This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Doubly Reflected Backward SDEs Driven by GG-Brownian Motions and Fully Nonlinear PDEs with Double Obstacles

Hanwu Li Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, Shandong, China. Email: lihanwu@sdu.edu.cn.Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao 266237, Shandong, China.    Ning Ning Department of Statistics, Texas A&M University, College Station, Texas, USA. Email: patning@tamu.edu.
Abstract

In this paper, we introduce a new method to study the doubly reflected backward stochastic differential equation driven by GG-Brownian motion (GG-BSDE). Our approach involves approximating the solution through a family of penalized reflected GG-BSDEs with a lower obstacle that are monotone decreasing. By employing this approach, we establish the well-posedness of the solution of the doubly reflected GG-BSDE with the weakest known conditions, and uncover its relationship with the fully nonlinear partial differential equation with double obstacles for the first time.

Key words: GG-expectation, reflected backward SDE, nonlinear PDE, double obstacles

MSC-classification: 60H10, 60H30

1 Introduction

We firstly give the background in Subsection 1.1 and then state our contributions in Subsection 1.2, followed with the organization of the paper in Subsection 1.3.

1.1 Background

In 1997, El Karoui et al., 1997a first introduced the reflected backward stochastic differential equation (RBSDE), where the first component of the solution is constrained to remain above a specified continuous process, known as the obstacle. To enforce this constraint, an additional non-decreasing process is introduced to push the solution upwards, while adhering to the Skorohod condition in a minimal manner. This problem is intimately linked to various fields including optimal stopping problems (see, e.g., Cheng and Riedel, (2013)), pricing for American options (see, e.g., El Karoui et al., 1997b ), and the obstacle problem for partial differential equations (PDEs) (see, e.g., Bally et al., (2002)).

Subsequently, Cvitanic and Karatzas, (1996) extended the above results to encompass scenarios involving two obstacles. In this setting, the solution YY is constrained to remain between two specified continuous processes, known as the lower and upper obstacles. Consequently, two non-decreasing processes are introduced in the doubly RBSDE, with the aim of pushing the solution upwards and pulling it downwards, respectively, while ensuring adherence to the Skorohod conditions. Additionally, they demonstrated that the solution YY coincides with the value function of a Dynkin game. Given its significance in both theoretical analysis and practical applications, numerous studies have been conducted. Interested readers may refer to Crépey and Matoussi, (2008); Dumitrescu et al., (2016); Grigorova et al., (2018); Hamadene and Hassani, (2005); Hamadène et al., (1997); Peng and Xu, (2005) and the references therein for further exploration.

The classical theory is limited to solving financial problems under drift uncertainty and the associated semi-linear PDEs. Motivated by the need to address financial problems under volatility uncertainty and the associated fully nonlinear PDEs, Peng, (2007, 2008, 2019) introduced a novel nonlinear expectation theory known as the GG-expectation theory. This theory involves the construction of a nonlinear Brownian motion, termed GG-Brownian motion, and the introduction of corresponding GG-Itô’s calculus. Building upon the GG-expectation theory, Hu et al., 2014a investigated BSDEs driven by GG-Brownian motions (GG-BSDEs). In comparison with classical results, GG-BSDEs include an additional non-increasing GG-martingale KK in the equation due to nonlinearity. In Hu et al., 2014a , the authors established the well-posedness of GG-BSDEs, while the comparison theorem, Feynman-Kac formula, and Girsanov transformation can be found in their companion paper Hu et al., 2014b .

In recent years, Li et al., 2018b introduced reflected GG-BSDEs with a lower obstacle. Given the presence of a non-increasing GG-martingale in GG-BSDEs, the definition deviates from the classical case. Specifically, they amalgamated the non-decreasing process, intended to elevate the solution, with the non-increasing GG-martingale into a general non-decreasing process that satisfies a martingale condition. Existence was established through approximation via penalization, while uniqueness was derived from a prior estimates. For further insights, readers may refer to Li and Peng, (2020). The study of reflected GG-BSDEs with two obstacles is undertaken by Li and Song, (2021). They introduced a so-called approximate Skorohod condition and established the well-posedness of doubly reflected GG-BSDEs when the upper obstacle is a generalized GG-Itô process.

1.2 Our contributions

Three natural questions arise concerning the doubly reflected GG-BSDE of the following form:

{Yt=ξ+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs+(ATAt),LtYtUt,0tT,(Y,A) satisfies the approximate Skorohod condition with order α (ASCα),\displaystyle\begin{cases}Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}dB_{s}+(A_{T}-A_{t}),\vspace{0.2cm}\\ L_{t}\leq Y_{t}\leq U_{t},\quad 0\leq t\leq T,\vspace{0.2cm}\\ (Y,A)\textrm{ satisfies the approximate Skorohod condition with order $\alpha$ }(\textmd{ASC}_{\alpha}),\end{cases}

whose detailed description and the ASCα\textmd{ASC}_{\alpha} are provided in Subsection 3.1. Firstly, what types of fully nonlinear PDEs can be represented by reflected GG-BSDEs with two obstacles? Secondly, in addition to finding that connection, can we enhance the theory of doubly reflected GG-BSDEs further at the same time? Lastly, in order to achieve both of these goals, what new mathematical strategies suffice and can be developed? The objective of this paper is to address these three questions.

We discovered that to establish the connection between the solution of the doubly reflected GG-BSDE and the double obstacle fully nonlinear PDEs, it would be desirable if we can construct a monotone sequence converging to that solution. However, achieving this is challenging. Say, we consider the following penalized reflected GG-BSDEs with a lower obstacle parameterized by nn\in\mathbb{N}, which has been a workhorse in existing literature:

{Y¯tn=ξ+tTf(s,Y¯sn,Z¯sn)𝑑s+tTg(s,Y¯sn,Z¯sn)dBsntT(Y¯snUs)+𝑑stTZ¯sn𝑑Bs+(A¯TnA¯tn),Y¯tnLt,0tT,{0t(Y¯snLs)𝑑A¯sn}t[0,T] is a non-increasing G-martingale.\displaystyle\begin{cases}&\bar{Y}^{n}_{t}=\xi+\int_{t}^{T}f(s,\bar{Y}^{n}_{s},\bar{Z}^{n}_{s})ds+\int_{t}^{T}g(s,\bar{Y}^{n}_{s},\bar{Z}^{n}_{s})d\langle B\rangle_{s}-n\int_{t}^{T}(\bar{Y}^{n}_{s}-U_{s})^{+}ds\\ &\hskip 28.45274pt-\int_{t}^{T}\bar{Z}^{n}_{s}dB_{s}+(\bar{A}^{n}_{T}-\bar{A}^{n}_{t}),\vspace{0.2cm}\\ &\bar{Y}^{n}_{t}\geq L_{t},\quad 0\leq t\leq T,\vspace{0.2cm}\\ &\big{\{}-\int_{0}^{t}(\bar{Y}^{n}_{s}-L_{s})d\bar{A}^{n}_{s}\big{\}}_{t\in[0,T]}\textrm{ is a non-increasing $G$-martingale}.\end{cases}

By the comparison theorem for reflected GG-BSDEs, Y¯n\bar{Y}^{n} is non-increasing in nn. The purpose of the penalization term is to drive the solution Y¯n\bar{Y}^{n} downwards so that the limiting process YY (if it exists) remains below UU. Thus, the remaining challenge is to demonstrate that the sequence Y¯n\bar{Y}^{n} converges to some process YY, which is the first component of solution to the desired doubly reflected GG-BSDE. However, unlike in Li and Peng, (2020) and Li and Song, (2021), the main problem is that A¯n\bar{A}^{n} is no longer a GG-martingale. Consequently, we are unable to show that (Y¯nU)+(\bar{Y}^{n}-U)^{+} converges to 0 with the explicit rate 1n\frac{1}{n}.

Then we found that for n,mn,m\in\mathbb{N}, we could consider the following family of GG-BSDEs instead:

Ytn,m=ξ+tTf(s,Ysn,m,Zsn,m)𝑑s+tTg(s,Ysn,m,Zsn,m)dBstTZsn,m𝑑Bs+tTm(Ysn,mLs)𝑑stTn(Ysn,mUs)+𝑑s(KTn,mKtn,m),\begin{split}Y^{n,m}_{t}=&\xi+\int_{t}^{T}f(s,Y^{n,m}_{s},Z^{n,m}_{s})ds+\int_{t}^{T}g(s,Y^{n,m}_{s},Z^{n,m}_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}^{n,m}dB_{s}\\ &+\int_{t}^{T}m(Y_{s}^{n,m}-L_{s})^{-}ds-\int_{t}^{T}n(Y_{s}^{n,m}-U_{s})^{+}ds-(K_{T}^{n,m}-K_{t}^{n,m}),\end{split}

and set Atn,m,+=0tm(Ysn,mLs)𝑑sA^{n,m,+}_{t}=\int_{0}^{t}m(Y_{s}^{n,m}-L_{s})^{-}ds and Atn,m,=0tn(Ysn,mUs)+𝑑sA^{n,m,-}_{t}=\int_{0}^{t}n(Y_{s}^{n,m}-U_{s})^{+}ds. By letting mm tend to infinity, we can demonstrate that (Yn,m,Zn,m,An,m,+Kn,m)(Y^{n,m},Z^{n,m},A^{n,m,+}-K^{n,m}) converges to (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}). Then, as nn tends to infinity, (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}) converges to (Y,Z,A)(Y,Z,A), the solution of the doubly reflected GG-BSDE. Specifically, the penalized GG-BSDEs with parameters nn and mm enable us to determine the convergence rate of (Yn,mU)+(Y^{n,m}-U)^{+}, with an explicit rate of 1n\frac{1}{n}, uniformly in mm (refer to Lemma 3.4). Consequently, the convergence rate remains consistent for the limit process (Y¯nU)+(\bar{Y}^{n}-U)^{+}. However, achieving uniform boundedness of Yn,mY^{n,m} requires a different approach than the one used in Li and Song, (2021). Therefore, we abandoned the application of GG-Itô’s formula and instead resorted to employing comparison results. Although this approach is not novel and dates back decades to Peng and Xu, (2005), its application in the context of reflected GG-BSDEs is innovative. Our first main result, establishing the well-posedness of doubly reflected GG-BSDEs and their approximating sequences, is presented in Theorem 3.2.

Indeed, the approach that can be used to answer those three natural questions is considerably more intricate than the methods employed in Li and Song, (2021). However, the existence of the non-increasing GG-martingale introduces a disparity between reflected GG-BSDEs with upper and lower obstacles. The inclusion of both the non-increasing GG-martingale and the non-increasing process for pulling down the solution results in a finite variation process, complicating the derivation of a priori estimates. Consequently, we made every effort to recycle results from Li and Song, (2021) and extend certain preliminary results. For example, Proposition 3.7 extends Proposition 3.1 in Li and Song, (2021) in two aspects. Both propositions aim to assess the difference between the first components of solutions to doubly reflected GG-BSDEs. Notably, in Proposition 3.7, the obstacles of the doubly reflected GG-BSDEs are permitted to vary, while in Proposition 3.1 in Li and Song, (2021), equality is assumed for the obstacles, i.e., L1L2L^{1}\equiv L^{2} and U1U2U^{1}\equiv U^{2}, making it a special case of our condition. Moreover, our general conditions are even more relaxed. The advantage of this construction is that Y¯n\bar{Y}^{n} is non-increasing in nn and the solution Y¯n\bar{Y}^{n} provides a probabilistic representation for the PDE with an obstacle in a Markovian setting, which enable us to establish the connection between doubly reflected GG-BSDEs and PDEs with two obstacles in the last section. Generally speaking, in a Markovian framework, the solution YY of the doubly reflected GG-BSDE is the unique viscosity solution of the associated double obstacle PDE, which extends the result in Hamadene and Hassani, (2005) to the fully nonlinear case. Our second main result, the function uu defined in (4.3) being the solution to the fully nonlinear obstacle problem (4.4), is presented in Theorem 4.6.

1.3 Organization of the paper

The remaining sections of the paper are structured as follows. In Section 2, we provide an overview of fundamental concepts and findings pertaining to GG-expectation, GG-BSDEs, and reflected GG-BSDEs. In Section 3, we delve into the investigation of doubly reflected GG-BSDEs and establish their well-posedness. In Section 4, we establish the relationship between fully nonlinear PDEs with double obstacles and doubly reflected GG-BSDEs. Throughout the paper, the letter CC, with or without subscripts, will represent a positive constant whose value may vary from line to line.

2 Preliminaries

We provide a brief overview of fundamental concepts and findings concerning GG-expectation, GG-BSDEs, and reflected GG-BSDEs. To keep it concise, we focus solely on the one-dimensional case. For further elaboration, interested readers are encouraged to consult Hu et al., 2014a ; Hu et al., 2014b ; Li et al., 2018b ; Peng, (2007, 2008, 2019).

2.1 GG-expectation and GG-Itô’s calculus

Let ΩT=C0([0,T];)\Omega_{T}=C_{0}([0,T];\mathbb{R}), the space of real-valued continuous functions starting from the origin, i.e., ω0=0\omega_{0}=0 for any ωΩT\omega\in\Omega_{T}, be endowed with the supremum norm. Let (ΩT)\mathcal{B}(\Omega_{T}) be the Borel set and BB be the canonical process. Set

Lip(ΩT):={φ(Bt1,,Btn):n,t1,,tn[0,T],φCb,Lip(n)},L_{ip}(\Omega_{T}):=\Big{\{}\varphi(B_{t_{1}},...,B_{t_{n}}):\ n\in\mathbb{N},\ t_{1},\cdots,t_{n}\in[0,T],\ \varphi\in C_{b,Lip}(\mathbb{R}^{n})\Big{\}},

where Cb,Lip(n)C_{b,Lip}(\mathbb{R}^{n}) denotes the set of all bounded Lipschitz functions on n\mathbb{R}^{n}. We fix a sublinear and monotone function G:G:\mathbb{R}\rightarrow\mathbb{R} defined by

G(a):=12(σ¯2a+σ¯2a),\displaystyle G(a):=\frac{1}{2}(\overline{\sigma}^{2}a^{+}-\underline{\sigma}^{2}a^{-}), (2.1)

where 0<σ¯2<σ¯20<\underline{\sigma}^{2}<\overline{\sigma}^{2}. The associated GG-expectation on (ΩT,Lip(ΩT))(\Omega_{T},L_{ip}(\Omega_{T})) can be constructed in the following way. Given that ξLip(ΩT)\xi\in L_{ip}(\Omega_{T}) can be represented as ξ=φ(Bt1,Bt2,,Btn)\xi=\varphi(B_{{t_{1}}},B_{t_{2}},\cdots,B_{t_{n}}), set for t[tk1,tk)t\in[t_{k-1},t_{k}) with k=1,,nk=1,\cdots,n,

𝔼^t[φ(Bt1,Bt2,,Btn)]:=uk(t,Bt;Bt1,,Btk1),\widehat{\mathbb{E}}_{t}[\varphi(B_{{t_{1}}},B_{t_{2}},\cdots,B_{t_{n}})]:=u_{k}(t,B_{t};B_{t_{1}},\cdots,B_{t_{k-1}}),

where uk(t,x;x1,,xk1)u_{k}(t,x;x_{1},\cdots,x_{k-1}) is a function of (t,x)(t,x) parameterized by (x1,,xk1)(x_{1},\cdots,x_{k-1}) such that it solves the following fully nonlinear PDE defined on [tk1,tk)×[t_{k-1},t_{k})\times\mathbb{R}:

tuk+G(x2uk)=0,\partial_{t}u_{k}+G(\partial_{x}^{2}u_{k})=0,

whose terminal conditions are given by

{uk(tk,x;x1,,xk1)=uk+1(tk,x;x1,,xk1,x),k<n,un(tn,x;x1,,xn1)=φ(x1,,xn1,x).\begin{cases}u_{k}(t_{k},x;x_{1},\cdots,x_{k-1})=u_{k+1}(t_{k},x;x_{1},\cdots,x_{k-1},x),\quad k<n,\\ u_{n}(t_{n},x;x_{1},\cdots,x_{n-1})=\varphi(x_{1},\cdots,x_{n-1},x).\end{cases}

Hence, the GG-expectation of ξ\xi is 𝔼^0[ξ]\widehat{\mathbb{E}}_{0}[\xi], denoted as 𝔼^[ξ]\widehat{\mathbb{E}}[\xi] for simplicity. The triple (ΩT,Lip(ΩT),𝔼^)(\Omega_{T},L_{ip}(\Omega_{T}),\widehat{\mathbb{E}}) is called the GG-expectation space and the process BB is the GG-Brownian motion.

For ξLip(ΩT)\xi\in L_{ip}(\Omega_{T}) and p1p\geq 1, we define

ξLGp:=(𝔼^|ξ|p])1/p.\|\xi\|_{L_{G}^{p}}:=(\widehat{\mathbb{E}}|\xi|^{p}])^{1/p}.

The completion of Lip(ΩT)L_{ip}(\Omega_{T}) under this norm is denote by LGp(Ω)L_{G}^{p}(\Omega). For all t[0,T]t\in[0,T], 𝔼^t[]\widehat{\mathbb{E}}_{t}[\cdot] is a continuous mapping on Lip(ΩT)L_{ip}(\Omega_{T}) w.r.t the norm LG1\|\cdot\|_{L_{G}^{1}}. Hence, the conditional GG-expectation 𝔼^t[]\mathbb{\widehat{E}}_{t}[\cdot] can be extended continuously to the completion LG1(ΩT)L_{G}^{1}(\Omega_{T}). Furthermore, Denis et al., (2011) proved that the GG-expectation has the following representation.

Theorem 2.1 (Denis et al., (2011))

There exists a weakly compact set 𝒫\mathcal{P} of probability measures on (ΩT,(ΩT))(\Omega_{T},\mathcal{B}(\Omega_{T})), such that

𝔼^[ξ]=supP𝒫EP[ξ],ξLG1(ΩT).\widehat{\mathbb{E}}[\xi]=\sup_{P\in\mathcal{P}}E_{P}[\xi],\qquad\forall\xi\in{L}_{G}^{1}{(\Omega_{T})}.

We call 𝒫\mathcal{P} a set that represents 𝔼^\widehat{\mathbb{E}}.

For 𝒫\mathcal{P} being a weakly compact set that represents 𝔼^\widehat{\mathbb{E}}, we define the capacity

c(A):=supP𝒫P(A),A(ΩT).c(A):=\sup_{P\in\mathcal{P}}P(A),\qquad\forall A\in\mathcal{B}(\Omega_{T}).

A set A(ΩT)A\in\mathcal{B}(\Omega_{T}) is called polar if c(A)=0c(A)=0. A property holds ``quasi``quasi-surely"surely" (q.s.) if it holds outside a polar set. In the sequel, we do not distinguish two random variables XX and YY if X=YX=Y, q.s..

Definition 2.2

Let MG0(0,T)M_{G}^{0}(0,T) be the collection of processes such that

ηt(ω)=j=0N1ξj(ω)𝟙[tj,tj+1)(t),\eta_{t}(\omega)=\sum_{j=0}^{N-1}\xi_{j}(\omega)\mathbbm{1}_{[t_{j},t_{j+1})}(t),

where ξiLip(Ωti)\xi_{i}\in L_{ip}(\Omega_{t_{i}}) for a given partition {t0,,tN}\{t_{0},\cdot\cdot\cdot,t_{N}\} of [0,T][0,T]. For each p1p\geq 1 and ηMG0(0,T)\eta\in M_{G}^{0}(0,T), denote

ηHGp:={𝔼^(0T|ηs|2𝑑s)p/2}1/pandηMGp:={𝔼^(0T|ηs|p𝑑s)}1/p.\|\eta\|_{H_{G}^{p}}:=\left\{\widehat{\mathbb{E}}\bigg{(}\int_{0}^{T}|\eta_{s}|^{2}ds\bigg{)}^{p/2}\right\}^{1/p}\quad\text{and}\quad\|\eta\|_{M_{G}^{p}}:=\left\{\widehat{\mathbb{E}}\bigg{(}\int_{0}^{T}|\eta_{s}|^{p}ds\bigg{)}\right\}^{1/p}.

Let HGp(0,T)H_{G}^{p}(0,T) and MGp(0,T)M_{G}^{p}(0,T) be the completions of MG0(0,T)M_{G}^{0}(0,T) under the norms HGp\|\cdot\|_{H_{G}^{p}} and MGp\|\cdot\|_{M_{G}^{p}}, respectively.

Denote by B\langle B\rangle the quadratic variation process of the GG-Brownian motion BB. For two processes ξMG1(0,T)\xi\in M_{G}^{1}(0,T) and ηMG2(0,T)\eta\in M_{G}^{2}(0,T), the GG-Itô integrals (0tξsdBs)0tT(\int^{t}_{0}\xi_{s}d\langle B\rangle_{s})_{0\leq t\leq T} and (0tηs𝑑Bs)0tT(\int^{t}_{0}\eta_{s}dB_{s})_{0\leq t\leq T} are well defined, see Li and Peng, (2011) and Peng, (2019). The following proposition can be regarded as the Burkholder–Davis–Gundy inequality under the GG-expectation framework.

Proposition 2.3 (Hu et al., 2014b )

If ηHGα(0,T)\eta\in H_{G}^{\alpha}(0,T) with α1\alpha\geq 1 and p(0,α]p\in(0,\alpha], then we have

σ¯pc𝔼^t(tT|ηs|2𝑑s)p/2𝔼^t[supu[t,T]|tuηs𝑑Bs|p]σ¯pC𝔼^t(tT|ηs|2𝑑s)p/2,\underline{\sigma}^{p}c\widehat{\mathbb{E}}_{t}\bigg{(}\int_{t}^{T}|\eta_{s}|^{2}ds\bigg{)}^{p/2}\leq\widehat{\mathbb{E}}_{t}\bigg{[}\sup_{u\in[t,T]}\bigg{|}\int_{t}^{u}\eta_{s}dB_{s}\bigg{|}^{p}\bigg{]}\leq\bar{\sigma}^{p}C\widehat{\mathbb{E}}_{t}\bigg{(}\int_{t}^{T}|\eta_{s}|^{2}ds\bigg{)}^{p/2},

where 0<c<C<0<c<C<\infty are constants depending on p,Tp,T.

Let

SG0(0,T):={h(t,Bt1t,,Btnt):t1,,tn[0,T],hCb,Lip(n+1)}.S_{G}^{0}(0,T):=\Big{\{}h(t,B_{t_{1}\wedge t},\ldots,B_{t_{n}\wedge t}):t_{1},\ldots,t_{n}\in[0,T],\;h\in C_{b,Lip}(\mathbb{R}^{n+1})\Big{\}}.

For p1p\geq 1 and ηSG0(0,T)\eta\in S_{G}^{0}(0,T), set

ηSGp:={𝔼^supt[0,T]|ηt|p}1/p.\|\eta\|_{S_{G}^{p}}:=\left\{\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\eta_{t}|^{p}\right\}^{1/p}.

Denote by SGp(0,T)S_{G}^{p}(0,T) the completion of SG0(0,T)S_{G}^{0}(0,T) under the norm SGp\|\cdot\|_{S_{G}^{p}}. We have the following uniform continuity property for the processes in SGp(0,T)S_{G}^{p}(0,T).

Proposition 2.4 (Li et al., 2018a )

For YSGp(0,T)Y\in S_{G}^{p}(0,T) with p1p\geq 1, we have, by setting Ys:=YTY_{s}:=Y_{T} for s>Ts>T,

lim supε0𝔼^[supt[0,T]sups[t,t+ε]|YtYs|p]=0.\displaystyle\limsup_{\varepsilon\rightarrow 0}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}\sup_{s\in[t,t+\varepsilon]}|Y_{t}-Y_{s}|^{p}\right]=0.

For ξLip(ΩT)\xi\in L_{ip}(\Omega_{T}), let

(ξ):=𝔼^[supt[0,T]𝔼^t[ξ]].\mathcal{E}(\xi):=\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}[\xi]\right].

For p1p\geq 1 and ξLip(ΩT)\xi\in L_{ip}(\Omega_{T}), define

ξp,:=[(|ξ|p)]1/p\|\xi\|_{p,\mathcal{E}}:=[\mathcal{E}(|\xi|^{p})]^{1/p}

and denote by Lp(ΩT)L_{\mathcal{E}}^{p}(\Omega_{T}) the completion of Lip(ΩT)L_{ip}(\Omega_{T}) under p,\|\cdot\|_{p,\mathcal{E}}. The following theorem can be regarded as the Doob’s maximal inequality under the GG-expectation.

Theorem 2.5 (Song, (2011))

For any α1\alpha\geq 1 and δ>0\delta>0, LGα+δ(ΩT)Lα(ΩT)L_{G}^{\alpha+\delta}(\Omega_{T})\subset L_{\mathcal{E}}^{\alpha}(\Omega_{T}). More precisely, for any 1<γ<β:=(α+δ)/α1<\gamma<\beta:=(\alpha+\delta)/\alpha and γ2\gamma\leq 2, we have

ξα,αγ{ξLGα+δα+141/γCβ/γξLGα+δ(α+δ)/γ},ξLip(ΩT),\|\xi\|_{\alpha,\mathcal{E}}^{\alpha}\leq\gamma^{*}\Big{\{}\|\xi\|_{L_{G}^{\alpha+\delta}}^{\alpha}+14^{1/\gamma}C_{\beta/\gamma}\|\xi\|_{L_{G}^{\alpha+\delta}}^{(\alpha+\delta)/\gamma}\Big{\}},\qquad\forall\xi\in L_{ip}(\Omega_{T}),

where Cβ/γ=i=1iβ/γC_{\beta/\gamma}=\sum_{i=1}^{\infty}i^{-\beta/\gamma} and γ=γ/(γ1)\gamma^{*}=\gamma/(\gamma-1).

We can see that unlike the classical case, the order of the right-hand side is strictly greater than that of the left-hand side under the GG-expectation.

2.2 GG-BSDEs

We review some fundamental results about GG-BSDEs. The solution of GG-BSDE with terminal value ξ\xi and generators f,gf,g, is a triple of processes (Y,Z,A)(Y,Z,A) evolve according to the following equation:

Yt=ξ+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs(KTKt),Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}dB_{s}-(K_{T}-K_{t}), (2.2)

where YSGα(0,T)Y\in S_{G}^{\alpha}(0,T), ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T), and KK is a non-increasing GG-martingale such that K0=0K_{0}=0 and KTLGα(ΩT)K_{T}\in L_{G}^{\alpha}(\Omega_{T}). To establish the well-posedness of the GG-BSDE (2.2), consider the generators

f(t,ω,y,z),g(t,ω,y,z):[0,T]×ΩT××f(t,\omega,y,z),\ g(t,\omega,y,z):[0,T]\times\Omega_{T}\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}

satisfy the following properties:

(H1)

There exists some β>1\beta>1, such that for any y,zy,z\in\mathbb{R}, f(,,y,z),g(,,y,z)MGβ(0,T)f(\cdot,\cdot,y,z),\ g(\cdot,\cdot,y,z)\in M_{G}^{\beta}(0,T);

(H2)

There exists some κ>0\kappa>0, such that

|f(t,ω,y,z)f(t,ω,y,z)|+|g(t,ω,y,z)g(t,ω,y,z)|κ(|yy|+|zz|);|f(t,\omega,y,z)-f(t,\omega,y^{\prime},z^{\prime})|+|g(t,\omega,y,z)-g(t,\omega,y^{\prime},z^{\prime})|\leq\kappa(|y-y^{\prime}|+|z-z^{\prime}|);
(H3)

The terminal value ξLGβ(ΩT)\xi\in L_{G}^{\beta}(\Omega_{T}).

Theorem 2.6 (Hu et al., 2014a )

Assuming that f,g,ξf,g,\xi satisfy (H1)-(H3), for any 1<α<β1<\alpha<\beta, the GG-BSDE (2.2) has a unique solution (Y,Z,K)(Y,Z,K) satisfying that YSGα(0,T)Y\in S_{G}^{\alpha}(0,T), ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T), and KK is a non-increasing GG-martingale such that K0=0K_{0}=0 and KTLGα(ΩT)K_{T}\in L_{G}^{\alpha}(\Omega_{T}). Moreover,

|Yt|αC𝔼^t[|ξ|α+tT(|f(s,0,0)|α+|g(s,0,0)|α)𝑑s],|Y_{t}|^{\alpha}\leq C\widehat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}+\int_{t}^{T}\big{(}|f(s,0,0)|^{\alpha}+|g(s,0,0)|^{\alpha}\big{)}ds\right],

where the constant CC depends on α\alpha, TT, σ¯\underline{\sigma} and κ\kappa.

The following results will be needed in our proofs. Note that (Y,Z,K)(Y,Z,K) in Theorem 2.7 is not the solution to the GG-BSDE (2.2).

Theorem 2.7 (Li and Song, (2021))

Let f,gf,g satisfy (H1) and (H2) for some β>1\beta>1. Assume

Yt=ξ+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs(KTKt)+(ATAt),Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}dB_{s}-(K_{T}-K_{t})+(A_{T}-A_{t}),

where YSGα(0,T)Y\in S_{G}^{\alpha}(0,T), ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T), and both KK and AA are non-increasing processes such that A0=K0=0A_{0}=K_{0}=0 and AT,KTLGα(ΩT)A_{T},K_{T}\in L_{G}^{\alpha}(\Omega_{T}) for some 1<α<β1<\alpha<\beta. Then there exists a constant CC that depends on α\alpha, TT, σ¯\underline{\sigma} and κ\kappa, such that

𝔼^(0T|Zs|2𝑑s)α2\displaystyle\mathbb{\widehat{E}}\left(\int_{0}^{T}|Z_{s}|^{2}ds\right)^{\frac{\alpha}{2}}
C{𝔼^|YT|α+(𝔼^|YT|α)12[(𝔼^(0T|f(s,0,0)|ds)α)12\displaystyle\leq C\Bigg{\{}\mathbb{\widehat{E}}|Y^{*}_{T}|^{\alpha}+\big{(}\mathbb{\widehat{E}}|Y^{*}_{T}|^{\alpha}\big{)}^{\frac{1}{2}}\bigg{[}\bigg{(}\mathbb{\widehat{E}}\bigg{(}\int_{0}^{T}|f(s,0,0)|ds\bigg{)}^{\alpha}\bigg{)}^{\frac{1}{2}}
+(𝔼^(0T|g(s,0,0)|ds)α)12+(mαA,K)1/2]},\displaystyle\hskip 142.26378pt+\bigg{(}\mathbb{\widehat{E}}\bigg{(}\int_{0}^{T}|g(s,0,0)|ds\bigg{)}^{\alpha}\bigg{)}^{\frac{1}{2}}+\big{(}m_{\alpha}^{A,K}\big{)}^{1/2}\bigg{]}\Bigg{\}},

where YT=supt[0,T]|Yt|Y^{*}_{T}=\sup_{t\in[0,T]}|Y_{t}| and mαA,K=min{𝔼^|AT|α,𝔼^|KT|α}m_{\alpha}^{A,K}=\min\Big{\{}\widehat{\mathbb{E}}|A_{T}|^{\alpha},\,\widehat{\mathbb{E}}|K_{T}|^{\alpha}\Big{\}}.

Similar to the classical case, the comparison theorem for GG-BSDEs still holds.

Theorem 2.8 (Hu et al., 2014b )

For l=1,2l=1,2, let (Ytl,Ztl,Ktl)tT(Y_{t}^{l},Z_{t}^{l},K_{t}^{l})_{t\leq T} be the solution of the following GG-BSDE:

Ytl=ξl+tTfl(s,Ysl,Zsl)𝑑s+tTgl(s,Ysl,Zsl)dBs+VTlVtltTZsl𝑑Bs(KTlKtl),Y^{l}_{t}=\xi^{l}+\int_{t}^{T}f^{l}(s,Y^{l}_{s},Z^{l}_{s})ds+\int_{t}^{T}g^{l}(s,Y^{l}_{s},Z^{l}_{s})d\langle B\rangle_{s}+V_{T}^{l}-V_{t}^{l}-\int_{t}^{T}Z^{l}_{s}dB_{s}-(K^{l}_{T}-K^{l}_{t}),

where processes {Vtl}0tT\{V_{t}^{l}\}_{0\leq t\leq T} are assumed to be right-continuous with left limits q.s., such that 𝔼^[supt[0,T]|Vtl|β]<\widehat{\mathbb{E}}[\sup_{t\in[0,T]}|V_{t}^{l}|^{\beta}]<\infty. Assuming that ξl\xi^{l}, fl,glf^{l},\ g^{l} satisfy (H1)-(H3) for l=1,2l=1,2, if ξ1ξ2\xi^{1}\geq\xi^{2}, f1f2f^{1}\geq f^{2}, g1g2g^{1}\geq g^{2}, and V1V2V^{1}-V^{2} is a non-decreasing process, then Yt1Yt2Y_{t}^{1}\geq Y_{t}^{2}.

In contrast to classical BSDEs, the inclusion of the additional non-increasing GG-martingale KK in GG-BSDEs introduces model uncertainty and complicates the analysis. Song, (2019) demonstrated that the non-increasing GG-martingale cannot be expressed in the form 0tηs𝑑t{\int_{0}^{t}\eta_{s}dt} or 0tγsdBs{\int_{0}^{t}\gamma_{s}d\langle B\rangle_{s}}, where η,γMG1(0,T)\eta,\gamma\in M_{G}^{1}(0,T). Specifically, the author established the following result.

Theorem 2.9 (Song, (2019))

Assume that for t[0,T]t\in[0,T],

0tζs𝑑Bs+0tηs𝑑s+Kt=Lt,\int_{0}^{t}\zeta_{s}dB_{s}+\int_{0}^{t}\eta_{s}ds+K_{t}=L_{t},

where ζHG1(0,T)\zeta\in H_{G}^{1}(0,T), ηMG1(0,T)\eta\in M_{G}^{1}(0,T), and K,LK,L are non-increasing GG-martingales. Then we have

0tζs𝑑Bs=0,0tηs𝑑s=0andKt=Lt.\int_{0}^{t}\zeta_{s}dB_{s}=0,\quad\int_{0}^{t}\eta_{s}ds=0\quad\text{and}\quad K_{t}=L_{t}.

We call the following process uu a generalized GG-Itô process:

ut=u0+0tηs𝑑s+0tζs𝑑Bs+Kt,u_{t}=u_{0}+\int_{0}^{t}\eta_{s}ds+\int_{0}^{t}\zeta_{s}dB_{s}+K_{t},

where ηMG1(0,T)\eta\in M_{G}^{1}(0,T), ζHG1(0,T)\zeta\in H_{G}^{1}(0,T), and KK is a non-increasing GG-martingale such that K0=0K_{0}=0. By Theorem 2.9, the decomposition of the generalized GG-Itô process is unique.

2.3 Reflected GG-BSDEs with a single obstacle

Now we review the reflected GG-BSDE with a lower obstacle studied in Li et al., 2018b . Their parameters consist of a terminal value ξ\xi, generators f,gf,g, and an obstacle LL, where LL satisfies the following condition:

(H4)

LSGβ(0,T)L\in S_{G}^{\beta}(0,T) is bounded from above by a generalized GG-Itô process LL^{\prime} of the following form:

Lt=L0+0tb(s)𝑑s+0tσ(s)𝑑Bs+Kt,L^{\prime}_{t}=L^{\prime}_{0}+\int_{0}^{t}b^{\prime}(s)ds+\int_{0}^{t}\sigma^{\prime}(s)dB_{s}+K^{\prime}_{t},

where bMGβ(0,T)b^{\prime}\in M_{G}^{\beta}(0,T), σHGβ(0,T)\sigma^{\prime}\in H_{G}^{\beta}(0,T), and KSGβ(0,T)K^{\prime}\in S_{G}^{\beta}(0,T) is a non-increasing GG-martingale such that K0=0K^{\prime}_{0}=0 and β>2\beta>2. Additionally, ξLT\xi\geq L_{T} q.s.

A triple of processes (Y,Z,A)(Y,Z,A) for some 1<α<β1<\alpha<\beta, is called a solution of the reflected GG-BSDE with a lower obstacle with parameters (ξ,f,g,L)(\xi,f,g,L), if

{Yt=ξ+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs+(ATAt),YtLt,0tT,{0t(YsLs)𝑑As}t[0,T] is a non-increasing G-martingale,\displaystyle\begin{cases}Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}dB_{s}+(A_{T}-A_{t}),\vspace{0.2cm}\\ Y_{t}\geq L_{t},\quad 0\leq t\leq T,\vspace{0.2cm}\\ \big{\{}-\int_{0}^{t}(Y_{s}-L_{s})dA_{s}\big{\}}_{t\in[0,T]}\textrm{ is a non-increasing $G$-martingale},\end{cases} (2.3)

where YSGα(0,T)Y\in S_{G}^{\alpha}(0,T), ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T), and AA is a continuous non-decreasing process such that A0=0A_{0}=0 and ASGα(0,T)A\in S_{G}^{\alpha}(0,T). The following theorem provides the well-posedness of the reflected GG-BSDE (2.3).

Theorem 2.10 (Li et al., 2018b )

Suppose that ξ\xi, ff, gg and LL satisfy (H1)(H4) with β>2\beta>2. Then the reflected GG-BSDE (2.3) has a unique solution (Y,Z,A)(Y,Z,A). Moreover, for any 2α<β2\leq\alpha<\beta we have YSGα(0,T)Y\in S^{\alpha}_{G}(0,T), ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T) and ASGα(0,T)A\in S_{G}^{\alpha}(0,T).

The following theorem provides the comparison theorem for the reflected GG-BSDE (2.3).

Theorem 2.11 (Li et al., 2018b )

Suppose ξi\xi^{i}, LiL^{i}, fif^{i} and gig^{i} for i=1,2i=1,2 satisfy (H1)(H4) with β>2\beta>2. Furthermore, assume the following:

  1. (i)

    ξ1ξ2\xi^{1}\leq\xi^{2}, q.s.q.s.;

  2. (ii)

    f1(t,y,z)f2(t,y,z)f^{1}(t,y,z)\leq f^{2}(t,y,z) and g1(t,y,z)g2(t,y,z)g^{1}(t,y,z)\leq g^{2}(t,y,z), (y,z)2\forall(y,z)\in\mathbb{R}^{2};

  3. (iii)

    Lt1Lt2L_{t}^{1}\leq L^{2}_{t}, 0tT0\leq t\leq T, q.s..

Let (Yi,Zi,Ai)(Y^{i},Z^{i},A^{i}) be the solution of the reflected GG-BSDE (2.3) with parameters (ξi,fi,gi,Li)(\xi^{i},f^{i},g^{i},L^{i}) for i=1,2i=1,2. Then Yt1Yt2Y_{t}^{1}\leq Y^{2}_{t} for 0tT0\leq t\leq T q.s.

3 Well-posedness of doubly reflected GG-BSDEs

In this section, we consider doubly reflected GG-BSDEs and establish their well-posedness. Specifically, in Subsection 3.1, we first define their solutions and present our first main result in Theorem 3.2; in Subsection 3.2, we conduct preliminary analysis; Subsection 3.3 is dedicated to the Proof of Theorem 3.2.

3.1 Doubly reflected GG-BSDEs

A triple of processes (Y,Z,A)(Y,Z,A), with Y,ASGα(0,T)Y,A\in S_{G}^{\alpha}(0,T) and ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T) for some 2α<β2\leq\alpha<\beta, is called a solution to the doubly reflected GG-BSDE with the parameters (ξ,f,g,L,U)(\xi,f,g,L,U), if

{Yt=ξ+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs+(ATAt),LtYtUt,0tT,(Y,A) satisfies the ASCα.\displaystyle\begin{cases}Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}dB_{s}+(A_{T}-A_{t}),\vspace{0.2cm}\\ L_{t}\leq Y_{t}\leq U_{t},\quad 0\leq t\leq T,\vspace{0.2cm}\\ (Y,A)\textrm{ satisfies the }\textmd{ASC}_{\alpha}.\end{cases} (3.1)

A pair of processes (Y,A)(Y,A) with Y,ASGα(0,T)Y,A\in S_{G}^{\alpha}(0,T) is said to satisfy the ASCα\textmd{ASC}_{\alpha}, if there exist non-decreasing processes {An,+}n\{A^{n,+}\}_{n\in\mathbb{N}}, {An,}n\{A^{n,-}\}_{n\in\mathbb{N}}, and non-increasing GG-martingales {Kn}n\{K^{n}\}_{n\in\mathbb{N}}, such that

  • 𝔼^[|ATn,+|α+|ATn,|α+|KTn|α]C\widehat{\mathbb{E}}\Big{[}|A_{T}^{n,+}|^{\alpha}+|A_{T}^{n,-}|^{\alpha}+|K^{n}_{T}|^{\alpha}\Big{]}\leq C, where CC is independent of nn;

  • 𝔼^supt[0,T]|At(Atn,+Atn,Ktn)|α0\widehat{\mathbb{E}}\sup\limits_{t\in[0,T]}\Big{|}A_{t}-(A_{t}^{n,+}-A_{t}^{n,-}-K_{t}^{n})\Big{|}^{\alpha}\rightarrow 0, as nn\rightarrow\infty;

  • limn𝔼^|0T(YsLs)𝑑Asn,+|α/2=0\lim\limits_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{0}^{T}(Y_{s}-L_{s})dA_{s}^{n,+}\right|^{\alpha/2}=0;

  • limn𝔼^|0T(UsYs)𝑑Asn,|α/2=0\lim\limits_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{0}^{T}(U_{s}-Y_{s})dA_{s}^{n,-}\right|^{\alpha/2}=0.

We call {An,+}n\{A^{n,+}\}_{n\in\mathbb{N}}, {An,}n\{A^{n,-}\}_{n\in\mathbb{N}}, and {Kn}n\{K^{n}\}_{n\in\mathbb{N}} the approximate sequences for (Y,A)(Y,A) with order α\alpha w.r.t. the lower obstacle LL and the upper obstacle UU.

Consider the parameters of the doubly reflected GG-BSDE (3.1), namely the terminal value ξ\xi, the generators f,gf,g, and the obstacles L,UL,U, satisfy (H2), (H3) and the following assumptions:

(A1)

There exists some β>2\beta>2, such that for any y,zy,z\in\mathbb{R}, f(,,y,z)f(\cdot,\cdot,y,z), g(,,y,z)SGβ(0,T)g(\cdot,\cdot,y,z)\in S_{G}^{\beta}(0,T);

(A2)

LL, USGβ(0,T)U\in S_{G}^{\beta}(0,T). There exists some ISGβ(0,T)I\in S_{G}^{\beta}(0,T) satisfying the following representation:

It=I0+AtI,AtI,++0tσI(s)𝑑Bs.I_{t}=I_{0}+A^{I,-}_{t}-A_{t}^{I,+}+\int_{0}^{t}\sigma^{I}(s)dB_{s}.

Here, AI,+A^{I,+}, AI,SGβ(0,T)A^{I,-}\in S_{G}^{\beta}(0,T) are two non-decreasing processes such that A0I,+=A0I,=0A^{I,+}_{0}=A^{I,-}_{0}=0; σISGβ(0,T)\sigma^{I}\in S_{G}^{\beta}(0,T) satisfies LtItUtL_{t}\leq I_{t}\leq U_{t}; U+AI,+U+A^{I,+} is a generalized GG-Itô process evolves according to

Ut+AtI,+=U0+0tb(s)𝑑s+0tσ(s)𝑑Bs+Ktu,U_{t}+A^{I,+}_{t}=U_{0}+\int_{0}^{t}b(s)ds+\int_{0}^{t}\sigma(s)dB_{s}+K^{u}_{t}, (3.2)

where b,σSGβ(0,T)b,\sigma\in S_{G}^{\beta}(0,T), and KuSGβ(0,T)K^{u}\in S_{G}^{\beta}(0,T) is a non-increasing GG-martingale such that K0u=0K^{u}_{0}=0. Additionally, LTξUTL_{T}\leq\xi\leq U_{T}, q.s..

Remark 3.1

In comparison to Li and Song, (2021), their conditions are the same as ours except Assumption (A3) therein which corresponds to our Assumption (A2), while ours is weaker. Specifically, their (A3) says that the upper obstacle is a generalized GG-Itô process of the following form:

Ut=U0+0tbU(s)𝑑s+0tσU(s)𝑑Bs+KtU,U_{t}=U_{0}+\int_{0}^{t}b^{U}(s)ds+\int_{0}^{t}\sigma^{U}(s)dB_{s}+K^{U}_{t},

where bU,σUSGβ(0,T)b^{U},\sigma^{U}\in S_{G}^{\beta}(0,T), and KUSGβ(0,T)K^{U}\in S_{G}^{\beta}(0,T) is a non-increasing GG-martingale. Setting

I=U,σI=σU,AtI,=0t(bU(s))+𝑑s,andAtI,+=0t(bU(s))𝑑sKtU,I=U,\qquad\sigma^{I}=\sigma^{U},\qquad A^{I,-}_{t}=\int_{0}^{t}(b^{U}(s))^{+}ds,\quad\text{and}\quad A^{I,+}_{t}=\int_{0}^{t}(b^{U}(s))^{-}ds-K^{U}_{t},

their (L,U)(L,U) pair clearly satisfies (A2) of this paper.

Theorem 3.2 below is our first main result. It firstly estalishes the well-posedness of the doubly reflected GG-BSDE (3.1) using the weakest known regularity conditions. Secondly, it establishes that the first component of the solution to (3.1) can be approximated by a monotone sequence of processes, which are the solutions to a family of penalized single reflected GG-BSDEs. This construction will play a fundamental role to establishing the connection between doubly reflected GG-BSDEs and fully nonlinear PDEs with double obstacles. The proof of Theorem 3.2 is provided in Subsection 3.3.

Theorem 3.2

Assuming that ξ\xi, ff, gg, LL and UU satisfy Assumptions (H2)-(H3) and (A1)-(A2), the following properties hold for any 2α<β2\leq\alpha<\beta:

  1. (a)

    The doubly reflected GG-BSDE (3.1) has a unique solution (Y,Z,A)(Y,Z,A), such that YSGα(0,T)Y\in S^{\alpha}_{G}(0,T), ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T) and ASGα(0,T)A\in S_{G}^{\alpha}(0,T).

  2. (b)

    This YY can be approximated by a monotone decreasing sequence of processes Y¯n\bar{Y}^{n} (i.e. Y¯tn1Y¯tn2\bar{Y}^{n_{1}}_{t}\geq\bar{Y}^{n_{2}}_{t} for any n1n2n_{1}\leq n_{2}) in the sense that

    limn𝔼^supt[0,T]|YtY¯tn|α=0,\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}-\bar{Y}^{n}_{t}|^{\alpha}=0,

    where (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}) for each nn\in\mathbb{N} is the solution to the following reflected GG-BSDE:

    {Y¯tn=ξ+tTf(s,Y¯sn,Z¯sn)𝑑s+tTg(s,Y¯sn,Z¯sn)dBsntT(Y¯snUs)+𝑑stTZ¯sn𝑑Bs+(A¯TnA¯tn),Y¯tnLt,0tT,{0t(Y¯snLs)𝑑A¯sn}t[0,T] is a non-increasing G-martingale.\displaystyle\begin{cases}&\bar{Y}^{n}_{t}=\xi+\int_{t}^{T}f(s,\bar{Y}^{n}_{s},\bar{Z}^{n}_{s})ds+\int_{t}^{T}g(s,\bar{Y}^{n}_{s},\bar{Z}^{n}_{s})d\langle B\rangle_{s}-n\int_{t}^{T}(\bar{Y}^{n}_{s}-U_{s})^{+}ds\\ &\hskip 28.45274pt-\int_{t}^{T}\bar{Z}^{n}_{s}dB_{s}+(\bar{A}^{n}_{T}-\bar{A}^{n}_{t}),\vspace{0.2cm}\\ &\bar{Y}^{n}_{t}\geq L_{t},\quad 0\leq t\leq T,\vspace{0.2cm}\\ &\big{\{}-\int_{0}^{t}(\bar{Y}^{n}_{s}-L_{s})d\bar{A}^{n}_{s}\big{\}}_{t\in[0,T]}\textrm{ is a non-increasing $G$-martingale}.\end{cases} (3.3)
  3. (c)

    The remaining terms (Z,A)(Z,A) can be constructed by the penalized reflected GG-BSDEs (3.3), in the way that

    limn𝔼^(0T|Z¯snZs|2𝑑s)α2=0andlimn𝔼^supt[0,T]|A~tnAt|α=0,\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left(\int_{0}^{T}|\bar{Z}^{n}_{s}-Z_{s}|^{2}ds\right)^{\frac{\alpha}{2}}=0\quad\text{and}\quad\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widetilde{A}^{n}_{t}-A_{t}|^{\alpha}=0,

    where A~tn=A¯tn0tn(Y¯snUs)+𝑑s\widetilde{A}^{n}_{t}=\bar{A}^{n}_{t}-\int_{0}^{t}n(\bar{Y}^{n}_{s}-U_{s})^{+}ds.

3.2 Preliminary analysis

In this subsection, we conduct preliminary analysis in order to prove Theorem 3.2. Firstly, we aim to establish the uniform boundedness of Y¯n\bar{Y}^{n} under the norm SGα\|\cdot\|_{S_{G}^{\alpha}}. Note that by Theorem 2.10, the reflected GG-BSDE (3.3) admits a unique solution (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}) for any nn\in\mathbb{N}, satisfying YSGα(0,T)Y\in S_{G}^{\alpha}(0,T) and ZHGα(0,T)Z\in H_{G}^{\alpha}(0,T) for 1<α<β1<\alpha<\beta, and KK is a non-increasing GG-martingale such that K0=0K_{0}=0 and KTLGα(ΩT)K_{T}\in L_{G}^{\alpha}(\Omega_{T}). Then, we demonstrate that (Y¯nU)+(\bar{Y}^{n}-U)^{+} converges to 0 with an explicit rate of 1n\frac{1}{n} and subsequently derive uniform estimates for Z¯n\bar{Z}^{n} and A¯n\bar{A}^{n} under the norms HGα\|\cdot\|_{H_{G}^{\alpha}} and LGα\|\cdot\|_{L_{G}^{\alpha}}, respectively. However, given that A¯n\bar{A}^{n} is not a GG-martingale, we encounter some difficulties. To address this challenge, for each fixed nn\in\mathbb{N}, we approximate the solution to (3.3) by the solutions to the following family of GG-BSDEs parameterized by mm\in\mathbb{N}:

Ytn,m=ξ+tTf(s,Ysn,m,Zsn,m)𝑑s+tTg(s,Ysn,m,Zsn,m)dBstTZsn,m𝑑Bs+tTm(Ysn,mLs)𝑑stTn(Ysn,mUs)+𝑑s(KTn,mKtn,m).\begin{split}Y^{n,m}_{t}=&\xi+\int_{t}^{T}f(s,Y^{n,m}_{s},Z^{n,m}_{s})ds+\int_{t}^{T}g(s,Y^{n,m}_{s},Z^{n,m}_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}^{n,m}dB_{s}\\ &+\int_{t}^{T}m(Y_{s}^{n,m}-L_{s})^{-}ds-\int_{t}^{T}n(Y_{s}^{n,m}-U_{s})^{+}ds-(K_{T}^{n,m}-K_{t}^{n,m}).\end{split} (3.4)

Set

Atn,m,+=0tm(Ysn,mLs)𝑑sandAtn,m,=0tn(Ysn,mUs)+𝑑s.\displaystyle A^{n,m,+}_{t}=\int_{0}^{t}m(Y_{s}^{n,m}-L_{s})^{-}ds\quad\text{and}\quad A^{n,m,-}_{t}=\int_{0}^{t}n(Y_{s}^{n,m}-U_{s})^{+}ds. (3.5)

Clearly, An,m,+A^{n,m,+} and An,m,A^{n,m,-} are non-decreasing processes and Equation (3.4) can be rewritten as:

Ytn,m=ξ+tTf(s,Ysn,m,Zsn,m)𝑑s+tTg(s,Ysn,m,Zsn,m)dBstTZsn,m𝑑Bs+(ATn,m,+Atn,m,+)(ATn,m,Atn,m,)(KTn,mKtn,m).\begin{split}Y^{n,m}_{t}=&\xi+\int_{t}^{T}f(s,Y^{n,m}_{s},Z^{n,m}_{s})ds+\int_{t}^{T}g(s,Y^{n,m}_{s},Z^{n,m}_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}^{n,m}dB_{s}\\ &+(A^{n,m,+}_{T}-A^{n,m,+}_{t})-(A^{n,m,-}_{T}-A^{n,m,-}_{t})-(K_{T}^{n,m}-K_{t}^{n,m}).\end{split} (3.6)

In the following, we show that under Assumptions (H2)-(H3) and (A1)-(A2), the sequence (Yn,m,Zn,m,An,m,+Kn,m)(Y^{n,m},Z^{n,m},A^{n,m,+}-K^{n,m}) converges to (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}) as mm goes to infinity. The initial step involves establishing the uniform boundedness of Yn,mY^{n,m} under the norm SGα\|\cdot\|_{S_{G}^{\alpha}}. Note that since the upper obstacle here is no longer a generalized GG-Itô process, conventional approaches found in existing literature on reflected G-BSDEs are inapplicable. Our technical proofs commence with the following lemma, wherein we utilize a weak condition that is fulfilled by the conditions presented in subsequent proofs.

Lemma 3.3

Assuming that ξ\xi, ff, gg, LL and UU satisfy Assumptions (H1)-(H3) and the (A2’) below (which is essentially (A2) but without the requirements on U+AI,+U+A^{I,+}):

(A2’)

LL, USGβ(0,T)U\in S_{G}^{\beta}(0,T). There exists some ISGβ(0,T)I\in S_{G}^{\beta}(0,T) satisfying the following representation

It=I0+AtI,AtI,++0tσI(s)𝑑Bs,I_{t}=I_{0}+A^{I,-}_{t}-A_{t}^{I,+}+\int_{0}^{t}\sigma^{I}(s)dB_{s},

where AI,+A^{I,+}, AI,SGβ(0,T)A^{I,-}\in S_{G}^{\beta}(0,T) are two non-decreasing processes with A0I,+=A0I,=0A^{I,+}_{0}=A^{I,-}_{0}=0 and σISGβ(0,T)\sigma^{I}\in S_{G}^{\beta}(0,T) such that LtItUtL_{t}\leq I_{t}\leq U_{t}. Additionally, LTξUTL_{T}\leq\xi\leq U_{T}, q.s.

Then there exists a constant CC independent of n,mn,m, such that for 2α<β2\leq\alpha<\beta,

𝔼^supt[0,T]|Ytn,m|αC.\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}^{n,m}|^{\alpha}\leq C.

Proof. Set Yt=ItY^{*}_{t}=I_{t} and Zt=σtIZ^{*}_{t}=\sigma^{I}_{t}. It is easy to check that

Yt=ITtTZs𝑑Bs+(ATI,+AtI,+)(ATI,AtI,)=IT+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs+(AT,+At,+)(AT,At,),\begin{split}Y^{*}_{t}=&I_{T}-\int_{t}^{T}Z^{*}_{s}dB_{s}+(A^{I,+}_{T}-A^{I,+}_{t})-(A^{I,-}_{T}-A^{I,-}_{t})\\ =&I_{T}+\int_{t}^{T}f(s,Y^{*}_{s},Z^{*}_{s})ds+\int_{t}^{T}g(s,Y^{*}_{s},Z^{*}_{s})d\langle B\rangle_{s}\\ &-\int_{t}^{T}Z^{*}_{s}dB_{s}+(A^{*,+}_{T}-A^{*,+}_{t})-(A^{*,-}_{T}-A^{*,-}_{t}),\end{split} (3.7)

where

At,+=AtI,++0tf(s,Ys,Zs)𝑑s+0tg(s,Ys,Zs)dBs,\displaystyle A^{*,+}_{t}=A^{I,+}_{t}+\int_{0}^{t}f^{-}(s,Y^{*}_{s},Z^{*}_{s})ds+\int_{0}^{t}g^{-}(s,Y^{*}_{s},Z^{*}_{s})d\langle B\rangle_{s}, (3.8)
At,=AtI,+0tf+(s,Ys,Zs)𝑑s+0tg+(s,Ys,Zs)dBs.\displaystyle A^{*,-}_{t}=A^{I,-}_{t}+\int_{0}^{t}f^{+}(s,Y^{*}_{s},Z^{*}_{s})ds+\int_{0}^{t}g^{+}(s,Y^{*}_{s},Z^{*}_{s})d\langle B\rangle_{s}. (3.9)

Clearly, A,+,A,SGβ(0,T)A^{*,+},A^{*,-}\in S_{G}^{\beta}(0,T) are non-decreasing processes. Consider the following two GG-BSDEs:

Yt+=UT+tTf(s,Ys+,Zs+)𝑑s+tTg(s,Ys+,Zs+)dBs+(AT,+At,+)tTZs+𝑑Bs(KT+Kt+),\begin{split}Y_{t}^{+}=&U_{T}+\int_{t}^{T}f(s,Y_{s}^{+},Z_{s}^{+})ds+\int_{t}^{T}g(s,Y_{s}^{+},Z_{s}^{+})d\langle B\rangle_{s}+(A^{*,+}_{T}-A^{*,+}_{t})\\ &-\int_{t}^{T}Z_{s}^{+}dB_{s}-(K^{+}_{T}-K^{+}_{t}),\end{split} (3.10)
Yt=LT+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBs(AT,At,)tTZs𝑑Bs(KTKt).\begin{split}Y_{t}^{-}=&L_{T}+\int_{t}^{T}f(s,Y_{s}^{-},Z_{s}^{-})ds+\int_{t}^{T}g(s,Y_{s}^{-},Z_{s}^{-})d\langle B\rangle_{s}-(A^{*,-}_{T}-A^{*,-}_{t})\\ &-\int_{t}^{T}Z_{s}^{-}dB_{s}-(K^{-}_{T}-K^{-}_{t}).\end{split} (3.11)

By Theorem 2.8, we have YtYtYt+Y_{t}^{-}\leq Y_{t}^{*}\leq Y_{t}^{+} for any t[0,T]t\in[0,T], which implies that

Yt+ItLtandYtItUt.Y_{t}^{+}\geq I_{t}\geq L_{t}\qquad\text{and}\qquad Y_{t}^{-}\leq I_{t}\leq U_{t}.

Therefore, we may add the terms +tTm(Ys+Ls)𝑑s+\int_{t}^{T}m(Y_{s}^{+}-L_{s})^{-}ds and tTn(YsUs)+𝑑s-\int_{t}^{T}n(Y_{s}^{-}-U_{s})^{+}ds to Equations (3.10) and (3.11), respectively. By Theorem 2.8 again, we have YtYtn,mYt+Y_{t}^{-}\leq Y^{n,m}_{t}\leq Y^{+}_{t} for any t[0,T]t\in[0,T] and n,mn,m\in\mathbb{N}. By the estimates for GG-BSDEs (see Theorem 2.6), we have

𝔼^supt[0,T]|Yt++At,+|α\displaystyle\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}^{+}+A_{t}^{*,+}|^{\alpha}
C𝔼^[supt[0,T]𝔼^t[|UT+AT,+|α+tT(|f(s,0,0)|α+|g(s,0,0)|α+|As,+|α)𝑑s]],\displaystyle\leq C\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}\left[|U_{T}+A_{T}^{*,+}|^{\alpha}+\int_{t}^{T}\Big{(}|f(s,0,0)|^{\alpha}+|g(s,0,0)|^{\alpha}+|A_{s}^{*,+}|^{\alpha}\Big{)}ds\right]\right],
𝔼^supt[0,T]|YtAt,|α\displaystyle\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}^{-}-A_{t}^{*,-}|^{\alpha}
C𝔼^[supt[0,T]𝔼^t[|LTAT,|α+tT(|f(s,0,0)|α+|g(s,0,0)|α+|As,|α)𝑑s]].\displaystyle\leq C\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}\widehat{\mathbb{E}}_{t}\left[|L_{T}-A_{T}^{*,-}|^{\alpha}+\int_{t}^{T}\Big{(}|f(s,0,0)|^{\alpha}+|g(s,0,0)|^{\alpha}+|A_{s}^{*,-}|^{\alpha}\Big{)}ds\right]\right].

By Theorem 2.5 and Hölder’s inequality, there exists a constant CC independent of n,mn,m such that

𝔼^supt[0,T]|Yt+|αCand𝔼^supt[0,T]|Yt|αC.\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}^{+}|^{\alpha}\leq C\qquad\text{and}\qquad\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}^{-}|^{\alpha}\leq C.

Consequently, we have

𝔼^supt[0,T]|Ytn,m|αC,\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}^{n,m}|^{\alpha}\leq C,

where CC is a constant independent of n,mn,m.    

The following lemma provides the explicit convergence rate of (Yn,mU)+(Y^{n,m}-U)^{+}, which will be instrumental in deriving the convergence rate of (Y¯nU)+(\bar{Y}^{n}-U)^{+}. The latter is challenging to obtain solely by considering the penalization sequence (3.3), as A¯n\bar{A}^{n} does not exhibit the properties of a non-increasing GG-martingale. To address this limitation, we introduce the penalization sequence with two parameters nn and mm in (3.4). Although Equation (3.2) is not required in Lemma 3.3, it becomes necessary starting from this point onward.

Lemma 3.4

Assuming that ξ\xi, ff, gg, LL and UU satisfy Assumptions (H2)-(H3) and (A1)-(A2). There exists a constant CC independent of n,mn,m, such that for 2α<β2\leq\alpha<\beta,

𝔼^supt[0,T]|(Ytn,mUt)+|αCnα.\widehat{\mathbb{E}}\sup_{t\in[0,T]}\big{|}(Y_{t}^{n,m}-U_{t})^{+}\big{|}^{\alpha}\leq\frac{C}{n^{\alpha}}.

Proof. Consider the following GG-BSDE:

Y^tn=UT+tTf(s,Y^sn,Z^sn)𝑑s+tTg(s,Y^sn,Z^sn)dBstTZ^sn𝑑BstTn(Y^snUs)+𝑑s+(AT,+At,+)(K^TnK^tn),\begin{split}\widehat{Y}^{n}_{t}=&U_{T}+\int_{t}^{T}f(s,\widehat{Y}^{n}_{s},\widehat{Z}^{n}_{s})ds+\int_{t}^{T}g(s,\widehat{Y}^{n}_{s},\widehat{Z}^{n}_{s})d\langle B\rangle_{s}-\int_{t}^{T}\widehat{Z}^{n}_{s}dB_{s}\\ &-\int_{t}^{T}n(\widehat{Y}^{n}_{s}-U_{s})^{+}ds+(A_{T}^{*,+}-A_{t}^{*,+})-(\widehat{K}^{n}_{T}-\widehat{K}^{n}_{t}),\end{split} (3.12)

where A,+A^{*,+} is defined in (3.8). By Equation (3.10) and Theorem 2.8, we have Y^tnYt+\widehat{Y}^{n}_{t}\leq Y^{+}_{t} for nn\in\mathbb{N}. Noting that Yt=ItUtY^{*}_{t}=I_{t}\leq U_{t}, we may add tTn(YsUs)+𝑑s-\int_{t}^{T}n(Y^{*}_{s}-U_{s})^{+}ds to Equation (3.7). By Theorem 2.8, we have Y^tnYt\widehat{Y}^{n}_{t}\geq Y^{*}_{t} and hence Y^tnLt\widehat{Y}^{n}_{t}\geq L_{t} for any nn\in\mathbb{N} and t[0,T]t\in[0,T]. Therefore, we may add +tTm(Y^snLs)𝑑s+\int_{t}^{T}m(\widehat{Y}^{n}_{s}-L_{s})^{-}ds to Equation (3.12). Applying Theorem 2.8 again yields Y^tnYtn,m\widehat{Y}^{n}_{t}\geq Y^{n,m}_{t}. It suffices to prove that there exists a constant CC independent of n,mn,m, such that for any 2α<β2\leq\alpha<\beta,

𝔼^supt[0,T]|(Y^tnUt)+|αCnα.\widehat{\mathbb{E}}\sup_{t\in[0,T]}\big{|}(\widehat{Y}^{n}_{t}-U_{t})^{+}\big{|}^{\alpha}\leq\frac{C}{n^{\alpha}}.

Set

Y~tn=Y^tn+At,+,ξ~=UT+AT,+andU~t=Ut+At,+.\widetilde{Y}^{n}_{t}=\widehat{Y}^{n}_{t}+A^{*,+}_{t},\quad\widetilde{\xi}=U_{T}+A_{T}^{*,+}\quad\text{and}\quad\widetilde{U}_{t}=U_{t}+A^{*,+}_{t}.

Equation (3.12) can be rewritten as

Y~tn=ξ~+tTf~(s,Y~sn,Z^sn)𝑑s+tTg~(s,Y~sn,Z^sn)dBs\displaystyle\widetilde{Y}^{n}_{t}=\widetilde{\xi}+\int_{t}^{T}\widetilde{f}(s,\widetilde{Y}^{n}_{s},\widehat{Z}^{n}_{s})ds+\int_{t}^{T}\widetilde{g}(s,\widetilde{Y}^{n}_{s},\widehat{Z}^{n}_{s})d\langle B\rangle_{s}- tTn(Y~nU~s)+𝑑stTZ^sn𝑑Bs\displaystyle\int_{t}^{T}n(\widetilde{Y}^{n}-\widetilde{U}_{s})^{+}ds-\int_{t}^{T}\widehat{Z}^{n}_{s}dB_{s}
(K^TnK^tn),\displaystyle\hskip 56.9055pt-(\widehat{K}^{n}_{T}-\widehat{K}_{t}^{n}),

where

f~(s,y,z)=f(s,yAs,+,z)andg~(s,y,z)=g(s,yAs,+,z).\widetilde{f}(s,y,z)=f(s,y-A^{*,+}_{s},z)\qquad\text{and}\qquad\widetilde{g}(s,y,z)=g(s,y-A^{*,+}_{s},z).

Given that YtY^tnYt+Y^{*}_{t}\leq\widehat{Y}^{n}_{t}\leq Y^{+}_{t} for any nn\in\mathbb{N}, there exists a constant CC independent of nn, such that

𝔼^supt[0,T]|Y^tn|αC.\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widehat{Y}_{t}^{n}|^{\alpha}\leq C.

Consequently,

𝔼^supt[0,T]|Y~tn|αC,\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widetilde{Y}_{t}^{n}|^{\alpha}\leq C,

where CC is independent of nn. By Lemma 4.5 in Li and Peng, (2020), we have

𝔼^supt[0,T]|(Y~tnU~t)+|αCnα,\widehat{\mathbb{E}}\sup_{t\in[0,T]}\big{|}(\widetilde{Y}^{n}_{t}-\widetilde{U}_{t})^{+}\big{|}^{\alpha}\leq\frac{C}{n^{\alpha}},

which yields the desired result.    

Next, we show that the sequences An,m,+A^{n,m,+}, An,m,A^{n,m,-}, Kn,mK^{n,m} and Zn,mZ^{n,m} are uniformly bounded.

Lemma 3.5

Assuming that ξ\xi, ff, gg, LL, and UU satisfy Assumptions (H2)-(H3) and (A1)-(A2). There exists a constant CC independent of n,mn,m, such that for 2α<β2\leq\alpha<\beta,

𝔼^|ATn,m,+|αC,𝔼^|ATn,m,|αC,𝔼^|KTn,m|αCand𝔼^(0T|Zsn,m|2𝑑s)α/2C.\widehat{\mathbb{E}}|A_{T}^{n,m,+}|^{\alpha}\leq C,\quad\widehat{\mathbb{E}}|A_{T}^{n,m,-}|^{\alpha}\leq C,\quad\widehat{\mathbb{E}}|K_{T}^{n,m}|^{\alpha}\leq C\quad\text{and}\quad\widehat{\mathbb{E}}\left(\int_{0}^{T}|Z_{s}^{n,m}|^{2}ds\right)^{\alpha/2}\leq C.

Proof. By Lemma 3.4 and the definition of An,m,A^{n,m,-} given in Equation (3.5), it is easy to check that 𝔼^|ATn,m,|αC\widehat{\mathbb{E}}|A_{T}^{n,m,-}|^{\alpha}\leq C. We have by Theorem 2.7 that

𝔼^(0T|Zsn,m|2𝑑s)α/2\displaystyle\widehat{\mathbb{E}}\left(\int_{0}^{T}|Z_{s}^{n,m}|^{2}ds\right)^{\alpha/2}
C{𝔼^supt[0,T]|Ytn,m|α+(𝔼^supt[0,T]|Ytn,m|α)1/2\displaystyle\leq C\Bigg{\{}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y^{n,m}_{t}|^{\alpha}+\bigg{(}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y^{n,m}_{t}|^{\alpha}\bigg{)}^{1/2}
×((𝔼^0T|f(s,0,0)|αds)1/2+(𝔼^0T|g(s,0,0)|αds)1/2+(𝔼^|ATn,m,|α)1/2)}.\displaystyle\hskip 28.45274pt\times\Bigg{(}\Bigg{(}\widehat{\mathbb{E}}\int_{0}^{T}|f(s,0,0)|^{\alpha}ds\Bigg{)}^{1/2}+\Bigg{(}\widehat{\mathbb{E}}\int_{0}^{T}|g(s,0,0)|^{\alpha}ds\Bigg{)}^{1/2}+\Big{(}\widehat{\mathbb{E}}|A_{T}^{n,m,-}|^{\alpha}\Big{)}^{1/2}\Bigg{)}\Bigg{\}}.

Noting that (H1) is weaker than (A1) with β>2\beta>2, we obtain by Lemma 3.3 that

𝔼^(0T|Zsn,m|2𝑑s)α/2C.\widehat{\mathbb{E}}\left(\int_{0}^{T}|Z_{s}^{n,m}|^{2}ds\right)^{\alpha/2}\leq C.

Further note that

ATn,m,+KTn,m=\displaystyle A^{n,m,+}_{T}-K^{n,m}_{T}= Y0n,mξ+0TZsn,m𝑑Bs+ATn,m,\displaystyle Y_{0}^{n,m}-\xi+\int_{0}^{T}Z_{s}^{n,m}dB_{s}+A^{n,m,-}_{T}
0Tf(s,Ysn,m,Zsn,m)𝑑s0Tg(s,Ysn,m,Zsn,m)dBs.\displaystyle-\int_{0}^{T}f(s,Y^{n,m}_{s},Z^{n,m}_{s})ds-\int_{0}^{T}g(s,Y^{n,m}_{s},Z^{n,m}_{s})d\langle B\rangle_{s}.

By simple calculation, we obtain that

𝔼^|ATn,m,+KTn,m|α\displaystyle\widehat{\mathbb{E}}|A^{n,m,+}_{T}-K^{n,m}_{T}|^{\alpha}\leq C{𝔼^supt[0,T]|Ytn,m|α+𝔼^(0T|Zsn,m|2ds)α/2+𝔼^|ATn,m,|α\displaystyle C\Bigg{\{}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y^{n,m}_{t}|^{\alpha}+\widehat{\mathbb{E}}\bigg{(}\int_{0}^{T}|Z_{s}^{n,m}|^{2}ds\bigg{)}^{\alpha/2}+\widehat{\mathbb{E}}|A_{T}^{n,m,-}|^{\alpha}
+𝔼^0T|f(s,0,0)|αds+𝔼^0T|g(s,0,0)|αds}.\displaystyle\hskip 71.13188pt+\widehat{\mathbb{E}}\int_{0}^{T}|f(s,0,0)|^{\alpha}ds+\widehat{\mathbb{E}}\int_{0}^{T}|g(s,0,0)|^{\alpha}ds\Bigg{\}}.

Since ATn,m,+A^{n,m,+}_{T} and KTn,m-K^{n,m}_{T} are non-negative, we obtain the desired result.    

By a similar analysis as the proof of Lemma 4.3, Lemma 4.4 and Theorem 5.1 in Li et al., 2018b , we have for any fixed nn and 2α<β2\leq\alpha<\beta,

limm𝔼^[supt[0,T]|(Ytn,mLt)|α]=0,\displaystyle\lim_{m\rightarrow\infty}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|(Y^{n,m}_{t}-L_{t})^{-}|^{\alpha}\right]=0, (3.13)

and letting mm go to infinity, (Yn,m,Zn,m,An,m,+Kn,m)(Y^{n,m},Z^{n,m},A^{n,m,+}-K^{n,m}) converges to (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}), which is the solution of Equation (3.3). Specifically, we have

limm𝔼^[supt[0,T]|Y¯tnYtn,m|α]=0,limm𝔼^[(0T|Z¯tnZtn,m|2𝑑t)α/2]=0,andlimm𝔼^[supt[0,T]|A¯tn(Atn,m,+Ktn,m)|α]=0.\begin{split}&\lim_{m\rightarrow\infty}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|\bar{Y}^{n}_{t}-Y^{n,m}_{t}|^{\alpha}\right]=0,\qquad\lim_{m\rightarrow\infty}\widehat{\mathbb{E}}\left[\left(\int_{0}^{T}|\bar{Z}^{n}_{t}-Z^{n,m}_{t}|^{2}dt\right)^{\alpha/2}\right]=0,\\ &\hskip 56.9055pt\text{and}\quad\lim_{m\rightarrow\infty}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|\bar{A}^{n}_{t}-(A^{n,m,+}_{t}-K^{n,m}_{t})|^{\alpha}\right]=0.\end{split} (3.14)

By Lemma 3.3, Lemma 3.4, and Lemma 3.5, together with Equation (LABEL:statementB), we have the following result.

Lemma 3.6

Assuming that ξ\xi, ff, gg, LL, and UU satisfy Assumptions (H2)-(H3) and (A1)-(A2). There exists a constant CC independent of nn, such that for any 2α<β2\leq\alpha<\beta,

𝔼^supt[0,T]|Y¯tn|αC,𝔼^(0T|Z¯tn|2𝑑t)α/2C,\displaystyle\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\bar{Y}^{n}_{t}|^{\alpha}\leq C,\qquad\qquad\widehat{\mathbb{E}}\left(\int_{0}^{T}|\bar{Z}^{n}_{t}|^{2}dt\right)^{\alpha/2}\leq C,
𝔼^supt[0,T]|A¯tn|αC,and𝔼^supt[0,T]|(Y¯tnUt)+|αCnα.\displaystyle\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\bar{A}^{n}_{t}|^{\alpha}\leq C,\quad\;\text{and}\;\quad\widehat{\mathbb{E}}\sup_{t\in[0,T]}|(\bar{Y}^{n}_{t}-U_{t})^{+}|^{\alpha}\leq\frac{C}{n^{\alpha}}.

Finally, we investigate the difference of two solutions to the doubly reflected GG-BSDE (3.1).

Proposition 3.7

Let (Yi,Zi,Ai)(Y^{i},Z^{i},A^{i}) for i=1,2i=1,2 be the solutions to the doubly reflected GG-BSDE (3.1) with parameters (ξi,fi,gi,Li,Ui)(\xi^{i},f^{i},g^{i},L^{i},U^{i}), which satisfy Assumptions (H2)-(H3) and (A1)-(A2). Let {Ai,n,+}n\{A^{i,n,+}\}_{n\in\mathbb{N}}, {Ai,n,}n\{A^{i,n,-}\}_{n\in\mathbb{N}} and {Ki,n}n\{K^{i,n}\}_{n\in\mathbb{N}} be the approximate sequences for (Yi,Ai)(Y^{i},A^{i}) with order α\alpha w.r.t. LiL^{i} and UiU^{i}, for 2α<β2\leq\alpha<\beta. Set

Y^t=Yt1Yt2,ξ^=ξ1ξ2,L^t=Lt1Lt2 and U^t=Ut1Ut2.\widehat{Y}_{t}=Y^{1}_{t}-Y^{2}_{t},\ \widehat{\xi}=\xi^{1}-\xi^{2},\ \widehat{L}_{t}=L^{1}_{t}-L^{2}_{t}\text{ and }\widehat{U}_{t}=U^{1}_{t}-U^{2}_{t}.

Then there exists a constant C:=C(α,T,κ,G)>0C:=C(\alpha,T,\kappa,G)>0 such that

|Y^t|α\displaystyle|\widehat{Y}_{t}|^{\alpha}\leq C(i=12𝔼^tsups[t,T]|Ysi|α)α22×lim infn(i=12(𝔼^t|ATi,n,+|α+𝔼^t|ATi,n,|α))1α\displaystyle C\left(\sum_{i=1}^{2}\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|Y^{i}_{s}|^{\alpha}\right)^{\frac{\alpha-2}{2}}\times\liminf_{n\rightarrow\infty}\left(\sum_{i=1}^{2}\left(\widehat{\mathbb{E}}_{t}|A^{i,n,+}_{T}|^{\alpha}+\widehat{\mathbb{E}}_{t}|A^{i,n,-}_{T}|^{\alpha}\right)\right)^{\frac{1}{\alpha}}
×(𝔼^tsups[t,T]|L^s|α+𝔼^tsups[t,T]|U^s|α)1α+C𝔼^t[|ξ^|α+tT|f^s|α𝑑s+tT|g^s|α𝑑s],\displaystyle\times\left(\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|\widehat{L}_{s}|^{\alpha}+\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|\widehat{U}_{s}|^{\alpha}\right)^{\frac{1}{\alpha}}+C\widehat{\mathbb{E}}_{t}\left[|\widehat{\xi}|^{\alpha}+\int_{t}^{T}|\widehat{f}_{s}|^{\alpha}ds+\int_{t}^{T}|\widehat{g}_{s}|^{\alpha}ds\right],

where f^s=|f1(s,Ys2,Zs2)f2(s,Ys2,Zs2)|\widehat{f}_{s}=\Big{|}f^{1}(s,Y_{s}^{2},Z_{s}^{2})-f^{2}(s,Y_{s}^{2},Z_{s}^{2})\Big{|} and g^s=|g1(s,Ys2,Zs2)g2(s,Ys2,Zs2)|\widehat{g}_{s}=\Big{|}g^{1}(s,Y_{s}^{2},Z_{s}^{2})-g^{2}(s,Y_{s}^{2},Z_{s}^{2})\Big{|}.

Proof. Set

Z^t=Zt1Zt2,A^t=At1At2,andHt=|Y^t|2.\widehat{Z}_{t}=Z_{t}^{1}-Z_{t}^{2},\qquad\widehat{A}_{t}=A_{t}^{1}-A_{t}^{2},\quad\text{and}\quad H_{t}=|\widehat{Y}_{t}|^{2}.

For any r>0r>0, applying GG-Itô’s formula to Htα/2ert=|Y^t|αertH_{t}^{\alpha/2}e^{rt}=|\widehat{Y}_{t}|^{\alpha}e^{rt}, we have

Htα/2ert+tTrersHsα/2𝑑s+tTα2ersHsα/21Z^s2dBs\displaystyle\quad H_{t}^{\alpha/2}e^{rt}+\int_{t}^{T}re^{rs}H_{s}^{\alpha/2}ds+\int_{t}^{T}\frac{\alpha}{2}e^{rs}H_{s}^{\alpha/2-1}\widehat{Z}_{s}^{2}d\langle B\rangle_{s}
=|ξ^|αerT+α(1α2)tTersHsα/22Y^s2Z^s2dBstTαersHsα/21Y^sZ^s𝑑Bs\displaystyle=|\widehat{\xi}|^{\alpha}e^{rT}+\alpha\Big{(}1-\frac{\alpha}{2}\Big{)}\int_{t}^{T}e^{rs}H_{s}^{\alpha/2-2}\widehat{Y}_{s}^{2}\widehat{Z}_{s}^{2}d\langle B\rangle_{s}-\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}\widehat{Z}_{s}dB_{s}
+tTαersHsα/21Y^s(f1(s,Ys1,Zs1)f2(s,Ys2,Zs2))𝑑s+tTαersHsα/21Y^s𝑑A^s\displaystyle\quad+\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}\Big{(}f^{1}(s,Y_{s}^{1},Z_{s}^{1})-f^{2}(s,Y_{s}^{2},Z_{s}^{2})\Big{)}ds+\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d\widehat{A}_{s} (3.15)
+tTαersHsα/21Y^s(g1(s,Ys1,Zs1)g2(s,Ys2,Zs2))dBs.\displaystyle\quad+\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}\Big{(}g^{1}(s,Y_{s}^{1},Z_{s}^{1})-g^{2}(s,Y_{s}^{2},Z_{s}^{2})\Big{)}d\langle B\rangle_{s}.

By the Lipschitz assumption on f1f^{1} and g1g^{1}, together with Hölder’s inequality and the fact that σ¯2dsdBsσ¯2ds\underline{\sigma}^{2}ds\leq d\langle B\rangle_{s}\leq\bar{\sigma}^{2}ds, we have

tTαersHsα/21Y^s(f1(s,Ys1,Zs1)f2(s,Ys2,Zs2))𝑑s\displaystyle\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}\Big{(}f^{1}(s,Y_{s}^{1},Z_{s}^{1})-f^{2}(s,Y_{s}^{2},Z_{s}^{2})\Big{)}ds
+tTαersHsα/21Y^s(g1(s,Ys1,Zs1)g2(s,Ys2,Zs2))dBs\displaystyle+\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}\Big{(}g^{1}(s,Y_{s}^{1},Z_{s}^{1})-g^{2}(s,Y_{s}^{2},Z_{s}^{2})\Big{)}d\langle B\rangle_{s}
\displaystyle\leq tTαersHsα12{|f1(s,Ys1,Zs1)f1(s,Ys2,Zs2)|+f^s}𝑑s\displaystyle\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\frac{\alpha-1}{2}}\Big{\{}\Big{|}f^{1}(s,Y_{s}^{1},Z_{s}^{1})-f^{1}(s,Y_{s}^{2},Z_{s}^{2})\Big{|}+\widehat{f}_{s}\Big{\}}ds
+tTαersHsα12{|g1(s,Ys1,Zs1)g1(s,Ys2,Zs2)|+g^s}dBs\displaystyle+\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\frac{\alpha-1}{2}}\Big{\{}\Big{|}g^{1}(s,Y_{s}^{1},Z_{s}^{1})-g^{1}(s,Y_{s}^{2},Z_{s}^{2})\Big{|}+\widehat{g}_{s}\Big{\}}d\langle B\rangle_{s}
\displaystyle\leq tTαersHsα12{κ(|Y^s|+|Z^s|)+f^s}𝑑s+tTαersHsα12{κ(|Y^s|+|Z^s|)+g^s}dBs\displaystyle\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\frac{\alpha-1}{2}}\Big{\{}\kappa\Big{(}|\widehat{Y}_{s}|+|\widehat{Z}_{s}|\Big{)}+\widehat{f}_{s}\Big{\}}ds+\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\frac{\alpha-1}{2}}\Big{\{}\kappa\Big{(}|\widehat{Y}_{s}|+|\widehat{Z}_{s}|\Big{)}+\widehat{g}_{s}\Big{\}}d\langle B\rangle_{s}
\displaystyle\leq tTαersHsα/21/2(|f^s|+σ¯2|g^s|)𝑑s+α(α1)4tTersHsα/21Z^s2dBs\displaystyle\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\alpha/2-1/2}\Big{(}|\widehat{f}_{s}|+\bar{\sigma}^{2}|\widehat{g}_{s}|\Big{)}ds+\frac{\alpha(\alpha-1)}{4}\int_{t}^{T}e^{rs}H_{s}^{\alpha/2-1}\widehat{Z}_{s}^{2}d\langle B\rangle_{s}
+((1+σ¯2)ακ+(1+σ¯4)2ακ2σ¯2(α1))tTersHsα/2𝑑s.\displaystyle+\left((1+\bar{\sigma}^{2})\alpha\kappa+(1+\bar{\sigma}^{4})\frac{2\alpha\kappa^{2}}{\underline{\sigma}^{2}(\alpha-1)}\right)\int_{t}^{T}e^{rs}H_{s}^{\alpha/2}ds.

By Young’s inequality, we obtain

tTαersHsα/21/2(|f^s|+σ¯2|g^s|)𝑑s\displaystyle\int_{t}^{T}{\alpha}e^{rs}H_{s}^{\alpha/2-1/2}\Big{(}|\widehat{f}_{s}|+\bar{\sigma}^{2}|\widehat{g}_{s}|\Big{)}ds\leq 2(α1)tTersHsα/2𝑑s\displaystyle 2(\alpha-1)\int_{t}^{T}e^{rs}H_{s}^{\alpha/2}ds
+tTers|f^s|α𝑑s+σ¯2αtTers|g^s|α𝑑s.\displaystyle+\int_{t}^{T}e^{rs}|\widehat{f}_{s}|^{\alpha}ds+\bar{\sigma}^{2\alpha}\int_{t}^{T}e^{rs}|\widehat{g}_{s}|^{\alpha}ds.

Set

Ai,n=Ai,n,+Ai,n,Ki,n,i=1,2,A^{i,n}=A^{i,n,+}-A^{i,n,-}-K^{i,n},\quad i=1,2,
Y^tL=(Yt1Lt1)(Yt2Lt2)andY^tU=(Ut1Yt1)(Ut2Yt2).\widehat{Y}^{L}_{t}=(Y^{1}_{t}-L^{1}_{t})-(Y^{2}_{t}-L_{t}^{2})\quad\text{and}\quad\widehat{Y}^{U}_{t}=(U^{1}_{t}-Y_{t}^{1})-(U^{2}_{t}-Y_{t}^{2}).

Noting that

Y^t=Y^tL+L^tYt1Lt1+|L^t|,Y^t=Y^tUU^tUt1Yt1+|U^t|,\displaystyle\widehat{Y}_{t}=\widehat{Y}^{L}_{t}+\widehat{L}_{t}\leq Y^{1}_{t}-L^{1}_{t}+|\widehat{L}_{t}|,\qquad-\widehat{Y}_{t}=\widehat{Y}^{U}_{t}-\widehat{U}_{t}\leq U_{t}^{1}-Y_{t}^{1}+|\widehat{U}_{t}|,

and A1,n,+A^{1,n,+}, A1,n,A^{1,n,-} are non-decreasing processes, it is easy to check that

tTαersHsα/21Y^s𝑑As1=\displaystyle\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}dA^{1}_{s}= tTαersHsα/21Y^sd(As1As1,n)+tTαersHsα/21Y^s𝑑As1,n\displaystyle\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d({A}^{1}_{s}-A_{s}^{1,n})+\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d{A}^{1,n}_{s}
\displaystyle\leq tTαersHsα/21(Ys1Ls1)𝑑As1,n,++tTαersHsα/21|L^s|𝑑As1,n,+\displaystyle\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(Y^{1}_{s}-L^{1}_{s})dA_{s}^{1,n,+}+\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{L}_{s}|dA_{s}^{1,n,+}
+tTαersHsα/21(Us1Ys1)𝑑As1,n,+tTαersHsα/21|U^s|𝑑As1,n,\displaystyle+\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(U_{s}^{1}-Y_{s}^{1})dA_{s}^{1,n,-}+\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{U}_{s}|dA_{s}^{1,n,-}
+|tTαersHsα/21Y^sd(As1As1,n)|tTαersHsα/21(Y^s)+𝑑Ks1,n.\displaystyle+\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d({A}^{1}_{s}-A_{s}^{1,n})\right|-\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(\widehat{Y}_{s})^{+}d{K}^{1,n}_{s}.

Similarly, we have

tTαersHsα/21(Y^s)𝑑As2\displaystyle\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(-\widehat{Y}_{s})dA^{2}_{s}\leq tTαersHsα/21(Ys2Ls2)𝑑As2,n,++tTαersHsα/21|L^s|𝑑As2,n,+\displaystyle\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(Y^{2}_{s}-L^{2}_{s})dA_{s}^{2,n,+}+\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{L}_{s}|dA_{s}^{2,n,+}
+tTαersHsα/21(Us2Ys2)𝑑As2,n,+tTαersHsα/21|U^s|𝑑As2,n,\displaystyle+\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(U_{s}^{2}-Y_{s}^{2})dA_{s}^{2,n,-}+\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{U}_{s}|dA_{s}^{2,n,-}
+|tTαersHsα/21Y^sd(As2As2,n)|tTαersHsα/21(Y^s)𝑑Ks2,n.\displaystyle+\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d({A}^{2}_{s}-A_{s}^{2,n})\right|-\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(\widehat{Y}_{s})^{-}d{K}^{2,n}_{s}.

Since |Hsα/21Y^s||Y^s|α1|H_{s}^{\alpha/2-1}\widehat{Y}_{s}|\leq|\widehat{Y}_{s}|^{\alpha-1} for s[0,T]s\in[0,T], it is easy to check that Hα/21Y^SGαα1H^{\alpha/2-1}\widehat{Y}\in S_{G}^{\frac{\alpha}{\alpha-1}}. This fact, Lemma 3.1 in Li and Song, (2021) and

limn𝔼^supt[0,T]|AtiAti,n|α=0,\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|A^{i}_{t}-A^{i,n}_{t}|^{\alpha}=0,

imply that

limn𝔼^|tTαersHsα/21Y^sd(As1As1,n)|=0.\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d({A}^{1}_{s}-A_{s}^{1,n})\right|=0.

Note that Ut1Yt1U^{1}_{t}\geq Y^{1}_{t} and A1,n,A^{1,n,-} is non-decreasing. By the definition of HH and Hölder’s inequality, it is easy to check that

𝔼^[tTαersHsα/21(Us1Ys1)𝑑As1,n,]\displaystyle\widehat{\mathbb{E}}\left[\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(U_{s}^{1}-Y_{s}^{1})dA_{s}^{1,n,-}\right]
\displaystyle\leq C𝔼^[supt[0,T](|Yt1|+|Yt2|)α2tT(Us1Ys1)𝑑As1,n,]\displaystyle C\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}(|Y_{t}^{1}|+|Y_{t}^{2}|)^{\alpha-2}\int_{t}^{T}(U_{s}^{1}-Y_{s}^{1})dA_{s}^{1,n,-}\right]
\displaystyle\leq C(𝔼^supt[0,T](|Yt1|α+|Yt2|α))α2α(𝔼^|tT(Us1Ys1)𝑑As1,n,|α2)2α.\displaystyle C\left(\widehat{\mathbb{E}}\sup_{t\in[0,T]}\Big{(}|Y_{t}^{1}|^{\alpha}+|Y_{t}^{2}|^{\alpha}\Big{)}\right)^{\frac{\alpha-2}{\alpha}}\left(\widehat{\mathbb{E}}\left|\int_{t}^{T}(U_{s}^{1}-Y_{s}^{1})dA_{s}^{1,n,-}\right|^{\frac{\alpha}{2}}\right)^{\frac{2}{\alpha}}.

It follows from the ASCα\textmd{ASC}_{\alpha} that

limn𝔼^|tTαersHsα/21(Us1Ys1)𝑑As1,n,|=0.\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(U_{s}^{1}-Y_{s}^{1})dA_{s}^{1,n,-}\right|=0.

Similar analyses yield that

limn𝔼^|tTαersHsα/21(Ys1Ls1)𝑑As1,n,+|=0,\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(Y_{s}^{1}-L_{s}^{1})dA_{s}^{1,n,+}\right|=0,
limn𝔼^|tTαersHsα/21(Ys2Ls2)𝑑As2,n,+|=0,\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(Y_{s}^{2}-L_{s}^{2})dA_{s}^{2,n,+}\right|=0,
limn𝔼^|tTαersHsα/21(Us2Ys2)𝑑As2,n,|=0.\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(U_{s}^{2}-Y_{s}^{2})dA_{s}^{2,n,-}\right|=0.

By the non-decreasing property of A1,n,+A^{1,n,+}, the definition of HH, and Hölder’s inequality, we obtain that

𝔼^t[tTαersHsα/21|L^s|𝑑As1,n,+]\displaystyle\widehat{\mathbb{E}}_{t}\left[\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{L}_{s}|dA_{s}^{1,n,+}\right]\leq C𝔼^t[sups[t,T](|Ys1|+|Ys2|)α2sups[t,T]|L^s||AT1,n,+|]\displaystyle C\widehat{\mathbb{E}}_{t}\left[\sup_{s\in[t,T]}(|Y_{s}^{1}|+|Y_{s}^{2}|)^{\alpha-2}\sup_{s\in[t,T]}|\widehat{L}_{s}||A^{1,n,+}_{T}|\right]
\displaystyle\leq CItα(Y)(𝔼^tsups[t,T]|L^s|α)1α(𝔼^t|AT1,n,+|α])1α,\displaystyle CI_{t}^{\alpha}(Y)\bigg{(}\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|\widehat{L}_{s}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}}\bigg{(}\widehat{\mathbb{E}}_{t}|A_{T}^{1,n,+}|^{\alpha}]\bigg{)}^{\frac{1}{\alpha}},

where

Itα(Y)=(i=12𝔼^tsups[t,T]|Ysi|α)α2α.I_{t}^{\alpha}(Y)=\left(\sum_{i=1}^{2}\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|Y_{s}^{i}|^{\alpha}\right)^{\frac{\alpha-2}{\alpha}}.

Similarly, we have

𝔼^t[tTαersHsα/21|U^s|𝑑As1,n,]CItα(Y)(𝔼^tsups[t,T]|U^s|α)1α(𝔼^t|AT1,n,|α)1α,\displaystyle\widehat{\mathbb{E}}_{t}\left[\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{U}_{s}|dA_{s}^{1,n,-}\right]\leq CI_{t}^{\alpha}(Y)\bigg{(}\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|\widehat{U}_{s}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}}\bigg{(}\widehat{\mathbb{E}}_{t}|A_{T}^{1,n,-}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}},
𝔼^t[tTαersHsα/21|L^s|𝑑As2,n,+]CItα(Y)(𝔼^tsups[t,T]|L^s|α)1α(𝔼^t|AT2,n,+|α)1α,\displaystyle\widehat{\mathbb{E}}_{t}\left[\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{L}_{s}|dA_{s}^{2,n,+}\right]\leq CI_{t}^{\alpha}(Y)\bigg{(}\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|\widehat{L}_{s}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}}\bigg{(}\widehat{\mathbb{E}}_{t}|A_{T}^{2,n,+}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}},
𝔼^t[tTαersHsα/21|U^s|𝑑As2,n,]CItα(Y)(𝔼^tsups[t,T]|U^s|α)1α(𝔼^t|AT2,n,|α)1α.\displaystyle\widehat{\mathbb{E}}_{t}\left[\int_{t}^{T}\alpha e^{rs}H^{\alpha/2-1}_{s}|\widehat{U}_{s}|dA_{s}^{2,n,-}\right]\leq CI_{t}^{\alpha}(Y)\bigg{(}\widehat{\mathbb{E}}_{t}\sup_{s\in[t,T]}|\widehat{U}_{s}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}}\bigg{(}\widehat{\mathbb{E}}_{t}|A_{T}^{2,n,-}|^{\alpha}\bigg{)}^{\frac{1}{\alpha}}.

Set

Mtn=0tαersHsα/21(Y^sZ^sdBs+(Y^s)+dKs1,n+(Y^s)dKs2,n).M^{n}_{t}=\int_{0}^{t}\alpha e^{rs}H_{s}^{\alpha/2-1}\Big{(}\widehat{Y}_{s}\widehat{Z}_{s}dB_{s}+(\widehat{Y}_{s})^{+}dK^{1,n}_{s}+(\widehat{Y}_{s})^{-}dK_{s}^{2,n}\Big{)}.

By Lemma 3.4 in Hu et al., 2014a , MnM^{n} is a GG-martingale. Let

r=2(α1)+(1+σ¯2)ακ+(1+σ¯4)2ακ2σ¯2(α1)+1.r=2(\alpha-1)+(1+\bar{\sigma}^{2})\alpha\kappa+(1+\bar{\sigma}^{4})\frac{2\alpha\kappa^{2}}{\underline{\sigma}^{2}(\alpha-1)}+1.

Combining the above inequalities, we obtain

Htα/2ert+(MTnMtn)\displaystyle H_{t}^{\alpha/2}e^{rt}+(M^{n}_{T}-M^{n}_{t})
\displaystyle\leq |ξ^|αerT+tTers|f^s|α𝑑s+σ¯2αtTers|g^s|α𝑑s+i=12|tTαersHsα/21Y^sd(AsiAsi,n)|\displaystyle|\widehat{\xi}|^{\alpha}e^{rT}+\int_{t}^{T}e^{rs}|\widehat{f}_{s}|^{\alpha}ds+\bar{\sigma}^{2\alpha}\int_{t}^{T}e^{rs}|\widehat{g}_{s}|^{\alpha}ds+\sum_{i=1}^{2}\left|\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}\widehat{Y}_{s}d({A}^{i}_{s}-A_{s}^{i,n})\right|
+tTαersHsα/21|L^s|d(As1,n,++As2,n,+)+tTαersHsα/21|U^s|d(As1,n,+As2,n,)\displaystyle+\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}|\widehat{L}_{s}|d(A_{s}^{1,n,+}+A_{s}^{2,n,+})+\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}|\widehat{U}_{s}|d(A_{s}^{1,n,-}+A_{s}^{2,n,-})
+i=12tTαersHsα/21(UsiYsi)𝑑Asi,n,+i=12tTαersHsα/21(YsiLsi)𝑑Asi,n,+.\displaystyle+\sum_{i=1}^{2}\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(U_{s}^{i}-Y_{s}^{i})dA_{s}^{i,n,-}+\sum_{i=1}^{2}\int_{t}^{T}\alpha e^{rs}H_{s}^{\alpha/2-1}(Y_{s}^{i}-L_{s}^{i})dA_{s}^{i,n,+}.

Taking conditional expectations on both sides and letting nn\rightarrow\infty, the proof is complete.    

3.3 Proof of Theorem 3.2

(a). We first prove the uniqueness of the solution to the doubly reflected GG-BSDE (3.1). Let (Yi,Zi,Ai)(Y^{i},Z^{i},A^{i}) for i=1,2i=1,2 be the solutions to the doubly reflected GG-BSDE (3.1). By Proposition 3.7, we conclude that Y1Y2Y^{1}\equiv Y^{2}. Applying GG-Itô’s formula to (Yt1Yt2)2(Y^{1}_{t}-Y^{2}_{t})^{2}, we obtain that

tT|Zs1Zs2|2dBs=\displaystyle\int_{t}^{T}|Z^{1}_{s}-Z^{2}_{s}|^{2}d\langle B\rangle_{s}= (Yt1Yt2)2+tT(Ys1Ys2)(f(s,Ys1,Zs1)f(s,Ys2,Zs2))𝑑s\displaystyle-(Y^{1}_{t}-Y^{2}_{t})^{2}+\int_{t}^{T}(Y^{1}_{s}-Y^{2}_{s})\Big{(}f(s,Y^{1}_{s},Z^{1}_{s})-f(s,Y^{2}_{s},Z^{2}_{s})\Big{)}ds
+tT(Ys1Ys2)(g(s,Ys1,Zs1)g(s,Ys2,Zs2))dBs\displaystyle+\int_{t}^{T}(Y^{1}_{s}-Y^{2}_{s})\Big{(}g(s,Y^{1}_{s},Z^{1}_{s})-g(s,Y^{2}_{s},Z^{2}_{s})\Big{)}d\langle B\rangle_{s}
tT2(Ys1Ys2)(Zs1Zs2)𝑑Bs+tT2(Ys1Ys2)d(As1As2).\displaystyle-\int_{t}^{T}2(Y^{1}_{s}-Y^{2}_{s})(Z^{1}_{s}-Z^{2}_{s})dB_{s}+\int_{t}^{T}2(Y^{1}_{s}-Y^{2}_{s})d(A^{1}_{s}-A^{2}_{s}).

Using the fact that Y1Y2Y^{1}\equiv Y^{2}, taking t=0t=0 in the above equation, it is easy to check that

𝔼^(0T|Zs1Zs2|2dBs)α/2=0.\displaystyle\widehat{\mathbb{E}}\left(\int_{0}^{T}|Z^{1}_{s}-Z^{2}_{s}|^{2}d\langle B\rangle_{s}\right)^{\alpha/2}=0.

Since σ¯2>0\underline{\sigma}^{2}>0, it follows that Z1Z2Z^{1}\equiv Z^{2}. Note that for i=1,2i=1,2,

Ati=Y0iYti0tf(s,Ysi,Zsi)𝑑s0tg(s,Ysi,Zsi)dBs+0tZsi𝑑Bs.\displaystyle A^{i}_{t}=Y^{i}_{0}-Y^{i}_{t}-\int_{0}^{t}f(s,Y^{i}_{s},Z^{i}_{s})ds-\int_{0}^{t}g(s,Y^{i}_{s},Z^{i}_{s})d\langle B\rangle_{s}+\int_{0}^{t}Z^{i}_{s}dB_{s}.

Applying the Lipschitz assumption on f,gf,g, Hölder’s inequality and Proposition 2.3, we have

𝔼^supt[0,T]|At1At2|αC𝔼^supt[0,T]|Yt1Yt2|α+C𝔼^(0T|Zs1Zs2|2𝑑s)α/2=0,\displaystyle\widehat{\mathbb{E}}\sup_{t\in[0,T]}|A^{1}_{t}-A^{2}_{t}|^{\alpha}\leq C\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y^{1}_{t}-Y^{2}_{t}|^{\alpha}+C\widehat{\mathbb{E}}\left(\int_{0}^{T}|Z^{1}_{s}-Z^{2}_{s}|^{2}ds\right)^{\alpha/2}=0,

which implies that A1A2A^{1}\equiv A^{2}.

Then, we prove the existence of the solution to the doubly reflected GG-BSDE (3.1). Letting m=nm=n in Equation (3.4), we define

Yn=Yn,n,Zn=Zn,n,Kn=Kn,n,An,=An,n, and An,+=An,n,+.\displaystyle Y^{n}=Y^{n,n},\ Z^{n}=Z^{n,n},\ K^{n}=K^{n,n},\ A^{n,-}=A^{n,n,-}\text{ and }A^{n,+}=A^{n,n,+}. (3.16)

Set

An=An,KnAn,+.A^{n}=A^{n,-}-K^{n}-A^{n,+}.

By a similar analysis as the proof of Lemma 4.4 and Lemma 4.7 in Li and Song, (2021), we have for any 2α<β2\leq\alpha<\beta,

limn𝔼^[supt[0,T]|(YtnLt)|α]=0\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|(Y^{n}_{t}-L_{t})^{-}|^{\alpha}\right]=0 (3.17)

and

limn,n𝔼^[supt[0,T]|YtnYtn|α]=0,limn,n𝔼^[(0T|ZsnZsn|2𝑑s)α2]=0,\displaystyle\lim_{n,n^{\prime}\rightarrow\infty}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|Y_{t}^{n}-Y_{t}^{n^{\prime}}|^{\alpha}\right]=0,\qquad\lim_{n,n^{\prime}\rightarrow\infty}\widehat{\mathbb{E}}\left[\left(\int_{0}^{T}|Z_{s}^{n}-Z_{s}^{n^{\prime}}|^{2}ds\right)^{\frac{\alpha}{2}}\right]=0,
andlimn,n𝔼^[supt[0,T]|AtnAtn|α]=0.\displaystyle\hskip 56.9055pt\text{and}\quad\lim_{n,n^{\prime}\rightarrow\infty}\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|A_{t}^{n}-A_{t}^{n^{\prime}}|^{\alpha}\right]=0.

Denote by (Y,Z,A)(Y,Z,A) the limit of (Yn,Zn,An)(Y^{n},Z^{n},A^{n}) as nn goes to infinity. Recalling the definitions of An,+A^{n,+} and An,A^{n,-} given in Equation (3.16), and the fact that 𝔼^|An,+|α]C\widehat{\mathbb{E}}|A^{n,+}|^{\alpha}]\leq C and 𝔼^|An,|α]C\widehat{\mathbb{E}}|A^{n,-}|^{\alpha}]\leq C from Lemma 3.5, we have LtYtUtL_{t}\leq Y_{t}\leq U_{t} for t[0,T]t\in[0,T]. Letting nn\rightarrow\infty in Equation (3.4) (recalling here we consider the case that m=nm=n) yields

Yt=ξ+tTf(s,Ys,Zs)𝑑s+tTg(s,Ys,Zs)dBstTZs𝑑Bs+(ATAt).\displaystyle Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})d\langle B\rangle_{s}-\int_{t}^{T}Z_{s}dB_{s}+(A_{T}-A_{t}).

It remains to prove that (Y,A)(Y,A) satisfies the ASCα\textmd{ASC}_{\alpha}. We claim that {An,+}n\{A^{n,+}\}_{n\in\mathbb{N}}, {An,}n\{A^{n,-}\}_{n\in\mathbb{N}} and {Kn}n\{K^{n}\}_{n\in\mathbb{N}} are the approximate sequences for (Y,A)(Y,A) with order α\alpha. It suffices to show that

limn𝔼^|0T(YsLs)𝑑Asn,+|α/2=0andlimn𝔼^|0T(UsYs)𝑑Asn,|α/2=0.\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{0}^{T}(Y_{s}-L_{s})dA_{s}^{n,+}\right|^{\alpha/2}=0\quad\text{and}\quad\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{0}^{T}(U_{s}-Y_{s})dA_{s}^{n,-}\right|^{\alpha/2}=0.

We only prove the first equation since the second one can be proved similarly. By the definition of An,+A^{n,+} given in Equation (3.16), we obtain that

0T(YsLs)𝑑Asn,+\displaystyle\int_{0}^{T}(Y_{s}-L_{s})dA_{s}^{n,+} =0T(YsYsn)𝑑Asn,++0T(YsnLs)n(YsnLs)𝑑s\displaystyle=\int_{0}^{T}(Y_{s}-Y^{n}_{s})dA_{s}^{n,+}+\int_{0}^{T}(Y^{n}_{s}-L_{s})n(Y^{n}_{s}-L_{s})^{-}ds
supt[0,T]|YtYtn||ATn,+|.\displaystyle\leq\sup_{t\in[0,T]}|Y_{t}-Y^{n}_{t}||A_{T}^{n,+}|.

Then, it is easy to check that

limn𝔼^|0T(YsLs)𝑑Asn,+|α/2limn(𝔼^supt[0,T]|YtYtn|α)12(𝔼^|ATn,+|)12=0.\displaystyle\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left|\int_{0}^{T}(Y_{s}-L_{s})dA_{s}^{n,+}\right|^{\alpha/2}\leq\lim_{n\rightarrow\infty}\left(\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y_{t}-Y^{n}_{t}|^{\alpha}\right)^{\frac{1}{2}}\left(\widehat{\mathbb{E}}|A^{n,+}_{T}|\right)^{\frac{1}{2}}=0.

Therefore, (Y,Z,A)(Y,Z,A) is the solution to the doubly reflected GG-BSDE (3.1).

(b). Next, we demonstrate the decreasing convergence of Y¯n\bar{Y}^{n} to YY. By Theorem 2.11, we have Y¯tn1Y¯tn2\bar{Y}^{n_{1}}_{t}\geq\bar{Y}^{n_{2}}_{t} for any n1n2n_{1}\leq n_{2} and t[0,T]t\in[0,T]. It suffices to show that for any 2α<β2\leq\alpha<\beta,

limn𝔼^supt[0,T]|YtnY¯tn|α=0.\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|Y^{n}_{t}-\bar{Y}^{n}_{t}|^{\alpha}=0. (3.18)

Noting that Y¯tnLt\bar{Y}^{n}_{t}\geq L_{t} for any nn\in\mathbb{N} and any t[0,T]t\in[0,T], (Y¯n,Z¯n,A¯n)(\bar{Y}^{n},\bar{Z}^{n},\bar{A}^{n}) satisfies the following equation

Y¯tn=\displaystyle\bar{Y}_{t}^{n}= ξ+tTf(s,Y¯sn,Z¯sn)𝑑s+tTg(s,Y¯sn,Z¯sn)dBstTZ¯sn𝑑Bs\displaystyle\xi+\int_{t}^{T}f(s,\bar{Y}^{n}_{s},\bar{Z}_{s}^{n})ds+\int_{t}^{T}g(s,\bar{Y}^{n}_{s},\bar{Z}_{s}^{n})d\langle B\rangle_{s}-\int_{t}^{T}\bar{Z}_{s}^{n}dB_{s}
+(A¯TnA¯tn)tTn(Y¯snUs)+𝑑s+tTn(Y¯snLs)𝑑s.\displaystyle+(\bar{A}^{n}_{T}-\bar{A}^{n}_{t})-\int_{t}^{T}n(\bar{Y}^{n}_{s}-U_{s})^{+}ds+\int_{t}^{T}n(\bar{Y}^{n}_{s}-L_{s})^{-}ds.

Additionally, since LtY¯tnY¯t1L_{t}\leq\bar{Y}^{n}_{t}\leq\bar{Y}^{1}_{t} for any nn\in\mathbb{N} and t[0,T]t\in[0,T], there exists a constant CC independent of nn, such that for any 2α<β2\leq\alpha<\beta,

𝔼^supt[0,T]|Y¯tn|αC.\displaystyle\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\bar{Y}^{n}_{t}|^{\alpha}\leq C. (3.19)

By Theorem 2.8,

Y^tn=Y¯tnYtn0\widehat{Y}^{n}_{t}=\bar{Y}^{n}_{t}-Y_{t}^{n}\geq 0

for any nn\in\mathbb{N} and t[0,T]t\in[0,T]. For any constant rr, applying GG-Itô’s formula to ert(Htn)α2e^{rt}(H^{n}_{t})^{\frac{\alpha}{2}}, where Htn=|Y^tn|2H^{n}_{t}=|\widehat{Y}^{n}_{t}|^{2}, we have

|Htn|α/2ert+tTrers|Hsn|α/2𝑑s+tTα2ers|Hsn|α/21(Z^sn)2dBs=α(1α2)tTers|Hsn|α/22(Y^sn)2(Z^sn)2dBstTαers|Hsn|α/21Y^sn(YsnLs)𝑑s+tTαers|Hsn|α/21Y^sf^sn𝑑s+tTαers|Hsn|α/21Y^sg^sndBstTαers|Hsn|α/21(Y^snZ^sndBsY^sndKsnY^sndA¯sn)tTαers|Hsn|α/21Y^sn[(Y¯snUs)+(YsnUs)+]𝑑s,\begin{split}&|H_{t}^{n}|^{\alpha/2}e^{rt}+\int_{t}^{T}re^{rs}|H^{n}_{s}|^{\alpha/2}ds+\int_{t}^{T}\frac{\alpha}{2}e^{rs}|H_{s}^{n}|^{\alpha/2-1}(\widehat{Z}^{n}_{s})^{2}d\langle B\rangle_{s}\\ =&\alpha(1-\frac{\alpha}{2})\int_{t}^{T}e^{rs}|H_{s}^{n}|^{\alpha/2-2}(\widehat{Y}^{n}_{s})^{2}(\widehat{Z}^{n}_{s})^{2}d\langle B\rangle_{s}-\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}_{s}n(Y_{s}^{n}-L_{s})^{-}ds\\ &+\int_{t}^{T}{\alpha}e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}_{s}\widehat{f}^{n}_{s}ds+\int_{t}^{T}{\alpha}e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}_{s}\widehat{g}^{n}_{s}d\langle B\rangle_{s}\\ &-\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\Big{(}\widehat{Y}^{n}_{s}\widehat{Z}^{n}_{s}dB_{s}-\widehat{Y}^{n}_{s}d{K}^{n}_{s}-\widehat{Y}^{n}_{s}d\bar{A}^{n}_{s}\Big{)}\\ &-\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}_{s}n\Big{[}(\bar{Y}^{n}_{s}-U_{s})^{+}-(Y^{n}_{s}-U_{s})^{+}\Big{]}ds,\end{split} (3.20)

where

Z^tn=Z¯tnZtn,f^tn=f(t,Y¯tn,Z¯tn)f(t,Ytn,Ztn)andg^tn=g(t,Y¯tn,Z¯tn)g(t,Ytn,Ztn).\widehat{Z}^{n}_{t}=\bar{Z}^{n}_{t}-Z^{n}_{t},\quad\widehat{f}^{n}_{t}=f(t,\bar{Y}^{n}_{t},\bar{Z}^{n}_{t})-f(t,Y^{n}_{t},Z^{n}_{t})\quad\text{and}\quad\widehat{g}^{n}_{t}=g(t,\bar{Y}^{n}_{t},\bar{Z}^{n}_{t})-g(t,Y^{n}_{t},Z^{n}_{t}).

Applying Hölder’s inequality, we have

tTαers|Hsn|α/21Y^snf^sn𝑑s+tTαers|Hsn|α/21Y^sng^sndBs\displaystyle\int_{t}^{T}{\alpha}e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}^{n}_{s}\widehat{f}^{n}_{s}ds+\int_{t}^{T}{\alpha}e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}^{n}_{s}\widehat{g}^{n}_{s}d\langle B\rangle_{s}
((1+σ¯2)ακ+(1+σ¯4)2ακ2σ¯2(α1))tTers|Hsn|α/2𝑑s\displaystyle\leq\left((1+\bar{\sigma}^{2})\alpha\kappa+(1+\bar{\sigma}^{4})\frac{2\alpha\kappa^{2}}{\underline{\sigma}^{2}(\alpha-1)}\right)\int_{t}^{T}e^{rs}|H_{s}^{n}|^{\alpha/2}ds
+α(α1)4tTers|Hsn|α/21(Z^sn)2dBs.\displaystyle\hskip 142.26378pt+\frac{\alpha(\alpha-1)}{4}\int_{t}^{T}e^{rs}|H_{s}^{n}|^{\alpha/2-1}(\widehat{Z}^{n}_{s})^{2}d\langle B\rangle_{s}.

Noting that Y^tn0\widehat{Y}^{n}_{t}\geq 0 and A¯n\bar{A}^{n} is non-decreasing, it is easy to check that

+tTαers|Hsn|α/21Y^sn𝑑A¯sntTαers|Hsn|α/21[(Y¯snLs)+(YsnLs)]𝑑A¯sn,tTαers|Hsn|α/21Y^sn[(Y¯snUs)+(YnUs)+]𝑑s0,tTαers|Hsn|α/21Y^sn(YsnLs)𝑑s0,+tTαers|Hsn|α/21Y^sn𝑑Ksn0.\begin{split}\bullet\quad&+\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}^{n}_{s}d\bar{A}^{n}_{s}\leq\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\Big{[}(\bar{Y}^{n}_{s}-L_{s})+(Y^{n}_{s}-L_{s})^{-}\Big{]}d\bar{A}^{n}_{s},\\ \bullet\quad&-\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}_{s}n\Big{[}(\bar{Y}^{n}_{s}-U_{s})^{+}-(Y^{n}-U_{s})^{+}\Big{]}ds\leq 0,\\ \bullet\quad&-\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}_{s}n(Y_{s}^{n}-L_{s})^{-}ds\leq 0,\\ \bullet\quad&+\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\widehat{Y}^{n}_{s}d{K}^{n}_{s}\leq 0.\end{split} (3.21)

Set

Mtn=0tαers|Hsn|α/21(Y^snZ^sndBs(Y¯snLs)dA¯sn),M^{n}_{t}=\int_{0}^{t}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}\Big{(}\widehat{Y}^{n}_{s}\widehat{Z}^{n}_{s}dB_{s}-(\bar{Y}^{n}_{s}-L_{s})d\bar{A}^{n}_{s}\Big{)},

which is a GG-martingale. Letting

r=1+((1+σ¯2)ακ+(1+σ¯4)2ακ2σ¯2(α1)),r=1+\left((1+\bar{\sigma}^{2})\alpha\kappa+(1+\bar{\sigma}^{4})\frac{2\alpha\kappa^{2}}{\underline{\sigma}^{2}(\alpha-1)}\right),

all the above analyses indicate that

ert|Y^tn|α+(MTnMtn)tTαers|Hsn|α/21(YsnLs)𝑑A¯sn.e^{rt}|\widehat{Y}^{n}_{t}|^{\alpha}+(M^{n}_{T}-M^{n}_{t})\leq\int_{t}^{T}\alpha e^{rs}|H_{s}^{n}|^{\alpha/2-1}(Y^{n}_{s}-L_{s})^{-}d\bar{A}^{n}_{s}.

Taking conditional expectations on both sides, we have

|Y^tn|αC𝔼^t[tT|Hsn|α/21(YsnLs)𝑑A¯sn].|\widehat{Y}^{n}_{t}|^{\alpha}\leq C\widehat{\mathbb{E}}_{t}\left[\int_{t}^{T}|H_{s}^{n}|^{\alpha/2-1}(Y^{n}_{s}-L_{s})^{-}d\bar{A}^{n}_{s}\right].

Thanks to Theorem 2.5, to obtain Equation (3.18), it suffices to show that there exists some γ>1\gamma>1, such that

limn𝔼^(0T|Hsn|α/21(YsnLs)𝑑A¯sn)γ=0.\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left(\int_{0}^{T}|H_{s}^{n}|^{\alpha/2-1}(Y^{n}_{s}-L_{s})^{-}d\bar{A}^{n}_{s}\right)^{\gamma}=0.

Indeed, for any 1<γ<β/α1<\gamma<\beta/\alpha, we have

𝔼^(0T|Hsn|α/21(YsnLs)𝑑A¯sn)γ\displaystyle\widehat{\mathbb{E}}\left(\int_{0}^{T}|H_{s}^{n}|^{\alpha/2-1}(Y_{s}^{n}-L_{s})^{-}d\bar{A}^{n}_{s}\right)^{\gamma}
\displaystyle\leq 𝔼^[sups[0,T]|Y^sn|(α2)γsups[0,T]((YsnLs))γ(A¯Tn)γ]\displaystyle\widehat{\mathbb{E}}\left[\sup_{s\in[0,T]}|\widehat{Y}^{n}_{s}|^{(\alpha-2)\gamma}\sup_{s\in[0,T]}\big{(}(Y_{s}^{n}-L_{s})^{-}\big{)}^{\gamma}\big{(}\bar{A}^{n}_{T}\big{)}^{\gamma}\right]
\displaystyle\leq (𝔼^sups[0,T]|Y^sn|αγ)αα2(𝔼^sups[0,T]((YsnLs))αγ)1α𝔼^[(A¯Tn)αγ]1α,\displaystyle\bigg{(}\widehat{\mathbb{E}}\sup_{s\in[0,T]}|\widehat{Y}^{n}_{s}|^{\alpha\gamma}\bigg{)}^{\frac{\alpha}{\alpha-2}}\bigg{(}\widehat{\mathbb{E}}\sup_{s\in[0,T]}\big{(}(Y_{s}^{n}-L_{s})^{-}\big{)}^{\alpha\gamma}\bigg{)}^{\frac{1}{\alpha}}\widehat{\mathbb{E}}\Big{[}\big{(}\bar{A}^{n}_{T}\big{)}^{\alpha\gamma}\Big{]}^{\frac{1}{\alpha}},

which converges to zero as nn goes to infinity, by Lemmas 3.3 and 3.6, and Equations (3.17) and (3.19).

(c). In order to prove the last assertion in Theorem 3.2, it suffices to show that for any 2α<β2\leq\alpha<\beta, we have

limn𝔼^(0T|Z¯snZsn|2𝑑s)α2=0andlimn𝔼^supt[0,T]|A~tnAtn|α=0,\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left(\int_{0}^{T}|\bar{Z}^{n}_{s}-Z_{s}^{n}|^{2}ds\right)^{\frac{\alpha}{2}}=0\quad\text{and}\quad\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widetilde{A}^{n}_{t}-A^{n}_{t}|^{\alpha}=0,

where A~tn=A¯tn0tn(Y¯snUs)+𝑑s\widetilde{A}^{n}_{t}=\bar{A}^{n}_{t}-\int_{0}^{t}n(\bar{Y}^{n}_{s}-U_{s})^{+}ds.

Letting r=0r=0 and α=2\alpha=2 in Equation (3.20), applying Equation (3.21), we have

0T(Z^sn)2dBs\displaystyle\int_{0}^{T}(\widehat{Z}^{n}_{s})^{2}d\langle B\rangle_{s}\leq 0T2Y^snf^sn𝑑s+0T2Y^sng^sndBs0T2Y^snZ^sn𝑑Bs+0T2Y^sn𝑑A¯sn\displaystyle\int_{0}^{T}2\widehat{Y}^{n}_{s}\widehat{f}^{n}_{s}ds+\int_{0}^{T}2\widehat{Y}^{n}_{s}\widehat{g}^{n}_{s}d\langle B\rangle_{s}-\int_{0}^{T}2\widehat{Y}^{n}_{s}\widehat{Z}_{s}^{n}dB_{s}+\int_{0}^{T}2\widehat{Y}_{s}^{n}d\bar{A}^{n}_{s}
\displaystyle\leq κε0T(Y^sn)2𝑑s+2ε0T(Z^sn)2𝑑s+2supt[0,T]|Y^sn||A¯Tn|0T2Y^snZ^sn𝑑Bs,\displaystyle\kappa_{\varepsilon}\int_{0}^{T}(\widehat{Y}^{n}_{s})^{2}ds+2\varepsilon\int_{0}^{T}(\widehat{Z}^{n}_{s})^{2}ds+2\sup_{t\in[0,T]}|\widehat{Y}^{n}_{s}||\bar{A}^{n}_{T}|-\int_{0}^{T}2\widehat{Y}^{n}_{s}\widehat{Z}_{s}^{n}dB_{s},

where ε>0\varepsilon>0 and κε=2(1+σ¯2)κ+(1+σ¯4)κ2ε\kappa_{\varepsilon}=2(1+\bar{\sigma}^{2})\kappa+\frac{(1+\bar{\sigma}^{4})\kappa^{2}}{\varepsilon}. By Proposition 2.3, for any ε>0\varepsilon^{\prime}>0, we obtain

𝔼^(0TY^snZ^sn𝑑Bs)α2\displaystyle\widehat{\mathbb{E}}\left(\int_{0}^{T}\widehat{Y}^{n}_{s}\widehat{Z}^{n}_{s}dB_{s}\right)^{\frac{\alpha}{2}}\leq C𝔼^(0T(Y^sn)2(Z^sn)2𝑑s)α4\displaystyle C\widehat{\mathbb{E}}\left(\int_{0}^{T}(\widehat{Y}_{s}^{n})^{2}(\widehat{Z}_{s}^{n})^{2}ds\right)^{\frac{\alpha}{4}}
\displaystyle\leq C(𝔼^supt[0,T]|Y^tn|α)1/2(𝔼^(0T|Z^sn|2𝑑s)α2)1/2\displaystyle C\left(\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widehat{Y}^{n}_{t}|^{\alpha}\right)^{1/2}\left(\widehat{\mathbb{E}}\left(\int_{0}^{T}|\widehat{Z}_{s}^{n}|^{2}ds\right)^{\frac{\alpha}{2}}\right)^{1/2}
\displaystyle\leq C4ε𝔼^supt[0,T]|Y^tn|α+Cε𝔼^(0T|Z^sn|2𝑑s)α2.\displaystyle\frac{C}{4\varepsilon^{\prime}}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widehat{Y}^{n}_{t}|^{\alpha}+C\varepsilon^{\prime}\widehat{\mathbb{E}}\left(\int_{0}^{T}|\widehat{Z}_{s}^{n}|^{2}ds\right)^{\frac{\alpha}{2}}.

Choosing ε\varepsilon and ε\varepsilon^{\prime} small enough, it is easy to check that

𝔼^(0T(Z^sn)2𝑑s)α2C{𝔼^supt[0,T]|Y^tn|α+(𝔼^supt[0,T]|Y^tn|α)1/2(𝔼^|A¯Tn|α)1/2}.\widehat{\mathbb{E}}\left(\int_{0}^{T}(\widehat{Z}^{n}_{s})^{2}ds\right)^{\frac{\alpha}{2}}\leq C\left\{\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widehat{Y}^{n}_{t}|^{\alpha}+\bigg{(}\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widehat{Y}^{n}_{t}|^{\alpha}\bigg{)}^{1/2}\left(\widehat{\mathbb{E}}|\bar{A}^{n}_{T}|^{\alpha}\right)^{1/2}\right\}.

It follows from Lemma 3.6 and Equation (3.18) that

limn𝔼^(0T|Z¯snZsn|2𝑑s)α2=0.\lim_{n\rightarrow\infty}\widehat{\mathbb{E}}\left(\int_{0}^{T}|\bar{Z}^{n}_{s}-Z_{s}^{n}|^{2}ds\right)^{\frac{\alpha}{2}}=0.

Finally, we have

𝔼^supt[0,T]|A~tnAtn|αC𝔼^[supt[0,T]|Y^tn|α+(0T|f^sn|𝑑s)α+(0T|g^sn|𝑑s)α+supt[0,T]|0tZ^sn𝑑Bs|α]C{𝔼^supt[0,T]|Y^tn|α+𝔼^(0T|Z^sn|2𝑑s)α/2}0, as n.\begin{split}&\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widetilde{A}_{t}^{n}-A_{t}^{n}|^{\alpha}\\ &\leq C\widehat{\mathbb{E}}\left[\sup_{t\in[0,T]}|\widehat{Y}^{n}_{t}|^{\alpha}+\left(\int_{0}^{T}|\widehat{f}^{n}_{s}|ds\right)^{\alpha}+\left(\int_{0}^{T}|\widehat{g}^{n}_{s}|ds\right)^{\alpha}+\sup_{t\in[0,T]}\left|\int_{0}^{t}\widehat{Z}^{n}_{s}dB_{s}\right|^{\alpha}\right]\\ &\leq C\left\{\widehat{\mathbb{E}}\sup_{t\in[0,T]}|\widehat{Y}^{n}_{t}|^{\alpha}+\widehat{\mathbb{E}}\left(\int_{0}^{T}|\widehat{Z}^{n}_{s}|^{2}ds\right)^{\alpha/2}\right\}\\ &\rightarrow 0,\qquad\textrm{ as }n\rightarrow\infty.\end{split}

The proof is complete.

4 Probabilistic representation of fully nonlinear PDEs with double obstacles

In this section, we establish the connection between fully nonlinear PDEs with double obstacles and doubly reflected GG-BSDEs. To this end, we consider the doubly reflected GG-BSDEs in a Markovian framework. For simplicity, we focus solely on doubly reflected BSDEs driven by one-dimensional GG-Brownian motion. However, similar results apply to the multi-dimensional case.

For each 0tT0\leq t\leq T and ξLGp(Ωt)\xi\in L_{G}^{p}(\Omega_{t}) where p2p\geq 2, let {Xst,ξ,tsT}\{X_{s}^{t,\xi},t\leq s\leq T\} be the solution of the following GG-SDE:

Xst,ξ=x+tsb(r,Xrt,ξ)𝑑r+tsl(r,Xrt,ξ)dBr+tsσ(r,Xrt,ξ)𝑑Br.X_{s}^{t,\xi}=x+\int_{t}^{s}b(r,X_{r}^{t,\xi})dr+\int_{t}^{s}l(r,X_{r}^{t,\xi})d\langle B\rangle_{r}+\int_{t}^{s}\sigma(r,X_{r}^{t,\xi})dB_{r}. (4.1)

Consider the doubly reflected GG-BSDE

{Yst,x=ξt,x+sTft,x(s,Yst,x,Zst,x)𝑑s+sTgt,x(s,Yst,x,Zst,x)dBssTZst,x𝑑Bs+(Ast,xAst,x),tsT,Lst,xYst,xUst,x,tsT,(Yt,x,At,x) satisfies the ASCα,\displaystyle\begin{cases}Y_{s}^{t,x}=\xi^{t,x}+\int_{s}^{T}f^{t,x}(s,Y_{s}^{t,x},Z_{s}^{t,x})ds+\int_{s}^{T}g^{t,x}(s,Y_{s}^{t,x},Z_{s}^{t,x})d\langle B\rangle_{s}\\ \hskip 113.81102pt-\int_{s}^{T}Z_{s}^{t,x}dB_{s}+(A_{s}^{t,x}-A_{s}^{t,x}),\hskip 28.45274ptt\leq s\leq T,\vspace{0.2cm}\\ L^{t,x}_{s}\leq Y_{s}^{t,x}\leq U^{t,x}_{s},\quad t\leq s\leq T,\vspace{0.2cm}\\ (Y^{t,x},A^{t,x})\textrm{ satisfies the }\textmd{ASC}_{\alpha},\end{cases} (4.2)

which is the doubly reflected GG-BSDE (3.1) with parameters (ξt,x,ft,x,gt,x,Lt,x,Ut,x)(\xi^{t,x},f^{t,x},g^{t,x},L^{t,x},U^{t,x}) taking the following form:

ξt,x=ϕ(XTt,x),Lst,x=h(s,Xst,x),Ust,x=h(s,Xst,x),\displaystyle\xi^{t,x}=\phi(X_{T}^{t,x}),\qquad L_{s}^{t,x}=h(s,X_{s}^{t,x}),\qquad U_{s}^{t,x}=h^{\prime}(s,X_{s}^{t,x}),
ft,x(s,y,z)=f(s,Xst,x,y,z),andgt,x(s,y,z)=g(s,Xst,x,y,z).\displaystyle f^{t,x}(s,y,z)=f(s,X_{s}^{t,x},y,z),\qquad\text{and}\qquad g^{t,x}(s,y,z)=g(s,X_{s}^{t,x},y,z).

The functions b,l,σ,h,h:[0,T]×b,l,\sigma,h,h^{\prime}:[0,T]\times\mathbb{R}\rightarrow\mathbb{R}, ϕ:\phi:\mathbb{R}\rightarrow\mathbb{R} and f,g:[0,T]×3f,g:[0,T]\times\mathbb{R}^{3}\rightarrow\mathbb{R} are assumed to be deterministic and satisfy the following conditions:

(Ai)

bb, ll, σ\sigma, ff, gg, hh, hh^{\prime} are continuous in t[0,T]t\in[0,T];

(Aii)

There exist a positive integer kk and a constant κ\kappa such that

|ϕ(x)ϕ(x)|κ(1+|x|k+|x|k)|xx|,\displaystyle|\phi(x)-\phi(x^{\prime})|\leq\kappa(1+|x|^{k}+|x^{\prime}|^{k})|x-x^{\prime}|,
|f(t,x,y,z)f(t,x,y,z)|κ[(1+|x|k+|x|k)|xx|+|yy|+|zz|],\displaystyle|f(t,x,y,z)-f(t,x^{\prime},y^{\prime},z^{\prime})|\leq\kappa\Big{[}(1+|x|^{k}+|x^{\prime}|^{k})|x-x^{\prime}|+|y-y^{\prime}|+|z-z^{\prime}|\Big{]},
|g(t,x,y,z)g(t,x,y,z)|κ[(1+|x|k+|x|k)|xx|+|yy|+|zz|],\displaystyle|g(t,x,y,z)-g(t,x^{\prime},y^{\prime},z^{\prime})|\leq\kappa\Big{[}(1+|x|^{k}+|x^{\prime}|^{k})|x-x^{\prime}|+|y-y^{\prime}|+|z-z^{\prime}|\Big{]},
|b(t,x)b(t,x)|+|l(t,x)l(t,x)|+|σ(t,x)σ(t,x)|+|h(t,x)h(t,x)|κ|xx|;\displaystyle|b(t,x)-b(t,x^{\prime})|+|l(t,x)-l(t,x^{\prime})|+|\sigma(t,x)-\sigma(t,x^{\prime})|+|h(t,x)-h(t,x^{\prime})|\leq\kappa|x-x^{\prime}|;
(Aiii)

hh^{\prime} belongs to the space CLip1,2([0,T]×)C^{1,2}_{Lip}([0,T]\times\mathbb{R}), h(t,x)h(t,x)h(t,x)\leq h^{\prime}(t,x) and h(T,x)ϕ(x)h(T,x)h(T,x)\leq\phi(x)\leq h^{\prime}(T,x) for any xx\in\mathbb{R} and t[0,T]t\in[0,T]. The space CLip1,2([0,T]×)C^{1,2}_{Lip}([0,T]\times\mathbb{R}) refers to the space of functions that are continuously differentiable in their first variable and twice continuously differentiable in their second variable, and both derivatives are uniformly Lipschitz continuous.

Under the above conditions, the solutions of the GG-SDE (4.1) have the following properties; see Chapter V of Peng, (2019).

Proposition 4.1 (Peng, (2019))

Let ξ,ξLGp(Ωt)\xi,\xi^{\prime}\in L_{G}^{p}(\Omega_{t}) where p2p\geq 2. Then we have, for each δ[0,Tt]\delta\in[0,T-t],

𝔼^tsups[t,t+δ]\displaystyle\widehat{\mathbb{E}}_{t}\sup_{s\in[t,t+\delta]} |Xst,ξXst,ξ|pC|ξξ|p,𝔼^t|Xt+δt,ξ|pC(1+|ξ|p),\displaystyle|X_{s}^{t,\xi}-X_{s}^{t,\xi^{\prime}}|^{p}\leq C|\xi-\xi^{\prime}|^{p},\qquad\widehat{\mathbb{E}}_{t}|X_{t+\delta}^{t,\xi}|^{p}\leq C(1+|\xi|^{p}),
and𝔼^tsups[t,t+δ]|Xst,ξξ|pC(1+|ξ|p)δp/2,\displaystyle\quad\text{and}\quad\widehat{\mathbb{E}}_{t}\sup_{s\in[t,t+\delta]}|X_{s}^{t,\xi}-\xi|^{p}\leq C(1+|\xi|^{p})\delta^{p/2},

where the constant CC depends on κ,G,p\kappa,G,p and TT.

Now define

u(t,x):=Ytt,x,(t,x)[0,T]×,u(t,x):=Y_{t}^{t,x},\quad(t,x)\in[0,T]\times\mathbb{R}, (4.3)

where Yt,xY^{t,x} is the first component of the solution to the doubly reflected GG-BSDE (4.2). Our first observation is that uu is a deterministic and continuous function.

Lemma 4.2

For any fixed t[0,T]t\in[0,T], uu is a continuous function in xx.

Proof. By Proposition 3.7 and Proposition 4.1, there exists a constant CC depending on T,k,κ,G,x,xT,k,\kappa,G,x,x^{\prime}, such that for any t[0,T]t\in[0,T] and x,xx,x^{\prime}\in\mathbb{R},

|u(t,x)u(t,x)|2C(|xx|2+|xx|).|u(t,x)-u(t,x^{\prime})|^{2}\leq C(|x-x^{\prime}|^{2}+|x-x^{\prime}|).

This completes the proof.    

Lemma 4.3

For any fixed xx\in\mathbb{R}, uu is continuous in tt.

Proof. For any fixed t[0,T]t\in[0,T], we define, for 0st0\leq s\leq t,

Xst,x:=x,Yst,x:=Ytt,x,Zst,x:=0,Ast,x:=0,X_{s}^{t,x}:=x,\quad Y_{s}^{t,x}:=Y_{t}^{t,x},\quad Z_{s}^{t,x}:=0,\quad A_{s}^{t,x}:=0,
Ust,x:=h(t,x)andLst,x:=h(t,x).U^{t,x}_{s}:=h^{\prime}(t,x)\quad\text{and}\quad L^{t,x}_{s}:=h(t,x).

Obviously, (Yst,x,Zst,x,Ast,x)s[0,T](Y^{t,x}_{s},Z^{t,x}_{s},A^{t,x}_{s})_{s\in[0,T]} is the solution to the doubly reflected GG-BSDE with parameters (ϕ(XTt,x),f~t,x,g~t,x,Lt,x,Ut,x)(\phi(X^{t,x}_{T}),\widetilde{f}^{t,x},\widetilde{g}^{t,x},L^{t,x},U^{t,x}), where

f~t,x(s,y,z)=f(s,Xst,x,y,z)𝟙[t,T](s)andg~t,x(s,y,z)=g(s,Xst,x,y,z)𝟙[t,T](s).\displaystyle\widetilde{f}^{t,x}(s,y,z)=f(s,X^{t,x}_{s},y,z)\mathbbm{1}_{[t,T]}(s)\quad\text{and}\quad\widetilde{g}^{t,x}(s,y,z)=g(s,X^{t,x}_{s},y,z)\mathbbm{1}_{[t,T]}(s).

For each fixed xx\in\mathbb{R}, suppose that 0t1t2T0\leq t_{1}\leq t_{2}\leq T, by Proposition 3.7, there exists a constant CC depending on T,k,κ,G,xT,k,\kappa,G,x, such that

|u(t1,x)u(t2,x)|2=|Y0t1,xY0t2,x|2\displaystyle|u(t_{1},x)-u(t_{2},x)|^{2}=|Y^{t_{1},x}_{0}-Y^{t_{2},x}_{0}|^{2}
\displaystyle\leq C(𝔼supt[0,T]|Ltt1,xLtt2,x|2+𝔼supt[0,T]|Utt1,xUtt2,x|2)12+C𝔼|ϕ(XTt1,x)ϕ(XTt2,x)|2\displaystyle C\bigg{(}\mathbb{E}\sup_{t\in[0,T]}|L^{t_{1},x}_{t}-L^{t_{2},x}_{t}|^{2}+\mathbb{E}\sup_{t\in[0,T]}|U^{t_{1},x}_{t}-U^{t_{2},x}_{t}|^{2}\bigg{)}^{\frac{1}{2}}+C\mathbb{E}|\phi(X_{T}^{t_{1},x})-\phi(X_{T}^{t_{2},x})|^{2}
+C𝔼[0T|f~t1,x(s,Xst1,x,Yst2,x,Zst2,x)f~t2,x(s,Xst2,x,Yst2,x,Zst2,x)|2𝑑s]\displaystyle+C\mathbb{E}\left[\int_{0}^{T}\Big{|}\widetilde{f}^{t_{1},x}(s,X^{t_{1},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})-\widetilde{f}^{t_{2},x}(s,X^{t_{2},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})\Big{|}^{2}ds\right]
+C𝔼[0T|g~t1,x(s,Xst1,x,Yst2,x,Zst2,x)g~t2,x(s,Xst2,x,Yst2,x,Zst2,x)|2𝑑s].\displaystyle+C\mathbb{E}\left[\int_{0}^{T}\Big{|}\widetilde{g}^{t_{1},x}(s,X^{t_{1},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})-\widetilde{g}^{t_{2},x}(s,X^{t_{2},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})\Big{|}^{2}ds\right].

Note that

supt[0,T]|Ltt1,xLtt2,x|\displaystyle\sup_{t\in[0,T]}|L^{t_{1},x}_{t}-L^{t_{2},x}_{t}|
\displaystyle\leq |h(t1,x)h(t2,x)|+supt[t1,t2]|h(t,Xtt1,x)h(t2,x)|+supt[t2,T]|h(t,Xtt1,x)h(t,Xtt2,x)|\displaystyle|h(t_{1},x)-h(t_{2},x)|+\sup_{t\in[t_{1},t_{2}]}|h(t,X_{t}^{t_{1},x})-h(t_{2},x)|+\sup_{t\in[t_{2},T]}|h(t,X^{t_{1},x}_{t})-h(t,X^{t_{2},x}_{t})|
\displaystyle\leq 2supt[t1,t2]|h(t,x)h(t2,x)|+supt[t1,t2]|h(t,Xtt1,x)h(t,x)|+supt[t2,T]κ|Xtt1,xXtt2,x|\displaystyle 2\sup_{t\in[t_{1},t_{2}]}|h(t,x)-h(t_{2},x)|+\sup_{t\in[t_{1},t_{2}]}|h(t,X^{t_{1},x}_{t})-h(t,x)|+\sup_{t\in[t_{2},T]}\kappa|X^{t_{1},x}_{t}-X^{t_{2},x}_{t}|
\displaystyle\leq 2supt[t1,t2]|h(t,x)h(t2,x)|+supt[t1,t2]κ|Xtt1,xx|+supt[t2,T]κ|Xtt2,Xt2t1,xXtt2,x|.\displaystyle 2\sup_{t\in[t_{1},t_{2}]}|h(t,x)-h(t_{2},x)|+\sup_{t\in[t_{1},t_{2}]}\kappa|X^{t_{1},x}_{t}-x|+\sup_{t\in[t_{2},T]}\kappa|X^{t_{2},X^{t_{1},x}_{t_{2}}}_{t}-X^{t_{2},x}_{t}|.

Letting δ=t2t1\delta=t_{2}-t_{1}, by Proposition 4.1, we have

limδ0𝔼supt[0,T]|Ltt1,xLtt2,x|2=0.\lim_{\delta\rightarrow 0}\mathbb{E}\sup_{t\in[0,T]}|L^{t_{1},x}_{t}-L^{t_{2},x}_{t}|^{2}=0.

A similar analysis yields that

limδ0𝔼supt[0,T]|Utt1,xUtt2,x|2=0andlimδ0𝔼|ϕ(XTt1,x)ϕ(XTt2,x)|2=0.\displaystyle\lim_{\delta\rightarrow 0}\mathbb{E}\sup_{t\in[0,T]}|U^{t_{1},x}_{t}-U^{t_{2},x}_{t}|^{2}=0\quad\text{and}\quad\lim_{\delta\rightarrow 0}\mathbb{E}|\phi(X^{t_{1},x}_{T})-\phi(X^{t_{2},x}_{T})|^{2}=0.

By simple calculation, we obtain that

0T|f~t1,x(s,Xst1,x,Yst2,x,Zst2,x)f~t2,x(s,Xst2,x,Yst2,x,Zst2,x)|2𝑑s\displaystyle\int_{0}^{T}\Big{|}\widetilde{f}^{t_{1},x}(s,X^{t_{1},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})-\widetilde{f}^{t_{2},x}(s,X^{t_{2},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})\Big{|}^{2}ds
\displaystyle\leq Ct1t2(|f(s,0,0,0)|2+|Xst1,x|2k+2+|Xst1,x|2+|Yst2,x|2+|Zst2,x|2)𝑑s\displaystyle C\int_{t_{1}}^{t_{2}}\Big{(}|f(s,0,0,0)|^{2}+|X_{s}^{t_{1},x}|^{2k+2}+|X_{s}^{t_{1},x}|^{2}+|Y_{s}^{t_{2},x}|^{2}+|Z_{s}^{t_{2},x}|^{2}\Big{)}ds
+Ct2T(1+|Xst1,x|k+|Xst2,x|k)2|Xst1,xXst2,x|2𝑑s.\displaystyle+C\int_{t_{2}}^{T}\Big{(}1+|X_{s}^{t_{1},x}|^{k}+|X_{s}^{t_{2},x}|^{k}\Big{)}^{2}|X_{s}^{t_{1},x}-X^{t_{2},x}_{s}|^{2}ds.

Noting that the process {0t|Zst2,x|2𝑑s}t[0,T]SG1(0,T)\{\int_{0}^{t}|Z_{s}^{t_{2},x}|^{2}ds\}_{t\in[0,T]}\in S_{G}^{1}(0,T), applying Propositions 2.4 and 4.1, we have

limδ0𝔼[0T|f~t1,x(s,Xst1,x,Yst2,x,Zst2,x)f~t2,x(s,Xst2,x,Yst2,x,Zst2,x)|2𝑑s]=0.\lim_{\delta\rightarrow 0}\mathbb{E}\left[\int_{0}^{T}\Big{|}\widetilde{f}^{t_{1},x}(s,X^{t_{1},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})-\widetilde{f}^{t_{2},x}(s,X^{t_{2},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})\Big{|}^{2}ds\right]=0.

Similarly, we have

limδ0𝔼[0T|g~t1,x(s,Xst1,x,Yst2,x,Zst2,x)g~t2,x(s,Xst2,x,Yst2,x,Zst2,x)|2𝑑s]=0.\lim_{\delta\rightarrow 0}\mathbb{E}\left[\int_{0}^{T}\Big{|}\widetilde{g}^{t_{1},x}(s,X^{t_{1},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})-\widetilde{g}^{t_{2},x}(s,X^{t_{2},x}_{s},Y^{t_{2},x}_{s},Z^{t_{2},x}_{s})\Big{|}^{2}ds\right]=0.

All the above analyses imply that uu is continuous in tt. The proof is complete.    

Our main result in this section is that the function uu defined in (4.3) is the solution to the following fully nonlinear obstacle problem:

{max(uh,min(tu(t,x)F(Dx2u,Dxu,u,x,t),uh))=0,u(T,x)=ϕ(x),\begin{cases}\max\Big{(}u-h^{\prime},\,\min\big{(}-\partial_{t}u(t,x)-F(D_{x}^{2}u,D_{x}u,u,x,t),u-h\big{)}\Big{)}=0,&\\ u(T,x)=\phi(x),&\end{cases} (4.4)

where

F(Dx2u,Dxu,u,x,t)=\displaystyle F(D_{x}^{2}u,D_{x}u,u,x,t)= G(H(Dx2u,Dxu,u,x,t))+b(t,x)Dxu+f(t,x,u,σ(t,x)Dxu),\displaystyle G(H(D_{x}^{2}u,D_{x}u,u,x,t))+b(t,x)D_{x}u+f(t,x,u,\sigma(t,x)D_{x}u),
H(Dx2u,Dxu,u,x,t)=\displaystyle H(D_{x}^{2}u,D_{x}u,u,x,t)= σ2(t,x)Dx2u+2l(t,x)Dxu+2g(t,x,u,σ(t,x)Dxu).\displaystyle\sigma^{2}(t,x)D_{x}^{2}u+2l(t,x)D_{x}u+2g(t,x,u,\sigma(t,x)D_{x}u).

Note that by Lemma 4.2 and Lemma 4.3, one only obtains that uu is a continuous function but it may be not differentiable. The notion of viscosity solutions was introduced by P.-L. Lions and M. Crandall independently in the 1980s, primarily to address issues arising in nonlinear PDEs, such as the lack of classical solutions due to singularities or non-smoothness. Viscosity solutions have since become a fundamental tool in the analysis of various types of nonlinear PDEs, including Hamilton-Jacobi equations, obstacle problems, and certain types of evolution equations. We begin by providing the definition of a viscosity solution to (4.4), which relies on the concepts of sub-jets and super-jets. Further elaboration can be found in the paper Crandall et al., (1992).

Definition 4.4

Let uC((0,T)×)u\in C((0,T)\times\mathbb{R}) and (t,x)(0,T)×(t,x)\in(0,T)\times\mathbb{R}. We denote 𝒫2,+u(t,x)\mathcal{P}^{2,+}u(t,x) as the “parabolic superjet” of uu at (t,x)(t,x), which comprises triples (p,q,X)3(p,q,X)\in\mathbb{R}^{3} such that

u(s,y)u(t,x)+p(st)+q(yx)+12X(yx)2+o(|st|+|yx|2).\displaystyle u(s,y)\leq u(t,x)+p(s-t)+q(y-x)+\frac{1}{2}X(y-x)^{2}+o(|s-t|+|y-x|^{2}).

Similarly, we define 𝒫2,u(t,x)\mathcal{P}^{2,-}u(t,x) as the “parabolic subjet” of uu at (t,x)(t,x) by

𝒫2,u(t,x):=𝒫2,+(u)(t,x).\mathcal{P}^{2,-}u(t,x):=-\mathcal{P}^{2,+}(-u)(t,x).
Definition 4.5

Let uu be a continuous function defined on [0,T]×[0,T]\times\mathbb{R}.

  1. (i)

    It is called a viscosity subsolution of (4.4) if u(T,x)ϕ(x)u(T,x)\leq\phi(x) for xx\in\mathbb{R}, and at any point (t,x)(0,T)×(t,x)\in(0,T)\times\mathbb{R}, for any (p,q,X)𝒫2,+u(t,x)(p,q,X)\in\mathcal{P}^{2,+}u(t,x),

    max(u(t,x)h(t,x),min(u(t,x)h(t,x),pF(X,q,u(t,x),x,t)))0;\max\Big{(}u(t,x)-h^{\prime}(t,x),\,\min\big{(}u(t,x)-h(t,x),-p-F(X,q,u(t,x),x,t)\big{)}\Big{)}\leq 0;
  2. (ii)

    It is called a viscosity supersolution of (4.4) if u(T,x)ϕ(x)u(T,x)\geq\phi(x) for xx\in\mathbb{R}, and at any point (t,x)(0,T)×(t,x)\in(0,T)\times\mathbb{R}, for any (p,q,X)𝒫2,u(t,x)(p,q,X)\in\mathcal{P}^{2,-}u(t,x),

    max(u(t,x)h(t,x),min(u(t,x)h(t,x),pF(X,q,u(t,x),x,t)))0;\max\Big{(}u(t,x)-h^{\prime}(t,x),\,\min\big{(}u(t,x)-h(t,x),-p-F(X,q,u(t,x),x,t)\big{)}\Big{)}\geq 0;
  3. (iii)

    It is called a viscosity solution of (4.4) if it is both a viscosity subsolution and supersolution.

Denote by {(Ysn,t,x,Zsn,t,x,Asn,t,x)}s[t,T]\{(Y_{s}^{n,t,x},Z_{s}^{n,t,x},A_{s}^{n,t,x})\}_{s\in[t,T]} the solution of the following penalized reflected GG-BSDEs:

{Ysn,t,x=ϕ(XTt,x)+sTf(r,Xrt,x,Yrn,t,x,Zrn,t,x)𝑑r+sTg(r,Xrt,x,Yrn,t,x,Zrn,t,x)dBrnsT(Yrn,t,xh(r,Xrt,x))+𝑑rsTZrn,t,x𝑑Br+(ATn,t,xAsn,t,x),tsT,Ysn,t,x,h(s,Xst,x),tsT,{ts(h(r,Xrt,x)Yrn,t,x)𝑑Arn,t,x}s[t,T] is a non-increasing G-martingale.\displaystyle\begin{cases}Y_{s}^{n,t,x}=\phi(X_{T}^{t,x})+\int_{s}^{T}f(r,X_{r}^{t,x},Y_{r}^{n,t,x},Z_{r}^{n,t,x})dr+\int_{s}^{T}g(r,X_{r}^{t,x},Y_{r}^{n,t,x},Z_{r}^{n,t,x})d\langle B\rangle_{r}\\ \ \ \ \ \ \ \ \ \ \ \ -n\int_{s}^{T}(Y_{r}^{n,t,x}-h^{\prime}(r,X_{r}^{t,x}))^{+}dr-\int_{s}^{T}Z_{r}^{n,t,x}dB_{r}+(A_{T}^{n,t,x}-A_{s}^{n,t,x}),\hskip 14.22636ptt\leq s\leq T,\vspace{0.2cm}\\ Y_{s}^{n,t,x,}\geq h(s,X^{t,x}_{s}),\hskip 14.22636ptt\leq s\leq T,\vspace{0.2cm}\\ \{\int_{t}^{s}(h(r,X^{t,x}_{r})-Y^{n,t,x}_{r})dA^{n,t,x}_{r}\}_{s\in[t,T]}\textrm{ is a non-increasing $G$-martingale}.\end{cases}

By Theorem 3.2, Yt,xY^{t,x} is the limit of Yn,t,xY^{n,t,x} as nn goes to infinity. We define

un(t,x):=Ytn,t,x,(t,x)[0,T]×.u_{n}(t,x):=Y_{t}^{n,t,x},\quad(t,x)\in[0,T]\times\mathbb{R}.

By Theorem 6.7 in Li et al., 2018b , unu_{n} is the viscosity solution of the following parabolic PDE:

{min(un(t,x)h(t,x),tunFn(Dx2un,Dxun,un,x,t))=0,(t,x)[0,T]×un(T,x)=ϕ(x),x,\begin{cases}\min\Big{(}u_{n}(t,x)-h(t,x),\,-\partial_{t}u_{n}-F_{n}(D_{x}^{2}u_{n},D_{x}u_{n},u_{n},x,t)\Big{)}=0,&(t,x)\in[0,T]\times\mathbb{R}\vspace{0.2cm}\\ u_{n}(T,x)=\phi(x),&x\in\mathbb{R},\end{cases} (4.5)

where

Fn(Dx2u,Dxu,u,x,t)=F(Dx2u,Dxu,u,x,t)n(u(t,x)h(t,x))+.F_{n}(D_{x}^{2}u,D_{x}u,u,x,t)=F(D_{x}^{2}u,D_{x}u,u,x,t)-n(u(t,x)-h^{\prime}(t,x))^{+}.
Theorem 4.6

Under Conditions (Ai)-(Aiii), the function uu defined in (4.3) is the unique viscosity solution of the double obstacle problem (4.4).

Proof. By Theorem 3.2, for each (t,x)[0,T]×(t,x)\in[0,T]\times\mathbb{R}, we have

un(t,x)u(t,x), as n.u_{n}(t,x)\downarrow u(t,x),\quad\textrm{ as }n\uparrow\infty.

Note that unu_{n} is continuous by Lemmas 6.4-6.6 in Li et al., 2018b . Since uu is also continuous, applying Dini’s theorem yields that the sequence unu^{n} uniformly converges to uu on compact sets. The proof will proceed in the following two steps.

Step 1: Viscosity subsolution. For each fixed (t,x)(0,T)×(t,x)\in(0,T)\times\mathbb{R}, let (p,q,X)𝒫2,+u(t,x)(p,q,X)\in\mathcal{P}^{2,+}u(t,x). Suppose that u(t,x)=h(t,x)u(t,x)=h(t,x). Noting that u(t,x)h(t,x)u(t,x)\leq h^{\prime}(t,x), it is easy to check that

max(u(t,x)h(t,x),min(u(t,x)h(t,x),pF(X,q,u(t,x),x,t)))0.\max\Big{(}u(t,x)-h^{\prime}(t,x),\,\min\big{(}u(t,x)-h(t,x),-p-F(X,q,u(t,x),x,t)\big{)}\Big{)}\leq 0.

Assume that u(t,x)>h(t,x)u(t,x)>h(t,x). It remains to prove that

pF(X,q,u(t,x),x,t)0.-p-F(X,q,u(t,x),x,t)\leq 0.

By Lemma 6.1 in Crandall et al., (1992), there exist sequences

nj,(tj,xj)(t,x),(pj,qj,Xj)𝒫2,+unj(tj,xj),n_{j}\rightarrow\infty,\qquad(t_{j},x_{j})\rightarrow(t,x),\qquad(p_{j},q_{j},X_{j})\in\mathcal{P}^{2,+}u_{n_{j}}(t_{j},x_{j}),

such that (pj,qj,Xj)(p,q,X)(p_{j},q_{j},X_{j})\rightarrow(p,q,X). Recalling that unu_{n} is the viscosity solution to Equation (4.5), hence a subsolution, we have, for any jj,

pjF(Xj,qj,unj(tj,xj),xj,tj)+nj(unj(tj,xj)h(tj,xj))+0.-p_{j}-F(X_{j},q_{j},u_{n_{j}}(t_{j},x_{j}),x_{j},t_{j})+n_{j}(u_{n_{j}}(t_{j},x_{j})-h^{\prime}(t_{j},x_{j}))^{+}\leq 0.

Thus,

pjF(Xj,qj,unj(tj,xj),xj,tj)0.-p_{j}-F(X_{j},q_{j},u_{n_{j}}(t_{j},x_{j}),x_{j},t_{j})\leq 0.

Letting jj go to infinity in the above inequality yields the desired result. Therefore, uu is a subsolution of the fully nonlinear obstacle problem (4.4).

Step 2: Viscosity supersolution. For each fixed (t,x)(0,T)×(t,x)\in(0,T)\times\mathbb{R}, and (p,q,X)𝒫2,u(t,x)(p,q,X)\in\mathcal{P}^{2,-}u(t,x). It is sufficient to show that when u(t,x)<h(t,x)u(t,x)<h^{\prime}(t,x),

pF(X,q,u(t,x),x,t)0.-p-F(X,q,u(t,x),x,t)\geq 0.

Applying Lemma 6.1 in Crandall et al., (1992) again, there exist sequences

nj,(tj,xj)(t,x),(pj,qj,Xj)𝒫2,unj(tj,xj),n_{j}\rightarrow\infty,\quad(t_{j},x_{j})\rightarrow(t,x),\quad(p_{j},q_{j},X_{j})\in\mathcal{P}^{2,-}u_{n_{j}}(t_{j},x_{j}),

such that (pj,qj,Xj)(p,q,X)(p_{j},q_{j},X_{j})\rightarrow(p,q,X). Since unu_{n} is the viscosity solution to Equation (4.5), hence a supersolution, we derive that for any jj,

pjF(Xj,qj,unj(tj,xj),xj,tj)+nj(unj(tj,xj)h(tj,xj))+0.-p_{j}-F(X_{j},q_{j},u_{n_{j}}(t_{j},x_{j}),x_{j},t_{j})+n_{j}(u_{n_{j}}(t_{j},x_{j})-h^{\prime}(t_{j},x_{j}))^{+}\geq 0.

Given that unu_{n} converges uniformly on compact sets, for jj sufficiently large, unj(tj,xj)<h(tj,xj)u_{n_{j}}(t_{j},x_{j})<h^{\prime}(t_{j},x_{j}) under the assumption that u(t,x)<h(t,x)u(t,x)<h^{\prime}(t,x). Therefore, as jj tends to infinity, the above inequality implies that

pF(X,q,u(t,x),x,t)0,-p-F(X,q,u(t,x),x,t)\geq 0,

which is the desired result. Consequently, uu is a viscosity solution of (4.4).

Following a similar analysis as the proof of Theorem 6.3 in Hamadene and Hassani, (2005), we can establish the uniqueness of the viscosity solution to the fully nonlinear obstacle problem (4.4). This concludes the proof.    

Acknowledgments

The research of Li was supported by the National Natural Science Foundation of China (No. 12301178), the Natural Science Foundation of Shandong Province for Excellent Young Scientists Fund Program (Overseas) (No. 2023HWYQ-049) and the Qilu Young Scholars Program of Shandong University.

Conflict of Interest

The authors declared that there is no conflict of interest.

References

  • Bally et al., (2002) Bally, V., Caballero, M., Fernandez, B., and El Karoui, N. (2002). Reflected BSDE’s, PDE’s and Variational Inequalities. PhD thesis, INRIA.
  • Cheng and Riedel, (2013) Cheng, X. and Riedel, F. (2013). Optimal stopping under ambiguity in continuous time. Mathematics and Financial Economics, 7:29–68.
  • Crandall et al., (1992) Crandall, M. G., Ishii, H., and Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American mathematical society, 27(1):1–67.
  • Crépey and Matoussi, (2008) Crépey, S. and Matoussi, A. (2008). Reflected and doubly reflected BSDEs with jumps: a priori estimates and comparison. The Annals of Applied Probability, 18(5):2041 – 2069.
  • Cvitanic and Karatzas, (1996) Cvitanic, J. and Karatzas, I. (1996). Backward stochastic differential equations with reflection and Dynkin games. The Annals of Probability, pages 2024–2056.
  • Denis et al., (2011) Denis, L., Hu, M., and Peng, S. (2011). Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential analysis, 34:139–161.
  • Dumitrescu et al., (2016) Dumitrescu, R., Quenez, M.-C., and Sulem, A. (2016). Generalized Dynkin games and doubly reflected BSDEs with jumps. Electronic Journal of Probability, 21:1–32.
  • (8) El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., and Quenez, M.-C. (1997a). Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. the Annals of Probability, 25(2):702–737.
  • (9) El Karoui, N., Pardoux, É., and Quenez, M. C. (1997b). Reflected backward SDEs and American options. Numerical methods in finance, 13:215–231.
  • Grigorova et al., (2018) Grigorova, M., Imkeller, P., Ouknine, Y., and Quenez, M.-C. (2018). Doubly reflected BSDEs and f\mathcal{E}^{f}-Dynkin games: beyond the right-continuous case. Electronic Journal of Probability, 23:1–38.
  • Hamadene and Hassani, (2005) Hamadene, S. and Hassani, M. (2005). BSDEs with two reflecting barriers: the general result. Probability Theory and Related Fields, 132:237–264.
  • Hamadène et al., (1997) Hamadène, S., Lepeltier, J. P., and Matoussi, A. (1997). Double barrier backward SDEs with continuous coefficient. Pitman Research Notes in Mathematics Series, pages 161–176.
  • (13) Hu, M., Ji, S., Peng, S., and Song, Y. (2014a). Backward stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 124(1):759–784.
  • (14) Hu, M., Ji, S., Peng, S., and Song, Y. (2014b). Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Processes and their Applications, 124(2):1170–1195.
  • Li and Peng, (2020) Li, H. and Peng, S. (2020). Reflected backward stochastic differential equation driven by G-Brownian motion with an upper obstacle. Stochastic Processes and their Applications, 130(11):6556–6579.
  • (16) Li, H., Peng, S., and Song, Y. (2018a). Supermartingale decomposition theorem under G-expectation. Electronic Journal of Probability, 23(50):1–20.
  • (17) Li, H., Peng, S., and Soumana Hima, A. (2018b). Reflected solutions of backward stochastic differential equations driven by G-Brownian motion. Science China Mathematics, 61:1–26.
  • Li and Song, (2021) Li, H. and Song, Y. (2021). Backward stochastic differential equations driven by G-Brownian motion with double reflections. Journal of Theoretical Probability, 34:2285–2314.
  • Li and Peng, (2011) Li, X. and Peng, S. (2011). Stopping times and related itô’s calculus with G-Brownian motion. Stochastic Processes and their Applications, 121(7):1492–1508.
  • Peng, (2007) Peng, S. (2007). G-expectation, G-Brownian motion and related stochastic calculus of itô type. In Stochastic Analysis and Applications: The Abel Symposium 2005, pages 541–567. Springer.
  • Peng, (2008) Peng, S. (2008). Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and their applications, 118(12):2223–2253.
  • Peng, (2019) Peng, S. (2019). Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion, volume 95. Springer Nature.
  • Peng and Xu, (2005) Peng, S. and Xu, M. (2005). The smallest g-supermartingale and reflected BSDE with single and double L2 obstacles. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 41(3):605–630.
  • Song, (2011) Song, Y. (2011). Some properties on G-evaluation and its applications to G-martingale decomposition. Science China Mathematics, 54:287–300.
  • Song, (2019) Song, Y. (2019). Properties of G-martingales with finite variation and the application to G-Sobolev spaces. Stochastic Processes and their Applications, 129(6):2066–2085.