This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Double exponential quadrature for fractional diffusion

Alexander Rieder Fakultät für Mathematik, University of Vienna, 1090 Vienna, Austria, alexander.rieder@univie.ac.at
(August 6, 2025)
Abstract

We introduce a novel discretization technique for both elliptic and parabolic fractional diffusion problems based on double exponential quadrature formulas and the Riesz-Dunford functional calculus. Compared to related schemes, the new method provides faster convergence with fewer parameters that need to be adjusted to the problem. The scheme takes advantage of any additional smoothness in the problem without requiring a-priori knowledge to tune parameters appropriately. We prove rigorous convergence results for both, the case of finite regularity data as well as for data in certain Gevrey-type classes. We confirm our findings with numerical tests.

1 Introduction

The study of processes governed by fractional linear operators has gathered significant interest over the last few years [BV16, V1́7, LPGea20] with applications ranging from physics [AB17b] to image processing [GH15, GO08, AB17b], inverse problems [KR19] and more. See [SZB+18] for an overview of applications in different fields.

There are multiple (non-equivalent) ways of defining fractional powers of operators. We mention the integral fractional Laplacian and the spectral definition [LPGea20]. In this paper, we focus the spectral definition which is equivalent to the functional calculus definition.

For discretization of such problems, both stationary and time dependent, multiple approaches have been presented. A summary of the most common can be found in [BBN+18, LPGea20]. They can be broadly distinguished into three categories. First, there are approaches which try to apply the methods of finite- and boundary element methods to integral formulation of the fractional Laplacian [AB17a, ABH19]. The second class of methods uses the Caffarelli-Silvestre extension to reformulate the problem as a PDE posed in one additional spatial dimension. This problem is then treated by standard finite element techniques [NOS15a, NOS15b, NOS16, BMN+18, MPSV18, MMR20]. The third big class of discretization schemes, and the one our new scheme is part of, was first introduced in [BP15] and later extended to more general operators [BLP19] and time dependent problems [BLP17b, BLP17a, MR21]. They are based on the Riesz-Dunford calculus (sometimes also referred to as Dunford-Taylor or Riesz-Taylor) and employ a sinc\operatorname{sinc} quadrature scheme to discretize the appearing contour integral. sinc\operatorname{sinc} quadrature, and overall sinc\operatorname{sinc}-based numerical methods are less well known than their polynomial based counterparts, but provide rapidly converging schemes [Ste93, LB92] with very easy implementation. The quadrature relies on appropriate coordinate transforms in order to yield analytic, rapidly decaying integrands over the real line and then discretization using the trapezoidal quadrature rule. In [TM74] it was realized that by adding an additional sinh\sinh-transformation, it is possible to get an even faster convergence for certain integrals, namely instead of convergence of the form e𝒩qe^{-\sqrt{\mathcal{N}_{\textrm{q}}}}, it is possible to get rid of the square root and obtain rates of the form e𝒩qln𝒩qe^{-\frac{\mathcal{N}_{\textrm{q}}}{\ln{\mathcal{N}_{\textrm{q}}}}}. Further developments in this direction are summarized in [Mor91]. Such schemes are commonly referred to as double exponential quadrature or sinh\sinh-tanh\operatorname{tanh} quadrature.

In this paper we investigate whether the discretization of the Riesz-Dunford integral can benefit from using a double exponential quadrature scheme instead of the more established sinc\operatorname{sinc}-quadrature. We present a scheme that retains all the advantages of [BLP19, BLP17b, BLP17a] while delivering improved convergence rates. Namely, the scheme is very easy to implement if a solver for elliptic finite element problems is available. It is almost trivially parallelizable, as the main cost consists of solving a series of independent elliptic problems. In addition, it provides (compared to sinc\operatorname{sinc}-methods) superior accuracy over a wide range of applications and does not require subtle tweaking of parameters in order to get good performance. Instead it will automatically pick up any additional smoothness of the underlying problem to give improved convergence. Since for each quadrature point an elliptic FEM problem needs to be solved, reducing the number of quadrature points greatly increases performance of the overall method.

The paper is structured as follows. After fixing the model problem and notation in Section 1.1, Section 2 introduces the double exponential formulas in an abstract way and we collect some known properties. In addition, we provide one small convergence result which, to our knowledge, has not yet appeared in the literature; we show that the double exponential formulas at least provide comparable convergence of order e𝒩qe^{-\sqrt{\mathcal{N}_{\textrm{q}}}} even without requiring additional analyticity compared to standard sinc\operatorname{sinc} methods. In Section 3, we look at the case of a purely elliptic problem without time dependence. It will showcase the techniques used and provide the building block for the more involved problems later on. In Section 4, we then consider what happens if we move into the time-dependent regime. Section 5 provides extensive numerical evidence supporting the theory. We also compare our new method to the standard sinc\operatorname{sinc}-based methods. Finally, Appendix A collects some properties of the coordinate transform involved. The proofs and calculations are elementary but somewhat lengthy and thus have been relegated to the appendix in order to not impact readability of the article.

Throughout this work we will encounter two types of error terms. For those of the form eγke^{-\frac{\gamma}{k}} we will be content with not working out the constants γ\gamma explicitly. For the more important terms of the form eγke^{-\frac{\gamma^{\prime}}{\sqrt{k}}} we will derive explicit constants γ\gamma^{\prime} which prove sharp in several examples of Section 5.

We close with a remark on notation. Throughout this text, we write ABA\lesssim B to mean that there exists a constant C>0C>0, which is independent of the main quantities of interest like number of quadrature points 𝒩q\mathcal{N}_{\textrm{q}} or step size kk such that ACBA\leq CB. The detailed dependencies of CC are specified in the context. We write ABA\sim B to mean ABA\lesssim B and BAB\lesssim A.

Acknowledgments:

The author would like to thank J. M. Melenk for the many fruitful discussions on the topic. Financial support was provided by the Austrian Science Fund (FWF) through the special research program “Taming complexity in partial differential systems” (grant SFB F65) and the project P29197-N32.

1.1 Model problem and notation

In this paper, we consider problems of applying holomorphic functions ff to self-adjoint operators, for example the Laplacian. The two large classes of problems treated in this paper stem from the study of fractional diffusion problems, both in the stationary as well as in the transient version. Given a bounded Lipschitz domain Ω\Omega, we consider the self adjoint operator

u:=div(𝔄u)+𝔠u,\mathcal{L}u:=-\operatorname{div}(\mathfrak{A}\nabla u)+\mathfrak{c}u,

where 𝔄L(Ω;d×d)\mathfrak{A}\in L^{\infty}(\Omega;\mathbb{R}^{d\times d}) is uniformly SPD and 𝔠L(Ω)\mathfrak{c}\in L^{\infty}(\Omega) satisfies 𝔠0\mathfrak{c}\geq 0 almost everywhere. Unless otherwise specified, the domain dom()\operatorname{dom}(\mathcal{L}) is always taken to include homogeneous Dirichlet boundary conditions.

Given the eigenvalues and eigenfunctions of \mathcal{L} equipped with homogeneous Dirichlet boundary conditions denoted by (λj,vj)j=0(\lambda_{j},v_{j})_{j=0}^{\infty}, we define the spaces

β(Ω):={uL2(Ω):uβ(Ω<}withuβ(Ω):=j=0λjβ|(u,vj)L2(Ω)|2.\displaystyle\mathbb{H}^{\beta}(\Omega):=\Big{\{}u\in L^{2}(\Omega):\left\|u\right\|_{\mathbb{H}^{\beta}(\Omega}<\infty\Big{\}}\qquad\text{with}\qquad\left\|u\right\|_{\mathbb{H}^{\beta}(\Omega)}:=\sum_{j=0}^{\infty}{\lambda_{j}^{\beta}\left|(u,v_{j})_{L^{2}(\Omega)}\right|^{2}}. (1.1)

One natural way of defining a functional calculus for the operator \mathcal{L} is based on the spectral decomposition.

Definition 1.1 (Spectral calculus).

Let 𝒪+\mathcal{O}\subseteq\mathbb{R}_{+} such that σ()𝒪\sigma(\mathcal{L})\subseteq\mathcal{O}. Let g:𝒪g:\mathcal{O}\to\mathbb{C} be continuous with |g(z)|(1+|z|)μ\left|g(z)\right|\lesssim(1+\left|z\right|)^{\mu} for μ\mu\in\mathbb{R}. We define for u2μ(Ω)u\in\mathbb{H}^{2\mu}(\Omega):

g(A)u:=j=0g(λj)(u,vj)L2(Ω)vj.\displaystyle g(A)u:=\sum_{j=0}^{\infty}{g(\lambda_{j})\big{(}u,v_{j}\big{)}_{L^{2}(\Omega)}\,v_{j}}.

An alternative definition for holomorphic functions, which will prove more useful for approximation is given in the following Definition. It can be shown, see also [BLP17a, Section 2], that the operators resulting from Definition 1.1 and Definition 1.2 coincide.

Definition 1.2 (Riesz-Dunford calculus).

Fix parameters σ{1/2,1}\sigma\in\{1/2,1\}, θ1\theta\geq 1 and κ>0\kappa>0. Let 𝒪\mathcal{O}\subseteq\mathbb{C} such that +:={z:Re(z)>0}𝒪\mathbb{C}_{+}:=\{z\in\mathbb{C}:\operatorname{Re}(z)>0\}\subseteq\mathcal{O}. Let g:𝒪g:\mathcal{O}\to\mathbb{C} be holomorphic with |g(z)|(1+|z|)μ\left|g(z)\right|\lesssim(1+\left|z\right|)^{-\mu} for μ0\mu\geq 0. We define

g(A):=12πi𝒞g(z)(z)1𝑑z,\displaystyle g(A):=\frac{1}{2\pi i}\int_{\mathcal{C}}{g(z)\big{(}\mathcal{L}-z\big{)}^{-1}\,dz}, (1.2)

where the integral is taken in the sense of Riemann, and 𝒞\mathcal{C} is the smooth path

𝒞:={κ(cosh(σw)+θsinh(w)) for w}.\mathcal{C}:=\Big{\{}\kappa\big{(}\cosh(\sigma w)+\theta\sinh(w)\big{)}\quad\text{ for }w\in\mathbb{R}\Big{\}}.

The parameter κ>0\kappa>0 is taken sufficiently small such that the spectrum of \mathcal{L} satisfies κ<σ()\kappa<\sigma(\mathcal{L}).

Remark 1.3.

The choice of path in Definition 1.2 is somewhat arbitrary. It is only required to encircle the spectrum of \mathcal{L} with winding number 11. Throughout this paper, we will only ever use the same path and thus make it part of our definition.

Remark 1.4.

All our results easily generalize to more general positive definite and self-adjoint operators \mathcal{L} over a general Hilbert space 𝒳\mathcal{X}, as long as an eigen-decomposition is available. The β\mathbb{H}^{\beta}-norms in (1.1) are then defined using the 𝒳\mathcal{X} inner product.

2 Double exponential formulas

In this section, we analyze the quadrature error when applying a double exponential formula for discretizing certain integrals. The main role will be played by the following coordinate transform:

ψθ,σ(y):=κ[cosh(σπ2sinh(y))+iθsinh(π2sinh(y))].\displaystyle\psi_{\theta,\sigma}(y):=\kappa\Big{[}\cosh\Big{(}\frac{\sigma\pi}{2}\sinh(y)\Big{)}+i\theta\sinh\Big{(}\frac{\pi}{2}\sinh(y)\Big{)}\Big{]}. (2.1)

We will focus on the cases σ{12,1}\sigma\in\big{\{}\frac{1}{2},1\big{\}} and θ1\theta\geq 1. κ\kappa is again taken sufficiently small as in Definition 1.2.

For θ1\theta\geq 1, δ>0\delta>0 we define the sets

Dd(θ):={z:|Im(z)|<d(θ)},andDδexp:={z:|Im(z)|<δe|Re(z)|},\displaystyle D_{d(\theta)}:=\Big{\{}z\in\mathbb{C}:\left|\operatorname{Im}(z)\right|<d(\theta)\Big{\}},\qquad\text{and}\qquad D^{\mathrm{exp}}_{\delta}:=\Big{\{}z\in\mathbb{C}:\left|\operatorname{Im}(z)\right|<\delta e^{-\left|\operatorname{Re}(z)\right|}\Big{\}}, (2.2)

where for each θ\theta, d(θ)d(\theta) is a constant which is assumed sufficiently small.

Since all the proofs analyzing the properties of ψσ,θ\psi_{\sigma,\theta} are elementary but somewhat lengthy and cumbersome, they have been relegated to Appendix A. The most important properties are, that yψσ,θ(y)y\mapsto\psi_{\sigma,\theta}(y) for yy\in\mathbb{R} traces the contour in the definition of the Riesz Dunford calculus (see Definition 1.2), and that it is analytic in Dd(θ)D_{d(\theta)}. The other important results concern the points where ψσ,θ\psi_{\sigma,\theta} crosses the real axis, as these points correspond to (possible) poles in the integrand of Definition 1.2. The location of these points, as well as other important estimates are collected in Lemma A.8. Roughly summarizing, the finitely many points satisfying ψσ,θ(y)=λ\psi_{\sigma,\theta}(y)=\lambda have distance 1/ln(λ)1/\ln(\lambda) from the real axis. Away from such points |ψσ,θ(y)λ|λ\left|\psi_{\sigma,\theta}(y)-\lambda\right|\gtrsim\lambda holds and for y±y\to\pm\infty the function ψσ,θ\psi_{\sigma,\theta} behaves doubly-exponential (Lemma A.4).

Because the quadrature operator will be the main workhorse, we introduce the following notation:

Definition 2.1.

Let \mathcal{L} be a linear (possibly unbounded) operator on a Banach space 𝒳\mathcal{X} and 𝒪\mathcal{O}\subseteq\mathbb{C} such that +𝒪\mathbb{C}_{+}\subseteq\mathcal{O}. For g:𝒪g:\mathcal{O}\to\mathbb{C} holomorphic as in Definition 1.2, k0k\geq 0 and 𝒩q{}\mathcal{N}_{\textrm{q}}\in\mathbb{N}\cup\{\infty\} we write

Q(g,𝒩q)u\displaystyle Q^{\mathcal{L}}(g,\mathcal{N}_{\textrm{q}})u :=12πij=𝒩q𝒩qg(ψσ,θ(jk))ψσ,θ(jk)(ψσ,θ(jk))1uu𝒳\displaystyle:=\frac{1}{2\pi i}\sum_{j=-\mathcal{N}_{\textrm{q}}}^{\mathcal{N}_{\textrm{q}}}{g(\psi_{\sigma,\theta}(jk))\psi_{\sigma,\theta}^{\prime}(jk)(\mathcal{L}-\psi_{\sigma,\theta}(jk))^{-1}u}\qquad\forall u\in\mathcal{X} (2.3)

and Q(g):=Q(g,)Q^{\mathcal{L}}(g):=Q^{\mathcal{L}}(g,\infty) for the case where no cutoff is performed. The quadrature error will be denoted by

E(g,𝒩q)\displaystyle E^{\mathcal{L}}(g,\mathcal{N}_{\textrm{q}}) :=g()uQ(g,𝒩q)u,udom(g())\displaystyle:=g(\mathcal{L})u-Q^{\mathcal{L}}(g,\mathcal{N}_{\textrm{q}})u,\qquad\forall u\in\operatorname{dom}(g(\mathcal{L})) (2.4)

where g()g(\mathcal{L}) is given via the Riesz-Dunford integral 1.2. Again, we write E(g):=E(g,)E^{\mathcal{L}}(g):=E^{\mathcal{L}}(g,\infty).

Remark 2.2.

In Definition 2.1, we will often work with the special case =λ\mathcal{L}=\lambda or =λI\mathcal{L}=\lambda\mathrm{I} for λ\lambda\in\mathbb{R}. For simplicity, in both cases we write Qλ(g,𝒩q)Q^{\lambda}(g,\mathcal{N}_{\textrm{q}}), Eλ(g,𝒩q)E^{\lambda}(g,\mathcal{N}_{\textrm{q}}) etc. It will be clear from context whether the scalar or operator valued operation is needed.

2.1 Abstract analysis of sinc\operatorname{sinc}-quadrature

In this section, we collect some results on sinc\operatorname{sinc}-quadrature formulas.

Remark 2.3.

As is common in the literature, we define the sinc\operatorname{sinc} function as

sinc(ζ):={sin(πζ)πζζ01ζ=0.\operatorname{sinc}(\zeta):=\begin{cases}\frac{\sin(\pi\zeta)}{\pi\zeta}&\zeta\neq 0\\ 1&\zeta=0.\end{cases}

The following result is the main work-horse when analyzing sinc\operatorname{sinc}-quadrature schemes. In order to reduce the required notation, we use a simplified version of [Ste93, Problem 3.2.6].

Proposition 2.4 (Bialecki, see [Ste93, Problem 3.2.6 and Theorem 3.1.9]).

We make the following assumptions on gg:

  1. (i)

    gg is a meromorphic function on the infinite strip Dd(θ)D_{d(\theta)}. It is also continuous on Dd(θ)\partial D_{d(\theta)}. The poles (p)=1Np\big{(}p_{\ell}\big{)}_{\ell=1}^{N_{p}} are all simple and located in Dd(θ)D_{d(\theta)}\setminus\mathbb{R}.

  2. (ii)

    There exists a constant C>0C>0 independent of yy\in\mathbb{R} such that for sufficiently large y>0y>0,

    d(θ)d(θ)|g(y+iw)|𝑑w\displaystyle\int_{-d(\theta)}^{d(\theta)}{\left|g(y+iw)\right|\,dw} C.\displaystyle\leq C. (2.5)
  3. (iii)

    We have

    N(g,Dd(θ)):=|g(y+id(θ)|+|g(yid(θ))|dy<.\displaystyle N(g,D_{d(\theta)}):=\int_{-\infty}^{\infty}{\left|g(y+id(\theta)\right|+\left|g(y-id(\theta))\right|\,dy}<\infty. (2.6)

Denote by res(g;p)\operatorname{res}(g;p_{\ell}) the residue of gg at pp_{\ell}, and define γ(k;p):=1sin(πp/k).\gamma(k;p_{\ell}):=\frac{1}{\sin(\pi p_{\ell}/k)}.

Then there exists a generic constant, such that for all k>0k>0, using s:=sign(p)s_{\ell}:=\operatorname{sign}(p_{\ell}):

|g(t)𝑑tkn=g(kn)π=1Npeisπpkres(g;p)γ(k;p)|\displaystyle\left|\int_{\mathbb{R}}{g(t)\,dt}-k\sum_{n=-\infty}^{\infty}{g(k\,n)}-\pi\sum_{\ell=1}^{N_{p}}{e^{i\frac{s_{\ell}\pi p_{\ell}}{k}}\operatorname{res}(g;p_{\ell})\gamma(k;p_{\ell})}\right| e2πd(θ)/k1e2πd(θ)/kN(g,Dd(θ)).\displaystyle\lesssim\frac{e^{-2\pi d(\theta)/k}}{1-e^{-2\pi d(\theta)/k}}N(g,D_{d(\theta)}). (2.7)

Proposition 2.4 requires certain decay properties for the integrand in a complex strip, and thus is not always applicable. As is shown in Appendix A, the transformation ψσ,θ\psi_{\sigma,\theta} maps partly into the left-half plane. One can even show that the real part changes sign infinitely many times when evaluating along a line of fixed imaginary part. If we therefore consider the case when f(z):=ezf(z):=e^{-z} is the exponential function, this means that fψf\circ\psi is exponentially increasing in such regions. This puts showing estimates of the form required in Proposition 2.4 (iii) out of reach.

On the other hand, Lemma A.5 shows that for σ=1\sigma=1, restricted to the domain DδexpD^{\mathrm{exp}}_{\delta}, the map ψσ,θ\psi_{\sigma,\theta} stays in the right half-plane. Here the exponential function is decreasing. Similarly, the Mittag-Leffler function eα,μe_{\alpha,\mu} is decreasing on slightly larger sectors, allowing for the choice of σ=1/2\sigma=1/2 if α<1\alpha<1. This motivates the following modification of Proposition 2.4.

Lemma 2.5.

Assume that g:Dδexpg:D^{\mathrm{exp}}_{\delta}\to\mathbb{C} is holomorphic and is doubly-exponentially decreasing, i.e., there exist constants Cg>0C_{g}>0, μ>0,\mu>0, such that gg satisfies

|g(y)|Cgexp(μeRe(y))yDδexp.\displaystyle\left|g(y)\right|\leq C_{g}\exp\big{(}-\mu e^{\operatorname{Re}(y)}\big{)}\qquad\forall y\in D^{\mathrm{exp}}_{\delta}. (2.8)

Then, for all ε>0\varepsilon>0, there exists a constant C>0C>0 which is independent of kk, μ\mu and gg such that the following error estimate holds:

|g(t)𝑑tkn=g(kn)|\displaystyle\left|\int_{\mathbb{R}}{g(t)dt}-k\sum_{n=-\infty}^{\infty}{g(k\,n)}\right| CCgkexp(8πδμ2εk).\displaystyle\leq CC_{g}k\,\exp\Big{(}{-\sqrt{8\pi\delta}\,\frac{\sqrt{\mu-2\varepsilon}}{\sqrt{k}}}\,\Big{)}. (2.9)
Proof.

We closely follow the proof of [LB92, Theorem 2.13], but picking a different contour and later exploiting the strong decay properties of ff.

For NN\in\mathbb{N}, set RN:={y:|Re(y)|(N+12),|Im(y)|δe|Re(y)|}R_{N}:=\Big{\{}y\in\mathbb{C}:\left|\operatorname{Re}(y)\right|\leq(N+\frac{1}{2}),\left|\operatorname{Im}(y)\right|\lesssim\delta\,e^{-\left|\operatorname{Re}(y)\right|}\Big{\}}. For fixed tt\in\mathbb{R}, we fix NN large enough such that tRNt\in R_{N}. By applying the residue theorem to the function

h(y):=sin(πt/k)g(y)(ty)sin(πy/k),h(y):=\frac{\sin(\pi\,t/k)g(y)}{(t-y)\sin(\pi y/k)},

one can show the equality

g(t)kn=NNg(nk)sinc(tnkk)\displaystyle g(t)-k\sum_{n=-N}^{N}{g(n\,k)\operatorname{sinc}\Big{(}\frac{t-nk}{k}\Big{)}} =RNsin(πt/k)g(y)(ty)sin(πy/k)𝑑y.\displaystyle=\int_{\partial R_{N}}{\frac{\sin(\pi\,t/k)g(y)}{(t-y)\sin(\pi y/k)}\,dy}.

Since asymptotically f(t)f(t) decreases doubly exponentially, while 1/sin(πy/k)1/\sin(\pi y/k) only grows exponentially along the path {(ξ,δeξ),ξ}\{(\xi,\delta\,e^{-\xi}),\,\xi\in\mathbb{R}\}, we can pass to the limit NN\to\infty to get the representation

g(t)kn=g(kn)sinc(tnkk)\displaystyle g(t)-k\sum_{n=-\infty}^{\infty}{g(k\,n)\operatorname{sinc}\Big{(}\frac{t-nk}{k}\Big{)}} =Dδexpsin(πt/k)g(y)(ty)sin(πy/k)𝑑y.\displaystyle=\int_{\partial D^{\mathrm{exp}}_{\delta}}{\frac{\sin(\pi\,t/k)g(y)}{(t-y)\sin(\pi y/k)}\,dy}. (2.10)

Integrating (2.10) over \mathbb{R} and exchanging the order of integration gives:

g(t)𝑑τkn=g(kn)\displaystyle\int_{\mathbb{R}}{g(t)\,d\tau}-k\sum_{n=-\infty}^{\infty}{g(k\,n)} =Dδexpg(y)sin(πy/k)sin(πt/k)ty𝑑t𝑑y.\displaystyle=\int_{\partial D^{\mathrm{exp}}_{\delta}}{\frac{g(y)}{\sin(\pi y/k)}\int_{\mathbb{R}}{\frac{\sin(\pi\,t/k)}{t-y}\,dt}\,dy.}
=πDδexpg(y)sin(πy/k)eisign(Im(y))πyk𝑑y,\displaystyle=-\pi\int_{\partial D^{\mathrm{exp}}_{\delta}}{\frac{g(y)}{\sin(\pi y/k)}e^{\frac{i\operatorname{sign}(\operatorname{Im}(y))\pi y}{k}}\,dy}, (2.11)

where in the last step we invoked [LB92, Lemma 2.19] to explicitly evaluate the integral. What remains to do is bound the integral on the right-hand side. For simplicity, we focus on the upper-right half-plane. The other cases follow analogously. There, we can parameterize Dδexp\partial D^{\mathrm{exp}}_{\delta} as y=ξ+iδeξy=\xi+i\delta\,e^{-\xi}. We estimate

|g(y)sin(πy/k)eisignIm(y)πyk|\displaystyle\left|\frac{g(y)}{\sin(\pi y/k)}e^{\frac{i\operatorname{sign}{\operatorname{Im}(y)}\pi y}{k}}\right| |g(y)|exp(2πδeξk)1exp(2πδeξk)\displaystyle\lesssim\;\left|g(y)\right|\frac{\exp\Big{(}{-2\pi\delta\,\frac{e^{-\xi}}{k}}\Big{)}}{1-\exp\Big{(}{-2\pi\delta\,\frac{e^{-\xi}}{k}}\Big{)}}
|g(y)|keξexp(2πδeξk)\displaystyle\lesssim\;\left|g(y)\right|k\,e^{\xi}\exp\Big{(}{-2\pi\delta\,\frac{e^{-\xi}}{k}}\Big{)}
(2.8)Cgkexp(μeξ+ξ2πδeξk)\displaystyle\stackrel{{\scriptstyle\mathclap{(\ref{eq:sinc_in_dexp:de_requirement})}}}{{\lesssim}}\;C_{g}k\exp\Big{(}-\mu e^{\xi}+\xi-\frac{2\pi\,\delta e^{-\xi}}{k}\Big{)} (2.12)

For ε>0\varepsilon>0, we can absorb the linear ξ\xi-term into the first exponential, and estimate:

(2.12)\displaystyle\eqref{eq:sinc_in_dexp_proof1} ε1Cgkexp((μ2ε)eξ2πδeξk)exp(εeξ)\displaystyle\lesssim\varepsilon^{-1}C_{g}k\exp\Big{(}-(\mu-2\varepsilon)e^{\xi}-\frac{2\pi\,\delta e^{-\xi}}{k}\Big{)}\exp\Big{(}-\varepsilon e^{\xi}\Big{)}

where the second term will be used to regain integrability, whereas the first one will give us approximation quality. For ξ=0\xi=0 and ξ\xi\to\infty, we get sufficient bounds to prove (2.9). We thus have to look for maxima of the function with respect to ξ\xi in between (0,)(0,\infty). Due to monotonicity of the exponential, we focus on the argument and set τ:=eξ.\tau:=e^{\xi}. By setting its derivative to zero we get that the map

τ(μ2ε)τ2πδτk is maximized for τmax=2δπk(μ2ε).\displaystyle\tau\mapsto-(\mu-2\varepsilon)\tau-\frac{2\pi\,\delta}{\tau\,k}\quad\text{ is maximized for }\quad\tau_{\max}=\sqrt{\frac{2\delta\pi}{k(\mu-2\varepsilon)}}.

Inserting all this into (2.11), we get

|g(t)𝑑τkn=g(kn)|\displaystyle\left|\int_{\mathbb{R}}{g(t)\,d\tau}-k\sum_{n=-\infty}^{\infty}{g(k\,n)}\right| Cgkexp(22πδμ2εk)0exp(εe|Re(y)|)𝑑ξ\displaystyle\lesssim C_{g}k\exp\Big{(}-2\sqrt{2\pi\delta}\sqrt{\frac{\mu-2\varepsilon}{k}}\Big{)}\int_{0}^{\infty}{\exp\Big{(}-\varepsilon e^{\left|\operatorname{Re}(y)\right|}\Big{)}\,d\xi}
Cgkexp(22πδμ2εk).\displaystyle\lesssim C_{g}k\exp\Big{(}-2\sqrt{2\pi\delta}\sqrt{\frac{\mu-2\varepsilon}{k}}\Big{)}.\qed
Remark 2.6.

It is also possible to admit meromorphic functions with finitely many poles into Lemma 2.5, as long as additional error terms analogous to (2.7) are introduced. Since we will not need this generalization we stay in the analytic setting.

While Lemma 2.5 provides a reduced rate of convergence compared to the more-standard sinc\operatorname{sinc}-quadrature of Proposition 2.4 (k1/2k^{-1/2} vs k1|ln(k)|k^{-1}\left|\ln(k)\right|), thus removing the advantage we want to achieve by using the double exponential transformation, we will later consider a class of functions which decay fast enough to allow us to tune the parameter μk1\mu\sim k^{-1} to regain almost full speed of convergence.

Finally, we show how the transformation ψσ,θ\psi_{\sigma,\theta} and the operator \mathcal{L} enter the estimates. The next corollary also showcases how the cutoff error is controlled.

Corollary 2.7.

Let 𝒪\mathcal{O}\subseteq\mathbb{C} contain the right half-plane, and if σ=1/2\sigma=1/2 also a sector

Sω:={z:|Arg(z)|ω}for someω>π2.S_{\omega}:=\big{\{}z\in\mathbb{C}:\left|\operatorname{Arg}(z)\right|\leq\omega\big{\}}\qquad\text{for some}\quad\omega>\frac{\pi}{2}.

Assume that g:𝒪g:\mathcal{O}\to\mathbb{C} is analytic and satisfies the polynomial bound

|g(z)|Cg(1+|z|)μfor μ>0.\left|g(z)\right|\leq C_{g}(1+\left|z\right|)^{-\mu}\qquad\text{for $\mu>0$}.

Then, for all 0<ε<μ/20<\varepsilon<\mu/2, 0sr0\leq s\leq r and λ>λ0>κ\lambda>\lambda_{0}>\kappa, the quadrature errors can be bounded by:

E(g,𝒩q)2s(Ω)2r(Ω)\displaystyle\left\|E^{\mathcal{L}}(g,\mathcal{N}_{\textrm{q}})\right\|_{\mathbb{H}^{2s}(\Omega)\to\mathbb{H}^{2r}(\Omega)} CCg[exp(γ1μr+s2εk)+exp((μr+s)γek𝒩q)].\displaystyle\leq C\,C_{g}\Bigg{[}\exp\Big{(}-\gamma_{1}\frac{\sqrt{\mu-r+s-2\varepsilon}}{\sqrt{k}}\Big{)}+\exp\Big{(}-(\mu-r+s)\gamma e^{k\mathcal{N}_{\textrm{q}}}\Big{)}\Bigg{]}.

The constant CC is independent of gg, kk,rr,ss and β\beta, but may depend on ε\varepsilon, σ\sigma, θ\theta. The rate γ1\gamma_{1} depends on θ\theta and ω\omega. γ\gamma depends on σ\sigma.

Proof.

Let (λj,vj)j=0(\lambda_{j},v_{j})_{j=0}^{\infty} denote the eigenvalues and eigenfunctions of the self-adjoint operator \mathcal{L}. Following [BLP17a], plugging the eigen-decomposition of a function uu into the Riesz-Dunford calculus, we can write the exact function g()ug(\mathcal{L})u as

g()u\displaystyle g(\mathcal{L})u =j=0(12πi𝒞g(ψσ,θ(y))(ψσ,θλj)1ψσ,θ(y)(u,vj)L2(Ω)𝑑y)vj\displaystyle=\sum_{j=0}^{\infty}{\Big{(}\frac{1}{2\pi i}\int_{\mathcal{C}}{g(\psi_{\sigma,\theta}(y))(\psi_{\sigma,\theta}-\lambda_{j})^{-1}\psi_{\sigma,\theta}^{\prime}(y)\big{(}u,v_{j}\big{)}_{L^{2}(\Omega)}\,dy}\Big{)}\;v_{j}}

and analogously for the discrete approximation Q(g,𝒩q)uQ^{\mathcal{L}}(g,\mathcal{N}_{\textrm{q}})u. For the norm, as defined in (1.1), this means:

E(g,𝒩q)2r(Ω)2\displaystyle\left\|E^{\mathcal{L}}(g,\mathcal{N}_{\textrm{q}})\right\|^{2}_{\mathbb{H}^{2r}(\Omega)} =14π2j=0|(1+λjr)Eλj(g,𝒩q)(u,vj)L2(Ω)|2\displaystyle=\frac{1}{4\pi^{2}}\sum_{j=0}^{\infty}{\Big{|}(1+\lambda_{j}^{r})E^{\lambda_{j}}(g,\mathcal{N}_{\textrm{q}})\big{(}u,v_{j}\big{)}_{L^{2}(\Omega)}\Big{|}^{2}}
supλλ0|(1+λrs)Eλ(g,𝒩q)|2u2s(Ω)2.\displaystyle\lesssim\sup_{\lambda\geq\lambda_{0}}\big{|}(1+\lambda^{r-s})E^{\lambda}(g,\mathcal{N}_{\textrm{q}})\big{|}^{2}\left\|u\right\|^{2}_{\mathbb{H}^{2s}(\Omega)}.

We have thus reduced the problem to one of scalar quadrature, for which we aim to apply Lemma 2.5. We fix λ>λ0>κ\lambda>\lambda_{0}>\kappa. ψσ,θ\psi_{\sigma,\theta} maps DδexpD^{\mathrm{exp}}_{\delta} analytically to 𝒪\mathcal{O} via Lemma A.5 (δ\delta depends on θ\theta and ω\omega). What remains to be shown is a pointwise bound for the function

hλ(y):=λrsg(ψσ,θ(y)(ψσ,θλ)1ψσ,θ(y)yDδexp.\displaystyle h_{\lambda}(y):=\lambda^{r-s}g(\psi_{\sigma,\theta}(y)(\psi_{\sigma,\theta}-\lambda)^{-1}\psi_{\sigma,\theta}^{\prime}(y)\qquad\forall y\in D^{\mathrm{exp}}_{\delta}.

By distinguishing the cases |ψσ,θ(y)|<λ/2\left|\psi_{\sigma,\theta}(y)\right|<\lambda/2 and |ψσ,θ(y)|λ/2\left|\psi_{\sigma,\theta}(y)\right|\geq\lambda/2 we get using either (A.6) or Lemma A.5

λ|ψσ,θ(y)λ|1|ψσ,θ(y)||ψσ,θ(y)|cosh(Re(y)).\displaystyle\lambda\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|\lesssim\left|\psi_{\sigma,\theta}(y)\right|\cosh(\operatorname{Re}(y)).

We conclude using Lemma A.5:

|hλ(y)|\displaystyle\left|h_{\lambda}(y)\right| Cg|ψσ,θ(y)|μ(λ|ψσ,θ(y)λ|1|ψσ,θ(y)|)rs(|ψσ,θ(y)λ|1|ψσ,θ(y)|)1r+s\displaystyle\leq C_{g}\left|\psi_{\sigma,\theta}(y)\right|^{-\mu}\Big{(}\lambda\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|\Big{)}^{r-s}\Big{(}\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|\Big{)}^{1-r+s}
Cg|ψσ,θ(y)|μ+rscosh(Re(y)).\displaystyle\lesssim C_{g}\left|\psi_{\sigma,\theta}(y)\right|^{-\mu+r-s}\cosh(\operatorname{Re}(y)).

The double exponential growth of ψσ,θ\psi_{\sigma,\theta} (see Lemma A.4) and Lemma 2.5 then give (after absorbing the cosh\cosh term by slightly adjusting ε\varepsilon):

λrs|Eλ(g)|\displaystyle\lambda^{r-s}\big{|}{E^{\lambda}(g)}\big{|} =12π|hλ(y)𝑑ykn=hλ(kn)|Cgeγ1μr+s2εk.\displaystyle=\frac{1}{2\pi}\Big{|}\int_{\mathbb{R}}{h_{\lambda}(y)\,dy}-k\sum_{n=-\infty}^{\infty}{h_{\lambda}(k\,n)}\Big{|}\lesssim C_{g}e^{-\gamma_{1}\frac{\sqrt{\mu-r+s-2\varepsilon}}{\sqrt{k}}}.

The cutoff error is handled easily, also using this estimate. We calculate

|Qλ(g)Qλ(g,𝒩q)|\displaystyle\left|Q^{\lambda}(g)-Q^{\lambda}(g,\mathcal{N}_{\textrm{q}})\right| k|j|𝒩q+1|hλ(ψσ,θ(jk))|Cgkλr+s|j|𝒩q+1exp(γ(μr+s)ejk)\displaystyle\leq k\!\!\!\sum_{\left|j\right|\geq\mathcal{N}_{\textrm{q}}+1}{\!\!\!\left|h_{\lambda}(\psi_{\sigma,\theta}(j\,k))\right|}\leq C_{g}\,k\lambda^{-r+s}\!\!\!\sum_{\left|j\right|\geq\mathcal{N}_{\textrm{q}}+1}{\!\!\!\exp\big{(}-\gamma(\mu-r+s)e^{jk}\big{)}}
Cgλr+sexp(γ(μr+s)e𝒩qk),\displaystyle\lesssim C_{g}\lambda^{-r+s}\exp\big{(}-\gamma(\mu-r+s)e^{\mathcal{N}_{\textrm{q}}k}\big{)},

where the last step follows by estimating the sum by the integral and elementary estimates. ∎

3 The elliptic problem

In this section, we consider approximation of the elliptic fractional diffusion problem

Given fL2(Ω) and β>0,find udom(β) such that βu\displaystyle\text{Given $f\in L^{2}(\Omega)$ and $\beta>0$},\quad\text{find $u\in\operatorname{dom}(\mathcal{L}^{\beta})$ such that }\quad\mathcal{L}^{\beta}u =f.\displaystyle=f. (3.1)

Using the Riesz-Dunford formula, this is equivalent to computing

u\displaystyle u =12πi𝒞zβ(z)1f𝑑z.\displaystyle=\frac{1}{2\pi i}\int_{\mathcal{C}}{z^{-\beta}\big{(}\mathcal{L}-z\big{)}^{-1}f\,dz}.

In order to get a (semi-) discrete scheme, we replace the integral with the quadrature formula. Given 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} and k>0k>0, the fully discrete approximation to (3.1) is then given by uk:=Q(zβ,𝒩q)fu_{k}:=Q(z^{-\beta},\mathcal{N}_{\textrm{q}})f.

Remark 3.1.

For a fully discrete scheme, one would in addition replace (z)1(\mathcal{L}-z)^{-1} by a Galerkin solver. Given an closed subspace 𝕍hH1(Ω)\mathbb{V}_{h}\subseteq H^{1}(\Omega), the discrete resolvent Rh(z):L2(Ω)𝕍hR_{h}(z):L^{2}(\Omega)\to\mathbb{V}_{h} is given as the solution

Rh(z)f:=uh,with(𝔄uh,vh)L2(Ω)+((𝔠z)uh,vh)L2(Ω)\displaystyle R_{h}(z)f:=u_{h},\quad\text{with}\quad\big{(}\mathfrak{A}\nabla u_{h},\nabla v_{h})_{L^{2}(\Omega)}+\big{(}(\mathfrak{c}-z)u_{h},v_{h}\big{)}_{L^{2}(\Omega)} =(f,vh)L2(Ω)vh𝕍h.\displaystyle=\big{(}f,v_{h}\big{)}_{L^{2}(\Omega)}\quad\forall v_{h}\in\mathbb{V}_{h}.

Given discretization parameters 𝕍h1(Ω)\mathbb{V}_{h}\subseteq\mathbb{H}^{1}(\Omega), 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} and k>0k>0, the fully discrete approximation to (3.1) is then given by

uh,k:=12πij=𝒩q𝒩q(ψσ,θ(jk))βψσ,θ(jk)Rh(ψσ,θ(jk))f.\displaystyle u_{h,k}:=\frac{1}{2\pi i}\sum_{j=-\mathcal{N}_{\textrm{q}}}^{\mathcal{N}_{\textrm{q}}}{\big{(}\psi_{\sigma,\theta}(jk)\big{)}^{-\beta}\psi_{\sigma,\theta}^{\prime}(jk)\,R_{h}\big{(}\psi_{\sigma,\theta}(jk)\big{)}f.} (3.2)

In order to keep presentation to a reasonable length, we focus on the spatially continuous setting. We only remark that discretization in space can be easily incorporated into the analysis. For low order finite elements one can follow [BLP17a]; for an exponentially convergent hphp-FEM scheme we refer to [MR21].

Remark 3.2.

We should point out that for the elliptic problem, there exist methods based on the Balakrishnan formula (see also Section 5) which do not require complex arithmetic. On the other hand, since we are only approximating real valued functions, we can exploit the symmetry of (2.3) to only solve for j0j\geq 0, thus halving the number of linear systems. This results in (roughly) comparable computational effort for both the Balakrishnan and the double exponential schemes. Due to their better convergence the DE-schemes might therefore still be advantageous.

3.1 Error analysis

In order to analyze the quadrature error, we need to understand a specific scalar function. This is done in the next Lemma.

Lemma 3.3.

Fix λ>λ0>κ\lambda>\lambda_{0}>\kappa and β>0\beta>0. For yy\in\mathbb{R}, define the function

gλβ(y)\displaystyle g_{\lambda}^{\beta}(y) :=(ψσ,θ(y))β(ψσ,θ(y)λ)1ψσ,θ(y).\displaystyle:=\big{(}\psi_{\sigma,\theta}(y)\big{)}^{-\beta}\Big{(}\psi_{\sigma,\theta}(y)-\lambda\Big{)}^{-1}\psi_{\sigma,\theta}^{\prime}(y).

Then the following statements hold:

  1. (i)

    gλβg_{\lambda}^{\beta} can be extended to a meromorphic function on Dd(θ)D_{d(\theta)}. It has finitely many poles. They satisfy ψσ,θ(y)=λ\psi_{\sigma,\theta}(y)=\lambda and are all simple. For any ν0\nu\geq 0, the number of poles pp within the strip

    ν1ln(λ)|Im(p)|ν+1ln(λ)\nu-\frac{1}{\ln(\lambda)}\leq\left|\operatorname{Im}(p)\right|\leq\nu+\frac{1}{\ln(\lambda)}

    can be bounded independently of ν\nu, β\beta and λ\lambda. The imaginary part of pp can be bounded away from zero and for large λ\lambda, the following asymptotics hold:

    |Im(p)|\displaystyle\left|\operatorname{Im}(p)\right| {tan1(θ)ln(λ/κ)𝒪(ln(λ/κ)2)if σ=1,π2ln(λ/κ)𝒪(ln(λ/κ)2)if σ=1/2.\displaystyle\geq\begin{cases}\frac{\tan^{-1}(\theta)}{\ln(\lambda/\kappa)}-\mathcal{O}\Big{(}\ln(\lambda/\kappa)^{2}\Big{)}&\text{if $\sigma=1$},\\ \frac{\pi}{2\ln(\lambda/\kappa)}-\mathcal{O}\Big{(}\ln(\lambda/\kappa)^{2}\Big{)}&\text{if $\sigma=1/2$}.\end{cases} (3.3)

    where the implied constants depend on θ\theta, κ\kappa, and λ0\lambda_{0}.

  2. (ii)

    There exist constants C>0C>0, γ>0\gamma>0, independent of λ\lambda and β\beta and a value dλ(d(θ)/2,d(θ))d_{\lambda}\in(d(\theta)/2,d(\theta)) such that gλβg_{\lambda}^{\beta} satisfies the bounds

    |(1+λβ2)gλβ(a±idλ)|Cexp(γβea)a.\displaystyle\big{|}{(1+\lambda^{\frac{\beta}{2}})g_{\lambda}^{\beta}(a\pm i\,d_{\lambda})}\big{|}\leq C\exp\big{(}-\gamma\beta e^{a}\big{)}\qquad\forall a\in\mathbb{R}. (3.4)
  3. (iii)

    There exists a constant C>0C>0 such that for dλd_{\lambda} from (ii) and ββ¯>0\beta\geq\overline{\beta}>0

    (1+λβ2)|gλβ(w±idλ)|𝑑w\displaystyle\int_{\mathbb{R}}{(1+\lambda^{\frac{\beta}{2}})\big{|}{g_{\lambda}^{\beta}(w\pm id_{\lambda})}\big{|}\,dw} C<.\displaystyle\leq C<\infty.

    The constant CC may depend on β¯\overline{\beta} but can be chosen independently of λ\lambda and β\beta.

Proof.

Ad (i): We note that by Lemma A.3, ψσ,θ\psi_{\sigma,\theta} is non-vanishing in Dd(θ)D_{d(\theta)}. Since Dd(θ)D_{d(\theta)} is simply connected, we may define

h(y):=1+0yψσ,θ(ζ)ψσ,θ(ζ)𝑑ζ.h(y):=1+\int_{0}^{y}{\frac{\psi_{\sigma,\theta}^{\prime}(\zeta)}{\psi_{\sigma,\theta}(\zeta)}\,d\zeta}.

It is easy to check that on \mathbb{R} we have h(y)=ln(ψσ,θ(y))h(y)=\ln(\psi_{\sigma,\theta}(y)) since the derivative as well as the value at y=0y=0 coincide. Thus, defining

gλβ(y):=eβh(y)(ψσ,θ(y)λ)1ψσ,θ(y)g_{\lambda}^{\beta}(y):=e^{-\beta h(y)}\big{(}\psi_{\sigma,\theta}(y)-\lambda\big{)}^{-1}\psi_{\sigma,\theta}^{\prime}(y)

provides a valid meromorphic extension. The only poles are located where ψσ,θ(z)=λ\psi_{\sigma,\theta}(z)=\lambda. By Lemma A.8(i), the number of such poles within strips of width ln(λ)1\ln(\lambda)^{-1} is uniformly bounded. Since, by Lemma A.3, ψσ,θ\psi_{\sigma,\theta}^{\prime} has no zeros in the domain Dd(θ)D_{d(\theta)} all the poles are simple. The bound on the imaginary part follows from Lemma A.8(ii).

Ad (ii): We first note for y=a±dλy=a\pm d_{\lambda} if λ<|ψσ,θ(y)|/2\lambda<\left|\psi_{\sigma,\theta}(y)\right|/2 the trivial estimate |ψσ,θ(y)λ|12|ψ(y)|\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}\leq\frac{2}{\left|\psi(y)\right|} holds. Otherwise, we use Lemma A.8(iii) to get

|ψσ,θ(y)λ|1λ12|ψσ,θ(y)|1.\displaystyle\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}\lesssim\lambda^{-1}\leq 2\left|\psi_{\sigma,\theta}(y)\right|^{-1}.

Overall, we can estimate using Lemma A.4

|gλβ(y)|\displaystyle|{g^{\beta}_{\lambda}(y)}| |ψσ,θ(y)|β|ψσ,θ(y)λ|1|ψσ,θ(y)||ψσ,θ(y)|β1|ψσ,θ(y)|exp(γeRe(y)),\displaystyle\lesssim\left|\psi_{\sigma,\theta}(y)\right|^{-\beta}\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|\lesssim\left|\psi_{\sigma,\theta}(y)\right|^{-\beta-1}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|\lesssim\exp(-\gamma e^{\operatorname{Re}(y)}),

where in the last step, we used that ψσ,θ\psi_{\sigma,\theta}^{\prime} has the same asymptotic behavior as ψσ,θ\psi_{\sigma,\theta} up to single exponential terms, which we absorb into the double exponential by slightly reducing γ\gamma.

Looking at |λβ/2gλβ(y)||{\lambda^{\beta/2}g^{\beta}_{\lambda}(y)}|, one can calculate using two different ways to estimate ψσ,θ(y)λ\psi_{\sigma,\theta}(y)-\lambda:

λβ/2|gλβ(y)|\displaystyle\lambda^{\beta/2}|{g^{\beta}_{\lambda}(y)}| |ψσ,θ(y)|β(λ|ψσ,θ(y)λ|11)β/2(|ψσ,θ(y)λ|1|ψσ,θ(y)|1)1β/2|ψσ,θ(y)|\displaystyle\lesssim\left|\psi_{\sigma,\theta}(y)\right|^{-\beta}\Big{(}\underbrace{\lambda\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}}_{\lesssim 1}\Big{)}^{\beta/2}\Big{(}\underbrace{\left|\psi_{\sigma,\theta}(y)-\lambda\right|^{-1}}_{\lesssim\left|\psi_{\sigma,\theta}(y)\right|^{-1}}\Big{)}^{1-\beta/2}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|
|ψσ,θ(y)|β|ψσ,θ(y)|1+β/2|ψσ,θ(y)|LemmaA.4exp(γβ2eRe(y)).\displaystyle\lesssim\left|\psi_{\sigma,\theta}(y)\right|^{-\beta}\left|\psi_{\sigma,\theta}(y)\right|^{-1+\beta/2}\left|\psi_{\sigma,\theta}^{\prime}(y)\right|\stackrel{{\scriptstyle Lemma\leavevmode\nobreak\ \ref{lemma:psi_growth}}}{{\lesssim}}\exp\Big{(}-\frac{\gamma\beta}{2}e^{\operatorname{Re}(y)}\Big{)}.

The integral bound then follows easily from the pointwise ones. ∎

Theorem 3.4 (Double Exponential formulas for elliptic problems).

Fix λ0>κ\lambda_{0}>\kappa, β¯>0\overline{\beta}>0 and r[0,β/2]r\in[0,\beta/2]. Then there exist constants C>0C>0, γ>0,γ1>0\gamma>0,\gamma_{1}>0 such that for λ>λ0\lambda>\lambda_{0}, ββ¯\beta\geq\overline{\beta}, k>0k>0, 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N}, the following estimate holds

λr|Eλ(zβ,𝒩q)|\displaystyle\lambda^{r}\left|E^{\lambda}(z^{-\beta},\mathcal{N}_{\textrm{q}})\right| k2max(1,ln(λ))2λβ+remax{p(σ,θ,λ),γ1}kmax(1,ln(λ/κ))+eγk+exp(γβek𝒩q),\displaystyle\lesssim k^{2}\max(1,\ln(\lambda))^{2}\lambda^{-\beta+r}e^{-\frac{\max\{p(\sigma,\theta,\lambda),\gamma_{1}\}}{k\max(1,\ln(\lambda/\kappa))}}+e^{-\frac{\gamma}{k}}+\exp(-\gamma\beta e^{k\mathcal{N}_{\textrm{q}}}), (3.5a)
where the rate is given by
p(σ,θ,λ)={2πtan1(θ)c2ln(λ)if σ=1,π2c2ln(λ)if σ=1/2.\displaystyle p(\sigma,\theta,\lambda)=\begin{cases}2\pi\tan^{-1}(\theta)-\frac{c_{2}}{\ln(\lambda)}&\text{if $\sigma=1$,}\\ \pi^{2}-\frac{c_{2}}{\ln(\lambda)}&\text{if $\sigma=1/2$.}\end{cases} (3.5b)

Thus for kln(𝒩q)/𝒩qk\sim\ln(\mathcal{N}_{\textrm{q}})/\mathcal{N}_{\textrm{q}} we get (almost) exponential convergence:

λr|Eλ(zβ,𝒩q)|\displaystyle\lambda^{r}\Big{|}E^{\lambda}(z^{-\beta},\mathcal{N}_{\textrm{q}})\Big{|} k2max(1,ln(λ/κ))2λβ+remax{p(σ,θ,λ),γ1}𝒩qln(λ/κ)ln(𝒩q)+eγ𝒩qln(𝒩q).\displaystyle\lesssim k^{2}\max(1,\ln(\lambda/\kappa))^{2}\lambda^{-\beta+r}e^{-\frac{\max\big{\{}p(\sigma,\theta,\lambda),\gamma_{1}\big{\}}\mathcal{N}_{\textrm{q}}}{\ln(\lambda/\kappa)\ln(\mathcal{N}_{\textrm{q}})}}+e^{-\gamma^{\prime}\frac{\mathcal{N}_{\textrm{q}}}{\ln(\mathcal{N}_{\textrm{q}})}}. (3.6)

The implied constants and γ\gamma may depend on λ0\lambda_{0}, β¯\overline{\beta}, σ\sigma, θ\theta and κ\kappa.

Proof.

To cut down on notation, we only consider the case ln(λ/κ)c1>1\ln(\lambda/\kappa)\geq c_{1}>1 so that the first term in the minimum of  (3.3) dominates. If λ\lambda is small, the error can be absorbed into the eγ/ke^{-\gamma/k} term. The error Eλ(zβ,𝒩q)E^{\lambda}(z^{-\beta},\mathcal{N}_{\textrm{q}}) corresponds to approximating gλβg_{\lambda}^{\beta} by sinc\operatorname{sinc} quadrature. We split the error into two parts, the quadrature error and the cutoff error.

λr|gλβ(y)𝑑ykj=𝒩q𝒩qgλβ(jk)|λr|gλβ(y)𝑑ykj=gλβ(jk)|=Eλ(zβ)+kλr|j|>𝒩q=1|gλβ(jk)|=:Ec.\displaystyle\lambda^{r}\Big{|}{\int_{-\infty}^{\infty}{g_{\lambda}^{\beta}(y)\,dy}-k\sum_{j=-\mathcal{N}_{\textrm{q}}}^{\mathcal{N}_{\textrm{q}}}g_{\lambda}^{\beta}(j\,k)}\Big{|}\leq\underbrace{\lambda^{r}\Big{|}{\int_{-\infty}^{\infty}{g_{\lambda}^{\beta}(y)\,dy}-k\sum_{j=-\infty}^{\infty}g_{\lambda}^{\beta}(j\,k)}\Big{|}}_{=E^{\lambda}(z^{-\beta})}+\underbrace{k\lambda^{r}\!\!\!\sum_{\left|j\right|>\mathcal{N}_{\textrm{q}}=1}\left|g_{\lambda}^{\beta}(j\,k)\right|}_{=:E_{c}}.

The term EcE_{c} can be handled by the same argument as in Corollary 2.7. We therefore focus on the quadrature error Eλ(zβ)E^{\lambda}(z^{-\beta}) and apply Proposition 2.4. By Lemma 3.3(iii) it holds that N(gλβ,Dd(θ))<N\big{(}g_{\lambda}^{\beta},D_{d(\theta)}\big{)}<\infty. To satisfy assumption (ii), it suffices that (for sufficiently large yy) the vertical strips do not contain any poles and we can use the asymptotics of Lemma 3.3(ii).

By Lemma 3.3, there are at most finitely many simple poles. The reside of the function at these poles can be easily calculated using the well-known rule

res(f/g:z0)=f(z0)g(z0),\operatorname{res}\big{(}f/g:z_{0}\big{)}=\frac{f(z_{0})}{g^{\prime}(z_{0})},

provided that ff is analytic and g(z0)0g^{\prime}(z_{0})\neq 0. In our case this means, if ψσ,θ(yλ)=λ\psi_{\sigma,\theta}(y_{\lambda})=\lambda:

res(gλβ;yλ)\displaystyle\operatorname{res}(g^{\beta}_{\lambda};y_{\lambda}) =(ψ(yλ))βψ(yλ)ψ(yλ)=(ψ(yλ))β=λβ.\displaystyle=\frac{(\psi(y_{\lambda}))^{-\beta}\psi^{\prime}(y_{\lambda})}{\psi^{\prime}(y_{\lambda})}=(\psi(y_{\lambda}))^{-\beta}=\lambda^{-\beta}.

Thus, for a single pole yλy_{\lambda} with syλ:=sign(Im(yλ))s_{y_{\lambda}}:=\operatorname{sign}(\operatorname{Im}(y_{\lambda})) we can estimate

|eiπsyλyλkres(gλβ,yλ)γ(k;yλ)|\displaystyle\left|e^{i\frac{\pi s_{y_{\lambda}}y_{\lambda}}{k}}\,\operatorname{res}(g^{\beta}_{\lambda},y_{\lambda})\,\gamma(k;y_{\lambda})\right| λβe2|Im(yλ)|/k1e2|Im(yλ)|/k.\displaystyle\lesssim\lambda^{-\beta}\frac{e^{-2\left|\operatorname{Im}(y_{\lambda})\right|/k}}{1-e^{-2\left|\operatorname{Im}(y_{\lambda})\right|/k}}.

By Lemma 3.3(i), we can group poles into buckets of size 1ln(λ/κ)\frac{1}{\ln(\lambda/\kappa)}, denoted by

B:={y:ψσ,θ(y)=λwithp(σ,θ,λ)2π+ln(λ/κ)|Im(y)|min(p(σ,θ,λ)2π++1ln(λ/κ),d(θ))}B_{\ell}:=\Bigg{\{}y:\psi_{\sigma,\theta}(y)=\lambda\quad\text{with}\quad\frac{\frac{p(\sigma,\theta,\lambda)}{2\pi}+\ell}{\ln(\lambda/\kappa)}\leq\left|\operatorname{Im}(y)\right|\leq\min\Big{(}\frac{\frac{p(\sigma,\theta,\lambda)}{2\pi}+\ell+1}{\ln(\lambda/\kappa)},d(\theta)\Big{)}\Bigg{\}}

such that the number of elements in each bucket BB_{\ell} is uniformly bounded (independently of λ\lambda, β\beta and \ell). This allows us to calculate for the pole contribution in Proposition 2.4:

|πyλPλyeisλπyλkres(gλβ;yλ)γ(k;yλ)|\displaystyle\Big{|}\pi\sum_{y_{\lambda}\in P^{y}_{\lambda}}{e^{i\frac{s_{\lambda}\pi y_{\lambda}}{k}}\,\operatorname{res}(g_{\lambda}^{\beta};y_{\lambda})\,\gamma(k;y_{\lambda})}\Big{|} λβπ=0|yλBeiπsyλyλkγ(k;yλ)|λβ=0ep(σ,θ,λ)+kln(λ/κ)1ep(σ,θ,λ)+kln(λ/κ)\displaystyle\leq\lambda^{-\beta}\pi\sum_{\ell=0}^{\infty}{\Big{|}\sum_{y_{\lambda}\in B_{\ell}}{e^{i\frac{\pi s_{y_{\lambda}}y_{\lambda}}{k}}\,\gamma(k;y_{\lambda})}\Big{|}}\lesssim\lambda^{-\beta}\sum_{\ell=0}^{\infty}{\frac{e^{-\frac{p(\sigma,\theta,\lambda)+\ell}{k\ln(\lambda/\kappa)}}}{1-e^{-\frac{p(\sigma,\theta,\lambda)+\ell}{k\ln(\lambda/\kappa)}}}}
λβ1ep(σ,θ,λ)kln(λ/κ)=1ep(σ,θ,λ)+kln(λ/κ)λβln(λ)2k2ep(σ,θ,λ)kln(λ/κ),\displaystyle\lesssim\frac{\lambda^{-\beta}}{1-e^{-\frac{p(\sigma,\theta,\lambda)}{k\ln(\lambda/\kappa)}}}\sum_{\ell=1}^{\infty}{e^{-\frac{p(\sigma,\theta,\lambda)+\ell}{k\ln(\lambda/\kappa)}}}\lesssim\lambda^{-\beta}\ln(\lambda)^{2}k^{2}e^{-\frac{p(\sigma,\theta,\lambda)}{k\ln(\lambda/\kappa)}},

where we used the elementary estimate 1e2xmin(x,1)1-e^{-2x}\gtrsim\min(x,1) for x0x\geq 0.

Applying Proposition 2.4 and inserting this estimate for the pole-contributions gives:

λrEλ(zβ)\displaystyle\lambda^{r}E^{\lambda}(z^{-\beta}) =Eλ(λrzβ)Prop.2.4e2πdλ/k1e2πdλ/kN(gλβ,𝒟dλ)+λβ+rln(λ)2k2ep(σ,θ,λ)kln(λ/κ).\displaystyle=E^{\lambda}(\lambda^{r}z^{-\beta})\stackrel{{\scriptstyle{Prop.\leavevmode\nobreak\ \ref{prop:sinc_with_poles}}}}{{\lesssim}}\frac{e^{-2\pi d_{\lambda}/k}}{1-e^{-2\pi d_{\lambda}/k}}N(g_{\lambda}^{\beta},\mathcal{D}_{d_{\lambda}})+\lambda^{-\beta+r}\ln(\lambda)^{2}k^{2}e^{-\frac{p(\sigma,\theta,\lambda)}{k\ln(\lambda/\kappa)}}.\qed

The previous estimate gives (almost) exponential convergence with respect to 𝒩q\mathcal{N}_{\textrm{q}}. But the rate of the exponential deteriorates like 1/ln(λ)1/\ln(\lambda) for large λ\lambda. In the following corollary, we give a λ\lambda-robust version of this estimate. We allow for an additional factor λρ\lambda^{\rho} which will allow us to make use of possible additional smoothness when considering function-valued integrals.

Corollary 3.5.

Fix λ0>κ>0\lambda_{0}>\kappa>0, β¯>0\overline{\beta}>0 and r[0,β/2]r\in[0,\beta/2]. Then, for every ε0\varepsilon\geq 0, there exist constants C>0C>0, γ>0\gamma>0 such that for λ>λ0\lambda>\lambda_{0}, β>β¯\beta>\overline{\beta}, ρ0\rho\geq 0, k>0k>0, 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N}, the following estimate holds

λr|Eλ(zβ,𝒩q)|\displaystyle\lambda^{r}\Big{|}E^{\lambda}(z^{-\beta},\mathcal{N}_{\textrm{q}})\Big{|} exp([p(σ,θ)ε]β+ρrk)λρ+exp(γk)+exp(γek𝒩q).\displaystyle\lesssim\exp\Big{(}-\frac{[p(\sigma,\theta)-\varepsilon]\sqrt{\beta+\rho-r}}{\sqrt{k}}\Big{)}\lambda^{\rho}+\exp(-\frac{\gamma}{k})+\exp(-\gamma e^{k\mathcal{N}_{\textrm{q}}}). (3.7a)
where the rate p(σ,θ)p(\sigma,\theta) is given by
p(σ,θ):={22πtan1(θ)for σ=1,2π,for σ=1/2.\displaystyle p(\sigma,\theta):=\begin{cases}2\sqrt{2\pi\tan^{-1}(\theta)}&\text{for }\sigma=1,\\ 2\pi,&\text{for }\sigma=1/2.\end{cases} (3.7b)

For ε>0\varepsilon>0, the implied constant in the estimate and γ\gamma may depend on λ0\lambda_{0}, σ\sigma, θ\theta, β¯\overline{\beta}, κ\kappa. If ε=0\varepsilon=0, the constants in addition depend on ρ\rho and β\beta.

Proof.

We first show the estimate for ε>0\varepsilon>0. We note that for ln(λ/κ)k1\ln(\lambda/\kappa)\geq k^{-1}, we can bound the error in Theorem 3.4 by exp(γ/k)\exp(-\gamma/k) (for an appropriate choice of constant γ\gamma) due to the smallness of the term λβ\lambda^{-\beta}. Thus it remains to consider the case ln(λ/κ)<k1\ln(\lambda/\kappa)<k^{-1}. Similarly, if ln(λ)max(c2ε,ln(κ)p(σ,θ)2εε,1)=:μ0\ln(\lambda)\leq\max(\frac{c_{2}}{\varepsilon},-\ln(\kappa)\frac{p(\sigma,\theta)-2\varepsilon}{\varepsilon},1)=:\mu_{0}, the leading error term behaves like exp(γμ0k)\exp(-\gamma\frac{\mu_{0}}{k}). We are left to consider the remaining case. Writing μ:=ln(λ)\mu:=\ln(\lambda), the error term can be estimated:

k2ln(λ/κ)2λβ+rρep(σ,θ,λ)max(1,ln(λ/κ))kλρ\displaystyle k^{2}\ln(\lambda/\kappa)^{2}\lambda^{-\beta+r-\rho}e^{-\frac{p(\sigma,\theta,\lambda)}{\max(1,\ln(\lambda/\kappa))k}}\,\lambda^{\rho} exp((β+ρr)μp(σ,θ)c2μ(μln(κ))k)\displaystyle\lesssim\exp\Bigg{(}-(\beta+\rho-r)\mu-\frac{p(\sigma,\theta)-\frac{c_{2}}{\mu}}{(\mu-\ln(\kappa))k}\Bigg{)}
exp((β+ρr)μp(σ,θ)2εμk).\displaystyle\lesssim\exp\Bigg{(}-(\beta+\rho-r)\mu-\frac{p(\sigma,\theta)-2\varepsilon}{\mu k}\Bigg{)}. (3.8)

We look for the minimum of the exponent. Setting the derivative of the map

μ(β+ρr)μp(σ,θ)2εμk\mu\mapsto-(\beta+\rho-r)\mu-\frac{p(\sigma,\theta)-2\varepsilon}{\mu k}

to zero, we get that the minimum satisfies

0=(β+ρr)μmin2+p(σ,θ)2εk,orμmin:=1(β+ρr)p(σ,θ)2εk.0=-(\beta+\rho-r)\mu_{\min}^{2}+\frac{p(\sigma,\theta)-2\varepsilon}{k},\qquad\text{or}\qquad\mu_{\min}:=\sqrt{\frac{1}{(\beta+\rho-r)}\frac{p(\sigma,\theta)-2\varepsilon}{k}}.

Inserting this value into (3.8) gives the stated result (after slightly changing ε\varepsilon to get to the stated form).

To see the case for δ=0\delta=0, we note that if ln(λ/κ)γ1k1/2p(σ,θ)β+ρr\ln(\lambda/\kappa)\leq\frac{\gamma_{1}k^{-1/2}}{p(\sigma,\theta)\sqrt{\beta+\rho-r}}, we can estimate for the leading term in Theorem 3.4:

k2ln(λ/κ)2λβ+rρeγ1μkλρ\displaystyle k^{2}\ln(\lambda/\kappa)^{2}\lambda^{-\beta+r-\rho}e^{-\frac{\gamma_{1}}{\mu k}}\,\lambda^{\rho} k2ln(λ/κ)2λβ+rρep(σ,θ)β+ρrkλρ.\displaystyle\leq k^{2}\ln(\lambda/\kappa)^{2}\lambda^{-\beta+r-\rho}e^{-\frac{p(\sigma,\theta)\sqrt{\beta+\rho-r}}{\sqrt{k}}}\,\lambda^{\rho}.

In the remaining case, we can estimate the higher order term in the μ\mu-asymptotics as

ec2μ2kec2p(σ,θ)β+ρrγ1=:C(σ,θ,β,ρ).e^{\frac{c_{2}}{\mu^{2}k}}\leq e^{\frac{c_{2}p(\sigma,\theta)\sqrt{\beta+\rho-r}}{\gamma_{1}}}=:C(\sigma,\theta,\beta,\rho).

We can also estimate

λβ+rρκβ+rρ(λκ)β+rρ\lambda^{-\beta+r-\rho}\leq\kappa^{-\beta+r-\rho}\Big{(}\frac{\lambda}{\kappa}\Big{)}^{-\beta+r-\rho}

and continue as in the proof for δ>0\delta>0 but using μ:=ln(λ/κ)\mu:=\ln(\lambda/\kappa). This time we no longer have to compensate for the factors involving c2/μc_{2}/\mu and ln(κ)-\ln(\kappa) by slightly reducing the rate. The price we pay is that the constant may blow up for ρ\rho\to\infty. ∎

We can now leverage our knowledge about the function gλβg^{\beta}_{\lambda} to gain insight into the discretization error for (3.2).

Corollary 3.6.

Let uu be the exact solution to (3.1) and assume f2ρ(Ω)f\in\mathbb{H}^{2\rho}(\Omega) for some ρ0\rho\geq 0. Let ββ¯>0\beta\geq\overline{\beta}>0 and uk:=Q(zβ,𝒩q)fu_{k}:=Q^{\mathcal{L}}(z^{-\beta},\mathcal{N}_{\textrm{q}})f denote the approximation computed using stepsize k>0k>0 and 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points. Then, the following estimate holds for all ε0\varepsilon\geq 0 and r[0,β/2]r\in[0,\beta/2]:

uuk2r(Ω)\displaystyle\left\|u-u_{k}\right\|_{\mathbb{H}^{2r}(\Omega)} =E(zβ,𝒩q)f2r(Ω)\displaystyle=\left\|E^{\mathcal{L}}(z^{-\beta},\mathcal{N}_{\textrm{q}})f\right\|_{\mathbb{H}^{2r}(\Omega)}
e[p(σ,θ)ε]β+ρrkf2ρ(Ω)+[exp(γk)+exp(γek𝒩q)]fL2(Ω).\displaystyle\lesssim e^{-\frac{[p(\sigma,\theta)-\varepsilon]\sqrt{\beta+\rho-r}}{\sqrt{k}}}\left\|f\right\|_{\mathbb{H}^{2\rho}(\Omega)}\!+\!\Big{[}\exp(-\frac{\gamma}{k})+\exp(-\gamma e^{k\mathcal{N}_{\textrm{q}}})\Big{]}\left\|f\right\|_{L^{2}(\Omega)}.

For ε>0\varepsilon>0, the implied constant and γ\gamma may depend on ε,r\varepsilon,r, the smallest eigenvalue λ0\lambda_{0} of \mathcal{L}, β¯\overline{\beta}, κ\kappa, θ\theta and σ\sigma. But they are independent of ρ\rho, β\beta, kk, and ff. If ε=0\varepsilon=0, the constants may in addition depend on ρ\rho and β\beta.

Proof.

Let (λj,vj)j=0(\lambda_{j},v_{j})_{j=0}^{\infty} denote the eigenvalues and eigenfunctions of the self-adjoint operator \mathcal{L}. Just as we did in the proof of Corollary 2.7, we plug the eigen-decomposition into the Riesz-Dunford calculus and Definition 2.1 to get for the discretization error:

uuk2r(Ω)2\displaystyle\left\|u-u_{k}\right\|_{\mathbb{H}^{2r}(\Omega)}^{2} =j=0|(1+λjr)12πi𝒞gλjβ(y)𝑑y12πin=𝒩q𝒩qgλjβ(kn)|2|(f,vj)L2(Ω)|2.\displaystyle=\sum_{j=0}^{\infty}{\Big{|}(1+\lambda_{j}^{r})\frac{1}{2\pi i}\int_{\mathcal{C}}{g^{\beta}_{\lambda_{j}}(y)\,dy}-\frac{1}{2\pi i}\sum_{n=-\mathcal{N}_{\textrm{q}}}^{\mathcal{N}_{\textrm{q}}}{g^{\beta}_{\lambda_{j}}(k\,n)}\Big{|}^{2}\left|\big{(}f,v_{j}\big{)}_{L^{2}(\Omega)}\right|^{2}}.

Applying Corollary 3.5 then gives for ρ0\rho\geq 0

uuk2r(Ω)2\displaystyle\left\|u-u_{k}\right\|_{\mathbb{H}^{2r}(\Omega)}^{2} e2[p(σ,θ)ε]β+ρrkj=0λj2ρ|(f,vj)L2(Ω)|2+[eγk+eγek𝒩q]fL2(Ω)2\displaystyle\lesssim e^{-\frac{2[p(\sigma,\theta)-\varepsilon]\sqrt{\beta+\rho-r}}{\sqrt{k}}}\sum_{j=0}^{\infty}{\lambda_{j}^{2\rho}\left|\big{(}f,v_{j}\big{)}_{L^{2}(\Omega)}\right|^{2}}+\big{[}e^{-\frac{\gamma}{k}}+e^{-\gamma e^{k\mathcal{N}_{\textrm{q}}}}\big{]}\left\|f\right\|^{2}_{L^{2}(\Omega)}
e2[p(σ,θ)ε]β+ρrkf2ρ(Ω)2+[eγk+eγek𝒩q]fL2(Ω)2.\displaystyle\lesssim e^{-\frac{2[p(\sigma,\theta)-\varepsilon]\sqrt{\beta+\rho-r}}{\sqrt{k}}}\left\|f\right\|^{2}_{\mathbb{H}^{2\rho}(\Omega)}+\Big{[}e^{-\frac{\gamma}{k}}+e^{-\gamma e^{k\mathcal{N}_{\textrm{q}}}}\Big{]}\left\|f\right\|^{2}_{L^{2}(\Omega)}.\qed
Remark 3.7.

When comparing Corollary 3.6 to the estimates of the standard sinc\operatorname{sinc}-quadrature one might think that the double exponential method is inferior due to the k\sqrt{k} vs kk behavior. This misconception can be cleared up by considering the better decay properties of the double-exponential formula. It allows to choose kln(𝒩q)/𝒩qk\sim\ln(\mathcal{N}_{\textrm{q}})/\mathcal{N}_{\textrm{q}} compared to the standard sinc\operatorname{sinc}-quadrature choice of k𝒩q1/2k\sim\mathcal{N}_{\textrm{q}}^{-1/2} without the cutoff error becoming dominant.

Remark 3.8.

For most of the computation, the convergence rate is determined by the factor p(σ,θ)p(\sigma,\theta) in Corollary 3.5. We observe that for θ=1\theta=1, picking σ=1/2\sigma=1/2 roughly doubles the convergence rate. Similarly, it often appears beneficial to pick larger values of θ\theta. Especially for σ=1\sigma=1, we get an asymptotic rate for θ\theta\to\infty, which the same to the case of σ=1/2\sigma=1/2. But we need to point out that increasing θ\theta means that we have to decrease the value d(θ)d(\theta), which determines the rate in the higher orders terms of the form eγ/ke^{-\gamma/k}, thus leading to those terms dominating in a larger and larger preasymptotic regime. Overall, the method using σ=1/2\sigma=1/2 and setting θ\theta moderately large is expected to give the best convergence rates; cf. Section 5.

The previous corollary shows that in general, the convergence behaves like 𝒪(eγk)\mathcal{O}(e^{-\frac{\gamma}{\sqrt{k}}}). It also shows that, if the function ff in the right-hand side has some additional smoothness, the method automatically detects this and delivers an improved convergence rate. For an even smaller subset of possible right-hand sides, namely those reflected by a Gevery-type class with boundary conditions, this effect can even lead to an improved convergence of the form 𝒪(eγk|ln(k)|)\mathcal{O}(e^{-\frac{\gamma}{{k\left|\ln(k)\right|}}}). Examples for such functions are those only containing a finite number of frequencies when decomposed into the eigenbasis of \mathcal{L}, but also more complex functions such as smooth bump functions with compact support are admissible (see [Rod93, Section 1.4]). The details can be found in the following corollary:

Corollary 3.9.

Let uu be the exact solution to (3.1) and assume that there exist constants Cf,ω,Rf>0C_{f},\omega,R_{f}>0 such that

fρ(Ω)\displaystyle\left\|f\right\|_{\mathbb{H}^{\rho}(\Omega)} CfRfρ(Γ(ρ+1))ω<ρ0.\displaystyle\leq C_{f}\,R_{f}^{\rho}\,\big{(}\Gamma(\rho+1)\big{)}^{\omega}<\infty\qquad\forall\rho\geq 0.

Assume that β>β¯>0\beta>\overline{\beta}>0. Let uk:=Q(zβ,𝒩q)fu_{k}:=Q^{\mathcal{L}}(z^{-\beta},\mathcal{N}_{\textrm{q}})f denote the approximation computed using stepsize k(0,1/2)k\in(0,1/2) and 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points. Then, the following estimate holds:

uukβ(Ω)=E(zβ,𝒩q)β(Ω)\displaystyle\left\|u-u_{k}\right\|_{\mathbb{H}^{\beta}(\Omega)}=\left\|E^{\mathcal{L}}(z^{-\beta},\mathcal{N}_{\textrm{q}})\right\|_{\mathbb{H}^{\beta}(\Omega)} Cfexp(γk|ln(k)|)+Cfexp(γek𝒩q).\displaystyle\lesssim C_{f}\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)}+C_{f}\exp\Big{(}-\gamma e^{k\mathcal{N}_{\textrm{q}}}\Big{)}.

The implied constant and γ\gamma may depend on ω\omega, the smallest eigenvalue λ0\lambda_{0} of \mathcal{L}, κ\kappa, θ\theta, σ\sigma, RfR_{f}, β¯\overline{\beta}, and ω\omega. If ω=0\omega=0, the logarithmic term may be removed.

Proof.

For simplicity of notation, we ignore the cutoff error, i.e., for now consider 𝒩q=\mathcal{N}_{\textrm{q}}=\infty. The cutoff error can either be easily tracked throughout the proof or added at the end, analogously to Corollary 2.7.

We first note, that by Stirling’s formula, we can estimate the derivatives of ff by

fρ(Ω)\displaystyle\left\|f\right\|_{\mathbb{H}^{\rho}(\Omega)} C~fexp(ρ(ωln(ρ)+c2))).\displaystyle\leq\widetilde{C}_{f}\exp\big{(}\rho(\omega\ln(\rho)+c_{2}))\big{)}.

By assumption, we can apply Corollary 3.6 for any ρ0\rho\geq 0. Picking ρ=δkln(k)2\rho=\frac{\delta}{k\ln(k)^{2}} for δ\delta sufficiently small and ε:=p(σ,θ)/2\varepsilon:=p(\sigma,\theta)/2 (because we need ρ\rho-robust error estimates) gives:

uukβ(Ω)\displaystyle\left\|u-u_{k}\right\|_{\mathbb{H}^{\beta}(\Omega)} exp(p(σ,θ)β/2+δk1|ln(k)|22k)f2δkln(k)2(Ω)+eγkfL2(Ω)\displaystyle\lesssim\exp\Big{(}-\frac{p(\sigma,\theta)\sqrt{\beta/2+\delta k^{-1}{\left|\ln(k)\right|}^{-2}}}{2\sqrt{k}}\Big{)}\left\|f\right\|_{\mathbb{H}^{\frac{2\delta}{k\ln(k)^{2}}}(\Omega)}+e^{-\frac{\gamma}{k}}\left\|f\right\|_{L^{2}(\Omega)}
exp(δγk|ln(k)|)Cfexp(2δk|ln(k)|2(ωln(2δk|ln(k)|2)+c2))+eγkfL2(Ω)\displaystyle\lesssim\exp\Bigg{(}\!\!\!-\!\frac{\sqrt{\delta}\gamma^{\prime}}{k\left|\ln(k)\right|}\Bigg{)}C_{f}\exp\Bigg{(}\frac{2\delta}{k\left|\ln(k)\right|^{2}}\Big{(}\omega\ln\Big{(}\frac{2\delta}{k\left|\ln(k)\right|^{2}}\Big{)}+c_{2}\Big{)}\!\!\Bigg{)}+e^{-\frac{\gamma}{k}}\left\|f\right\|_{L^{2}(\Omega)}
exp(δk|ln(k)|(γ2δ|ln(k)|(ωln(2δk|ln(k)|2)+c2))+eγkfL2(Ω).\displaystyle\lesssim\exp\Bigg{(}\!\!\!-\!\frac{\sqrt{\delta}}{k\left|\ln(k)\right|}\Big{(}\gamma^{\prime}-\frac{2\sqrt{\delta}}{\left|\ln(k)\right|}\Big{(}\omega\ln\Big{(}\frac{2\delta}{k\left|\ln(k)\right|^{2}}\Big{)}+c_{2}\Big{)}\!\!\Bigg{)}+e^{-\frac{\gamma}{k}}\left\|f\right\|_{L^{2}(\Omega)}.

Expanding the logrithmic expression, one can then see that for δ\delta small enough (but independent of kk), the second term in the exponent is smaller than γ\gamma^{\prime} and the statement follows. If ω=0\omega=0, we don’t have to compensate the factor eωρln(ρ)e^{\omega\rho\ln(\rho)}, therefore picking ρk1\rho\sim k^{-1} is sufficient and the improved statement follows. ∎

4 The parabolic problem

In this section, we consider a time dependent problem. We fix α,β(0,1]\alpha,\beta\in(0,1] and a final time T>0T>0. Given an initial condition u0L2(Ω)u_{0}\in L^{2}(\Omega) and right-hand side fC([0,T],L2(Ω))f\in C([0,T],L^{2}(\Omega)) we seek u:[0,T]β(Ω)u:[0,T]\to\mathbb{H}^{\beta}(\Omega) satisfying

tαu+βu\displaystyle\partial^{\alpha}_{t}u+\mathcal{L}^{\beta}u =fin Ω×[0,T],u(t)|Ω=0t>0u(0)=u0in Ω.\displaystyle=f\;\,\text{in }\Omega\times[0,T],\qquad u(t)|_{\partial\Omega}=0\;\;\forall t>0\qquad u(0)=u_{0}\;\,\text{in }\Omega. (4.1)

Where tα\partial_{t}^{\alpha} denotes the Caputo fractional derivative. Following [BLP17b], the solution uu can be written using the Mittag-Leffler function eα,μe_{\alpha,\mu} (see (4.4)) as

u(t)\displaystyle u(t) :=eα,1(tαβ)u0+0tτα1eα,α(ταβ)f(tτ)𝑑τ.\displaystyle:=e_{\alpha,1}\big{(}-t^{\alpha}\mathcal{L}^{\beta}\big{)}u_{0}+\int_{0}^{t}{\tau^{\alpha-1}e_{\alpha,\alpha}\big{(}-\tau^{\alpha}\mathcal{L}^{\beta}\big{)}f(t-\tau)\,d\tau}. (4.2)

Here we again use either the spectral or, equivalently, the Riesz-Dunford calculus to define the operators. We discretize this problem by using our double exponential formula. Namely for k>0k>0 and using 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points,

uk(t)\displaystyle u^{k}(t) :=Q(eα,1(tαzβ),𝒩q)+0tτα1Q(eα,α(ταzβ),𝒩q)𝑑τ.\displaystyle:=Q^{\mathcal{L}}\Big{(}e_{\alpha,1}(-t^{\alpha}z^{\beta}),\mathcal{N}_{\textrm{q}}\Big{)}+\int_{0}^{t}{\tau^{\alpha-1}Q^{\mathcal{L}}\Big{(}e_{\alpha,\alpha}(-\tau^{\alpha}z^{\beta}),\mathcal{N}_{\textrm{q}}\Big{)}\,d\tau}. (4.3)

Note that in practice, one would again replace the resolvent by a Galerkin solver and the convolution in time by an appropriate quadrature scheme. We refer to [BLP17b] for a low order approximation scheme and [MR21] for an exponentially convergent scheme based on hphp-finite elements and hphp-quadrature. In order to not overwhelm the presentation of the paper, we again do not consider these types of discretization errors. But the analysis of those can be taken almost verbatim from the references.

4.1 The Mittag Leffler function

The representation (4.2) hints that it is crucial to understand the Mittag-Leffler function if one wants to analyze the time dependent problem (4.1). We follow [KST06, Section 1.8]. For parameters α>0\alpha>0, μ\mu\in\mathbb{R}, the Mittag-Leffler function is an analytic function on \mathbb{C} and given by the power series

eα,μ(z):=n=0znΓ(nα+μ).\displaystyle e_{\alpha,\mu}(z):=\sum_{n=0}^{\infty}{\frac{z^{n}}{\Gamma(n\alpha+\mu)}}. (4.4)

We collect some important properties we will need later on. We start with the following decomposition result, also giving us asymptotic estimates.

Proposition 4.1.

For 0<α<2,μ0<\alpha<2,\mu\in\mathbb{R} and απ2<ζ<απ\frac{\alpha\pi}{2}<\zeta<\alpha\pi, we can decompose the Mittag-Leffler function as

eα,μ(z)\displaystyle e_{\alpha,\mu}(z) =n=1N1Γ(μαn)1zn+Rα,μN(z)for ζ|Argz|π.\displaystyle=-\sum_{n=1}^{N}{\frac{1}{\Gamma(\mu-\alpha n)}\frac{1}{z^{n}}}+R_{\alpha,\mu}^{N}(z)\qquad\text{for }\zeta\leq\left|\operatorname{Arg}{z}\right|\leq\pi. (4.5)

where Rα,μNR_{\alpha,\mu}^{N} is analytic away from zero and satisfies

|Rα,μN(z)|CΓ(αN)|z|(N+1)|z|z0>0\displaystyle\left|R_{\alpha,\mu}^{N}(z)\right|\leq C\,\Gamma(\alpha N)\left|z\right|^{-(N+1)}\qquad\forall\left|z\right|\geq z_{0}>0 (4.6)

for a constant C>0C>0 depending only on z0z_{0} and ζ\zeta.

Proof.

The statement can be found in [KST06, Eqn 1.8.28] where the dependence of the remainder term with on NN is not made explicit. To get the explicit estimate on the remainder, we follow [EMOT81, Section 18.1]. There, it is proven that the remainder can be written as

Rα,μN(z)\displaystyle R_{\alpha,\mu}^{N}(z) =zN12πi𝒞~(1tαz)1t(N+1)αμet𝑑t,\displaystyle=\frac{z^{-N-1}}{2\pi i}\int_{\widetilde{\mathcal{C}}}{\Big{(}1-\frac{t^{\alpha}}{z}\Big{)}^{-1}t^{(N+1)\alpha-\mu}e^{t}\;dt},

where 𝒞~\widetilde{\mathcal{C}} can be taken as two rays {rζ0:r1}\{r\zeta_{0}:\,r\geq 1\}, {rζ0¯:r1}\{r\overline{\zeta_{0}}:\,r\geq 1\} and a small circular arc connecting the two without crossing the negative real axis. ζ0\zeta_{0} is taken in the left half-plane such that the opening angle of 𝒞~\widetilde{\mathcal{C}} is sufficiently large in order to avoid possible poles of the integrand and ensure that the term (1tα/z)1(1-t^{\alpha}/z)^{-1} is uniformly bounded. The stated result then follows easily by comparing the integral under consideration to the definition of the Gamma function. ∎

Setting N=1N=1 in Proposition 4.1 and simple calculation yields the following estimates:

|eα,μ(z)|C1+|z|sfor ζ|Argz|π,s[0,1]\displaystyle\left|e_{\alpha,\mu}(z)\right|\leq\frac{C}{1+\left|z\right|^{-s}}\quad\text{for }\zeta\leq\left|\operatorname{Arg}{z}\right|\leq\pi,\,s\in[0,1] (4.7)

For α=μ=1\alpha=\mu=1, the Mittag-Leffler function e1,1e_{1,1} is the usual exponential function. For the decomposition result, we can skip the terms involving powers znz^{-n} in this case as eze^{z} already decays faster than any polynomial.

Finally, we need a way of computing antiderivatives of the convolution kernel in (4.2).

Proposition 4.2.

For n0n\in\mathbb{N}_{0}, α>0\alpha>0, z{0}z\in\mathbb{C}\setminus\{0\}, λ\lambda\in\mathbb{C}, it holds that

zα1eα,α(λzα)\displaystyle z^{\alpha-1}e_{\alpha,\alpha}(\lambda\,z^{\alpha}) =(z)n(zα+n1eα,α+n(λzα)).\displaystyle=\Big{(}\frac{\partial}{\partial z}\Big{)}^{n}\Big{(}z^{\alpha+n-1}e_{\alpha,\alpha+n}(\lambda\,z^{\alpha})\Big{)}. (4.8)
Proof.

Follows from [KST06, Eqn. 1.10.7] by taking β:=α+n\beta:=\alpha+n. ∎

4.2 Double exponential quadrature for the parabolic problem

The case of finite regularity

In this section, we investigate the convergence of our method in the case that u0u_{0} and ff have finite 2ρ\mathbb{H}^{2\rho}-regularity for some ρ0\rho\geq 0. It will showcase most of the new ingredients needed to go from the elliptic case to the time dependent one while keeping the technicalities to a minimum. The step towards Gevrey-regularity will then mainly consist of carefully retracing the argument and fine-tuning parameters.

Lemma 4.3.

Assume that either α+β<2\alpha+\beta<2 or σ=1\sigma=1 (i.e., the case α=β=1\alpha=\beta=1 and σ=1/2\sigma=1/2 is not allowed). Let u(t):=eα,μ(tαβ)u0u(t):=e_{\alpha,\mu}(-t^{\alpha}\mathcal{L}^{\beta})u_{0} and assume u02ρ(Ω)u_{0}\in\mathbb{H}^{2\rho}(\Omega) for some ρ>0\rho>0. Let uk:=Q(eα,μ(tαzβ),𝒩q)u0u_{k}:=Q^{\mathcal{L}}\big{(}e_{\alpha,\mu}(-t^{\alpha}z^{\beta}),\mathcal{N}_{\textrm{q}}\big{)}u_{0} be the corresponding discretization using stepsize k>0k>0 and 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points.

Then, the following estimate holds for all η1\eta\geq 1 and r[0,β/2]r\in[0,\beta/2]:

u(t)uk(t)2r(Ω)tηα(emin{p(σ,θ)β+ρr,ηγ1}1k+eγk)u02ρ+tα/2exp(γek𝒩q)u0max(2ρ,14)(Ω).\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{2r}(\Omega)}\lesssim t^{-\eta\alpha}\Big{(}e^{-\min{\big{\{}p(\sigma,\theta)\sqrt{\beta+\rho-r},\sqrt{\eta}\,\gamma_{1}\big{\}}}\frac{1}{\sqrt{k}}}+e^{-\frac{\gamma}{k}}\Big{)}\left\|u_{0}\right\|_{\mathbb{H}^{2\rho}}\\ +t^{-\alpha/2}\exp(-\gamma e^{k\mathcal{N}_{\textrm{q}}})\left\|u_{0}\right\|_{\mathbb{H}^{\max(2\rho,\frac{1}{4})}(\Omega)}.

Here γ1\gamma_{1} is the constant from Corollary 2.7. The implied constant and γ\gamma may depend on rr, the smallest eigenvalue λ0\lambda_{0} of \mathcal{L}, β\beta,α\alpha, κ\kappa, θ\theta, σ\sigma and ρ\rho.

Proof.

We start with 𝒩q=\mathcal{N}_{\textrm{q}}=\infty and split the Mittag-Leffler function according to (4.5). We write

E(eα,μ(tαzβ))\displaystyle E^{\mathcal{L}}\Big{(}e_{\alpha,\mu}(-t^{\alpha}z^{\beta})\Big{)} =n=1N(1)ntαnΓ(μαn)E(zβn)+E(Rα,μN(tαzβ)).\displaystyle=\sum_{n=1}^{N}{\frac{(-1)^{n}\,t^{-\alpha n}}{\Gamma(\mu-\alpha n)}E^{\mathcal{L}}(z^{-\beta n})}+E^{\mathcal{L}}\big{(}R^{N}_{\alpha,\mu}(-t^{\alpha}z^{\beta})\big{)}. (4.9)

For the first terms, we apply Lemma 3.6, and for the final term we use the decay estimate (4.5) and Corollary 2.7. Note that this is where we have to exclude the case α=β=1\alpha=\beta=1 and σ=1/2\sigma=1/2. If α<1\alpha<1 the Mittag-Leffler function is contractive on a large enough sector. If β<1\beta<1, the map zzβz\mapsto z^{\beta} maps the required sector into the right half plane. Otherwise, the exponential function only decays in the right half-plane, not any slightly bigger sector. Thus, if σ=1/2\sigma=1/2, Corollary 2.7 does not apply.

Overall, we get the estimate:

E(eα,μ(tαzβ))2r(Ω)\displaystyle\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\mu}(t^{\alpha}z^{\beta})\Big{)}\right\|_{\mathbb{H}^{2r}(\Omega)} n=1N1tαnΓ(μαn)exp(min{p(σ,θ)βn+ρrk,γk})u02ρ(Ω)\displaystyle\lesssim\sum_{n=1}^{N-1}{\frac{t^{-\alpha n}}{\Gamma(\mu-\alpha n)}\exp\Big{(}-\min\Big{\{}\frac{p(\sigma,\theta)\sqrt{\beta n+\rho-r}}{\sqrt{k}},\frac{\gamma}{k}\Big{\}}\Big{)}\left\|u_{0}\right\|_{\mathbb{H}^{2\rho}(\Omega)}}
+Γ(αN)tαNexp(γ1Nk)u0min(ρ,1)(Ω).\displaystyle+\Gamma(\alpha N)t^{-\alpha N}\exp\Big{(}-\gamma_{1}\frac{\sqrt{N}}{\sqrt{k}}\Big{)}\left\|u_{0}\right\|_{\mathbb{H}^{\min(\rho,1)}(\Omega)}.

If η\eta is an integer, we can pick N=ηN=\eta to get the statement for 𝒩q=\mathcal{N}_{\textrm{q}}=\infty. For general η1\eta\geq 1, we can interpolate between η\lfloor\eta\rfloor and η\lceil\eta\rceil. The treatment of the cutoff error follows as in Corollary 2.7, exploiting that eα,μ(z)e_{\alpha,\mu}(z) decays like (4.7) with s:=β/2s:=\beta/2. ∎

Picking η\eta large enough, Lemma 4.3 shows that for fixed times t>0t>0 we get the same convergence rate as for the elliptic problem, though the error deteriorates as tt gets small.

Now that we understand the homogeneous problem, we can look at the case of allowing inhomogeneous right-hand sides ff by using the representation formula (4.2). We point out that naive application of Corollary (3.8) also inside the time-convolution integral would fail to give good rates, as the error may blow up faster than τα\tau^{-\alpha} for small times, leading to a non-integrable function. Instead, we have the following Theorem:

Theorem 4.4.

Assume that either α+β<2\alpha+\beta<2 or σ=1\sigma=1 (i.e., the case α=β=1\alpha=\beta=1 and σ=1/2\sigma=1/2 is not allowed). Let uu be the solution to (4.1). Assume u02ρ(Ω)u_{0}\in\mathbb{H}^{2\rho}(\Omega) for some ρ>0\rho>0, and fCm([0,T],2ρ(Ω))f\in C^{m}([0,T],\mathbb{H}^{2\rho}(\Omega)) for some mm\in\mathbb{N}. Let uku_{k} be the corresponding discretization using stepsize k>0k>0 and 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points as defined in (4.3).

Then, the following estimate holds for all t(0,T)t\in(0,T), r[0,β/2]r\in[0,\beta/2] and any q<1q<1:

u(t)uk(t)2r(Ω)(tm+α(1q)emin{p(σ,θ)β+ρr,γ1m/α+q}k+tmeγ/k+tα/2eγek𝒩q)×(u02ρ(Ω)+j=0mmaxτtf(j)(τ)2ρ(Ω))\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{2r}(\Omega)}\lesssim\Big{(}t^{-m+\alpha(1-q)}e^{-\frac{\min\big{\{}p(\sigma,\theta)\sqrt{\beta+\rho-r},\gamma_{1}\sqrt{m/\alpha+q}\big{\}}}{\sqrt{k}}}+t^{-m}e^{-\gamma/k}+t^{-\alpha/2}e^{-\gamma e^{k\mathcal{N}_{\textrm{q}}}}\Big{)}\\ \times\Big{(}\left\|u_{0}\right\|_{\mathbb{H}^{2\rho}(\Omega)}+\sum_{j=0}^{m}{\max_{\tau\leq t}\|{f^{(j)}(\tau)}\|_{\mathbb{H}^{2\rho}(\Omega)}}\Big{)}

γ1\gamma_{1} is the constant from Corollary 2.7. The impied constant and γ\gamma may depend on qq, rr, TT, the smallest eigenvalue λ0\lambda_{0} of \mathcal{L}, β\beta, α\alpha, κ\kappa, θ\theta, σ\sigma and ρ\rho.

Proof.

As we have already estimated the error of the homogeneous part, we only consider the part corresponding to the inhomogenity, i.e., for now let u0=0u_{0}=0. We integrate by parts mm times, using (4.8):

0tτα1eα,α(ταλβ)f(tτ)𝑑τ=j=1mtα+j1eα,α+j(tαλβ)f(j1)(0)+0tτα+m1eα,α+m(ταλβ)f(m)(tτ)𝑑τ\int_{0}^{t}{\tau^{\alpha-1}e_{\alpha,\alpha}\big{(}-\tau^{\alpha}\lambda^{\beta}\big{)}f(t-\tau)\,d\tau}={\sum_{j=1}^{m}{t^{\alpha+j-1}e_{\alpha,\alpha+j}(-t^{\alpha}\lambda^{\beta})f^{(j-1)}(0)}}\\ +{\int_{0}^{t}{\tau^{\alpha+m-1}e_{\alpha,\alpha+m}\big{(}-\tau^{\alpha}\lambda^{\beta}\big{)}f^{(m)}(t-\tau)\,d\tau}}

Transferring this identity to the operator-valued setting, this means that we can analyze the quadrature error for these terms separately.

u(t)uk(t)2r(Ω)\displaystyle\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{2r}(\Omega)} =0tτα1E(eα,α(ταzβ))f(tτ)𝑑τ2r(Ω)\displaystyle=\Big{\|}\int_{0}^{t}{\tau^{\alpha-1}E^{\mathcal{L}}\Big{(}e_{\alpha,\alpha}\big{(}-\tau^{\alpha}z^{\beta}\big{)}\Big{)}f(t-\tau)\,d\tau}\Big{\|}_{\mathbb{H}^{2r}(\Omega)}
j=1mtα+j1E(eα,α+j(tαzβ))f(j1)(0)2r(Ω)+0tτα+m1E(eα,α+m(ταzβ))f(m)(tτ)2r(Ω)𝑑τ.\displaystyle\leq\begin{multlined}{\sum_{j=1}^{m}{t^{\alpha+j-1}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\alpha+j}(-t^{\alpha}z^{\beta})\Big{)}f^{(j-1)}(0)\right\|_{\mathbb{H}^{2r}(\Omega)}}}\\ +{\int_{0}^{t}{\tau^{\alpha+m-1}\left\|E^{\mathcal{L}}\big{(}e_{\alpha,\alpha+m}\big{(}-\tau^{\alpha}z^{\beta}\big{)}\big{)}f^{(m)}(t-\tau)\right\|_{\mathbb{H}^{2r}(\Omega)}\,d\tau}}.\end{multlined}{\sum_{j=1}^{m}{t^{\alpha+j-1}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\alpha+j}(-t^{\alpha}z^{\beta})\Big{)}f^{(j-1)}(0)\right\|_{\mathbb{H}^{2r}(\Omega)}}}\\ +{\int_{0}^{t}{\tau^{\alpha+m-1}\left\|E^{\mathcal{L}}\big{(}e_{\alpha,\alpha+m}\big{(}-\tau^{\alpha}z^{\beta}\big{)}\big{)}f^{(m)}(t-\tau)\right\|_{\mathbb{H}^{2r}(\Omega)}\,d\tau}}. (4.12)

All the terms appearing are of the structure in Lemma 4.3. Most notably, the first mm terms are evaluated at a fixed t>0t>0 thus we don’t have to analyze them further and can just accept some tt-dependence.

Investigating the remaining integral, we get by using η:=m/α+q\eta:=m/\alpha+q in Lemma 4.3:

0tτα+m1E(eα,α+n(ταzβ))f(m)(tτ)2r(Ω)𝑑τ0tτα+m1mαq[exp(min{p(σ,θ)β+ρr,γ1η}k)+eγk]f(m)(tτ)2ρ(Ω)𝑑τ.\int_{0}^{t}{\tau^{\alpha+m-1}\left\|E^{\mathcal{L}}\big{(}e_{\alpha,\alpha+n}(-\tau^{\alpha}z^{\beta})\big{)}f^{(m)}(t-\tau)\right\|_{\mathbb{H}^{2r}(\Omega)}\,d\tau}\\ \lesssim\int_{0}^{t}{\tau^{\alpha+m-1-m-\alpha q}\Big{[}\!\exp\Big{(}-\frac{\min\{p(\sigma,\theta)\sqrt{\beta+\rho-r},\gamma_{1}\sqrt{\eta}\}}{\sqrt{k}}\Big{)}\!+\!e^{-\frac{\gamma}{k}}\Big{]}\big{\|}{f^{(m)}(t-\tau)}\big{\|}_{\mathbb{H}^{2\rho}(\Omega)}d\tau}.

For q<1q<1, this is an integrable function (with respect to τ\tau). The dominating tt-dependence can be found in the first term of (4.12) and thus the result follows. The cutoff error is treated like before, making use of the decay of eα,αe_{\alpha,\alpha}. ∎

Remark 4.5.

Corollary 4.4 shows that, as long as we assume that ff is smooth enough in time we recover the same convergence rate p(σ,θ)β+ρrp(\sigma,\theta)\sqrt{\beta+\rho-r} as in the homogeneous and elliptic case.

The case of Gevrey-type regularity

If the data not only satisfies some finite regularity estimates but instead is even in some Gevrey-type class of functions, we can again improve the convergence rate, and almost get rid of the square root in the exponent. We go back to the homogeneous problem and assume that k<1/2k<1/2 so that the logarithmic terms can be written down succinctly.

Lemma 4.6.

Assume that either α+β<2\alpha+\beta<2 or σ=1\sigma=1 (i.e., the case α=β=1\alpha=\beta=1 and σ=1/2\sigma=1/2 is not allowed). Let u(t):=eα,μ(tαβ)u0u(t):=e_{\alpha,\mu}(-t^{\alpha}\mathcal{L}^{\beta})u_{0} and assume that there exist constants Cu0,ω,Ru0>0C_{u_{0}},\omega,R_{u_{0}}>0 such that

u0ρ(Ω)\displaystyle\left\|u_{0}\right\|_{\mathbb{H}^{\rho}(\Omega)} Cu0Ru0ρ(Γ(ρ+1))ω<ρ0.\displaystyle\leq C_{u_{0}}\,R_{u_{0}}^{\rho}\,\big{(}\Gamma(\rho+1)\big{)}^{\omega}<\infty\qquad\forall\rho\geq 0.

Let uk(t):=Q(eα,μ(tαzβ),𝒩q)u0u_{k}(t):=Q^{\mathcal{L}}\big{(}e_{\alpha,\mu}(-t^{\alpha}z^{\beta}),\mathcal{N}_{\textrm{q}}\big{)}u_{0} be the discretization of uu using stepsize k(0,1/2)k\in(0,1/2) and 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points. Then, the following estimate holds:

u(t)uk(t)β(Ω)\displaystyle\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{\beta}(\Omega)} Cu0exp(γk|ln(t)||lnk|)+Cu0tα/2exp(γek𝒩q).\displaystyle\lesssim C_{u_{0}}\exp\big{(}-\frac{\gamma}{k\left|\ln(t_{\star})\right|\left|\ln{k}\right|}\big{)}+C_{u_{0}}t^{-\alpha/2}\exp\big{(}-\gamma e^{k\mathcal{N}_{\textrm{q}}}\big{)}.

with t:=min(t,1/2)t_{\star}:=\min(t,1/2). The implied constant and γ\gamma may depend on ε\varepsilon, the smallest eigenvalue λ0\lambda_{0} of \mathcal{L}, β\beta, α\alpha, κ\kappa, θ\theta, σ\sigma, Ru0R_{u_{0}} and ω\omega.

Proof.

We go back to (4.9), but apply Corollary 3.9 to each of the first NN terms, getting:

E(eα,μ(tαzβ))u0β(Ω)Cu0n=1NtαnΓ(μαn)exp(γk|ln(k)|)+Γ(αN)tαNexp(γN2εk)u0L2(Ω).\begin{multlined}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\mu}(-t^{\alpha}z^{\beta})\Big{)}u_{0}\right\|_{\mathbb{H}^{\beta}(\Omega)}\lesssim C_{u_{0}}\sum_{n=1}^{N}{\frac{t^{-\alpha n}}{\Gamma(\mu-\alpha n)}\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)}}\\ +\Gamma(\alpha N)t^{-\alpha N}\exp\Big{(}-\gamma\frac{\sqrt{N-2\varepsilon}}{\sqrt{k}}\Big{)}\left\|u_{0}\right\|_{L^{2}(\Omega)}.\end{multlined}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\mu}(-t^{\alpha}z^{\beta})\Big{)}u_{0}\right\|_{\mathbb{H}^{\beta}(\Omega)}\lesssim C_{u_{0}}\sum_{n=1}^{N}{\frac{t^{-\alpha n}}{\Gamma(\mu-\alpha n)}\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)}}\\ +\Gamma(\alpha N)t^{-\alpha N}\exp\Big{(}-\gamma\frac{\sqrt{N-2\varepsilon}}{\sqrt{k}}\Big{)}\left\|u_{0}\right\|_{L^{2}(\Omega)}. (4.13)

We estimate the first terms by

tαnΓ(μαn)exp(γk|ln(k)|)\displaystyle\frac{t^{-\alpha n}}{\Gamma(\mu-\alpha n)}\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)} exp(αln(t)n+c1nlog(n)γk|ln(k)|).\displaystyle\lesssim\exp\Bigg{(}-\alpha\ln(t)n+c_{1}n\log(n)-\frac{\gamma}{k\left|\ln(k)\right|}\Bigg{)}.

For nδk|ln(t)|2|ln(k)|2n\leq\frac{\delta}{k\left|\ln(t_{\star})\right|^{2}\left|\ln(k)\right|^{2}}, we can estimate the exponent by

1k|ln(t)||ln(k)|[αδ|ln(k)|c1δ|ln(t)||ln(k)|ln(δln(t)2ln(k)2k)+γln(2)]\displaystyle-\frac{1}{k\left|\ln(t_{\star})\right|\left|\ln(k)\right|}\Bigg{[}{-\frac{\alpha\delta}{\left|\ln(k)\right|}}-\frac{c_{1}\delta}{\left|\ln(t_{\star})\right|\left|\ln(k)\right|}\ln\Big{(}\frac{\delta}{\ln(t_{\star})^{2}\ln(k)^{2}k}\Big{)}+\gamma\ln(2)\Bigg{]}

For δ\delta small enough, depending on c1c_{1}, α\alpha and γ\gamma, the term in brackets is uniformly positive (i.e., independently of tt and kk), we can thus estimate for some γ1>0\gamma_{1}>0:

tαnΓ(μαn)exp(γk|ln(k)|)\displaystyle\frac{t^{-\alpha n}}{\Gamma(\mu-\alpha n)}\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)} eγ1k|ln(t)||ln(k)|.\displaystyle\lesssim e^{-\frac{\gamma_{1}}{k\left|\ln(t_{\star})\right|\left|\ln(k)\right|}}.

The remainder term behaves like

tαNΓ(αN)exp(γN2εk)\displaystyle t^{-\alpha N}\Gamma(\alpha N)\exp\Big{(}-\gamma\frac{\sqrt{N-2\varepsilon}}{\sqrt{k}}\Big{)} exp(αNln(t)c2Nln(N)γN2εk).\displaystyle\lesssim\exp\Big{(}-\alpha N\ln(t)-c_{2}N\ln(N)-\gamma\frac{\sqrt{N-2\varepsilon}}{\sqrt{k}}\Big{)}.

By picking N=δk|ln(t)|2|ln(k)|2N=\big{\lceil}{\frac{\delta}{k\left|\ln(t_{\star})\right|^{2}\left|\ln(k)\right|^{2}}}\big{\rceil}, the exponent be bounded up to a constant by

δk|ln(t)||ln(k)|[γδ|ln(k)|c1δ|ln(t)ln(k)|ln(δk|ln(t)|2|ln(k)|2)+γln(2)].\displaystyle-\frac{\sqrt{\delta}}{k\left|\ln(t_{\star})\right|\left|\ln(k)\right|}\Bigg{[}{-\frac{\gamma\sqrt{\delta}}{\left|\ln(k)\right|}-\frac{c_{1}\sqrt{\delta}}{\left|\ln(t_{\star})\ln(k)\right|}\ln\Big{(}\frac{\delta}{k\left|\ln(t_{\star})\right|^{2}\left|\ln(k)\right|^{2}}\Big{)}+\gamma\ln(2)}\Bigg{]}.

By taking the factor δ\delta sufficiently small, we get that the term in brackets stays uniformly positive, which shows

E(eα,μ(tαzβ))β(Ω)\displaystyle\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\mu}(-t^{\alpha}z^{\beta})\Big{)}\right\|_{\mathbb{H}^{\beta}(\Omega)} exp(γ|ln(t)||ln(k)|k).\displaystyle\lesssim\exp\Big{(}{-\frac{\gamma}{\left|\ln(t_{\star})\right|\left|\ln(k)\right|k}}\Big{)}.

The cutoff error can easily be dealt with as in the previous results, as the Mittag-Leffler function satisfies the decay bound (4.7) for s=1/2s=1/2. ∎

Finally, we are in a position to also include the inhomogenity ff into our treatment. Just as in Lemma 4.4, we use integration by parts to decompose the error into parts for positive times and a remainder integral with “nice enough” behavior with respect to τ\tau.

Theorem 4.7.

Assume that either α+β<2\alpha+\beta<2 or σ=1\sigma=1 (i.e., the case α=β=1\alpha=\beta=1 and σ=1/2\sigma=1/2 is not allowed). Let uu be the solution to (4.1), and assume that the data satisfy

u0ρ(Ω)Cu0Ru0ρ(Γ(ρ+1))ω<ρ0f(n)(t)ρ(Ω)CfRfρ+n(Γ(ρ+1))ω(n!)ω<t[0,T],ρ0,n0.\displaystyle\begin{split}\left\|u_{0}\right\|_{\mathbb{H}^{\rho}(\Omega)}&\leq C_{u_{0}}\,R_{u_{0}}^{\rho}\,\big{(}\Gamma(\rho+1)\big{)}^{\omega}<\infty\;\;\qquad\qquad\forall\rho\geq 0\\ \big{\|}{f^{(n)}(t)}\big{\|}_{\mathbb{H}^{\rho}(\Omega)}&\leq C_{f}\;R_{f}^{\rho+n}\,\big{(}\Gamma(\rho+1)\big{)}^{\omega}\big{(}n!\big{)}^{\omega}<\infty\qquad\forall t\in[0,T],\;\forall\rho\geq 0,\;\forall n\in\mathbb{N}_{0}.\end{split} (4.14)

Let uku_{k} be the corresponding discretization using stepsize k(0,1/2)k\in(0,1/2) and 𝒩q\mathcal{N}_{\textrm{q}}\in\mathbb{N} quadrature points as defined in (4.3). Then, the following estimate holds:

u(t)uk(t)β(Ω)\displaystyle\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{\beta}(\Omega)} (1+t)exp(γk|lnt||lnk|)+(t+tγ/2)exp(γek𝒩q)\displaystyle\lesssim(1+t)\exp\Big{(}-\frac{\gamma}{k\left|\ln{t_{\star}}\right|\left|\ln{k}\right|}\Big{)}+\big{(}t+t^{-\gamma/2}\big{)}\exp\big{(}-\gamma e^{k\mathcal{N}_{\textrm{q}}}\big{)}

with t:=min(t,1/2)t_{\star}:=\min(t,1/2). The implied constant and γ\gamma may depend on the smallest eigenvalue λ0\lambda_{0} of \mathcal{L}, β\beta, θ\theta, σ\sigma and the constants from (4.14).

Proof.

We again work under the assumption u0=0u_{0}=0 and focus on the error when dealing with the inhomogenity ff alone and also start with 𝒩q=\mathcal{N}_{\textrm{q}}=\infty. We also for now take t1t\leq 1.

Going back to (4.12) we get for N0N\in\mathbb{N}_{0} to be fixed later

u(t)uk(t)2r(Ω)j=1Ntα+j1E(eα,α+N(tαzβ))f(j1)(0)β(Ω)+0tτα+N1E(eα,α+n(ταzβ))f(N)(tτ)β(Ω)𝑑τ.\begin{multlined}\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{2r}(\Omega)}\leq{\sum_{j=1}^{N}{t^{\alpha+j-1}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\alpha+N}(-t^{\alpha}z^{\beta})\Big{)}f^{(j-1)}(0)\right\|_{\mathbb{H}^{\beta}(\Omega)}}}\\ +{\int_{0}^{t}{\tau^{\alpha+N-1}\left\|E^{\mathcal{L}}\big{(}e_{\alpha,\alpha+n}\big{(}-\tau^{\alpha}z^{\beta}\big{)}\big{)}f^{(N)}(t-\tau)\right\|_{\mathbb{H}^{\beta}(\Omega)}\,d\tau}}.\end{multlined}\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{2r}(\Omega)}\leq{\sum_{j=1}^{N}{t^{\alpha+j-1}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\alpha+N}(-t^{\alpha}z^{\beta})\Big{)}f^{(j-1)}(0)\right\|_{\mathbb{H}^{\beta}(\Omega)}}}\\ +{\int_{0}^{t}{\tau^{\alpha+N-1}\left\|E^{\mathcal{L}}\big{(}e_{\alpha,\alpha+n}\big{(}-\tau^{\alpha}z^{\beta}\big{)}\big{)}f^{(N)}(t-\tau)\right\|_{\mathbb{H}^{\beta}(\Omega)}\,d\tau}}. (4.15)

For the first terms, we apply Lemma 4.6 to get exponential convergence, as long as f(j)f^{(j)} is in the right Gevrey-type class. Namely, we note that we can estimate

f(n)(t)2ρ(Ω)eω~Nln(N)eω~ρln(ρ)\displaystyle\left\|{f}^{(n)}(t)\right\|_{\mathbb{H}^{2\rho}(\Omega)}\lesssim e^{\widetilde{\omega}N\ln(N)}e^{\widetilde{\omega}\rho\ln(\rho)}

by possibly tweaking ω~\widetilde{\omega} compared to ω\omega. This allows us to estimate

j=1Ntα+j1E(eα,α+j(tαzβ))f(j1)(0)2r(Ω)\displaystyle{\sum_{j=1}^{N}{t^{\alpha+j-1}\left\|E^{\mathcal{L}}\Big{(}e_{\alpha,\alpha+j}(-t^{\alpha}z^{\beta})\Big{)}f^{(j-1)}(0)\right\|_{\mathbb{H}^{2r}(\Omega)}}} eω~Nln(N)eγ|ln(t)||ln(k)|k.\displaystyle\lesssim e^{\widetilde{\omega}N\ln(N)}e^{-\frac{\gamma}{\left|\ln(t_{\star})\right|\left|\ln(k)\right|k}}. (4.16)

Again restricting ω~\widetilde{\omega} to absorb the factor NN due to the summation.

For the remainder in (4.15), we look at the pointwise error at fixed 0<τ<t0<\tau<t, shortening f~(N):=f(N)(tτ)\widetilde{f}^{(N)}:=f^{(N)}(t-\tau). Going back to (4.13), we can use the additional powers of tt to get rid of the ln(t)\ln(t) term in the exponential:

τα+N1E(eα,α+n(ταzβ))f~(N)β(Ω)\displaystyle\tau^{\alpha+N-1}\left\|E^{\mathcal{L}}\big{(}e_{\alpha,\alpha+n}\big{(}-\tau^{\alpha}z^{\beta}\big{)}\big{)}\widetilde{f}^{(N)}\right\|_{\mathbb{H}^{\beta}(\Omega)} n=1N1Cfeω~Nln(N)τα(n1)+N1Γ(μαn)exp(γk|ln(k)|)\displaystyle\lesssim\sum_{n=1}^{N-1}{C_{f}e^{\widetilde{\omega}N\ln(N)}\frac{\tau^{-\alpha(n-1)+N-1}}{\Gamma(\mu-\alpha n)}\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)}}
+Γ(αN)τ(1α)(N1)Cfeω~Nln(N)exp(γN2εk).\displaystyle+\Gamma(\alpha N)\tau^{(1-\alpha)(N-1)}C_{f}e^{\widetilde{\omega}N\ln(N)}\exp\Big{(}-\gamma\frac{\sqrt{N-2\varepsilon}}{\sqrt{k}}\Big{)}.

We then proceed as in the proof of Lemma 4.6, noting that since the τ\tau-dependent terms can be bounded independently of NN we can get by without the ln(t)\ln(t_{\star})-term in the exponent. Overall, we get by tuning Nδ/(|ln(k)|2k)N\sim\delta/(\left|\ln(k)\right|^{2}k) (also in (4.16)) appropriately:

u(t)uk(t)2r(Ω)\displaystyle\left\|u(t)-u_{k}(t)\right\|_{\mathbb{H}^{2r}(\Omega)} exp(γk|ln(t)||ln(k)|)+0texp(γk|ln(k)|)𝑑τ.\displaystyle\lesssim\exp\Big{(}-\frac{\gamma}{k\left|\ln(t_{\star})\right|\left|\ln(k)\right|}\Big{)}+\int_{0}^{t}{\exp\Big{(}-\frac{\gamma}{k\left|\ln(k)\right|}\Big{)}\,d\tau}.

which easily gives the stated result. If t>1t>1, we can skip the integration by parts step for the integration over (1,t)(1,t) and directly apply Lemma 4.6. The cutoff error is treated as always. ∎

5 Numerical examples

In this section, we investigate, whether the theoretical results obtained in Sections 3 and 4 can also be observed in practice. We compare the following quadrature schemes:

  1. (i)

    DE1: double exponential quadrature using σ=1/2\sigma=1/2 and θ=4\theta=4,

  2. (ii)

    DE2: double exponential quadrature using σ=1\sigma=1 and θ=4\theta=4,

  3. (iii)

    DE3: double exponential quadrature using σ=1\sigma=1 and θ=1\theta=1,

  4. (iv)

    sinc: standard sinc quadrature

  5. (v)

    Balakrishnan: a quadrature scheme based on the Balakrishnan formula

For the double exponential quadrature schemes, we used k=0.9ln(𝒩q)/𝒩qk=0.9\ln(\mathcal{N}_{\textrm{q}})/\mathcal{N}_{\textrm{q}}. This makes the cutoff error decay like e𝒩q0.9e^{-\mathcal{N}_{\textrm{q}}^{0.9}}, which is sufficiently fast to not impact the overall convergence rate. The factor 0.90.9 was observed to have some slightly improved stability compared to 11.

For the standard sinc-quadrature, the proper tuning of kk and 𝒩q\mathcal{N}_{\textrm{q}} is more involved. Following [BLP17b], we picked k=2πdβ𝒩qk=\sqrt{\frac{2\pi d}{\beta\mathcal{N}_{\textrm{q}}}} with d=π/5d=\pi/5. The Balakrishnan formula is only possible for the elliptic problem. It is described in detail in [BLP19]. Following [BLP19, Remark 3.1] we used

k:=π21.8βNM:=π22(1β)k2,\displaystyle k:=\sqrt{\frac{\pi^{2}}{1.8\beta N}}\qquad M:=\left\lceil\frac{\pi^{2}}{2(1-\beta)k^{2}}\right\rceil,

where MM is the number of negative quadrature points. This corresponds (in their notation) to taking s+:=β/10s^{+}:=\beta/10, which was taken because it yielded good results.

5.1 The pure quadrature problem

In this section, we focus on a scalar quadrature problem. Namely, we investigate how well our quadrature scheme can approximately evaluate the following functions using the Riesz-Dunford calculus (a) zβz^{-\beta} and (b) eα,1(tαzβ)e_{\alpha,1}(-t^{\alpha}z^{\beta}) at different values λ(4,)\lambda\in(4,\infty). This is equivalent to solving the elliptic and parabolic problem with data consisting of a single eigenfunction corresponding to the eigenvalue λ\lambda. Throughout, we used κ:=3\kappa:=3. Theoretical investigations revealed, that the quadrature error is largest at ln(λ)k1/2\ln(\lambda)\sim k^{-1/2} (see the proof of Corollary 3.5). Therefore, we make sure that for each kk under consideration, such a value of e1ke^{\frac{1}{\sqrt{k}}} is among the λ\lambda-values sampled. More precisely, the sample points consist of

𝒩q=1Nmax{5+exp(2β/k(𝒩q))}{5+exp(β/k(𝒩q))}with k(𝒩q)=0.9ln(𝒩q)/𝒩q,\displaystyle\bigcup_{\mathcal{N}_{\textrm{q}}=1}^{N_{\max}}\big{\{}5+\exp\big{(}2\sqrt{\beta/k(\mathcal{N}_{\textrm{q}})}\big{)}\big{\}}\cup\big{\{}5+\exp(\beta/k(\mathcal{N}_{\textrm{q}}))\big{\}}\qquad\text{with }\qquad k(\mathcal{N}_{\textrm{q}})=0.9\ln(\mathcal{N}_{\textrm{q}})/\mathcal{N}_{\textrm{q}},

and we consider the maximum error over all these samples. We used t:=1t:=1 for all experiments.

Refer to caption
(a) f(z)=z0.6f(z)=z^{-0.6}.
Refer to caption
(b) f(z)=z1f(z)=z^{-1}.
Refer to caption
(c) eα,1(zβ)e_{\alpha,1}(-z^{\beta}), with α=0.25\alpha=0.25, β=0.4\beta=0.4.
Refer to caption
(d) eα,1(zβ)e_{\alpha,1}(-z^{\beta}), with α=1\alpha=1, β=1\beta=1.
Figure 5.1: Comparison of quadrature schemes – scalar problem

We observe that for the most part, choosing σ=1/2\sigma=1/2 and θ\theta moderately large gives the best result. This agrees with our theoretical findings. This method fails to converge though if α=β=1\alpha=\beta=1 is chosen as the parameters for the Mittag-Leffler function. This also agrees with the theory, because in this case, ψσ,θ\psi_{\sigma,\theta} fails to map into the domain where eα,μe_{\alpha,\mu} is decaying (see (4.7)). This shows that the restriction on σ\sigma in the theorems of Section 4 is necessary. If we only consider the elliptic problem, no such restriction is necessary, as the decay property is valid on all of the complex plane. All the other methods perform well in all of the cases. The straight-forward double exponential formula, i.e. σ=θ=1\sigma=\theta=1, is often outperformed by the simple sinc quadrature scheme, (except in the α=β=1\alpha=\beta=1 case of the exponential). For comparison, we’ve included the (rounded) predicted rate for the DE1 scheme in the plots. We observe that for several applications our estimates appear sharp. For f(z)=z1f(z)=z^{-1} the scheme outperforms the prediction, but this might be due to a large preasymptotic regime. We note that for ezβe^{-z^{\beta}}, we expect better estimates than the ones presented in this article to be possible due to the exponential decay. This is also true for the standard sinc methods, see [BLP17a].

Second, we look at the case of a single frequency λ\lambda and see how the convergence rate decays as λ\lambda\to\infty. In order to better see the λ\lambda-dependence of the quadrature error, we consider the relative error of the quadrature, i.e., we look at Eλ(zβ)/λβE^{\lambda}(z^{-\beta})/\lambda^{-\beta} for β=0.5\beta=0.5. The theory from Theorem 3.4 predicts behavior of the form eγln(λ)ke^{-\frac{\gamma}{\ln(\lambda)k}}, i.e., the rate drops like ln(λ)\ln(\lambda). In Figure 5.2, we can see this behavior quite well. In comparison, using standard sinc\operatorname{sinc} quadrature gives a λ\lambda-robust asymptotic rate, but only of order 𝒩q\sqrt{\mathcal{N}_{\textrm{q}}}.

0200200400400101810^{-18}101210^{-12}10610^{-6}10010^{0}NNrelative quadrature errorDE1, i.e. σ=0.5\sigma=0.5, θ=4\theta=4 0200200400400101810^{-18}101210^{-12}10610^{-6}10010^{0}NNDE3, i.e. σ=1\sigma=1, θ=1\theta=1 0200200400400101010^{-10}10710^{-7}10410^{-4}10110^{-1}NNstandard sinc
5.2
Figure 5.2: Comparison of λ\lambda dependence for different quadrature schemes

5.2 A 2d example

In order to confirm our theoretical findings in a more complex setting, we now look at a 2d model problem with more realistic data than a single eigenfunction. Namely we consider the unit square Ω=(0,1)2\Omega=(0,1)^{2}. We focus on two cases: first we look at what happens if the initial condition does not satisfy any compatibility condition, i.e., u02ρ(Ω)u_{0}\notin\mathbb{H}^{2\rho}(\Omega) for ρ1/4\rho\geq 1/4. The second example is then taken such that the data is (almost) in the Gevrey-type class as required by Corollary 3.9 and Theorem 4.7. The inhomogenity in time is taken as f(t):=sin(t)u0f(t):=\sin(t)u_{0}, thus possessing analogous regularity properties. We computed the function at t=0.1t=0.1.

For the discretization in space and of the convolution in time of (4.2), we consider the scheme presented in [MR21]. It is based on hphp-finite elements for the Galerkin solver and a hphp-quadrature on a geometric grid in time for the convolution. As it is shown there, such a scheme delivers exponential convergence with respect to the polynomial degree and the number of quadrature points. Since we are not interested in these kinds of discretization errors, we fixed these discretization parameters in order to give good accuracy and only focus on the error due to discretizing the functional calculus.

Since the exact solution is not available, we computed a reference solution with high accuracy and compared our other approximations to it. The reference solution is computed by the DE1 scheme (as it outperformed the others) by using 8 additional quadrature points to the finest approximation present in the graph. As the DE1 scheme has finished convergence at this point, we can expect this to be a good approximation.

We start with the parabolic problem. The initial condition is given by

u0(x,y):=ω1exp((x0.5)2ω)exp((y0.5)2ω).u_{0}(x,y):=\omega^{-1}\exp\Big{(}-\frac{(x-0.5)^{2}}{\omega}\Big{)}\exp\Big{(}-\frac{(y-0.5)^{2}}{\omega}\Big{)}.

For ω:=1\omega:=1, this function does not vanish near the boundary of Ω\Omega and therefore only satisfies u01/2ε(Ω)u_{0}\in\mathbb{H}^{1/2-\varepsilon}(\Omega). We are in the setting of Lemma 4.4. By inserting ρ=1/4\rho=1/4 (up to ε\varepsilon) and r=0r=0, the predicted rates for DE1 and DE2 are roughly e6.13ke^{-\frac{6.13}{\sqrt{k}}} and e5.62ke^{-\frac{5.62}{k}} respectively. Figure 3(a) contains our findings. We observe that all methods converge with exponential rate proportional to 𝒩q\sqrt{\mathcal{N}_{\textrm{q}}}. The double exponential formulas outperforming the standard sinc\operatorname{sinc} quadrature. We also observe that picking σ1\sigma\neq 1 and θ1\theta\neq 1 can greatly improve the convergence. The best results being delivered by DE1, i.e. σ=1/2\sigma=1/2 and θ=4\theta=4. For DE1 and DE2, we observe that for a large part of the computation, the scheme outperforms the predicted asymptotic rate, but for DE2, the rate appears sharp for large values of 𝒩q\mathcal{N}_{\textrm{q}}.

As a second example, we used ω=0.01\omega=0.01. This function is almost equal to 0 in a vicinity of the boundary of Ω\Omega. Thus we may hope to achieve the improved convergence rate of Theorem 4.7. Figure 3(b) shows that it is plausible that the exponential rate of order 𝒩q\mathcal{N}_{\textrm{q}} is achieved, although the difference is hard to make out. What can be said is that all the double exponential schemes greatly outperform the standard sinc\operatorname{sinc} quadrature. The best results are again achieved by DE1, which also greatly outperforms the predicted rate for the non-smooth case.

Refer to caption
(a) incompatible data
Refer to caption
(b) compatible data
Figure 5.3: Comparison of quadrature schemes for 2d in-stationary example; α=1/2\alpha=1/\sqrt{2}, β=0.7\beta=0.7.

We also looked at the convergence for the elliptic problem. In this class, we also included the method based on the Balakrishnan formula. As a model problem we again used the unit square. We chose f=1f=1 as the constant function and β:=0.4\beta:=0.4. We again observe that with θ=4\theta=4 and σ{0.5,1}\sigma\in\{0.5,1\}, the double exponential formulas significantly outperform the standard sinc\operatorname{sinc} based strategies, where σ=0.5\sigma=0.5 again delivers the best performance. The predicted rates for DE1 and DE2 in this case are e4.7ke^{-\frac{4.7}{\sqrt{k}}} and e5.1ke^{-\frac{5.1}{\sqrt{k}}} respectively. We observe that asymptotically our estimates appear sharp, but with a large range of values, for which the scheme outperforms the predictions.

Refer to caption
Figure 5.4: The elliptic problem in 2d, β:=0.4\beta:=0.4

References

  • [AB17a] G. Acosta and J. P. Borthagaray. A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal., 55(2):472–495, 2017.
  • [AB17b] H. Antil and S. Bartels. Spectral approximation of fractional PDEs in image processing and phase field modeling. Comput. Methods Appl. Math., 17(4):661–678, 2017.
  • [ABH19] G. Acosta, J. P. Borthagaray, and N. Heuer. Finite element approximations of the nonhomogeneous fractional Dirichlet problem. IMA J. Numer. Anal., 39(3):1471–1501, 2019.
  • [BBN+18] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J. Salgado. Numerical methods for fractional diffusion. Comput. Vis. Sci., 19(5-6):19–46, 2018.
  • [BLP17a] A. Bonito, W. Lei, and J. E. Pasciak. The approximation of parabolic equations involving fractional powers of elliptic operators. J. Comput. Appl. Math., 315:32–48, 2017.
  • [BLP17b] A. Bonito, W. Lei, and J. E. Pasciak. Numerical Approximation of Space-Time Fractional Parabolic Equations. Comput. Methods Appl. Math., 17(4):679–705, 2017.
  • [BLP19] A. Bonito, W. Lei, and J. E. Pasciak. On sinc quadrature approximations of fractional powers of regularly accretive operators. J. Numer. Math., 27(2):57–68, 2019.
  • [BMN+18] L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otárola, A. J. Salgado, and C. Schwab. Tensor FEM for Spectral Fractional Diffusion. Foundations of Computational Mathematics, Oct 2018.
  • [BP15] A. Bonito and J. E. Pasciak. Numerical approximation of fractional powers of elliptic operators. Math. Comp., 84(295):2083–2110, 2015.
  • [BV16] C. Bucur and E. Valdinoci. Nonlocal diffusion and applications, volume 20 of Lecture Notes of the Unione Matematica Italiana. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016.
  • [EMOT81] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher transcendental functions. Vol. III. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, Reprint of the 1955 original.
  • [GH15] P. Gatto and J. S. Hesthaven. Numerical approximation of the fractional laplacian via hphp-finite elements, with an application to image denoising. Journal of Scientific Computing, 65(1):249–270, Oct 2015.
  • [GO08] G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. Multiscale Model. Simul., 7(3):1005–1028, 2008.
  • [KR19] B. Kaltenbacher and W. Rundell. Regularization of a backward parabolic equation by fractional operators. Inverse Probl. Imaging, 13(2):401–430, 2019.
  • [KST06] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, 2006.
  • [LB92] J. Lund and K. L. Bowers. Sinc methods for quadrature and differential equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  • [LPGea20] A. Lischke, G. Pang, M. Gulian, and et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys., 404:109009, 62, 2020.
  • [MMR20] J. Markus Melenk and A. Rieder. hp-FEM for the fractional heat equation. IMA Journal of Numerical Analysis, 04 2020. drz054.
  • [Mor91] M. Mori. Developments in the double exponential formulas for numerical integration. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 1585–1594. Math. Soc. Japan, Tokyo, 1991.
  • [MPSV18] D. Meidner, J. Pfefferer, K. Schürholz, and B. Vexler. hphp-finite elements for fractional diffusion, 2018.
  • [MR21] J. M. Melenk and A. Rieder. An exponentially convergent discretization for space-time fractional parabolic equations using hphp-fem. in preparation, 2021.
  • [NOS15a] R. H. Nochetto, E. Otárola, and A. J. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math., 15(3):733–791, 2015.
  • [NOS15b] R. H. Nochetto, E. Otárola, and A. J. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math., 15(3):733–791, 2015.
  • [NOS16] R. H. Nochetto, E. Otárola, and A. J. Salgado. A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal., 54(2):848–873, 2016.
  • [Rod93] L. Rodino. Linear partial differential operators in Gevrey spaces. World Scientific Publishing Co., Inc., River Edge, NJ, 1993.
  • [Ste93] F. Stenger. Numerical methods based on sinc and analytic functions, volume 20 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1993.
  • [SZB+18] H. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen. A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation, 64:213 – 231, 2018.
  • [TM74] H. Takahasi and M. Mori. Double exponential formulas for numerical integration. Publ. Res. Inst. Math. Sci., 9:721–741, 1973/74.
  • [V1́7] J. L. Vázquez. The mathematical theories of diffusion: nonlinear and fractional diffusion. In Nonlocal and nonlinear diffusions and interactions: new methods and directions, volume 2186 of Lecture Notes in Math., pages 205–278. Springer, Cham, 2017.

Appendix A Properties of the coordinate transform ψσ,θ\psi_{\sigma,\theta}

In this appendix, we study the transformation ψσ,θ\psi_{\sigma,\theta} in detail, as it is crucial to understand the double exponential quadrature scheme. Since this transformation is itself defined in a two-part way, we introduce the following nomenclature.

Definition A.1.

We call the complex plane on which ψσ,θ\psi_{\sigma,\theta} is defined the yy-plane, mainly using the parameter yy for its points. The main subset of interest there is the strip Dd(θ)D_{d(\theta)}.

Using the function yπ2sinh(y)y\mapsto\frac{\pi}{2}\sinh(y), the yy-plane is mapped to the ww-plane. The most interesting set is the image of Dd(θ)D_{d(\theta)} under this deformation, denoted by Hθ:={π2sinh(y),yDd(θ)}H_{\theta}:=\big{\{}\frac{\pi}{2}\sinh(y),y\in D_{d(\theta)}\big{\}} (named due to its hyperbola shape).

Finally, using the function φσ,θ(w):=κ[cosh(σw)+iθsinh(w)]\varphi_{\sigma,\theta}(w):=\kappa[\cosh(\sigma w)+i\theta\sinh(w)], mapping HθH_{\theta}\to\mathbb{C}, we arrive at the zz-plane which corresponds to the range of ψσ,θ\psi_{\sigma,\theta}, and the domain of the functions used for the Riesz-Dunford calculus. The situation is summarized in Figure A.1.

If we talk about generic complex numbers without relation to any of the specific planes, we use the letter ζ\zeta instead.

Refer to caption
Figure A.1: Illustration of the different planes involved in the mapping ψσ,θ\psi_{\sigma,\theta}

We start out with some basic properties of sinh\sinh.

Lemma A.2.

The map yπ2sinh(y)y\mapsto\frac{\pi}{2}\sinh(y) has the following properties:

  1. (i)

    It is a bijective mapping Dd(θ)HθD_{d(\theta)}\to H_{\theta}, see Figure A.1.

  2. (ii)

    For |Re(ζ)|ζ0>0\left|\operatorname{Re}(\zeta)\right|\geq\zeta_{0}>0, there exist constants c1,c2>0c_{1},c_{2}>0 depending only on ζ0\zeta_{0} such that

    c1|sinh(ζ)||cosh(ζ)|c2|sinh(ζ)|.c_{1}\left|\sinh(\zeta)\right|\leq\left|\cosh(\zeta)\right|\leq c_{2}\left|\sinh(\zeta)\right|.
  3. (iii)

    For any δ<π/2\delta<\pi/2, sinh\sinh maps the domain DδexpD^{\mathrm{exp}}_{\delta}, as defined in (2.2), to a strip of size δ\delta, i.e.,

    |Im(sinh(y))|δyDδexp.\displaystyle\left|\operatorname{Im}(\sinh(y))\right|\leq\delta\qquad\forall y\in D^{\mathrm{exp}}_{\delta}. (A.1)
Proof.

Ad (i): It is well known that sinh\sinh is injective for |Im(y)|<π/2\left|\operatorname{Im}(y)\right|<\pi/2. Since HθH_{\theta} is defined as the range of the map this is sufficient. Part (ii) is an easy consequence of the fact that sinh\sinh and cosh\cosh have the same asymptotic behavior for Re(ζ)\operatorname{Re}(\zeta)\to\infty. To see (iii), we estimate for yDδexpy\in D^{\mathrm{exp}}_{\delta}:

|Im(sinh(y))|\displaystyle\left|\operatorname{Im}(\sinh(y))\right| =cosh(Re(y))|sin(Im(y))|δcosh(Re(y))e|Re(y)|δ.\displaystyle=\cosh(\operatorname{Re}(y))\left|\sin(\operatorname{Im}(y))\right|\leq\delta\,\cosh(\operatorname{Re}(y))e^{-\left|\operatorname{Re}(y)\right|}\leq\delta.\qed
Lemma A.3.

ψσ,θ\psi_{\sigma,\theta} is analytic on the infinite strip Dd(θ)D_{d(\theta)}. For d(θ)d(\theta) sufficiently small, both ψσ,θ\psi_{\sigma,\theta} and ψσ,θ\psi_{\sigma,\theta}^{\prime} are non-vanishing on Dd(θ)D_{d(\theta)}.

Proof.

The analyticity of ψσ,θ\psi_{\sigma,\theta} is clear. In order to analyze the roots, we first rewrite for w=a+ibw=a+ib, separating the real and imaginary parts:

cosh(σw)+iθsinh(w)\displaystyle\cosh(\sigma w)+i\theta\sinh(w) =(cosh(σa)cos(σb)θcosh(a)sin(b))\displaystyle=\Big{(}\cosh(\sigma a)\cos(\sigma b)-\theta\cosh(a)\sin(b)\Big{)} (A.2)
+i(sinh(σa)sin(σb)+θsinh(a)cos(b)).\displaystyle+i\Big{(}\sinh(\sigma a)\sin(\sigma b)+\theta\sinh(a)\cos(b)\Big{)}.

We first focus on the case σ=𝟏\mathbf{\boldsymbol{\sigma}=1}. In this case,  (A.2) shows that any root yy of ψσ,θ\psi_{\sigma,\theta} must satisfy for w:=π2sinh(y)=:a+biw:=\frac{\pi}{2}\sinh(y)=:a+bi:

cosh(a)(cos(b)θsin(b))\displaystyle\cosh(a)\Big{(}\cos(b)-\theta\sin(b)\Big{)} =0 and sinh(a)(θcos(b)+sin(b))=0.\displaystyle=0\quad\text{ and }\quad\sinh(a)\Big{(}\theta\cos(b)+\sin(b)\Big{)}=0.

Since cosh\cosh has no roots, we get cos(b)=θsin(b)\cos(b)=\theta\sin(b). As cos(b)=θsin(b)\cos(b)=\theta\sin(b) and θcos(b)=sin(b)\theta\cos(b)=-\sin(b) is impossible at the same time, we get that a=0a=0 and b=tan1(1/θ)+πb=\tan^{-1}(1/\theta)+\ell\pi for some \ell\in\mathbb{Z}.

It remains to show that π2sinh(y)\frac{\pi}{2}\sinh(y) does not map to these points. Looking at the real part of sinh(y)\sinh(y) we immediately deduce that if Im(y)(π/2,π/2)\operatorname{Im}(y)\in(-\pi/2,\pi/2), in order to produce a purely imaginary result, it must hold that Re(y)=0\operatorname{Re}(y)=0. For the imaginary part, we then get the equation:

sin(Im(y))=2+2tan1(1/θ)πfor some \sin(\operatorname{Im}(y))=2\ell+\frac{2\tan^{-1}(1/\theta)}{\pi}\quad\text{for some $\ell\in\mathbb{Z}$}

which is not possible for |Im(y)|d(θ)<sin1(2tan1(1/θ)π)\left|\operatorname{Im}(y)\right|\leq d(\theta)<\sin^{-1}(\frac{2\tan^{-1}(1/\theta)}{\pi}). Next, we show that ψσ,θ\psi_{\sigma,\theta}^{\prime} also does not vanish. A simple calculation shows

ψ1,θ(y)=iθψ1,1θ(y)π2cosh(y).\displaystyle\psi_{1,\theta}^{\prime}(y)=i\theta\,\psi_{1,\frac{1}{\theta}}(-y)\frac{\pi}{2}\cosh(y). (A.3)

Since the restriction θ1\theta\geq 1 was not crucial for the proof, ψ1,1θ\psi_{1,\frac{1}{\theta}} and cosh\cosh have no roots in the symmetric (w.r.t. sign flip) domain Dd(θ)D_{d(\theta)}. This shows that ψ1,θ\psi_{1,\theta}^{\prime} also is non-vanishing.

The case σ=𝟏/𝟐\mathbf{\boldsymbol{\sigma}=1/2} is similar, but a little more involved. We first show that all zeros of cosh(σw)+iθsinh(w)\cosh(\sigma w)+i\theta\sinh(w) satisfy Re(w)=0\operatorname{Re}(w)=0 and |Im(w)|>w0>0\left|\operatorname{Im}(w)\right|>w_{0}>0 for a constant w0w_{0} depending only on θ\theta. If cosh(w/2)0\cosh(w/2)\neq 0 we can use the double angle formula for sinh\sinh to get

0=cosh(w/2)(1+2θisinh(w/2)) which implies sinh(w/2)=i2θ.\displaystyle 0=\cosh(w/2)\big{(}1+2\theta i\sinh(w/2)\big{)}\qquad\text{ which implies }\qquad\sinh(w/2)=\frac{i}{2\theta}.

Splitting into real and imaginary part, we get for w=a+ibw=a+ib:

sinh(a/2)cos(b/2)=0and cosh(a/2)sin(b/2)=12θ.\displaystyle\sinh(a/2)\cos(b/2)=0\qquad\text{and }\qquad\cosh(a/2)\sin(b/2)=\frac{1}{2\theta}.

If a0a\neq 0, we get that cos(b/2)=0\cos(b/2)=0 and thus sin(b/2)=±1\sin(b/2)=\pm 1. This would imply that |cosh(a/2)|=12θ<1/2\left|\cosh(a/2)\right|=\frac{1}{2\theta}<1/2 which is a contradiction. If a=0a=0, we get that

|b|2|sin1(12θ)|>0.\left|b\right|\geq 2\big{|}{\sin^{-1}\Big{(}\frac{1}{2\theta}\Big{)}}\big{|}>0.

Similarly, one can argue if cosh(w/2)=0\cosh(w/2)=0, that a=0a=0 and b=π(2+1)b=\pi(2\ell+1). We then proceed just like in the case σ=1\sigma=1 to conclude that π2sinh\frac{\pi}{2}\sinh does not map to such points.

In order to investigate its roots, we compute the derivative of ψ12,θ\psi_{\frac{1}{2},\theta} as

ψ12,θ(y)\displaystyle\psi_{\frac{1}{2},\theta}^{\prime}(y) =(12sinh(πsinh(y)/4)+iθcosh(πsinh(y)/2))π2cosh(y).\displaystyle=\Big{(}\frac{1}{2}\sinh\big{(}\pi\sinh(y)/4\big{)}+i\theta\cosh\big{(}\pi\sinh(y)/2\big{)}\Big{)}\frac{\pi}{2}\cosh(y). (A.4)

Our main concern is when the first bracket reaches zero. Substituting t:=sinh(πsinh(y)/4)t:=\sinh(\pi\sinh(y)/4) and using the double angle formula for cosh\cosh we get

0\displaystyle 0 =t2+iθ(1+2t2).\displaystyle=\frac{t}{2}+i\theta(1+2t^{2}).

Solving this equation, we get that tt is purely imaginary and for θ1\theta\geq 1 satisfies 0<|Im(t)|<10<\left|\operatorname{Im}(t)\right|<1. Again writing w=:a+ibw=:a+ib we get

sinh(a/2)cos(b/2)=0and cosh(a/2)sin(b/2)=Im(t).\displaystyle\sinh(a/2)\cos(b/2)=0\qquad\text{and }\qquad\cosh(a/2)\sin(b/2)=\operatorname{Im}(t).

Just like we did when showing ψ12,θ0\psi_{\frac{1}{2},\theta}\neq 0 we can argue that a=0a=0. We get sin(b/2)=Im(t)\sin(b/2)=\operatorname{Im}(t). Since tt only depends on θ\theta, we get that |b|>b0>0\left|b\right|>b_{0}>0 with a constant only depending on θ\theta. We proceed as when showing ψ12,θ0\psi_{\frac{1}{2},\theta}\neq 0 to conclude that ψ12,θ\psi_{\frac{1}{2},\theta}^{\prime} has no root in Dd(θ)D_{d(\theta)} for dd sufficiently small (depending on θ\theta). ∎

Next, we study the growth of ψσ,θ(y)\psi_{\sigma,\theta}(y) as |Re(y)|\left|\operatorname{Re}(y)\right|\to\infty.

Lemma A.4.

There exist constants c1,c2c_{1},c_{2}, γ1,γ2>0\gamma_{1},\gamma_{2}>0 such that for yDd(θ)y\in D_{d(\theta)} we can estimate

c1exp(γ1e|Re(y)|)|ψσ,θ(y)|c2exp(γ2e|Re(y)|),\displaystyle c_{1}\exp(\gamma_{1}e^{\left|\operatorname{Re}(y)\right|})\leq\left|\psi_{\sigma,\theta}(y)\right|\leq c_{2}\exp(\gamma_{2}e^{\left|\operatorname{Re}(y)\right|}), (A.5)

i.e., the growth of ψ\psi is double exponential. Additionally, we can bound

|ψσ,θ(y)||ψσ,θ(y)|cosh(Re(y)).\displaystyle|{\psi_{\sigma,\theta}^{\prime}}(y)|\lesssim|\psi_{\sigma,\theta}(y)|\cosh(\operatorname{Re}(y)). (A.6)
Proof.

We start with the simple case 𝝈=𝟏\boldsymbol{\sigma}\mathbf{=1}. And focus on what happens if |Re(y)|>y0>0\left|\operatorname{Re}(y)\right|>y_{0}>0 for a to be tweaked constant y0y_{0}. The values with 0|Re(y)|y00\leq\left|\operatorname{Re}(y)\right|\leq y_{0} can be covered by adjusting c1c_{1} and c2c_{2}, due to the compactness of the set {yDd(θ):|Re(y)|y0}\{y\in D_{d(\theta)}:\left|\operatorname{Re}(y)\right|\leq y_{0}\} and the fact that |ψσ,θ(y)|>0\left|\psi_{\sigma,\theta}(y)\right|>0 by Lemma A.3. We first only consider the ywy-w part of the transformation. We compute, since 12<cos(t)1\frac{1}{2}<\cos(t)\leq 1 for t(1/2,1/2)t\in(-1/2,1/2):

|Re(sinh(y))|\displaystyle\left|\operatorname{Re}(\sinh(y))\right| =|sinh(Re(y))|cos(Im(y))|sinh(Re(y))|c1e|Re(y)|.\displaystyle=\left|\sinh(\operatorname{Re}(y))\right|\cos(\operatorname{Im}(y))\sim\left|\sinh(\operatorname{Re}(y))\right|\sim c_{1}e^{\left|\operatorname{Re}(y)\right|}.

Easy calculation shows that for h1(η):=|cos(η)θsin(η)|h_{1}(\eta):=\left|\cos(\eta)-\theta\sin(\eta)\right| and h2(η):=|θcos(η)+sin(η)|h_{2}(\eta):=\left|\theta\cos(\eta)+\sin(\eta)\right| it holds that [h1(η)]2+[h2(η)]2=1+θ2[h_{1}(\eta)]^{2}+[h_{2}(\eta)]^{2}=1+\theta^{2}. Thus, for wHθw\in H_{\theta} with |Re(w)|1\left|\operatorname{Re}(w)\right|\geq 1, we can calculate:

|cosh(w)+iθsinh(w)|2\displaystyle\left|\cosh(w)+i\theta\sinh(w)\right|^{2} =|cosh(Re(w))|2[h1(Im(w))]2+|sinh(Re(w))|2[h2(Im(w))]2\displaystyle=\left|\cosh(\operatorname{Re}(w))\right|^{2}[h_{1}(\operatorname{Im}(w))]^{2}+\left|\sinh(\operatorname{Re}(w))\right|^{2}[h_{2}(\operatorname{Im}(w))]^{2} (A.7)
min(cosh(Re(w)),|sinh(Re(w))|)2(1+θ2)e2|Re(w)|.\displaystyle\gtrsim\min\big{(}\cosh(\operatorname{Re}(w)),\left|\sinh(\operatorname{Re}(w))\right|\big{)}^{2}(1+\theta^{2})\;\gtrsim\;e^{2\left|\operatorname{Re}(w)\right|}.

Overall, we see the lower bound of (A.5). The upper bound is easily seen, as |sinh(y)|\left|\sinh(y)\right| and |cosh(y)|\left|\cosh(y)\right| both grow exponentially and the bound only depends on the real part of the argument. (A.6) follows from (A.3) and the asymptotics (A.7)and (A.5).

We now look at how to adapt the proof to the case σ=𝟏/𝟐\boldsymbol{\sigma}\mathbf{=1/2}. If |Re(w)|4ln(2)\left|\operatorname{Re}(w)\right|\geq 4\ln(2), we get

|cosh(w/2)+iθsinh(w)|θ|sinh(w)||cosh(w/2)|12(e|Re(w)|2e|Re(w)/2|)14e|Re(w)|.\left|\cosh(w/2)+i\theta\sinh(w)\right|\\ \geq\theta\left|\sinh(w)\right|-\left|\cosh(w/2)\right|\geq\frac{1}{2}\Big{(}e^{\left|\operatorname{Re}(w)\right|}-2-e^{\left|\operatorname{Re}(w)/2\right|}\Big{)}\geq\frac{1}{4}e^{\left|\operatorname{Re}(w)\right|}. (A.8)

The argument for the ywy-w-transformation stays the same. The upper bound also follows easily from the triangle inequality and the growth of sinh\sinh and cosh\cosh.

To see (A.6), we combine (A.4) with the asymptotic estimate (A.8) to get

|ψσ,θ(y)|\displaystyle|{\psi_{\sigma,\theta}^{\prime}}(y)| eπ|Re(sinh(y))|/2cosh(Re(y))|ψσ,θ(y)|cosh(Re(y)).\displaystyle\lesssim e^{\pi\left|\operatorname{Re}(\sinh(y))\right|/2}\cosh(\operatorname{Re}(y))\lesssim|\psi_{\sigma,\theta}(y)|\cosh(\operatorname{Re}(y)).\qed

While on the full strip Dd(θ)D_{d(\theta)}, the image of the transformation is difficult to study, the restriction to a certain subdomain is much better behaved.

Lemma A.5.

For σ=1\sigma=1, there exists a constant δ>0\delta>0, depending on θ\theta, such that restricted to the domain DδexpD^{\mathrm{exp}}_{\delta}, ψ1,θ\psi_{1,\theta} maps to a sector in the right-half plane,

Sω:={z:|Arg(z)|ω}withω<π2.S_{\omega}:=\big{\{}z\in\mathbb{C}:\left|\operatorname{Arg}(z)\right|\leq\omega\big{\}}\qquad\text{with}\quad\omega<\frac{\pi}{2}.

For σ=1/2\sigma=1/2, and for all ε>0\varepsilon>0, there exists a constant δ>0\delta>0, depending on θ\theta and ε\varepsilon, such that restricted to the domain DδexpD^{\mathrm{exp}}_{\delta} the transformation ψ12,θ\psi_{\frac{1}{2},\theta} maps to the sector Sπ/2+εS_{\pi/2+\varepsilon}.

In both cases, there exist constants c1,c2>0c_{1},c_{2}>0 such that ψσ,θ\psi_{\sigma,\theta} satisfies for all λ>λ0>κ:\lambda>\lambda_{0}>\kappa:

|ψσ,θ(y)λ|c1and|ψσ,θ(y)(ψσ,θ(y)λ)1|c2cosh(Re(y))yDδexp,\displaystyle\left|\psi_{\sigma,\theta}(y)-\lambda\right|\geq c_{1}\quad\text{and}\quad\left|\psi_{\sigma,\theta}^{\prime}(y)(\psi_{\sigma,\theta}(y)-\lambda)^{-1}\right|\leq c_{2}\cosh(\operatorname{Re}(y))\qquad\forall y\in D^{\mathrm{exp}}_{\delta}, (A.9)

where c1,c2c_{1},c_{2} only depend on λ0\lambda_{0} and θ\theta.

Proof.

By Lemma A.2(iii) it is sufficient to consider the mapping of φσ,θ\varphi_{\sigma,\theta} restricted to small strips around the real axis. We start with the simpler case σ=𝟏\boldsymbol{\sigma}\mathbf{=1}. Going back to (A.2) and writing w:=π2sinh(y)=:a+ibw:=\frac{\pi}{2}\sinh(y)=:a+ib, we note that if |b|\left|b\right| is sufficiently small, we can guarantee that cos(b)θsin(b)>c>0{\cos(b)-\theta\sin(b)}>c>0 for some constant c>0c>0 depending on θ\theta. We have

Re(φσ,θ(w))\displaystyle\operatorname{Re}(\varphi_{\sigma,\theta}(w)) =κcosh(a)(cos(b)θsin(b))>cκcosh(a),\displaystyle=\kappa\cosh(a)\big{(}\cos(b)-\theta\sin(b)\Big{)}>c\,\kappa\cosh(a),
|Im(φσ,θ(w))|\displaystyle\left|\operatorname{Im}(\varphi_{\sigma,\theta}(w))\right| =κ|sinh(a)||θcos(b)+sin(b)|(1+θ)κ|sinh(a)|.\displaystyle=\kappa\left|\sinh(a)\right||\theta\cos(b)+\sin(b)|\leq(1+\theta)\kappa\left|\sinh(a)\right|.

Which easily gives

0|Im(φσ,θ(w))|Re(φσ,θ(w))(1+θ)c1w,|Im(w)|sufficiently small.0\leq\frac{\left|\operatorname{Im}(\varphi_{\sigma,\theta}(w))\right|}{\operatorname{Re}(\varphi_{\sigma,\theta}(w))}\leq(1+\theta)c^{-1}\qquad\forall w\in\mathbb{C},\;\left|\operatorname{Im}(w)\right|\text{sufficiently small}.

Next, we show that for 𝝈=𝟏/𝟐\boldsymbol{\sigma=1/2}, sufficiently thin strips in the ww-domain are mapped to sectors with opening angle π/2+ε\pi/2+\varepsilon. Such sectors are characterized by

Re(φσ,θ(w))ε~|Im(φσ,θ(w))||Im(w)|<b0(ε~)-\operatorname{Re}(\varphi_{\sigma,\theta}(w))\leq\widetilde{\varepsilon}\left|\operatorname{Im}(\varphi_{\sigma,\theta}(w))\right|\qquad\forall\left|\operatorname{Im}(w)\right|<b_{0}(\widetilde{\varepsilon})

for ε~>0\widetilde{\varepsilon}>0 depending on ε\varepsilon. The interesting case is Re(φσ,θ(w))<0\operatorname{Re}(\varphi_{\sigma,\theta}(w))<0. There, we get for |b|π\left|b\right|\leq\pi:

Re(φσ,θ(w))\displaystyle-{\operatorname{Re}(\varphi_{\sigma,\theta}(w))} =κcosh(a/2)cos(b/2)+κθcosh(a)sin(b)κθcosh(a)|sin(b)|.\displaystyle=-\kappa\cosh(a/2)\cos(b/2)+\kappa\theta\cosh(a)\sin(b)\leq\kappa\theta\cosh(a)\left|\sin(b)\right|.

For the imaginary part, the double angle-formula gives:

|Im(φσ,θ(w))|\displaystyle\left|\operatorname{Im}(\varphi_{\sigma,\theta}(w))\right| κθ|sinh(a)cos(b)|κ|sinh(a/2)sin(b/2)|\displaystyle\geq\kappa\theta\left|\sinh(a)\cos(b)\right|-\kappa\left|\sinh(a/2)\sin(b/2)\right|
κθ2|sinh(a)cos(b)|+κ|sinh(a/2)|(θcosh(a/2)|cos(b)||sin(b/2)|).\displaystyle\geq\frac{\kappa\theta}{2}\left|\sinh(a)\cos(b)\right|+\kappa\left|\sinh(a/2)\right|\big{(}\theta\cosh(a/2)\left|\cos(b)\right|-\left|\sin(b/2)\right|\big{)}.

For |b|\left|b\right| sufficiently small, we get θcos(b)|sin(b/2)|>0\theta\cos(b)-\left|\sin(b/2)\right|>0, and thus the last term is non-negative. We conclude

Re(φσ,θ(w))\displaystyle-{\operatorname{Re}(\varphi_{\sigma,\theta}(w))} 2|cosh(a)sinh(a)sin(b)cos(b)||Im(φσ,θ(w))|.\displaystyle\leq 2\left|\frac{\cosh(a)}{\sinh(a)}\frac{\sin(b)}{\cos(b)}\right|\left|\operatorname{Im}(\varphi_{\sigma,\theta}(w))\right|.

For a>1a>1, the first term is uniformly bounded. By making bb sufficiently small, we can ensure |sin(b)|/cosb<ε~\left|\sin(b)\right|/{\cos{b}}<\widetilde{\varepsilon}. For a<1a<1, we note that by restricting the values of bb it can be easily seen that Re(φσ,θ(w))0\operatorname{Re}(\varphi_{\sigma,\theta}(w))\geq 0. Thus we can conclude that ψσ,θ\psi_{\sigma,\theta} maps to the stated sectors.

Next, we prove the bounds on the distance to the real axis, again primarily investigating the behavior of φσ,θ\varphi_{\sigma,\theta} in thin strips. We focus on 𝝈=𝟏/𝟐\boldsymbol{\sigma=1/2}. Since φσ,θ(0)=κ<λ0\varphi_{\sigma,\theta}(0)=\kappa<\lambda_{0} and φσ,θ\varphi_{\sigma,\theta} is continuous, there exist constants 0<q<10<q<1 and δ~>0\widetilde{\delta}>0 such that |φσ,θ(w)|<qλ0\left|\varphi_{\sigma,\theta}(w)\right|<q\lambda_{0} for all |w|<δ~\left|w\right|<\widetilde{\delta}. This gives

|φσ,θ(w)λ|λ|φσ,θ(w)|λ0|φσ,θ(w)|>(1q)λ0|w|δ~.\left|\varphi_{\sigma,\theta}(w)-\lambda\right|\geq\lambda-\left|\varphi_{\sigma,\theta}(w)\right|\geq\lambda_{0}-\left|\varphi_{\sigma,\theta}(w)\right|>(1-q)\lambda_{0}\qquad\forall\left|w\right|\leq\widetilde{\delta}.

By selecting δ<δ~/2\delta<\widetilde{\delta}/2 in the definition of DδexpD^{\mathrm{exp}}_{\delta}, we may then continue by only considering |a|:=|Re(w)|>δ~/2\left|a\right|:=\left|\operatorname{Re}(w)\right|>\widetilde{\delta}/2. The imaginary part of φ12,θ(y)\varphi_{\frac{1}{2},\theta}(y) satisfies:

Im(φ12,θ(y))\displaystyle\operatorname{Im}(\varphi_{\frac{1}{2},\theta}(y)) =κsinh(a/2)sin(b/2)+κθsinh(a)cos(b)\displaystyle=\kappa\sinh(a/2)\sin(b/2)+\kappa\theta\sinh(a)\cos(b)
=κsinh(a/2)(sin(b/2)+2θcosh(a/2)cos(b)).\displaystyle=\kappa\sinh(a/2)\Big{(}\sin(b/2)+2\theta\cosh(a/2)\cos(b)\Big{)}.

For |b|π/4\left|b\right|\leq\pi/4 we have sin(b/2)+2cos(b)>0\sin(b/2)+2\cos(b)>0 and thus can conclude that |Im(φ12,θ(y))|c>0|{\operatorname{Im}(\varphi_{\frac{1}{2},\theta}(y))}|\geq c>0 and in turn |φ12,θ(y)λ|c>0|{\varphi_{\frac{1}{2},\theta}(y)-\lambda}|\geq c>0. The case σ=1\sigma=1 follows similarly, but not using the double angle formula.

To see that ψσ,θ(y)(ψσ,θ(y)λ)1\psi_{\sigma,\theta}^{\prime}(y)(\psi_{\sigma,\theta}(y)-\lambda)^{-1} can also be uniformly bounded, we only need to focus on large values of yy (and therefore ww). Asymptotically, we estimate for |b|<π/4\left|b\right|<\pi/4:

|Im(ψσ,θ(y))|\displaystyle\left|\operatorname{Im}(\psi_{\sigma,\theta}(y))\right| κ|sinh(σa)||sin(σb)|+κθ|sinh(a)cos(b)||sinh(a)|(A.7) or (A.8)|ψσ,θ(y)|.\displaystyle\geq-\kappa\left|\sinh(\sigma a)\right|\left|\sin(\sigma b)\right|+\kappa\theta\left|\sinh(a)\cos(b)\right|\gtrsim\left|\sinh(a)\right|\!\!\stackrel{{\scriptstyle\text{\eqref{eq:growth_phi} or \eqref{eq:psi_growth_w}}}}{{\gtrsim}}\!\!\left|\psi_{\sigma,\theta}(y)\right|.

Using (A.6) then concludes the proof. ∎

In order to apply the double exponential formulas for the Riesz-Dunford calculus, it is important to understand where ψσ,θ(z)\psi_{\sigma,\theta}(z) hits the real line. We start with the ww-domain.

Lemma A.6.

Fix λλ0>1\lambda\geq\lambda_{0}>1. Then the following holds for every ww\in\mathbb{C} with Re(w)0\operatorname{Re}(w)\neq 0 and

cosh(σw)+iθsinh(w)=λ:\displaystyle\cosh(\sigma w)+i\theta\sinh(w)=\lambda: (A.10)
  1. (i)

    There exist constants c1,c2,c3>0c_{1},c_{2},c_{3}>0 such that ww satisfies

    log(λ)c1|Re(w)|\displaystyle\log(\lambda)-c_{1}\leq\left|\operatorname{Re}(w)\right| log(λ)+c1and|Im(w)|{tan1(θ)if σ=1max(π2c2θλ,c3)if σ=1/2,\displaystyle\leq\log(\lambda)+c_{1}\quad\text{and}\quad\left|\operatorname{Im}(w)\right|\geq\begin{cases}\tan^{-1}(\theta)&\text{if }\sigma=1\\ \max\big{(}\frac{\pi}{2}-\frac{c_{2}}{\theta\sqrt{\lambda}},c_{3})&\text{if }\sigma=1/2\end{cases},

    where c1c_{1} depends on λ0\lambda_{0} and θ\theta, c2c_{2} depends on λ0\lambda_{0}, and c3c_{3} depends on θ\theta.

  2. (ii)

    Given 0<r<R0<r<R, the number Nw(λ,r,R)N_{w}(\lambda,r,R) of points ww satisfying (A.10) with r|Im(w)|Rr\leq\left|\operatorname{Im}(w)\right|\leq R is bounded uniformly in λ\lambda by

    Nw(λ,r,R)C|Rr|N_{w}(\lambda,r,R)\leq C\left|R-r\right|

    The constant CC depends only on θ\theta.

  3. (iii)

    There exist at most four values p1,,p4p_{1},\dots,p_{4} depending on λ\lambda, θ\theta, and σ\sigma such that all points satisfying (A.10) can be written as

    w=pj+2σπi for some j{1,4}.\displaystyle w=p_{j}+\frac{2\ell}{\sigma}\pi i\qquad\text{ for some $\ell\in\mathbb{Z}$, $j\in\{1,4\}$.} (A.11)

    If ww solves (A.10) then w¯-\overline{w} does as well.

Proof.

We start with the simpler case σ=1\sigma=1. By separating the real and imaginary part as in (A.2), we can observe that the critical points w=a+ibw=a+ib with a0a\neq 0 are located at

cosh(a)\displaystyle\cosh(a) =λ1+θ2,b=tan1(θ)+2π,.\displaystyle=\frac{\lambda}{\sqrt{1+\theta^{2}}},\qquad b=-\tan^{-1}(\theta)+2\ell\pi,\quad\ell\in\mathbb{Z}. (A.12)

This implies that |a|ln(λ)\left|a\right|\sim\ln(\lambda), and we also see that for each \ell, there are two such points, one in each half-plane. All the statements follow easily. Note that in (iii) only two families are needed.

For the remainder of the proof we therefore focus on the case σ=1/2\sigma=1/2. Ad (i): We start with the bound on the real part and write w=a+ibw=a+ib. We note that if |a|>max(1,2ln(8θ))\left|a\right|>\max\big{(}1,2\ln\big{(}\frac{8}{\theta}\big{)}\big{)} one can estimate using elementary considerations that e|a|/4|sinh(w)|e^{\left|a\right|}/4\leq\left|\sinh(w)\right| and e|a|/2/θe|a|/8e^{\left|a\right|/2}/\theta\leq e^{\left|a\right|}/8.

We then calculate:

e|a|4\displaystyle\frac{e^{\left|a\right|}}{4} |sinh(w)|=1θ|λcosh(w/2)|λθ+e|a|2θλθ+e|a|8.\displaystyle\leq\left|\sinh(w)\right|=\frac{1}{\theta}{\left|\lambda-\cosh(w/2)\right|}\leq\frac{\lambda}{\theta}+\frac{e^{\frac{\left|a\right|}{2}}}{\theta}\leq\frac{\lambda}{\theta}+\frac{e^{\left|a\right|}}{8}.

From this, the statement readily follows. The other direction is shown similarly:

ea\displaystyle e^{a} |sinh(w)|=1θ|λcosh(w/2)|λθe|a|2θλθe|a|8.\displaystyle\geq\left|\sinh(w)\right|=\frac{1}{\theta}{\left|\lambda-\cosh(w/2)\right|}\geq\frac{\lambda}{\theta}-\frac{e^{\frac{\left|a\right|}{2}}}{\theta}\geq\frac{\lambda}{\theta}-\frac{e^{\left|a\right|}}{8}.

For |a|max(1,2ln(8θ))\left|a\right|\leq\max\big{(}1,2\ln\big{(}\frac{8}{\theta}\big{)}\big{)}, we use the bound |φσ,θ(w)|e|a|\left|\varphi_{\sigma,\theta}(w)\right|\lesssim e^{\left|a\right|} to see that ln(λ)\ln(\lambda) must be uniformly bounded. The final bound on the real part of ww then follows for c1:=max(ln(8/θ),ln(9θ/8),c~)c_{1}:=\max\big{(}\ln(8/\theta),\ln(9\theta/8),\widetilde{c}\big{)}, where c~\widetilde{c} is used to compensate for the case of small aa.

Looking at the imaginary part of equation (A.10), we get from the double-angle formulas

0\displaystyle 0 =sinh(a/2)sin(b/2)+θsinh(a)cos(b)\displaystyle=\sinh(a/2)\sin(b/2)+\theta\sinh(a)\cos(b)
=sinh(a/2)(sin(b/2)+2θcosh(a/2)(12sin2(b/2))).\displaystyle=\sinh(a/2)\Big{(}\!\sin(b/2)+2\theta\cosh(a/2)\big{(}1-2\sin^{2}(b/2)\big{)}\!\Big{)}. (A.13)

Since we assume a0a\neq 0, we get by substituting τ:=sin(b/2)\tau:=\sin(b/2)

0=τ+2θcosh(a/2)(12τ2) or τ=1±1+32θ2cosh2(a/2)8θcosh(a/2).\displaystyle 0=\tau+2\theta\cosh(a/2)(1-2\tau^{2})\qquad\text{ or }\qquad\tau=\frac{1\pm\sqrt{1+32\theta^{2}\cosh^{2}(a/2)}}{8\theta\cosh(a/2)}. (A.14)

From this, using the asymptotic behavior

τ=±12+𝒪(1θcosh(a/2)) and sin1(12+h)=π4+𝒪(h)\tau=\pm\frac{1}{\sqrt{2}}+\mathcal{O}\Big{(}\frac{1}{\theta\cosh(a/2)}\Big{)}\quad\text{ and }\quad\sin^{-1}\Big{(}\frac{1}{\sqrt{2}}+h\Big{)}=\frac{\pi}{4}+\mathcal{O}(h)

the statement follows for large aa, since b=2sin1(τ)b=2\sin^{-1}(\tau) and cosh(a/2)λ\cosh(a/2)\gtrsim\sqrt{\lambda} by (i). For small aa, we note that (A.14) shows that Im(w)0\operatorname{Im}(w)\neq 0. By continuity, it must therefore hold that |Im(w)|>0\left|\operatorname{Im}(w)\right|>0 uniformly.

Ad (ii) and (iii): We square the defining equation (A.10), getting

λ2\displaystyle\lambda^{2} =cosh2(w/2)+2iθcosh(w/2)sinh(w)θ2sinh2(w)\displaystyle=\cosh^{2}(w/2)+2i\theta\cosh(w/2)\sinh(w)-\theta^{2}\sinh^{2}(w)
=cosh2(w/2)+4iθcosh2(w/2)sinh(w/2)4θ2sinh2(w/2)cosh2(w/2).\displaystyle=\cosh^{2}(w/2)+4i\theta\cosh^{2}(w/2)\sinh(w/2)-4\theta^{2}\sinh^{2}(w/2)\cosh^{2}(w/2). (A.15)

Writing cosh2(w/2)=1+sinh2(w/2)\cosh^{2}(w/2)=1+\sinh^{2}(w/2), we get that t:=sinh(w/2)t:=\sinh(w/2) solves the quartic equation

λ2\displaystyle\lambda^{2} =1+t2+4iθ(1+t2)t4θ2t24θ2t4.\displaystyle=1+t^{2}+4i\theta(1+t^{2})t-4\theta^{2}t^{2}-4\theta^{2}t^{4}. (A.16)

This means there can be at most 4 such values t0,t4t_{0},\dots t_{4} for any λ\lambda and it must hold that

sinh(w/2)\displaystyle\sinh(w/2) =tjor w=wj+4πi\displaystyle=t_{j}\quad\text{or }\quad w=w_{j}+4\pi\ell i

Here wjw_{j} is the solution with Re(wj)>0\operatorname{Re}(w_{j})>0 and minimal value of |Im(wj)|\left|\operatorname{Im}(w_{j})\right|. (iii) and (ii) follow. The fact that wj¯-\overline{w_{j}} also solves (A.10) follows by conjugating both sides of the equation (A.16). ∎

Next, we show that points which have positive distance to the poles in the ww-plane are mapped to points with distance λ\lambda in the zz-plane. Note that in the following Lemma we include some additional points in order to avoid distinguishing more cases. We also exclude most of the imaginary axis, as for small values of λ\lambda it might contain poles which are structurally different than the ones involving large λ\lambda.

Lemma A.7.

Define

b0:=max{b0:|φσ,θ(iτ)|(λ0+κ)/2|τ|b}.b_{0}:=\max\big{\{}b\geq 0:\quad\left|\varphi_{\sigma,\theta}(i\tau)\right|\leq(\lambda_{0}+\kappa)/2\quad\forall\left|\tau\right|\leq b\big{\}}.

Fix λλ0>κ\lambda\geq\lambda_{0}>\kappa and define the set

λ\displaystyle\mathcal{M}_{\lambda} :={pλ+iπ,with pλ such that φσ,θ(pλ)=λ and }{ib:|b|b0}.\displaystyle:=\Big{\{}p_{\lambda}+i\ell\pi,\;\text{with }\;p_{\lambda}\in\mathbb{C}\text{ such that }\varphi_{\sigma,\theta}(p_{\lambda})=\lambda\text{ and }\ell\in\mathbb{Z}\Big{\}}\cup\{ib:\;\left|b\right|\leq b_{0}\}.

For any δ>0\delta>0, there exists a constant c(δ)>0c(\delta)>0, depending only on δ\delta and θ\theta, such that for all ww\in\mathbb{C} with dist(w,λ)>δ\operatorname{dist}(w,\mathcal{M}_{\lambda})>\delta we can estimate

|φσ,θ(w)λ|c(δ)λ.\left|\varphi_{\sigma,\theta}(w)-\lambda\right|\geq c(\delta)\lambda.
Proof.

We first deal with the issues close to the imaginary axis. Since |φσ,θ(ib)|(λ0+κ)/2\left|\varphi_{\sigma,\theta}(ib)\right|\leq(\lambda_{0}+\kappa)/2 if |b|b0\left|b\right|\leq b_{0}, we can find ε(0,δ/2)\varepsilon\in(0,\delta/2) such that

|φσ,θ(w~)|<3λ0/4+κ/4for allw~Uε\displaystyle\left|\varphi_{\sigma,\theta}(\widetilde{w})\right|<3\lambda_{0}/4+\kappa/4\quad\text{for all}\quad\widetilde{w}\in U_{\varepsilon} :={|Re(w~)|εand|Im(w~)|b0}.\displaystyle:=\big{\{}\left|\operatorname{Re}(\widetilde{w})\right|\leq\varepsilon\;\text{and}\;\left|\operatorname{Im}(\widetilde{w})\right|\leq b_{0}\big{\}}.

If |Re(w)|ε\left|\operatorname{Re}(w)\right|\leq\varepsilon, the distance condition to λ\mathcal{M}_{\lambda} implies |Im(w)|b0δ/2\left|\operatorname{Im}(w)\right|\leq b_{0}-\delta/2 and thus wUεw\in U_{\varepsilon}. We can therefore calculate:

|φσ,θ(w)λ|λ|φσ,θ(w)|λ4(1κλ0).\displaystyle\left|\varphi_{\sigma,\theta}(w)-\lambda\right|\geq\lambda-\left|\varphi_{\sigma,\theta}(w)\right|\geq\frac{\lambda}{4}\Big{(}1-\frac{\kappa}{\lambda_{0}}\Big{)}.

Next, we deal with small values of λ\lambda. For constants Λ\Lambda, CwC_{w} to be fixed later, consider λ[λ0,Λ]\lambda\in[\lambda_{0},\Lambda] and define the set

:={w:|Re(z)|ε,|w|Cw}.\mathcal{R}:=\{w\in\mathbb{C}:\;\left|\operatorname{Re}(z)\right|\geq\varepsilon,\left|w\right|\leq C_{w}\}.

We show that the stated bound holds for ww\in\mathcal{R}. By the Lemma A.6(iii), the points of λ\mathcal{M}_{\lambda} can be written as

λ={pj+πi,,j=1,,4}{ib:|b|b0}\mathcal{M}_{\lambda}=\Big{\{}p_{j}+\pi\ell i,\;\;\ell\in\mathbb{Z},\;j=1,\dots,4\Big{\}}\cup\Big{\{}ib:\;\left|b\right|\leq b_{0}\Big{\}}

for some reference points pjp_{j}\in\mathbb{C}, w.l.o.g. |Im(pj)|π\left|\operatorname{Im}(p_{j})\right|\leq\pi. We introduce set

Λ,Cw:={pj+πi,||L,j=1,,4}\mathcal{M}_{\Lambda,C_{w}}:=\Big{\{}p_{j}+\ell\pi i,\;\left|\ell\right|\leq L,\,j=1,\dots,4\Big{\}}

where L:=(Cw+1)/πL:=\lceil(C_{w}+1)/\pi\rceil is taken large enough that for all λ[λ0,Λ]\lambda\in[\lambda_{0},\Lambda], it holds that

λΛ,Cw,\mathcal{M}_{\lambda}\cap\mathcal{R}\subseteq\mathcal{M}_{\Lambda,C_{w}},

i.e., it contains all the poles of size less or equal than CwC_{w} uniformly in λ\lambda (but possibly also some larger ones). We consider the map

Φ(λ,w):=(φσ,θ(w)λ)1pλΛ,Cw(wpλ).\Phi(\lambda,w):=\big{(}\varphi_{\sigma,\theta}(w)-\lambda\big{)}^{-1}\prod_{p_{\lambda}\in\mathcal{M}_{\Lambda,C_{w}}}{(w-p_{\lambda})}.

By the inverse function theorem, the points pj=φσ,θ1(λ)p_{j}=\varphi_{\sigma,\theta}^{-1}(\lambda) depend continuously on λ\lambda since φσ,θ0\varphi_{\sigma,\theta}^{\prime}\neq 0 away from the imaginary axis (where we stay away from by construction). Thus, also the other points pλp_{\lambda} depend continuously on λ\lambda. Similarly, the denominator only has simple zeros for wλw\in\mathcal{M}_{\lambda}. Since, in that case the numerator also vanishes one can argue that Φ\Phi has a continuous extension to [λ0,Λ]×[\lambda_{0},\Lambda]\times\mathcal{R} which is bounded, i.e., it holds

|pλΛ,Cw(wpλ)φσ,θ(w)λ|C(Λ,CW)or|φσ,θ(w)λ|1C(Λ,CW)pλΛ,Cw|wpλ|.\left|\frac{\prod_{p_{\lambda}\in\mathcal{M}_{\Lambda,C_{w}}}{(w-p_{\lambda})}}{\varphi_{\sigma,\theta}(w)-\lambda}\right|\leq C(\Lambda,C_{W})\qquad\text{or}\qquad\left|\varphi_{\sigma,\theta}(w)-\lambda\right|\geq\frac{1}{C(\Lambda,C_{W})}\prod_{p_{\lambda}\in\mathcal{M}_{\Lambda,C_{w}}}{\left|w-p_{\lambda}\right|}.

Thus, if ww is separated from λ\mathcal{M}_{\lambda} and the imaginary axis, so is φσ,θ(w)\varphi_{\sigma,\theta}(w) from λ\lambda. If λ[0,Λ]\lambda\in[0,\Lambda] and |w|>Cw:=max(log(2Λ/c1),4ln(2))\left|w\right|>C_{w}:=\max(\log(2\Lambda/c_{1}),4\ln(2)), (where c1c_{1} is the constant in (A.7) or (A.8)) we get:

|φσ,θ(w)λ||φσ,θ(w)|λ(A.7),(A.8)c1e|Re(w)|ΛΛλ.\left|\varphi_{\sigma,\theta}(w)-\lambda\right|\geq\left|\varphi_{\sigma,\theta}(w)\right|-\lambda\quad\;\stackrel{{\scriptstyle\mathclap{\eqref{eq:growth_phi},\eqref{eq:psi_growth_w}}}}{{\geq}}\quad\;c_{1}e^{\left|\operatorname{Re}(w)\right|}-\Lambda\geq\Lambda\geq\lambda.

We therefore may from now on assume that λ\lambda is sufficiently large as we see fit. In preparation for the rest of the proof, we note that for ζ,μ\zeta,\mu\in\mathbb{R}, w.l.o.g., |ζ||μ|\left|\zeta\right|\leq\left|\mu\right|:

|cosh(μ)cosh(ζ)|\displaystyle\left|\cosh(\mu)-\cosh(\zeta)\right| =cosh(|μ|)cosh(|ζ|)=|ζ||μ|sinh(τ)𝑑τsinh(|ζ|)(|μ||ζ|).\displaystyle=\cosh(\left|\mu\right|)-\cosh(\left|\zeta\right|)=\int_{\left|\zeta\right|}^{\left|\mu\right|}{\sinh(\tau)\,d\tau}\geq\sinh(\left|\zeta\right|)(\left|\mu\right|-\left|\zeta\right|). (A.17)

Because it is much simpler, we start with the case σ=𝟏\boldsymbol{\sigma}\mathbf{=1}. We note that in this case λ\mathcal{M}_{\lambda} consists of the points mapped to ±λ\pm\lambda. We distinguish three cases, depending on whether Re(w)\operatorname{Re}(w) is small and if Im(w)\operatorname{Im}(w) is close to a pole or not.

Case 1:

(1+θ)κcosh(Re(w))<λ/2:(1+\theta)\kappa\cosh(\operatorname{Re}(w))<\lambda/2: The triangle inequality gives:

|κ[cosh(w)+iθsinh(w)]λ|\displaystyle\left|\kappa[\cosh(w)+i\theta\sinh(w)]-\lambda\right| λ(1+θ)κcosh(Re(w))λ2.\displaystyle\geq\lambda-(1+\theta)\kappa\cosh(\operatorname{Re}(w))\geq\frac{\lambda}{2}.

Case 2:

2(1+θ)κcosh(Re(w))λ2(1+\theta)\kappa\cosh(\operatorname{Re}(w))\geq\lambda and there exists a point pλp\in\mathcal{M}_{\lambda} with |ImwImp|ε1\left|\operatorname{Im}{w}-\operatorname{Im}{p}\right|\leq\varepsilon_{1} for ε1\varepsilon_{1} sufficiently small. We note that this implies that |Re(w)Re(p)|\left|\operatorname{Re}(w)-\operatorname{Re}(p)\right| is positive. Due to the symmetry in (A.11) we may in addition assume that sign(Re(w))=sign(Re(p))\operatorname{sign}(\operatorname{Re}(w))=\operatorname{sign}(\operatorname{Re}(p)). Writing h(η):=cos(η)θsin(η)h(\eta):=\cos(\eta)-\theta\sin(\eta), we note that |h(Im(w))|>c>0\left|h(\operatorname{Im}(w))\right|>c>0 by (A.12) and the fact that adding π\pi\ell might only change the sign. If h(Im(p))0h(\operatorname{Im}(p))\geq 0, we consider the real part of φσ,θ(w)λ\varphi_{\sigma,\theta}(w)-\lambda to get:

|cosh(Re(w))h(Im(w)))λ|=|cosh(Re(w))h(Im(p))λ+cosh(Re(w))(h(Im(w))h(Imp))||cosh(Re(w))h(Imp)λ|cosh(Re(w))|h(Im(w))h(Imp)|(A.17)min(|sinh(Re(w))|,|sinh(Re(p))|)|Re(w)Re(p)|2cosh(Re(w))ε1λ\left|\cosh(\operatorname{Re}(w))h(\operatorname{Im}(w)))-\lambda\right|\\ \begin{aligned} &=\left|\cosh(\operatorname{Re}(w))h(\operatorname{Im}(p))-\lambda+\cosh(\operatorname{Re}(w))\big{(}h(\operatorname{Im}(w))-h(\operatorname{Im}{p})\big{)}\right|\\ &\geq\left|\cosh(\operatorname{Re}(w))h(\operatorname{Im}{p})-\lambda\right|-\cosh(\operatorname{Re}(w))\left|h(\operatorname{Im}(w))-h(\operatorname{Im}{p})\right|\\ &\stackrel{{\scriptstyle\mathclap{\eqref{eq:difference_of_cosh}}}}{{\geq}}\min\big{(}\left|\sinh(\operatorname{Re}(w))\right|,\left|\sinh(\operatorname{Re}(p))\right|\big{)}\left|\operatorname{Re}(w)-\operatorname{Re}(p)\right|-2\cosh(\operatorname{Re}(w))\varepsilon_{1}\\ &\gtrsim\lambda\end{aligned}

where in the last step we chose ε1\varepsilon_{1} sufficiently small (but independent of λ\lambda). If h(Im(p))0h(\operatorname{Im}(p))\leq 0, by continuity we can enforce h(Im(w))0h(\operatorname{Im}(w))\leq 0 as long as ε1\varepsilon_{1} is sufficiently small. The necessary calculation then is even easier because φσ,θ(w)\varphi_{\sigma,\theta}(w) maps to the left half-plane.

Case 3:

2(1+θ)cosh(Re(w))λ2(1+\theta)\cosh(\operatorname{Re}(w))\geq\lambda and |Im(w)Im(p)|ε1>0\left|\operatorname{Im}(w)-\operatorname{Im}(p)\right|\geq\varepsilon_{1}>0 for all pλp\in\mathcal{M}_{\lambda}. We estimate imaginary part of φσ,θ\varphi_{\sigma,\theta}. Since Im(w)\operatorname{Im}(w) has positive distance from the points in (A.12), we get |sin(Im(w))+θcos(Im(w))|>c>0\left|\sin(\operatorname{Im}(w))+\theta\cos(\operatorname{Im}(w))\right|>c>0. Which in term gives

|sinh(a)||sin(Im(w))+cos(Im(w))|c|sinh(Re(w))|λ\left|\sinh(a)\right|\left|\sin(\operatorname{Im}(w))+\cos(\operatorname{Im}(w))\right|\geq c\left|\sinh(\operatorname{Re}(w))\right|\gtrsim\lambda

where the last part only holds for large enough cases of Re(w)\operatorname{Re}(w) not covered by Case 1.

Now we show, how the proof has to be adapted for the case σ=𝟏/𝟐\boldsymbol{\sigma}\mathbf{=1/2}, again focusing on the asymptotic case of large λ\lambda. By Lemma A.6(i), all the points pλp\in\mathcal{M}_{\lambda} satisfy |Re(p)|log(λ)\left|\operatorname{Re}(p)\right|\sim\log(\lambda). Looking at the imaginary part of the defining equation for pp we get that

|cos(Im(p))|\displaystyle\left|\cos(\operatorname{Im}(p))\right| =|sinh(Re(p)/2)θcosh(Re(p))sin(Re(p))|ea/2θλ1/2.\displaystyle=\left|\frac{\sinh(\operatorname{Re}(p)/2)}{\theta\cosh(\operatorname{Re}(p))}\sin(\operatorname{Re}(p))\right|\lesssim\frac{e^{-a/2}}{\theta}\lesssim\lambda^{-1/2}.

Thus, for any ε2>0\varepsilon_{2}>0, assuming λ\lambda is sufficiently large, all the points pλp\in\mathcal{M}_{\lambda} satisfy cos(p)<ε2\cos(p)<\varepsilon_{2}.

We again have to distinguish three cases:

Case 1:

(1+θ)cosh(Re(w))<λ/2:(1+\theta)\cosh(\operatorname{Re}(w))<\lambda/2: One can argue just like in the σ=1\sigma=1 case.

Case 2:

2(1+θ)cosh(Re(w))λ2(1+\theta)\cosh(\operatorname{Re}(w))\geq\lambda and there exists a point pλp\in\mathcal{M}_{\lambda} with |ImwImp|ε1\left|\operatorname{Im}{w}-\operatorname{Im}{p}\right|\leq\varepsilon_{1} for ε1\varepsilon_{1} sufficiently small. We note that this implies that |Re(w)Re(p)|\left|\operatorname{Re}(w)-\operatorname{Re}(p)\right| is positive. Since |cos(w)|<ε2\left|\cos(w)\right|<\varepsilon_{2}, we note that |sin(w)|>1ε2\left|\sin(w)\right|>1-\varepsilon_{2}. By possibly adding iπi\ell\pi, we can write

λ=θcosh(Re(p))sin(Im(p+iπ))+cosh(Re(p/2))sin(Im(p+iπ)/2).\displaystyle\lambda=-\theta\cosh(\operatorname{Re}(p))\sin(\operatorname{Im}(p+\ell i\pi))+\cosh(\operatorname{Re}(p/2))\sin(\operatorname{Im}(p+\ell i\pi)/2). (A.18)

For large values of λ\lambda, the cosh(Re(p))\cosh(\operatorname{Re}(p)) term is dominating. Therefore, we have sign(Re(φσ,θ(p)))=sign(sin(Im(p)))\operatorname{sign}(\operatorname{Re}(\varphi_{\sigma,\theta}(p)))=-\operatorname{sign}(\sin(\operatorname{Im}(p))). By continuity we can enforce that sign(sin(Im(w)))=sign(sin(Im(p)))\operatorname{sign}(\sin(\operatorname{Im}(w)))=\operatorname{sign}(\sin(\operatorname{Im}(p))). Since for the case Re(φσ,θ(w))0\operatorname{Re}(\varphi_{\sigma,\theta}(w))\leq 0 the statement is trivial, we only have to consider the case sign(sin(Im(w)))=1\operatorname{sign}(\sin(\operatorname{Im}(w)))=-1 or =0\ell=0 in (A.18). We look at the real part of φσ,θ(w)λ\varphi_{\sigma,\theta}(w)-\lambda to get:

|θcosh(\displaystyle\big{|}-\theta\cosh( Re(w))sin(Im(w))λ+cosh(Re(w)/2)cos(Im(w)/2)|\displaystyle\operatorname{Re}(w))\sin(\operatorname{Im}(w))-\lambda+\cosh(\operatorname{Re}(w)/2)\cos(\operatorname{Im}(w)/2)\big{|}
|θcosh(Re(w))sin(Im(p))θcosh(Re(p))sin(Im(p))||cosh(Re(w))(sin(Im(w))sin(Imp))|𝒪(cosh(Re(w)/2))\displaystyle\geq\begin{multlined}\left|-\theta\cosh(\operatorname{Re}(w))\sin(\operatorname{Im}(p))-\theta\cosh(\operatorname{Re}(p))\sin(\operatorname{Im}(p))\right|\\ -\left|\cosh(\operatorname{Re}(w))\big{(}\sin(\operatorname{Im}(w))-\sin(\operatorname{Im}{p})\big{)}\right|-\mathcal{O}\big{(}\cosh(\operatorname{Re}(w)/2)\big{)}\end{multlined}\left|-\theta\cosh(\operatorname{Re}(w))\sin(\operatorname{Im}(p))-\theta\cosh(\operatorname{Re}(p))\sin(\operatorname{Im}(p))\right|\\ -\left|\cosh(\operatorname{Re}(w))\big{(}\sin(\operatorname{Im}(w))-\sin(\operatorname{Im}{p})\big{)}\right|-\mathcal{O}\big{(}\cosh(\operatorname{Re}(w)/2)\big{)}
min(|sinh(Re(w))|,|sinh(Re(p))|)|Re(w)Re(p)|Ccosh(Re(w))ε1\displaystyle\gtrsim\min\Big{(}\left|\sinh(\operatorname{Re}(w))\right|,\left|\sinh(\operatorname{Re}(p))\right|\Big{)}\left|\operatorname{Re}(w)-\operatorname{Re}(p)\right|-C\cosh(\operatorname{Re}(w))\varepsilon_{1}
λ\displaystyle\gtrsim\lambda

where we absorbed the term cosh(Re(w)/2)\cosh(\operatorname{Re}(w)/2) into cosh(Re(w))ε1\cosh(\operatorname{Re}(w))\varepsilon_{1} by assuming λ\lambda sufficiently large and in the last step we chose ε1\varepsilon_{1} sufficiently small (but independent of λ\lambda).

Case 3:

2(1+θ)cosh(Re(w))λ2(1+\theta)\cosh(\operatorname{Re}(w))\geq\lambda and |ImwImp|ε1>0\left|\operatorname{Im}{w}-\operatorname{Im}{p}\right|\geq\varepsilon_{1}>0 for all pλp\in\mathcal{M}_{\lambda}. Since all the points pλp\in\mathcal{M}_{\lambda} satisfy |cos(Im(p))|<ε2\left|\cos(\operatorname{Im}(p))\right|<\varepsilon_{2} and for every zero of cos\cos, there exists a value pλp\in\mathcal{M}_{\lambda} with Im(p)\operatorname{Im}(p) close to it, this means that |cos(Im(w))|δ2\left|\cos(\operatorname{Im}(w))\right|\geq\delta_{2} for a constant δ2\delta_{2} depending only on ε1\varepsilon_{1} and ε2\varepsilon_{2}. We estimate

|Im(φσ,θ(w))|θ|sinh(a)||cos(Imw)||cosh(w/2)||sinh(Re(w))|λ\left|\operatorname{Im}(\varphi_{\sigma,\theta}(w))\right|\geq\theta\left|\sinh(a)\right|\left|\cos(\operatorname{Im}{w})\right|-\left|\cosh(w/2)\right|\gtrsim\left|\sinh(\operatorname{Re}(w))\right|\gtrsim\lambda

where the last part only holds for large enough cases of Re(w)\operatorname{Re}(w) not covered by the first case. ∎

Lemma A.8.

Fix λλ0>κ\lambda\geq\lambda_{0}>\kappa. Consider the set

Pλy:={yDd(θ):ψσ,θ(y)=λ},P_{\lambda}^{y}:=\Big{\{}y\in D_{d(\theta)}:\psi_{\sigma,\theta}(y)=\lambda\Big{\}},

where d(θ)d(\theta) is taken sufficiently small. Then the following holds:

  1. (i)

    For any ν0[0,d(θ)]\nu_{0}\in[0,d(\theta)] and δ>0\delta>0 there are only finitely many points y1,,yNp(λ,δ)Pλyy_{1},\dots,y_{N_{p}(\lambda,\delta)}\in P_{\lambda}^{y} satisfying

    ν0δln(λ/κ)<|Im(y)|<ν0+δln(λ/κ)1,,Np(λ,δ)\nu_{0}-\frac{\delta}{\ln(\lambda/\kappa)}<\left|\operatorname{Im}(y_{\ell})\right|<\nu_{0}+\frac{\delta}{\ln(\lambda/\kappa)}\qquad\forall\ell\in 1,\dots,N_{p}(\lambda,\delta)

    The number Np(λ,δ)N_{p}(\lambda,\delta) of such points can be bounded by a constant depending only on δ\delta, θ\theta, σ\sigma and d(θ)d(\theta), but independently of λ\lambda and ν0\nu_{0} .

  2. (ii)

    For λ(λ0,Λ)\lambda\in(\lambda_{0},\Lambda), one can bound |Im(y)|γ(Λ)>0yPλy,\displaystyle\left|\operatorname{Im}(y)\right|\geq\gamma(\Lambda)>0\;\forall y\in P^{y}_{\lambda}, with a constant γ(Λ)\gamma(\Lambda) depending on Λ\Lambda, θ\theta, κ\kappa, λ0\lambda_{0}. For λ\lambda sufficiently large, the following asymptotic holds:

    |Im(y)|{tan1(θ)ln(λ/κ)𝒪(1ln2(λ/κ))if σ=1,π2ln(λ/κ)𝒪(1ln2(λ/κ))if σ=1/2yPλy,\displaystyle\left|\operatorname{Im}(y)\right|\geq\begin{cases}\frac{\tan^{-1}(\theta)}{\ln(\lambda/\kappa)}-\mathcal{O}\big{(}\frac{1}{\ln^{2}(\lambda/\kappa)}\big{)}&\text{if $\sigma=1$},\\ \frac{\pi}{2\ln(\lambda/\kappa)}-\mathcal{O}\big{(}\frac{1}{\ln^{2}(\lambda/\kappa)}\big{)}&\text{if $\sigma=1/2$}\end{cases}\qquad\forall y\in P^{y}_{\lambda}, (A.19)

    where the implied constants depend only on θ\theta, κ\kappa, λ0\lambda_{0} .

  3. (iii)

    There exists a parameter dλ(d(θ)/2,d(θ)]d_{\lambda}\in(d(\theta)/2,d(\theta)] and a constant c>0c>0 such that

    |ψσ,θ(a±idλ)λ|cκλ1a.\displaystyle\left|\psi_{\sigma,\theta}(a\pm id_{\lambda})-\lambda\right|\geq c\,\kappa\lambda^{-1}\qquad\forall a\in\mathbb{R}. (A.20)

    cc depends on θ\theta, σ\sigma and λ0\lambda_{0} but is independent of λ\lambda.

Proof.

For now, consider the case κ=1\kappa=1 and λ0>1\lambda_{0}>1. Since ψσ,θ(0)=1\psi_{\sigma,\theta}(0)=1, due to continuity, there exists a factor d(θ)>0d(\theta)>0 and ε>0\varepsilon>0 such that

|ψσ,θ(y)|<1+ε<λ0<λ|y|d(θ).\left|\psi_{\sigma,\theta}(y)\right|<1+\varepsilon<\lambda_{0}<\lambda\qquad\forall\left|y\right|\leq d(\theta).

By taking d(θ)d(\theta) at last this small in the definition of Dd(θ)D_{d(\theta)} we can exclude the poles satisfying Re(w)=Re(sinh(y))=0\operatorname{Re}(w)=\operatorname{Re}(\sinh(y))=0.

Ad (i): Since sinh\sinh is injective by Lemma A.2(i) we only need to count the points in HθH_{\theta} which are mapped to λ\lambda by φσ,θ\varphi_{\sigma,\theta}. Consider a point w=a+ibw=a+ib in the ww domain and let π2sinh(y)=w\frac{\pi}{2}\sinh(y)=w with y=ξ+iνDd(θ)y=\xi+i\nu\in D_{d(\theta)}. Then

|a|=π2|sinh(ξ)||cos(ν)| and |b|\displaystyle\left|a\right|=\frac{\pi}{2}\left|\sinh(\xi)\right|\left|\cos(\nu)\right|\quad\text{ and }\quad\left|b\right| =π2|cosh(ξ)||sin(ν)|.\displaystyle=\frac{\pi}{2}\left|\cosh(\xi)\right|\left|\sin(\nu)\right|.

Simple computations give |a|tan(|ν|)|b|(π/2+|a|)tan(|ν|)\left|a\right|\tan(\left|\nu\right|)\leq\left|b\right|\leq(\pi/2+\left|a\right|)\tan(\left|\nu\right|), or, by inserting Lemma A.6(i)

(ln(λ)c1)tan(|ν|)|b|(π/2+c1+ln(λ))tan(|ν|).\displaystyle\big{(}\ln(\lambda)-c_{1}\big{)}\tan(\left|\nu\right|)\leq\left|b\right|\leq(\pi/2+c_{1}+\ln(\lambda))\tan(\left|\nu\right|). (A.21)

For the length LL of this interval, we compute for ν±:=ν0±δln(λ/κ)1\nu_{\pm}:=\nu_{0}\pm\delta\ln(\lambda/\kappa)^{-1} (without changing the number of points, we may assume 0νν+d(θ)0\leq\nu_{-}\leq\nu_{+}\leq d(\theta)):

L\displaystyle L =ln(λ)(tan(|ν+|)tan(ν))+(π/2+c1)tan(ν+)+c1tan(ν)\displaystyle=\ln(\lambda)\big{(}\tan(\left|\nu_{+}\right|)-\tan(\nu_{-})\big{)}+(\pi/2+c_{1})\tan(\nu_{+})+c_{1}\tan(\nu_{-})
ln(λ)νν+1cos2(τ)𝑑τ+π+4c18δ+π+4c1\displaystyle\leq\ln(\lambda)\int_{\nu_{-}}^{{\nu_{+}}}{\frac{1}{\cos^{2}(\tau)}d\tau}+\pi+4c_{1}\leq 8\delta+\pi+4c_{1}

where in the last step we used cos(τ)>1/2\cos(\tau)>1/2 for |τ|<1/2\left|\tau\right|<1/2 and the definition of ν±\nu_{\pm}. Since the length of this interval is bounded uniformly in λ\lambda, we can apply  A.6(ii) to bound Np(λ,δ)N_{p}(\lambda,\delta).

Ad (ii): We only show the asymptotics. Fix yDd(θ)y\in D_{d(\theta)} and write w:=π2sinh(y)w:=\frac{\pi}{2}\sinh(y). For 0<|y|<1/20<\left|y\right|<1/2 it can be easily seen that |y|+23|y|3>tan(|y|).\left|y\right|+\frac{2}{3}\left|y\right|^{3}>\tan(\left|y\right|). Now, if |Im(y)|2ln(λ)1\left|\operatorname{Im}(y)\right|\geq 2\ln(\lambda)^{-1} there is nothing left to show. Otherwise, we can bound

|Im(y)|\displaystyle\left|\operatorname{Im}(y)\right| |tan(y)|43ln(λ)3(A.21)|Im(w)|1+c1+ln(λ)43ln(λ)3|Im(w)|ln(λ)𝒪(1ln(λ)2).\displaystyle\geq\left|\tan(y)\right|-\frac{4}{3\ln(\lambda)^{3}}\stackrel{{\scriptstyle\mathclap{\eqref{eq:psi_hits_lambda:simple_bound}}}}{{\geq}}\frac{\left|\operatorname{Im}(w)\right|}{1+c_{1}+\ln(\lambda)}-\frac{4}{3\ln(\lambda)^{3}}\geq\frac{\left|\operatorname{Im}(w)\right|}{\ln(\lambda)}-\mathcal{O}\Big{(}\frac{1}{\ln(\lambda)^{2}}\Big{)}.

The result follows from Lemma A.6(i).

Ad (iii): For dλ=d(θ)d_{\lambda}=d(\theta), we can not guarantee that ψ(ξ+idλ)\psi(\xi+i\,d_{\lambda}) does not hit the value λ\lambda. In this case, we have to modify dλd_{\lambda} slightly to get robust estimates. For dd\in\mathbb{R}, consider the hyperbolas

γd(ξ):=π2sinh(ξ+id)ξ.\displaystyle\gamma_{d}(\xi):=\frac{\pi}{2}\sinh(\xi+i\,d)\quad\xi\in\mathbb{R}. (A.22)

In the light of Lemma A.7 we need to ensure that dist(γdλ,wp)1\operatorname{dist}(\gamma_{d_{\lambda}},w_{p})\gtrsim 1 for all wpλw_{p}\in\mathcal{M}_{\lambda}. We will be looking for dλd_{\lambda} in a small strip around d(θ)d(\theta). To simplify notation we define the length

ω:=d(θ)ln(λ0)2ln(λ) such that d(θ)/2d(θ)ωd(θ).\omega:=d(\theta)\frac{\ln(\lambda_{0})}{2\ln(\lambda)}\quad\text{ such that }\quad d(\theta)/2\leq d(\theta)-\omega\leq d(\theta).

To make things symmetric with respect to the real axis, we consider ~λ:=λλ\widetilde{\mathcal{M}}_{\lambda}:=\mathcal{M}_{\lambda}-{\mathcal{M}}_{\lambda}. It will therefore be sufficient to focus on the upper right quadrant of the complex plane. All other cases follow by symmetry.

We write ~λy:=sinh1(2π~λ)\widetilde{\mathcal{M}}^{y}_{\lambda}:=\sinh^{-1}(\frac{2}{\pi}\widetilde{\mathcal{M}}_{\lambda}) for the corresponding points in yy-domain. We start by noting that we can easily stay away from the problematic parts of the imaginary axis by making d(θ)d(\theta) sufficiently small, as if |Re(sinh(y))|<ε\left|\operatorname{Re}(\sinh(y))\right|<\varepsilon we have |Im(sinh(y))|<(1+ε)sin(Im(y))\left|\operatorname{Im}(\sinh(y))\right|<(1+\varepsilon)\sin(\operatorname{Im}(y)); thus for small real parts we can ensure to fit between (b0,b0)(-b_{0},b_{0}) on the imaginary axis. This also means that we can safely assume |Re(wλ)|>ε>0\left|\operatorname{Re}(w_{\lambda})\right|>\varepsilon>0 since our path will have already positive distance to other possible poles.

By (i), the number of points yλy_{\lambda} in ~λy\widetilde{\mathcal{M}}^{y}_{\lambda} in the strip d(θ)ωIm(yλ)d(θ)d(\theta)-\omega\leq\operatorname{Im}(y_{\lambda})\leq d(\theta) can be bounded by a constant NN, independent of λ\lambda. In order to also avoid points in ~λy\widetilde{\mathcal{M}}_{\lambda}^{y} which are close but outside the critical strip we also avoid the boundary points d(θ)ωd(\theta)-\omega and d(θ)d(\theta). Since N+2N+2 strips of width ω2N+4\frac{\omega}{2N+4} can not cover a strip of width ω\omega, there exists a value dλd_{\lambda} such that

d(θ)ωdλd(θ)and|Im(yλ)dλ|ω2(N+2)yλ~λy.d(\theta)-\omega\leq d_{\lambda}\leq d(\theta)\quad\text{and}\quad\left|\operatorname{Im}(y_{\lambda})-d_{\lambda}\right|\geq\frac{\omega}{2(N+2)}\quad\forall y_{\lambda}\in\widetilde{\mathcal{M}}^{y}_{\lambda}.

For ease of notation, we define δ:=ln(λ0)/(4N+8)\delta:=\ln(\lambda_{0})/(4N+8) and note that |Im(yλ)dλ|δln(λ)1\left|\operatorname{Im}(y_{\lambda})-d_{\lambda}\right|\geq\delta\ln(\lambda)^{-1}. We show that

dist(γdλ,wp)\displaystyle\operatorname{dist}(\gamma_{d_{\lambda}},w_{p}) μ>0wp~λ\displaystyle\geq\mu>0\qquad\forall w_{p}\in\widetilde{\mathcal{M}}_{\lambda}

for a constant μ>0\mu>0 independent of λ\lambda. We fix yp:=ξp+iνp~λyy_{p}:=\xi_{p}+i\nu_{p}\in\widetilde{\mathcal{M}}_{\lambda}^{y} and a point on γdλ\gamma_{d_{\lambda}} denoted by yγ=ξγ+dλiy_{\gamma}=\xi_{\gamma}+d_{\lambda}i, . We write sp:=sign(νpdλ)s_{p}:=\operatorname{sign}(\nu_{p}-d_{\lambda}) and distinguish two cases: (ξpξγ)sp0(\xi_{p}-\xi_{\gamma})s_{p}\leq 0 and (ξpξγ)sp>0(\xi_{p}-\xi_{\gamma})s_{p}>0. For symmetry reasons, we only consider the case ξγ,ξp,νp>0\xi_{\gamma},\xi_{p},\nu_{p}>0. If (ξpξγ)sp𝟎\boldsymbol{(\xi_{p}-\xi_{\gamma})s_{p}\geq 0}, we get:

Im(sp(sinh(yp)sinh(yγ)))\displaystyle\operatorname{Im}(s_{p}(\sinh(y_{p})-\sinh(y_{\gamma}))) =sp(cosh(ξp)sin(νp)cosh(ξγ)sin(dλ))\displaystyle=s_{p}\big{(}\cosh(\xi_{p})\sin(\nu_{p})-\cosh(\xi_{\gamma})\sin(d_{\lambda})\big{)}
=cosh(ξp)sp(sin(νp)sin(dλ))+sp(cosh(ξp)cosh(ξγ))sin(dλ)0\displaystyle=\cosh(\xi_{p})s_{p}\big{(}\sin(\nu_{p})-\sin(d_{\lambda})\big{)}+\underbrace{s_{p}\Big{(}\cosh(\xi_{p})-\cosh(\xi_{\gamma})\Big{)}\sin(d_{\lambda})}_{\geq 0}
cosh(ξp)spdλνpcos(τ)𝑑τcosh(ξp)δln(λ).\displaystyle\geq\cosh(\xi_{p})s_{p}\int_{d_{\lambda}}^{\nu_{p}}{\cos(\tau)d\tau}\gtrsim\cosh(\xi_{p})\frac{\delta}{\ln(\lambda)}.

For the case (ξpξγ)sp<𝟎\boldsymbol{(\xi_{p}-\xi_{\gamma})s_{p}<0}, we calculate:

spRe(sinh(yp)sinh(yγ))\displaystyle-s_{p}\operatorname{Re}(\sinh(y_{p})-\sinh(y_{\gamma})) =spsinh(ξp)cos(νp)+spsinh(ξγ)cos(dλ)\displaystyle=-s_{p}\sinh(\xi_{p})\cos(\nu_{p})+s_{p}\sinh(\xi_{\gamma})\cos(d_{\lambda})
=spsinh(ξp)(cos(νp)cos(dλ))+sp(sinh(ξγ)sinh(ξp))cos(dλ))0\displaystyle=-s_{p}\sinh(\xi_{p})\Big{(}\cos(\nu_{p})-\cos(d_{\lambda})\big{)}+\underbrace{s_{p}\Big{(}\sinh(\xi_{\gamma})-\sinh(\xi_{p})\Big{)}\cos(d_{\lambda}))}_{\geq 0}
sinh(ξp)spdλνpsin(τ)𝑑τsinh(ξp)sin(d(θ)/2)δln(λ).\displaystyle\geq\sinh(\xi_{p})s_{p}\int_{d_{\lambda}}^{\nu_{p}}{\sin(\tau)d\tau}\gtrsim\sinh(\xi_{p})\sin(d(\theta)/2)\frac{\delta}{\ln(\lambda)}.

Since cosh(ξp)sinh(ξp)min(ln(λ),ε)\cosh(\xi_{p})\geq\sinh(\xi_{p})\gtrsim\min(\ln(\lambda),\varepsilon) we can conclude that

dist(γdλ,wλ)min(ln(λ)1ln(λ),ε)μ>0.\operatorname{dist}(\gamma_{d_{\lambda}},w_{\lambda})\gtrsim\min\Big{(}\ln(\lambda)\frac{1}{\ln(\lambda)},\varepsilon\Big{)}\geq\mu>0.

We can now apply Lemma A.7 to get to the final result. The general case κ1\kappa\neq 1 follows by dividing the equation ψσ,θ(y)=λ\psi_{\sigma,\theta}(y)=\lambda by κ\kappa. We can therefore just replace λ\lambda by λ/κ\lambda/\kappa in all statements. ∎