This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Direct and Semi-Direct Approaches to Lepton Mixing with a Massless Neutrino

Stephen F. King E-mail: king@soton.ac.uk School of Physics and Astronomy, University of Southampton,
Southampton, SO17 1BJ, United Kingdom
 Patrick Otto Ludl E-mail: P.Ludl@soton.ac.uk School of Physics and Astronomy, University of Southampton,
Southampton, SO17 1BJ, United Kingdom
(June 24, 2016)
Abstract

We discuss the possibility of enforcing a massless Majorana neutrino in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly predicted by subgroups of a discrete family symmetry, extending previous group searches up to order 1535. We find a phenomenologically viable scheme for the semi-direct approach based on Q(648)Q(648) which contains Δ(27)\Delta(27) and the quaternion group as subgroups. This leads to novel predictions for the first column of the PMNS matrix corresponding to a normal neutrino mass hierarchy with m1=0m_{1}=0, and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ1231\theta_{12}\sim 31^{\circ} and the Dirac (oscillation) CP phase δ\delta being either about ±45\pm 45^{\circ} or ±π\pm\pi.

1 Introduction

Neutrino mass and lepton mixing differs markedly from that of quarks in several ways. The extreme smallness of neutrino mass, together with large lepton mixing provide fascinating clues in the search for a theory of flavour. One idea is that lepton mixing may be governed by a discrete family symmetry group GfG_{f} which controls the Majorana neutrino and charged lepton mass matrices leading to lepton mixing predictions [1, 2]. The three possible implementations of flavour symmetries are known as “direct”, “semi-direct” and “indirect” [1, 2].

According to the “direct” approach, the Klein symmetry Gν=2×2G_{\nu}=\mathbbm{Z}_{2}\times\mathbbm{Z}_{2} of the Majorana neutrino mass matrix and the symmetry GG_{\ell} which fixes the form of the lepton mass matrix are both subgroups of Gf{G}_{f}, resulting in a prediction for all the lepton mixing angles and Dirac phase. The advantage of the direct approach is that the prediction arises purely from symmetry and does not require any detailed knowledge of the model. However, the direct approach requires a rather large group [3, 4, 5, 6], and the only viable mixing pattern is the trimaximal mixing, with δ\delta being either zero or ±π\pm\pi.

In the “semi-direct” approach, the symmetry of the neutrino mass matrix is typically reduced to 2\mathbbm{Z}_{2} for Majorana neutrinos, which constrains only the second column of the PMNS matrix to be (1,1,1)T/3(1,1,1)^{T}/\sqrt{3}, or the first column to be (2,1,1)T/6(2,1,1)^{T}/\sqrt{6} (up to phases), and the reactor angle θ13\theta_{13} can be accommodated with a small discrete group such as S4S_{4}. In the “indirect” approach, the flavour symmetry is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry, and the predictions are model dependent (for a recent review see [7]).

The above direct and semi-direct approaches usually assume three non-degenerate Majorana neutrino masses. There has recently been some discussion of how this picture changes if one of the Majorana neutrino masses is zero [8, 9]. In this case the phase of the massless neutrino field is undetermined resulting in one of the 2\mathbbm{Z}_{2} factors being replaced by n\mathbbm{Z}_{n}, with the consequence that the determinant of the family symmetry Gf{G}_{f} need not be ±1\pm 1, i.e. it is a subgroup of U(3)U(3) rather than SU(3)SU(3). Although this opens up the possibility that a new type of viable direct model being found, in fact only a no-go theorem results from such searches up to order 511 [8, 9].

In the present paper we extend the reach of such searches for direct models with one massless neutrino up to order 1535, but without phenomenological success. On the other hand we also perform a new type of search for semi-direct models up to order 1535, and find a successful example of this kind, based on the group,

Gf(Δ(27)Q8)3G_{f}\simeq(\Delta(27)\rtimes Q_{8})\rtimes\mathbbm{Z}_{3} (1)

where Q8Q_{8} denotes the quaternion group of order 8 and the group is therefore of order 34×8=6483^{4}\times 8=648. We denote this group as Q(648)Q(648). This leads to a successful prediction for the first column of the PMNS matrix,

UPMNS=(Ue1Uμ1Uτ1)U_{\rm PMNS}=\begin{pmatrix}U_{e1}&-&-\\ U_{\mu 1}&-&-\\ U_{\tau 1}&-&-\end{pmatrix} (2)

corresponding to a normal neutrino mass hierarchy with m1=0m_{1}=0 and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ1231\theta_{12}\sim 31^{\circ} and the Dirac (oscillation) CP phase δ\delta either about ±45\pm 45^{\circ} or ±π\pm\pi (e.g. the recent hint of δπ/2\delta\sim-\pi/2 is not allowed).

Before we outline the details of our analysis, we would like to briefly comment on dynamical settings enforcing m1=0m_{1}=0. The most prominent scenarios of this kind are type-I seesaw models with two right-handed neutrinos [10]. Such models necessarily imply the mass of the lightest neutrino to vanish, independent of any imposed flavour symmetries. In the same way, the discrete residual symmetries discussed in this paper lead to m1=0m_{1}=0 independent of the number of right-handed neutrino fields. Therefore, although not directly connected, the two approaches can easily be combined. For example if the three left-handed lepton doublets LL transform under a triplet representation 3 of the flavour group GfG_{f} and three Higgs-doublets (or alternatively three flavons) ϕ\phi also transform under a triplet representation 3\textbf{\lx@text@underline{3}}^{\prime} of GfG_{f}, and the tensor product 33\textbf{\lx@text@underline{3}}^{\ast}\otimes\textbf{\lx@text@underline{3}}^{\prime} contains one or two-dimensional representations, a Dirac Yukawa coupling L¯ϕνR\overline{L}\,{\phi}\,\nu_{R} to two right-handed neutrinos is compatible with GfG_{f}.

The remainder of the paper is laid out as follows. In section 2 we review residual symmetries with a massless Majorana neutrino and describe our strategy and results of group searches for direct and indirect models, for groups up to order 1535. In section 3 we present the results of a numerical phenomenological analysis, and show that while the direct models are excluded by current data, there is a unique group (up to this order) which yields acceptable results in the semi-direct approach, leading to mixing sum rules and phenomenological predictions. Section 4 concludes the paper.

2 Group searches with a massless neutrino

2.1 Residual symmetries in the lepton mass matrices

The main question around which the framework of residual symmetries in the fermion mass matrices [11, 12, 13, 14, 15, 16, 17, 3, 5] has been constructed is the question: When do symmetries of a 3×33\times 3-matrix (partly) fix the matrix which diagonalises it?

The answer to this question is fairly simple. Consider unitary matrices SiS_{i} and TjT_{j} which leave a complex symmetric matrix MM or a Hermitian matrix HH invariant,333For application to the fermion mass problem the study of Hermitian and complex symmetric matrices is sufficient. For the lepton sector we will later have M=MνM=M_{\nu} and H=MMH=M_{\ell}M_{\ell}^{\dagger}. i.e.

SiTMSi=Mi,\displaystyle S_{i}^{T}MS_{i}=M\quad\forall i, (3a)
TjHTj=Hj.\displaystyle T_{j}^{\dagger}HT_{j}=H\quad\forall j. (3b)

The set of all matrices SiS_{i} forms a group GMG_{M} of unitary 3×33\times 3-matrices. In the same way, also the matrices TjT_{j} form a unitary group GHG_{H}. If the matrices MM and HH have non-degenerate singular values444 The singular values are the elements of the diagonalised matrix. This condition is necessarily fulfilled in all relevant applications, because the singular values of HH will be identified with the charged-lepton masses squared and the singular values of MM will be identified with the three light-neutrino masses. the groups GMG_{M} and GHG_{H} must be Abelian. For this case one can show that the matrices UMU_{M} and UHU_{H} which (simultaneously) bring all SiS_{i} and TjT_{j} to diagonal form, i.e.

UMSiUM=S^ii,\displaystyle U_{M}^{\dagger}S_{i}U_{M}=\hat{S}_{i}\quad\forall i, (4a)
UHTjUH=T^jj,\displaystyle U_{H}^{\dagger}T_{j}U_{H}=\hat{T}_{j}\quad\forall j, (4b)

also diagonalise HH and MM via555Let us, as an illustration, give the derivation of this fact for a complex symmetric matrix MM. From equation (6a) we have Muk=mkukMu_{k}=m_{k}u_{k}^{\ast} (no summation over kk) for the columns uku_{k} of UMU_{M}, i.e. the uku_{k} are singular vectors of MM with singular values mkm_{k}. From equation (3a) we then have SiTMSiuk=mkukM(Siuk)=mk(Siuk).S_{i}^{T}MS_{i}u_{k}=m_{k}u_{k}^{\ast}\Rightarrow M(S_{i}u_{k})=m_{k}(S_{i}u_{k})^{\ast}. (5) Since the singular values mim_{i} are assumed to be non-degenerate, the corresponding singular vectors are unique up to multiplication with a constant, i.e. Siuk=siukS_{i}u_{k}=s_{i}u_{k}. Therefore, the uku_{k} are simultaneous eigenvectors to all SiS_{i}, which implies equation (4a). [12]

UMTMUM=M^,\displaystyle U_{M}^{T}MU_{M}=\hat{M}, (6a)
UHHUH=H^,\displaystyle U_{H}^{\dagger}HU_{H}=\hat{H}, (6b)

where hatted matrices are diagonal matrices. In other words the set of symmetries SiS_{i} of a matrix MM fixes its diagonalising matrix UMU_{M}. The same statement holds for TjT_{j} and HH.

Let us now apply these mathematical considerations to the case of residual symmetries in the lepton sector. The assumption of residual symmetries is that there is a flavour symmetry group GfG_{f} (acting on the lepton fields) which is spontaneously broken to a symmetry group GνG_{\nu} in the neutrino sector,

SiTMνSi=Mν,SiGν,S_{i}^{T}M_{\nu}S_{i}=M_{\nu},\quad S_{i}\in G_{\nu}, (7)

and a symmetry group GG_{\ell} in the charged-lepton sector,

TjMMTj=MM,TjG.T_{j}^{\dagger}M_{\ell}M_{\ell}^{\dagger}T_{j}=M_{\ell}M_{\ell}^{\dagger},\quad T_{j}\in G_{\ell}. (8)

Identifying M=MνM=M_{\nu} and H=MMH=M_{\ell}M_{\ell}^{\dagger} in the above discussion, we immediately find GνGMG_{\nu}\subset G_{M} and GGHG_{\ell}\subset G_{H}. Therefore, the symmetry groups GG_{\ell} and GνG_{\nu} potentially (but not necessarily) impose constraints on the matrices UνU_{\nu} and UU_{\ell}, which diagonalise MνM_{\nu} and MMM_{\ell}M_{\ell}^{\dagger} via

UνTMνUν=diag(m1,m2,m3),\displaystyle U_{\nu}^{T}M_{\nu}U_{\nu}=\mathrm{diag}(m_{1},m_{2},m_{3}), (9)
UMMU=diag(me2,mμ2,mτ2),\displaystyle U_{\ell}^{\dagger}M_{\ell}M_{\ell}^{\dagger}U_{\ell}=\mathrm{diag}(m_{e}^{2},m_{\mu}^{2},m_{\tau}^{2}), (10)

and consequently also on the mixing matrix UPMNS=UUνU_{\mathrm{PMNS}}=U_{\ell}^{\dagger}U_{\nu}.

In order to know how GνG_{\nu} and GG_{\ell} constrain UνU_{\nu} and UU_{\ell} we have to understand to which degree an Abelian unitary 3×33\times 3-matrix group AA determines the unitary matrix UU which simultaneously diagonalises all elements of AA. There are only three possibilities:

  • None of the common eigenvectors of the elements of AA is unique.666For eigenvectors unique here means unique up to multiplication with a complex number. A={𝟙3}\Rightarrow A=\{\mathbbm{1}_{3}\} and UU is an arbitrary unitary matrix.

  • One of the common eigenvectors of the elements of AA is unique. \Rightarrow One column of UU is proportional to this eigenvector. \Rightarrow One column of UU is fixed by AA up to a rephasing.

  • All three of the common eigenvectors of the elements of AA are unique. \Rightarrow Each column of UU is proportional to one of these eigenvectors. \Rightarrow UU is fixed by AA up to rephasing and reordering of its columns.

According to this finding, one classifies models based on residual symmetries into two categories:

  • (A)

    Direct models: GνG_{\nu} fixes UνU_{\nu} and GG_{\ell} fixes UU_{\ell} (up to reordering and rephasing of the columns). \Rightarrow UPMNSU_{\mathrm{PMNS}} is fixed (up to reordering and rephasing of rows and columns).

  • (B)

    Semidirect models: In one sector the full diagonalising matrix is fixed, in the other sector only a column is fixed.

    • (B1)

      GG_{\ell} fixes UU_{\ell}, GνG_{\nu} fixes a column of UνU_{\nu}. \Rightarrow One column of UPMNSU_{\mathrm{PMNS}} is fixed up to permutation of its elements. One may choose (if not determined by a concrete model) which column of UPMNSU_{\mathrm{PMNS}} is fixed.

    • (B2)

      GG_{\ell} fixes one column of UU_{\ell}, GνG_{\nu} fixes UνU_{\nu}. \Rightarrow One row of UPMNSU_{\mathrm{PMNS}} is fixed up to permutation of its elements. One may choose (if not determined by a concrete model) which row of UPMNSU_{\mathrm{PMNS}} is fixed.

In this work we will only study the cases A and B1. Case B2 has for example been studied in [18]. One could in principle also consider a third very weakly restrictive case C for which in each sector only one column is fixed (up to rephasing). In this case only one element of UPMNSU_{\mathrm{PMNS}} would be fixed. Due to its low predictive power, this scenario is usually not studied, and also we will not study it here.

2.2 Residual symmetries enforcing one massless neutrino

The residual symmetry groups GνG_{\nu} and GG_{\ell} are Abelian groups of unitary 3×33\times 3-matrices. Therefore, they are subgroups of U(1)×U(1)×U(1)U(1)\times U(1)\times U(1). For the charged lepton sector, this is also the maximal symmetry group, i.e. GH=U(1)×U(1)×U(1)G_{H}=U(1)\times U(1)\times U(1). For Majorana neutrinos the situation is different. If all neutrinos are massive, the maximal symmetry group is GM=2×2×2G_{M}=\mathbbm{Z}_{2}\times\mathbbm{Z}_{2}\times\mathbbm{Z}_{2}, while, if one neutrino is massless, also GM=U(1)×2×2G_{M}=U(1)\times\mathbbm{Z}_{2}\times\mathbbm{Z}_{2} is allowed. The case of one massless neutrino has been studied in [8, 9].

Here we will further elaborate on the case of a massless neutrino within the framework of residual symmetries. The case of direct models has been studied in [9] for all suitable finite groups up to order 511. In the present paper we extend this analysis to order 1535. Moreover, we discuss semidirect models (of type B1) with a massless neutrino, also up to order 1535. Before we discuss the details of the group searches we have performed, we want to have a look on the generic requirements potential flavour groups GfG_{f} with a massless neutrino have to fulfill. As outlined in detail in appendix A, viable groups GfG_{f}

  • must possess a faithful three-dimensional irreducible representation,

  • must not be of the form GfGf×nG_{f}\simeq G_{f}^{\prime}\times\mathbbm{Z}_{n} (n>1)(n>1) and

  • must not be of the form of the following theorem by Joshipura and Patel [9]: Let GG be a group of 3×33\times 3 matrices which contains only elements of the form “diagonal matrix of phases times permutation matrix”, where the six permutation matrices are given by

    P1=(100010001),P2=(010100001),P3=(001010100),P4=(100001010),P5=(001100010),P6=(010001100).\begin{split}&P_{1}=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix},\quad P_{2}=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix},\quad P_{3}=\begin{pmatrix}0&0&1\\ 0&1&0\\ 1&0&0\end{pmatrix},\\ &P_{4}=\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix},\quad P_{5}=\begin{pmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{pmatrix},\quad P_{6}=\begin{pmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{pmatrix}.\end{split} (11)

    Then, if such a group GG is used to build models enforcing a massless neutrino, the column vector of the mixing matrix associated to the massless neutrino must be

    (100),13(111),12(011)\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\;\frac{1}{\sqrt{3}}\begin{pmatrix}1\\ 1\\ 1\end{pmatrix},\;\frac{1}{\sqrt{2}}\begin{pmatrix}0\\ 1\\ 1\end{pmatrix} (12)

    or permutations thereof (i.e. permutations of the elements of an individual column.)

As a starting point for our analysis, we need a list of groups fulfilling these criteria. We used the library SmallGroups777Throughout the paper we will use the SmallGroups ID to identify groups. This ID consists of two numbers in square brackets, i.e. [g,n][g,n], gg being the group order and nn being a label. Two groups with different SmallGroups IDs are non-isomorphic. [19, 20] and the computer algebra system GAP [21] to find all groups of order smaller than 1536 which fulfill these minimal criteria.888Since we require groups which have a three-dimensional irreducible representation, the group order must be divisible by 3. Up to order 1535 there are 1342632 groups whose order is divisible by three. For the group order 1536 alone there are 408641062 groups. Therefore, we had to stop our searches at order 1535. As a result of this scan we have found 22 groups of order smaller than 1536 fulfilling the minimal criteria.999In this paper we follow the approach of scanning over a set of eligible groups, in the end discarding which are incompatible with experiment. The opposite approach of constructing eligible groups directly from experimental data on the mixing matrices has e.g. been used in [22, 23]. They are shown in equation (LABEL:groups-massless) in appendix A.

2.2.1 Direct models

Let us now investigate the requirements for direct models enforcing a massless neutrino. The requirement for the charged-lepton sector is the usual one: Any group GG_{\ell} which uniquely determines the diagonalising matrix UU_{\ell} is sufficient. The same also holds for semidirect models of type B1. In the neutrino sector, we require a residual symmetry group GνG_{\nu} which completely fixes UνU_{\nu} (as always up to rephasing and reordering of the columns) and which enforces one neutrino mass to vanish. The requirement of a vanishing neutrino mass implies that GνG_{\nu} is a subgroup of U(1)×2×2U(1)\times\mathbbm{Z}_{2}\times\mathbbm{Z}_{2} instead of 2×2×2\mathbbm{Z}_{2}\times\mathbbm{Z}_{2}\times\mathbbm{Z}_{2}. Therefore, there exists a basis in which all elements of GνG_{\nu} have the form

(λ000α000β)\begin{pmatrix}\lambda&0&0\\ 0&\alpha&0\\ 0&0&\beta\end{pmatrix} (13)

with λU(1)\lambda\in U(1), α,β{1,+1}\alpha,\beta\in\{-1,+1\}. Moreover, in order to enforce a vanishing neutrino mass, for at least one element of GνG_{\nu} we must have λ±1\lambda\neq\pm 1. This element may be of four forms:

S1=diag(λ,+1,+1),S2=diag(λ,+1,1),S3=diag(λ,1,+1),S4=diag(λ,1,1).\begin{split}&S_{1}=\mathrm{diag}(\lambda,+1,+1),\quad S_{2}=\mathrm{diag}(\lambda,+1,-1),\\ &S_{3}=\mathrm{diag}(\lambda,-1,+1),\quad S_{4}=\mathrm{diag}(\lambda,-1,-1).\end{split} (14)

Every group GνG_{\nu} capable of fixing the complete matrix UνU_{\nu} and enforcing a massless neutrino contains at least one element of the form S2S_{2} or S3S_{3}. Namely, if it did not contain such an element, in order to fulfill all requirements it would have to contain at least one element of the form

diag(λ,±1,±1)\mathrm{diag}(\lambda,\pm 1,\pm 1) (15)

and one further element with non-degenerate 22 and 33 elements, i.e.

diag(±1,±1,1)ordiag(±1,1,±1).\mathrm{diag}(\pm 1,\pm 1,\mp 1)\quad\text{or}\quad\mathrm{diag}(\pm 1,\mp 1,\pm 1). (16)

However, the product of the matrices of equations (15) and (16) is of the form S2S_{2} or S3S_{3}, which proves that GνG_{\nu} always contains an element of this form. The matrices S2S_{2} and S3S_{3}, since they have non-degenerate eigenvalues, on their own already fix the complete matrix UνU_{\nu}. Therefore, we can restrict the analysis to groups Gν=S2GνG_{\nu}^{\prime}=\langle\langle S_{2}\rangle\rangle\subset G_{\nu} generated by S2S_{2} (or Gν=S3GνG_{\nu}^{\prime}=\langle\langle S_{3}\rangle\rangle\subset G_{\nu} generated by S3S_{3}.)101010In this paper the symbol \langle\langle\ldots\rangle\rangle means “generated by \ldots”. Thus, the requirement on GfG_{f} is:

  • GfG_{f} has a faithful three-dimensional irreducible representation which has at least one element with one eigenvalue λ±1\lambda\neq\pm 1, one eigenvalue +1+1 and one eigenvalue 1-1. This element generates the residual symmetry group GνnG_{\nu}^{\prime}\simeq\mathbbm{Z}_{n} (nn even) and determines UνU_{\nu} up to rephasing and reordering of the columns.

Thus, among the groups of equation (LABEL:groups-massless) we search for those which have a faithful three-dimensional irreducible representation 3 (defining a matrix group 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}) isomorphic to GfG_{f}) fulfilling the following criteria:

  • 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}) contains a matrix SS with eigenvalues {λ,+1,1}\{\lambda,+1,-1\}, λ±1\lambda\neq\pm 1. This is a basis independent property and may easily be checked by testing TrS+detS=0\mathrm{Tr}\,S+\mathrm{det}\,S=0, TrS±1\mathrm{Tr}\,S\neq\pm 1. The matrix SS is then a candidate for a generator of GνG_{\nu}^{\prime}.

  • 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}) contains an Abelian subgroup GG_{\ell} which can completely fix its diagonalising matrix UU_{\ell}.

  • There must be choices of GG_{\ell}^{\prime} and GνG_{\nu}^{\prime} such that GνG_{\nu}^{\prime} is not a subgroup of GG_{\ell}^{\prime} and vice versa. (Otherwise the mixing matrix UPMNSU_{\mathrm{PMNS}} would be trivial!) Also, none of the generators of GG_{\ell}^{\prime} must commute with the generator SS of GνG_{\nu}^{\prime}—see appendix B.

  • Moreover, the groups GG_{\ell}^{\prime} and GνG_{\nu}^{\prime} must together generate the whole matrix group 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}). Namely, if they do not, we can restrict ourselves to the subgroup GfG,Gν3(Gf)G_{f}^{\prime}\equiv\langle\langle G_{\ell}^{\prime},G_{\nu}^{\prime}\rangle\rangle\subset\textbf{\lx@text@underline{3}}(G_{f}). If GfG_{f}^{\prime} is an irreducible matrix group, GfG_{f}^{\prime} fulfills all criteria for our search and predicts the same mixing matrix as 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}). If 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}^{\prime}) is reducible, the mixing matrix has two vanishing mixing angles and is therefore not compatible with experiment.

Performing a group search with GAP, we find that only seven groups of order smaller than 1536 fulfill all these criteria:

[108,15],[324,111],[432,239],[648,533],[864,675],[972,411],[1296,1995].[108,15],[324,111],[432,239],[648,533],[864,675],[972,411],[1296,1995]. (17)

2.2.2 Semidirect models

The requirements for semidirect models of type (B1) are identical with only two differences:

  • The requirement on SS now becomes: 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}) contains a matrix SS with eigenvalues {λ,±1,±1}\{\lambda,\pm 1,\pm 1\}, λ±1\lambda\neq\pm 1, respectively (i.e. two degenerate eigenvalues in each case). This ensures that one mass is set to zero, but only one column of UνU_{\nu} is fixed.

  • The argument used to prove that none of the generators of GG_{\ell} must commute with the generator SS of GνG_{\nu}—see appendix B—does not hold for semidirect models. Thus, one of the generators of GG_{\ell}^{\prime} is allowed to commute with SS.

Also for the semidirect case the groups GG_{\ell}^{\prime} and GνG_{\nu}^{\prime} have to generate the full group 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}). However, the argument for this is different to the case of direct models. Again, if 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}^{\prime}) is irreducible, we may replace GfG_{f} by 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}^{\prime}). If 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}^{\prime}) is reducible one can (by the same argument as used in appendix A to show that 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}) must be irreducible) show that a reducible 3(Gf)\textbf{\lx@text@underline{3}}(G_{f}^{\prime}) leads to predictions incompatible with experiment.

Doing a group search with GAP, one finds that there is only one single group of order smaller than 1536 which meets all requirements for a semidirect model. This group has the identification number [648,533][648,533] in the SmallGroups library.

3 Numerical analysis and phenomenology

3.1 Direct models

In order to test the seven candidate groups for direct models with a massless neutrino, we computed all faithful three-dimensional irreducible representations of the groups, computed all Abelian subgroups and listed all possible combinations (G,Gν)(G_{\ell},G_{\nu}). For each of these combinations, the possible mixing matrices have been computed—see [3] for a detailed description of this procedure. In order to compare the predictions for the mixing matrix with experiment we fitted the three mixing angles to the global fit data of [24]. As χ2\chi^{2}-function we used

χ2(θ12,θ23,θ13)ij=12,23,13(sin2θijexpsin2θijpredσ(sin2θij))2,\chi^{2}(\theta_{12},\,\theta_{23},\,\theta_{13})\equiv\sum_{ij=12,23,13}\left(\frac{\mathrm{sin}^{2}\theta_{ij}^{\text{exp}}-\mathrm{sin}^{2}\theta_{ij}^{\text{pred}}}{\sigma(\mathrm{sin}^{2}\theta_{ij})}\right)^{2}, (18)

which has three degrees of freedom. For the errors σ(sin2θij)\sigma(\mathrm{sin}^{2}\theta_{ij}) we used the values given in [24] (in case of an asymmetric error distribution we used the larger error). The resulting minimal values of χ2\chi^{2} are listed in table 1.

Group χmin2\chi^{2}_{\mathrm{min}} (normal spectrum) χmin2\chi^{2}_{\mathrm{min}} (inverted spectrum)
[108,15][108,15] 1.80×1021.80\times 10^{2} 4.52×1024.52\times 10^{2}
[324,111][324,111] 1.80×1021.80\times 10^{2} 4.52×1024.52\times 10^{2}
[432,239][432,239] 1.07×1041.07\times 10^{4} 1.56×1041.56\times 10^{4}
[648,533][648,533] 1.30×1021.30\times 10^{2} 4.19×1024.19\times 10^{2}
[864,675][864,675] 1.07×1041.07\times 10^{4} 1.56×1041.56\times 10^{4}
[972,411][972,411] 1.80×1021.80\times 10^{2} 4.52×1024.52\times 10^{2}
[1296,1995][1296,1995] 1.07×1041.07\times 10^{4} 1.56×1041.56\times 10^{4}
Table 1: The minimal values of χ2\chi^{2} for the seven candidate groups for direct models. Groups which lead to the same χmin2\chi^{2}_{\mathrm{min}} predict the same values for the elements |Uij||U_{ij}| of the mixing matrix.

Evidently, none of the candidate groups is compatible with the experimental data. For groups up to order 511 this result has been found earlier in [9].

3.2 Semidirect models

For the semidirect models, there is a unique candidate group [648,533][648,533]. It has six faithful three-dimensional irreducible representations, each of which can predict (the same) 19 different patterns for a column of the mixing matrix. It is therefore sufficient to study only one of the faithful three-dimensional irreducible representations constructed with GAP, i.e. we pick one of them and use it to define the group [648,533][648,533] as a matrix group. In this representation the group is generated by the two matrices

S=13(1+ϵ4ϵ6ϵ8ϵ2+ϵ7ϵ2+ϵ4ϵϵ51+ϵϵ2ϵ6ϵ4ϵ5ϵϵ8ϵ7ϵ81ϵ5ϵ6+ϵ7)S=\frac{1}{3}\begin{pmatrix}1+\epsilon^{4}-\epsilon^{6}-\epsilon^{8}&-\epsilon^{2}+\epsilon^{7}&-\epsilon^{2}+\epsilon^{4}\\ \epsilon-\epsilon^{5}&1+\epsilon-\epsilon^{2}-\epsilon^{6}&\epsilon^{4}-\epsilon^{5}\\ \epsilon-\epsilon^{8}&\epsilon^{7}-\epsilon^{8}&1-\epsilon^{5}-\epsilon^{6}+\epsilon^{7}\end{pmatrix} (19)

and

T=(ϵ2000ϵ5000ϵ8),T=\begin{pmatrix}\epsilon^{2}&0&0\\ 0&\epsilon^{5}&0\\ 0&0&\epsilon^{8}\end{pmatrix}, (20)

where

ϵexp(2πi/9),\epsilon\equiv\exp(2\pi i/9), (21)

i.e.

Gf=S,T(((3×3)3)Q8)3(Δ(27)Q8)3.G_{f}=\langle\langle S,\,T\rangle\rangle\simeq(((\mathbbm{Z}_{3}\times\mathbbm{Z}_{3})\rtimes\mathbbm{Z}_{3})\rtimes Q_{8})\rtimes\mathbbm{Z}_{3}\simeq(\Delta(27)\rtimes Q_{8})\rtimes\mathbbm{Z}_{3}. (22)

Q8Q_{8} here denotes the quaternion group of order 8. This group corresponds to [648,533][648,533] which we denote as Q(648)Q(648).

The two only columns predictable by Q(648)Q(648) being compatible with experiment emerge from the choice

Gν=S3,G=T9.G_{\nu}=\langle\langle S\rangle\rangle\simeq\mathbbm{Z}_{3},\quad G_{\ell}=\langle\langle T\rangle\rangle\simeq\mathbbm{Z}_{9}. (23)

We are already in a basis where all elements of GG_{\ell} are diagonal. Therefore, the eigenvector of SS with eigenvalue ±1\neq\pm 1 is the predicted column of UPMNSU_{\mathrm{PMNS}}. Indeed, SS has two eigenvalues +1+1 and an eigenvalue ωexp(2πi/3)=ϵ3\omega\equiv\exp(2\pi i/3)=\epsilon^{3} with the corresponding eigenvector

u=13(1+ϵ+ϵ8ϵ4+ϵ6+ϵ8ϵ3+ϵ7+ϵ8).u=\frac{1}{3}\begin{pmatrix}1+\epsilon+\epsilon^{8}\\ \epsilon^{4}+\epsilon^{6}+\epsilon^{8}\\ \epsilon^{3}+\epsilon^{7}+\epsilon^{8}\end{pmatrix}. (24)

The absolute values of the entries of this vector are

|u1|=13(1+2cos2π9)0.844,\displaystyle|u_{1}|=\frac{1}{3}\left(1+2\,\mathrm{cos}\frac{2\pi}{9}\right)\approx 0.844, (25)
|u2|=13(1+2cos4π9)0.449,\displaystyle|u_{2}|=\frac{1}{3}\left(1+2\,\mathrm{cos}\frac{4\pi}{9}\right)\approx 0.449, (26)
|u3|=13(1+2cos8π9)0.293.\displaystyle|u_{3}|=-\frac{1}{3}\left(1+2\,\mathrm{cos}\frac{8\pi}{9}\right)\approx 0.293. (27)
Refer to caption
Refer to caption
Figure 1: The value of the Dirac phase δ\delta as a function of sin2θ23\mathrm{sin}^{2}\theta_{23} for different values of sin2θ13\mathrm{sin}^{2}\theta_{13} according to the global fit of [24]: best-fit (blue), 1σ1\sigma lower bound (red dashed), 1σ1\sigma upper bound (black dashed). The dashed vertical line indicates the best-fit value sin2θ23=0.452\mathrm{sin}^{2}\theta_{23}=0.452 and the blue shaded area is the 1σ1\sigma region for sin2θ23\mathrm{sin}^{2}\theta_{23}. Left plot: (|Ue1|,|Uμ1|)=(|u1|,|u2|)(|U_{e1}|,|U_{\mu 1}|)=(|u_{1}|,|u_{2}|), right plot: (|Ue1|,|Uμ1|)=(|u1|,|u3|)(|U_{e1}|,|U_{\mu 1}|)=(|u_{1}|,|u_{3}|).

This leads to two patterns compatible with the first column111111Since the neutrino mass associated with the predicted column vanishes, we have m1=0m_{1}=0 which requires a normal neutrino mass spectrum. of UPMNSU_{\mathrm{PMNS}}, namely:

(|Ue1||Uμ1||Uτ1|)=(|u1||u2||u3|)and(|Ue1||Uμ1||Uτ1|)=(|u1||u3||u2|).\begin{pmatrix}|U_{e1}|\\ |U_{\mu 1}|\\ |U_{\tau 1}|\end{pmatrix}=\begin{pmatrix}|u_{1}|\\ |u_{2}|\\ |u_{3}|\end{pmatrix}\quad\text{and}\quad\begin{pmatrix}|U_{e1}|\\ |U_{\mu 1}|\\ |U_{\tau 1}|\end{pmatrix}=\begin{pmatrix}|u_{1}|\\ |u_{3}|\\ |u_{2}|\end{pmatrix}. (28)

Note that we here have used the permutation freedom of the elements of the predicted column, which comes from the fact that the residual symmetries cannot fix any mass orderings. The equations

|Ue1|=c12c13,\displaystyle|U_{e1}|=c_{12}\,c_{13}, (29a)
|Uμ1|=|s12c23+c12s13s23eiδ|,\displaystyle|U_{\mu 1}|=|s_{12}c_{23}+c_{12}s_{13}s_{23}e^{i\delta}|, (29b)

where sijsinθijs_{ij}\equiv\mathrm{sin}\,\theta_{ij} and cijcosθijc_{ij}\equiv\mathrm{cos}\,\theta_{ij}, give relations between the mixing angles and the Dirac phase δ\delta. These relations can be used to predict θ12\theta_{12} as a function of θ13\theta_{13} and cosδ\mathrm{cos}\,\delta as a function of θ13\theta_{13} and θ23\theta_{23}:

s122=1|Ue1|2(1+t132),\displaystyle s_{12}^{2}=1-|U_{e1}|^{2}(1+t_{13}^{2}), (30a)
cosδ=|Uμ1|2(1+t232)+|Ue1|2(t232(1+t132)(t2321))12|Ue1|t13t231|Ue1|2(1+t132).\displaystyle\mathrm{cos}\,\delta=\frac{|U_{\mu 1}|^{2}\left(1+t_{23}^{2}\right)+|U_{e1}|^{2}\left(t_{23}^{2}-\left(1+t_{13}^{2}\right)\left(t_{23}^{2}-1\right)\right)-1}{2\,|U_{e1}|\,t_{13}\,t_{23}\sqrt{1-|U_{e1}|^{2}\left(1+t_{13}^{2}\right)}}. (30b)

Here tijtanθijt_{ij}\equiv\mathrm{tan}\,\theta_{ij}. Using the values of the global fit of ref. [24],

sin2θ23=0.4520.028+0.052,sin2θ13=0.02180.0010+0.0010,\mathrm{sin}^{2}\theta_{23}=0.452^{+0.052}_{-0.028},\quad\mathrm{sin}^{2}\theta_{13}=0.0218^{+0.0010}_{-0.0010}, (31)

we find (best-fit)

sin2θ12=0.272,θ12=31.4,\displaystyle\mathrm{sin}^{2}\theta_{12}=0.272,\quad\theta_{12}=31.4^{\circ}, (32a)
cosδ=0.697,δ=±45.8\displaystyle\mathrm{cos}\,\delta=0.697,\quad\delta=\pm 45.8^{\circ} (32b)

for |Ue1|=|u1||U_{e1}|=|u_{1}|, |Uμ1|=|u2||U_{\mu 1}|=|u_{2}|. The other possibility with |Ue1|=|u1||U_{e1}|=|u_{1}|, |Uμ1|=|u3||U_{\mu 1}|=|u_{3}| turns out to be incompatible with the best-fit values of equation (31),

sin2θ12=0.272,θ12=31.4,\displaystyle\mathrm{sin}^{2}\theta_{12}=0.272,\quad\theta_{12}=31.4^{\circ}, (33a)
cosδ=1.07 inconsistent,\displaystyle\mathrm{cos}\,\delta=-1.07\rightarrow\text{ inconsistent,} (33b)

but remains consistent with experiment for s2320.47s_{23}^{2}\gtrsim 0.47. Using the best-fit values of the mass-squared differences and sin2θ13\mathrm{sin}^{2}\theta_{13} from [24] as input parameters, the predicted range for mββm_{\beta\beta} is (1.22÷3.38)meV(1.22\div 3.38)\,\mathrm{meV}, i.e. several meV (as for every model with a normal neutrino mass spectrum and vanishing m1m_{1}). Since mββm_{\beta\beta} depends only on the sum of δ\delta and one of the (unconstrained) Majorana phases, our model puts no stronger constraint on mββm_{\beta\beta}.

In total, the two discussed column patterns are compatible with the global fit values of [24] at about 232-3 sigma. The reason for tension is the too small value of the solar mixing angle predicted by the group using the reactor angle as an input. The global-fit result for the solar mixing angle is

sin2θ12=0.3040.012+0.013,θ12=(33.480.75+0.78).\mathrm{sin}^{2}\theta_{12}=0.304^{+0.013}_{-0.012},\quad\theta_{12}=(33.48^{+0.78}_{-0.75})\hskip 0.0pt^{\circ}. (34)

The main prediction of the model is a value of δ\delta of about ±45\pm 45^{\circ} or ±π\pm\pi (for the best-fit values). The value of δ\delta for different values of s232s_{23}^{2} and s132s_{13}^{2} is shown in figure 1.

4 Conclusions

In this paper we have discussed the possibility of enforcing a massless Majorana neutrino in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly predicted by subgroups of a discrete family symmetry. Our analysis extends previous group searches for direct models from order 511 up to 1535, and provides the first analysis of semi-direct models with a massless neutrino up to this order. Our results confirm and extend the no-go results of Joshipura and Patel up to order 1535 for the direct approach.

However, we find a new phenomenologically viable scheme for the semi-direct approach based on Q(648)Q(648) which contains Δ(27)\Delta(27) and the quaternion group as subgroups. This leads to novel predictions for the first column of the PMNS matrix corresponding to a normal neutrino mass hierarchy with m1=0m_{1}=0, and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ1231\theta_{12}\sim 31^{\circ} and the Dirac (oscillation) CP phase δ\delta being either about ±45\pm 45^{\circ} or ±π\pm\pi.

Acknowledgements:

The authors acknowledge support from the STFC grant
ST/L000296/1 and the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements InvisiblesPlus RISE No. 690575 and Elusives ITN No. 674896.

Appendix A Generic requirements on flavour symmetries in the framework of residual symmetries with one massless neutrino.

In order to be potentially phenomenologically viable in the framework of residual symmetries in the lepton sector, a flavour group GfG_{f} must fulfill two generic requirements:

  • GfG_{f} must have a faithful three-dimensional irreducible representation. The requirement for a three-dimensional representation comes from the fact that there are three generations of leptons. This representation must be faithful because otherwise we could restrict ourselves to the smaller group defined by the non-faithful matrix representation. Moreover, the three-dimensional faithful representation under consideration must also be irreducible. Namely, if it was reducible, there would be a basis in which the matrices of GνG_{\nu} and GG_{\ell} are simultaneously block-diagonal. In direct models this would mean that also the mixing matrix is block-diagonal, thus implying two vanishing mixing angles, which is clearly not compatible with experimental observations. For the case of semidirect models we consider the example of models of type B1. The arguments for case B2 are analogous. In the block-diagonal basis we have

    Gν:(×000××0××),G:(×000××0××),,G_{\nu}:\begin{pmatrix}\times&0&0\\ 0&\times&\times\\ 0&\times&\times\end{pmatrix},\ldots\quad G_{\ell}:\begin{pmatrix}\times&0&0\\ 0&\times&\times\\ 0&\times&\times\end{pmatrix},\ldots, (35)

    where ×\times stands for a non-zero entry. We can now make a further basis transformation (a unitary 23-rotation in our example) which makes all elements of GG_{\ell} diagonal, i.e.

    Gν:(×000××0××),G:(×000×000×),.G_{\nu}:\begin{pmatrix}\times&0&0\\ 0&\times&\times\\ 0&\times&\times\end{pmatrix},\ldots\quad G_{\ell}:\begin{pmatrix}\times&0&0\\ 0&\times&0\\ 0&0&\times\end{pmatrix},\ldots. (36)

    In this basis, the column of UPMNSU_{\mathrm{PMNS}} which is fixed by the semidirect model is a common eigenvector of the matrices of GνG_{\nu}. But all matrices of GνG_{\nu} are still block-diagonal, which means that this common eigenvector can only be of the form

    (×00)or(0××).\begin{pmatrix}\times\\ 0\\ 0\end{pmatrix}\quad\text{or}\quad\begin{pmatrix}0\\ \times\\ \times\end{pmatrix}. (37)

    Thus, UPMNSU_{\mathrm{PMNS}} would contain at least one vanishing element, which is phenomenologically not viable.

  • We can discard all groups of the form Gf=Gf×nG_{f}=G_{f}^{\prime}\times\mathbbm{Z}_{n} (n>1)(n>1). Namely, since the relevant representation of GfG_{f} must be irreducible, the elements of n\mathbbm{Z}_{n} are represented as matrices proportional to 𝟙3\mathbbm{1}_{3}. Such symmetries cannot constrain the mixing matrix UPMNSU_{\text{PMNS}}. Therefore, it is sufficient to confine the study to the smaller group GfG_{f}^{\prime}.

There are 384 groups of order smaller than 1536 which fulfill these two criteria, they are shown in equation (42). This list extends the list of finite subgroups of U(3) found in [25] to order 1535.

In the case of massless neutrinos there is a third constraint:

  • Consider matrix groups which have only elements of the form “diagonal matrix of phases times permutation matrix”, where by permutation matrices we mean the six matrices

    P1=(100010001),P2=(010100001),P3=(001010100),P4=(100001010),P5=(001100010),P6=(010001100).\begin{split}&P_{1}=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix},\quad P_{2}=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix},\quad P_{3}=\begin{pmatrix}0&0&1\\ 0&1&0\\ 1&0&0\end{pmatrix},\\ &P_{4}=\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix},\quad P_{5}=\begin{pmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{pmatrix},\quad P_{6}=\begin{pmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{pmatrix}.\end{split} (38)

    It has been shown by Joshipura and Patel in [9] that models based on such groups with a massless neutrino (enforced by the residual symmetry) can only lead to the following columns of the mixing matrix (absolute values of the entries of the fixed column of UPMNSU_{\text{PMNS}}) associated to the massless neutrino:

    (100),13(111),12(011)\begin{pmatrix}1\\ 0\\ 0\end{pmatrix},\;\frac{1}{\sqrt{3}}\begin{pmatrix}1\\ 1\\ 1\end{pmatrix},\;\frac{1}{\sqrt{2}}\begin{pmatrix}0\\ 1\\ 1\end{pmatrix} (39)

    and permutations thereof (i.e. permutations of the elements of an individual column.) The only phenomenologically viable case here is

    13(111),\frac{1}{\sqrt{3}}\begin{pmatrix}1\\ 1\\ 1\end{pmatrix}, (40)

    which is called TM2\mathrm{TM}_{2} in the literature, since it fits the second column of the lepton mixing matrix. However, this scenario would predict m2=0m_{2}=0, which is excluded by experiment. Therefore, we can exclude also all groups which are of the form discussed in the theorem by Joshipura and Patel.

There are only 22 groups of order smaller than 1536 which also fulfill the third requirement:

[60,5],[108,15],[168,42],[216,25],[216,88],[324,111],[432,57],[432,239],[432,273],[648,352],[648,531],[648,532],[648,533],[648,551],[864,194],[864,675],[864,737],[972,411],[1080,260],[1296,1239],[1296,1995],[1296,2203].\begin{split}&[60,5],[108,15],[168,42],[216,25],[216,88],[324,111],[432,57],[432,239],[432,273],\\ &[648,352],[648,531],[648,532],[648,533],[648,551],[864,194],[864,675],[864,737],\\ &[972,411],[1080,260],[1296,1239],[1296,1995],[1296,2203].\end{split} (41)

Therefore, for the study of massless neutrinos in the framework of residual symmetries, confining oneself to flavour symmetry groups of order smaller than 1536, it is sufficient to study the 22 groups of equation (LABEL:groups-massless).

[12,3],[21,1],[24,12],[27,3],[27,4],[36,3],[39,1],[48,3],[48,30],[54,8],[57,1],[60,5],[63,1],[75,2],[81,6],[81,7],[81,8],[81,9],[81,10],[81,14],[84,11],[93,1],[96,64],[96,65],[108,3],[108,11],[108,15],[108,19],[108,21],[108,22],[111,1],[117,1],[129,1],[144,3],[147,1],[147,5],[150,5],[156,14],[162,10],[162,12],[162,14],[162,44],[168,42],[171,1],[183,1],[189,1],[189,4],[189,5],[189,7],[189,8],[192,3],[192,182],[192,186],[201,1],[216,17],[216,25],[216,88],[216,95],[219,1],[225,3],[228,11],[237,1],[243,16],[243,19],[243,20],[243,24],[243,25],[243,26],[243,27],[243,50],[243,55],[252,11],[273,3],[273,4],[279,1],[291,1],[294,7],[300,13],[300,43],[309,1],[324,3],[324,13],[324,15],[324,17],[324,43],[324,45],[324,49],[324,50],[324,51],[324,60],[324,102],[324,111],[324,128],[327,1],[333,1],[336,57],[351,1],[351,4],[351,5],[351,7],[351,8],[363,2],[372,11],[381,1],[384,568],[384,571],[384,581],[387,1],[399,3],[399,4],[417,1],[432,3],[432,33],[432,57],[432,100],[432,102],[432,103],[432,239],[432,260],[432,273],[441,1],[441,7],[444,14],[453,1],[468,14],[471,1],[486,26],[486,28],[486,61],[486,125],[486,164],[489,1],[507,1],[507,5],[513,1],[513,5],[513,6],[513,8],[513,9],[516,11],[525,5],[543,1],[549,1],[567,1],[567,4],[567,5],[567,7],[567,12],[567,13],[567,14],[567,23],[567,36],[576,3],[579,1],[588,11],[588,16],[588,60],[597,1],[600,45],[600,179],[603,1],[624,60],[633,1],[648,19],[648,21],[648,23],[648,244],[648,259],[648,260],[648,266],[648,352],[648,531],[648,532],[648,533],[648,551],[648,563],[651,3],[651,4],[657,1],[669,1],[675,5],[675,9],[675,11],[675,12],[684,11],[687,1],[711,1],[723,1],[726,5],[729,62],[729,63],[729,64],[729,80],[729,86],[729,94],[729,95],[729,96],[729,97],[729,98],[729,284],[729,393],[729,397],[732,14],[741,3],[741,4],[756,11],[756,113],[756,114],[756,116],[756,117],[768,1083477],[768,1085333],[768,1085335],[768,1085351],[777,3],[777,4],[804,11],[813,1],[819,3],[819,4],[831,1],[837,1],[837,4],[837,5],[837,7],[837,8],[849,1],[864,69],[864,194],[864,675],[864,701],[864,703],[864,737],[867,2],[873,1],[876,14],[900,66],[903,5],[903,6],[912,57],[921,1],[927,1],[939,1],[948,11],[972,3],[972,29],[972,31],[972,64],[972,117],[972,121],[972,122],[972,123],[972,147],[972,152],[972,153],[972,170],[972,309],[972,348],[972,411],[972,520],[972,550],[975,5],[981,1],[993,1],[999,1],[999,5],[999,6],[999,8],[999,9],[1008,57],[1011,1],[1014,7],[1029,6],[1029,9],[1047,1],[1053,16],[1053,25],[1053,26],[1053,27],[1053,29],[1053,32],[1053,35],[1053,37],[1053,47],[1080,260],[1083,1],[1083,5],[1089,3],[1092,68],[1092,69],[1101,1],[1116,11],[1119,1],[1137,1],[1143,1],[1161,6],[1161,9],[1161,10],[1161,11],[1161,12],[1164,14],[1176,57],[1176,243],[1191,1],[1197,3],[1197,4],[1200,183],[1200,384],[1200,682],[1209,3],[1209,4],[1227,1],[1236,11],[1251,1],[1263,1],[1281,3],[1281,4],[1296,3],[1296,35],[1296,37],[1296,39],[1296,220],[1296,222],[1296,226],[1296,227],[1296,228],[1296,237],[1296,647],[1296,688],[1296,689],[1296,699],[1296,1239],[1296,1499],[1296,1995],[1296,2113],[1296,2203],[1299,1],[1308,14],[1317,1],[1323,1],[1323,4],[1323,5],[1323,7],[1323,8],[1323,14],[1323,40],[1323,42],[1323,43],[1332,14],[1344,393],[1350,46],[1359,1],[1371,1],[1389,1],[1404,14],[1404,137],[1404,138],[1404,140],[1404,141],[1407,3],[1407,4],[1413,1],[1425,5],[1443,3],[1443,4],[1452,11],[1452,34],[1458,615],[1458,618],[1458,659],[1458,663],[1458,666],[1458,1095],[1458,1354],[1458,1371],[1461,1],[1467,1],[1488,57],[1497,1],[1521,1],[1521,7],[1524,11],[1533,3],[1533,4].\begin{split}&[12,3],[21,1],[24,12],[27,3],[27,4],[36,3],[39,1],[48,3],[48,30],[54,8],\\ &[57,1],[60,5],[63,1],[75,2],[81,6],[81,7],[81,8],[81,9],[81,10],[81,14],[84,11],\\ &[93,1],[96,64],[96,65],[108,3],[108,11],[108,15],[108,19],[108,21],[108,22],[111,1],\\ &[117,1],[129,1],[144,3],[147,1],[147,5],[150,5],[156,14],[162,10],[162,12],[162,14],\\ &[162,44],[168,42],[171,1],[183,1],[189,1],[189,4],[189,5],[189,7],[189,8],\\ &[192,3],[192,182],[192,186],[201,1],[216,17],[216,25],[216,88],[216,95],[219,1],\\ &[225,3],[228,11],[237,1],[243,16],[243,19],[243,20],[243,24],[243,25],[243,26],\\ &[243,27],[243,50],[243,55],[252,11],[273,3],[273,4],[279,1],[291,1],[294,7],[300,13],\\ &[300,43],[309,1],[324,3],[324,13],[324,15],[324,17],[324,43],[324,45],[324,49],\\ &[324,50],[324,51],[324,60],[324,102],[324,111],[324,128],[327,1],[333,1],[336,57],\\ &[351,1],[351,4],[351,5],[351,7],[351,8],[363,2],[372,11],[381,1],[384,568],[384,571],\\ &[384,581],[387,1],[399,3],[399,4],[417,1],[432,3],[432,33],[432,57],[432,100],\\ &[432,102],[432,103],[432,239],[432,260],[432,273],[441,1],[441,7],[444,14],[453,1],\\ &[468,14],[471,1],[486,26],[486,28],[486,61],[486,125],[486,164],[489,1],[507,1],\\ &[507,5],[513,1],[513,5],[513,6],[513,8],[513,9],[516,11],[525,5],[543,1],[549,1],\\ &[567,1],[567,4],[567,5],[567,7],[567,12],[567,13],[567,14],[567,23],[567,36],[576,3],\\ &[579,1],[588,11],[588,16],[588,60],[597,1],[600,45],[600,179],[603,1],[624,60],\\ &[633,1],[648,19],[648,21],[648,23],[648,244],[648,259],[648,260],[648,266],[648,352],\\ &[648,531],[648,532],[648,533],[648,551],[648,563],[651,3],[651,4],[657,1],[669,1],\\ &[675,5],[675,9],[675,11],[675,12],[684,11],[687,1],[711,1],[723,1],[726,5],[729,62],\\ &[729,63],[729,64],[729,80],[729,86],[729,94],[729,95],[729,96],[729,97],[729,98],\\ &[729,284],[729,393],[729,397],[732,14],[741,3],[741,4],[756,11],[756,113],[756,114],\\ &[756,116],[756,117],[768,1083477],[768,1085333],[768,1085335],[768,1085351],[777,3],[777,4],\\ &[804,11],[813,1],[819,3],[819,4],[831,1],[837,1],[837,4],[837,5],[837,7],[837,8],\\ &[849,1],[864,69],[864,194],[864,675],[864,701],[864,703],[864,737],[867,2],[873,1],\\ &[876,14],[900,66],[903,5],[903,6],[912,57],[921,1],[927,1],[939,1],[948,11],[972,3],\\ &[972,29],[972,31],[972,64],[972,117],[972,121],[972,122],[972,123],[972,147],[972,152],\\ &[972,153],[972,170],[972,309],[972,348],[972,411],[972,520],[972,550],[975,5],[981,1],\\ &[993,1],[999,1],[999,5],[999,6],[999,8],[999,9],[1008,57],[1011,1],[1014,7],[1029,6],\\ &[1029,9],[1047,1],[1053,16],[1053,25],[1053,26],[1053,27],[1053,29],[1053,32],[1053,35],\\ &[1053,37],[1053,47],[1080,260],[1083,1],[1083,5],[1089,3],[1092,68],[1092,69],[1101,1],\\ &[1116,11],[1119,1],[1137,1],[1143,1],[1161,6],[1161,9],[1161,10],[1161,11],[1161,12],\\ &[1164,14],[1176,57],[1176,243],[1191,1],[1197,3],[1197,4],[1200,183],[1200,384],\\ &[1200,682],[1209,3],[1209,4],[1227,1],[1236,11],[1251,1],[1263,1],[1281,3],[1281,4],\\ &[1296,3],[1296,35],[1296,37],[1296,39],[1296,220],[1296,222],[1296,226],[1296,227],\\ &[1296,228],[1296,237],[1296,647],[1296,688],[1296,689],[1296,699],[1296,1239],[1296,1499],\\ &[1296,1995],[1296,2113],[1296,2203],[1299,1],[1308,14],[1317,1],[1323,1],[1323,4],\\ &[1323,5],[1323,7],[1323,8],[1323,14],[1323,40],[1323,42],[1323,43],[1332,14],[1344,393],\\ &[1350,46],[1359,1],[1371,1],[1389,1],[1404,14],[1404,137],[1404,138],[1404,140],\\ &[1404,141],[1407,3],[1407,4],[1413,1],[1425,5],[1443,3],[1443,4],[1452,11],[1452,34],\\ &[1458,615],[1458,618],[1458,659],[1458,663],[1458,666],[1458,1095],[1458,1354],[1458,1371],\\ &[1461,1],[1467,1],[1488,57],[1497,1],[1521,1],[1521,7],[1524,11],[1533,3],[1533,4].\end{split} (42)

Appendix B Relations between GG_{\ell} and GνG_{\nu}

In this appendix we will show that for direct models, in order to obtain a phenomenologically viable mixing matrix UPMNSU_{\mathrm{PMNS}}, the generator SS of GνG_{\nu} must not commute with any of the generators of GG_{\ell}. Note that we here exclude generators of GG_{\ell} which are proportional to 𝟙3\mathbbm{1}_{3}, because such elements do not restrict UU_{\ell} and are therefore superfluous.

Suppose a generator TT of GG_{\ell} commutes with SS. Since we have excluded generators TT which are proportional to 𝟙3\mathbbm{1}_{3}, TT must have at least two different eigenvalues. Therefore, TT alone fixes one column uu of UU_{\ell}. Since SS commutes with TT, uu is also an eigenvector of SS. However, since all eigenvectors of SS are unique (because SS fixes UνU_{\nu}), uu is also a column of UνU_{\nu}. Therefore, UU_{\ell} and UνU_{\nu} have two equal columns and UPMNSU_{\mathrm{PMNS}} is block-diagonal. Thus two mixing angles vanish, which is phenomenologically excluded.

Appendix C The character table of the group Q(648)Q(648)

For completeness, we show the character table of the group Q(648)=[648,533]Q(648)=[648,533] constructed with GAP in table 2.

1C11C^{1} 1C31C^{3} 1C31C^{3} 24C324C^{3} 9C29C^{2} 9C69C^{6} 9C69C^{6} 54C454C^{4} 54C1254C^{12} 54C1254C^{12} 12C312C^{3} 12C312C^{3} 12C312C^{3} 72C972C^{9} 36C636C^{6} 36C636C^{6} 36C636C^{6} 12C312C^{3} 12C312C^{3} 12C312C^{3} 72C972C^{9} 36C636C^{6} 36C636C^{6} 36C636C^{6}
𝟏𝟏\mathbf{1_{1}} 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
𝟏𝟐\mathbf{1_{2}} 11 11 11 11 11 11 11 11 11 11 ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω\omega ω\omega ω\omega ω\omega ω\omega ω\omega ω\omega
𝟏𝟑\mathbf{1_{3}} 11 11 11 11 11 11 11 11 11 11 ω\omega ω\omega ω\omega ω\omega ω\omega ω\omega ω\omega ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2}
𝟐𝟏\mathbf{2_{1}} 22 22 22 22 2-2 2-2 2-2 0 0 0 1-1 1-1 1-1 1-1 11 11 11 1-1 1-1 1-1 1-1 11 11 11
𝟐𝟐\mathbf{2_{2}} 22 22 22 22 2-2 2-2 2-2 0 0 0 ω-\omega ω-\omega ω-\omega ω-\omega ω\omega ω\omega ω\omega ω2-\omega^{2} ω2-\omega^{2} ω2-\omega^{2} ω2-\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2}
𝟐𝟑\mathbf{2_{3}} 22 22 22 22 2-2 2-2 2-2 0 0 0 ω2-\omega^{2} ω2-\omega^{2} ω2-\omega^{2} ω2-\omega^{2} ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω-\omega ω-\omega ω-\omega ω-\omega ω\omega ω\omega ω\omega
𝟑𝟏\mathbf{3_{1}} 33 33 33 33 33 33 33 1-1 1-1 1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝟑𝟐\mathbf{3_{2}} 33 3ω23\omega^{2} 3ω3\omega 0 1-1 ω2-\omega^{2} ω-\omega 11 ω2\omega^{2} ω\omega 2ωω2-2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} ωω2\omega-\omega^{2} 0 ω2-\omega^{2} ω-\omega 1-1 ω2ω2-\omega-2\omega^{2} ω+ω2-\omega+\omega^{2} 2ω+ω22\omega+\omega^{2} 0 ω-\omega 1-1 ω2-\omega^{2}
𝟑𝟑\mathbf{3_{3}} 33 3ω3\omega 3ω23\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2} 11 ω\omega ω2\omega^{2} ω2ω2-\omega-2\omega^{2} 2ω+ω22\omega+\omega^{2} ω+ω2-\omega+\omega^{2} 0 ω-\omega ω2-\omega^{2} 1-1 2ωω2-2\omega-\omega^{2} ωω2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} 0 ω2-\omega^{2} 1-1 ω-\omega
𝟑𝟒\mathbf{3_{4}} 33 3ω23\omega^{2} 3ω3\omega 0 1-1 ω2-\omega^{2} ω-\omega 11 ω2\omega^{2} ω\omega ω+2ω2\omega+2\omega^{2} ωω2\omega-\omega^{2} 2ωω2-2\omega-\omega^{2} 0 ω-\omega 1-1 ω2-\omega^{2} 2ω+ω22\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} ω+ω2-\omega+\omega^{2} 0 ω2-\omega^{2} ω-\omega 1-1
𝟑𝟓\mathbf{3_{5}} 33 3ω3\omega 3ω23\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2} 11 ω\omega ω2\omega^{2} 2ω+ω22\omega+\omega^{2} ω+ω2-\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} 0 ω2-\omega^{2} 1-1 ω-\omega ω+2ω2\omega+2\omega^{2} 2ωω2-2\omega-\omega^{2} ωω2\omega-\omega^{2} 0 ω-\omega ω2-\omega^{2} 1-1
𝟑𝟔\mathbf{3_{6}} 33 3ω23\omega^{2} 3ω3\omega 0 1-1 ω2-\omega^{2} ω-\omega 11 ω2\omega^{2} ω\omega ωω2\omega-\omega^{2} 2ωω2-2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} 0 1-1 ω2-\omega^{2} ω-\omega ω+ω2-\omega+\omega^{2} 2ω+ω22\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} 0 1-1 ω2-\omega^{2} ω-\omega
𝟑𝟕\mathbf{3_{7}} 33 3ω3\omega 3ω23\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2} 11 ω\omega ω2\omega^{2} ω+ω2-\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} 2ω+ω22\omega+\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2} ωω2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} 2ωω2-2\omega-\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2}
𝟔𝟏\mathbf{6_{1}} 66 6ω26\omega^{2} 6ω6\omega 0 22 2ω22\omega^{2} 2ω2\omega 0 0 0 ω+ω2-\omega+\omega^{2} 2ω+ω22\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} 0 1-1 ω2-\omega^{2} ω-\omega ωω2\omega-\omega^{2} 2ωω2-2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} 0 1-1 ω2-\omega^{2} ω-\omega
𝟔𝟐\mathbf{6_{2}} 66 6ω6\omega 6ω26\omega^{2} 0 22 2ω2\omega 2ω22\omega^{2} 0 0 0 ωω2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} 2ωω2-2\omega-\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2} ω+ω2-\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} 2ω+ω22\omega+\omega^{2} 0 1-1 ω-\omega ω2-\omega^{2}
𝟔𝟑\mathbf{6_{3}} 66 6ω26\omega^{2} 6ω6\omega 0 22 2ω22\omega^{2} 2ω2\omega 0 0 0 2ω+ω22\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} ω+ω2-\omega+\omega^{2} 0 ω2-\omega^{2} ω-\omega 1-1 ω+2ω2\omega+2\omega^{2} ωω2\omega-\omega^{2} 2ωω2-2\omega-\omega^{2} 0 ω-\omega 1-1 ω2-\omega^{2}
𝟔𝟒\mathbf{6_{4}} 66 6ω6\omega 6ω26\omega^{2} 0 22 2ω2\omega 2ω22\omega^{2} 0 0 0 ω+2ω2\omega+2\omega^{2} 2ωω2-2\omega-\omega^{2} ωω2\omega-\omega^{2} 0 ω-\omega ω2-\omega^{2} 1-1 2ω+ω22\omega+\omega^{2} ω+ω2-\omega+\omega^{2} ω2ω2-\omega-2\omega^{2} 0 ω2-\omega^{2} 1-1 ω-\omega
𝟔𝟓\mathbf{6_{5}} 66 6ω26\omega^{2} 6ω6\omega 0 22 2ω22\omega^{2} 2ω2\omega 0 0 0 ω2ω2-\omega-2\omega^{2} ω+ω2-\omega+\omega^{2} 2ω+ω22\omega+\omega^{2} 0 ω-\omega 1-1 ω2-\omega^{2} 2ωω2-2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} ωω2\omega-\omega^{2} 0 ω2-\omega^{2} ω-\omega 1-1
𝟔𝟔\mathbf{6_{6}} 66 6ω6\omega 6ω26\omega^{2} 0 22 2ω2\omega 2ω22\omega^{2} 0 0 0 2ωω2-2\omega-\omega^{2} ωω2\omega-\omega^{2} ω+2ω2\omega+2\omega^{2} 0 ω2-\omega^{2} 1-1 ω-\omega ω2ω2-\omega-2\omega^{2} 2ω+ω22\omega+\omega^{2} ω+ω2-\omega+\omega^{2} 0 ω-\omega ω2-\omega^{2} 1-1
𝟖𝟏\mathbf{8_{1}} 88 88 88 1-1 0 0 0 0 0 0 22 22 22 1-1 0 0 0 22 22 22 1-1 0 0 0
𝟖𝟐\mathbf{8_{2}} 88 88 88 1-1 0 0 0 0 0 0 2ω22\omega^{2} 2ω22\omega^{2} 2ω22\omega^{2} ω2-\omega^{2} 0 0 0 2ω2\omega 2ω2\omega 2ω2\omega ω-\omega 0 0 0
𝟖𝟑\mathbf{8_{3}} 88 88 88 1-1 0 0 0 0 0 0 2ω2\omega 2ω2\omega 2ω2\omega ω-\omega 0 0 0 2ω22\omega^{2} 2ω22\omega^{2} 2ω22\omega^{2} ω2-\omega^{2} 0 0 0
𝟗𝟏\mathbf{9_{1}} 99 9ω29\omega^{2} 9ω9\omega 0 3-3 3ω2-3\omega^{2} 3ω-3\omega 1-1 ω2-\omega^{2} ω-\omega 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝟗𝟐\mathbf{9_{2}} 99 9ω9\omega 9ω29\omega^{2} 0 3-3 3ω-3\omega 3ω2-3\omega^{2} 1-1 ω-\omega ω2-\omega^{2} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 2: The character table of the group Q(648)=[648,533]Q(648)=[648,533] constructed with GAP. The notation for the conjugacy classes of the group is NCnNC^{n}, where NN denotes the number of elements of the conjugacy class and nn is the order of the elements of the class. (ω=exp(2πi/3).\omega=\exp(2\pi i/3).)

References

  • [1] S. F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys.  76, 056201 (2013) [arXiv:1301.1340 [hep-ph]].
  • [2] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys.  16, 045018 (2014) [arXiv:1402.4271 [hep-ph]];
  • [3] M. Holthausen, K. S. Lim and M. Lindner, Lepton Mixing Patterns from a Scan of Finite Discrete Groups, Phys. Lett. B 721, 61 (2013) [arXiv:1212.2411 [hep-ph]].
  • [4] S. F. King, T. Neder and A. J. Stuart, Lepton mixing predictions from Δ(6n2)\Delta(6n^{2}) family Symmetry, Phys. Lett. B 726 (2013) 312 [arXiv:1305.3200 [hep-ph]].
  • [5] R. M. Fonseca and W. Grimus, Classification of lepton mixing matrices from finite residual symmetries, JHEP 1409, 033 (2014) [arXiv:1405.3678 [hep-ph]].
  • [6] C. Y. Yao and G. J. Ding, Lepton and Quark Mixing Patterns from Finite Flavor Symmetries, Phys. Rev. D 92, no. 9, 096010 (2015) [arXiv:1505.03798 [hep-ph]].
  • [7] S. F. King, Models of Neutrino Mass, Mixing and CP Violation, J. Phys. G 42, 123001 (2015) [arXiv:1510.02091 [hep-ph]].
  • [8] A. S. Joshipura and K. M. Patel, Horizontal symmetries of leptons with a massless neutrino, Phys. Lett. B 727 (2013) 480 [arXiv:1306.1890 [hep-ph]].
  • [9] A. S. Joshipura and K. M. Patel, A massless neutrino and lepton mixing patterns from finite discrete subgroups of U(3), JHEP 1404 (2014) 009 [arXiv:1401.6397 [hep-ph]].
  • [10] S. F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492].
  • [11] C. S. Lam, Determining Horizontal Symmetry from Neutrino Mixing, Phys. Rev. Lett.  101 (2008) 121602 [arXiv:0804.2622 [hep-ph]].
  • [12] C. S. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185 [hep-ph]].
  • [13] W. Grimus, L. Lavoura and P. O. Ludl, Is S4S_{4} the horizontal symmetry of tri-bimaximal lepton mixing?, J. Phys. G 36 (2009) 115007 [arXiv:0906.2689 [hep-ph]].
  • [14] S. F. Ge, D. A. Dicus and W. W. Repko, Z2Z_{2} Symmetry Prediction for the Leptonic Dirac CP Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602 [hep-ph]].
  • [15] R. d. A. Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486 [hep-ph]].
  • [16] S. F. Ge, D. A. Dicus and W. W. Repko, Residual Symmetries for Neutrino Mixing with a Large θ13\theta_{13} and Nearly Maximal δD\delta_{D}, Phys. Rev. Lett.  108 (2012) 041801 [arXiv:1108.0964 [hep-ph]].
  • [17] D. Hernandez and A. Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445 [hep-ph]].
  • [18] L. Lavoura and P. O. Ludl, Residual 2×2\mathbb{Z}_{2}\times\mathbb{Z}_{2} symmetries and lepton mixing, Phys. Lett. B 731 (2014) 331 [arXiv:1401.5036 [hep-ph]].
  • [19] H.U. Besche, B. Eick and E. A. O’Brien, A millennium project: constructing Small Groups, Internat. J. Algebra Comput. 12, (2002) 623.
  • [20] H.U. Besche, B. Eick and E. A. O’Brien, The SmallGroups Library,
    http://www.gap-system.org/Packages/sgl.html,
    http://www.icm.tu-bs.de/ag_algebra/software/small/.
  • [21] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, http://www.gap-system.org/.
  • [22] W. Grimus, Discrete symmetries, roots of unity, and lepton mixing, J. Phys. G 40 (2013) 075008 [arXiv:1301.0495 [hep-ph]].
  • [23] J. Talbert, [Re]constructing Finite Flavour Groups: Horizontal Symmetry Scans from the Bottom-Up, JHEP 1412 (2014) 058 [arXiv:1409.7310 [hep-ph]].
  • [24] M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP violation, JHEP 1411 (2014) 052 [arXiv:1409.5439 [hep-ph]].
  • [25] P. O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A 43 (2010) 395204 [J. Phys. A 44 (2011) 139501] [arXiv:1006.1479 [math-ph]].