolume of a stack of D3-branes probing a single Calabi-Yau (CY) 3-fold. The connection between dimer models and quivers has trivialized the determination of the Calabi-Yau geometry Franco:2005rj ; Benvenuti:2004wx ; Huang:2020neq . This curve happens to be the mirror curve of the Calabi-Yau 3-fold. It can also be obtained by considering the Kasteleyn matrix of the dimer treumann2019kasteleyn . The Kasteleyn matrix is a weighted adjacency matrix of the graph. A toric diagram 𝒯\mathcal{T} can be associated to the dimer graph Γ\Gamma based on its curve W(X,Y)W(X,Y) Hanany:2005ve .

We need some additional definition to establich relation between dimer graph and integrable models Kenyon2011dimers .

Definition 3.4 (Reference perfect matching)

In this note we always choose the perfect matching that corresponds to the furthest point in the positive XX axis on the corresponding toric diagram 𝒯\mathcal{T} as the prefect matching 𝕄ref\mathbb{M}_{\rm ref}.

Definition 3.5 (1-loop)

A 1-loop is a path connecting from a node in the graph to the same node which passes through the boundary of the unit cell.

To systematically construct 1-loop, one can consider the difference between a general perfect matching and the reference perfect matching 𝕄𝕄ref\mathbb{M}-\mathbb{M}_{\rm ref}.

Definition 3.6 (nn-loop)

The nn-loop is product of nn non-overlapping 1-loops.

Definition 3.7 (Poisson commutation)

Let γ\gamma and γ\gamma^{\prime} be two oriented loops on the dimer graph Γ\Gamma. The Poisson commutation relation between the loops are defined as

{γ,γ}=ϵγγγγ\displaystyle\{\gamma,\gamma^{\prime}\}=\epsilon_{\gamma\gamma^{\prime}}\gamma\gamma^{\prime} (30)

where

ϵγγ=vsgn(v)δv(γ,γ).\displaystyle\epsilon_{\gamma\gamma^{\prime}}=\sum_{v}{\rm sgn}(v)\delta_{v}(\gamma,\gamma^{\prime}). (31)

Here sgn(v)=1\text{sgn}(v)=1 for the black node and sgn(v)=1\text{sgn}(v)=-1 for the white node. δv\delta_{v} is a skewsymmetric bilinear form satisfying

δv(γ,γ)=δv(γ,γ)=δv(γ,γ)12\delta_{v}(\gamma,\gamma^{\prime})=-\delta_{v}(\gamma^{\prime},\gamma)=-\delta_{v}(-\gamma,\gamma^{\prime})\in\frac{1}{2}\mathbb{Z}

as illustrated in Fig. 2.

Refer to caption
Figure 2: An illustration of δv(γ,γ)\delta_{v}(\gamma,\gamma^{\prime}).
Definition 3.8 (Hamiltonian)

The nn-th Hamiltonian of the dimer graph is defined as the sum over all the nn-loops.

Theorem 3.9

The poisson commutation 3.7 defines a classical integrable systems, where the conserving integrable of motions are the Hamiltonians 3.8 kenyon2003introduction ; Hanany:2005ve .

The dimer model associated to the type A RTL is known as YN,0Y^{N,0} model. It is constructed by periodic square diagrams. The shape of the unit cell depends on whether NN is even (rectangular) or odd (rhombus). For the purpose of this paper, here we consider the case NN being even. Each unit cell consists two columns of NN squares along with NN white and black vertexes 𝚠n\mathtt{w}_{n}, 𝚋n\mathtt{b}_{n}, n=1,,Nn=1,\dots,N. See Figure. 3 for illustration.

Refer to caption
Figure 3: The brane tiling for YN,0Y^{N,0} dimer model with NN even. A unit cell is encircled by the dashed blue line. This dimer is associated to the A^N1\hat{A}_{N-1} relativistic Toda lattice.

The first Hamiltonian of the YN,0Y^{N,0} dimer coincide with the A^N1\hat{A}_{N-1} RTL Hamiltonian once the 1-loops are expressed in terms of the canonical coordinates. The Lax matrix of A^N1\hat{A}_{N-1} RTL can be constructed from the Kasteleyn matrix. We will not get in to the detail here but refer the interested reader to Appendix. A and Lee:2023wbf ; Eager:2011dp for more detail.

3.1 Introduce impurities

The relation between the toric diagram and dimer graph works in both directions. A dimer graph Γ=(B,W,E)\Gamma=(B,W,E) can be constructed based on a given toric diagram 𝒯\mathcal{T} Eager:2011dp ; Hanany:2005ve . In some cases multiple dimer graphs can be constructed based on a single toric diagram Lee:2023wbf .

We use the following two facts to construct the dimer model for type D RTL:

  • Seiberg-Witten curve of supersymmetric Yang-Mills theory of gauge group GG coincides with spectral curve of RTL of Lie algebra 𝔤=Lie(G)\mathfrak{g}=\text{Lie}(G).

  • SO(2N)SO(2N) gauge theory shares the same toric diagram with SU(2N)SU(2N) gauge theory with 8 fundamental matters fine-tuned and can be embedded into SU(2N)SU(2N) theory with folding to reduce the degree of freedom.

The dimer graph associated to the toric diagram for SU(2N)+8FSU(2N)+8F can be constructed by introducing impurity in the Y2N4,0Y^{2N-4,0} model (corresponding to the A2N4A_{2N-4} RTL). This is indicated by the slopes of the four long edges of the toric diagram. The DND_{N} dimer can then be obtained through folding, which eliminates half of the degrees of freedom.

The 8 short vertical lines in the toric diagram 𝒯\mathcal{T} introduce impurity to the square dimer in the following way: When N4N\geq 4, we pick 44 among 2N42N-4 squares in the unit cell the nin_{i}-th square, i=1,2,3,4i=1,2,3,4, ni{1,,2N4}n_{i}\in\{1,\dots,2N-4\}, to introduce impurity. Two pairs of black and white nodes, which we will denote by 𝚠~ni(1,2)\tilde{\mathtt{w}}_{n_{i}}^{(1,2)} and 𝚋~ni(1,2)\tilde{\mathtt{b}}_{n_{i}}^{(1,2)} are added in the middle of the nin_{i}-th square in the order white-black-white-black starting from the left of the unit cell. The vertical edges of nin_{i}-th squares are removed and replaced by

  • Horizontal lines connecting the newly introduced black and white nodes, which also extended to outside of the the unit cell.

  • Two vertical lines connecting the newly introduced black nodes 𝚋ni(l)\mathtt{b}_{n_{i}}^{(l)}, l=1,2l=1,2 to the square’s white nodes 𝚠ni12+(1)ni2\mathtt{w}_{n_{i}-\frac{1}{2}+\frac{(-1)^{n_{i}}}{2}}.

  • Two slide edges connecting 𝚠nil\mathtt{w}_{n_{i}}^{l}, l=1,2l=1,2, to 𝚋ni\mathtt{b}_{n_{i}} and 𝚋ni1\mathtt{b}_{n_{i}-1}.

See Fig. 4 for illustration.

Refer to caption
Figure 4: The vertical lines in the toric diagram 𝒯\mathcal{T} introduces impurity to the square dimer graph. The newly introduced red nodes modifies the edges inside the square. The boundary of the unit cell is indicated by blue dashed lines.

Alternatively, one can place double impurity to a single square in the A2N4A_{2N-4} dimer. Four pairs of white and black nodes are added to the middle of the square. See Fig. 5 for illustration.

Refer to caption
Figure 5: The vertical lines in the toric diagram 𝒯\mathcal{T} introduces double impurity to the square dimer graph. The newly introduced red nodes modifies the edges inside the square. The boundary of the unit cell is indicated by blue dashed lines.

The final dimer graph will have exactly 2N4+4×2=2N+42N-4+4\times 2=2N+4 pairs of black and white nodes distributed on exactly 2N2N rows.

3.2 D4D_{4}

The dimer graph for D4D_{4} system can be constructed by introducing impurities into the A4A_{4} dimer graph. The impurity can be introduced in the form of 4 single impurities or as 2 double impurities. Figure 6 illustrates these two different bipartite graphs. More general cases can also be considered, which we will discuss in future work.

Refer to caption
Figure 6: Two bipartite graphs generated by toric diagram for D4/A7+8FD_{4}/A_{7}+8F in Fig. 1. The left graph is constructed by placing double impurities at the first and third square in the A4A_{4} dimer graph. The right one place single impurities in each of the square in the A4A_{4} dimer graph.

The Kastelyne matrix K4,DK_{4,D} of the double impurity bipartite graph in Fig. 6 is:

1 2 3 4 5 6 7 8 9 a b c
1 h1rh1lXh_{1r}-\frac{h_{1l}}{X} s12s_{12} s13s_{13} 0 0 0 0 0 0 0 0 v1cY\frac{v_{1c}}{Y}
2 v21v_{21} h2-h_{2} h23Xh_{23}X 0 0 0 0 0 0 0 0 0
3 0 h32h_{32} h3-h_{3} s34s_{34} s35s_{35} 0 0 0 0 0 0 0
4 0 s42s_{42} s43Xs_{43}X h4-h_{4} h45Xh_{45}X 0 0 0 0 0 0 0
5 0 0 0 h54h_{54} h5-h_{5} v56v_{56} 0 0 0 0 0 0
6 0 0 0 s64s_{64} s65Xs_{65}X h6rXh6lh_{6r}X-{h_{6l}} v67v_{67} 0 0 0 0 0
7 0 0 0 0 0 v76v_{76} h7rh7lXh_{7r}-\frac{h_{7l}}{X} s78s_{78} s79s_{79} 0 0 0
8 0 0 0 0 0 0 v87v_{87} h8-h_{8} h89Xh_{89}X 0 0 0
9 0 0 0 0 0 0 0 h98h_{98} h9-h_{9} s9as_{9a} h9bh_{9b} 0
a 0 0 0 0 0 0 0 sa8s_{a8} sa9Xs_{a9}X ha-h_{a} habXh_{ab}X 0
b 0 0 0 0 0 0 0 0 0 hbah_{ba} hb-h_{b} vbcv_{bc}
c vc1Yv_{c1}Y 0 0 0 0 0 0 0 0 scas_{ca} scbXs_{cb}X hcrXhclh_{cr}X-{h_{cl}}

In particular, when setting all parameter (beside XX and YY) to 1 gives

detK4,DX2=X4+1X436(X3+1X3)+406(X2+1X2)1556(X+1X)+2402(Y+1Y)(X24X+64X+1X2)\displaystyle\begin{split}\frac{\det K_{4,D}}{X^{2}}&=X^{4}+\frac{1}{X^{4}}-36\left(X^{3}+\frac{1}{X^{3}}\right)+406\left(X^{2}+\frac{1}{X^{2}}\right)-1556\left(X+\frac{1}{X}\right)+2402\\ &\quad-\left(Y+\frac{1}{Y}\right)\left(X^{2}-4X+6-\frac{4}{X}+\frac{1}{X^{2}}\right)\end{split} (32)

We choose the reference perfect matching such that each dimer covers 𝚠i𝚋i\mathtt{w}_{i}\to\mathtt{b}_{i} with all arrows going rightward. The number of 1-loops is the coefficient of X3-X^{3} in (32): 36. These 1-loops are distributed across the 8 horizontal lines:

  • Lines with 𝚠1\mathtt{w}_{1} and 𝚠7\mathtt{w}_{7}: 7 in total;

  • Lines with 𝚠3\mathtt{w}_{3} and 𝚠9\mathtt{w}_{9}: 7 in total;

  • Lines with 𝚠5\mathtt{w}_{5} and 𝚠b\mathtt{w}_{b}: 3 in total;

  • Lines with 𝚠6\mathtt{w}_{6} and 𝚠c\mathtt{w}_{c}: 1 in total;

See Fig. 7 for illustration of the 1-loops. Most of the 1-loops can be built from straight lines djd_{j}, j=1,2,3,4j=1,2,3,4, and square loops SnS_{n}, n=1,,7n=1,\dots,7. See Fig. 8 for an illustration.

Refer to caption
Figure 7: 18 1-loops in the double impurity SU(8)+8FSU(8)+8F dimer graph.
Refer to caption
Figure 8: Basic square loops in the modified unit cell in double impurity dimer. The four masses are encoded in the dimer graph through the square loops and impurity straight lines.

The double impurity dimer is constructed from the A7+8F{A}_{7}+8F toric diagram Fig.1. The masses mfm_{f}, f=1,,8f=1,\dots,8 are fine-tuned to

m1=m2=0,m3=m4=iπ,m5=m6=0,m7=m8=iπ.\displaystyle m_{1}=m_{2}=0,\ m_{3}=-m_{4}=-\mathrm{i}\pi,\ m_{5}=m_{6}=0,\ m_{7}=-m_{8}=-\mathrm{i}\pi. (33)

The first Hamiltonian for the double impurities – the dimer graph on the left of Fig. 6 — is the sum over all 1-loops:

H1=e𝚙1[1+e𝚚1𝚚2e𝚚1𝚚2+𝚙2e𝚚1𝚚3+𝚙2+e𝚚1𝚚3+𝚙2+𝚙3+e𝚚1𝚚4+𝚙2+𝚙3]+e𝚙2[1+e𝚚2𝚚3e𝚚2𝚚3𝚙2e𝚚2𝚚3+𝚙3+e𝚚2𝚚3𝚙2+𝚙3e𝚚2𝚚4+𝚙3+e𝚚2𝚚4𝚙2+𝚙3]+e𝚙3[1+e𝚚3𝚚4e𝚚3𝚚4𝚙3]+e𝚙4[1+e𝚚4𝚚5]+e𝚙5[1+e𝚚5𝚚6e𝚚5𝚚6+𝚙6e𝚚5𝚚7+𝚙6+e𝚚5𝚚7+𝚙6+𝚙7+e𝚚5𝚚8+𝚙6+𝚙7]+e𝚙6[1+e𝚚6𝚚7e𝚚6𝚚7𝚙6e𝚚6𝚚7+𝚙7+e𝚚6𝚚7𝚙6+𝚙7e𝚚6𝚚8+𝚙7+e𝚚6𝚚8𝚙6+𝚙7]+e𝚙7[1+e𝚚7𝚚8e𝚚7𝚚8𝚙7]+e𝚙8[1+e𝚚8𝚚1].\displaystyle\begin{split}H_{1}=&\ e^{\mathtt{p}_{1}}\left[1+e^{\mathtt{q}_{1}-\mathtt{q}_{2}}-e^{\mathtt{q}_{1}-\mathtt{q}_{2}+\mathtt{p}_{2}}-e^{\mathtt{q}_{1}-\mathtt{q}_{3}+\mathtt{p}_{2}}+e^{\mathtt{q}_{1}-\mathtt{q}_{3}+\mathtt{p}_{2}+\mathtt{p}_{3}}+e^{\mathtt{q}_{1}-\mathtt{q}_{4}+\mathtt{p}_{2}+\mathtt{p}_{3}}\right]\\ &+e^{\mathtt{p}_{2}}\left[1+e^{\mathtt{q}_{2}-\mathtt{q}_{3}}-e^{\mathtt{q}_{2}-\mathtt{q}_{3}-\mathtt{p}_{2}}-e^{\mathtt{q}_{2}-\mathtt{q}_{3}+\mathtt{p}_{3}}+e^{\mathtt{q}_{2}-\mathtt{q}_{3}-\mathtt{p}_{2}+\mathtt{p}_{3}}-e^{\mathtt{q}_{2}-\mathtt{q}_{4}+\mathtt{p}_{3}}+e^{\mathtt{q}_{2}-\mathtt{q}_{4}-\mathtt{p}_{2}+\mathtt{p}_{3}}\right]\\ &+e^{\mathtt{p}_{3}}\left[1+e^{\mathtt{q}_{3}-\mathtt{q}_{4}}-e^{\mathtt{q}_{3}-\mathtt{q}_{4}-\mathtt{p}_{3}}\right]\\ &+e^{\mathtt{p}_{4}}\left[1+e^{\mathtt{q}_{4}-\mathtt{q}_{5}}\right]\\ &+e^{\mathtt{p}_{5}}\left[1+e^{\mathtt{q}_{5}-\mathtt{q}_{6}}-e^{\mathtt{q}_{5}-\mathtt{q}_{6}+\mathtt{p}_{6}}-e^{\mathtt{q}_{5}-\mathtt{q}_{7}+\mathtt{p}_{6}}+e^{\mathtt{q}_{5}-\mathtt{q}_{7}+\mathtt{p}_{6}+\mathtt{p}_{7}}+e^{\mathtt{q}_{5}-\mathtt{q}_{8}+\mathtt{p}_{6}+\mathtt{p}_{7}}\right]\\ &+e^{\mathtt{p}_{6}}\left[1+e^{\mathtt{q}_{6}-\mathtt{q}_{7}}-e^{\mathtt{q}_{6}-\mathtt{q}_{7}-\mathtt{p}_{6}}-e^{\mathtt{q}_{6}-\mathtt{q}_{7}+\mathtt{p}_{7}}+e^{\mathtt{q}_{6}-\mathtt{q}_{7}-\mathtt{p}_{6}+\mathtt{p}_{7}}-e^{\mathtt{q}_{6}-\mathtt{q}_{8}+\mathtt{p}_{7}}+e^{\mathtt{q}_{6}-\mathtt{q}_{8}-\mathtt{p}_{6}+\mathtt{p}_{7}}\right]\\ &+e^{\mathtt{p}_{7}}\left[1+e^{\mathtt{q}_{7}-\mathtt{q}_{8}}-e^{\mathtt{q}_{7}-\mathtt{q}_{8}-\mathtt{p}_{7}}\right]\\ &+e^{\mathtt{p}_{8}}\left[1+e^{\mathtt{q}_{8}-\mathtt{q}_{1}}\right].\\ \end{split} (34)

The seventh Hamiltonian is the sum over all 7-loops:

e𝚙totH7=e𝚙1[1+e𝚚8𝚚1]+e𝚙2[1+e𝚚1𝚚2e𝚚1𝚚2+𝚙2]+e𝚙3[1+e𝚚2𝚚3e𝚚2𝚚3𝚙2e𝚚2𝚚3+𝚙3+e𝚚2𝚚3𝚙2+𝚙3e𝚚1𝚚3𝚙2+e𝚚1𝚚3𝚙2+𝚙3]+e𝚙4[1+e𝚚3𝚚4e𝚚3𝚚4𝚙3e𝚚2𝚚4𝚙3+e𝚚2𝚚4𝚙3𝚙2+e𝚚1𝚚4𝚙3𝚙2]+e𝚙5[1+e𝚚4𝚚5]+e𝚙6[1+e𝚚5𝚚6e𝚚5𝚚6+𝚙6]+e𝚙7[1+e𝚚6𝚚7e𝚚6𝚚7𝚙6e𝚚6𝚚7+𝚙7+e𝚚6𝚚7𝚙6+𝚙7e𝚚5𝚚7𝚙6+e𝚚5𝚚7𝚙6+𝚙7]+e𝚙8[1+e𝚚7𝚚8e𝚚7𝚚8𝚙7e𝚚6𝚚8𝚙7+e𝚚6𝚚8𝚙7𝚙6+e𝚚5𝚚8𝚙7𝚙6]\displaystyle\begin{split}e^{-\mathtt{p}_{\text{tot}}}H_{7}=&\ e^{-\mathtt{p}_{1}}\left[1+e^{\mathtt{q}_{8}-\mathtt{q}_{1}}\right]\\ &+e^{-\mathtt{p}_{2}}\left[1+e^{\mathtt{q}_{1}-\mathtt{q}_{2}}-e^{\mathtt{q}_{1}-\mathtt{q}_{2}+\mathtt{p}_{2}}\right]\\ &+e^{-\mathtt{p}_{3}}\left[1+e^{\mathtt{q}_{2}-\mathtt{q}_{3}}-e^{\mathtt{q}_{2}-\mathtt{q}_{3}-\mathtt{p}_{2}}-e^{\mathtt{q}_{2}-\mathtt{q}_{3}+\mathtt{p}_{3}}+e^{\mathtt{q}_{2}-\mathtt{q}_{3}-\mathtt{p}_{2}+\mathtt{p}_{3}}-e^{\mathtt{q}_{1}-\mathtt{q}_{3}-\mathtt{p}_{2}}+e^{\mathtt{q}_{1}-\mathtt{q}_{3}-\mathtt{p}_{2}+\mathtt{p}_{3}}\right]\\ &+e^{-\mathtt{p}_{4}}\left[1+e^{\mathtt{q}_{3}-\mathtt{q}_{4}}-e^{\mathtt{q}_{3}-\mathtt{q}_{4}-\mathtt{p}_{3}}-e^{\mathtt{q}_{2}-\mathtt{q}_{4}-\mathtt{p}_{3}}+e^{\mathtt{q}_{2}-\mathtt{q}_{4}-\mathtt{p}_{3}-\mathtt{p}_{2}}+e^{\mathtt{q}_{1}-\mathtt{q}_{4}-\mathtt{p}_{3}-\mathtt{p}_{2}}\right]\\ &+e^{-\mathtt{p}_{5}}\left[1+e^{\mathtt{q}_{4}-\mathtt{q}_{5}}\right]\\ &+e^{-\mathtt{p}_{6}}\left[1+e^{\mathtt{q}_{5}-\mathtt{q}_{6}}-e^{\mathtt{q}_{5}-\mathtt{q}_{6}+\mathtt{p}_{6}}\right]\\ &+e^{-\mathtt{p}_{7}}\left[1+e^{\mathtt{q}_{6}-\mathtt{q}_{7}}-e^{\mathtt{q}_{6}-\mathtt{q}_{7}-\mathtt{p}_{6}}-e^{\mathtt{q}_{6}-\mathtt{q}_{7}+\mathtt{p}_{7}}+e^{\mathtt{q}_{6}-\mathtt{q}_{7}-\mathtt{p}_{6}+\mathtt{p}_{7}}-e^{\mathtt{q}_{5}-\mathtt{q}_{7}-\mathtt{p}_{6}}+e^{\mathtt{q}_{5}-\mathtt{q}_{7}-\mathtt{p}_{6}+\mathtt{p}_{7}}\right]\\ &+e^{-\mathtt{p}_{8}}\left[1+e^{\mathtt{q}_{7}-\mathtt{q}_{8}}-e^{\mathtt{q}_{7}-\mathtt{q}_{8}-\mathtt{p}_{7}}-e^{\mathtt{q}_{6}-\mathtt{q}_{8}-\mathtt{p}_{7}}+e^{\mathtt{q}_{6}-\mathtt{q}_{8}-\mathtt{p}_{7}-\mathtt{p}_{6}}+e^{\mathtt{q}_{5}-\mathtt{q}_{8}-\mathtt{p}_{7}-\mathtt{p}_{6}}\right]\\ \end{split} (35)

To fold from SU(8)+8FSU(8)+8F to SO(8)SO(8), we need to eliminate half of the degree of freedom to make H1=H7H_{1}=H_{7}. This can be done by setting

𝚚1=𝚚4,𝚙1=𝚙4,𝚚2=𝚚3,𝚙2=𝚙3,𝚚5=𝚚8,𝚙5=𝚚8,𝚚6=𝚚7,𝚙6=𝚙7.\displaystyle\begin{split}&\mathtt{q}_{1}=-\mathtt{q}_{4},\ \mathtt{p}_{1}=-\mathtt{p}_{4},\ \mathtt{q}_{2}=-\mathtt{q}_{3},\ \mathtt{p}_{2}=-\mathtt{p}_{3},\\ &\mathtt{q}_{5}=-\mathtt{q}_{8},\ \mathtt{p}_{5}=-\mathtt{q}_{8},\ \mathtt{q}_{6}=-\mathtt{q}_{7},\ \mathtt{p}_{6}=-\mathtt{p}_{7}.\end{split} (36)

The first and seventh Hamiltonian become

H1=H7= 2cosh𝚙1+2cosh𝚙2+2cosh𝚙7+2cosh𝚙8+e𝚚1𝚚2(e𝚙1+e𝚙21e𝚙1+𝚙2)+e𝚚7𝚚8(e𝚙7+e𝚙81e𝚙7𝚙8)+e𝚚8𝚚1(e𝚙1+e𝚙8)+e𝚚1+𝚚2(e𝚙1+e𝚙21e𝚙1+𝚙2)+e𝚚7𝚚8(e𝚙7+e𝚙81e𝚙7𝚙8)+e2𝚚1+𝚙1+e2𝚚2[e𝚙22+e𝚙2]+e2𝚙7[e𝚙72+e𝚙7]+e2𝚚8𝚙8\displaystyle\begin{split}H_{1}=H_{7}=&\ 2\cosh\mathtt{p}_{1}+2\cosh\mathtt{p}_{2}+2\cosh\mathtt{p}_{7}+2\cosh\mathtt{p}_{8}\\ &+e^{\mathtt{q}_{1}-\mathtt{q}_{2}}(e^{\mathtt{p}_{1}}+e^{-\mathtt{p}_{2}}-1-e^{\mathtt{p}_{1}+\mathtt{p}_{2}})\\ &+e^{\mathtt{q}_{7}-\mathtt{q}_{8}}(e^{\mathtt{p}_{7}}+e^{-\mathtt{p}_{8}}-1-e^{-\mathtt{p}_{7}-\mathtt{p}_{8}})\\ &+e^{\mathtt{q}_{8}-\mathtt{q}_{1}}(e^{-\mathtt{p}_{1}}+e^{\mathtt{p}_{8}})\\ &+e^{\mathtt{q}_{1}+\mathtt{q}_{2}}(e^{\mathtt{p}_{1}}+e^{-\mathtt{p}_{2}}-1-e^{\mathtt{p}_{1}+\mathtt{p}_{2}})\\ &+e^{-\mathtt{q}_{7}-\mathtt{q}_{8}}(e^{\mathtt{p}_{7}}+e^{-\mathtt{p}_{8}}-1-e^{-\mathtt{p}_{7}-\mathtt{p}_{8}})\\ &+e^{2\mathtt{q}_{1}+\mathtt{p}_{1}}+e^{2\mathtt{q}_{2}}\left[e^{\mathtt{p}_{2}}-2+e^{-\mathtt{p}_{2}}\right]+e^{-2\mathtt{p}_{7}}\left[e^{\mathtt{p}_{7}}-2+e^{-\mathtt{p}_{7}}\right]+e^{-2\mathtt{q}_{8}-\mathtt{p}_{8}}\\ \end{split} (37)

We would like to point out that the identification (36) causes the Poisson commutation relation defined for shared edges to potentially fail when there are square loops between the double impurity lines (S3S_{3}, S4S_{4}, and S5S_{5} in Fig. 8). After imposing the solution, the Poisson commutation relation involving S4S_{4} are doubled despite sharing only one edge:

{S4,S2}S4S2={S5,S4}S5S4={S3,S4}S3S4={S4,S6}S4S6={S4,e𝚙2}S4e𝚙2=2.\frac{\{S_{4},S_{2}\}}{S_{4}S_{2}}=\frac{\{S_{5},S_{4}\}}{S_{5}S_{4}}=\frac{\{S_{3},S_{4}\}}{S_{3}S_{4}}=\frac{\{S_{4},S_{6}\}}{S_{4}S_{6}}=\frac{\{S_{4},e^{\mathtt{p}_{2}}\}}{S_{4}e^{\mathtt{p}_{2}}}=2.

To fully match D^4\hat{D}_{4} Hamiltonian, we consider the following change of variables: 𝚚1𝚚1𝚙12\mathtt{q}_{1}\to\mathtt{q}_{1}-\frac{\mathtt{p}_{1}}{2}, 𝚚8𝚚8𝚙82\mathtt{q}_{8}\to\mathtt{q}_{8}-\frac{\mathtt{p}_{8}}{2} and

e𝚚2cosh𝚙22sinh𝚚2,e𝚙2cosh𝚙22𝚚22cosh𝚙2+2𝚚22;e𝚚7sinh𝚚7cosh𝚙72,e𝚙7cosh𝚙7+2𝚚72cosh𝚙72𝚚72\displaystyle\begin{split}&e^{\mathtt{q}_{2}}\to\frac{\cosh\frac{\mathtt{p}_{2}}{2}}{\sinh\mathtt{q}_{2}},\quad e^{\mathtt{p}_{2}}\to\frac{\cosh\frac{\mathtt{p}_{2}-2\mathtt{q}_{2}}{2}}{\cosh\frac{\mathtt{p}_{2}+2\mathtt{q}_{2}}{2}};\quad e^{\mathtt{q}_{7}}\to\frac{\sinh\mathtt{q}_{7}}{\cosh\frac{\mathtt{p}_{7}}{2}},\quad e^{\mathtt{p}_{7}}\to\frac{\cosh\frac{\mathtt{p}_{7}+2\mathtt{q}_{7}}{2}}{\cosh\frac{\mathtt{p}_{7}-2\mathtt{q}_{7}}{2}}\end{split} (38)

The change of variables are canonical, i.e. preserve the Poisson commutation relation. This can be checked by direct computation. See Appendix. B for computational detail. Finally we modify S1,7S_{1,7} by

S1S1cosh𝚙22sinh𝚙22,S7S7sinh𝚙22cosh𝚙22.\displaystyle S_{1}\to S_{1}\frac{\cosh\frac{\mathtt{p}_{2}}{2}}{\sinh\frac{\mathtt{p}_{2}}{2}},\quad S_{7}\to S_{7}\frac{\sinh\frac{\mathtt{p}_{2}}{2}}{\cosh\frac{\mathtt{p}_{2}}{2}}. (39)

The same modification is also applied to the other double impurity. The first Hamilton H1H_{1} after the change of canonical coordinate becomes:

H1= 2cosh𝚙1+2cosh𝚙2+2cosh𝚙7+2cosh𝚙8+e𝚚1𝚚22cosh𝚙1+𝚙22+e𝚚8𝚚12cosh𝚙8+𝚙12+e𝚚7𝚚82cosh𝚙7+𝚙82+e𝚚1+𝚚22cosh𝚙1𝚙22+e𝚚7𝚚82cosh𝚙7𝚙82+e2𝚚1+e2𝚚8\displaystyle\begin{split}H_{1}=&\ 2\cosh\mathtt{p}_{1}+2\cosh\mathtt{p}_{2}+2\cosh\mathtt{p}_{7}+2\cosh\mathtt{p}_{8}\\ &+e^{\mathtt{q}_{1}-\mathtt{q}_{2}}2\cosh\frac{\mathtt{p}_{1}+\mathtt{p}_{2}}{2}+e^{\mathtt{q}_{8}-\mathtt{q}_{1}}2\cosh\frac{\mathtt{p}_{8}+\mathtt{p}_{1}}{2}+e^{\mathtt{q}_{7}-\mathtt{q}_{8}}2\cosh\frac{\mathtt{p}_{7}+\mathtt{p}_{8}}{2}\\ &+e^{\mathtt{q}_{1}+\mathtt{q}_{2}}2\cosh\frac{\mathtt{p}_{1}-\mathtt{p}_{2}}{2}+e^{-\mathtt{q}_{7}-\mathtt{q}_{8}}2\cosh\frac{\mathtt{p}_{7}-\mathtt{p}_{8}}{2}+e^{2\mathtt{q}_{1}}+e^{-2\mathtt{q}_{8}}\\ \end{split} (40)

After renaming 131\to 3, 242\to 4, 828\to 2, and 717\to 1, we recover (2) with coupling g=1g=1

H1=HD4.H_{1}={\rm H}_{D_{4}}.

On the double impurity dimer graph, we identify the vertices and faces in the double impurity SU(8)+8FSU(8)+8F dimer graph according to the solution (36). The unit cell described by (36)can be composed of two identical half unit cells, with one rotated by 180 degrees and placed on top of the other (the identification is based on the level of the square loop). This identification across the two half unit cells allows for folding. The edges connecting a node AA in one half unit cell to a node BB in the other half unit cell are removed according to the change of variable (38). See Fig. 9 for an illustration. This modification further affects the Poisson commutation relation between the 1-loops sharing the double edges.

Refer to caption
Figure 9: Identifying the vertexes and faces in the double impurity dimer Fig. 8 based on Eq. (36) in figure (a). In (b) the top half unit cell is reflected horizontally. The change of canonical coordinate (38) modifies the two 1st and two 4th line. This further allows folding of the top half unit cell to obtain (d).

We obtain the dimer graph shown in Fig. 10. To construct the 1-loops, we choose the perfect matching on the D4D_{4} dimer to be horizontal edges with a white node to the left of the black node. There are 9 1-loops based on this reference matching. Next, we rotate the dimer graph with the 1-loops by 180 degrees. This rotation results in another 9 1-loops on the folded patch. Note that rotating by 180 degrees is equivalent to using a different reference perfect matching, where the white nodes are on the right of the black nodes on each horizontal edge.

We assign the face loops in the D4D_{4} dimer to obey the Poisson commutation relation based on the shared edges and horizontal 1-loops in Fig. 10. This is sufficient to determine all 9+9=189+9=18 1-loops in Fig. 11:

Refer to caption
Figure 10: Half of dimer graph for D4D_{4} theory, obtained from folding SU(8)+8FSU(8)+8F with double impurity Fig. 6. The full dimer is two copies of the half-dimer, with the second rotated by 180 degree.
Refer to caption
Figure 11: There are 18 1-loops in the D4D_{4} dimer graph. The 6 1-loops on the top line and the 3 on the left in the middle are obtained from the reference perfect matching. The remaining 9 1-loops (3 on the right in the middle and 6 on the bottom) are obtained by rotating the dimer by 180 degrees or using an alternative perfect matching. Additionally, there are two more 1-loops that come from connections between the two half unit cells.

The first Hamiltonian of the dimer graph Fig. 10 is the sum over all 1-loops plus the two additional terms arising from connecting the two patches (top right of Fig. 7):

H1= 2cosh𝚙1+2cosh𝚙2+2cosh𝚙3+2cosh𝚙4+e𝚚1𝚚2(1+e𝚙1+𝚙2)+e𝚚2𝚚3(e𝚙3+e𝚙2)+e𝚙3𝚙4(e𝚙4+e𝚙3)+e𝚚1𝚚2(e𝚙1+e𝚙2)+e𝚚3+𝚚4(e𝚙4+e𝚙3)+e2𝚚2+e2𝚚3\displaystyle\begin{split}H_{1}=&\ 2\cosh\mathtt{p}_{1}+2\cosh\mathtt{p}_{2}+2\cosh\mathtt{p}_{3}+2\cosh\mathtt{p}_{4}\\ &+e^{\mathtt{q}_{1}-\mathtt{q}_{2}}(1+e^{\mathtt{p}_{1}+\mathtt{p}_{2}})+e^{\mathtt{q}_{2}-\mathtt{q}_{3}}(e^{\mathtt{p}_{3}}+e^{-\mathtt{p}_{2}})+e^{\mathtt{p}_{3}-\mathtt{p}_{4}}(e^{\mathtt{p}_{4}}+e^{\mathtt{p}_{3}})\\ &+e^{-\mathtt{q}_{1}-\mathtt{q}_{2}}(e^{-\mathtt{p}_{1}}+e^{\mathtt{p}_{2}})+e^{\mathtt{q}_{3}+\mathtt{q}_{4}}(e^{\mathtt{p}_{4}}+e^{\mathtt{p}_{3}})+e^{-2\mathtt{q}_{2}}+e^{2\mathtt{q}_{3}}\end{split} (41)

Change the canonical coordinate by

𝚚2,3=𝚚2,3+𝚙2,32,𝚚1,4=𝚚1,4𝚙1,42\mathtt{q}_{2,3}=\mathtt{q}_{2,3}+\frac{\mathtt{p}_{2,3}}{2},\quad\mathtt{q}_{1,4}=\mathtt{q}_{1,4}-\frac{\mathtt{p}_{1,4}}{2}

and we identify the first Hamiltonian as the D4D_{4} relativistic Toda lattice HD4{\rm H}_{D_{4}} in (2):

H1=HD4.H_{1}={\rm H}_{D_{4}}.

3.3 DND_{N}

Refer to caption
Figure 12: A proposed bipartite graphs to be folded to dimer for DND_{N} system with even NN. The blue dashed square labels HALF unit cell in U(2N)+8FU(2N)+8F dimer, which would become the dimer for DND_{N}.

We start with two double impurities introduced to the A2N4A_{2N-4} dimer graph, placed as far apart from each other as possible. See Fig. 12 for an illustration. The folding is performed in the following steps:

  1. 1.

    Set 𝚚2Nn+1=𝚚n\mathtt{q}_{2N-n+1}=-\mathtt{q}_{n}, 𝚙2Nn+1=𝚙2Nn+1\mathtt{p}_{2N-n+1}=-\mathtt{p}_{2N-n+1}, n=1,,Nn=1,\dots,N. This gives H1=H2N1H_{1}=H_{2N-1}.

  2. 2.

    Apply the change of canonical variables on the boundary of half-unit cell:

    e𝚚1sinh𝚚1cosh𝚙12,e𝚙1cosh𝚙12𝚚12cosh𝚙1+2𝚚12,e𝚚Ncosh𝚙N2sinh𝚚N,e𝚙Ncosh𝚙N+2𝚚N2cosh𝚙N2𝚚N2.e^{\mathtt{q}_{1}}\to\frac{\sinh\mathtt{q}_{1}}{\cosh\frac{\mathtt{p}_{1}}{2}},\quad e^{\mathtt{p}_{1}}\to\frac{\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{1}}{2}}{\cosh\frac{\mathtt{p}_{1}+2\mathtt{q}_{1}}{2}},\quad e^{\mathtt{q}_{N}}\to\frac{\cosh\frac{\mathtt{p}_{N}}{2}}{\sinh\mathtt{q}_{N}},\quad e^{\mathtt{p}_{N}}\to\frac{\cosh\frac{\mathtt{p}_{N}+2\mathtt{q}_{N}}{2}}{\cosh\frac{\mathtt{p}_{N}-2\mathtt{q}_{N}}{2}}.
  3. 3.

    Modify the square loop as in (39).

  4. 4.

    The double impurity dimer now consists two identical copies of the half unit cell, with one rotated by 180 degrees.

The bipartite dimer diagram for DND_{N} model in Fig. 13 is based on the folding of the double impurity square dimer Fig. 12. All the 1-loops can be constructed by square loops and straight horizontal lines.

The square loops obey the commutation relation

{Sn,Sn+1}=(1)nSnSn+1,n=0,,N1{Sn,e𝚙n}=Sne𝚙n,{e𝚙n+1,Sn}=e𝚙n+1Sn,n=1,,N1.\displaystyle\begin{split}&\{S_{n},S_{n+1}\}=(-1)^{n}S_{n}S_{n+1},\ n=0,\dots,N-1\\ &\{S_{n},e^{\mathtt{p}_{n}}\}=S_{n}e^{\mathtt{p}_{n}},\ \{e^{\mathtt{p}_{n+1}},S_{n}\}=e^{\mathtt{p}_{n+1}}S_{n},\ n=1,\dots,N-1.\end{split} (42)
Refer to caption
Figure 13: The dimer graph for DND_{N} theory, even NN on the left and odd NN on the right, with the fundamental square loops labeled.

The first Hamiltonian is the given by the sum over all 1-loops plus the two terms coming from connecting the two patchings:

H1=n=1N2cosh𝚙n+n=1N1Sn(e(1)n𝚙n+e(1)n+1𝚙n+1)+S1S0(e𝚙1+e𝚙2)+SN1SN(e(1)N1𝚙N1+e(1)N𝚙N)+e2𝚚2+e2𝚚N1\displaystyle\begin{split}H_{1}=&\sum_{n=1}^{N}2\cosh\mathtt{p}_{n}+\sum_{n=1}^{N-1}S_{n}(e^{-(-1)^{n}\mathtt{p}_{n}}+e^{-(-1)^{n+1}\mathtt{p}_{n+1}})\\ &+S_{1}S_{0}(e^{\mathtt{p}_{1}}+e^{-\mathtt{p}_{2}})+S_{N-1}S_{N}(e^{-(-1)^{N-1}\mathtt{p}_{N-1}}+e^{-(-1)^{N}\mathtt{p}_{N}})+e^{-2\mathtt{q}_{2}}+e^{2\mathtt{q}_{N-1}}\end{split} (43)

The square loops can be expressed in terms of canonical coordinates:

Sn=e𝚚n𝚚n+1e(1)n𝚙n𝚙n+12,n=1,,N.S0=e2𝚚1,SN=e2𝚚NS_{n}=e^{\mathtt{q}_{n}-\mathtt{q}_{n+1}}e^{(-1)^{n}\frac{\mathtt{p}_{n}-\mathtt{p}_{n+1}}{2}},\quad n=1,\dots,N.\quad S_{0}=e^{-2\mathtt{q}_{1}},\quad S_{N}=e^{2\mathtt{q}_{N}}

Thus we recover the first Hamiltonian of the D^N\hat{D}_{N} RTL:

H1|dimer=HDN.\displaystyle H_{1}|_{\text{dimer}}={\rm H}_{D_{N}}. (44)

4 Lax formalism

4.1 Construct Lax matrix from dimer graph

A Kasteleyn matrix K𝚋,𝚠(X,Y)K_{\mathtt{b},\mathtt{w}}(X,Y) encodes the structure of a given dimer graph. The mirror curve of the dimer graph is defined by

W(X,Y)=detK𝚋,𝚠(X,Y)=0.\displaystyle W(X,Y)=\det K_{\mathtt{b},\mathtt{w}}(X,Y)=0. (45)

The mirror curve, when properly weighted the dimer graph’s edges with respect to the canonical coordinates, coincides with the spectral curve of the integrable system

W~(X,Y)=det(𝐓(X)Y)=0.\displaystyle\tilde{W}(X,Y)=\det(\mathbf{T}(X)-Y)=0. (46)

𝐓(X)\mathbf{T}(X) is the monodromy matrix of the relativistic integrable system in Sklyanin’s Lax formalism sklyanin1995separation .

The Kasteleyn matrix of YN,0Y^{N,0} square dimer (Type A RTL) is a tri-diagonal N×NN\times N matrix given by

K𝚋i,𝚠j={hih~iX,if j=i and i2+1;hiX1h~i,if j=i and i2;v~jYδj,1,if i=j1(mod N);vjYδj,N,if i=j+1(mod N);0,otherwise.\displaystyle K_{\mathtt{b}_{i},\mathtt{w}_{j}}=\begin{cases}h_{i}-\tilde{h}{i}X,&\text{if }j=i\text{ and }i\in 2\mathbb{Z}+1;\\ h{i}X^{-1}-\tilde{h}{i},&\text{if }j=i\text{ and }i\in 2\mathbb{Z};\\ \tilde{v}{j}Y^{-\delta_{j,1}},&\text{if }i=j-1\ (\text{mod }N);\\ v_{j}Y^{\delta_{j,N}},&\text{if }i=j+1\ (\text{mod }N);\\ 0,&\text{otherwise}.\end{cases} (47)

The 1-loops are constructed based on the dimer edges:

dj=hjh~j1=e𝚙j,cj=hjvj11hj1v~j1=e𝚚j𝚚j+1e𝚙j+𝚙j+12.\displaystyle\begin{split}d_{j}=h_{j}\tilde{h}_{j}^{-1}=e^{\mathtt{p}_{j}},\quad c_{j}=h_{j}v_{j-1}^{-1}h_{j-1}\tilde{v}_{j}^{-1}=e^{\mathtt{q}_{j}-\mathtt{q}_{j+1}}e^{\frac{\mathtt{p}_{j}+\mathtt{p}_{j+1}}{2}}.\end{split} (48)

To construct the 2×22\times 2 Lax matrices from the Kasteleyn matrix of the dimer graph, we consider the N×1N\times 1 null vector of the Kastekeyn matrix

ψ=(ψ1ψN),K𝚋,𝚠ψ=0.\psi=\begin{pmatrix}\psi_{1}\\ \vdots\\ \psi_{N}\end{pmatrix},\quad K_{\mathtt{b},\mathtt{w}}\psi=0.

Expanding the matrix equation gives NN equations

(hjh~jX1)ψj+vj1ψj1+v~j+1ψj+1=0,j2+1;(hjXh~j)ψj+vj1ψj1+v~j+1ψj+1=0,j2.\displaystyle\begin{split}&(h_{j}-\tilde{h}_{j}X^{-1})\psi_{j}+v_{j-1}\psi_{j-1}+\tilde{v}_{j+1}\psi_{j+1}=0,\ j\in 2\mathbb{Z}+1;\\ &(h_{j}X-\tilde{h}_{j})\psi_{j}+v_{j-1}\psi_{j-1}+\tilde{v}_{j+1}\psi_{j+1}=0,\ j\in 2\mathbb{Z}.\end{split} (49)

The vector components obeys the periodicity condition ψj+N=Yψj\psi_{j+N}=Y\psi_{j}. We shift

ψj{Xψj,j2+11Xψj,n2.\psi_{j}\to\begin{cases}\sqrt{X}\psi_{j},&j\in 2\mathbb{Z}+1\\ \frac{1}{\sqrt{X}}\psi_{j},&n\in 2\mathbb{Z}.\end{cases}

to obtain NN equations

(Xhj1h~j)ψj+Xhj1(vj1ψj1+v~j+1ψj+1)=0.\displaystyle(X-h^{-1}_{j}\tilde{h}_{j})\psi_{j}+\sqrt{X}h^{-1}_{j}(v_{j-1}\psi_{j-1}+\tilde{v}_{j+1}\psi_{j+1})=0. (50)

Define 2×12\times 1 vector

Ξj=(ψjψj1).\displaystyle\Xi_{j}=\begin{pmatrix}\psi_{j}\\ \psi_{j-1}\end{pmatrix}. (51)

The NN equations (50) can be organized into NN 2×22\times 2 matrix equations

Xhj1v~j+1Ξj+1=(Xhj1h~jXhj1vj1Xhj1v~j+10)Ξj=Xhj1Lj(X)Ξj.\displaystyle\sqrt{X}h_{j}^{-1}\tilde{v}_{j+1}\Xi_{j+1}=\begin{pmatrix}X-h_{j}^{-1}\tilde{h}_{j}&-\sqrt{X}h_{j}^{-1}v_{j-1}\\ \sqrt{X}h_{j}^{-1}\tilde{v}_{j+1}&0\end{pmatrix}\Xi_{j}=\sqrt{X}h_{j}^{-1}L_{j}(X)\Xi_{j}. (52)

By assigning the edges with canonical coordinate, we obtain

Lj(X)=(2sinhx𝚙j2e𝚚je𝚚j0).\displaystyle L_{j}(X)=\begin{pmatrix}2\sinh\frac{x-\mathtt{p}_{j}}{2}&-e^{-\mathtt{q}_{j}}\\ e^{\mathtt{q}_{j}}&0\end{pmatrix}. (53)

The monodromy matrix is a ordered product of the Lax matrices

𝐓(X)=LN(X)L1(X),𝐓(X)Ξ1(X)=YΞ1(X).\displaystyle\mathbf{T}(X)=L_{N}(X)\cdots L_{1}(X),\quad\mathbf{T}(X)\Xi_{1}(X)=Y\Xi_{1}(X). (54)

4.2 Reconstructing monodromy matrix from double impurity dimer

We consider the double impurity dimer of Fig. 12. Note that most of the structure of the type D dimer is the same as the type A square dimer, with the only difference being the introduction of the double impurity. See Fig. 14 for an illustration. The submatrix of the full Kasteleyn matrix associated with the double impurity is

K𝚋,𝚠|DI=K_{\mathtt{b},\mathtt{w}}|_{\text{DI}}= 3 2 1 0 0’ 1’ 2’ 3’ 2 s23s_{23} h2X1h~2h_{2}X^{-1}-\tilde{h}_{2} s21s_{21} s20s_{20} 0 0 0 0 1 0 s12s_{12} h1h_{1} s10X-{s_{10}}{X} 0 0 0 0 0 0 0 s01-s_{01} h0h_{0} s00YX\frac{s_{00^{\prime}}Y}{X} s01Ys_{01^{\prime}}Y 0 0 0’ 0 0 s01Y\frac{s_{0^{\prime}1}}{Y} s00XY\frac{s_{0^{\prime}0}X}{Y} h0-h_{0^{\prime}} s01s_{0^{\prime}1^{\prime}} 0 0 1’ 0 0 0 0 s10X\frac{s_{1^{\prime}0^{\prime}}}{X} h1-h_{1^{\prime}} s12s_{1^{\prime}2^{\prime}} 0 2’ 0 0 0 0 s20s_{2^{\prime}0^{\prime}} s21s_{2^{\prime}1^{\prime}} h2h~2X{h_{2^{\prime}}}-{\tilde{h}_{2^{\prime}}}X s23s_{2^{\prime}3^{\prime}}

Note that YY here labels the edge crosses HALF unit cell instead of the full unit cell. We would expect the spectral curve obtained from the Kasteleyn matrix as a function in Y2Y^{2}.

Consider the eigenvector ψ=(ψN,,ψ0,ψ0,,ψN)\psi=(\psi_{N},\dots,\psi_{0},\psi_{0^{\prime}},\dots,\psi_{N^{\prime}}) of the Kasteleyn matrix.

s23ψ3+(h2Xh~2)ψ2+s21ψ1+s20ψ0=0,\displaystyle s_{23}\psi_{3}+\left(\frac{h_{2}}{X}-{\tilde{h}_{2}}\right)\psi_{2}+s_{21}\psi_{1}+s_{20}\psi_{0}=0, (55a)
s12ψ2+h1ψ1s10Xψ0=0,\displaystyle s_{12}\psi_{2}+h_{1}\psi_{1}-{s_{10}}{X}\psi_{0}=0, (55b)
s01ψ1+h0ψ0+s00YXψ0+s01Yψ1=0,\displaystyle-s_{01}\psi_{1}+h_{0}\psi_{0}+\frac{s_{00^{\prime}}Y}{X}\psi_{0^{\prime}}+s_{01^{\prime}}Y\psi_{1^{\prime}}=0, (55c)
s01Yψ1+s00XYψ0h0ψ0+s01ψ1=0,\displaystyle\frac{s_{0^{\prime}1}}{Y}\psi_{1}+\frac{s_{0^{\prime}0}X}{Y}\psi_{0}-h_{0^{\prime}}\psi_{0^{\prime}}+s_{0^{\prime}1^{\prime}}\psi_{1^{\prime}}=0, (55d)
s10Xψ0h1ψ1+s12ψ2=0,\displaystyle\frac{s_{1^{\prime}0^{\prime}}}{X}\psi_{0^{\prime}}-h_{1^{\prime}}\psi_{1^{\prime}}+s_{1^{\prime}2^{\prime}}\psi_{2^{\prime}}=0, (55e)
s20ψ0+s21ψ1+(h2h~2X)ψ2+s23ψ3=0.\displaystyle s_{2^{\prime}0^{\prime}}\psi_{0^{\prime}}+s_{2^{\prime}1^{\prime}}\psi_{1^{\prime}}+\left({h_{2^{\prime}}}-\tilde{h}_{2^{\prime}}X\right)\psi_{2^{\prime}}+s_{2^{\prime}3^{\prime}}\psi_{3^{\prime}}=0. (55f)

Combining the third and the fourth equations gives:

(s01s01+s01s01)ψ1+(s01h0+s00s01X)ψ0+(s01h0+s00s01X)Yψ0=0\displaystyle\left(s_{01^{\prime}}s_{0^{\prime}1}+s_{0^{\prime}1^{\prime}}s_{01}\right)\psi_{1}+\left(s_{0^{\prime}1^{\prime}}h_{0}+s_{0^{\prime}0}s_{01^{\prime}}X\right)\psi_{0}+\left(-s_{01^{\prime}}h_{0^{\prime}}+\frac{s_{00^{\prime}}s_{0^{\prime}1^{\prime}}}{X}\right)Y\psi_{0^{\prime}}=0 (56a)
(s00s01X+s01h0)1Yψ0+(s01h0+s00s01X)ψ0+(s01s01+s01s01)ψ1=0\displaystyle\left(s_{0^{\prime}0}s_{01}X+s_{0^{\prime}1}h_{0}\right)\frac{1}{Y}\psi_{0}+\left(-s_{01}h_{0^{\prime}}+\frac{s_{00^{\prime}}s_{0^{\prime}1}}{X}\right)\psi_{0^{\prime}}+\left(s_{0^{\prime}1}s_{01^{\prime}}+s_{01}s_{0^{\prime}1^{\prime}}\right)\psi_{1^{\prime}}=0 (56b)
Refer to caption
Figure 14: Assignment of the edges a weight associated to canonical coordinates which gives the correct loop contribution. Note that there exists more than one way to assign the edges. Different assignment are related by gauge transformation.

We combine the matrices that transfers through the boundary by

(1e2𝚚1)YX(X1)2(ψ2ψ~1=ψ1+s20s21ψ0)=(TLTRs21BLs21BRs212)(ψ1+s20s21ψ0ψ2)=(1e2𝚚1)K~1(ψ~1=ψ1+s20s21ψ0ψ2)\displaystyle\begin{split}(1-e^{-2\mathtt{q}_{1}})\frac{Y}{X}(X-1)^{2}\begin{pmatrix}\psi_{2}\\ \tilde{\psi}_{1}=\psi_{1}+\frac{s_{20}}{s_{21}}\psi_{0}\end{pmatrix}&=\begin{pmatrix}TL&TRs_{21}\\ BLs_{21}&BRs_{21}^{2}\end{pmatrix}\begin{pmatrix}\psi_{1^{\prime}}+\frac{s_{2^{\prime}0^{\prime}}}{s_{2^{\prime}1^{\prime}}}\psi_{0^{\prime}}\\ \psi_{2^{\prime}}\end{pmatrix}\\ &=(1-e^{-2\mathtt{q}_{1}})\tilde{K}_{1}\begin{pmatrix}\tilde{\psi}_{1^{\prime}}=\psi_{1^{\prime}}+\frac{s_{2^{\prime}0^{\prime}}}{s_{2^{\prime}1^{\prime}}}\psi_{0^{\prime}}\\ \psi_{2^{\prime}}\end{pmatrix}\end{split} (57)

We assign the canonical coordinates to the edges across the double impurity according to Fig. 14. The four components of the reflection matrix K~1\tilde{K}_{1} are given by

TL=(1e2𝚚1)[X+1Xe2𝚚1(e𝚙12+e𝚙1)e𝚙1e𝚙1],TL=-(1-e^{-2\mathtt{q}_{1}})\left[X+\frac{1}{X}-e^{-2\mathtt{q}_{1}}(e^{\mathtt{p}_{1}}-2+e^{-\mathtt{p}_{1}})-e^{\mathtt{p}_{1}}-e^{-\mathtt{p}_{1}}\right],
TR=(1e2𝚚1)[(e𝚙1+1)(1e2𝚚1)X(e𝚙1+1)(1e2𝚚1)],TR=-(1-e^{-2\mathtt{q}_{1}})\left[(e^{-\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})X-(e^{\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})\right],
BL=(1e2𝚚1)[(e𝚙1+1)(1e2𝚚1)1X(e𝚙1+1)(1e2𝚚1)],BL=(1-e^{-2\mathtt{q}_{1}})\left[(e^{-\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})\frac{1}{X}-(e^{\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})\right],
BR=(1e2𝚚1)[e2𝚚1(X+1X)+(1e2𝚚1)(e𝚙1+e𝚙1)2].BR=(1-e^{-2\mathtt{q}_{1}})\left[e^{-2\mathtt{q}_{1}}\left(X+\frac{1}{X}\right)+(1-e^{-2\mathtt{q}_{1}})(e^{-\mathtt{p}_{1}}+e^{\mathtt{p}_{1}})-2\right].

See Appendix. C for computational detail. We further take canonical coordinate transformation (38) and modifies s21=s21s_{21}=s_{2^{\prime}1^{\prime}} according to (39), which yields

K~1=(X+1X2cosh2𝚚12cosh𝚙12𝚚12X2cosh𝚙1+2𝚚122Xcosh𝚙12𝚚12+2cosh𝚙1+2𝚚12X1X+2cosh𝚙1).\displaystyle\begin{split}\tilde{K}_{1}&=\begin{pmatrix}X+\frac{1}{X}-2\cosh 2\mathtt{q}_{1}&2\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{1}}{2}X-2\cosh\frac{\mathtt{p}_{1}+2\mathtt{q}_{1}}{2}\\ -\frac{2}{X}\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{1}}{2}+2\cosh\frac{\mathtt{p}_{1}+2\mathtt{q}_{1}}{2}&-X-\frac{1}{X}+2\cosh\mathtt{p}_{1}\end{pmatrix}.\end{split} (58)

Similarly on the other side of the half unit cell, we obtain

K~N=(X+1X2cosh2𝚚N2cosh𝚙12𝚚N2X2cosh𝚙N+2𝚚N22Xcosh𝚙N2𝚚N2+2cosh𝚙N+2𝚚N2X1X+2cosh𝚙N).\displaystyle\begin{split}\tilde{K}_{N}&=\begin{pmatrix}X+\frac{1}{X}-2\cosh 2\mathtt{q}_{N}&2\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{N}}{2}X-2\cosh\frac{\mathtt{p}_{N}+2\mathtt{q}_{N}}{2}\\ -\frac{2}{X}\cosh\frac{\mathtt{p}_{N}-2\mathtt{q}_{N}}{2}+2\cosh\frac{\mathtt{p}_{N}+2\mathtt{q}_{N}}{2}&-X-\frac{1}{X}+2\cosh\mathtt{p}_{N}\end{pmatrix}.\end{split} (59)

The monodromy matrix is defined by ordered product of the reflection matrices and Lax operators. With a proper gauge transformation, we obtain

𝐓(X)=K+(X)L~2(X)L~N1(X)K(X)LN1(X)L2(X).\displaystyle\mathbf{T}(X)=K_{+}(X)\tilde{L}_{2}(X)\cdots\tilde{L}_{N-1}(X)K_{-}(X)L_{N-1}(X)\cdots L_{2}(X). (60)

The Lax matrices and reflection matrices are given by

Lj(X)\displaystyle L_{j}(X) =(2sinhx𝚙j2e𝚙je𝚙j0),L~j(X)=(0e𝚚je𝚚j2sinhx+𝚙j2),\displaystyle=\begin{pmatrix}2\sinh\frac{x-\mathtt{p}_{j}}{2}&-e^{-\mathtt{p}_{j}}\\ e^{\mathtt{p}_{j}}&0\end{pmatrix},\quad\tilde{L}_{j}(X)=\begin{pmatrix}0&e^{-\mathtt{q}_{j}}\\ e^{\mathtt{q}_{j}}&2\sinh\frac{x+\mathtt{p}_{j}}{2}\end{pmatrix}, (61a)
K+(X)\displaystyle K_{+}(X) =(2Xcosh𝚙12𝚚122Xcosh𝚙1+2𝚚12X+1X2cosh2𝚚1X1X+2cosh𝚙12Xcosh𝚙1+2𝚚122Xcosh𝚙12𝚚12),\displaystyle=\begin{pmatrix}2\sqrt{X}\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{1}}{2}-\frac{2}{\sqrt{X}}\cosh\frac{\mathtt{p}_{1}+2\mathtt{q}_{1}}{2}&X+\frac{1}{X}-2\cosh 2\mathtt{q}_{1}\\ -X-\frac{1}{X}+2\cosh\mathtt{p}_{1}&2\sqrt{X}\cosh\frac{\mathtt{p}_{1}+2\mathtt{q}_{1}}{2}-\frac{2}{\sqrt{X}}\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{1}}{2}\end{pmatrix}, (61b)
K(X)\displaystyle K_{-}(X) =(2Xcosh𝚙N+2𝚚N22Xcosh𝚙N2𝚚N2X1X+2cosh𝚙NX+1X2cosh2𝚚N2Xcosh𝚙12𝚚N22Xcosh𝚙N+2𝚚N2).\displaystyle=\begin{pmatrix}2\sqrt{X}\cosh\frac{\mathtt{p}_{N}+2\mathtt{q}_{N}}{2}-\frac{2}{\sqrt{X}}\cosh\frac{\mathtt{p}_{N}-2\mathtt{q}_{N}}{2}&-X-\frac{1}{X}+2\cosh\mathtt{p}_{N}\\ X+\frac{1}{X}-2\cosh 2\mathtt{q}_{N}&2\sqrt{X}\cosh\frac{\mathtt{p}_{1}-2\mathtt{q}_{N}}{2}-\frac{2}{\sqrt{X}}\cosh\frac{\mathtt{p}_{N}+2\mathtt{q}_{N}}{2}\end{pmatrix}. (61c)

The monodromy matrix obeys the eigenequation

𝐓(X)(ψ2ψ~1)=Y2(X1X)2(ψ2ψ~1).\displaystyle\mathbf{T}(X)\begin{pmatrix}\psi_{2}\\ \tilde{\psi}_{1}\end{pmatrix}=Y^{2}\left({X}-\frac{1}{{X}}\right)^{2}\begin{pmatrix}\psi_{2}\\ \tilde{\psi}_{1}\end{pmatrix}. (62)

The two components of the vector satisfies the spectral equation

Y2(XX1)2[Y2(XX1)2Tr𝐓(X)+(XX1)2Y2]ψ2=0Y2(XX1)2[Y2(XX1)2Tr𝐓(X)+(XX1)2Y2]ψ~1=0\displaystyle\begin{split}&Y^{2}(X-X^{-1})^{2}\left[Y^{2}(X-X^{-1})^{2}-{\rm Tr}\mathbf{T}(X)+\frac{(X-X^{-1})^{2}}{Y^{2}}\right]\psi_{2}=0\\ &Y^{2}(X-X^{-1})^{2}\left[Y^{2}(X-X^{-1})^{2}-{\rm Tr}\mathbf{T}(X)+\frac{(X-X^{-1})^{2}}{Y^{2}}\right]\tilde{\psi}_{1}=0\end{split} (63)

Recall that YY labels the crossing of half unit cell. we recover the spectral curve in (25) after redefining Y2YY^{2}\to Y. In particular, the transfer matrix (trace of monodromy matrix) (17) is the generating function of all conserving Hamiltonians.

5 Summery and future directions

We construct the dimer graph for the type D relativistic Toda lattice by introducing a double impurity into the type A square dimer. The folding process from type A with impurity to the type D dimer involves identifying the faces and vertices in the dimer unit cell, followed by a change of variables as described in Eq. (38) across the impurity insertion square. Additionally, certain square loops are modified by an overall factor as given in Eq. (39). The resulting Hamiltonian of the double impurity dimer indeed reproduces the D^N\hat{D}_{N} relativistic Toda lattice.

Furthermore, we construct the Lax matrix and reflection matrix from the Kasteleyn matrix of the new dimer graph using the Baker-Akhiezer function associated with the latter. By managing the coefficients of the Baker-Akhiezer function related to the double impurity and properly assigning the canonical coordinates to the edges of the dimer graph, we can reconstruct both reflection matrices at the boundaries.

Let us end this note with some potential future direction:

  • We are interested in the quantum type D relativistic Toda lattice (RTL). Recent studies show that the Bethe/Gauge correspondence provides an excellent tool, particularly for solving the wavefunction of quantum integrable systems. This correspondence has been explored for various non-relativistic integrable systems Nikita:V ; Jeong:2023qdr ; jeong2021intersecting ; Chen:2019vvt ; Chen:2020rxu ; Lee:2020hfu ; Jeong:2017pai ; Jeong:2024hwf ; Jeong:2024mxr .

    It is known that the Nekrasov-Shatashvili free energy, which works excellently in 4D, is insufficient for establishing the 5D Bethe/Gauge correspondence. Correct quantization requires including a tower of non-perturbative effects Grassi:2014zfa ; Franco:2015rnr ; Hatsuda:2015qzx , which can be addressed by introducing a Wilson-loop/quantum mirror map via topological string theory Grassi:2017qee ; Grassi:2014zfa . Off-shell quantization for type A RTL has been explored in Lee:2023wbf .

  • Find potential dimer graphs for type B, C, and E relativistic Toda lattices (RTLs). We anticipate that this can be achieved by appropriately introducing impurities into the embedded type A dimer graph, followed by a folding process.

  • A Poisson graph (or quiver graph) can be constructed based on the blowup of the Lie algebra Dynkin diagram. Studying the quiver graph provides insights into the spectral properties of the relativistic Toda lattice (RTL) Kruglinskaya:2014pza . In principle, the dimer graph associated with the same RTL should be the dual graph of the Poisson graph. This relation is straightforward in the case of type A.

    For types B, C, D, and E, the situation is more complex, as the dual of the quiver graph derived from the Dynkin diagram is often non-planar. It is an interesting topic to explore the potential relationship between the dimer graph we constructed for type D and the Poisson graph.

  • In this note, we introduced a double impurity placed as far apart as possible, based on the toric diagram shared by A2N1/8FA_{2N-1}/8F and DND_{N}. As noted, this is not the only way to modify the dimer graph to construct different but potentially dual integrable systems. Similar observations have been made in Lee:2023wbf .

Appendix A Lax formalism

Let us briefly illustrate how the type A periodic relativistic Toda lattice (RTL) is associated with the YN,0Y^{N,0} square dimer. We will also demonstrate how the N×NN\times N Lax matrix can be derived from the dimer Kasteleyn matrix.

We choose the reference perfect matching on the YN,0Y^{N,0} square dimer, as shown in Fig. 3, to be the horizontal edges with white nodes on the left and black nodes on the right. There are 2N2N 1-loops, denoted cnc_{n} and dnd_{n} for n=1,,Nn=1,\dots,N, which satisfy the commutation relations based on their shared edges:

{cn,dn}=cndn,{dn+1,cn}=cndn+1,{cn,cn+1}=cncn+1.\displaystyle\{c_{n},d_{n}\}=c_{n}d_{n},\quad\{d_{n+1},c_{n}\}=c_{n}d_{n+1},\quad\{c_{n},c_{n+1}\}=-c_{n}c_{n+1}. (64)

with the periodicity cN+1=c1c_{N+1}=c_{1}, dN+1=d1d_{N+1}=d_{1}. See Fig. 15 for illustration.

Refer to caption
Figure 15: The brane tiling for YN,0Y^{N,0} dimer model with NN even. A unit cell is encircled by the dashed blue line. This dimer is associated to the A^N1\hat{A}_{N-1} relativistic Toda lattice.

The 1-loops can be written in terms of the canonical coordinates by

dn=e𝚙n,cn=e𝚚n𝚚n+1e𝚙n+𝚙n+12,n=1,,N.\displaystyle d_{n}=e^{\mathtt{p}_{n}},\ c_{n}=e^{\mathtt{q}_{n}-\mathtt{q}_{n+1}}e^{\frac{\mathtt{p}_{n}+\mathtt{p}_{n+1}}{2}},\ n=1,\dots,N. (65)

The canonical coordinates obeys the periodicity 𝚚N+1=𝚚1\mathtt{q}_{N+1}=\mathtt{q}_{1}, 𝚙N+1=𝚙1\mathtt{p}_{N+1}=\mathtt{p}_{1}. The first Hamiltonian of the YN,0Y^{N,0} dimer graph recovers the A^N1\hat{A}_{N-1} RTL Hamiltonian

H1|YN,0=n=1Ncn+dn=n=1Ne𝚙n+g2e𝚚n𝚚n+1e𝚙n+𝚙n+12=HA^N1\displaystyle H_{1}|_{Y^{N,0}}=\sum_{n=1}^{N}c_{n}+d_{n}=\sum_{n=1}^{N}e^{\mathtt{p}_{n}}+{g}^{2}e^{\mathtt{q}_{n}-\mathtt{q}_{n+1}}e^{\frac{\mathtt{p}_{n}+\mathtt{p}_{n+1}}{2}}={\rm H}_{\hat{A}_{N-1}} (66)

A.1 N×NN\times N Lax matrix

There are two ways to construct the Lax matrix of the integrable system from the dimer graph. The first one is by studying the equation of motion of the 1-loops, the second through Kasteleyn matrix of the dimer graph.

Equation of Motion:

The equations of motion of the coordinates {cn,dn}\{c_{n},d_{n}\} given by the Haamiltonian (66) have the following form

c˙n={cn,H1}=cn(dndn+1+cn1cn+1),d˙n={dn,H1}=dn(cn1cn).\displaystyle\begin{split}\dot{c}_{n}&=\{c_{n},H_{1}\}=c_{n}(d_{n}-d_{n+1}+c_{n-1}-c_{n+1}),\\ \dot{d}_{n}&=\{d_{n},H_{1}\}=d_{n}(c_{n-1}-c_{n}).\end{split} (67)

and can be write as compatibility condition for the two linear problems Kuznetsov:1994ur ; bruschi1989lax

(Xdj)ϕj+X(fjϕj+1+fj1ϕj1)=0ϕ˙j=12(cjcj1+X)ϕjX2(fjϕj+1fj1ϕj1)\displaystyle\begin{split}&(X-d_{j})\phi_{j}+\sqrt{X}(f_{j}\phi_{j+1}+f_{j-1}\phi_{j-1})=0\\ &\dot{\phi}_{j}=-\frac{1}{2}(c_{j}-c_{j-1}+X)\phi_{j}-\frac{\sqrt{X}}{2}(f_{j}\phi_{j+1}-f_{j-1}\phi_{j-1})\end{split} (68)

It can be cast into matrix form

Lϕ=0,ϕ˙=Mϕ\displaystyle L\boldsymbol{\phi}=0,\ \dot{\boldsymbol{\phi}}=-M\boldsymbol{\phi} (69)

The Hamiltonian system obeys a "weak" Lax triad

ddtL=[L,M]+CL\displaystyle\frac{d}{dt}{L}=[L,M]+CL (70)

with the matrices

Lij\displaystyle L_{ij} =(Xdi)δi,j+Xfiδi+1,j+Xfi1δi1,j\displaystyle=(X-d_{i})\delta_{i,j}+\sqrt{X}f_{i}\delta_{i+1,j}+\sqrt{X}f_{i-1}\delta_{i-1,j} (71a)
Mij\displaystyle M_{ij} =12[(cici1+X)δi,j+Xfiδi+1,jXfi1δi1,j]\displaystyle=\frac{1}{2}\left[(c_{i}-c_{i-1}+X)\delta_{i,j}+\sqrt{X}f_{i}\delta_{i+1,j}-\sqrt{X}f_{i-1}\delta_{i-1,j}\right] (71b)
Cij\displaystyle C_{ij} =(cici1)δi,j\displaystyle=(c_{i}-c_{i-1})\delta_{i,j} (71c)

with fi2=cif_{i}^{2}=c_{i}. The matrix CC is diagonal and traceless. This leads to

TrL1dLdt=TrL1([L,M]+CL)=TrC=0.\displaystyle\begin{split}{\rm Tr}L^{-1}\frac{dL}{dt}={\rm Tr}L^{-1}\left([L,M]+CL\right)={\rm Tr}C=0.\end{split} (72)

By using Abel identity

ddtlogdetL=TrL1dLdt=0\frac{d}{dt}\log\det L={\rm Tr}L^{-1}\frac{dL}{dt}=0

one concludes detL(X,Y)\det L(X,Y) is the generating function of the integral of motion of RTL.

Kasteleyn matrix:

The Kasteleyn matrix of square dimer in Fig.15 is

K𝚋n,𝚠m={(hnh~nX1),n=m2+1;(hnXh~n),n=m2;v~mYδm,1,n=m1mod(N);vmYδm,Nn=m+1,mod(N);0,otherwise\displaystyle K_{\mathtt{b}_{n},\mathtt{w}_{m}}=\begin{cases}(h_{n}-\tilde{h}_{n}X^{-1}),&n=m\in 2\mathbb{Z}+1;\\ (h_{n}X-\tilde{h}_{n}),&n=m\in 2\mathbb{Z};\\ \tilde{v}_{m}Y^{\delta_{m,1}},&n=m-1\ \text{mod}(N);\\ v_{m}Y^{-\delta_{m,N}}&n=m+1,\ \text{mod}(N);\\ 0,&\text{otherwise}\end{cases} (73)

The 1-loops are constructed through the dimer edges

dn=hn1h~n=e𝚙n,cn=hn1vn1hn11v~n=e𝚚n𝚚n+1e𝚙n+𝚙n+12.\displaystyle\begin{split}d_{n}&=h_{n}^{-1}\tilde{h}_{n}=e^{\mathtt{p}_{n}},\quad c_{n}=h_{n}^{-1}v_{n-1}h_{n-1}^{-1}\tilde{v}_{n}=e^{\mathtt{q}_{n}-\mathtt{q}_{n+1}}e^{\frac{\mathtt{p}_{n}+\mathtt{p}_{n+1}}{2}}.\end{split} (74)

We consider N×1N\times 1 vector

𝝍=(ψ1ψ2ψN),K𝚋,𝚠𝝍=0\boldsymbol{\psi}=\begin{pmatrix}\psi_{1}\\ \psi_{2}\\ \vdots\\ \psi_{N}\end{pmatrix},\quad K_{\mathtt{b},\mathtt{w}}\boldsymbol{\psi}=0

Expanding the matrix equation gives NN equations

(hnh~nX1)ψn+vn1ψn1+v~n+1ψn+1=0,n2+1;(hnXh~n)ψn+vn1ψn1+v~n+1ψn+1=0,n2.\displaystyle\begin{split}&(h_{n}-\tilde{h}_{n}X^{-1})\psi_{n}+v_{n-1}\psi_{n-1}+\tilde{v}_{n+1}\psi_{n+1}=0,\ n\in 2\mathbb{Z}+1;\\ &(h_{n}X-\tilde{h}_{n})\psi_{n}+v_{n-1}\psi_{n-1}+\tilde{v}_{n+1}\psi_{n+1}=0,\ n\in 2\mathbb{Z}.\end{split} (75)

with periodicity ψn+N=yψn\psi_{n+N}=y\psi_{n}. By shifting

ψn{Xψn,n2+11Xψn,n2.\psi_{n}\to\begin{cases}\sqrt{X}\psi_{n},&n\in 2\mathbb{Z}+1\\ \frac{1}{\sqrt{X}}\psi_{n},&n\in 2\mathbb{Z}.\end{cases}

We obtain NN equations

(Xhn1h~n)ψn+Xhn1(vn1ψn1+v~n+1ψn+1)=0\displaystyle(X-h^{-1}_{n}\tilde{h}_{n})\psi_{n}+\sqrt{X}h^{-1}_{n}(v_{n-1}\psi_{n-1}+\tilde{v}_{n+1}\psi_{n+1})=0 (76)

which can be organized into a matrix equation

L~𝝍=0,L~nm=(Xhn1h~n)δn,m+Xhn1(vn1δn1,m+v~n+1δn+1,m)\displaystyle\tilde{L}\boldsymbol{\psi}=0,\ \tilde{L}_{nm}=(X-h^{-1}_{n}\tilde{h}_{n})\delta_{n,m}+\sqrt{X}h^{-1}_{n}(v_{n-1}\delta_{n-1,m}+\tilde{v}_{n+1}\delta_{n+1,m}) (77)

We further conjugate diagonal matrix A=diag(a1,,aN)A=\text{diag}(a_{1},\dots,a_{N}) with

anan1=v~nhnvn1hn1\frac{a_{n}}{a_{n-1}}=\sqrt{\frac{\tilde{v}_{n}h_{n}}{v_{n-1}h_{n-1}}}

to obtain

Lnm=(AL~A1)nm=(Xdn)δnm+X(fnδn1,m+fn+1δn+1,m)\displaystyle L_{nm}=(A\tilde{L}A^{-1})_{nm}=(X-d_{n})\delta_{nm}+\sqrt{X}(f_{n}\delta_{n-1,m}+f_{n+1}\delta_{n+1,m}) (78)

with fn2=cnf_{n}^{2}=c_{n}.

A.2 2×22\times 2 Lax matrix

The 2×22\times 2 Lax formalism proposed by Sklyanin is equivalent to the N×NN\times N Lax matrix. Define 2×12\times 1 vector

Ξn=(ψnψn1)\displaystyle\Xi_{n}=\begin{pmatrix}\psi_{n}\\ \psi_{n-1}\end{pmatrix} (79)

The NN equations (50) can be organized into NN 2×22\times 2 matrix equation

Xhn1v~n+1Ξn+1=(Xhn1h~nXhn1vn1Xhn1v~n+10)Ξn=Xhn1Ln(X)Ξn\displaystyle\sqrt{X}h_{n}^{-1}\tilde{v}_{n+1}\Xi_{n+1}=\begin{pmatrix}X-h_{n}^{-1}\tilde{h}_{n}&-\sqrt{X}h_{n}^{-1}v_{n-1}\\ \sqrt{X}h_{n}^{-1}\tilde{v}_{n+1}&0\end{pmatrix}\Xi_{n}=\sqrt{X}h_{n}^{-1}L_{n}(X)\Xi_{n} (80)

The monodromy matrix is defined by

𝐓(X)=LN(x)L1(X).\displaystyle\mathbf{T}(X)=L_{N}(x)\cdots L_{1}(X). (81)

Appendix B Canonical change of variables

Let us check the change of variables in (38) is canonical by direct computation:

e𝚚e𝚙={e𝚚,e𝚙}{cosh𝚙2sinh𝚚,cosh𝚙2𝚚2cosh𝚙+2𝚚2}=𝚚cosh𝚙2sinh𝚚𝚙cosh𝚙2𝚚2cosh𝚙+2𝚚2𝚚cosh𝚙2𝚚2cosh𝚙+2𝚚2𝚙cosh𝚙2sinh𝚚=cosh𝚙2cosh𝚚sinh2𝚚12sinh𝚙2𝚚2cosh𝚙+2𝚚2cosh𝚙2𝚚2sinh𝚙+2𝚚2cosh2𝚙+2𝚚2+sinh𝚙2𝚚2cosh𝚙+2𝚚2+cosh𝚙2𝚚2sinh𝚙+2𝚚2cosh2𝚙+2𝚚212sinh𝚙2sinh𝚚=12sinh𝚙sinh𝚙2sinh𝚚+cosh𝚙2cosh𝚚sinh2𝚚sinh2𝚚cosh2𝚙+2𝚚2=cosh𝚙2sinh2𝚙2+cosh𝚙2cosh2𝚚sinh𝚚cosh2𝚙+2𝚚2=cosh𝚙2sinh𝚚cosh𝚙2𝚚2cosh𝚙+2𝚚2\displaystyle\begin{split}e^{\mathtt{q}}e^{\mathtt{p}}&=\{e^{\mathtt{q}},e^{\mathtt{p}}\}\\ &\to\left\{\frac{\cosh\frac{\mathtt{p}}{2}}{\sinh\mathtt{q}},\frac{\cosh\frac{\mathtt{p}-2\mathtt{q}}{2}}{\cosh\frac{\mathtt{p}+2\mathtt{q}}{2}}\right\}\\ &=\frac{\partial}{\partial\mathtt{q}}\frac{\cosh\frac{\mathtt{p}}{2}}{\sinh\mathtt{q}}\frac{\partial}{\partial\mathtt{p}}\frac{\cosh\frac{\mathtt{p}-2\mathtt{q}}{2}}{\cosh\frac{\mathtt{p}+2\mathtt{q}}{2}}-\frac{\partial}{\partial\mathtt{q}}\frac{\cosh\frac{\mathtt{p}-2\mathtt{q}}{2}}{\cosh\frac{\mathtt{p}+2\mathtt{q}}{2}}\frac{\partial}{\partial\mathtt{p}}\frac{\cosh\frac{\mathtt{p}}{2}}{\sinh\mathtt{q}}\\ &=-\frac{\cosh\frac{\mathtt{p}}{2}\cosh\mathtt{q}}{\sinh^{2}\mathtt{q}}\frac{1}{2}\frac{\sinh\frac{\mathtt{p}-2\mathtt{q}}{2}\cosh\frac{\mathtt{p}+2\mathtt{q}}{2}-\cosh\frac{\mathtt{p}-2\mathtt{q}}{2}\sinh\frac{\mathtt{p}+2\mathtt{q}}{2}}{\cosh^{2}\frac{\mathtt{p}+2\mathtt{q}}{2}}\\ &\qquad+\frac{\sinh\frac{\mathtt{p}-2\mathtt{q}}{2}\cosh\frac{\mathtt{p}+2\mathtt{q}}{2}+\cosh\frac{\mathtt{p}-2\mathtt{q}}{2}\sinh\frac{\mathtt{p}+2\mathtt{q}}{2}}{\cosh^{2}\frac{\mathtt{p}+2\mathtt{q}}{2}}\frac{1}{2}\frac{\sinh\frac{\mathtt{p}}{2}}{\sinh\mathtt{q}}\\ &=\frac{1}{2}\frac{\sinh\mathtt{p}\sinh\frac{\mathtt{p}}{2}\sinh\mathtt{q}+\cosh\frac{\mathtt{p}}{2}\cosh\mathtt{q}\sinh 2\mathtt{q}}{\sinh^{2}\mathtt{q}\cosh^{2}\frac{\mathtt{p}+2\mathtt{q}}{2}}\\ &=\frac{\cosh\frac{\mathtt{p}}{2}\sinh^{2}\frac{\mathtt{p}}{2}+\cosh\frac{\mathtt{p}}{2}\cosh^{2}\mathtt{q}}{\sinh\mathtt{q}\cosh^{2}\frac{\mathtt{p}+2\mathtt{q}}{2}}\\ &=\frac{\cosh\frac{\mathtt{p}}{2}}{\sinh\mathtt{q}}\frac{\cosh\frac{\mathtt{p}-2\mathtt{q}}{2}}{\cosh\frac{\mathtt{p}+2\mathtt{q}}{2}}\end{split} (82)

Appendix C Detail computation in section 4.2

The six components of the Kasteleyn matrix Baker-Akzeihier function (55) across the double impurity insertion can be organized into six matrix equations

s23(ψ3ψ2)=(h~2h2Xs21s230)(ψ2ψ1+s20s21ψ0)\displaystyle s_{23}\begin{pmatrix}\psi_{3}\\ \psi_{2}\end{pmatrix}=\begin{pmatrix}\tilde{h}_{2}-\frac{h_{2}}{X}&-s_{21}\\ s_{23}&0\end{pmatrix}\begin{pmatrix}\psi_{2}\\ \psi_{1}+\frac{s_{20}}{s_{21}}\psi_{0}\end{pmatrix} (83a)
s12(ψ2ψ1+s20s21ψ0)=(h1s10Xs12s12s20s21)(ψ1ψ0)\displaystyle s_{12}\begin{pmatrix}\psi_{2}\\ \psi_{1}+\frac{s_{20}}{s_{21}}\psi_{0}\end{pmatrix}=\begin{pmatrix}-h_{1}&{s_{10}}{X}\\ s_{12}&s_{12}\frac{s_{20}}{s_{21}}\end{pmatrix}\begin{pmatrix}\psi_{1}\\ \psi_{0}\end{pmatrix} (83b)
(s01s01s01s01)(ψ1ψ0)=(s01h0+s00s01Xh0s01+s00s01Xs01s01s01s010)(ψ0Yψ0)\displaystyle(-s_{0^{\prime}1^{\prime}}s_{01}-s_{01^{\prime}}s_{0^{\prime}1})\begin{pmatrix}\psi_{1}\\ \psi_{0}\end{pmatrix}=\begin{pmatrix}s_{0^{\prime}1^{\prime}}h_{0}+s_{0^{\prime}0}s_{01^{\prime}}X&h_{0^{\prime}}s_{01^{\prime}}+\frac{s_{00^{\prime}}s_{0^{\prime}1^{\prime}}}{X}\\ -s_{0^{\prime}1^{\prime}}s_{01}-s_{01^{\prime}}s_{0^{\prime}1}&0\end{pmatrix}\begin{pmatrix}\psi_{0}\\ Y\psi_{0^{\prime}}\end{pmatrix} (83c)
1Y(s01s00X+h0s01)(ψ0Yψ0)=(h0s01s00s01Xs01s01s01s01s01s00X+h0s010)(ψ0ψ1)\displaystyle\frac{1}{Y}(s_{01}s_{0^{\prime}0}X+h_{0}s_{0^{\prime}1})\begin{pmatrix}\psi_{0}\\ Y\psi_{0^{\prime}}\end{pmatrix}=\begin{pmatrix}h_{0^{\prime}}s_{01}-\frac{s_{00^{\prime}}s_{0^{\prime}1}}{X}&-s_{01}s_{0^{\prime}1^{\prime}}-s_{0^{\prime}1}s_{01^{\prime}}\\ s_{01}s_{0^{\prime}0}X+h_{0}s_{0^{\prime}1}&0\end{pmatrix}\begin{pmatrix}\psi_{0^{\prime}}\\ \psi_{1^{\prime}}\end{pmatrix} (83d)
(s20h1Xs10s21)(ψ0ψ1)=Xs21(h1s12s10Xs12s20s21)(ψ1+s20s21ψ0ψ2)\displaystyle(s_{2^{\prime}0^{\prime}}h_{1^{\prime}}X-s_{1^{\prime}0^{\prime}}s_{2^{\prime}1^{\prime}})\begin{pmatrix}\psi_{0^{\prime}}\\ \psi_{1^{\prime}}\end{pmatrix}=Xs_{2^{\prime}1^{\prime}}\begin{pmatrix}-h_{1^{\prime}}&s_{1^{\prime}2^{\prime}}\\ -\frac{s_{1^{\prime}0^{\prime}}}{X}&-s_{1^{\prime}2^{\prime}}\frac{s_{2^{\prime}0^{\prime}}}{s_{2^{\prime}1^{\prime}}}\end{pmatrix}\begin{pmatrix}\psi_{1^{\prime}}+\frac{s_{2^{\prime}0^{\prime}}}{s_{2^{\prime}1^{\prime}}}\psi_{0^{\prime}}\\ \psi_{2^{\prime}}\end{pmatrix} (83e)
s21(ψ1+s20s21ψ0ψ2)=(h~2Xh2s23s210)(ψ2ψ3)\displaystyle s_{2^{\prime}1^{\prime}}\begin{pmatrix}\psi_{1^{\prime}}+\frac{s_{2^{\prime}0^{\prime}}}{s_{2^{\prime}1^{\prime}}}\psi_{0^{\prime}}\\ \psi_{2^{\prime}}\end{pmatrix}=\begin{pmatrix}{\tilde{h}_{2^{\prime}}}{X}-h_{2^{\prime}}&-s_{2^{\prime}3^{\prime}}\\ s_{2^{\prime}1^{\prime}}&0\end{pmatrix}\begin{pmatrix}\psi_{2^{\prime}}\\ \psi_{3^{\prime}}\end{pmatrix} (83f)

We will combine the matrices in the second to fifth line

(h1s10Xs12s12s20s21)(s01h0+s00s01Xh0s01+s00s01Xs01s01s01s010)×(h0s01s00s01Xs01s01s01s01s01s00X+h0s010)(h1s12s10Xs12s20s21)=(100s12)([s10(s01s01+s01s01)+h1s00s01]Xh1h0s01h1h0s01h1s00s01Xs00s01X+s01h0(s01s01+s01s01)s20s21h0s01+s00s01X)×(h0h1s01+(s01s01+s01s01)s10+h1s00s01X[h0s01+(s01s01+s01s01)s20s21]s00s01Xh1s01s00Xh1h0s01s01s00X+h0s01)(100s12)=(TLTRs12BLs12BRs122)\displaystyle\begin{split}&\begin{pmatrix}-h_{1}&{s_{10}}{X}\\ s_{12}&s_{12}\frac{s_{20}}{s_{21}}\end{pmatrix}\begin{pmatrix}s_{0^{\prime}1^{\prime}}h_{0}+s_{0^{\prime}0}s_{01^{\prime}}X&h_{0^{\prime}}s_{01^{\prime}}+\frac{s_{00^{\prime}}s_{0^{\prime}1^{\prime}}}{X}\\ -s_{0^{\prime}1^{\prime}}s_{01}-s_{01^{\prime}}s_{0^{\prime}1}&0\end{pmatrix}\\ &\times\begin{pmatrix}h_{0^{\prime}}s_{01}-\frac{s_{00^{\prime}}s_{0^{\prime}1}}{X}&-s_{01}s_{0^{\prime}1^{\prime}}-s_{0^{\prime}1}s_{01^{\prime}}\\ s_{01}s_{0^{\prime}0}X+h_{0}s_{0^{\prime}1}&0\end{pmatrix}\begin{pmatrix}-h_{1^{\prime}}&s_{1^{\prime}2^{\prime}}\\ -\frac{s_{1^{\prime}0^{\prime}}}{X}&-s_{1^{\prime}2^{\prime}}\frac{s_{2^{\prime}0^{\prime}}}{s_{2^{\prime}1^{\prime}}}\end{pmatrix}\\ =&\begin{pmatrix}1&0\\ 0&s_{12}\end{pmatrix}\begin{pmatrix}-[s_{10}(s_{01}s_{0^{\prime}1^{\prime}}+s_{01^{\prime}}s_{0^{\prime}1})+h_{1}s_{0^{\prime}0}s_{01^{\prime}}]X-h_{1}h_{0}s_{0^{\prime}1^{\prime}}&-h_{1}h_{0^{\prime}}s_{01^{\prime}}-\frac{h_{1}s_{00^{\prime}}s_{0^{\prime}1^{\prime}}}{X}\\ s_{0^{\prime}0}s_{01^{\prime}}X+s_{0^{\prime}1^{\prime}}h_{0}-(s_{01}s_{0^{\prime}1^{\prime}}+s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}&h_{0^{\prime}}s_{01^{\prime}}+\frac{s_{00^{\prime}}s_{0^{\prime}1^{\prime}}}{X}\end{pmatrix}\\ &\times\begin{pmatrix}-h_{0}h_{1}s_{01}+\frac{(s_{01}s_{0^{\prime}1^{\prime}}+s_{01^{\prime}}s_{0^{\prime}1})s_{1^{\prime}0^{\prime}}+h_{1^{\prime}}s_{00^{\prime}}s_{0^{\prime}1}}{X}&\left[h_{0}s_{01}+(s_{01}s_{0^{\prime}1^{\prime}}+s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}\right]-\frac{s_{00^{\prime}}s_{01^{\prime}}}{X}\\ -h_{1^{\prime}}s_{01}s_{0^{\prime}0}X-h_{1^{\prime}}h_{0}s_{0^{\prime}1}&s_{01}s_{0^{\prime}0}X+h_{0}s_{0^{\prime}1}\end{pmatrix}\begin{pmatrix}1&0\\ 0&s_{12}\end{pmatrix}\\ =&\begin{pmatrix}TL&TRs_{12}\\ BLs_{12}&BRs_{12}^{2}\end{pmatrix}\end{split} (84)

The folding restricts:

h0=h0,h1=h1,s01=s01,s10=s10,s12=s12,s01=s01,s00=s00.h_{0}=h_{0^{\prime}},\ h_{1}=h_{1^{\prime}},\ s_{01}=s_{0^{\prime}1^{\prime}},\ s_{10}=s_{1^{\prime}0^{\prime}},\ s_{12}=s_{1^{\prime}2^{\prime}},\ s_{01^{\prime}}=s_{0^{\prime}1},\ s_{0^{\prime}0}=s_{00^{\prime}}.
(100s12)([s10(s01s01s01s01)h1s00s01]Xh1h0s01h1h0s01h1s00s01Xs00s01X+s01h0+(s01s01s01s01)s20s21h0s01+s00s01X)×(h0h1s01+(s012s01s01)s10h1s00s01X[h0s01+(s012s01s01)s20s21]s00s01Xh1s01s00X+h1h0s01s01s00X+h0s01)(100s12)=(TLTRs12BLs12BRs122)\displaystyle\begin{split}&\begin{pmatrix}1&0\\ 0&s_{12}\end{pmatrix}\begin{pmatrix}[s_{10}(s_{01}s_{0^{\prime}1^{\prime}}-s_{01^{\prime}}s_{0^{\prime}1})-h_{1}s_{0^{\prime}0}s_{01^{\prime}}]X-h_{1}h_{0}s_{0^{\prime}1^{\prime}}&-h_{1}h_{0^{\prime}}s_{01^{\prime}}-\frac{h_{1}s_{00^{\prime}}s_{0^{\prime}1^{\prime}}}{X}\\ s_{0^{\prime}0}s_{01^{\prime}}X+s_{0^{\prime}1^{\prime}}h_{0}+(s_{01}s_{0^{\prime}1^{\prime}}-s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}&h_{0^{\prime}}s_{01^{\prime}}+\frac{s_{00^{\prime}}s_{01}}{X}\end{pmatrix}\\ &\times\begin{pmatrix}-h_{0}h_{1}s_{01}+\frac{(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})s_{10}-h_{1}s_{00^{\prime}}s_{0^{\prime}1}}{X}&-\left[h_{0}s_{01}+(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}\right]-\frac{s_{00^{\prime}}s_{01^{\prime}}}{X}\\ h_{1}s_{01}s_{0^{\prime}0}X+h_{1}h_{0}s_{0^{\prime}1}&s_{01}s_{0^{\prime}0}X+h_{0}s_{0^{\prime}1}\end{pmatrix}\begin{pmatrix}1&0\\ 0&s_{12}\end{pmatrix}\\ &=\begin{pmatrix}TL&TRs_{12}\\ BLs_{12}&BRs_{12}^{2}\end{pmatrix}\end{split} (85)
TL=(s012s01s01)h0h1s01s10(X+1X)+(s10s012s10s01s01h1s00s01)2+h02h12(s012s01s01)h12s012s00s00=(s012s012)[s01s10h0h1(X+1X)+s102(s012s012)2s00s01h1s10+h02h12h12s002]\displaystyle\begin{split}TL=&-(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})h_{0}h_{1}s_{01}s_{10}\left(X+\frac{1}{X}\right)\\ &+(s_{10}s_{01}^{2}-s_{10}s_{01^{\prime}}s_{0^{\prime}1}-h_{1}s_{0^{\prime}0}s_{01^{\prime}})^{2}+h_{0}^{2}h_{1}^{2}(s_{01}^{2}-s_{0^{\prime}1}s_{01^{\prime}})-h_{1}^{2}s_{01}^{2}s_{00^{\prime}}s_{0^{\prime}0}\\ =&(s_{01}^{2}-s_{01^{\prime}}^{2})\left[-s_{01}s_{10}h_{0}h_{1}\left(X+\frac{1}{X}\right)+s_{10}^{2}(s_{01}^{2}-s_{01^{\prime}}^{2})-2{s_{0^{\prime}0}s_{01^{\prime}}}{h_{1}s_{10}}+{h_{0}^{2}h_{1}^{2}}-h_{1}^{2}s_{00^{\prime}}^{2}\right]\end{split} (86)
TR=[(s10s012s10s01s01h1s00s01)(h0s01+(s012s01s01)s20s21)h1h0s01s01s00]X+[h1h0s01s00s01h1h0s00s01s01]1X(s10(s012s01s01)h1s00s01)s00s01+h1h0s01(h0s01+(s012s01s01)s20s21)h1h02s01s01h1s00s00s012=(s012s012)[s10s20s21(s012s012)h0s01s10+h1s00s01s20s21]X+(s012s012)[h1h02h1s00s00s10s00s01+h1h0s01s20s21]\displaystyle\begin{split}TR=&\left[-(s_{10}s_{01}^{2}-s_{10}s_{01^{\prime}}s_{0^{\prime}1}-h_{1}s_{0^{\prime}0}s_{01^{\prime}})\left(h_{0}s_{01}+(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}\right)-h_{1}h_{0}s_{01^{\prime}}s_{01}s_{0^{\prime}0}\right]X\\ &+\left[h_{1}h_{0}s_{01}s_{00^{\prime}}s_{01^{\prime}}-h_{1}h_{0}s_{00^{\prime}}s_{01}s_{01^{\prime}}\right]\frac{1}{X}\\ &-(s_{10}(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})-h_{1}s_{0^{\prime}0}s_{01^{\prime}})s_{00^{\prime}}s_{01^{\prime}}+h_{1}h_{0}s_{01}\left(h_{0}s_{01}+(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}\right)\\ &-h_{1}h_{0}^{2}s_{01^{\prime}}s_{0^{\prime}1}-h_{1}s_{00^{\prime}}s_{0^{\prime}0}s_{01}^{2}\\ =&(s_{01}^{2}-s_{0^{\prime}1}^{2})\left[-\frac{s_{10}s_{20}}{s_{21}}(s_{01}^{2}-s_{0^{\prime}1}^{2})-h_{0}s_{01}s_{10}+h_{1}s_{0^{\prime}0}s_{01^{\prime}}\frac{s_{20}}{s_{21}}\right]X\\ &+(s_{01}^{2}-s_{0^{\prime}1}^{2})\left[h_{1}h_{0}^{2}-h_{1}s_{00^{\prime}}s_{0^{\prime}0}-s_{10}s_{00^{\prime}}s_{01^{\prime}}+h_{1}h_{0}s_{01}\frac{s_{20}}{s_{21}}\right]\end{split} (87)
BL=[h1h0s01s00s01+h1h0s01s00s01]X+[(s10(s012s01s01)h1s00s01)(h0s01+(s012s01s01))s20s21+h1h0s01s01s00]1X+((s012s01s01)s10h1s00s01)s00s01h0h1s01(h0s01+(s012s01s01)s20s21)+h1s012s00s00+h02h1s01s01=(s012s012)[s10s20s21(s012s012)+h0s01s10h1s00s01s20s21]1X+(s012s012)[h1h02+h1s00s00+s10s00s01h1h0s01s20s21]\displaystyle\begin{split}BL=&[-h_{1}h_{0}s_{01}s_{0^{\prime}0}s_{01^{\prime}}+h_{1}h_{0}s_{0^{\prime}1}s_{0^{\prime}0}s_{01}]X\\ &+\left[(s_{10}(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})-h_{1}s_{00^{\prime}}s_{0^{\prime}1})\left(h_{0}s_{01}+(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})\right)\frac{s_{20}}{s_{21}}+h_{1}h_{0}s_{01^{\prime}}s_{01}s_{0^{\prime}0}\right]\frac{1}{X}\\ &+((s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})s_{10}-h_{1}s_{00^{\prime}}s_{0^{\prime}1})s_{0^{\prime}0}s_{01^{\prime}}-h_{0}h_{1}s_{01}\left(h_{0}s_{01}+(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}\right)\\ &+h_{1}s_{01}^{2}s_{00^{\prime}}s_{0^{\prime}0}+h_{0}^{2}h_{1}s_{0^{\prime}1}s_{01^{\prime}}\\ =&(s_{01}^{2}-s_{01^{\prime}}^{2})\left[\frac{s_{10}s_{20}}{s_{21}}(s_{01}^{2}-s_{0^{\prime}1}^{2})+h_{0}s_{01}s_{10}-h_{1}s_{00^{\prime}}s_{0^{\prime}1}\frac{s_{20}}{s_{21}}\right]\frac{1}{X}\\ &+(s_{01}^{2}-s_{01^{\prime}}^{2})\left[-h_{1}h_{0}^{2}+h_{1}s_{00^{\prime}}s_{0^{\prime}0}+s_{10}s_{00^{\prime}}s_{01^{\prime}}-h_{1}h_{0}s_{01}\frac{s_{20}}{s_{21}}\right]\end{split} (88)
BR=s00s01(s012s01s01)s20s21(X+1X)(h0s01+(s012s01s01)s20s21)2s00s01s00s01+h02s01s01+s00s00s012=(s012s012)[s00s01s20s21(X+1X)+(s012s012)s202s2122h0s01s20s21+s00s00h02]\displaystyle\begin{split}BR=&-s_{0^{\prime}0}s_{01^{\prime}}(s_{01}^{2}-s_{01^{\prime}}s_{0^{\prime}1})\frac{s_{20}}{s_{21}}\left(X+\frac{1}{X}\right)\\ &-\left(h_{0}s_{01}+(s_{01}^{2}-s_{0^{\prime}1}s_{01^{\prime}})\frac{s_{20}}{s_{21}}\right)^{2}-s_{0^{\prime}0}s_{01^{\prime}}s_{00^{\prime}}s_{01^{\prime}}+h_{0}^{2}s_{01^{\prime}}s_{0^{\prime}1}+s_{00^{\prime}}s_{0^{\prime}0}s_{01}^{2}\\ =&(s_{01}^{2}-s_{01}^{2})\left[-s_{0^{\prime}0}s_{01^{\prime}}\frac{s_{20}}{s_{21}}\left(X+\frac{1}{X}\right)+(s_{01}^{2}-s_{01^{\prime}}^{2})\frac{s_{20}^{2}}{s_{21}^{2}}-2h_{0}s_{01}\frac{s_{20}}{s_{21}}+s_{00^{\prime}}s_{0^{\prime}0}-h_{0}^{2}\right]\end{split}

We assign the edges on the double impurity according to Fig. 14. We obtain:

TL=(1e2𝚚1)[X+1Xe2𝚚1(e𝚙12+e𝚙1)e𝚙1e𝚙1]TL=-(1-e^{-2\mathtt{q}_{1}})\left[X+\frac{1}{X}-e^{-2\mathtt{q}_{1}}(e^{\mathtt{p}_{1}}-2+e^{-\mathtt{p}_{1}})-e^{\mathtt{p}_{1}}-e^{-\mathtt{p}_{1}}\right]
TR=(1e2𝚚1)[(e𝚙1+1)(1e2𝚚1)X(e𝚙1+1)(1e2𝚚1)]TR=-(1-e^{-2\mathtt{q}_{1}})\left[(e^{-\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})X-(e^{\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})\right]
BL=(1e2𝚚1)[(e𝚙1+1)(1e2𝚚1)1X(e𝚙1+1)(1e2𝚚1)]BL=(1-e^{-2\mathtt{q}_{1}})\left[(e^{-\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})\frac{1}{X}-(e^{\mathtt{p}_{1}}+1)(1-e^{-2\mathtt{q}_{1}})\right]
BR=(1e2𝚚1)[e2𝚚1(X+1X)+(1e2𝚚1)(e𝚙1+e𝚙1)2]BR=(1-e^{-2\mathtt{q}_{1}})\left[e^{-2\mathtt{q}_{1}}\left(X+\frac{1}{X}\right)+(1-e^{-2\mathtt{q}_{1}})(e^{-\mathtt{p}_{1}}+e^{\mathtt{p}_{1}})-2\right]

References