This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Divergence Conditions for Investigation and Control of Nonautonomous Dynamical Systems

Igor Furtata,b,∗ aInstitute for Problems of Mechanical Engineering Russian Academy of Sciences, 61 Bolshoy ave V.O., St.-Petersburg, 199178, Russia bITMO University, 49 Kronverkskiy ave, Saint Petersburg, 197101, Russia
Abstract

The paper describes a novel method for studying the stability of nonautonomous dynamical systems. This method based on the flow and divergence of the vector field with coupling to the method of Lyapunov functions. The necessary and sufficient stability conditions are formulated. It is shown that the necessary stability conditions are related to the integral and differential forms of continuity equations with the sources (the flux is directed inward) located in the equilibrium points of the dynamical system. The sufficient stability conditions are applied to design the state feedback control laws. The proposed control law is found as a solution of partial differential inequality, whereas the control law based on Lyapunov technique is found from the solution of algebraic inequality. The examples illustrate the effectiveness of the proposed method compared with some existing ones.

keywords:
Nonautonomous dynamical system, stability, flow of vector field, divergence, control.
journal: Systems &\& Control Letters

1 Introduction

The method of Lyapunov functions is a powerful tool for studying the stability of solutions of differential equations without solving them. Depending on the problem being solved, Lyapunov function is also interpreted as a potential function [1], an energy function [2] or a storage function [3]. The main restriction of the method of Lyapunov functions is to find these functions.

Methods for stability study of dynamical systems based on the divergence of a vector field are alternative to the method of Lyapunov functions. The first fundamental results based on divergent stability conditions were proposed in [4, 5, 6]. The last important results for investigation of system stability were proposed by A. Rantzer, A.A. Shestakov, A.N. Stepanov and V.P. Zhukov. In [7] the instability problem of nonlinear systems using the divergence of a vector field is considered. In [8, 9] a necessary condition for stability of nonlinear systems in the form of non-positivity of the vector field divergence is proposed. First, an auxiliary scalar function is introduced in [8, 10] to study the instability of nonlinear systems. However, the similar scalar function is considered in [11] for stability and instability study of dynamical systems, but using the method of Lyapunov functions. In [8, 12] stability conditions for second-order systems are obtained. Then in [13, 14] the convergence of almost all solutions of arbitrary order nonlinear dynamical systems is considered. As in [8, 10, 12] the auxiliary scalar function (density function) is used for the stability study of dynamical models. Additionally, in [13, 14] the synthesis of the control law based on divergence conditions is proposed. The auxiliary functions in [8, 12, 13, 14] are similar except their properties at the equilibrium point. Currently, method from [13, 14] has been extended to various systems, see i.e. [15, 16, 17, 18].

However, in [4, 8, 12] the necessary condition is sufficiently rough and it is obtained only for autonomous systems. The sufficient condition stability is proposed only for second-order autonomous systems in [12]. Corollary 1 in [14] guarantees the convergence of almost all solutions, but not all solutions, for nonautonomous systems. Proposition 2 in [14] allows to study the asymptotic stability for autonomous systems, but proposition conditions have sufficient restriction. In the present paper new necessary and sufficient conditions will be obtained that will eliminate the above disadvantages and expand the class of investigated systems.

In this paper a new method for the stability study of nonautonomous systems using the flow and divergence of the vector field is proposed. The relation between the method of Lyapunov functions and the proposed method is established. The method for design the state feedback control law based on the new divergence conditions is proposed. Numerical examples illustrate the applicability of the proposed method and the methods from [4, 8, 12, 13, 14].

The paper is organized as follows. Section 2 contains new necessary and sufficient conditions, as well as, the numerical examples and comparisons with the methods from [4, 8, 12, 13, 14]. Section 3 describes methods for design the state feedback control law and numerical examples. Finally, Section 4 collects some conclusions.

Notations and definitions. In the paper the following notation are used: the superscript T\rm T stands for matrix transposition; n\mathbb{R}^{n} denotes the nn dimensional Euclidean space with vector norm |||\cdot|; n×m\mathbb{R}^{n\times m} is the set of all n×mn\times m real matrices; {W(x,t)}=[Wx1,,Wxn]T\nabla\{W(x,t)\}=\Big{[}\frac{\partial W}{\partial x_{1}},...,\frac{\partial W}{\partial x_{n}}\Big{]}^{\rm T} is the gradient of the scalar function W(x,t)W(x,t), {h(x,t)}=h1x1++hnxn\nabla\cdot\{h(x,t)\}=\frac{\partial h_{1}}{\partial x_{1}}+...+\frac{\partial h_{n}}{\partial x_{n}} is the divergence of the vector field h(x,t)=[h1(x,t),,h(x,t)n]Th(x,t)=[h_{1}(x,t),...,h(x,t)_{n}]^{\rm T}, |||\cdot| is the Euclidean norm of the corresponding vector.

Definition 1

[19]. A continuous function α:[0,a)[0;)\alpha:[0,a)\to[0;\infty) is said to belong to class 𝒦\mathcal{K} if it is strictly increasing and α(0)=0\alpha(0)=0.

Definition 2

[19]. A continuous function β:[0,a)×[0;)[0;)\beta:[0,a)\times[0;\infty)\to[0;\infty) is said to belong to class 𝒦\mathcal{KL} if, for each fixed s, the mapping β(r,s)\beta(r,s) belongs to class 𝒦\mathcal{K} w.r.t. rr and, for each fixed rr, the mapping β(r,s)\beta(r,s) is decreasing w.r.t. ss and β(r,s)0\beta(r,s)\to 0 as ss\to\infty.

Additionally, in the paper we mean that the zero equilibrium point is stable if it is Lyapunov stable [19].

2 Maun results

Consider the nonautonomous system

x˙=f(x,t),\begin{array}[]{l}\dot{x}=f(x,t),\end{array} (1)

where x=[x1,,xn]Tx=[x_{1},...,x_{n}]^{\rm T} is the state vector, f=[f1,,fn]T:[0,)×Dnf=[f_{1},...,f_{n}]^{\rm T}:[0,\infty)\times D\to\mathbb{R}^{n} is piecewise continuous in tt and continuously differentiable in xx on [0,)×D[0,\infty)\times D. The open set DnD\subset\mathbb{R}^{n} contains the origin x=0x=0 and f(t,0)=0f(t,0)=0 for any t0t\geq 0. Denote by D¯\bar{D} a boundary of the domain DD. Below, the structure of the set DD can be specified depending on the obtained result.

Let us formulate the necessary stability condition for system (1).

Theorem 1

Let the Jacobian matrix [f/x][\partial f/\partial x] be bounded on D={xn:x<r,r>0}D=\{x\in\mathbb{R}^{n}:\|x\|<r,r>0\} and uniformly in tt, trajectories of system (1) satisfies x(t)β(x(t0),tt0)\|x(t)\|\leq\beta(\|x(t_{0})\|,t-t_{0}) for any x(t0)D0x(t_{0})\in D_{0} and tt00t\geq t_{0}\geq 0, where β(,)\beta(\cdot,\cdot) is a class 𝒦\mathcal{KL} function, D0={xn:x<r0,r0>0}D_{0}=\{x\in\mathbb{R}^{n}:\|x\|<r_{0},r_{0}>0\} and β(r0,0)<r\beta(r_{0},0)<r. Then there is a function S(x,t):[0,)×D0S(x,t):[0,\infty)\times D_{0}\to\mathbb{R} such that |{S(x,t)}|0|\nabla\{S(x,t)\}|\neq 0 for any xD0{0}x\in D_{0}\setminus\{0\}, t0t\geq 0 and at least one of the following conditions holds:

  1. (1)

    the function S(x,t)t+{|{S(x,t)}|f(x,t)}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S(x,t)\}|f(x,t)\} is integrable in the domain V={xD0,t0:S(x,t)C}V=\{x\in D_{0},t\geq 0:S(x,t)\leq C\} and V[S(x,t)t+{|{S(x,t)}|f(x,t)}]𝑑V<0\int_{V}\Big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S(x,t)\}|f(x,t)\}\Big{]}dV<0 for all C>0C>0;

  2. (2)

    the function S1(x,t)t+{|{S1(x,t)}|f(x,t)}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S^{-1}(x,t)\}|f(x,t)\} is integrable in the domain Vinv={xD0,t0:S1(x,t)C}V_{inv}=\{x\in D_{0},t\geq 0:S^{-1}(x,t)\geq C\} and Vinv[S1(x,t)t+{|{S1(x,t)}|f(x,t)}]𝑑Vinv>0\int_{V_{inv}}\Big{[}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S^{-1}(x,t)\}|f(x,t)\}\Big{]}dV_{inv}>0 for all C>0C>0.

Proof 1 According to [19, Theorem 3.13], if Jacobian matrix [f/x][\partial f/\partial x] is bounded on D={xn:x<r}D=\{x\in\mathbb{R}^{n}:\|x\|<r\} and uniformly in tt, trajectories of system (1) satisfies x(t)β(x(t0),tt0)\|x(t)\|\leq\beta(\|x(t_{0})\|,t-t_{0}) for any x(t0)D0x(t_{0})\in D_{0} and tt00t\geq t_{0}\geq 0, then there exists a continuously differentiable function S(x,t):[0,)×D0S(x,t):[0,\infty)\times D_{0}\to\mathbb{R} that satisfies the inequality S(x,t)t+{S(x,t)}Tf(x,t)α(x)\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)\leq-\alpha(\|x\|). Here the function α()\alpha(\|\cdot\|) is a class 𝒦\mathcal{K} functions on [0,r0][0,r_{0}]. Next, we consider two cases separately which correspond to the functions S(x,t)S(x,t) and S1(x,t)S^{-1}(x,t).

1. If S(x,t)t+{S(x,t)}Tf(x,t)<0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)<0 for any xD0{0}x\in D_{0}\setminus\{0\} and t0t\geq 0, then S(x,t)t+1|{S(x,t)}|{S(x,t)}T|{S(x,t)}|f(x,t)<0\frac{\partial S(x,t)}{\partial t}+\frac{1}{|\nabla\{S(x,t)\}|}\nabla\{S(x,t)\}^{\rm T}|\nabla\{S(x,t)\}|f(x,t)<0. Therefore, the following expression holds

F1=VS(x,t)tdV+Γ1|{S(x,t)}|{S(x,t)}T|{S(x,t)}|f(x,t)dΓ<0.\begin{array}[]{l}F_{1}=\int_{V}\frac{\partial S(x,t)}{\partial t}dV+\oint_{\Gamma}\frac{1}{|\nabla\{S(x,t)\}|}\nabla\{S(x,t)\}^{\rm T}|\nabla\{S(x,t)\}|f(x,t)d\Gamma<0.\end{array}

Using Divergence theorem (or Gauss theorem), we get F1=V[S(x,t)t+{|{S(x,t)}|f(x,t)}]𝑑V<0F_{1}=\int_{V}\Big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S(x,t)\}|f(x,t)\}\Big{]}dV<0.

2. If S(x,t)t+{S(x,t)}Tf(x,t)<0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)<0 for any xD0{0}x\in D_{0}\setminus\{0\} and t0t\geq 0, then S1(x,t)t+{S1(x,t)}Tf(x,t)=S2(x,t)[S(x,t)t+{S(x,t)}Tf(x,t)]>0\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\{S^{-1}(x,t)\}^{\rm T}f(x,t)=-S^{-2}(x,t)\big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)\}^{\rm T}f(x,t)\big{]}>0. On the other hand, {S1(x,t)}Tf(x,t)=1|{S1(x,t)}|{S1(x)}T×|{S1(x)}|f(x,t).\nabla\{S^{-1}(x,t)\}^{\rm T}f(x,t)=\frac{1}{|\nabla\{S^{-1}(x,t)\}|}\nabla\{S^{-1}(x)\}^{\rm T}\times\\ |\nabla\{S^{-1}(x)\}|f(x,t). Therefore, the following relation is satisfied

F2=VinvS1(x,t)t𝑑Vinv+Γinv1|{S1(x,t)}|{S1(x,t)}T|{S1(x,t)}|f(x,t)dΓinv>0.\begin{array}[]{l}F_{2}=\int_{V_{inv}}\frac{\partial S^{-1}(x,t)}{\partial t}dV_{inv}+\\ \oint_{\Gamma_{inv}}\frac{1}{|\nabla\{S^{-1}(x,t)\}|}\nabla\{S^{-1}(x,t)\}^{\rm T}|\nabla\{S^{-1}(x,t)\}|f(x,t)d\Gamma_{inv}>0.\end{array}

According to Divergence theorem, we get F2=Vinv[S1(x,t)t+{|{S1(x,t)}|f(x,t)}]𝑑Vinv>0.F_{2}=\int_{V_{inv}}\Big{[}\frac{\partial S^{-1}(x,t)}{\partial t}+\\ \nabla\cdot\{|\nabla\{S^{-1}(x,t)\}|f(x,t)\}\Big{]}dV_{inv}>0. Theorem 1 is proved.

The next theorem extends results of Theorem 1 to the case of introducing new auxiliary function in the integrand. It allows to simplify the investigation of stability of system (1).

Theorem 2

Let the Jacobian matrix [f/x][\partial f/\partial x] be bounded on D={xn:x<r,r>0}D=\{x\in\mathbb{R}^{n}:\|x\|<r,r>0\} and uniformly in tt, trajectories of system (1) satisfies x(t)β(x(t0),tt0)\|x(t)\|\leq\beta(\|x(t_{0})\|,t-t_{0}) and f(x,t)c0xγ\|f(x,t)\|\leq c_{0}\|x\|^{\gamma}, c0>0c_{0}>0, γ>0\gamma>0 for any x(t0)D0x(t_{0})\in D_{0} and tt00t\geq t_{0}\geq 0, where β(,)\beta(\cdot,\cdot) is a class 𝒦\mathcal{KL} function, D0={xn:x<r0,r0>0}D_{0}=\{x\in\mathbb{R}^{n}:\|x\|<r_{0},r_{0}>0\} and β(r0,0)<r\beta(r_{0},0)<r. Then there is a continuously differentiable function S(x,t):[0,)×D0S(x,t):[0,\infty)\times D_{0}\to\mathbb{R} and the function μ(x,t):[0,)×D0\mu(x,t):[0,\infty)\times D_{0}\to\mathbb{R} that satisfy w1(x)S(x,t)w2(x)w_{1}(x)\leq S(x,t)\leq w_{2}(x) and c1xμ(x,t)c2xc_{1}\|x\|\leq\mu(x,t)\leq c_{2}\|x\|, w1(x)w_{1}(x) and w2(x)w_{2}(x) are positive definite functions, c1>0c_{1}>0 and c2>0c_{2}>0, |{S(x,t)}|0|\nabla\{S(x,t)\}|\neq 0 for any xD0{0}x\in D_{0}\setminus\{0\}, t0t\geq 0 and at least one of the following conditions holds:

  1. (1)

    the function S(x,t)t+{μ(x,t)|{S(x,t)}|f(x,t)}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S(x,t)\}|f(x,t)\} is integrable in the domain V={xD0,t0:S(x,t)C}V=\{x\in D_{0},t\geq 0:S(x,t)\leq C\} and V[S(x,t)t+{μ(x,t)|{S(x,t)}|f(x,t)}]𝑑V<0\int_{V}\Big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S(x,t)\}|f(x,t)\}\Big{]}dV<0 for all C>0C>0;

  2. (2)

    the function S1(x,t)t+{μ(x,t)|{S1(x,t)}|f(x,t)}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S^{-1}(x,t)\}|f(x,t)\} is integrable in the domain Vinv={xD0,t0:S1(x,t)C}V_{inv}=\{x\in D_{0},t\geq 0:S^{-1}(x,t)\geq C\} and Vinv[S1(x,t)t+{μ(x,t)|{S1(x,t)}|f(x,t)}]𝑑Vinv>0\int_{V_{inv}}\Big{[}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S^{-1}(x,t)\}|f(x,t)\}\Big{]}dV_{inv}>0 for all C>0C>0.

Proof 2 According to [19, Theorem 3.13], if the Jacobian matrix [f/x][\partial f/\partial x] is bounded on D={xn:x<r}D=\{x\in\mathbb{R}^{n}:\|x\|<r\} and uniformly in tt, trajectories of the system (1) satisfies x(t)β(x(t0),tt0)\|x(t)\|\leq\beta(\|x(t_{0})\|,t-t_{0}) for any x(t0)D0x(t_{0})\in D_{0} and tt00t\geq t_{0}\geq 0, then there exists a continuously differentiable function S(x,t):[0,)×D0S(x,t):[0,\infty)\times D_{0}\to\mathbb{R} that satisfies the inequalities

S(x,t)α1(x),S(x,t)t+{S(x,t)}Tf(t,x)α2(x),S(x,t)xα3(x).\begin{array}[]{l}S(x,t)\leq\alpha_{1}(x),~{}~{}\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(t,x)\leq-\alpha_{2}(x),~{}~{}\left\|\frac{\partial S(x,t)}{\partial x}\right\|\leq\alpha_{3}(x).\end{array}

Here α1(x)\alpha_{1}(x), α2(x)\alpha_{2}(x) and α3(x)\alpha_{3}(x) are class 𝒦\mathcal{K} functions on [0,r0][0,r_{0}]. If α1(x)=c3xχ\alpha_{1}(x)=c_{3}\|x\|^{\chi}, χ>0\chi>0, then α2(x)=c4xχ+γ1\alpha_{2}(x)=c_{4}\|x\|^{\chi+\gamma-1} and α3(x)=c5xχ1\alpha_{3}(x)=c_{5}\|x\|^{\chi-1} Consider the following relations

S(x,t)t+{S(x,t)}Tμ(x,t)f(x,t)=S(x,t)t+{S(x,t)}Tf(x,t)+{S(x,t)}T(μ(x,t)1)f(x,t)S(x,t)t+{S(x,t)}Tf(x,t)+{S(x,t)}|μ(x,t)|f(x,t)(c4c0c2c5x)xχ+γ1.\begin{array}[]{l}\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}\mu(x,t)f(x,t)\par\\ =\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)+\nabla\{S(x,t)\}^{\rm T}(\mu(x,t)-1)f(x,t)\par\\ \leq\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)+\|\nabla\{S(x,t)\}\||\mu(x,t)|\|f(x,t)\|\par\\ \leq-(c_{4}-c_{0}c_{2}c_{5}\|x\|)\|x\|^{\chi+\gamma-1}.\end{array}

Choosing r=c4c0c2c5r=\frac{c_{4}}{c_{0}c_{2}c_{5}} and r0<rr_{0}<r, one gets S(x,t)t+{S(x,t)}Tμ(x,t)f(x,t)0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}\mu(x,t)f(x,t)\leq 0. Next, we consider two cases separately which correspond to the functions S(x,t)S(x,t) and S1(x,t)S^{-1}(x,t).

1. Since S(x,t)t+{S(x,t)}Tμ(x,t)f(x,t)<0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}\mu(x,t)f(x,t)<0 for any xD0{0}x\in D_{0}\setminus\{0\} and t0t\geq 0, then

F1=VS(x,t)tdV+Γ1|{S(x,t)}|{S(x,t)}Tμ(x,t)|{S(x,t)}|f(x,t)dΓ<0.\begin{array}[]{l}F_{1}=\int_{V}\frac{\partial S(x,t)}{\partial t}dV+\oint_{\Gamma}\frac{1}{|\nabla\{S(x,t)\}|}\nabla\{S(x,t)\}^{\rm T}\mu(x,t)|\nabla\{S(x,t)\}|f(x,t)d\Gamma<0.\end{array}

Using Divergence theorem, we get F1=V[S(x,t)t+{|{S(x,t)}|μ(x,t)f(x,t)}]𝑑V<0F_{1}=\int_{V}\Big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S(x,t)\}|\mu(x,t)\\ f(x,t)\}\Big{]}dV<0.

2. Since S(x,t)t+{S(x,t)}Tμ(x,t)f(x,t)<0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}\mu(x,t)f(x,t)<0 for any xD0{0}x\in D_{0}\setminus\{0\} and t0t\geq 0, then S1(x,t)t+{S1(x,t)}Tμ(x,t)f(x,t)=S2(x,t)[S(x,t)t+{S(x,t)}Tμ(x,t)f(x,t)]>0\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\{S^{-1}(x,t)\}^{\rm T}\mu(x,t)f(x,t)=-S^{-2}(x,t)\Big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}\mu(x,t)f(x,t)\Big{]}>0. On the other hand, {S1(x,t)}Tμ(x,t)f(x,t)=1|{S1(x,t)}|{S1(x)}T|{S1(x)}|μ(x,t)f(x,t).\nabla\{S^{-1}(x,t)\}^{\rm T}\mu(x,t)f(x,t)\\ =\frac{1}{|\nabla\{S^{-1}(x,t)\}|}\nabla\{S^{-1}(x)\}^{\rm T}|\nabla\{S^{-1}(x)\}|\mu(x,t)f(x,t). Therefore, the following relation is satisfied

F2=VinvS1(x,t)t𝑑Vinv+Γinv1|{S1(x,t)}|{S1(x,t)}T|{S1(x,t)}|μ(x,t)f(x,t)dΓinv>0.\begin{array}[]{l}F_{2}=\int_{V_{inv}}\frac{\partial S^{-1}(x,t)}{\partial t}dV_{inv}\\ +\oint_{\Gamma_{inv}}\frac{1}{|\nabla\{S^{-1}(x,t)\}|}\nabla\{S^{-1}(x,t)\}^{\rm T}|\nabla\{S^{-1}(x,t)\}|\mu(x,t)f(x,t)d\Gamma_{inv}>0.\end{array}

Considering Divergence theorem, we get F2=Vinv[S1(x,t)t+{|{S1(x,t)}|μ(x,t)f(x,t)}]𝑑Vinv>0.F_{2}=\int_{V_{inv}}\Big{[}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{|\nabla\{S^{-1}(x,t)\}\\ |\mu(x,t)f(x,t)\}\Big{]}dV_{inv}>0. Theorem 2 is proved.

Remark 1 There are various physical interpretations of the integral conditions in Theorem 2. Rewriting the integral inequalities in Theorem 2 as V[S(x,t)t+{μ(x,t)|{S(x,t)}|f(x,t)}]𝑑V=Σ\int_{V}\Big{[}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S(x,t)\}|f(x,t)\}\Big{]}dV=-\Sigma or Vinv[S1(x,t)t+{μ(x,t)|{S1(x,t)}|f(x,t)}]𝑑Vinv=Σ\int_{V_{inv}}\Big{[}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S^{-1}(x,t)\}|f(x,t)\}\Big{]}dV_{inv}=\Sigma, Σ0\Sigma\geq 0, one gets the integral forms of continuity equation with the sources (the flux is directed inward) located in the equilibrium points in the domain VV (or VinfV_{inf}), see [23].

  1. (i)

    Choosing μ(x,t)\mu(x,t) such that |{S(x,t)}|μ(x,t)=S(x,t)|\nabla\{S(x,t)\}|\mu(x,t)=S(x,t) or |{S1(x,t)}|×μ(x,t)=S1(x,t)|\nabla\{S^{-1}(x,t)\}|\\ \times\mu(x,t)=S^{-1}(x,t), one has the continuity equation in fluid dynamics [20], where SS is fluid density and ff is the flow velocity of a vector field.

  2. (ii)

    In electromagnetic theory [21], μ(x,t)|{S(x,t)}|f(x,t)\mu(x,t)|\nabla\{S(x,t)\}|f(x,t) or μ(x,t)|×{S1(x,t)}|f(x,t)\mu(x,t)|\times\\ \nabla\{S^{-1}(x,t)\}|f(x,t) means the current density and SS is the charge density.

  3. (iii)

    Due to conservation of energy [20], μ(x,t)|{S(x,t)}|f(x,t)\mu(x,t)|\nabla\{S(x,t)\}|f(x,t) or μ(x,t)|×{S1(x,t)}|f(x,t)\mu(x,t)|\times\\ \nabla\{S^{-1}(x,t)\}|f(x,t) is the vector energy flux and SS is local energy density.

  4. (iv)

    In quantum mechanics [22], SS is the probability density function and μ(x,t)|{S(x,t)}|f(x,t)\mu(x,t)|\nabla\{S(x,t)\}|f(x,t) or μ(x,t)|{S1(x,t)}|f(x,t)\mu(x,t)|\nabla\{S^{-1}(x,t)\}|f(x,t) is the probability current.

Remark 2 If S(x,t)t+{μ(x,t)|{S(x,t)}|f(x,t)}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S(x,t)\}|f(x,t)\} or S1(x,t)t+{μ(x,t)|{S1(x,t)}|f(x,t)}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S^{-1}(x,t)\}|f(x,t)\} are integrable and S(x,t)t+{μ(x,t)|{S(x,t)}|f(x,t)}=σ\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S(x,t)\}\\ |f(x,t)\}=-\sigma or S1(x,t)t+{μ(x,t)|{S1(x,t)}|f(x,t)}=σ\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{\mu(x,t)|\nabla\{S^{-1}(x,t)\}|f(x,t)\}=\sigma, σ0\sigma\geq 0 holds for any xD0{0}x\in D_{0}\setminus\{0\} anf t0t\geq 0, then the corresponding integral relations in Theorem 2 are satisfied. According to [20, 21, 22, 23] and Remark 2, one gets the appropriate differential forms of continuity equations with the sources (the flux is directed inward) in the domain VV (or VinfV_{inf}).

Remark 3 According to [14], if the relation S1(x,t)t+{S1(x,t)f(x,t)}>0\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{S^{-1}(x,t)f(x,t)\}>0 holds, then only almost all solutions of (1) tend to equlibrium. Thus, the results of [14] are special case in Theorem 2 for |{S1(x,t)}|μ(x,t)=S1(x,t)|\nabla\{S^{-1}(x,t)\}|\mu(x,t)=S^{-1}(x,t).

Now let us formulate a sufficient condition for stability of (1).

Theorem 3

Let S(x,t):[0,)×DS(x,t):[0,\infty)\times D\to\mathbb{R} be a continuously differentiable function such that w1(x)S(x,t)w2(x)w_{1}(x)\leq S(x,t)\leq w_{2}(x) for any t0t\geq 0 and xDx\in D, where w1(x)w_{1}(x) and w2(x)w_{2}(x) are positive definite continuously differentiable functions. Then x=0x=0 is uniformly stable if at least one of the following conditions holds:

  1. (1)

    S(x,t)t+{S(x,t)f(x,t)}S(x,t){f(x,t)}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}\leq S(x,t)\nabla\cdot\{f(x,t)\} for any t0t\geq 0 and xDx\in D;

  2. (2)

    S1(x,t)t+{S1(x,t)f(x,t)}0\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{S^{-1}(x,t)f(x,t)\}\geq 0 and {f(x,t)}0\nabla\cdot\{f(x,t)\}\leq 0 for any t0t\geq 0 and xDx\in D;

  3. (3)

    2S(x,t)t+{S(x,t)f(x)}02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x)\}\leq 0 and {S1(x)f(x,t)}0\nabla\cdot\{S^{-1}(x)f(x,t)\}\geq 0 for any t0t\geq 0 and xDx\in D.

If inequalities are strict in the cases (1)-(3), then x=0x=0 is uniformly asymptotically stable.

Proof 3 Consider the proof for each case separately. The proof of asymptotic stability is omitted because it is similar to the proof of stability, but taking into account the sign of a strict inequality.

1. From the relation {S(x,t)f(x,t)}{f(x,t)}S(x,t)={S(x,t)}T×f(x,t)\nabla\cdot\{S(x,t)f(x,t)\}-\nabla\cdot\{f(x,t)\}S(x,t)=\nabla\{S(x,t)\}^{\rm T}\times\\ f(x,t) implies that if S(x,t)t+{S(x,t)f(x,t)}{f(x,t)}S(x,t)\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\ \{S(x,t)f(x,t)\}\leq\nabla\cdot\{f(x,t)\}S(x,t), then S(x,t)t+{S(x,t)}Tf(x,t)0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)\leq 0 for any xD{0}x\in D\setminus\{0\} and t0t\geq 0. Therefore, according to Lyapunov theorem [19], system (1) is stable.

2. From the expression S2(x,t){S(x,t)}Tf(x,t)=S1(x,t){f(x,t)}{S1(x,t)f(x,t)}S^{-2}(x,t)\nabla\{S(x,t)\}^{\rm T}f(x,t)=S^{-1}(x,t)\nabla\cdot\{f(x,t)\}\\ -\nabla\cdot\{S^{-1}(x,t)f(x,t)\} follows that if S1(x,t)t+{S1(x,t)f(x,t)}0\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{S^{-1}(x,t)f(x,t)\}\geq 0 and {f(x,t)}0\nabla\cdot\{f(x,t)\}\leq 0, then S(x,t)t+{S(x,t)}Tf(x,t)0\frac{\partial S(x,t)}{\partial t}+\nabla\{S(x,t)\}^{\rm T}f(x,t)\leq 0 for any xD{0}x\in D\setminus\{0\} and t0t\geq 0.

3. Condition 3 is a combination of conditions 1 and 2. Introduce β(x,t)1\beta(x,t)\geq 1 for any xD{0}x\in D\setminus\{0\} and t0t\geq 0. Summing β(x,t){S(x,t)}Tf(x,t)=β(x,t)S(x,t){f(x,t)}β(x,t)S2(x,t){S1(x,t)f(x,t)}\beta(x,t)\nabla\{S(x,t)\}^{\rm T}f(x,t)=\beta(x,t)S(x,t)\nabla\cdot\{f(x,t)\}-\beta(x,t)S^{2}(x,t)\nabla\cdot\ \{S^{-1}(x,t)f(x,t)\} and {S(x,t)}T×f(x,t)={S(x,t)f(x,t)}{f(x,t)}S(x,t)\nabla\{S(x,t)\}^{\rm T}\\ \times f(x,t)=\nabla\cdot\{S(x,t)f(x,t)\}-\nabla\cdot\{f(x,t)\}S(x,t), we get

(1+β(x,t)){S(x,t)}Tf(x,t)={S(x,t)f(x,t)}β(x,t)S2(x,t){S1(x,t)f(x,t)}+(β(x,t)1)S(x,t){f(x,t)}.\begin{array}[]{l}(1+\beta(x,t))\nabla\{S(x,t)\}^{\rm T}f(x,t)=\nabla\cdot\{S(x,t)f(x,t)\}-\\ \beta(x,t)S^{2}(x,t)\nabla\cdot\{S^{-1}(x,t)f(x,t)\}+(\beta(x,t)-1)S(x,t)\nabla\cdot\{f(x,t)\}.\end{array}

If

{S(x,t)f(x,t)}+(β(x,t)1)S(x,t){f(x,t)}β(x,t)S2(x,t){S1(x,t)f(x,t)},\begin{array}[]{l}\nabla\cdot\{S(x,t)f(x,t)\}+(\beta(x,t)-1)S(x,t)\nabla\cdot\{f(x,t)\}\leq\\ \beta(x,t)S^{2}(x,t)\nabla\cdot\{S^{-1}(x,t)f(x,t)\},\end{array}

then {S(x,t)}Tf(x,t)0\nabla\{S(x,t)\}^{\rm T}f(x,t)\leq 0. Let β(x,t)=1\beta(x,t)=1. If 2S(x,t)t+{S(x,t)f(x)}02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x)\}\leq 0 and {S1(x)f(x,t)}0\nabla\cdot\{S^{-1}(x)f(x,t)\}\geq 0, then {S(x,t)}Tf(x,t)0\nabla\{S(x,t)\}^{\rm T}f(x,t)\leq 0 holds for any xD{0}x\in D\setminus\{0\} and t0t\geq 0. Theorem 3 is proved.

It is noted in Introduction that the result of [4, 8, 12] is applicable only to second-order autonomous systems. Next, we consider an illustration of the proposed results for third-order nonautonomous systems and compare the results with ones from [14].

Example 1. Consider the system

x˙1=g(t)x2φ1(t)x1x32,x˙2=x1φ2(t)x2x32,x˙3=φ3(t)x33,\begin{array}[]{l}\dot{x}_{1}=g(t)x_{2}-\varphi_{1}(t)x_{1}x_{3}^{2},\\ \dot{x}_{2}=-x_{1}-\varphi_{2}(t)x_{2}x_{3}^{2},\\ \dot{x}_{3}=-\varphi_{3}(t)x_{3}^{3},\end{array} (2)

which has an equilibrium point (0,0,0)(0,0,0). The function g(t)>0g(t)>0 is continuously differentiable and bounded, g˙(t)<0\dot{g}(t)<0 for any t0t\geq 0. The functions φ1(t)>0\varphi_{1}(t)>0, φ2(t)>0\varphi_{2}(t)>0, and φ3(t)>0\varphi_{3}(t)>0 are continuous and bounded for any t0t\geq 0.

Choose S(x,t)=(x12+g(t)x22+x32)αS(x,t)=(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{\alpha}, where α\alpha is a positive integer. Verify the conditions of Theorem 2, where μ(x,t)\mu(x,t) is chosen such that |{S(x,t)}|μ(x,t)=S(x,t)|\nabla\{S(x,t)\}|\mu(x,t)\\ =S(x,t) or |{S1(x,t)}|μ(x,t)=S1(x,t)|\nabla\{S^{-1}(x,t)\}|\mu(x,t)=S^{-1}(x,t). The condition

S(x,t)t+{S(x,t)f(x,t)}=2α(x12+g(t)x22+x32)α1[x32(φ1x12+gφ2x22+φ3x32)0.5g˙x22]<0\begin{array}[]{l}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}\\ =-2\alpha(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{\alpha-1}[x_{3}^{2}(\varphi_{1}x_{1}^{2}+g\varphi_{2}x_{2}^{2}+\varphi_{3}x_{3}^{2})-0.5\dot{g}x_{2}^{2}]<0\end{array}

holds for any α\alpha, x20x_{2}\neq 0, x30x_{3}\neq 0, and t0t\geq 0. The relation

S1(x,t)d+{S1(x)f(x)}=(x12+g(t)x22+x32)α1×(x32[(2αφ1φ0)x12+g(2αφ2φ0)x22+(2αφ3φ0)x32]αg˙x22)>0\begin{array}[]{l}\frac{\partial S^{-1}(x,t)}{\partial d}+\nabla\cdot\{S^{-1}(x)f(x)\}=(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{-\alpha-1}\times\\ \Big{(}x_{3}^{2}\big{[}(2\alpha\varphi_{1}-\varphi_{0})x_{1}^{2}+g(2\alpha\varphi_{2}-\varphi_{0})x_{2}^{2}+(2\alpha\varphi_{3}-\varphi_{0})x_{3}^{2}\big{]}-\alpha\dot{g}x_{2}^{2}\Big{)}>0\end{array}

is satisfied for any x20x_{2}\neq 0, x30x_{3}\neq 0, t0t\geq 0, and α0.5supt{φ0(t)φ1(t),φ0(t)φ2(t),φ0(t)φ3(t)}\alpha\geq 0.5\sup\limits_{t}\left\{\frac{\varphi_{0}(t)}{\varphi_{1}(t)},\frac{\varphi_{0}(t)}{\varphi_{2}(t)},\frac{\varphi_{0}(t)}{\varphi_{3}(t)}\right\}. Therefore, the conditions of Theorem 2 are fulfilled. Since the function {S1(x)f(x,t)}\nabla\cdot\{S^{-1}(x)f(x,t)\} is integrable in {xn:|x|1}\{x\in\mathbb{R}^{n}:|x|\geq 1\}, then the conditions of Theorem 1 and Corollary 1 in [14] (convergence of almost all solutions of (2)) are satisfied too.

Now let us verify the conditions of Theorem 3. The relation

S(x,t)t+{S(x,t)f(x,t)}S(x,t){f(x,t)}=2α(x12+g(t)x22+x32)α1[x32(φ1x12+gφ2x22+φ3x32)0.5g˙x22]<0\begin{array}[]{l}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}-S(x,t)\nabla\cdot\{f(x,t)\}\\ =-2\alpha(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{\alpha-1}[x_{3}^{2}(\varphi_{1}x_{1}^{2}+g\varphi_{2}x_{2}^{2}+\varphi_{3}x_{3}^{2})-0.5\dot{g}x_{2}^{2}]<0\end{array}

holds for any α\alpha, x20x_{2}\neq 0, x30x_{3}\neq 0, and t0t\geq 0. In turn, {f(x,t)}=φ0x32<0\nabla\cdot\{f(x,t)\}=-\varphi_{0}x_{3}^{2}<0, φ0=φ1+φ2+3φ3\varphi_{0}=\varphi_{1}+\varphi_{2}+3\varphi_{3} and the condition

S1(x,t)t+{S1(x)f(x,t)}=(x12+g(t)x22+x32)α1×(x32[(2αφ1φ0)x12+g(2αφ2φ0)x22+(2αφ3φ0)x32]αg˙x22)>0\begin{array}[]{l}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{S^{-1}(x)f(x,t)\}=(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{-\alpha-1}\times\\ \Big{(}x_{3}^{2}\Big{[}(2\alpha\varphi_{1}-\varphi_{0})x_{1}^{2}+g(2\alpha\varphi_{2}-\varphi_{0})x_{2}^{2}+(2\alpha\varphi_{3}-\varphi_{0})x_{3}^{2}\Big{]}-\alpha\dot{g}x_{2}^{2}\Big{)}>0\end{array}

holds for any x20x_{2}\neq 0, x30x_{3}\neq 0, t0t\geq 0, and α0.5supt{φ0(t)φ1(t),φ0(t)φ2(t),φ0(t)φ3(t)}\alpha\geq 0.5\sup\limits_{t}\left\{\frac{\varphi_{0}(t)}{\varphi_{1}(t)},\frac{\varphi_{0}(t)}{\varphi_{2}(t)},\frac{\varphi_{0}(t)}{\varphi_{3}(t)}\right\}. The raltions

2S(x,t)t+{S(x,t)f(x,t)}=2α(x12+g(t)x22+x32)α1[x32(φ1x12+gφ2x22+φ3x32)g˙x22]<0\begin{array}[]{l}2\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}=\\ -2\alpha(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{\alpha-1}[x_{3}^{2}(\varphi_{1}x_{1}^{2}+g\varphi_{2}x_{2}^{2}+\varphi_{3}x_{3}^{2})-\dot{g}x_{2}^{2}]<0\end{array}

and

{S1(x)f(x,t)}=(x12+g(t)x22+x32)α1×(x32[(2αφ1φ0)x12+g(2αφ2φ0)x22+(2αφ3φ0)x32])>0\begin{array}[]{l}\nabla\cdot\{S^{-1}(x)f(x,t)\}=(x_{1}^{2}+g(t)x_{2}^{2}+x_{3}^{2})^{-\alpha-1}\times\\ \Big{(}x_{3}^{2}\Big{[}(2\alpha\varphi_{1}-\varphi_{0})x_{1}^{2}+g(2\alpha\varphi_{2}-\varphi_{0})x_{2}^{2}+(2\alpha\varphi_{3}-\varphi_{0})x_{3}^{2}\Big{]}\Big{)}>0\end{array}

are satisfied for any x20x_{2}\neq 0, x30x_{3}\neq 0, t0t\geq 0, and α0.5supt{φ0(t)φ1(t),φ0(t)φ2(t),φ0(t)φ3(t)}\alpha\geq 0.5\sup\limits_{t}\left\{\frac{\varphi_{0}(t)}{\varphi_{1}(t)},\frac{\varphi_{0}(t)}{\varphi_{2}(t)},\frac{\varphi_{0}(t)}{\varphi_{3}(t)}\right\}. All three cases gave the same results. Therefore, x=0x=0 is uniformly asymptotically stable with any initial conditions when x3(0)0x_{3}(0)\neq 0. If the initial conditions contain x2(0)=x3(0)=0x_{2}(0)=x_{3}(0)=0, then x=0x=0 is uniformly stable.

The phase trajectories of (2) are shown in Fig. 1 for φ1=2+sin(2t)\varphi_{1}=2+\sin(2t), φ2=1.5+cos(3t)\varphi_{2}=1.5+\cos(3t), φ3=tt+1\varphi_{3}=\frac{t}{t+1} and g=1t+1g=\frac{1}{t+1} (left picture) or g=1g=1 (right picture). In Fig. 1 the cycles are obtained for the initial conditions with x2(0)=x3(0)=0x_{2}(0)=x_{3}(0)=0, the converging to zero curves are obtained for x2(0)0x_{2}(0)\neq 0 and x3(0)0x_{3}(0)\neq 0.

As a result, the proposed Theorem 2 and Corollary 1 from [14] give positive answers about the possible stability of (2). The conditions of Theorem 3 have established that x=0x=0 is uniformly asymptotically stable or uniformly stable depending on the values of the initial conditions.

Refer to caption
Refer to caption
Figure 1: Phase trajectories of system (2) for g=1t+1g=\frac{1}{t+1} (left picture) and g=1g=1 (right picture).

Example 2. Consider the system

x˙1=x1+x121g(t)x22x32,x˙2=x2+2x1x2,x˙3=x3+2x1x3,\begin{array}[]{l}\dot{x}_{1}=-x_{1}+x_{1}^{2}-\frac{1}{g(t)}x_{2}^{2}-x_{3}^{2},\\ \dot{x}_{2}=-x_{2}+2x_{1}x_{2},\\ \dot{x}_{3}=-x_{3}+2x_{1}x_{3},\end{array} (3)

which has two equilibrium points (0,0,0)(0,0,0) and (1,0,0)(1,0,0). The function g(t)>0g(t)>0 is continuously differentiable and bounded, g˙(t)<0\dot{g}(t)<0 for any t0t\geq 0. All trajectories of the system converge to the point (0,0,0)(0,0,0), except those that start on the semi-axis x11x_{1}\geq 1, x2=0x_{2}=0 and x3=0x_{3}=0 (see Fig. 2 for g(t)=1t+1g(t)=\frac{1}{t+1}). Let S(x,t)=(gx12+x22+gx32)αS(x,t)=(gx_{1}^{2}+x_{2}^{2}+gx_{3}^{2})^{\alpha}, α\alpha is a positive integer and μ(x,t)\mu(x,t) in Theorem 2 is chosen such that |{S(x,t)}|μ(x,t)=S(x,t)|\nabla\{S(x,t)\}|\mu(x,t)=S(x,t) or |{S1(x,t)}|μ(x,t)=S1(x,t)|\nabla\{S^{-1}(x,t)\}|\mu(x,t)=S^{-1}(x,t). Then inequality

S1(x,t)t+{S1(x)f(x,t)}=α(gx12+x22+gx32)α1g˙(x12+x32)+(gx12+x22+gx32)α[2α3+2x1(3α)]>0\begin{array}[]{l}\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{S^{-1}(x)f(x,t)\}=-\alpha(gx_{1}^{2}+x_{2}^{2}+gx_{3}^{2})^{-\alpha-1}\dot{g}(x_{1}^{2}+x_{3}^{2})\\ +(gx_{1}^{2}+x_{2}^{2}+gx_{3}^{2})^{-\alpha}[2\alpha-3+2x_{1}(3-\alpha)]>0\end{array}

holds for α=3\alpha=3. The function {f(x,t)}=3+6x1\nabla\cdot\{f(x,t)\}=-3+6x_{1} does not satisfy the condition {f(x,t)}0\nabla\cdot\{f(x,t)\}\leq 0 for x1>0.5x_{1}>0.5. The relations S(x,t)d+{S(x,t)f(x,t)}S(x,t){f(x,t)}\frac{\partial S(x,t)}{\partial d}+\nabla\cdot\{S(x,t)f(x,t)\}\leq S(x,t)\nabla\cdot\{f(x,t)\} and 2S(x,t)t+{S(x,t)f(x,t)}02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}\leq 0 from Theorem 3 are not satisfied too. As a result, the conditions of the proposed Theorem 2 (and the conditions of Corollary 1 in [14]) are fulfilled in this example, but the conditions of Theorem 3 are not satisfied.

Refer to caption
Figure 2: Phase trajectories of system (3) with two equilibrium points.

Example 3. Consider the system

x˙1=4x1x22φ1(t)x13,x˙2=g1(t)x12x2φ2(t)x23g2(t)x2x32,x˙3=φ3(t)x33+8x22x3\begin{array}[]{l}\dot{x}_{1}=-4x_{1}x_{2}^{2}-\varphi_{1}(t)x_{1}^{3},\\ \dot{x}_{2}=g_{1}(t)x_{1}^{2}x_{2}-\varphi_{2}(t)x_{2}^{3}-g_{2}(t)x_{2}x_{3}^{2},\\ \dot{x}_{3}=-\varphi_{3}(t)x_{3}^{3}+8x_{2}^{2}x_{3}\end{array} (4)

with equilibrium point (0,0,0)(0,0,0). The functions g1(t)>0g_{1}(t)>0 and g2(t)>0g_{2}(t)>0 are continuously differentiable and bounded, g˙1(t)<0\dot{g}_{1}(t)<0 and g˙2(t)<0\dot{g}_{2}(t)<0 for any t0t\geq 0. The functions φ1(t)>0\varphi_{1}(t)>0, φ2(t)>0\varphi_{2}(t)>0, and φ3(t)>0\varphi_{3}(t)>0 are continuous and bounded for any t0t\geq 0.

Choose S(x,t)=(18g1x12+12x22+116g2x32)αS(x,t)=(\frac{1}{8}g_{1}x_{1}^{2}+\frac{1}{2}x_{2}^{2}+\frac{1}{16}g_{2}x_{3}^{2})^{\alpha}, α\alpha is a positive integer. Verify the conditions of Theorem 3. The relation

S(x,t)t+{S(x,t)f(x)}S(x,t){f(x,t)}=α(18g1x12+12x22+116g2x32)α1[14g1φ1x14+φ2x24+18g2x3418g˙1x12116g˙2x32]\begin{array}[]{l}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x)\}-S(x,t)\nabla\cdot\{f(x,t)\}=\\ -\alpha\left(\frac{1}{8}g_{1}x_{1}^{2}+\frac{1}{2}x_{2}^{2}+\frac{1}{16}g_{2}x_{3}^{2}\right)^{\alpha-1}\Big{[}\frac{1}{4}g_{1}\varphi_{1}x_{1}^{4}+\varphi_{2}x_{2}^{4}+\frac{1}{8}g_{2}x_{3}^{4}-\frac{1}{8}\dot{g}_{1}x_{1}^{2}-\frac{1}{16}\dot{g}_{2}x_{3}^{2}\Big{]}\end{array}

holds for any α\alpha and x0x\neq 0. The function {f(x,t)}=(g13φ1)x12+(43φ2)x22(3φ3+g2)x32\nabla\cdot\{f(x,t)\}=(g_{1}-3\varphi_{1})x_{1}^{2}+(4-3\varphi_{2})x_{2}^{2}-(3\varphi_{3}+g_{2})x_{3}^{2} is not negative definite for g1>3φ1g_{1}>3\varphi_{1} and/or φ2<43\varphi_{2}<\frac{4}{3}. Thus, Proposition 2 with taking into account Corollary 1 from [14] and the second case of Theorem 3 are not satisfied. The conditions 2S(x,t)t+{S(x,t)f(x,t)}<02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}<0 and {S1(x,t)f(x,t)}>0\nabla\cdot\{S^{-1}(x,t)f(x,t)\}>0 hold for any α\alpha, x0x\neq 0, φ2>42α+3\varphi_{2}>\frac{4}{2\alpha+3}, and g1<(2α+3)φ1g_{1}<(2\alpha+3)\varphi_{1}.

Fig. 3 shows the phase trajectories for φ1(t)=2+sin(t)\varphi_{1}(t)=2+\sin(t), φ2(t)=1.5+cos(3t)\varphi_{2}(t)=1.5+\cos(3t), φ1(t)=1+0.5cos(2t)\varphi_{1}(t)=1+0.5\cos(2t), g1(t)=tt+1g_{1}(t)=\frac{t}{t+1}, and g2(t)=1t+1g_{2}(t)=\frac{1}{t+1}. Taking into account Theorem 2, the condition V[S(x,t)t+{S(x,t)f(x,t)}]𝑑V<0\int_{V}[\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x,t)\}]dV<0 holds for any CC and α\alpha. The other conditions of Theorem 2 and Corollary 1 in [14] are not satisfied.

Refer to caption
Figure 3: Phase trajectories of system (4).

As a result, the conditions of Theorem 2 and Theorem 3 are satisfied for system (4). Thus, (0,0,0)(0,0,0) is an uniformly asymptotically stable equilibrium point. The conditions of Corollary 1 from [14] are not sutisfied and we cannot conclude about convergence of almost all solutions of (4) to (0,0,0)(0,0,0).

Example 4. Consider the linear system x˙=A(t)x\dot{x}=A(t)x, xnx\in\mathbb{R}^{n}. Let S(x,t)=(xTP(t)x)αS(x,t)=(x^{\rm T}P(t)x)^{\alpha}, where α>0\alpha>0 and P(t)=PT(t)>0P(t)=P^{\rm T}(t)>0. According to the case (3) of Theorem 3, the relations

2S(x,t)t+{S(x,t)f(x)}=α(xTPx)α1×xT[2P˙(t)+A(t)TP(t)+P(t)A(t)+1αtrace(A(t))P(t)]x0\begin{array}[]{l}2\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)f(x)\}=\alpha(x^{\rm T}Px)^{\alpha-1}\times\\ x^{\rm T}[2\dot{P}(t)+A(t)^{\rm T}P(t)+P(t)A(t)+\frac{1}{\alpha}trace(A(t))P(t)]x\leq 0\end{array}

and

{S1(x)f(x,t)}=α(xTPx)α1×xT[A(t)TP(t)+P(t)A(t)1αtrace(A(t))P(t)]x0\begin{array}[]{l}\nabla\cdot\{S^{-1}(x)f(x,t)\}=-\alpha(x^{\rm T}Px)^{-\alpha-1}\times\\ x^{\rm T}[A(t)^{\rm T}P(t)+P(t)A(t)-\frac{1}{\alpha}trace(A(t))P(t)]x\geq 0\end{array}

hold if

2P˙(t)+A(t)TP(t)+P(t)A(t)+1αtrace(A(t))P(t)<0\begin{array}[]{l}2\dot{P}(t)+A(t)^{\rm T}P(t)+P(t)A(t)+\frac{1}{\alpha}trace(A(t))P(t)<0\end{array}

and

A(t)TP(t)+P(t)A(t)1αtrace(A(t))P(t)<0\begin{array}[]{l}A(t)^{\rm T}P(t)+P(t)A(t)-\frac{1}{\alpha}trace(A(t))P(t)<0\end{array}

are simultaneously satisfied. It is obvious, that the sum of these inequalities give nonstationary Lyapunov inequality P˙(t)+A(t)TP(t)+P(t)A(t)<0\dot{P}(t)+A(t)^{\rm T}P(t)+P(t)A(t)<0.

3 Control law design

Consider a nonautonomous system in the form

x˙=ξ(x,t)+g(x,t)u(x,t),\begin{array}[]{l}\dot{x}=\xi(x,t)+g(x,t)u(x,t),\end{array} (5)

where xnx\in\mathbb{R}^{n} and umu\in\mathbb{R}^{m} is the control signal. The functions ξ(x,t):[0,)×Dn\xi(x,t):[0,\infty)\times D\to\mathbb{R}^{n}, g(x,t):[0,)×Dn×mg(x,t):[0,\infty)\times D\to\mathbb{R}^{n\times m} and u(x,t):[0,)×Dmu(x,t):[0,\infty)\times D\to\mathbb{R}^{m} are piecewise continuous in tt and continuously differentiable in xx on [0,)×D[0,\infty)\times D. The open set DnD\subset\mathbb{R}^{n} contains the origin x=0x=0 and ξ(t,0)=0\xi(t,0)=0, g(t,0)=0g(t,0)=0, u(t,0)=0u(t,0)=0 for any t0t\geq 0. System (5) is controllable in DD for any t0t\geq 0.

Theorem 4

Let S(x,t):[0,)×DS(x,t):[0,\infty)\times D\to\mathbb{R} be a continuously differentiable function such that w1(x)S(x,t)w2(x)w_{1}(x)\leq S(x,t)\leq w_{2}(x) for any t0t\geq 0 and xDx\in D, where w1(x)w_{1}(x) and w2(x)w_{2}(x) are positive definite continuously differentiable functions. Then the equilibrium point x=0x=0 of the closed-loop system is uniformly stable if the control law u(x,t)u(x,t) is chosen such that at least one of the following conditions holds:

  1. (1)

    S(x,t)t+{S(x,t)(ξ(x,t)+g(x,t)u(x,t))}S(x,t){ξ(x,t)+g(x,t)u(x,t)}\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)(\xi(x,t)+g(x,t)u(x,t))\}\leq S(x,t)\nabla\cdot\{\xi(x,t)+g(x,t)u(x,t)\} for any xD{0}x\in D\setminus\{0\} and t0t\geq 0;

  2. (2)

    S1(x,t)t+{S1(x,t)(ξ(x,t)+g(x,t)u(x,t))}0\frac{\partial S^{-1}(x,t)}{\partial t}+\nabla\cdot\{S^{-1}(x,t)(\xi(x,t)+g(x,t)u(x,t))\}\geq 0 and {ξ(x,t)+g(x,t)u(x,t)}0\nabla\cdot\{\xi(x,t)+g(x,t)u(x,t)\}\leq 0 for any xD{0}x\in D\setminus\{0\} and t0t\geq 0;

  3. (3)

    2S(x,t)t+{S(x,t)(ξ(x,t)+g(x,t)u(x,t))}02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)(\xi(x,t)+g(x,t)u(x,t))\}\leq 0 and {S1(x,t)(ξ(x,t)+g(x,t)u(x,t))}0\nabla\cdot\{S^{-1}(x,t)(\xi(x,t)+g(x,t)u(x,t))\}\geq 0 for any xD{0}x\in D\setminus\{0\} and t0t\geq 0.

If the control law u(x,t)u(x,t) is chosen such that in the cases (1)-(3) the inequalities are strict, then x=0x=0 is uniformly asymptotically stable.

Since system (5) is controllable in DD, the proof of Theorem 4 is similar to the proof of Theorem 3 (denoting by f(x,t)=ξ(x,t)+g(x,t)u(x,t)f(x,t)=\xi(x,t)+g(x,t)u(x,t)).

If the control law design is based on the method of Lyapunov functions, then it is required to solve the algebraic inequality Vt+{V}(f+gu)<0\frac{\partial V}{\partial t}+\nabla\{V\}(f+gu)<0 w.r.t. uu. According to Theorem 4, the control law is chosen from the feasibility of differential inequality. This gives new opportunities for the control law design.

Example 5. Consider the system

x˙1=dx2x1x22,x˙2=ug(t)x2,\begin{array}[]{l}\dot{x}_{1}=dx_{2}-x_{1}x_{2}^{2},\\ \dot{x}_{2}=u-g(t)x_{2},\end{array} (6)

where dd takes the values of 0 or 11 and g(t)=sin2(t)g(t)=\sin^{2}(t). It is required to design the control law uu that ensures the asymptotic stability of (6). System (6) is not asymptotically stable for u=0u=0 and for any values of dd (see Fig. 4).

Refer to caption

a

Refer to caption

b

Figure 4: The phase trajectories of (6) for u=0u=0, d=0d=0 (a) and for u=0u=0, d=1d=1 (b).

Choose S(x,t)=|x|2αS(x,t)=|x|^{2\alpha}, α\alpha is a positive integer and use the third case of Theorem 4. Compute

2S(x,t)t+{S(x,t)(ξ(x,t)+g(x,t)u(x,t))}=2α|x|2α2(dx1x2x12x22+ux2gx24)+|x|2α(x22+ux23gx22)\begin{array}[]{l}2\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)(\xi(x,t)+g(x,t)u(x,t))\}=\\ 2\alpha|x|^{2\alpha-2}(dx_{1}x_{2}-x_{1}^{2}x_{2}^{2}+ux_{2}-gx_{2}^{4})+|x|^{2\alpha}(-x_{2}^{2}+\frac{\partial u}{\partial x_{2}}-3gx_{2}^{2})\end{array}

and

{ξ(x,t)+g(x,t)u(x,t)}=2α|x|2α2(dx1x2x12x22+ux2gx24)+|x|2α(x22+ux23gx22).\begin{array}[]{l}\nabla\cdot\{\xi(x,t)+g(x,t)u(x,t)\}=\\ -2\alpha|x|^{2\alpha-2}(dx_{1}x_{2}-x_{1}^{2}x_{2}^{2}+ux_{2}-gx_{2}^{4})+|x|^{-2\alpha}(-x_{2}^{2}+\frac{\partial u}{\partial x_{2}}-3gx_{2}^{2}).\end{array}

1. Let d=0d=0. Choosing u=x23u=-x_{2}^{3}, we get 2S(x,t)t+{S(x,t)(ξ(x,t)+g(x,t)u(x,t))}<02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)(\xi(x,t)+g(x,t)u(x,t))\}<0 and {ξ(x,t)+g(x,t)u(x,t)}0\nabla\cdot\{\xi(x,t)+g(x,t)u(x,t)\}\leq 0 for x20x_{2}\neq 0 and any t0t\geq 0. The phase trajectories of the closed-loop system are shown in Fig. 5,a.

2. Let d=1d=1. Choosing u=x1x23u=-x_{1}-x_{2}^{3}, we get 2S(x,t)t+{S(x,t)(ξ(x,t)+g(x,t)u(x,t))}<02\frac{\partial S(x,t)}{\partial t}+\nabla\cdot\{S(x,t)(\xi(x,t)+g(x,t)u(x,t))\}<0 and {ξ(x,t)+g(x,t)u(x,t)}0\nabla\cdot\{\xi(x,t)+g(x,t)u(x,t)\}\leq 0 for x20x_{2}\neq 0 and any t0t\geq 0. The phase trajectories of the closed-loop system are shown in Fig. 5, b.

Refer to caption

a

Refer to caption

b

Figure 5: The phase trajectories in the closed-loop system for d=0d=0 (a) and for d=1d=1 (b).

4 Conclusion

A method for stability study of nonautonomous dynamical systems using the properties of the flow and divergence of the vector field is proposed. To study the stability, it is required the existence of a certain type of integration surface or the existence of an auxiliary scalar function. Necessary and sufficient stability conditions are proposed.

The obtained results are applied to synthesis the static feedback control law for dynamical systems. It is shown that the control law is found as a solution of a differential inequality, while the control law based on the method of Lyapunov functions is found as a solution of an algebraic inequality.

5 Acknowledgments

The results of Section 3 were developed under support of RSF (grant 18-79-10104) in IPME RAS.

References

  • Yuan et al. [2014] Yuan, R., Ma, Y.-A., Yuan, B., and Ao, P. (2014). Lyapunov Function as Potential Function: A Dynamical Equivalence. Chinese Physics B, volume 23, 1, 010505.
  • Bikdash and Layton [2000] Bikdash, M.U. and Layton, R.A. (2000). An Energy-Based Lyapunov Function for Physical Systems. IFAC Proc., volume 33, 2, 81–86.
  • Willems [1972] Willems, J.C. (1972). Dissipative Dynamical Systems. Part I: General Theory. Part II: Linear Systems with Quadratic Supply Rates. Archive for Rational Mechanics and Analysis, volume 45, 5, 321–393.
  • Zaremba [1954] Zaremba, S.K. (1954). Divergence of Vector Fields and Differential Equations. American Journal of Mathematics, volume LXXV, 220–234.
  • Fronteau [1965] Fronteau, J. (1965). Le théorèm de Liouville et le problèm général de la stabilité. CERN, Genève.
  • Brauchli [1968] Brauchli, H.I. (1968). Index, divergenz und Stabilität in Autonomen equations. Abhandlung Verlag, Zürich.
  • Zhukov [1978] Zhukov, V.P. (1978). On One Method for Qualitative Study of Nonlinear System Stability. Automation and Remote Control, volume 39, 6, 785–788.
  • Shestakov and Stepanov [1978] Shestakov, A.A. and Stepanov, A.N.(1978). Index and divergent signs of stability of a singular point of an autonomous system of differential equations. Differential equations, T. 15, 4, 650–661.
  • Zhukov [1979] Zhukov, V.P. (1979). On the Method of Sources for Studying the Stability of Nonlinear Systems. Automation and Remote Control, volume 40, 3, 330–335.
  • Zhukov [1990] Zhukov, V.P. (1990). Necessary and Sufficient Conditions for Instability of Nonlinear Autonomous Dynamic Systems. Automation and Remote Control, volume 51, 12, 1652–1657.
  • Krasnoselsky et al. [1963] Krasnoselsky, M.A., Perov, A.I., Povolotsky, A.I., and Zabreiko P.P. (1963). Vector fields on the plane. M . Fizmatlit (in Russian).
  • Zhukov [1999] Zhukov, V.P. (1999). On the Divergence Conditions for the Asymptotic Stability of Second-Order Nonlinear Dynamical Systems. Automation and Remote Control, volume 60, 7, 934–940.
  • Rantzer and Parrilo [2000] Rantzer, A. and Parrilo, P.A. (2000). On Convexity in Stabilization of Nonlinear Systems. Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia (CDC2000), 2942–2946.
  • Rantzer [2001] Rantzer, A. (2001). A Dual to Lyapunov’s Stability Theorem. Syst. & Control Lett., volume 42, 161–168.
  • Monzon [2003] Monzon, P. (2003). On Necessary Conditions for Almost Global Stability. IEEE Transaction on Automatic Control, volume 48, 4, 631–634.
  • Loizou and Jadbabaie [2008] Loizou, S.G. and Jadbabaie, A. (2008). Density Functions for Navigation-Function-Based Systems. IEEE Transaction on Automatic Control, volume 53, 2, 612–617.
  • Castaneda and Robledo [2015] Castan~\tilde{\mbox{n}}eda, Á. and Robledo, G. (2015). Differentiability of Palmer’s Linearization Theorem and Converse Result for Density Functions. J. Diff. Equat., volume 259, 9, 4634–4650.
  • Karabacak at al. [2018] Karabacak, O¨\ddot{\mbox{O}}., Wisniewski, R., and Leth, J. (2018). On the Almost Global Stability of Invariant Sets. Proc. of the 2018 Europenean Control Conference (ECC 2018), Limassol, Cyprus, 1648–1653.
  • Khalil [2002] Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall.
  • Pedlosky [1979] Pedlosky, J. (1979). Geophysical Fluid Dynamics. Springer Verlag.
  • Griffiths [2017] Griffiths, D. J. Introduction to Electrodynamics (4thEdition). Cambridge University Press.
  • McMahon [2013] McMahon, D. (2013). Quantum Mechanics Demystified, 2nd Edition. McGraw-Hill Education.
  • Arnold [2014] Arnold, V.I. (2014). Collected Works. Hydrodynamics, Bifurcation Theory, and Algebraic Geometry 1965-1972. Springer.