This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Drazin and group invertibility in algebras spanned by two idempotents

Rounak Biswas Falguni Roy
Abstract

For two given idempotents p and qp\text{ and }q from an associative algebra 𝒜,\mathcal{A}, in this paper, we offer a comprehensive classification of algebras spanned by the idempotents p and qp\text{ and }q. This classification is based on the condition that p and qp\text{ and }q are not tightly coupled and satisfies (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} but (pq)m2p(pq)m1p(pq)^{m-2}p\neq(pq)^{m-1}p for some m(2).m(\geq 2)\in\mathbb{N}. Subsequently, we categorized all the group invertible elements and established an upper bound for Drazin index of any elements in these algebras spanned by p,qp,q. Moreover, we formulate a new representation for the Drazin inverse of (αp+q)(\alpha p+q) under two different assumptions, (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} and λ(pq)m1=(pq)m,\lambda(pq)^{m-1}=(pq)^{m}, here α\alpha is a non-zero and λ\lambda is a non-unit real or complex number.

keywords:
Finite dimensional algebra , group inversion , Drazin inversion , idempotent
MSC:
15A30 , 15A09 , 16S15 , 17C27
journal:
\affiliation

[inst1]organization=Department of Mathematical and Computational Science, National Institute of Technology Karnataka, city=Surathkal, postcode=575025, state=Karnataka, country=India

Email: rounak.207ma005@nitk.edu.in; royfalguni@nitk.edu.in

1 Introduction

Throughout this paper, 𝒜\mathcal{A} always represent an associative algebra over the field of scalars \mathbb{C} or ,\mathbb{R}, with an identity II. An element a𝒜a\in\mathcal{A} is said to be idempotent if a2=aa^{2}=a. In this paper pp and qq will consistently refer to two idempotent elements in 𝒜\mathcal{A}. For given p,qp,q; alg(p,q)(p,q) denotes the subalgebra of 𝒜\mathcal{A} spanned by p and qp\text{ and }q, i.e. alg(p,q)(p,q) is composed of all possible finite linear combinations of elements from the list

p,pq,pqp,(pq)2(pq)m\displaystyle p,pq,pqp,(pq)^{2}\cdots(pq)^{m}\cdots (1)
q,qp,qpq,(qp)2(qp)m.\displaystyle q,qp,qpq,(qp)^{2}\cdots(qp)^{m}\cdots.

Here, the order of an element from (1) is defined by the number of factors present. The notations (pq)i, (qp)i(pq)_{i},\text{ }(qp)_{i} denotes the upper and lower element of the ii-th column in the list (1). For given p,qp,q if two members from the list (1) with order difference 1\leq 1 are equal, then following [9], p,qp,q termed as tightly coupled idempotents. In simpler terms, we say that pp and qq are tightly coupled if, for some ii\in\mathbb{N}, either the product (pq)i(pq)_{i} or (qp)i(qp)_{i} matches one of the five neighbouring elements from the list (1)(\ref{list}). Specifically, this means that (pq)i(pq)_{i} (or (qp)i(qp)_{i}) coincides with any of the five adjacent elements( called neighbourhood): (pq)i1,(pq)i+1,(qp)i1,(qp)i,(qp)i+1{(pq)_{i-1},(pq)_{i+1},(qp)_{i-1},(qp)_{i},(qp)_{i+1}} (or (qp)i1,(qp)i+1,(pq)i1,(pq)i,(pq)i+1{(qp)_{i-1},(qp)_{i+1},(pq)_{i-1},(pq)_{i},(pq)_{i+1}}), for some ii\in\mathbb{N}. Böttcher and Spitkovsky [9, 5] studied the algebra spanned by pp and q,q, when they are tightly coupled. Depending on the relation between pp and q,q, they classified alg(p,q)(p,q) into four different types Zm,Um,DmZ_{m},U_{m},D_{m}, DmD_{m}^{*} and established

Dm\displaystyle D_{m}^{*} Zm2D2 (m2),\displaystyle\cong Z_{m-2}\oplus D_{2}^{*}\text{ }(m\geq 2),
Dm\displaystyle D_{m} Zm2D2 (m2),\displaystyle\cong Z_{m-2}\oplus D_{2}\text{ }(m\geq 2), (2)
Um\displaystyle U_{m} Zm1U1 (m1),\displaystyle\cong Z_{m-1}\oplus U_{1}\text{ }(m\geq 1),

where m.m\in\mathbb{N}. Here Zm=alg(p,q),Z_{m}=\mathrm{alg}(p,q), when p,qp,q satisfy one of the following conditions depending on mm

{(qp)k=(pq)k=0, if m=2k2(qp)k=0 or (pq)k=0,if m=2k1,\displaystyle\begin{cases}(qp)_{k}=(pq)_{k}=0,\text{ if }m=2k-2\\ (qp)_{k}=0\text{ or }(pq)_{k}=0,\text{if }m=2k-1\end{cases},

and for construction of the algebras Um,Dm,DmU_{m},D_{m}^{*},D_{m} interested readers can refer to [9]. However, when attempting to extend this classification beyond tightly coupled scenarios, Böttcher and Spitkovsky [9, 5] acknowledged the challenges and complexities involved in categorizing the algebra alg(p,q)(p,q). In this article, we establish that starting from one of the two elements in any column of the list (1), there is only one way to go beyond tightly coupled. Specifically, if one initiates with (pq)m(pq)^{m}(or (qp)m(qp)^{m}) from the 2m2m-th column of the list (1), then the only way go beyond tightly coupled is when (pq)m=(pq)mk(pq)^{m}=(pq)^{m-k}(or(qp)m=(qp)mk(qp)^{m}=(qp)^{m-k}), for some kk\in\mathbb{N} and k<m.k<m. Furthermore, we provide a complete classification of the algebra alg(p,q)(p,q), when p and qp\text{ and }q are not tightly coupled and satisfies (pq)m1=(pq)m,(pq)^{m-1}=(pq)^{m}, (pq)m2p(pq)m1p.(pq)^{m-2}p\neq(pq)^{m-1}p. The investigation of these algebraic structures is motivated by the goal of comprehending Drazin and group inevitability within this context.

For a𝒜,a\in\mathcal{A}, the Drazin inverse of aa is the unique element b𝒜b\in\mathcal{A}(denoted by aDa^{D}), satisfying

ab=ba, ab2=b and ak+1b=ak,ab=ba,\text{ }ab^{2}=b\text{ and }a^{k+1}b=a^{k}, (3)

for some k{0}k\in\mathbb{N}\cup\{0\}. The least kk satisfying (3), is known as the Drazin index i(a)i(a) of aa. In the particular case i(a)=1,i(a)=1, the Drazin inverse is termed as group inverse( symbolized by aga^{g}). As demonstrated by Drazin [4], the Drazin invertibility of aa is equivalent to existence of two elements x,y𝒜x,y\in\mathcal{A} satisfying

ak1+1x=ak1 and yak2+1=ak2,a^{k_{1}+1}x=a^{k_{1}}\text{ and }ya^{k_{2}+1}=a^{k_{2}}, (4)

for some positive integer k1,k2k_{1},k_{2}. The smallest k1,k2k_{1},k_{2} satisfying (4) is referred to as the left and right index of aa, respectively. Moreover if k1,k2k_{1},k_{2} is finite and the least integer satisfying (4) then k1=k2=i(a)k_{1}=k_{2}=i(a) with aD=ak1xk1+1=yk1+1ak1.a^{D}=a^{k_{1}}x^{k_{1}+1}=y^{k_{1}+1}a^{k_{1}}. One of the interesting problems in Drazin inverse theory is to investigate Drazin invertibility of αp+βq,\alpha p+\beta q, where α,β\alpha,\beta are scalars. This specific problem has garnered great interest from various researchers in recent years. Deng [2] considered this problem for idempotent operators on a Hilbert space, when α,β{1,1}\alpha,\beta\in\{1,-1\} which is extended in the setting of a Banach algebra by Zhang, Wu [3], where they provided an expression of (αp+βq)D(\alpha p+\beta q)^{D} assuming pqp=0pqp=0 and pqp=pqpqp=pq, for non zero scalars α,β\alpha,\beta. More results on this problem can be found in [6, 12, 13, 14]. In particular, for tightly coupled idempotents, p,qp,q; alg(p,q)(p,q) becomes finite-dimensional, and hence, every element in this algebra becomes Drazin invertible. However, the same statement is not true in the case of group inverse. Böttcher and Spitkovsky [8] solved this problem of group invertibility in ZmZ_{m}, and that is enough to settle the case for other algebras due to (1). But we observe that the Theorem 2.2. [8], which is essential for investigating group invertibility in ZmZ_{m}, lacks consideration of the case when ZmZ_{m} and 𝒜\mathcal{A} possess different identity elements. An example (Example 3.2) narrating this observation will be discussed in Section 3. This paper addresses this gap by presenting a comprehensive version of Theorem 2.2. [8], and utilizing this, we solve the problem of group invertibility in alg(p,q),(p,q), when p,qp,q are not tightly coupled and satisfies (pq)m1=(pq)m,(pq)^{m-1}=(pq)^{m}, (pq)m2p(pq)m1p(pq)^{m-2}p\neq(pq)^{m-1}p for some m.m\in\mathbb{N}. Providing a representation of the Drazin inverse (or group inverse) for any element in associative algebra poses a significant challenge once it is established that the element possesses such an inverse. In this paper, we will provide a new representation of (αp+q)D(\alpha p+q)^{D} under two different conditions; the first one is when (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} and another one is when λ(pq)m1=(pq)m,\lambda(pq)^{m-1}=(pq)^{m}, here α\alpha is a non-zero and λ\lambda is a non-unit scalar.

The paper is organized in the following manner. Section 2, presents the classification of algebras generated by p and qp\text{ and }q, when (pq)m=(pq)m1(pq)^{m}=(pq)^{m-1}. Section 3, deals with the Darzin index and the group invertible elements in the algebras discussed in section 2. Representations of the Drazin inverse of (αp+q)(\alpha p+q) under two different assumption (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} and λ(pq)m1=(pq)m\lambda(pq)^{m-1}=(pq)^{m} are in Section 4.

2 Algebras spanned by non-tightly coupled idempotents

Due to the complexity in extending the neighbourhood beyond tightly coupled, Böttcher and Spitkovsky [9] settled the case for the algebra alg(p,q)(p,q), when pqp=ppqp=p. But it turns out that there is only one way to extend the neighborship beyond tightly coupled; our next lemma establishes this.

Lemma 2.1.

For m,km,k\in\mathbb{N}, where k<mk<m, if pp and qq satisfy one of the following conditions, then they become tightly coupled:

  1. (i)

    (pq)mkp=(pq)m;(pq)^{m-k}p=(pq)^{m};

  2. (ii)

    (qp)mkq=(pq)m;(qp)^{m-k}q=(pq)^{m};

  3. (iii)

    (qp)mk=(pq)m.(qp)^{m-k}=(pq)^{m}.

Proof.
  1. (i)

    Since (pq)mkp=(pq)m(pq)^{m-k}p=(pq)^{m}, multiplying both sides by qq from the right yields (pq)mk+1=(pq)m(pq)^{m-k+1}=(pq)^{m}. Consequently, we get (pq)mkp=(pq)mk+1(pq)^{m-k}p=(pq)^{m-k+1}, indicating that pp and qq are tightly coupled.

  2. (ii)

    Multiplying (pq)m=(qp)mkq(pq)^{m}=(qp)^{m-k}q by pp from left we obtain (pq)m=(pq)mk+1(pq)^{m}=(pq)^{m-k+1}, therefore (qp)mkq=(pq)mk+1.(qp)^{m-k}q=(pq)^{m-k+1}.

  3. (iii)

    Similarly multiplying (pq)m=(qp)mk(pq)^{m}=(qp)^{m-k} by pp from left we obtain (qp)mk=p(qp)mk.(qp)^{m-k}=p(qp)^{m-k}.

Therefore, starting from (pq)m(pq)^{m} for some mm\in\mathbb{N}, there is only one way to extend the neighbourship beyond tightly coupled, i.e. when (pq)m=(pq)mk(pq)^{m}=(pq)^{m-k} for some integer k<m.k<m. For this paper, our focus is on the particular case when k=1k=1. In the following lemma, we provide some properties of the idempotents p,qp,q when they satisfy (pq)m=(pq)m1(pq)^{m}=(pq)^{m-1} for some mm\in\mathbb{N}.

Lemma 2.2.

Let p,qp,q satisfies (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} for nn\in\mathbb{N},

  1. (i)

    (pq)m1=(pq)m+k(pq)^{m-1}=(pq)^{m+k}, for kk\in\mathbb{N};

  2. (ii)

    if (pq)n1=(pq)n2(pq)^{n_{1}}=(pq)^{n_{2}}, where n1,n2n_{1},n_{2}\in\mathbb{N} such as 1n2<n1m1\leq n_{2}<n_{1}\leq m then (pq)m=(pq)mi(pq)^{m}=(pq)^{m-i} for some ii\in\mathbb{N};

  3. (iii)

    if (pq)m=(pq)mk(pq)^{m}=(pq)^{m-k} for some kk\in\mathbb{N}, where 1<k<m1<k<m, then pqm2=(pq)m1.{pq}^{m-2}=(pq)^{m-1}.

Proof.
  1. (i)

    One can verify this easily.

  2. (ii)

    If n1=mn_{1}=m then i=mn2i=m-n_{2}. Now if n1<mn_{1}<m then multiplying both side of (pq)n1=(pq)n2(pq)^{n_{1}}=(pq)^{n_{2}} with (pq)mn1(pq)^{m-n_{1}} we get

    (pq)m=(pq)n2+mn1.(pq)^{m}=(pq)^{n_{2}+m-n_{1}}.

    Hence (pq)m=(pq)mi(pq)^{m}=(pq)^{m-i} where i=n1n2.i=n_{1}-n_{2}.

  3. (iii)

    Since (pq)m=(pq)mk(pq)^{m}=(pq)^{m-k} then multiplying both side by (pq)k2(pq)^{k-2} we obtain

    (pq)m2=(pq)m+k2=(pq)m1.\displaystyle(pq)^{m-2}=(pq)^{m+k-2}{}=(pq)^{m-1}.

Remark 1.

According to Lemma 2.2, if mm is the least positive integer satisfying (pq)m=(pq)m1(pq)^{m}=(pq)^{m-1} then (pq)j(pq)l(pq)^{j}\neq(pq)^{l} for j,lj,l\in\mathbb{N} where j<l<mj<l<m.

In the remaining part of this section, we will provide a complete classification of all algebras spanned by the idempotents p,q;p,q; where p,qp,q are not tightly coupled and satisfies (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} but (pq)m2p(pq)m1p(pq)^{m-2}p\neq(pq)^{m-1}p for some m.m\in\mathbb{N}. Because of these assumptions on p,qp,q, the infinite list (1)(\ref{list}) terminate to a finite list; hence, alg(p,q)(p,q) becomes finite dimensional. Before proceeding further, let’s revisit the following lemma from [9]; it provides the complete classification of alg(p,q)(p,q) when pqp=ppqp=p. Note that in the context of any algebra 𝒳\mathcal{X} and for A𝒳A\in\mathcal{X}; the notations 𝒩(𝒳)\mathcal{N}(\mathcal{X}) and σ(A)\sigma(A), represent the collection of nilpotent elements in 𝒳\mathcal{X} and the spectrum of AA within 𝒳\mathcal{X}, respectively.

Lemma 2.3.

[9] Upto isomorphism, there are precisely four algebras, namely W3,W3Z1,W4,W_{3},W_{3}\oplus Z_{1},W_{4}, W4Z1,W_{4}\oplus Z_{1}, spanned by p,qp,q; where pqp=ppqp=p and q,p,qp,pqq,p,qp,pq are pairwise distinct.

  1. (i)

    For the case when q=qpqq=qpq, q+p=qp+pq,q+p=qp+pq, we have alg(p,q)W3\mathrm{alg}(p,q)\cong W_{3} where dim W3=3\mathrm{dim}\text{ }W_{3}=3, dim 𝒩(W3)=2.\mathrm{dim}\text{ }\mathcal{N}(W_{3})=2.

  2. (ii)

    If qqpqq\neq qpq with qp+pq=qpq+pqp+pq=qpq+p, we have alg(p,q)W3Z1\mathrm{alg}(p,q)\cong W_{3}\oplus Z_{1} where dim (W3Z1)=4\mathrm{dim}\text{ }(W_{3}\oplus Z_{1})=4 and dim 𝒩(W3Z1)=2.\mathrm{dim}\text{ }\mathcal{N}(W_{3}\oplus Z_{1})=2.

  3. (iii)

    For the case when q=qpqq=qpq but q+pqp+pqq+p\neq qp+pq, we have alg(p,q)W4,\mathrm{alg}(p,q)\cong W_{4}, with dim W4=4\mathrm{dim}\text{ }W_{4}=4, dim 𝒩(W4)=3.\mathrm{dim}\text{ }\mathcal{N}(W_{4})=3.

  4. (iv)

    If qqpqq\neq qpq with qp+pqqpq+pqp+pq\neq qpq+p, then alg(p,q)W4Z1\mathrm{alg}(p,q)\cong W_{4}\oplus Z_{1} where dim (W4Z1)=5\mathrm{dim}\text{ }(W_{4}\oplus Z_{1})=5, dim 𝒩(W4Z1)=3\mathrm{dim}\text{ }\mathcal{N}(W_{4}\oplus Z_{1})=3.

Lemma 2.4.

Let pqp\text{, }q are not tightly coupled and satisfy

(pq)m1=(pq)m but (pq)m2p(pq)m1p,(pq)^{m-1}=(pq)^{m}\text{ but }(pq)^{m-2}p\neq(pq)^{m-1}p, (5)

for some m(2),m(\geq 2)\in\mathbb{N}, where mm is the least positive integer satisfying (5)(\ref{least}). Then the set

{p,q,pq,qp,,(pq)m2p,(qp)m2q}\{p,q,pq,qp,\cdots,(pq)^{m-2}p,(qp)^{m-2}q\} (6)

is linearly independent.

Proof.

Since mm is the least positive integer satisfying (5), therefore by Lemma 2.2, (pq)m1(pq)mk(pq)^{m-1}\neq(pq)^{m-k} for kk\in\mathbb{N} where 2k<m.2\leq k<m. Now consider an element from the linear span of the set (6)(\ref{collection}) which is claimed to be zero,

ixi(pq)i+iyi(qp)i,\sum_{i}x_{i}(pq)_{i}+\sum_{i}y_{i}(qp)_{i}, (7)

where xi,yix_{i},y_{i} are scalars. Let ll denote the smallest order of the products that appear in (7)(\ref{linear_com}) with a nonzero coefficient. First let assume ll to be an even integer, then if xl0x_{l}\neq 0, multiplying (7) by pp in left side and with qq in right side, respectively, we obtain,

xl(pq)l2+i{l+1,l+3,}(xi+xi+1)(pq)i+12+i{l,l+2,}(yi+yi+1)(pq)i+22=0.x_{l}(pq)^{\frac{l}{2}}+\sum_{i\in\{l+1,l+3,\cdots\}}(x_{i}+x_{i+1})(pq)^{\frac{i+1}{2}}+\sum_{i\in\{l,l+2,\cdots\}}(y_{i}+y_{i+1})(pq)^{\frac{i+2}{2}}=0. (8)

Next multiplying (8) by (pq)ml22(pq)^{m-\frac{l}{2}-2} we get

xl(pq)m2+(i>lxi+ilyi)(pq)m1=0.x_{l}(pq)^{m-2}+\left(\sum_{i>l}x_{i}+\sum_{i\geq l}y_{i}\right)(pq)^{m-1}=0. (9)

Now again multiplying (9) by pqpq and subtracting from (9) we get

xl((pq)m2(pq)m1)=0,x_{l}\left((pq)^{m-2}-(pq)^{m-1}\right)=0,

hence we obtain xl=0x_{l}=0 as (pq)m2(pq)m10,(pq)^{m-2}-(pq)^{m-1}\neq 0, a contradiction. Similarly, let yl0,y_{l}\neq 0, then multiply (7) by pqpq from left and from right by p(qp)ml22p(qp)^{m-\frac{l}{2}-2}, hence we have

ylp(qp)m2il(xi+yi)p(qp)m1=0.y_{l}p(qp)^{m-2}-\sum_{i\neq l}(x_{i}+y_{i})p(qp)^{m-1}=0. (10)

Since p(qp)m2p(qp)m1,p(qp)^{m-2}\neq p(qp)^{m-1}, from (10) we obtain yl=0y_{l}=0, a contradiction.

In the case when ll is odd, in a similar way, one can verify that xl=yl=0x_{l}=y_{l}=0. Hence, the collection (6)(\ref{collection}) consists of linearly independent elements. ∎

If the assumptions outlined in Lemma 2.4 are satisfied by pp and qq, then in an analogous way like [9, Lemma 5.1], using Lemma 2.4 one can verify the subsequent lemma.

Lemma 2.5.

Let p and qp\text{ and }q satisfy the assumptions of Lemma 2.4.

  1. (i)

    If (qp)m1=(qp)m(qp)^{m-1}=(qp)^{m} and (qp)m1+(pq)m1=(qp)m1q+(pq)m1p(qp)^{m-1}+(pq)^{m-1}=(qp)^{m-1}q+(pq)^{m-1}p then

    p,q,pq,qp,,(pq)m1,(qp)m1qp,q,pq,qp,\cdots,(pq)^{m-1},(qp)^{m-1}q

    forms a linearly independent set where dim alg(p,q)=4m3.\mathrm{dim}\text{ }\mathrm{alg}(p,q)=4m-3.

  2. (ii)

    If (qp)m1(qp)m(qp)^{m-1}\neq(qp)^{m} and (qp)m+(pq)m1=(qp)m1q+(pq)m1p(qp)^{m}+(pq)^{m-1}=(qp)^{m-1}q+(pq)^{m-1}p then

    p,q,pq,qp,,(pq)m1p,(qp)m1qp,q,pq,qp,\cdots,(pq)^{m-1}p,(qp)^{m-1}q

    forms a linearly independent set where dim alg(p,q)=4m2.\mathrm{dim}\text{ }\mathrm{alg}(p,q)=4m-2.

  3. (iii)

    If (qp)m1=(qp)m(qp)^{m-1}=(qp)^{m} and (qp)m1+(pq)m1(qp)m1q+(pq)m1p(qp)^{m-1}+(pq)^{m-1}\neq(qp)^{m-1}q+(pq)^{m-1}p then

    p,q,pq,qp,,(pq)m1p,(qp)m1qp,q,pq,qp,\cdots,(pq)^{m-1}p,(qp)^{m-1}q

    forms a linearly independent set where dim alg(p,q)=4m2.\mathrm{dim}\text{ }\mathrm{alg}(p,q)=4m-2.

  4. (iv)

    If (qp)m1(qp)m(qp)^{m-1}\neq(qp)^{m} and (qp)m+(pq)m1(qp)m1q+(pq)m1p(qp)^{m}+(pq)^{m-1}\neq(qp)^{m-1}q+(pq)^{m-1}p then

    p,q,pq,qp,,(pq)m1p,(qp)m1q,(qp)mp,q,pq,qp,\cdots,(pq)^{m-1}p,(qp)^{m-1}q,(qp)^{m}

    forms a linearly independent set with dim alg(p,q)=4m1.\mathrm{dim}\text{ }\mathrm{alg}(p,q)=4m-1.

Now, we are ready to establish the main result of this section.

Theorem 2.6.

Let p,qp,q satisfy the conditions of Lemma 2.4.

  1. (i)

    If (qp)m1=(qp)m(qp)^{m-1}=(qp)^{m} and (qp)m1+(pq)m1=(qp)m1q+(pq)m1p(qp)^{m-1}+(pq)^{m-1}=(qp)^{m-1}q+(pq)^{m-1}p then here alg(p,q)Z4m6W3\mathrm{alg}(p,q)\cong Z_{4m-6}\oplus W_{3} with dim 𝒩(alg(p,q))=4m6.\mathrm{dim}\text{ }\mathcal{N}\left(\mathrm{alg}(p,q)\right)=4m-6.

  2. (ii)

    In the case when (qp)m1(qp)m(qp)^{m-1}\neq(qp)^{m} and (qp)m+(pq)m1=(qp)m1q+(pq)m1p(qp)^{m}+(pq)^{m-1}=(qp)^{m-1}q+(pq)^{m-1}p, then alg(p,q)Z4m5W3\mathrm{alg}(p,q)\cong Z_{4m-5}\oplus W_{3} and dim 𝒩(alg(p,q))=4m5.\mathrm{dim}\text{ }\mathcal{N}\left(\mathrm{alg}(p,q)\right)=4m-5.

  3. (iii)

    If (qp)m1=(qp)m(qp)^{m-1}=(qp)^{m} and (qp)m1+(pq)m1(qp)m1q+(pq)m1p(qp)^{m-1}+(pq)^{m-1}\neq(qp)^{m-1}q+(pq)^{m-1}p then here alg(p,q)Z4m6W4\mathrm{alg}(p,q)\cong Z_{4m-6}\oplus W_{4} and dim 𝒩(alg(p,q))=4m5.\mathrm{dim}\text{ }\mathcal{N}\left(\mathrm{alg}(p,q)\right)=4m-5.

  4. (iv)

    In the case when (qp)m1(qp)m(qp)^{m-1}\neq(qp)^{m} and (qp)m+(pq)m1(qp)m1q+(pq)m1p(qp)^{m}+(pq)^{m-1}\neq(qp)^{m-1}q+(pq)^{m-1}p, then here alg(p,q)Z4m5W4\mathrm{alg}(p,q)\cong Z_{4m-5}\oplus W_{4} and dim 𝒩(alg(p,q))=4m4.\mathrm{dim}\text{ }\mathcal{N}\left(\mathrm{alg}(p,q)\right)=4m-4.

Proof.

Since p and qp\text{ and }q satisfies the assumptions of Lemma 2.4; therefore they fit precisely into one of the four scenarios described in Lemma 2.5. The complete characterization of the algebra spanned by pp and qq can be achieved by assessing their defining relations. Therefore, two algebras falling under the same category of Lemma 2.5 are isomorphic.

  1. (i)

    Choose p0,q0p_{0},q_{0} are to be idempotents of the type Z4m6Z_{4m-6}, then (q0p0)m1=(p0q0)m1=0(q_{0}p_{0})^{m-1}=(p_{0}q_{0})^{m-1}=0. Furthermore let p,qp,q are idempotents of type W3.W_{3}. Put

    𝐩=[𝐩𝟎𝐩] and 𝐪=[𝐪𝟎𝐪],\bf{p}=\begin{bmatrix}p_{0}&\\ &p\\ \end{bmatrix}\text{ and }\bf{q}=\begin{bmatrix}q_{0}&\\ &q\\ \end{bmatrix},

    then p,qZ4m6W3\textbf{p},\textbf{q}\in Z_{4m-6}\oplus W_{3} and

    (qp)m1=[0(qp)m1] and (pq)m1=[0(pq)m1].\displaystyle(\textbf{qp})^{m-1}=\begin{bmatrix}0&\\ &(qp)^{m-1}\end{bmatrix}\text{ and }(\textbf{pq})^{m-1}=\begin{bmatrix}0&\\ &(pq)^{m-1}\end{bmatrix}.

    Now since p,qp,q are idempotents of type W3W_{3}, therefore qpq=q,pqp=pqpq=q,pqp=p and q+p=qp+pq.q+p=qp+pq. By using these properties of p,qp,q we get (pq)m=(pq)m1(\textbf{pq})^{m}=(\textbf{pq})^{m-1}, (qp)m=(qp)m1(\textbf{qp})^{m}=(\textbf{qp})^{m-1} and

    (qp)m1+(pq)m1=(pq)m1p+(qp)m1q.(\textbf{qp})^{m-1}+(\textbf{pq})^{m-1}=(\textbf{pq})^{m-1}\textbf{p}+(\textbf{qp})^{m-1}\textbf{q}.

    Clearly by the construction of p and q they are not tightly coupled and mm is least positive integer satisfying (pq)m1=(pq)m(\textbf{pq})^{m-1}=(\textbf{pq})^{m} and (pq)m2p(pq)m1p(\textbf{pq})^{m-2}\textbf{p}\neq(\textbf{pq})^{m-1}\textbf{p}. Hence in this case alg(p,q)(\textbf{p,q})Z4m6W3\cong Z_{4m-6}\oplus W_{3} and

    dim 𝒩(alg(p,q))=dim 𝒩(Z4m6)+dim 𝒩(W3)=4m8+2=4m6.\text{dim }\mathcal{N}\left(\text{alg}(\textbf{p,q})\right)=\text{dim }\mathcal{N}(Z_{4m-6})+\text{dim }\mathcal{N}(W_{3})=4m-8+2=4m-6.

Similarly, like ((i)), one can prove the other three case ((iii)), ((iv)) and ((ii)). ∎

3 Group and Drazin invertibility

One of the main reasons behind the study of the finite-dimensional algebra generated by two tightly coupled idempotents is to understand group and Drazin invertibility in these types of algebras. Since every element in a finite-dimensional algebra is Drazin invertible, group invertibility, in particular properly group invertibility (i.e. when an element is group invertible without being invertible), is the main concern here. The following theorem of [8] addresses this problem of properly group invertibility in Zm.Z_{m}.

Theorem 3.1.

[8] For m1m\geq 1, IZmI\in Z_{m}. Let AZmA\in Z_{m}, such that

A=x1p+y1q+x2pq+y2qp+,A=x_{1}p+y_{1}q+x_{2}pq+y_{2}qp+\cdots,

where {x1,x2,y1,y2,}\{x_{1},x_{2}\cdots,y_{1},y_{2},\cdots\} are scalars and p,qp,q are idempotents of type Zm.Z_{m}. Then AA is properly group invertible if and only if

  1. (i)

    A=0;A=0;
    or

  2. (ii)

    either x10,y1=0x_{1}\neq 0,y_{1}=0 or x1=0,y10x_{1}=0,y_{1}\neq 0 and 0 is a root of ψ(t)\psi(t) with multiplicity at least l(m,y1);l(m,y_{1}); where

    l(m,y1)={m41 if m=1 mod 4 and y1=0m4 otherwise ,l(m,y_{1})=\begin{cases}\lceil\frac{m}{4}\rceil-1\text{ if }m=1\text{ }\mathrm{mod}\text{ }4\text{ and }y_{1}=0\\ \lceil\frac{m}{4}\rceil\text{ otherwise }\end{cases},

    and ψ(t)\psi(t) is defined in (15)(\ref{hom}). Moreover σ(A)={x1,y1}\sigma(A)=\{x_{1},y_{1}\}.

Here in Theorem 3.1, the claim that the identity element IZmI\in Z_{m} is not true in general, and due to this, AA can be properly group invertible mean while x1y10.x_{1}y_{1}\neq 0. This can be seen in the following example.

Example 3.2.

Let

p1=[110000000] and q1=[000010000]M3().p_{1}=\begin{bmatrix}1&1&0\\ 0&0&0\\ 0&0&0\\ \end{bmatrix}\text{ and }q_{1}=\begin{bmatrix}0&0&0\\ 0&1&0\\ 0&0&0\\ \end{bmatrix}\in M_{3}(\mathbb{C}).

It is easy to check that p1p_{1} and q1q_{1} are two idempotents satisfying q1p1=0q_{1}p_{1}=0. Therefore p1,q1p_{1},q_{1} are idempotents of the type Z3.Z_{3}. It is easily seen that rank (p1+q1)=(p_{1}+q_{1})= rank (p1+q1)2,(p_{1}+q_{1})^{2}, hence p1+q1p_{1}+q_{1} is properly group invertible. Clearly, here the identity Ialg(p1,q1)I\notin\mathrm{alg}(p_{1},q_{1}) and the unit element in alg(p1,q1)\mathrm{alg}(p_{1},q_{1}) is the element

[100010000].\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&0\\ \end{bmatrix}.

By [9, Lemma 4.2]

p+qpqqp+pqp+qpqp+q-pq-qp+pqp+qpq-\cdots (11)

is the unit in Zm,Z_{m}, we will denote it by IZmI_{Z_{m}}. Due to the preservation of group invertibility under isomorphism, Böttcher and Spitkovsky [8, Theorem 2.2] considered only the case when algebra ZmZ_{m} is generated by

p=[IB00] and q=[00CI],p=\begin{bmatrix}I&B\\ 0&0\\ \end{bmatrix}\text{ and }q=\begin{bmatrix}0&0\\ C&I\\ \end{bmatrix}, (12)

for some suitable BB and CC. For the p,qp,q given in (12), I=IZmI=I_{Z_{m}}. Now if we consider the idempotents

p=[IB1B2000000] and q=[000C1IC2000],p^{\prime}=\begin{bmatrix}I&B_{1}&B_{2}\\ 0&0&0\\ 0&0&0\\ \end{bmatrix}\text{ and }q^{\prime}=\begin{bmatrix}0&0&0\\ C_{1}&I&C_{2}\\ 0&0&0\\ \end{bmatrix}, (13)

then for suitable B1,C1B_{1},C_{1}, alg(p,q)=Zm(p^{\prime},q^{\prime})=Z_{m}, but here IZmII_{Z_{m}}\neq I. Note that similarly as given in [8], depending on mm, it is possible to choose B1,C1B_{1},C_{1} such that p,qp^{\prime},q^{\prime} are of type ZmZ_{m}, and no additional condition is required on B2,C2B_{2},C_{2}.
Now if Zm=alg(p,q)Z_{m}=\text{alg}(p,q) then any elements AZmA\in Z_{m} has the representation

A=x1p+y1q+x2pq+y2qp+,A=x_{1}p+y_{1}q+x_{2}pq+y_{2}qp+\cdots, (14)

where xi,yix_{i},y_{i} are scalars. For further use, we recall the following functions introduced by [8]

φ00(t)\displaystyle\upvarphi_{00}(t) =x1+(x2+x3)t+(x4+x5)t2+\displaystyle=x_{1}+(x_{2}+x_{3})t+(x_{4}+x_{5})t^{2}+\cdots
φ11(t)\displaystyle\upvarphi_{11}(t) =y1+(y2+y3)t+(y4+y5)t2+\displaystyle=y_{1}+(y_{2}+y_{3})t+(y_{4}+y_{5})t^{2}+\cdots
φ01(t)\displaystyle\upvarphi_{01}(t) =(x1+x2)+(x3+x4)t+\displaystyle=(x_{1}+x_{2})+(x_{3}+x_{4})t+\cdots (15)
φ10(t)\displaystyle\upvarphi_{10}(t) =(y1+y2)+(y3+y4)t+\displaystyle=(y_{1}+y_{2})+(y_{3}+y_{4})t+\cdots
ψ(t)\displaystyle\psi(t) =φ00(t)φ11(t)tφ01(t)φ10(t),\displaystyle=\upvarphi_{00}(t)\upvarphi_{11}(t)-t\upvarphi_{01}(t)\upvarphi_{10}(t),

and we also define

φ02(t)\displaystyle\upvarphi_{02}(t) =x1+x3t+x5t2+\displaystyle=x_{1}+x_{3}t+x_{5}t^{2}+\cdots
φ12(t)\displaystyle\upvarphi_{12}(t) =y1+y3t+y5t2+\displaystyle=y_{1}+y_{3}t+y_{5}t^{2}+\cdots
φ02(t)\displaystyle\upvarphi_{02^{\prime}}(t) =x2+x4t+x6t2+\displaystyle=x_{2}+x_{4}t+x_{6}t^{2}+\cdots (16)
φ12(t)\displaystyle\upvarphi_{12^{\prime}}(t) =y2+y4t+y6t2+\displaystyle=y_{2}+y_{4}t+y_{6}t^{2}+\cdots
ψ1(t)\displaystyle\psi_{1}(t) =φ00(t)φ12(t)tφ10(t)φ02(t)\displaystyle=\upvarphi_{00}(t)\upvarphi_{12}(t)-t\upvarphi_{10}(t)\upvarphi_{02^{\prime}(t)}
ψ2(t)\displaystyle\psi_{2}(t) =φ00(t)φ12(t)φ10(t)φ02(t)\displaystyle=\upvarphi_{00}(t)\upvarphi_{12^{\prime}}(t)-\upvarphi_{10}(t)\upvarphi_{02}(t)

Our next lemma establishes a relation between zeros of the polynomials ψ,ψ1\psi,\psi_{1} and ψ2\psi_{2} when y1=0y_{1}=0.

Lemma 3.3.

Whenever y1=0,y_{1}=0, in (15)(\ref{hom}) and (16)(\ref{hom2}), if 0 is a root of the polynomial ψ\psi with multiplicity nn, then 0 is also a root of the polynomials ψ1\psi_{1} and ψ2\psi_{2} with at least the same multiplicity.

Proof.

Since y1=0y_{1}=0 then we obtain

ψ(0)=ψ1(0)=ψ2(0)=0.\psi(0)=\psi_{1}(0)=\psi_{2}(0)=0.

Thus, the statement holds for n=1n=1 case. Let assume it is true for n=n1n=n-1 case, i.e. if 0 is a root of the polynomial ψ\psi with multiplicity n1n-1, then 0 is also a root of ψ1\psi_{1} and ψ2\psi_{2} with multiplicity n1.n-1. Now assume 0 as a root of ψ\psi with multiplicity nn, then

ψ(0)=\diffψt(0)==\diff[n]ψt(0)=0.\psi(0)=\diff*{\psi}{t}{(0)}=\cdots=\diff*[n]{\psi}{t}{(0)}=0.

Again from \diff[n]ψt(0)=0\diff*[n]{\psi}{t}{(0)}=0, choosing xk,yk=0x_{k},y_{k}=0 for k<1k<1 we obtain

\diff[n]ψt(0)=\displaystyle\diff*[n]{\psi}{t}{(0)}= k=0n((x2n2k+x2n2k+1)(y2k+y2k+1)\displaystyle\sum_{k=0}^{n}\left((x_{2n-2k}+x_{2n-2k+1})(y_{2k}+y_{2k+1})\right.
(x2n2k1+x2n2k)(y2k+1)(y2k+2))\displaystyle-\left.(x_{2n-2k-1}+x_{2n-2k})(y_{2k+1})(y_{2k+2})\right)
=\displaystyle= x2ny2+x2n1y3+x2n2(y2y4)+x2n3(y5b3)\displaystyle-x_{2n}y_{2}+x_{2n-1}y_{3}+x_{2n-2}(y_{2}-y_{4})+x_{2n-3}(y_{5}-b_{3})
++x2(y2n2y2n)+x1(y2n+1y2n1)\displaystyle+\cdots+x_{2}(y_{2n-2}-y_{2n})+x_{1}(y_{2n+1}-y_{2n-1})
=\displaystyle= 0.\displaystyle{}0.

By previous assumption 0 is also a root of ψ1\psi_{1} with multiplicity n1n-1, therefore

\diff[n1]ψ1t(0)=\displaystyle\diff*[n-1]{\psi_{1}}{t}{(0)}= k=0n1((x2n2k2+x2n2k1)y2k+1\displaystyle{}\sum_{k=0}^{n-1}\left((x_{2n-2k-2}+x_{2n-2k-1})y_{2k+1}\right.
(y2n2k3+y2n2k2)x2k+2)\displaystyle-\left.(y_{2n-2k-3}+y_{2n-2k-2})x_{2k+2}\right)
=\displaystyle= x2n2y2+x2n3y3x2n4y4+x2y2n2+x1y2n1\displaystyle{}-x_{2n-2}y_{2}+x_{2n-3}y_{3}-x_{2n-4}y_{4}+\cdots-x_{2}y_{2n-2}+x_{1}y_{2n-1}
=\displaystyle{}= 0.\displaystyle 0.

Now

\diff[n]ψ1t(0)=\displaystyle\diff*[n]{\psi_{1}}{t}{(0)}= k=0n((x2n2k+x2n2k+1)y2k+1\displaystyle{}\sum_{k=0}^{n}\left((x_{2n-2k}+x_{2n-2k+1})y_{2k+1}\right.
(y2n2k1+y2n2k)x2k+2)\displaystyle-\left.(y_{2n-2k-1}+y_{2n-2k})x_{2k+2}\right)
=\displaystyle= x2ny2+x2n1y3x2n2y4+x2y2n+x1y2n+1\displaystyle-x_{2n}y_{2}+x_{2n-1}y_{3}-x_{2n-2}y_{4}+\cdots-x_{2}y_{2n}+x_{1}y_{2n+1}
=\displaystyle= \diff[n]ψt(0)+\diff[n1]ψ1t(0).\displaystyle\diff*[n]{\psi}{t}{(0)}+\diff*[n-1]{\psi_{1}}{t}{(0)}.

Therefore by \diff[n]ψt(0)=0 and \diff[n1]ψ1t(0)=0\diff*[n]{\psi}{t}{(0)}=0\text{ and }\diff*[n-1]{\psi_{1}}{t}{(0)}=0 it follows that \diff[n]ψ1t(0)=0.\diff*[n]{\psi_{1}}{t}{(0)}=0. Hence 0 is a root of the function \diff[n]ψ1t\diff*[n]{\psi_{1}}{t}{}, it implies 0 is a root of ψ1\psi_{1} with multiplicity at least n.n. Similarly one can proof for ψ2\psi_{2} also. ∎

Now we are ready to present the version of [8, Theorem 2.2], when IZm.I\notin Z_{m}.

Theorem 3.4.

Let n1n\geq 1, IZmI\notin Z_{m} and p,qp,q are idempotent of type Zm.Z_{m}. If AZmA\in Z_{m} is in the form (14)(\ref{represe}), then AA is properly group invertible if and only if one of the following is true

  1. (i)

    A=0;A=0;

  2. (ii)

    x1y10x_{1}y_{1}\neq 0;

  3. (iii)

    either x10,y1=0 or x1=0,y10x_{1}\neq 0,y_{1}=0\text{ or }x_{1}=0,y_{1}\neq 0 and 0 is a root of ψ(t)\psi(t) with multiplicity at least m4.\lceil\frac{m}{4}\rceil.

Moreover σ(A)={x1,y1,0}.\sigma(A)=\{x_{1},y_{1},0\}.

Proof.

The case when m=1m=1 or 22 is trivial, so let m3.m\geq 3. It is straightforward to verify that if p,qp,q is of the form (13), then IZmI\notin Z_{m} and

A=[φ00(B1C1)φ01(B1C1)B1φ02(B1C1)B2+φ02(B1C1)B1C2C1φ10(B1C1)φ11(C1B1)φ12(C1B1)C2+φ12(C1B1)C1B2000].A=\begin{bmatrix}\upvarphi_{00}(B_{1}C_{1})&\upvarphi_{01}(B_{1}C_{1})B_{1}&\upvarphi_{02}(B_{1}C_{1})B_{2}+\upvarphi_{02^{\prime}}(B_{1}C_{1})B_{1}C_{2}\\ C_{1}\upvarphi_{10}(B_{1}C_{1})&\upvarphi_{11}(C_{1}B_{1})&\upvarphi_{12}(C_{1}B_{1})C_{2}+\upvarphi_{12^{\prime}}(C_{1}B_{1})C_{1}B_{2}\\ 0&0&0\\ \end{bmatrix}.

As mentioned in [8] here the matrix B1C1B_{1}C_{1} is nilpotent with degree m41\lceil\frac{m}{4}\rceil-1 when m=1 mod 4m=1\text{ mod }4 and B1C1, C1B1B_{1}C_{1},\text{ }C_{1}B_{1} are nilpotent with degree m4\lceil\frac{m}{4}\rceil in other cases. Now by [11, Theorem 3.1], if the 2×22\times 2 block

A1=[φ00(B1C1)φ01(B1C1)B1C1φ10(B1C1)φ11(C1B1)]A_{1}=\begin{bmatrix}\upvarphi_{00}(B_{1}C_{1})&\upvarphi_{01}(B_{1}C_{1})B_{1}\\ C_{1}\upvarphi_{10}(B_{1}C_{1})&\upvarphi_{11}(C_{1}B_{1})\\ \end{bmatrix} (17)

is invertible, then AA becomes properly group invertible. According to Theorem 3.1, if x1y10x_{1}y_{1}\neq 0, then A1A_{1} is invertible; hence for the case x1y10,x_{1}y_{1}\neq 0, AA is properly group invertible. Next, if x1=y1=0x_{1}=y_{1}=0, then AA is a nilpotent matrix, which is group invertible if and only if A=0.A=0. Thus ((i))(\ref{11k}) and ((ii))(\ref{13k}) follows.
Now assume x10,y1=0.x_{1}\neq 0,y_{1}=0. Since φ00(0)=x10\upvarphi_{00}(0)=x_{1}\neq 0 and B1C1B_{1}C_{1} is nilpotent, therefore φ00(B1C1)\upvarphi_{00}(B_{1}C_{1}) is invertible, and the Schur complement of φ00(B1C1)\upvarphi_{00}(B_{1}C_{1}) in AA is

1φ00(t)[ψ(t)(C1B1)ψ1(t)(C1B1)C2+ψ2(t)(C1B1)C1B200].\frac{1}{\upvarphi_{00}(t)}\begin{bmatrix}{\psi(t)}(C_{1}B_{1})&{\psi_{1}(t)}(C_{1}B_{1})C_{2}+{\psi_{2}(t)}(C_{1}B_{1})C_{1}B_{2}\\ 0&0\\ \end{bmatrix}. (18)

But ψ(0)=0\psi(0)=0, so (18) is a nilpotent matrix. Again the Schur complement of φ002(t)tφ01(t)φ10(t)(B1C1)\upvarphi_{00}^{2}(t)-t\upvarphi_{01}(t)\upvarphi_{10}(t)(B_{1}C_{1}) in A2A^{2} is

1φ002(t)tφ01(t)φ10(t)[ψ(t)(C1B1)ψ1(t)(C1B1)C2+ψ2(t)(C1B1)C1B200]2.\frac{1}{\upvarphi_{00}^{2}(t)-t\upvarphi_{01}(t)\upvarphi_{10}(t)}\begin{bmatrix}{\psi(t)}(C_{1}B_{1})&{\psi_{1}(t)}(C_{1}B_{1})C_{2}+{\psi_{2}(t)}(C_{1}B_{1})C_{1}B_{2}\\ 0&0\\ \end{bmatrix}^{2}.

Thus rank (A)(A)=rank (A2)(A^{2}) if and only if Schur complement of φ00(t)(B1C1)\upvarphi_{00}(t)(B_{1}C_{1}) in AA and Schur complement of φ002(t)tφ01(t)φ10(t)(B1C1)\upvarphi_{00}^{2}(t)-t\upvarphi_{01}(t)\upvarphi_{10}(t)(B_{1}C_{1}) in A2A^{2} have the same rank. Since (18)(\ref{schur}) is a nilpotent matrix; therefore, this is possible only when (18)(\ref{schur}) is the zero matrix. Now for ZmZ_{m}, B1C1B_{1}C_{1} is nilpotent matrix of degree m41\lceil\frac{m}{4}\rceil-1 when m=1m=1 mod 44 and B1C1,C1B1B_{1}C_{1},C_{1}B_{1} are nipotent with degree m4\lceil\frac{m}{4}\rceil otherwise. Hence ψ(t)(C1B1)=0{\psi(t)}(C_{1}B_{1})=0 if and only if 0 is a root of ψ(t)\psi(t) with multiplicity atleast m4\lceil\frac{m}{4}\rceil. According to Lemma 3.3, if 0 is a root of ψ(t)\psi(t) with multiplicity m4\lceil\frac{m}{4}\rceil, then 0 is also a root of ψ1(t)\psi_{1}(t) and ψ2(t)\psi_{2}(t) with at least the same multiplicity. Hence we get ψ1(t)(C1B1)C2+ψ2(t)(C1B1)C1B2=0{\psi_{1}(t)}(C_{1}B_{1})C_{2}+{\psi_{2}(t)}(C_{1}B_{1})C_{1}B_{2}=0. This proves ((iii))(\ref{12k}) when x10x_{1}\neq 0 and y1=0.y_{1}=0. Likewise, the situation when x1=0x_{1}=0 but y10y_{1}\neq 0 can be treated by considering the Schur complement of φ11(C1B1).\upvarphi_{11}(C_{1}B_{1}). Moreover since σ(A)=σ(A1){0},\sigma(A)=\sigma(A_{1})\cup\{0\}, therefore from Theorem 3.1 it also follows that σ(A)={0,x1,y1}\sigma(A)=\{0,x_{1},y_{1}\}. ∎

With the help of the previous theorem and [8, Theorem 3.5], it is possible to classify all the properly group invertible elements in the algebra ZmW3Z_{m}\oplus W_{3} and ZmW4.Z_{m}\oplus W_{4}. Our next two results describe that.

Theorem 3.5.

If AZmW3A\in Z_{m}\oplus W_{3} is of the form (14),(\ref{represe}), then AA is properly group invertible if and only if one of the following is true

  1. (i)

    A=0A=0;

  2. (ii)

    i(x2i1+y2i)=i(x2iy2i)=iyi=0\displaystyle\sum_{i}(x_{2i-1}+y_{2i})=\sum_{i}(x_{2i}-y_{2i})=\sum_{i}y_{i}=0 and

    1. (a)

      x1y10x_{1}y_{1}\neq 0;
      or

    2. (b)

      x1,y1x_{1},y_{1} satisfies condition ((iii)) of Theorem 3.4;

  3. (iii)

    i(xi+yi)0\sum_{i}(x_{i}+y_{i})\neq 0 and

    1. (a)

      all the coefficients of AA in (14)(\ref{represe}) are 0, except for the last three;
      or

    2. (b)

      x1y10x_{1}y_{1}\neq 0;
      or

    3. (c)

      x1,y1x_{1},y_{1} satisfies condition ((iii)) of Theorem 3.4.

Moreover σ(A)={0,x1,y1,x+y}\sigma(A)=\{0,x_{1},y_{1},x+y\} where x=ixix=\sum_{i}x_{i} and y=iyi.y=\sum_{i}y_{i}.

Proof.

Let p,q\textbf{p},\textbf{q} are idempotents of type ZmW3Z_{m}\oplus W_{3} then

𝐩=[𝐩𝟎𝐩] and 𝐪=[𝐪𝟎𝐪]\bf{p}=\begin{bmatrix}p_{0}&\\ &p\end{bmatrix}\text{ and }\bf{q}=\begin{bmatrix}q_{0}&\\ &q\end{bmatrix} (19)

where p0,q0p_{0},q_{0} are type ZmZ_{m} idempotents and p,qp,q are idempotents of type W3.W_{3}. Denote A0=x1p0+y1q0+x2p0q0A_{0}=x_{1}p_{0}+y_{1}q_{0}+x_{2}p_{0}q_{0}\cdots and A1=x1p+y1q+x2pq.A_{1}=x_{1}p+y_{1}q+x_{2}pq\cdots. Then by Theorem 3.4 and [8, Theorem 3.5]

σ(A)=σ(A0)σ(A1)={0,x1,y1,x+y}.\sigma(A)=\sigma(A_{0})\cup\sigma(A_{1})=\{0,x_{1},y_{1},x+y\}.

According to [8, Theorem 3.5] A1A_{1} is not invertible; therefore AA is properly group invertible if and only if A0A_{0} and A1A_{1} are group invertible. Since in W3W_{3}

A1\displaystyle A_{1} =x1p+y1q+x2pq\displaystyle=x_{1}p+y_{1}q+x_{2}pq\cdots
=i(x2i1+y2i)p+i(x2iy2i)pq+i(y2i1+y2i)q,\displaystyle=\sum_{i}(x_{2i-1}+y_{2i})p+\sum_{i}(x_{2i}-y_{2i})pq+\sum_{i}(y_{2i-1}+y_{2i})q,

hence by [8, Theorem 3.5] A1A_{1} is group invertible if and only if one of the following holds

  1. 1.

    xi,yi=0x_{i},y_{i}=0 for all ii;

  2. 2.

    i(x2i1+y2i)=i(x2iy2i)=i(y2i1+y2i)=0\displaystyle\sum_{i}(x_{2i-1}+y_{2i})=\sum_{i}(x_{2i}-y_{2i})=\sum_{i}(y_{2i-1}+y_{2i})=0;

  3. 3.

    ixi+yi0\displaystyle\sum_{i}x_{i}+y_{i}\neq 0.

From here, the desired result can be confirmed with the help of Theorem 3.4. ∎

Theorem 3.6.

If AZmW4A\in Z_{m}\oplus W_{4} is of the form (14)(\ref{represe}) then AA is properly group invertible if one of the followings holds

  1. (i)

    A=0A=0;

  2. (ii)

    ix2i1=ix2i=iy2i1=iy2i=0\displaystyle\sum_{i}x_{2i-1}=\sum_{i}x_{2i}=\sum_{i}y_{2i-1}=\sum_{i}y_{2i}=0 and

    1. (a)

      x1y10x_{1}y_{1}\neq 0;
      or

    2. (b)

      x1,y1x_{1},y_{1} satisfies condition ((iii)) of Theorem 3.4;;

  3. (iii)

    i(xi+yi)0\displaystyle\sum_{i}(x_{i}+y_{i})\neq 0, (ix2i1)(iy2i1)=(ix2i)(iy2i)\displaystyle\left(\sum_{i}x_{2i-1}\right)\left(\sum_{i}y_{2i-1}\right)=\left(\sum_{i}x_{2i}\right)\left(\sum_{i}y_{2i}\right) and

    1. (a)

      all the coefficients of AA in (14)(\ref{represe}) are 0, except for the last four;
      or

    2. (b)

      x1y10x_{1}y_{1}\neq 0;
      or

    3. (c)

      x1,y1x_{1},y_{1} satisfies condition ((iii)) of Theorem 3.4.

Moreover σ(A)={0,x1,y1,x+y}\sigma(A)=\{0,x_{1},y_{1},x+y\} where x=ixix=\sum_{i}x_{i} and y=iyi.y=\sum_{i}y_{i}.

Proof.

This follows from Theorem 3.4 and [8, Theorem 3.5]. ∎

As already mentioned, being a finite-dimensional algebra, every element in ZmZ_{m} is Drazin invertible, and it is possible to provide an upper bound for the Drazin index of any element AZm.A\in Z_{m}. The following theorem describes this.

Theorem 3.7.

Let m1m\geq 1, and AZmA\in Z_{m} is not group invertible. If AA is nilpotent then

i(A){2m4 if m=0 mod 42m4+1 if m=1 or 2 mod 42m4+2 if m=3 mod 4,i(A)\leq\begin{cases}2\lfloor\frac{m}{4}\rfloor\text{ if }m=0\text{ }\mathrm{mod}\text{ }4\\ 2\lfloor\frac{m}{4}\rfloor+1\text{ if }m=1\text{ or }2\text{ }\mathrm{mod}\text{ }4\\ 2\lfloor\frac{m}{4}\rfloor+2\text{ if }m=3\text{ }\mathrm{mod}\text{ }4\end{cases},

and if AA is not nilpotent then i(A)m4.i(A)\leq\lceil\frac{m}{4}\rceil.

Proof.

Since AZmA\in Z_{m}, therefore AA is of the form (14). Now if x1y10,x_{1}y_{1}\neq 0, then by Theorem 3.4, AA is group invertible, and if exactly one of x1,y1x_{1},y_{1} is 0, then by Theorem 3.4, AA is Drazin invertible with Drazin index m4\leq\lceil\frac{m}{4}\rceil. Finally if x1=0=y1x_{1}=0=y_{1}, then

A=x2pq+y2qp+x3pqp+y3qpq+,A=x_{2}pq+y_{2}qp+x_{3}pqp+y_{3}qpq+\cdots,

which is a nilpotent element in alg(p,q)(p,q). Here using induction, it becomes evident that (pq)k+1(pq)_{k+1} and (qp)k+1(qp)_{k+1} are the elements with the lowest order in the representation of Ak.A^{k}. If m=0m=0 mod 44, then any element in ZmZ_{m} with order 2m4+1\geq 2\lfloor\frac{m}{4}\rfloor+1 is equals to 0,0, hence A2m4=0.A^{2\lfloor\frac{m}{4}\rfloor}=0. Therefore i(A)2m4.i(A)\leq 2\lfloor\frac{m}{4}\rfloor. Likewise, one can confirm the validity of other cases as well. ∎

Remark 2.

Using Theorem 3.7, one can find an upper for the Drazin index of elements in algebra Um,Dm,DmU_{m},D_{m},D_{m}^{*}.

4 Representation of Drazin and group inverse

Given that p,qp,q satisfies (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m}, then the finite dimensionality of the algebra alg(p,q)(p,q) ensures that the Drazin inverse of (αp+q)(\alpha p+q) always exists and lies in alg(p,q)(p,q). However, expressing the representation of (αp+q)D(\alpha p+q)^{D} using p,qp,q is still a challenging task. The representation of (αp+βq)(\alpha p+\beta q) under the assumption (pq)n=(pq)n1(pq)^{n}=(pq)^{n-1} is already provided by Shi and Guolin [6] for idempotents in a Banach algebra, but they proved it using the integral representation of the Drazin inverse in a Banach algebra. But here, we provide a proof which is also suitable for an associative algebra.

Theorem 4.1.

Let α\alpha be a non-zero scalar. If (pq)m1=(pq)m(pq)^{m-1}=(pq)^{m} then (αp+q)(\alpha p+q) is Drazin invertible and i(αp+q){2, if α13, if α=1.i(\alpha p+q)\leq\begin{cases}2,\text{ if }\alpha\neq-1\\ 3,\text{ if }\alpha=-1\end{cases}. Moreover

(αp+q)D={A3(αp+q)2, if α1B4(αp+q)3, if α=1,(\alpha p+q)^{D}=\begin{cases}\textbf{A}^{3}(\alpha p+q)^{2},\text{ if }\alpha\neq-1\\ \textbf{B}^{4}(\alpha p+q)^{3},\text{ if }\alpha=-1\end{cases}, (20)

where

A=\displaystyle\textbf{A}= i=12m3(1)i1((i2+i2+ϕ(i)α)(pq)i2pϕ(i)\displaystyle\displaystyle\sum_{i=1}^{2m-3}(-1)^{i-1}\left(\left(\lfloor\frac{i}{2}\rfloor+\frac{\lfloor\frac{i}{2}\rfloor+\phi(i)}{\alpha}\right)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\right.
+(i2+ϕ(i)+i2α)(qp)i2qϕ(i))\displaystyle+\left.\left(\lfloor\frac{i}{2}\rfloor+\phi(i)+\frac{\lfloor\frac{i}{2}\rfloor}{\alpha}\right)(qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)}\right)
(m1+m1α)(qp)m1(m1αα(1+α)2)(pq)m1\displaystyle-\left(m-1+\frac{m-1}{\alpha}\right)(qp)^{m-1}-\left(\frac{m-1}{\alpha}-\frac{\alpha}{(1+\alpha)^{2}}\right)(pq)^{m-1}
+(m1α+1(1+α)2)(qp)m1q,\displaystyle+\left(\frac{m-1}{\alpha}+\frac{1}{(1+\alpha)^{2}}\right)(qp)^{m-1}q,

and

B=i=12m3ϕ(i)((qp)i2qϕ(i)(pq)i2pϕ(i))\textbf{B}=\displaystyle\sum_{i=1}^{2m-3}\phi(i)\left((qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)}-(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\right)

here the function ϕ\phi is defined as ϕ(i)={0, if i is even,1, if i is odd\phi(i)=\begin{cases}0,\text{ if }i\text{ is even,}\\ 1,\text{ if }i\text{ is odd}\end{cases}.

Proof.

First let assume that α1\alpha\neq-1, then by [10, Lemma] to prove (20), it is enough to prove that A(αp+q)3=(αp+q)2\textbf{A}(\alpha p+q)^{3}=(\alpha p+q)^{2} and (αp+q)3A=(αp+q)2,(\alpha p+q)^{3}\textbf{A}^{\prime}=(\alpha p+q)^{2}, for some A𝒜.\textbf{A}^{\prime}\in\mathcal{A}. Now we compute the coefficient of (pq)i2pϕ(i)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)} in the expansion A(αp+q)3\textbf{A}(\alpha p+q)^{3} for 2<i2m32<i\leq 2m-3. Let assume ii to be even, then i=2ki=2k for some kk\in\mathbb{N}, and the coefficient of (pq)i2pϕ(i)(=(pq)k)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\left(=(pq)^{k}\right) is

(k1α+k2)\displaystyle\left(\frac{k-1}{\alpha}+k-2\right) α(k1α+k1)(2α+α2)\displaystyle\alpha-\left(\frac{k-1}{\alpha}+k-1\right)(2\alpha+\alpha^{2})
+(kα+k1)(1+α+α2)(kα+k)\displaystyle+\left(\frac{k}{\alpha}+k-1\right)(1+\alpha+\alpha^{2})-\left(\frac{k}{\alpha}+k\right)
=\displaystyle{}= 0.\displaystyle 0.

Next if ii is odd then i=2k+1i=2k+1 for some k,k\in\mathbb{N}, then the coefficient of (pq)i2pϕ(i)(=(pq)kp)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\left(=(pq)^{k}p\right) is

(k1α+k1)\displaystyle-\left(\frac{k-1}{\alpha}+k-1\right) α2+(kα+k1)(2α2+α)\displaystyle\alpha^{2}+\left(\frac{k}{\alpha}+k-1\right)(2\alpha^{2}+\alpha)
(kα+k)(α+α2+α3)+(k+1α+k)α3\displaystyle-\left(\frac{k}{\alpha}+k\right)(\alpha+\alpha^{2}+\alpha^{3})+\left(\frac{k+1}{\alpha}+k\right)\alpha^{3}
=\displaystyle{}= 0.\displaystyle 0.

In particular, the coefficient of p and pqp\text{ and }pq in A(αp+q)3\textbf{A}(\alpha p+q)^{3} are α2\alpha^{2} and α\alpha, respectively. Hence, we obtain that in the expansion of A(αp+q)3\textbf{A}(\alpha p+q)^{3}, the coefficient of (pq)i2pϕ(i)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)} is

{α2, if i=1α, if i=20, if 3i2m3.\begin{cases}\alpha^{2},\text{ if }i=1\\ \alpha,\text{ if }i=2\\ 0,\text{ if }3\leq i\leq 2m-3\end{cases}.

Likewise, it can be verified that the coefficient of (qp)i2qϕ(i)(qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)} is

{1, if i=1α, if i=20, if 3i2m2.\begin{cases}1,\text{ if }i=1\\ \alpha,\text{ if }i=2\\ 0,\text{ if }3\leq i\leq 2m-2\end{cases}.

Now, if i=2m2i=2m-2, then the coefficient of (pq)i2pϕ(i)(=(pq)m1)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\left(=(pq)^{m-1}\right) is

(m2α+m3)\displaystyle\left(\frac{m-2}{\alpha}+m-3\right) α(m2α+m2)(2α+α2)\displaystyle\alpha-\left(\frac{m-2}{\alpha}+m-2\right)(2\alpha+\alpha^{2})
+(m1α+m2)(1+2α+α2)\displaystyle+\left(\frac{m-1}{\alpha}+m-2\right)(1+2\alpha+\alpha^{2})
(m1αα(1+α)2)(1+α)2\displaystyle-\left(\frac{m-1}{\alpha}-\frac{\alpha}{(1+\alpha)^{2}}\right)(1+\alpha)^{2}
=\displaystyle= 0\displaystyle 0

In a similar manner, it can be confirmed that the coefficient of (pa)m1p,(pa)^{m-1}p, (qp)m1q(qp)^{m-1}q and (qp)m(qp)^{m} is 0 in the expansion of A(αp+q)3.\textbf{A}(\alpha p+q)^{3}. Hence, through evaluating the coefficients of each term in the expansion of A(αp+q)3\textbf{A}(\alpha p+q)^{3}, we obtain that

A(αp+q)3=(αp+q)2.\textbf{A}(\alpha p+q)^{3}=(\alpha p+q)^{2}.

Certainly, by choosing

A=\displaystyle\textbf{A}^{\prime}= i=12m3(1)i1((i2+i2+ϕ(i)α)(pq)i2pϕ(i)\displaystyle\displaystyle\sum_{i=1}^{2m-3}(-1)^{i-1}\left(\left(\lfloor\frac{i}{2}\rfloor+\frac{\lfloor\frac{i}{2}\rfloor+\phi(i)}{\alpha}\right)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\right.
+(i2+ϕ(i)+i2α)(qp)i2qϕ(i))+(m1+m1α)(qp)m1\displaystyle\left.+\left(\lfloor\frac{i}{2}\rfloor+\phi(i)+\frac{\lfloor\frac{i}{2}\rfloor}{\alpha}\right)(qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)}\right)+\left(m-1+\frac{m-1}{\alpha}\right)(qp)^{m-1}
+(1(α+1)2+1m)(pq)m1+(m1+α(1+α)2)(pq)m1p,\displaystyle+\left(\frac{1}{(\alpha+1)^{2}}+1-m\right)(pq)^{m-1}+\left(m-1+\frac{\alpha}{(1+\alpha)^{2}}\right)(pq)^{m-1}p,

one can proof (αp+q)3A=(αp+q)2.(\alpha p+q)^{3}\textbf{A}^{\prime}=(\alpha p+q)^{2}. Therefore if α1\alpha\neq-1 then i(αp+q)2i(\alpha p+q)\leq 2 and

(αp+q)D=A3(αp+q)2.(\alpha p+q)^{D}=\textbf{A}^{3}(\alpha p+q)^{2}.

Now if α=1\alpha=-1 then

B(qp)4=\displaystyle\textbf{B}(q-p)^{4}= (i=12m3ϕ(i)((qp)i2qϕ(i)(pq)i2pϕ(i)))(qp)4\displaystyle\left(\displaystyle\sum_{i=1}^{2m-3}\phi(i)\left((qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)}-(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\right)\right)(q-p)^{4}
=\displaystyle{}= ((qp)+(pq)m1p(qp)m1q)(qp)2\displaystyle\left((q-p)+(pq)^{m-1}p-(qp)^{m-1}q\right)(q-p)^{2}
=\displaystyle{}= (qp)3+((qp)mq(qp)m1q\displaystyle(q-p)^{3}+\left((qp)^{m}q-(qp)^{m-1}q\right.
+(pq)m1q(pq)mp)\displaystyle\left.+(pq)^{m-1}q-(pq)^{m}p\right)
=\displaystyle{}= (qp)3\displaystyle{(q-p)^{3}}
=\displaystyle{}= (qp)4B.\displaystyle(q-p)^{4}\textbf{B}.

Therefore i(qp)3i(q-p)\leq 3 and (qp)D=B4(αp+q)3.(q-p)^{D}=\textbf{B}^{4}(\alpha p+q)^{3}.

In this situation, the next question is if λ(pq)m1=(pq)m\lambda(pq)^{m-1}=(pq)^{m} for some non-unit scalar λ\lambda, then what conclusions can be drawn regarding the Drazin invertibility of (αp+q).(\alpha p+q). Chen et al. [14] recently investigated a specific instance of this problem, specifically when pqp=λp.pqp=\lambda p. In their study, they established the group invertibility c1p+c2q+c3pq+c4qp+c5pqp,c_{1}p+c_{2}q+c_{3}pq+c_{4}qp+c_{5}pqp, where c1,,c5c_{1},\cdots,c_{5} are scalar. In the subsequent theorem, we establish the group invertibility of (αp+q),(\alpha p+q), when (pq)m=λ(pq)m1.(pq)^{m}=\lambda(pq)^{m-1}.

Theorem 4.2.

Let α\alpha be a non-zero scalar. If λ(pq)m1=(pq)m\lambda(pq)^{m-1}=(pq)^{m} for some non-unit scalar λ,\lambda, then (αp+q)(\alpha p+q) is group invertible and

(αp+q)g={A2(αp+q), if α1B2(αp+q), if α=1,(\alpha p+q)^{g}=\begin{cases}\textbf{A}^{2}(\alpha p+q),\text{ if }\alpha\neq-1\\ \textbf{B}^{2}(\alpha p+q),\text{ if }\alpha=-1\end{cases}, (21)

where

A=\displaystyle\textbf{A}= i=12m3(1)i1((i2+i2+ϕ(i)α)(pq)i2pϕ(i)\displaystyle\displaystyle\sum_{i=1}^{2m-3}(-1)^{i-1}\left(\left(\lfloor\frac{i}{2}\rfloor+\frac{\lfloor\frac{i}{2}\rfloor+\phi(i)}{\alpha}\right)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\right.
+(i2+ϕ(i)+i2α)(qp)i2qϕ(i))(m1+m1α)(qp)m1\displaystyle\left.+\left(\lfloor\frac{i}{2}\rfloor+\phi(i)+\frac{\lfloor\frac{i}{2}\rfloor}{\alpha}\right)(qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)}\right)-\left(m-1+\frac{m-1}{\alpha}\right)(qp)^{m-1}
+a1(pq)m1+a2(pq)m1p+b1(qp)m1q+b2(qp)m,\displaystyle+a_{1}(pq)^{m-1}+a_{2}(pq)^{m-1}p+b_{1}(qp)^{m-1}q+b_{2}(qp)^{m},

and

B=i=12m3ϕ(i)((qp)i2qϕ(i)(pq)i2pϕ(i))+(qp)m1q(pq)m1p1λ\textbf{B}=\displaystyle\sum_{i=1}^{2m-3}\phi(i)\left((qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)}-(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)}\right)+\frac{(qp)^{m-1}q-(pq)^{m-1}p}{1-\lambda}

here ϕ\phi is the same function as defined in Theorem 4.1, and

a1=\displaystyle a_{1}={} (α+1)(m(λ1)+12λ)α(λ1)2,\displaystyle\frac{(\alpha+1)\left(m(\lambda-1)+1-2\lambda\right)}{\alpha(\lambda-1)^{2}},
a2=\displaystyle a_{2}={} m(1+αλαλ)+(λα+2αλ)α(λ1)2,\displaystyle\frac{m(1+\alpha-\lambda-\alpha\lambda)+(\lambda-\alpha+2\alpha\lambda)}{\alpha(\lambda-1)^{2}},
b1=\displaystyle b_{1}={} m(α+1)(1λ)+αλ+2λ1α(λ1)2,\displaystyle\frac{m(\alpha+1)(1-\lambda)+\alpha\lambda+2\lambda-1}{\alpha(\lambda-1)^{2}},
b2=\displaystyle b_{2}={} m(1+ααλλ)+λ(α+1)α(λ1)2.\displaystyle-\frac{m(1+\alpha-\alpha\lambda-\lambda)+\lambda(\alpha+1)}{\alpha(\lambda-1)^{2}}.
Proof.

First, consider the case when α1\alpha\neq-1. Similar to the proof of Theorem 4.1, to prove (21), it is enough if we prove that A(αp+q)2=αp+q\textbf{A}(\alpha p+q)^{2}=\alpha p+q and (αp+q)2A=αp+q.(\alpha p+q)^{2}\textbf{A}=\alpha p+q. Now, one can verify that in the expansion of A(αp+q)2\textbf{A}(\alpha p+q)^{2}, the coefficient of (pq)i2pϕ(i)(pq)^{\lfloor\frac{i}{2}\rfloor}p^{\phi(i)} is

{α, if i=10, if 2i2m3\begin{cases}\alpha,\text{ if }i=1\\ 0,\text{ if }2\leq i\leq 2m-3\end{cases}

and the coefficient of (qp)i2qϕ(i)(qp)^{\lfloor\frac{i}{2}\rfloor}q^{\phi(i)} is

{1, if i=10, if 2i2m2.\begin{cases}1,\text{ if }i=1\\ 0,\text{ if }2\leq i\leq 2m-2\end{cases}.

Next the coefficient of (pq)m1(pq)^{m-1} in the expansion of A(αp+q)2\textbf{A}(\alpha p+q)^{2} is

(m2α+m2)α+\displaystyle-\left(\frac{m-2}{\alpha}+m-2\right)\alpha+ (m1α+m2)(1+α)+a1(1+λα)\displaystyle\left(\frac{m-1}{\alpha}+m-2\right)(1+\alpha)+a_{1}(1+\lambda\alpha)
+a2(λ+λα)\displaystyle+a_{2}(\lambda+\lambda\alpha)
=\displaystyle{}= (m1)(1+1α)+a1(1+αλ)+a2(λ+λα).\displaystyle(m-1)\left(1+\frac{1}{\alpha}\right)+a_{1}(1+\alpha\lambda)+a_{2}(\lambda+\lambda\alpha). (22)

Identically we obtain the coefficient of (pq)m1p(pq)^{m-1}p in A(αp+q)2\textbf{A}(\alpha p+q)^{2} is

(m1α+m2)α+a1(α2+α)+a2(α2+λα).\displaystyle\left(\frac{m-1}{\alpha}+m-2\right)\alpha+a_{1}(\alpha^{2}+\alpha)+a_{2}(\alpha^{2}+\lambda\alpha). (23)

Now solving the system of linear equations obtained from (4.2) and (23) i.e.

(m1)(1+1α)+a1(1+αλ)+a2(λ+λα)=\displaystyle(m-1)\left(1+\frac{1}{\alpha}\right)+a_{1}(1+\alpha\lambda)+a_{2}(\lambda+\lambda\alpha)= 0 and\displaystyle 0\text{ and }
(m1α+m2)+a1(α+1)+a2(α+λ)=\displaystyle\left(\frac{m-1}{\alpha}+m-2\right)+a_{1}(\alpha+1)+a_{2}(\alpha+\lambda)= 0\displaystyle 0

we get

a1=\displaystyle a_{1}={} (α+1)(m(λ1)+12λ)α(λ1)2,\displaystyle\frac{(\alpha+1)\left(m(\lambda-1)+1-2\lambda\right)}{\alpha(\lambda-1)^{2}},
a2=\displaystyle a_{2}={} m(1+αλαλ)+(λα+2αλ)α(λ1)2.\displaystyle\frac{m(1+\alpha-\lambda-\alpha\lambda)+(\lambda-\alpha+2\alpha\lambda)}{\alpha(\lambda-1)^{2}}.

Analogously solving the system of linear equations obtained from the coefficient of (qp)m1q(qp)^{m-1}q and (qp)m(qp)^{m} in A(αp+q)2\textbf{A}(\alpha p+q)^{2}, the values of b1, b2b_{1},\text{ }b_{2} can be confirmed. Hence we get

A(αp+q)2=αp+q.\textbf{A}(\alpha p+q)^{2}=\alpha p+q.

In the same way, by comparing the coefficient of each term in the expansion of (αp+q)2A(\alpha p+q)^{2}\textbf{A} one can verify

(αp+q)2A=αp+q.(\alpha p+q)^{2}\textbf{A}=\alpha p+q.

Hence (αp+q)(\alpha p+q) is group invertible and

(αp+q)g=A2(αp+q).(\alpha p+q)^{g}=\textbf{A}^{2}(\alpha p+q).

Now if α=1\alpha=-1 then

B(qp)2=\displaystyle\textbf{B}(q-p)^{2}= (qp)+(pq)m1p(qp)m1q+(qp)m1q(pq)m1p1λ(qp)2\displaystyle(q-p)+(pq)^{m-1}p-(qp)^{m-1}q+\frac{(qp)^{m-1}q-(pq)^{m-1}p}{1-\lambda}(q-p)^{2}
=\displaystyle= (qp)\displaystyle(q-p)
=\displaystyle= (qp)2B.\displaystyle(q-p)^{2}\textbf{B}.

Therefore (qp)(q-p) is group invertible and

(qp)g=B2(qp).(q-p)^{g}=\textbf{B}^{2}(q-p).

References

  • [1] Patrı, P and Hartwig, Robert E and others, Some additive results on Drazin inverses, Applied mathematics and computation. 215(2) (2009), 530–538.
  • [2] Deng, Chun Yuan, The Drazin inverses of sum and difference of idempotents, Linear Algebra and its Applications. 430(4) (2009), 1282–1291.
  • [3] Zhang, Shifang and Wu, Junde, The Drazin inverse of the linear combinations of two idempotents in the Banach algebra, Linear Algebra and its Applications. 436(9) (2012), 3132–3138.
  • [4] Drazin, MP, Pseudo-inverses in associative rings and semigroups, The American mathematical monthly. 65(7) (1958), 506–514.
  • [5] Böttcher, A and Spitkovsky, IM, On certain finite-dimensional algebras generated by two idempotents, Linear algebra and its applications. 435(8) (2011), 1823–1836.
  • [6] Shi, Yunfeng and Hou, Guolin, On the Drazin inverse of the linear combinations of two idempotents in a complex Banach algebra, Linear Algebra and its Applications. 439(11) (2013), 3532–3540.
  • [7] Böttcher, Albrecht and Spitkovsky, Ilya M, Drazin inversion in the von Neumann algebra generated by two orthogonal projections, Journal of mathematical analysis and applications. 358(2) (2009) 403–409.
  • [8] Böttcher, Albrecht and Spitkovsky, IM, Group inversion in certain finite-dimensional algebras generated by two idempotents, Indagationes Mathematicae. 23(4) (2012) 715–732.
  • [9] Böttcher, A and Spitkovsky, IM, Classification of the finite-dimensional algebras generated by two tightly coupled idempotents, Linear Algebra and its Applications. 439(3) (2013) 538–551.
  • [10] Puystjens, R and Gouveia, MC, Drazin invertibility for matrices over an arbitrary ring, Linear algebra and its applications, 385 (2004) 105–116.
  • [11] Meyer, Jr, Carl D and Rose, Nicholas J, The index and the Drazin inverse of block triangular matrices, SIAM Journal on Applied Mathematics, 33(1) (1977)
  • [12] Chen, Jianlong and Zhu, Huihui, Drazin invertibility of product and difference of idempotents in a ring, Filomat, 28(6) (2014) 1133–1137.
  • [13] Xie, Tao and Zuo, Kezheng, European Journal of Pure and Applied Mathematics, The Drazin inverses of Combinations of Two idempotents, 5(4) (2012) 480–491.
  • [14] Chen, Jianlong and Gao, Yuefeng and Li, Lifang, Drazin invertibility in a certain finite-dimensional algebra generated by two idempotents, Numerical Functional Analysis and Optimization. 41(14) (2020) 1804–1817. year=2020,