This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dynamic characteristics of terahertz hot-electron graphene FET bolometers: effect of electron cooling in channel and at side contacts

V. Ryzhii1, C. Tang1,2, T. Otsuji1, M. Ryzhii3, V. Mitin4, and M. S. Shur5 1Research Institute of Electrical Communication, Tohoku University, Sendai  980-8577, Japan
2Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
3Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan
4Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 14260, USA
5Department of Electrical,Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, New York 12180,
USA
Abstract

We analyze the operation of the hot-electron FET bolometers with the graphene channels (GCs) and the gate barrier layers (BLs). Such bolometers use the thermionic emission of the hot electrons heated by incident modulated THz radiation. The hot electron transfer from the GC into the metal gate. As the THz detectors, these bolometers can operate at room temperature. We show that the response and ultimate modulation frequency of the GC-FET bolometers are determined by the efficiency of the hot-electron energy transfer to the lattice and the GC side contacts due to the 2DEG lateral thermal conductance. The dependences of these mechanisms on the band structure and geometrical parameters open the way for the GC-FET bolometers optimization, in particular, for the enhancement of the maximum modulation frequency.

I Introduction

The specific band alignment in metal/black-PxAs1-x layer/graphene structures [1, 2] enables an enhanced thermionic electron and hole thermionic emission between the graphene and metal layers. Since the absorption of THz leads to an effective electron (holes) heating, the field-effect transistors (FETs) based on such structures with the metal gate (MG), b-PxAs1-xbarrier layer (BL), and graphene channel (GC) can be used as sensitive bolometric detectors [3, 4, 5]. The responsivity of the GC-FET bolometers is determined by the rate of the carrier cooling due to the transfer of their energy to the GC and the side contacts (source and drain) as well as the thermionic emission [4, 5, 6, 7] (the Peltier cooling). On the other hand, the same processes determine the speed of the bolometric detectors in question. The roles of the effects in question depend on the structural parameters and the temperature. The plasmonic resonances in the gate GC of the devices under consideration can substantially affect the absorption of the impinging radiation and, hence, the detector performance. The recently proposed GC-FET bolometers with the composite BL [8, 9] have reinforced plasmonic resonances. Such a composite BL is made of the h-BN layer with a short narrow-gap black-PxAs1-x region. The latter serves as the electron emission window, through which the hot electrons pass from the GC into the MG. Since the quality of the h-BN/GC interface supports very high electron mobility (see, for example, [10, 11]) and, therefore, a low electron collision frequency, the plasmonic oscillations damping in the GC-FETs can be markedly weaker than in the GC-FETs with black-PxAs1-x BLs. Due to a relatively narrow emission window, the role of the Peltier cooling is diminished.

In this paper, we consider the GC-FETs with the n-type GC and composite h-BN/b-P BL and analyze the dynamics of the two-dimensional electron gas (2DEG) heating. We calculate the GC-FET bolometer’s modulation characteristics and the ultimate modulation frequency of the detected incoming radiation signals as functions of the device structure parameters and the temperature.

II GC-FET detector structure and main model equations

Figure 1(a) schematically shows the cross-section of the GC-FET structure under consideration. The GC-FET structure incorporates the GC separated from the MC by the composite h-BN/b-P/h-BN gate BL. For the GC-FETs with the Al MG, one can set for the differences between the bottom of the BL conduction band and the Dirac point in the GC ΔC=225\Delta_{C}=225 meV, and the difference in the electron affinities of the Al MG and b-P in the central section of the gate BL ΔM=85\Delta_{M}=85 meV [12, 13, 14, 15, 16, 17, 18]. We assume that the electron Fermi energy in the GC is chosen to satisfy the conditions: ΔCμ=ΔM\Delta_{C}-\mu=\Delta_{M}. The lengths of the b-P central section and each the h-BN side sections are 2LC2L_{C} and LLCL-L_{C}, respectively [2LC<2L2L_{C}<2L, see Fig. 1(a)]. Here 2L2L and 2LC2L_{C} are the length of the GC and the length of the central GC section covered by the b-P section of the gate BL. Figs. 1(b) and 1(c) show the GC-FET band diagrams at the gate voltage VGV_{G} for different GC sections: in the side regions (LC<|x|<LL_{C}<|x|<L) and the central region (|x|<LC|x|<L_{C}). The current between the GC and MG in the side sections (LC<|x|<LL_{C}<|x|<L) is blocked because of the high-energy h-BN barrier. Since the energy barrier, ΔC\Delta_{C}, for electrons in the GC in the section covered by the b-P is smaller than in the sections with the h-BN gate BL, this section plays the role of the electron emission window. The band diagram shown in Figs. 1(c) corresponds to the band parameter assumed above. For these conditions, the thermionic current from the GC into the MC is associated with the electrons heated by the absorbed THz radiation in the whole GC flowing over the barrier via the central region.

Refer to caption

Figure 1: (a) Cross-section of the GC-FET detector structure with composite BL and its band diagrams under the applied voltage gate voltage VGV_{G} in (b) the side regions (LC<|x|<LL_{C}<|x|<L) with a high barrier for electrons in GC reflecting them and (c) in the central region (|x|<LC|x|<L_{C}) with a moderately high barrier (see  [8, 9]).

The bias DC gate voltage VGV_{G} and the signal ac voltage, δVωωm=δVωexp(iωt)[1+mcos(ωmt)]\delta V_{\omega}^{\omega_{m}}=\delta V_{\omega}\exp(-i\omega t)[1+m\cos(\omega_{m}t)] are applied between the MG and the GC edge contacts. The signal voltage is produced by the energy flux, I=Iω[1+mcos(ωmt)]I=I_{\omega}[1+m\cos(\omega_{m}t)], of the impinging amplitude-modulated THz radiation (received by an antenna). Here ω\omega is the THz radiation carrier frequency, m=δIω/Iω<1m=\delta I_{\omega}/I_{\omega}<1 and ωm\omega_{m} are the modulation depth and frequency (ωmω\omega_{m}\ll\omega). The absorption of the received amplitude-modulated THz radiation by the 2DEG leads to transient heating. As a result, the electron effective temperature averaged over the period of the carrier signal 2π/ω2\pi/\omega (i.e., over the fast oscillations) is T¯=T0+δTω+δTωωm\langle{\overline{T}}\rangle=T_{0}+\langle\delta T_{\omega}\rangle+\langle\delta T_{\omega}^{\omega_{m}}\rangle, where T0T_{0} is the lattice temperature, δTω\langle\delta T_{\omega}\rangle is the temperature variation associated with the heating caused by the carrier signal, and δTωωm\langle\delta T_{\omega}^{\omega_{m}}\rangle is the slowly varying component associated with the modulation. The symbol \langle...\rangle denotes the averaging over the fast oscillations with the characteristic period 2π/ωm2π/ω2\pi/\omega_{m}\gg 2\pi/\omega). The rectified DC and modulation components of the thermionic current via the b-P section, δJω\langle\delta J_{\omega}\rangle δJωωm\langle\delta J_{\omega}^{\omega_{m}}\rangle, can be presented as:

δJω=jmaxHFLCLC𝑑xδTωT0,\langle\delta J_{\omega}\rangle=j^{max}HF\int_{-L_{C}}^{L_{C}}dx\frac{\langle\delta T_{\omega}\rangle}{T_{0}}, (1)
δJωωm=jmaxHFLCLC𝑑xδTωωmT0.\langle\delta J_{\omega}^{\omega_{m}}\rangle=j^{max}HF\int_{-L_{C}}^{L_{C}}dx\frac{\langle\delta T_{\omega}^{\omega_{m}}\rangle}{T_{0}}. (2)

Here jmaxj^{max} is the maximal value of the current density from the GC, (the axis xx is directed in the GC plane from one side contact to the other), HH is the GC width (in the in-plane yy-direction) and

F=ΔMT0exp(ΔMT0).F=\frac{\Delta_{M}}{T_{0}}\exp\biggl{(}-\frac{\Delta_{M}}{T_{0}}\biggr{)}. (3)

The exponential factor in the right-hand side of Eq. (3) has the activation energy for the electrons leaving the GC equal to (ΔCμ)(\Delta_{C}-\mu). The maximal current density jmaxj^{max} is estimated as jmax=eΣ/τj^{\max}=e\Sigma/\tau_{\bot}, where Σ\Sigma and τ\tau_{\bot} are the electron density in the GC (both associated with the doping and the gate bias voltage), the escape time of the electrons with the energy exceeding the barrier height, respectively, and ee is the electron charge.. Since the escape of an electron from the GC is associated with a significant change in its momentum, we set τ=ξ/ν\tau_{\bot}=\xi_{\bot}/\nu, where ν\nu is the electron scattering frequency (inverse momentum relaxation time) in 2DEG at room temperature and ξ1/2π\xi_{\bot}\sim 1/2\pi is a phenomenological parameter (which for the virtually isotropic scattering of the electrons with the energy ΔC\sim\Delta_{C} on acoustic phonons, can be roughly estimated as 1/2π1/2\pi).

In the GC-FETs under consideration, the thermionic current of the heated electrons passes via the b-P region. Considering this, Eqs. (1) and (2) can be transformed to

δJωδTω|x=0T0,\langle\delta J_{\omega}\rangle\simeq\frac{\langle\delta T_{\omega}\rangle|_{x=0}}{T_{0}}, (4)
δJωωm2jmaxLCHFδTωωm|x=0T0.\langle\delta J_{\omega}^{\omega_{m}}\rangle\simeq 2j^{max}L_{C}HF\frac{\langle\delta T_{\omega}^{\omega_{m}}\rangle|_{x=0}}{T_{0}}. (5)

The slow variations averaged over the fast oscillations (varying with the characteristic time 2π/ωm2π/ω2\pi/\omega_{m}\gg 2\pi/\omega) of the local electron temperature, δTωωm\langle\delta T_{\omega}^{\omega_{m}}\rangle, are governed by the following electron heat transport equation:

he2δTωωmx2+δTωωmτε=Reσω|δEω|2Σ,-h_{e}\frac{\partial^{2}\langle\delta T^{\omega_{m}}_{\omega}\rangle}{\partial x^{2}}+\frac{\langle\delta T^{\omega_{m}}_{\omega}\rangle}{\tau_{\varepsilon}}=\frac{{\rm Re}~{}\sigma_{\omega}\langle|\delta E_{\omega}|^{2}\rangle}{\Sigma}, (6)
ceδTωωmthe2δTωωmx2+δTωωmτε\displaystyle c_{e}\frac{\partial\langle\delta T_{\omega}^{\omega_{m}}\rangle}{\partial t}-h_{e}\frac{\partial^{2}\langle\delta T_{\omega}^{\omega_{m}}\rangle}{\partial x^{2}}+\frac{\langle\delta T_{\omega}^{\omega_{m}}\rangle}{\tau_{\varepsilon}}
=Reσω|δEωωm|2Σ.\displaystyle=\frac{{\rm Re}~{}\sigma_{\omega}\langle|\delta E_{\omega}^{\omega_{m}}|^{2}\rangle}{\Sigma}. (7)

Here heh_{e} and cec_{e} are thermal conductivity and the electron thermal capacitance in the GC, τε\tau_{\varepsilon} and τ\tau_{\bot} are the electron energy relaxation time and the try-to-escape time for the electrons emitted via the BL central part, respectively, vW108v_{W}\simeq 10^{8} cm/s is the characteristic electron velocity in GCs, ν\nu is the electron scattering frequency, and σω=[σ0ν/(νiω)]\sigma_{\omega}=[\sigma_{0}\nu/(\nu-i\omega)], where σ0=(e2μ/π2ν)\sigma_{0}=(e^{2}\mu/\pi\hbar^{2}\nu) is the 2DEG Drude conductivity, and δEωωm\delta E_{\omega}^{\omega_{m}} is the ac electric field component in the GC corresponding to the modulated incoming THz radiation. The terms on the left sides of Eqs. (6) and (7), proportional to heh_{e} and τε1\tau_{\varepsilon}^{-1}, describe the electron energy transfer to the side contacts due to the electron heat transport along the GC and to the phonon system (particularly to optical phonons). The contribution of the Peltier cooling is disregarded because of the small emission window (LCL)L_{C}\ll L). The term on the right-hand side of these equations describes the local power received by the 2DEG in the GC from the incident THz radiation (per an electron). Using the general formula for the degenerate 2DEG electron thermal capacitance [19, 20] and the expression for the GC density of states, one can obtain ce=(2π2T0/3μ)c_{e}=(2\pi^{2}T_{0}/3\mu). The quantity he=vW2/2νh_{e}=v_{W}^{2}/2\nu, which is in line with the Wiedemann-Franz relation [21, 22].

Assuming low thermal resistance of the side contacts, the boundary conditions for Eq. (3) are set to be

δTω|x=±L=0,δTωωm|x=±L=0.\displaystyle\langle\delta T_{\omega}\rangle|_{x=\pm L}=0,\qquad\langle\delta T_{\omega}^{\omega_{m}}\rangle|_{x=\pm L}=0. (8)

Accounting for the transformation of the THz signal receiving by an antenna to the AC electric field in the GC under the condition of the plasmonic oscillations excitation, one can obtain the following [3, 5, 9] (see, also Refs. [23,24]):

|δEω|2=16gc|γωsin(γωx/L)cosγω|2Iω,\displaystyle\langle|\delta E_{\omega}|^{2}\rangle=\frac{16}{g\,c}\biggl{|}\frac{\gamma_{\omega}\sin(\gamma_{\omega}x/L)}{\cos\gamma_{\omega}}\biggr{|}^{2}I_{\omega}, (9)
|δEωωm|2=16gc|γωsin(γωx/L)cosγω|2δIωcos(ωmt).\displaystyle\langle|\delta E_{\omega}^{\omega_{m}}|^{2}\rangle=\frac{16}{g\,c}\biggl{|}\frac{\gamma_{\omega}\sin(\gamma_{\omega}x/L)}{\cos\gamma_{\omega}}\biggr{|}^{2}\delta I_{\omega}\cos(\omega_{m}t). (10)

Here g1.64g\simeq 1.64 is the antenna gain (for a half-wavelength dipole antenna), cc is the speed of light in vacuum, γω=πω(ω+iν)/2Ω\gamma_{\omega}=\pi\sqrt{\omega(\omega+i\nu)}/2\Omega and Ω=(πe/L)μW/κ\Omega=(\pi\,e/\hbar\,L)\sqrt{\mu\,W/\kappa} are the effective wavenumber and the plasmonic frequency, respectively, with κ\kappa and WW being the dielectric constant of the BL and its thickness.

Combining Eqs. (6), (7), (9), and (10), we arrive at

he2δTωx2+δTωτε\displaystyle-h_{e}\frac{\partial^{2}\langle\delta T_{\omega}\rangle}{\partial x^{2}}+\frac{\langle\delta T_{\omega}\rangle}{\tau_{\varepsilon}}
=βvW2L2Ω2(νμ)ωω2+ν2|sin(γωx/L)cosγω|2Iω,\displaystyle=\beta\frac{v_{W}^{2}}{L^{2}\Omega^{2}}\biggl{(}\frac{\hbar\nu}{\mu}\biggr{)}\frac{\omega}{\sqrt{\omega^{2}+\nu^{2}}}\biggl{|}\frac{\sin(\gamma_{\omega}x/L)}{\cos\gamma_{\omega}}\biggr{|}^{2}I_{\omega}, (11)
ceδTωωmthe2δTωωmx2+δTωωmτε\displaystyle c_{e}\frac{\partial\langle\delta T_{\omega}^{\omega_{m}}\rangle}{\partial t}-h_{e}\frac{\partial^{2}\langle\delta T_{\omega}^{\omega_{m}}\rangle}{\partial x^{2}}+\frac{\langle\delta T_{\omega}^{\omega_{m}}\rangle}{\tau_{\varepsilon}}
=βvW2L2Ω2(νμ)ωω2+ν2|sin(γωx/L)cosγω|2δIωcos(ωmt),\displaystyle=\beta\frac{v_{W}^{2}}{L^{2}\Omega^{2}}\biggl{(}\frac{\hbar\nu}{\mu}\biggr{)}\frac{\omega}{\sqrt{\omega^{2}+\nu^{2}}}\biggl{|}\frac{\sin(\gamma_{\omega}x/L)}{\cos\gamma_{\omega}}\biggr{|}^{2}\delta I_{\omega}\cos(\omega_{m}t), (12)

where β=4π2137g0.176\beta=\displaystyle\frac{4\pi^{2}}{137g}\simeq 0.176 and θ\theta is the phase shift. Here we have accounted for the fine structure constant e2/c=1/137e^{2}/\hbar\,c=1/137.

III Output rectified dc and modulation currents

Refer to caption
Figure 2: Amplitude of modulated current δJωωm\langle\delta J_{\omega}^{\omega_{m}}\rangle as a function of signal frequency ω/2π\omega/2\pi and modulation frequencies ωm/2π\omega_{m}/2\pi:
(a) 2L=1.4μ2L=1.4~{}\mum, Ω/2π=1.0\Omega/2\pi=1.0 THz, ν=0.5\nu=0.5 ps-1, and τε=10\tau_{\varepsilon}=10 ps, (b) 2L=1.0μ2L=1.0~{}\mum, Ω/2π=1.4\Omega/2\pi=1.4 THz, ν=1.0\nu=1.0 ps-1, and τε=10\tau_{\varepsilon}=10 ps,
(c) 2L=1.4μ2L=1.4~{}\mum, Ω/2π=1.0\Omega/2\pi=1.0 THz, ν=1.0\nu=1.0 ps-1, (d) 2L=1.4μ2L=1.4~{}\mum, Ω/2π=1.0\Omega/2\pi=1.0 THz, ν=1.0\nu=1.0 ps-1, and τε=12.5\tau_{\varepsilon}=12.5 ps.

In the most interesting frequency range ω,Ων\omega,\Omega\gg\nu, the right-hand sides of Eqs. (11) and (12) can be somewhat simplified. This allows to obtain relatively simple and transparent expressions for δTωωm\langle\delta T_{\omega}^{\omega_{m}}\rangle and δTωωm\langle\delta T_{\omega}^{\omega_{m}}\rangle in closed analytic form. Such an approach was verified by the comparison of the results of the analytical and computer modeling. As shown in Sec. IV, the results of the analytical and computer calculations are very close when ω,Ων\omega,\Omega\gg\nu.

Considering this and solving simplified versions of Eqs. (11) and (12) with the boundary conditions given by Eq. (8), at ω,Ων\omega,\Omega\gg\nu, we obtain the following formulas used for the derivation of GC-FET characteristics:

δTω|x=01μ(vWτενL2)ΠωrωIω,\displaystyle\langle\delta T_{\omega}\rangle|_{x=0}\propto\frac{1}{\mu}\biggl{(}\frac{v_{W}\tau_{\varepsilon}}{\nu\,L^{2}}\biggr{)}\Pi_{\omega}r_{\omega}I_{\omega}, (13)
δTωωm|x=01μ(vWτενL2)|Πωωm|rωcos(ωmt+θ)1+(ωm/ω¯m)2δIω.\displaystyle\langle\delta T_{\omega}^{\omega_{m}}\rangle|_{x=0}\propto\frac{1}{\mu}\biggl{(}\frac{v_{W}\tau_{\varepsilon}}{\nu\,L^{2}}\biggr{)}\frac{|\Pi_{\omega}^{\omega_{m}}|r_{\omega}\cos(\omega_{m}t+\theta)}{\sqrt{1+(\omega_{m}/{\overline{\omega}}_{m})^{2}}}\delta I_{\omega}. (14)

Here

Πω111+(πω/aΩ)2\displaystyle\Pi_{\omega}\simeq 1-\frac{1}{1+(\pi\omega/a\Omega)^{2}}
[1cos(πω/Ω)1+(πω/aΩ)2]1cosh(a),\displaystyle-\biggl{[}1-\frac{\cos(\pi\omega/\Omega)}{1+(\pi\omega/a\Omega)^{2}}\biggr{]}\frac{1}{\cosh(a)}, (15)
Πωωm111+(πω/amΩ)2\displaystyle\Pi_{\omega}^{\omega_{m}}\simeq 1-\frac{1}{1+(\pi\omega/a_{m}\Omega)^{2}}
[1cos(πω/Ω)1+(πω/amΩ)2]1cosh(am),\displaystyle-\biggl{[}1-\frac{\cos(\pi\omega/\Omega)}{1+(\pi\omega/a_{m}\Omega)^{2}}\biggr{]}\frac{1}{\cosh(a_{m})}, (16)

where the parameters am=a1iωm/ω¯ma_{m}=a\sqrt{1-i\omega_{m}/{\overline{\omega}}_{m}}, a=L/=L2ν/vW2τεa=L/{\mathcal{L}}=L\sqrt{2\nu/v_{W}^{2}\tau_{\varepsilon}} with =heτε{\mathcal{L}}=\sqrt{h_{e}\tau_{\varepsilon}}, and ω¯m=1/ceτε{\overline{\omega}}_{m}=1/c_{e}\tau_{\varepsilon} characterizing the 2DEG cooling at the side contacts,

rω=[sin2(πω/2Ω)+(4Ω/πν)2cos2(πω/2Ω)]1\displaystyle r_{\omega}=[\sin^{2}(\pi\omega/2\Omega)+(4\Omega/\pi\nu)^{2}\cos^{2}(\pi\omega/2\Omega)]^{-1} (17)

is the factor describing the plasmonic resonances, and θ\theta is a phase shift. The factor μ1\mu^{-1} in the right-hand sides of Eqs. (13) and (14) appears because the 2DEG conductivity and density are σωσ0μ\sigma_{\omega}\propto\sigma_{0}\propto\mu and Σμ2\Sigma\propto\mu^{2}, respectively, so that σω/Σμ1\sigma_{\omega}/\Sigma\propto\mu^{-1}. One needs to note that the Fermi energy μ\mu is assumed to be fixed to provide a proper band alignment as stated above.

Further, for the rectified dc current Jω\langle J_{\omega}\rangle, the amplitude of the modulated current δJωωm\langle\delta J_{\omega}^{\omega_{m}}\rangle, and for the pertinent current responsivities ω=Jω/Iω{\mathcal{R}}_{\omega}=\langle J_{\omega}\rangle/I_{\omega} and ωωm=δJωωm/δIω{\mathcal{R}}_{\omega}^{\omega_{m}}=\langle\delta J_{\omega}^{\omega_{m}}\rangle/\delta I_{\omega} we obtain using Eqs. (4), (5), (13), and (14):

Rω2LCFτ(vW2τενL2)rω|Πω|,\displaystyle R_{\omega}\propto\frac{2L_{C}F}{\tau_{\bot}}\biggl{(}\frac{v_{W}^{2}\tau_{\varepsilon}}{\nu\,L^{2}}\biggr{)}r_{\omega}|\Pi_{\omega}|, (18)
Rωωm2LCFτ(vW2τενL2)rω|Πωωm|1+(ωm/ω¯m)2.\displaystyle R_{\omega}^{\omega_{m}}\propto\frac{2L_{C}F}{\tau_{\bot}}\biggl{(}\frac{v_{W}^{2}\tau_{\varepsilon}}{\nu\,L^{2}}\biggr{)}\frac{r_{\omega}|\Pi_{\omega}^{\omega_{m}}|}{\sqrt{1+(\omega_{m}/{\overline{\omega}}_{m})^{2}}}. (19)

Accordingly, for the voltage responsivities we obtain

Uω=RωρL,Uωωm=RωωmρL,\displaystyle U_{\omega}=R_{\omega}\rho_{L},\qquad U_{\omega}^{\omega_{m}}=R_{\omega}^{\omega_{m}}\rho_{L}, (20)

where ρL1/LCF\rho_{L}\propto 1/L_{C}F is the load resistance (in the GC/MG circuit).

Figure 2 shows the modulated current responsivity ωωm{\mathcal{R}}_{\omega}^{\omega_{m}} (amplitude of modulated current δJωωm\langle\delta J_{\omega}^{\omega_{m}}\rangle) versus the signal frequency ω/2π\omega/2\pi and modulation frequencies, ω/2π\omega/2\pi and ωm/2π\omega_{m}/2\pi, calculated using Eq. (19).

In this and the following figures we assume that W=10W=10 nm, κ=4\kappa=4, μ=140\mu=140 meV (to fit the condition μ=ΔCΔM\mu=\Delta_{C}-\Delta_{M}, where for Al MG ΔC=225\Delta_{C}=225 meV and ΔM=85\Delta_{M}=85 meV), τε=515\tau_{\varepsilon}=5-15 ps, ν=0.51.5\nu=0.5-1.5 ps-1, and T0=25T_{0}=25 meV, so that ce=1.175c_{e}=1.175 (ω¯m/2π927{\overline{\omega}}_{m}/2\pi\simeq 9-27 GHz). The chosen values of τε\tau_{\varepsilon} generally correspond to the electron energy relaxation in GCs primarily on optical phonons [25, 26, 27, 28, 29]. As seen in Fig. 2, the amplitude of the modulated current exhibits maxima associated with the fundamental plasmonic resonances ωΩ\omega\simeq\Omega. When the signal frequency ω\omega tends to zero, the modulation current δJωωm\delta J_{\omega}^{\omega_{m}} (as well as δJω\delta J_{\omega}) also approaches zero. This is because of the heating electric field along the GC δEω\delta E_{\omega} vanishes in line with Eqs. (9) and (10). According to the plots in Fig. 2, the position of resonant peak shifts with changing GC length 2L2L according to ΩL1\Omega\propto L^{-1} [compare Figs. 2(a) and 2(b)]. Comparing Figs. 2(c) and 2(d), one can see that the variation of the electron energy relaxation time τε\tau_{\varepsilon} leads first to higher values of δJωωm\delta J_{\omega}^{\omega_{m}} at low modulation frequencies ωm/2π\omega_{m}/2\pi and to a faster decrease in δJωωm\delta J_{\omega}^{\omega_{m}} at higher ωm/2π\omega_{m}/2\pi. A lowering of the resonant maxima with rising modulation frequency ωm\omega_{m} is attributed to the weakening of the 2DEG heating when (ωm/ω¯m)(\omega_{m}/{\overline{\omega}}_{m}) increases

Figures. 3 and 4 show the dependencies of the modulated current peak values δJΩωmRΩωm\langle\delta J_{\Omega}^{\omega_{m}}\rangle\propto R_{\Omega}^{\omega_{m}} on the electron collision frequency ν\nu (at fixed electron energy relaxation time τε\tau_{\varepsilon}) and on τε\tau_{\varepsilon} (at fixed ν\nu) calculated for different GC length 2L2L. To maintain Ω/2π=1.0\Omega/2\pi=1.0 THz for different LL, the curves of Figs. 3 and 4 correspond to different values of the BL WW thickness (ΩW/L=const\Omega\propto\sqrt{W}/L=const).

Refer to caption
Figure 3: Amplitude of modulated current δJωωm\langle\delta J_{\omega}^{\omega_{m}}\rangle as a function of the electron collision frequency ν\nu for different GC length 2L2L (τε=10\tau_{\varepsilon}=10 ps, ωm/2π=13.5\omega_{m}/2\pi=13.5 GHz).
Refer to caption
Figure 4: Amplitude of modulated current δJωωm\langle\delta J_{\omega}^{\omega_{m}}\rangle as a function of the electron energy relaxation time τε\tau_{\varepsilon} for different GC length 2L2L (ν=1.0\nu=1.0 ps-1, ωm/2π=13.5\omega_{m}/2\pi=13.5 GHz).

IV Modulation characteristic

Introducing the detector modulation efficiency

Mωωm=RωωmRω=UωωmUω\displaystyle M_{\omega}^{\omega_{m}}=\frac{R_{\omega}^{\omega_{m}}}{R_{\omega}}=\frac{U_{\omega}^{\omega_{m}}}{U_{\omega}} (21)

and accounting for Eqs. (18) and (19), for the fundamental plasmonic resonance (ω=Ω\omega=\Omega) we obtain

MΩωm=11+(ωm/ω¯m)2|ΠΩωmΠΩ|,\displaystyle M_{\Omega}^{\omega_{m}}=\frac{1}{\sqrt{1+(\omega_{m}/{\overline{\omega}}_{m})^{2}}}\biggl{|}\frac{\Pi_{\Omega}^{\omega_{m}}}{\Pi_{\Omega}}\biggr{|}, (22)

i.e., accounting for Eqs. (15) - (17),

MΩωm=11+(ωm/ω¯m)2\displaystyle M_{\Omega}^{\omega_{m}}=\frac{1}{\sqrt{1+(\omega_{m}/{\overline{\omega}}_{m})^{2}}}
×|111+(π/am)2[1+11+(π/am)2]1cosh(am)111+(π/a)2[1+11+(π/a)2]1cosh(a)|.\displaystyle\times\Biggl{|}\frac{1-\displaystyle\frac{1}{1+(\pi/a_{m})^{2}}-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/a_{m})^{2}}\biggr{]}\frac{1}{\cosh(a_{m})}}{1-\displaystyle\frac{1}{1+(\pi/a)^{2}}-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/a)^{2}}\biggr{]}\frac{1}{\cosh(a)}}\Biggr{|}. (23)

Figure 5 shows the modulation efficiency MΩωmM_{\Omega}^{\omega_{m}} versus modulation frequency ωm/2π\omega_{m}/2\pi for detectors with different GC lengths 2L2L and different values of scattering frequency ν\nu in the main part of the CC (i.e., covered by the h-BN) at the plasmonic resonance ω=Ω\omega=\Omega. The dashed lines correspond to the first factor in the right-hand sides of Eqs. (22) and (23) M¯Ωωm=1/1+(ωm/ω¯m)2{\overline{M}}_{\Omega}^{\omega_{m}}=1/\sqrt{1+(\omega_{m}/{\overline{\omega}}_{m})^{2}}. This factor describes the net efficiency MΩωmM_{\Omega}^{\omega_{m}} roll-off with increasing modulation frequency ωm\omega_{m} associated solely with the 2DES cooling due to the electron energy relaxation in the GC. The inset on Figs. 5 shows the dependence of the second factor in Eqs. (22) and (23), i.e., Θm=Πωωm/Πω\Theta_{m}=\Pi_{\omega}^{\omega_{m}}/\Pi_{\omega} on 2L2L and ν\nu. The factor Θm\Theta_{m} reflects the effect of the 2DEG cooling due to the electron heat transfer to the side contacts with the absorption of the electron’s excessive thermal energy by these contacts (the heat transfer factor). As seen from Fig. 5, the modulation efficiency MΩωmM_{\Omega}^{\omega_{m}} is markedly larger than M¯Ωωm{\overline{M}}_{\Omega}^{\omega_{m}} (compare the solid and dashed lines). This is attributed to the fact that Θm\Theta_{m} is larger than unity as shown in the inset. In the latter case the maximal modulation frequency ωmmax\omega_{m}^{max} defined by the relation MΩωmmax=1/2M_{\Omega}^{\omega_{m}^{max}}=1/\sqrt{2} exceeds ω¯m{\overline{\omega}}_{m}.

Figures. 6 and 7 show the maximal modulation frequency ωmmax/2π\omega_{m}^{\max}/2\pi. The red curves in Figs. 6 and 7 correspond to the same set of parameters.

As follows from Figs. 5 - 7, the maximal modulation frequency ωmmax/2π\omega_{m}^{max}/2\pi in the GC-FET detectors with the GC length 2L=(13)μ2L=(1-3)~{}\mum can be about dozens GHz.

Refer to caption
Figure 5: Modulation efficiency MΩωmM^{\omega_{m}}_{\Omega} at the plasmonic resonance (ω=Ω\omega=\Omega) versus the modulation frequency ωm/2π\omega_{m}/2\pi for different values of electron energy relaxation time τε\tau_{\varepsilon} ( 2L=2.0μ2L=2.0~{}\mum, ν=1.0\nu=1.0 ps)1{}^{-1}). The dashed lines and the inset correspond to M¯Ωωm{\overline{M}}_{\Omega}^{\omega_{m}} and Θm\Theta_{m} versus ωm/2π\omega_{m}/2\pi dependences.
Refer to caption
Figure 6: Maximal modulation frequency ωmmax/2π\omega_{m}^{max}/2\pi versus GC length 2L2L for different values of collision frequency ν\nu and τε=10\tau_{\varepsilon}=10 ps.
Refer to caption
Figure 7: The same dependences as in Fig. 6, but for different values of electron energy relaxation time τε\tau_{\varepsilon} (ν=1.0\nu=1.0 ps-1).

V Comparison of modulation characteristics of GC-FETs with composite and uniform BLs

The characteristics of GC-FETs with the uniform BL can be obtained from Eqs. (1), (2), (11), and (12) setting LC=LL_{C}=L. In this case, the electron collision frequency ν\nu and the factors Πω\Pi_{\omega} and Πωωm\Pi_{\omega}^{\omega_{m}} should be replaced by ν~\tilde{\nu}, Π~ω\tilde{\Pi}_{\omega}, and Π~ωωm\tilde{\Pi}_{\omega}^{\omega_{m}}, respectively. The electron collision frequency in the GC encapsulated in h-BN ν\nu is usually smaller than that in the case of the GC sandwiched between the h-BN substrate and the b-P BL ν~\tilde{\nu} [30]. The consideration of the intermediate case LCLL_{C}\lesssim L leads to rather cumbersome formulas and, therefore, will not be studied below.

Comparing the modulated current responsivities, Ωωm{\mathcal{R}}_{\Omega}^{\omega_{m}} and ~Ωωm\tilde{{\mathcal{R}}}_{\Omega}^{\omega_{m}}, and the modulation efficiencies, MΩωmM_{\Omega}^{\omega_{m}} and M~Ωωm{\tilde{M}}_{\Omega}^{\omega_{m}}, of the GC-FET bolometric detectors with that of the composite h-BN/b-P BL given by Eqs. (19) and (23) and those of the detectors with the uniform b-P BL (which are derived using [9]) at the plasmonic resonance, we obtain

ωωm=RωωmR~ωωm=LCLν~ν\displaystyle{\mathcal{R}}^{\omega_{m}}_{\omega}=\frac{R_{\omega}^{\omega_{m}}}{\tilde{R}_{\omega}^{\omega_{m}}}=\frac{L_{C}}{L}\frac{\tilde{\nu}}{\nu}
×|111+(π/am)2[1+11+(π/am)2]1cosh(am)1[1+11+(π/a~m)2]tanh(a~m)a~m|\displaystyle\times\Biggl{|}\frac{1-\displaystyle\frac{1}{1+(\pi/a_{m})^{2}}-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/a_{m})^{2}}\biggr{]}\frac{1}{\cosh(a_{m})}}{1-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/\tilde{a}_{m})^{2}}\biggr{]}\frac{\tanh(\tilde{a}_{m})}{\tilde{a}_{m}}}\Biggr{|} (24)

and

MΩωmM~Ωωm=|1[1+11+(π/a~)2]tanh(a~)a~1[1+11+(π/a~m)2]tanh(a~m)a~m|\displaystyle\frac{M_{\Omega}^{\omega_{m}}}{{\tilde{M}}_{\Omega}^{\omega_{m}}}=\Biggl{|}\frac{1-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/\tilde{a})^{2}}\biggr{]}\frac{\tanh(\tilde{a})}{\tilde{a}}}{1-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/\tilde{a}_{m})^{2}}\biggr{]}\frac{\tanh(\tilde{a}_{m})}{\tilde{a}_{m}}}\Biggr{|}
×|111+(π/am)2[1+11+(π/am)2]1cosh(am)111+(π/a)2[1+11+(π/a)2]1cosh(a)|,\displaystyle\times\Biggl{|}\frac{1-\displaystyle\frac{1}{1+(\pi/a_{m})^{2}}-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/a_{m})^{2}}\biggr{]}\frac{1}{\cosh(a_{m})}}{1-\displaystyle\frac{1}{1+(\pi/a)^{2}}-\displaystyle\biggl{[}1+\frac{1}{1+(\pi/a)^{2}}\biggr{]}\frac{1}{\cosh(a)}}\Biggr{|}, (25)

respectively. Here a~=L2ν~/vW2τε\tilde{a}=L\sqrt{2\tilde{\nu}/v_{W}^{2}\tau_{\varepsilon}}, a~m=a~1iωm/ω¯m\tilde{a}_{m}=\tilde{a}\sqrt{1-i\omega_{m}/{\overline{\omega}}_{m}}, hence a~/a=a~m/am=ν~/ν\tilde{a}/a=\tilde{a}_{m}/a_{m}=\sqrt{\tilde{\nu}/\nu} providing that the GCs of devices of both types have the same length 2L2L and the electron energy relaxation time τε\tau_{\varepsilon}, but different electron scattering frequencies ν\nu and ν~\tilde{\nu}.

If the load resistance is chosen to be equal to the GC/MG resistance, i.e., inversely proportion to LCFL_{C}F,

𝒰Ωωm=UΩωmU~Ωωm=LLCRωωmR~ωωmν~ν.\displaystyle{\mathcal{U}}^{\omega_{m}}_{\Omega}=\frac{U_{\Omega}^{\omega_{m}}}{{\tilde{U}}_{\Omega}^{\omega_{m}}}=\frac{L}{L_{C}}\frac{R_{\omega}^{\omega_{m}}}{\tilde{R}_{\omega}^{\omega_{m}}}\propto\frac{\tilde{\nu}}{\nu}. (26)

The latter ratio is independent of LCL_{C}.

Figs. 8 and 9 show the results of the comparison of the voltage responsivities of the GC-FET detectors with the composite h-BN/b-P/h-BN gate BL and with the uniform b-P gate BL. One can see that the responsivity of the former exceeds that of the latter when ν<ν~\nu<{\tilde{\nu}}, which corresponds to the reality. This confirms the advantage of using the composite gate BL in the GC-FET bolometric detectors under consideration.

Refer to caption
Figure 8: Ratio of modulation voltage responsivities 𝒰Ω0{\mathcal{U}}^{0}_{\Omega} at low modulation frequencies and plasmonic resonance (ωmωmmax\omega_{m}\ll\omega_{m}^{max} and ω=Ω\omega=\Omega) as a function of parameter a=L/=L2ν/vW2τεa=L/{\mathcal{L}}=L\sqrt{2\nu/v_{W}^{2}\tau_{\varepsilon}} for different ratios and ν~/ν=(18)\tilde{\nu}/\nu=(1-8).
Refer to caption
Figure 9: Frequency dependences of the voltage responsivities ratio, 𝒰Ωωm{\mathcal{U}}^{\omega_{m}}_{\Omega}, for the GC-FET with the composite gate BL (and different ν~\tilde{\nu}) and the GC-FETs with uniform gate: ν=1.0\nu=1.0 ps-1 L=1μL=1~{}\mum and τε=10\tau_{\varepsilon}=10 ps.

VI Comparison of computer and analytical modeling: verification of analytical model

Refer to caption
Figure 10: Frequency dependences of the normalized temperature variations δΘω|x=0\langle\delta\Theta_{\omega}\rangle|_{x=0} in the structure center obtained using computer (dashed lines with markers) and analytical (solid lines) modeling for different values of ν/Ω\nu/\Omega and a=1a=1.
Refer to caption
Figure 11: Ratios of the normalized temperature variations δΘωanalyt|x=0\langle\delta\Theta_{\omega}^{analyt}\rangle|_{x=0} and δΘωcomput|x=0\langle\delta\Theta_{\omega}^{comput}\rangle|_{x=0} in the structure center as functions of normalized carrier frequency ω/Ω\omega/\Omega obtained for different values of ν/Ω\nu/\Omega and a=1a=1.

To verify the accuracy of the analytical results we compare the values of the normalized electron temperatures, δΘωcomput\langle\delta\Theta_{\omega}\rangle^{comput} and δΘωanalyt\langle\delta\Theta_{\omega}\rangle^{analyt}, obtained from the differential Eq. (11) and using the analytical formula. These values are defined as

δΘωcomput=δTωcomput/(32βπ2μIω),\langle\delta\Theta_{\omega}\rangle^{comput}=\langle\delta T_{\omega}\rangle^{comput}\biggl{/}\biggl{(}\frac{32\beta\hbar}{\pi^{2}\mu}I_{\omega}\biggr{)},
δΘωanalyt=δTωanalyt/(32βπ2μIω).\langle\delta\Theta_{\omega}\rangle^{analyt}=\langle\delta T_{\omega}\rangle^{analyt}\biggl{/}\biggl{(}\frac{32\beta\hbar}{\pi^{2}\mu}I_{\omega}\biggr{)}.

As a result, we arrive at the following dimensionless equations, respectively:

2δΘωcomputξ2+a2δΘωcomput=(πν4Ω)2ωω2+ν2\displaystyle-\frac{\partial^{2}\langle\delta\Theta_{\omega}\rangle^{comput}}{\partial\xi^{2}}+a^{2}\langle\delta\Theta_{\omega}\rangle^{comput}=\biggl{(}\frac{\pi\nu}{4\Omega}\biggr{)}^{2}\frac{\omega}{\sqrt{\omega^{2}+\nu^{2}}}
×|sin(γωξ)cosγω|2,\displaystyle\times\biggl{|}\frac{\sin(\gamma_{\omega}\xi)}{\cos\gamma_{\omega}}\biggr{|}^{2}, (27)
δΘωanalyt=rω2a2\displaystyle\langle\delta\Theta_{\omega}\rangle^{analyt}=\frac{r_{\omega}}{2a^{2}}
×{1cos(πωx/ΩL)1+(πæω/Ω)2[1cos(πω/Ω)1+(πω/aΩ)2]cosh(ax/L)cosh(a)}.\displaystyle\times\biggl{\{}1-\displaystyle\frac{\cos(\pi\,\omega\,x/\Omega\,L)}{1+(\pi\text{\ae}\,\omega/\Omega)^{2}}-\displaystyle\biggl{[}1-\frac{\cos(\pi\,\omega/\Omega)}{1+(\pi\,\omega/a\Omega)^{2}}\biggr{]}\frac{\cosh(ax/L)}{\cosh(a)}\biggr{\}}. (28)

Here ξ=x/L\xi=x/L, so that the boundary conditions are δΘωcomput|ξ=±1=δΘωanalyt|ξ=±1=0\langle\delta\Theta_{\omega}\rangle^{comput}|_{\xi=\pm 1}=\langle\delta\Theta_{\omega}\rangle^{analyt}|_{\xi=\pm 1}=0, and the factor rωr_{\omega} given by Eq (17).

All equations in this work were numerically calculated with MATLAB (version 9.14.0 R2023a, Natick, Massachusetts: The MathWorks Inc.). Finding the maximal modulation frequency ωmmax\omega^{max}_{m} (Figs. 6 and 7), we used the Parallel Computing Toolbox (parfor) to speed up massive calculations. The differential Eq.  (27) was solved with a standard MATLAB function dsolve.

Figure 10 shows that at low ratios of ν/Ω\nu/\Omega (ν/Ω1/π\nu/\Omega\leq 1/\pi), the computer and analytical calculations provide practically distinguishable dependences. However, at a relatively large values of ν/Ω\nu/\Omega (of ν/Ω=2/π\nu/\Omega=2/\pi), the distinction is visible reaching about 15%\%. This is confirmed also by the plots in Fig. 11.

Similar conclusion can be made in respect of the results following from Eqs. (12) and (14) (with the substitution of parameter aa by ama_{m}).

Thus, the above comparison of the results of the computer and analytical models justifies using Eqs. (13) and (14), which provide the GC-FET characteristics with sufficiently high accuracy.

VII Comments

The GC-FET detectors with a larger 2L2L exhibit smaller modulation currents |δJΩωm||\delta J^{\omega_{m}}_{\Omega}|(see Figs. 3 and 4). This is because at the same intensity of the impinging radiation, the amplitude of the signal electric field in the GC |δEω||\delta E_{\omega}| decreases with increasing LL resulting in a weaker electron heating. As seen from Eqs. (15) and (16), δTωδTωωmL2\langle\delta T_{\omega}\rangle\propto\langle\delta T_{\omega}^{\omega_{m}}\rangle\propto L^{-2}. However, an increase in 2L2L leads to a diminishing of the electron energy transfer to the side contact. The trade-off of such factors, gives rise to a relatively weak dependence of the modulation current of the GC length. This, in particular, follows from the comparison of δJΩωm\langle\delta J^{\omega_{m}}_{\Omega}\rangle at 2L=1μ2L=1~{}\mum and 2L=3μ2L=3~{}\mum shown in Figs. 3 and 4.

Above, calculating the GC-FET characteristics, we assumed the room temperature operation. Lowering the working temperature might lead to a marked change of the GC-FETs performance as bolometric detectors. At lower the lattice temperatures T0T_{0}, ν\nu, and FF decrease, while τε\tau_{\varepsilon} simultaneously becomes larger. In particular, at not too low temperatures, the electron energy relaxation time and the electron scattering frequency are determined by optical phonons [27, 28] and acoustic phonons [31, 32], respectively, with τε(T0/ω0)2exp(ω0/T0)\tau_{\varepsilon}\propto(T_{0}/\hbar\omega_{0})^{2}\exp(\hbar\omega_{0}/T_{0}) and νT0\nu\propto T_{0}. Here ω0200\hbar\omega_{0}\simeq 200 meV is the optical phonon energy. This implies that the characteristics obtained above might be substantially modified for GC-FET detectors operating at low temperatures. The latter is beyond the scope of this paper and requires a separate study.

VIII Conclusion

We evaluated the performance of the hot-electron GC-FET bolometers with graphene channel and the composite h-BN/b-P/h-BN gate BL and showed that these bolometers can exhibit high values of the responsivity to the THz radiation modulated by signals of dozens GHz at room temperature. The predicted high performance of the GC-bolometers might encourage the fabrication of these devices and their characterization.

References

  • [1] Y. Cai, G. Zhang, and Y. W. Zhang, "Layer-dependent band alignment and work function of few-layer phosphorene," Sci. Rep., vol. 4, 6677, Oct. 20, 2014.
  • [2] X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, "The renaissance of black phosphorus," PNAS, vol. 112, no. 15, pp. 4523–4530, 2015.
  • [3] V. Ryzhii, C. Tang, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, "Resonant plasmonic detection of terahertz radiation in field-effect transistors with the graphene channel and the black-AsxP1-x gate layer," Sci. Rep., vol. 13, no. 1, 2023.
  • [4] V. Ryzhii, C. Tang, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, "Effect of electron thermal conductivity on resonant plasmonic detection in terahertz hot-electron bolometers based on metal/black-AsP/graphene FETs," Phys. Rev. Appl., vol. 19, no. 6, 064033, 2023.
  • [5] V. Ryzhii, C. Tang, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, "Hot-electron resonant terahertz bolometric detection in the graphene/black-AsP field-effect transistors with a floating gate," J. Appl. Phys., vol. 133, no. 17, 174501, 2023.
  • [6] J. F. Rodriguez-Nieva, M. S. Dresselhaus, and L. S. Levitov, "Thermionic emission and negative dIdI/dVdV in photoactive graphene heterostructures," Nano Lett., vol. 15, no. 3, pp. 1451–1456, 2015.
  • [7] J. F. Rodriguez-Nieva, M. S. Dresselhaus, and J. C. Song, "Enhanced thermionic-dominated photoresponse in graphene Schottky junctions," Nano Lett., vol. 16, no. 10, pp. 6036–6041, 2016.
  • [8] M. Ryzhii, V. Ryzhii, T. Otsuji, C. Tang, V. Mitin, and S. Shur, "Resonant terahertz bolometric detectors using plasmonic response in graphene-channel FETs with b-P/h-BN gate barrier layers," in The Int. IEEE Conf. on Microwaves, Communications, Antennas and Electronic Systems (IEEE COMCAS 2023), Tel-Aviv, Israel (accepted).
  • [9] M. Ryzhii, V. Ryzhii, M. S. Shur, V. Mitin, C. Tang, and T. Otsuji, "Terahertz bolometric detectors based on graphene field-effect transistors with the composite h-BN/black-P/h-BN gate layers using plasmonic resonances," J. Appl. Phys., vol. 134, no. 8, 084501, 2023.
  • [10] A. S. Mayorov et al, "Micrometer-scale ballistic transport in encapsulated graphene at room temperature," Nano Lett., vol. 11, no. 6, pp. 2396–2399, 2011.
  • [11] M. Yankowitz, Q. Ma, P. Jarillo-Herrero, and B. J. LeRoy, "van der Waals heterostructures combining graphene and hexagonal boron nitride," Nat. Rev. Phys., vol. 1, no. 2, pp. 112–125, 2019.
  • [12] M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, "Work function of polycrystalline Ag, Au and Al," J. Electron. Spectrosc. Relat. Phenom., vol. 88, pp. 643–648, 1998.
  • [13] S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, "Determination of work function of graphene under a metal electrode and its role in contact resistance," Nano Lett., vol. 12, no. 8, pp. 3887–3892, 2012.
  • [14] F. Liu, X. Zhang, P. Gong, T. Wang, K. Yao, S. Zhu, and Yan Lu, "Potential outstanding physical properties of novel black arsenic phosphorus As(0.25)P(0.75)/As(0.75)P(0.25) phases: a first-principles investigation," RSC Adv., vol. 12, no. 6, pp. 3745–3754, 2022.
  • [15] T. Hu, B. Xu, and J. Hong, "Two-dimensional As1-xPx binary compounds: Highly tunable electronic structure and optical properties," Curr. Appl. Phys., vol. 17, no. 2, pp. 186–191, 2017.
  • [16] M. Xie et al, "A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2/V-1s-1," Nano Energy, vol. 28, pp. 433–439, 2016.
  • [17] E. P. Young et al, "Wafer-scale black arsenic–phosphorus thin-film synthesis validated with density functional perturbation theory predictions," ACS Appl. Nano Mater., vol. 1, no. 9, pp. 4737–4745, 2018.
  • [18] B. Liu et al, "Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties," Adv. Mater., vol. 27, no. 30, pp.  4423–4429, 2015.
  • [19] Q. Li, X. Xie, and S. D. Sarma, "Calculated heat capacity and magnetization of two-dimensional electron systems," Phys. Rev. B, vol. 40, no. 2, pp. 1381–1384, 1989.
  • [20] M. Massicotte, G. Soavi, A. Principi, and K.-J. Tielrooij, "Hot carriers in graphene–fundamentals and applications," Nanoscale, vol. 13, no. 18, pp. 8376–8411, 2021.
  • [21] Z. Tong, A. Pecchia, C. Yam, T. Dumitrică, and T. Frauenheim, "Ultrahigh electron thermal conductivity in T-Graphene, Biphenylene, and Net-Graphene," Adv. Energy Mater., vol. 12, no. 28, 2200657, 2022.
  • [22] T. Y. Kim, C.-H. Park, and N. Marzari, "The electronic thermal conductivity of graphene," Nano Lett., vol. 16, no. 4, pp. 2439–2443, 2016.
  • [23] V. Ryzhii, A. Satou, and T. Otsuji, "Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures," J. Appl. Phys., vol. 101, no. 2, 024509, 2007.
  • [24] V. Ryzhii, T. Otsuji, and M. Shur, "Graphene based plasma-wave devices for terahertz applications," Appl. Phys. Lett., vol. 116, no. 14, 140501, 2020.
  • [25] J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, "Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy," Nano Lett., vol. 11, no. 11, pp. 4902–4906, 2011.
  • [26] V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, "Effect of heating and cooling of photogenerated electron–hole plasma in optically pumped graphene on population inversion," Jpn. J. Appl. Phys., vol. 50, no. 9R, 094001, 2011.
  • [27] V. Ryzhii et al, "Graphene terahertz uncooled bolometers," J. Phys. D: Appl. Phys., vol. 46, no. 6, 065102, 2013.
  • [28] V. Ryzhii et al, "Graphene vertical hot-electron terahertz detectors," J. Appl. Phys., vol. 116, no. 11, 114504, 2014.
  • [29] K. Tamura et al, "Fast and sensitive terahertz detection with a current-driven epitaxial-graphene asymmetric dual-grating-gate field-effect transistor structure," APL Photonics, vol. 7, no. 12, 126101, 2022.
  • [30] Y. Liu et al, "Phonon-mediated colossal magnetoresistance in graphene/black phosphorus heterostructures," Nano Lett., vol. 18, no. 6, pp. 3377–3383, 2018.
  • [31] F. Vasko and V. Ryzhii, "Voltage and temperature dependencies of conductivity in gated graphene," Phys. Rev. B, vol. 76, no. 23, 233404, 2007.
  • [32] E. Hwang and S. D. Sarma, "Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene," Phys. Rev. B, vol. 77, no. 11, 115449, 2008.