This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dynamical Systems of Correspondences on the Projective Line II: Degrees of Multiplier Maps

Rin Gotou    Rin Gotou Department of Mathematics, Graduate School of Osaka University u661233h@ecs.osaka-u.ac.jp
Abstract

This paper is a sequel of [Got23]. In this paper, we consider a kind of inverse problem of multipliers. The problem is to count number of isospectral correspondences, correspondences which has the same combination of multipliers. We give a primitive explicit upper bound. In particular, for a generic rational map of degree dd, there are at most O(d10d)O(d^{10d}) rational maps with the same combination of multipliers for the fixed points and the 3-periodic points. This paper also includes two proofs of a correction [Hut21], which states that the multipliers of the fixed and 2-periodic points determines generic cubic morphism uniquely. One is done by proceeding the computation in [HT13]. The other is done by more explicit computation with the help of invariant theory given in [Wes15].

1 Introduction

This paper is a sequel of [Got23]. In [Got23], the author defined the moduli spaces Dynd,e\operatorname{Dyn}_{d,e} of dynamical systems of self-correspondences on the projective line 1\mathbb{P}^{1}. The moduli space Dynd,e\operatorname{Dyn}_{d,e} parametrizes self-correspondences C1×1C\subset\mathbb{P}^{1}\times\mathbb{P}^{1} of degree (d,e)(d,e) with only mild (i.e. of multiplicity d+e2\leq\frac{d+e}{2}) singularities on the diagonal of 1×1\mathbb{P}^{1}\times\mathbb{P}^{1} ([Got23, Theorem 1.1]), up to conjugation by Aut(1)=PGL2\operatorname{Aut}(\mathbb{P}^{1})=\operatorname{PGL}_{2}. As essential structures of the moduli space of dynamical system, iteration maps Ψn:Dynd,eDyndn,en\Psi_{n}:\operatorname{Dyn}_{d,e}\dashrightarrow\operatorname{Dyn}_{d^{n},e^{n}} and fixed point multiplier map λ1,(d,e):Dynd,ed+e\lambda_{1,(d,e)}:\operatorname{Dyn}_{d,e}\dashrightarrow\mathbb{P}^{d+e} were introduced. These respectively indicates nn-th iteration CCCC\mapsto C\circ\cdots\circ C and the fixed point multipliers

C:(f=0){λz(f):=yf(z,z)xf(z,z)|z1:f(z,z)=0}C:(f=0)\mapsto\left\{\left.\lambda_{z}(f):=-\frac{\partial_{y}f(z,z)}{\partial_{x}f(z,z)}\right|z\in\mathbb{P}^{1}:f(z,z)=0\right\}

(under the isomorphism {(d+e) (possibly multiple) points in 1}=Symd+e1d+e\{(d+e)\text{ (possibly multiple) points in }\mathbb{P}^{1}\}=\operatorname{Sym}_{d+e}\mathbb{P}^{1}\simeq\mathbb{P}^{d+e}). Multiplier maps λn,(d,e):=λ1,(dn,en)Ψn\lambda_{n,(d,e)}:=\lambda_{1,(d^{n},e^{n})}\circ\Psi_{n} were also introduced, but well-definedness of λn,(d,e)\lambda_{n,(d,e)} for general (n,d,e)(n,d,e) are remaining as a problem ([Got23, Problem 1.9, Remark 7.2]). If the nn-th multiplier map λn,(d,e)\lambda_{n,(d,e)} is well-defined, then it indicates

C:(f=0){λ(zi)(f):=i=0n1(yf(zi,zi+1)xf(zi,zi+1))|(zi)i=0n(1)n+1:f(zi,zi+1)=0,z0=zn}.C:(f=0)\mapsto\left\{\left.\lambda_{(z_{i})}(f):=\prod_{i=0}^{n-1}\left(-\frac{\partial_{y}f(z_{i},z_{i+1})}{\partial_{x}f(z_{i},z_{i+1})}\right)\right|\genfrac{}{}{0.0pt}{}{(z_{i})_{i=0}^{n}\in(\mathbb{P}^{1})^{n+1}:}{f(z_{i},z_{i+1})=0,z_{0}=z_{n}}\right\}.

A purpose to define morphisms λn:=λn,(d,e)\lambda_{n}:=\lambda_{n,(d,e)} is to consider inverse problem of multiplier, that is, how extant information of multipliers determines morphisms. The results about inverse problem of multiplier are rephrased as the properties of multiplier maps to their images. Let

Λn\displaystyle\Lambda_{n} :=m:m|nλm:Dynd,em:m|ndm+em and\displaystyle:=\prod_{m:m|n}\lambda_{m}:\operatorname{Dyn}_{d,e}\dashrightarrow\prod_{m:m|n}\mathbb{P}^{d^{m}+e^{m}}\text{ and }
Λ\displaystyle\Lambda :=m1λm:Dynd,em1dm+em,\displaystyle:=\prod_{m\geq 1}\lambda_{m}:\operatorname{Dyn}_{d,e}\dashrightarrow\prod_{m\geq 1}\mathbb{P}^{d^{m}+e^{m}},

where m|nm|n means that mm divides nn. Let PolydDyn1,d\operatorname{Poly}_{d}\subset\operatorname{Dyn}_{1,d} be the locus of the points indicates a conjugation class including some polynomial morphisms. Table 1 is a brief review of known results about inverse problem of multipliers, as the form of degrees of multiplier maps to their images. All known results are about cases of usual morphisms, that is, the degree as self-correspondence is (1,d)(1,d).

Reference locus XX degree of map FF degree of
morphisms F:XF(X)F:X\dashrightarrow F(X)
[McM87] Dyn1,d\operatorname{Dyn}_{1,d} d2d\geq 2 Λ\Lambda <<\infty
[Gor15] Λn(n3)\Lambda_{n}\ (n\geq 3) <<\infty
[Sch16] << Recursive formula
[Gor15, Conjecture] Λ2\Lambda_{2} ?
[JX23] d4d\geq 4 Λ\Lambda 1
[Mil93],[Sil98] d=2d=2 Λ1(=λ1)\Lambda_{1}(=\lambda_{1}) 1
(From dimension) d3d\geq 3 Λ1\Lambda_{1} \infty
[HT13] d=3d=3 Λ2\Lambda_{2} a3,2a_{3,2}
[Fuj06] Polyd\operatorname{Poly}_{d} d2d\geq 2 Λ1\Lambda_{1} (d2)!(d-2)!
[HT13] d=4,5d=4,5 Λ2\Lambda_{2} 11
Table 1: Results about degree of multiplier maps onto their images
Remark 1.1.

There are some more precise results about the degrees for the loci which the degrees of multiplier maps changes from generic behaviour ([McM87], [Sil07], [Fuj06], [Fuj07], [Sug17], [Sug20]).

In [HT13], a3,2=12a_{3,2}=12 was stated, but the author corrected it to a3,2=1a_{3,2}=1 ([Hut21]). An aim of this paper is to give precise proofs of correction.

Theorem 1.2 (Theorem 5.1).

The rational map

Λ2,(1,3)=λ1,(1,3)×λ2,(1,3):Dyn1,33×9\Lambda_{2,(1,3)}=\lambda_{1,(1,3)}\times\lambda_{2,(1,3)}:\operatorname{Dyn}_{1,3}\dashrightarrow\mathbb{P}^{3}\times\mathbb{P}^{9}

is birational to its image.

In Section 5, we give two proofs of this theorem. In Subsection 5.1, we prove Theorem 5.1 by proceeding the computation done in [HT13]. This proof is the proof mentioned in [Hut21] and independent from other parts (except the programs in Subsection A.1 used for the proof) of this paper.

The other proof in Subsection 5.2 is by a direct computation on the invariant ring given in [Wes15], which is the coordinate ring of Dyn1,3\operatorname{Dyn}_{1,3}. The computation is done by an interpolation method in Subsection A.2, and some unexpectedly simple relations among the coordinate functions of (Remark 5.2). A merit of this method is that the part without the direct computation of structure of the coordinate rings can be used for more general cases of Λn,(d,e)\Lambda_{n,(d,e)}. The other aim of this paper is to give a primitive estimation of degree of multiplier map of correspondence along this method. This gives very rough as an upper bound, but gives a finite number.

Theorem 1.3.

Let pp be a prime number. If the pp-th multiplier map is well-defined and

Λp:=λ1,(d,e)×λp,(d,e):Dynd,eΛp(Dynd,e)(Dd+e)×(DM)\Lambda_{p}:=\lambda_{1,(d,e)}\times\lambda_{p,(d,e)}:\operatorname{Dyn}_{d,e}\dashrightarrow\Lambda_{p}(\operatorname{Dyn}_{d,e})\subset\mathbb{P}(D_{d+e})\times\mathbb{P}(D_{M})

is generically finite to its image, then its degree is at most

gcd(d+e,2)Nde+d+e3(d+e3)!(de3)!2(d+e)(de+d+e3)!,\frac{\gcd(d+e,2)N^{de+d+e-3}(d+e-3)!(de-3)!}{2(d+e)\cdot(de+d+e-3)!},

where

N:=2(d+e1)+2((dp1)(dpd)(ep1)(epe))p(de).N:=2(d+e-1)+\frac{2((d^{p}-1)(d^{p}-d)-(e^{p}-1)(e^{p}-e))}{p(d-e)}.
Remark 1.4.

We can give upper bounds in similar method for generic Λn\Lambda_{n} in the similar assumption, but NN becomes slightly more complicated polynomial. We also note that Λ2\Lambda_{2} can be generically finite to its image only if (de)2d+e2(d-e)^{2}\geq d+e-2 (Remark 4.13 and Remark 4.6).

Combining with the finiteness result ([Gor15] in Table 1), we can see the following:

Corollary 1.5.

For d2d\geq 2, the degree of Λ3,(1,d)\Lambda_{3,(1,d)} is at most

gcd(d+1,2)22d2(d5+d4d2+2d)2d2(d2)!(d3)!232d2(d+1)(2d1)!.\frac{\gcd(d+1,2)2^{2d-2}(d^{5}+d^{4}-d^{2}+2d)^{2d-2}\cdot(d-2)!(d-3)!}{2\cdot 3^{2d-2}\cdot(d+1)\cdot(2d-1)!}.

For d=3d=3, this only gives the evaluation degΛ3,(1,d)4369320\deg\Lambda_{3,(1,d)}\leq 4369320.

Remark 1.6.

In [Sch16], an algorithm to count the degree of multiplier maps using equivariant Gromov-Witten invariant is given. The author have not completed the evaluation of the order of the recursion formula.

This paper is organized as follows. In Section 2, we set up notation and terminology. In Section 3, we give an evaluation of extension degree of rational function field by using the Hilbert series. In Section 4, we evaluate the degree of multiplier map using the evaluation in Section 3. In Section 5, we give two proofs of Theorem 1.2.

Acknowledgments

I express my deepest appreciation to Seidai Yasuda for providing MAGMA[BCP97] emvironment and proofreading the original version of this paper, which is the latter half of my master thesis consists of Section 3 and the Dyn1,d\operatorname{Dyn}_{1,d} case of Section 4. I am also grateful to Takehiko Yasuda for supervising me and giving useful discussion. I apologize to Benjamin Hutz, Zhuchao Ji and Junyi Xie for the late uploading of the pricise of the correction. I also appliciate to Zhuchao Ji and Junyi Xie for contacted me about [Hut21].

The author is granted by Kakenhi DC1(22KJ2090(21J22197)).

2 Notation and Terminology

Throughout this paper, we refer [Liu06] for the terminology of algebraic geometry.

We fix a field kk of characteristic zero. Unless otherwise stated, we consider any scheme as a scheme over kk.

For a ring RR and a free RR-module MM of finite rank, we denote by R[M]R[M] the polynomial ring generated by a basis of MM (with suitable identifications between different choices of basis). If a group GG and a representation ρ:GAutR(M)\rho:G\to\operatorname{Aut}_{R}(M) are also given, we write R[M]GR[M]^{G} for the invariant ring.

3 Volume of Algebra and Rational Field of Projective Variety

To evaluate degrees of multiplier maps, we need to evaluate the degree of a rational map to its image. In [Got23], the moduli space Dynd,e\operatorname{Dyn}_{d,e} of dynamiacal systems is given by the projective scheme ProjI(VdVe)\operatorname{Proj}I(V_{d}\otimes V_{e}) of the naturally graded invariant ring I(VdVe):=k[VdVe]SL2I(V_{d}\otimes V_{e}):=k[V_{d}\otimes V_{e}]^{\operatorname{SL}_{2}}. Here we have a problem that the graded ring is not fully generated by linear terms. Moreover, full generator (secondary invariants) and relations (syzygies) are not known for generic cases ([Oli17]). Moreover, we only have little information about multiplier maps. So we use an evaluation only using Hilbert series. We use a trivial evaluation (Proposition 3.9), maybe well-known for experts.

Definition 3.1.

(Hilbert-Poincaré Series) For a graded kk-algebra A=i=0AiA=\bigoplus_{i=0}^{\infty}A_{i}, the hilbert series of AA is the series

HA(t):=i=0(dimkAi)tn.H_{A}(t):=\sum_{i=0}^{\infty}\left(\dim_{k}A_{i}\right)t^{n}.
Definition 3.2.

For a graded kk-algebra A=i=0AiA=\bigoplus_{i=0}^{\infty}A_{i} of Krull dimension dd, the volume of AA is defined by

Vol(A):=limt1(1t)dHA(t).\operatorname{Vol}(A):=\lim_{t\to 1}(1-t)^{d}H_{A}(t).
Remark 3.3.

In [DK15], the degree of AA is used instead of the volume of AA. We choose the word “the volume of AA” to avoid confusing with the extension degree of algebras.

Definition 3.4.

Let A=i=0AiA=\bigoplus_{i=0}^{\infty}A_{i} be a graded kk-algebra.

  1. (i)

    the algebra AA is saturated if dimAi0\dim A_{i}\neq 0 for any sufficiently large ii.

  2. (ii)

    The saturator of AA is the minimal positive integer nn such that the algebra A[n]:=i=0AniA^{[n]}:=\bigoplus_{i=0}^{\infty}A_{ni} is satulated by the grading which AniA_{ni} is degree ii.

Proposition 3.5.

Let A=i=0AiA=\bigoplus_{i=0}^{\infty}A_{i} be a finitely generated saturated graded kk-algebra of Krull dimension dd which is an integral domain. Then we have

dimkAi=Vol(A)ir1(r1)!+O(ir2)(i).\dim_{k}A_{i}=\frac{\operatorname{Vol}(A)i^{r-1}}{(r-1)!}+O(i^{r-2})\ (i\to\infty).
Proof.

From the proof of [DK15, Proposition 1.4.5], it follows that if BB is a finitely generated graded algebra, the Hilbert series HB(t)H_{B}(t) has the form

HB(t)=PB(t)i=1d(1tai)H_{B}(t)=\frac{P_{B}(t)}{\prod_{i=1}^{d}(1-t^{a_{i}})} (1)

where PB(t)P_{B}(t) is a polynomial, dd is the Krull dimension of BB and aia_{i}’s are positive integers.

Let us take nonzero elements fmAmf_{m}\in A_{m} and fnAnf_{n}\in A_{n} for coprime positive integers mm and nn. We assumed that AA is an integral domain, therefore fnf_{n} and fmf_{m} are both regular element of AA. We have

HA(t)=(1tm)HA/fmA(t)=(1tn)HA/fnA(t)H_{A}(t)=(1-t^{m})H_{A/f_{m}A}(t)=(1-t^{n})H_{A/f_{n}A}(t) (2)

for the natural gradings on A/fmAA/f_{m}A and A/fnAA/f_{n}A. By writing (2) in the form of (1), we obtain that the order of the pole of HA(t)H_{A}(t) other than 11 is at most d1d-1. Thus the Hilbert function HA(t)H_{A}(t) has the partial fraction decomposition of the form

HA(t)=Vol(A)(1t)d+i=1d1ζμnζ,i(1ζt)i,H_{A}(t)=\frac{\operatorname{Vol}(A)}{(1-t)^{d}}+\sum_{i=1}^{d-1}\sum_{\zeta\in\mu_{\infty}}\frac{n_{\zeta,i}}{(1-\zeta t)^{i}},

where μ\mu_{\infty} is the set of all roots of unity and nζ,i=0n_{\zeta,i}=0 except for finitely many ζμ\zeta\in\mu_{\infty}. The Taylor expansion

1(1t)e=i=0(e+i1e1)tn\frac{1}{(1-t)^{e}}=\sum_{i=0}^{\infty}\binom{e+i-1}{e-1}t^{n}

leads to the assertion of proposition. ∎

Corollary 3.6.

Let A=i=0AiA=\bigoplus_{i=0}^{\infty}A_{i} be a finitely generated graded kk-algebra of Krull dimension dd which is an integral domain. Let nn be the saturator of AA. Then we have

dimkAni=nVol(A)(ni)r1(r1)!+O((ni)r2)(i).\dim_{k}A_{ni}=\frac{n\operatorname{Vol}(A)(ni)^{r-1}}{(r-1)!}+O((ni)^{r-2})\ (i\to\infty).
Proof.

Let HA[n](t)=Vol(A[n])(1t)d+i=1d1ζμnζ,i(1ζt)iH_{A^{[n]}}(t)=\frac{\operatorname{Vol}(A^{[n]})}{(1-t)^{d}}+\sum_{i=1}^{d-1}\sum_{\zeta\in\mu_{\infty}}\frac{n_{\zeta,i}}{(1-\zeta t)^{i}} be the partial fraction decomposition. Here we have HA(t)=HA[n](tn)H_{A}(t)=H_{A^{[n]}}(t^{n}), therefore

Vol(A)\displaystyle\operatorname{Vol}(A) =limt1(1t)d(Vol(A[n])(1tn)d+i=1d1ζμnζ,i(1ζt)i)\displaystyle=\lim_{t\to 1}(1-t)^{d}\left(\frac{\operatorname{Vol}(A^{[n]})}{(1-t^{n})^{d}}+\sum_{i=1}^{d-1}\sum_{\zeta\in\mu_{\infty}}\frac{n_{\zeta,i}}{(1-\zeta t)^{i}}\right)
=Vol(A[n])limt1(1t)d(1tn)d\displaystyle=\operatorname{Vol}(A^{[n]})\cdot\lim_{t\to 1}\frac{(1-t)^{d}}{(1-t^{n})^{d}}
=Vol(A[n])1nd.\displaystyle=\operatorname{Vol}(A^{[n]})\cdot\frac{1}{n^{d}}.

By substituting this into Proposition 3.5 for A[n]A^{[n]}, we obtain the assertion. ∎

From now on, we fix a graded algebra A:=i=0AiA:=\bigoplus_{i=0}^{\infty}A_{i} which is an integral domain. We also fix a graded subalgebra BB of AA. For any graded algebra CC, we write KP(C)KP(C) for the rational function field K(ProjC)K(\operatorname{Proj}C). We have

KP(A)=i=0{aiai|aiAi,aiAi{0}}.KP(A)=\bigcup_{i=0}^{\infty}\left\{\left.\frac{a_{i}}{a^{\prime}_{i}}\ \right|a_{i}\in A_{i},\ a^{\prime}_{i}\in A_{i}\setminus\{0\}\right\}.

We assume that KP(A)KP(A) is a finite extension of KP(B)KP(B) and write DD for the degree of extension.

Proposition 3.7.

There exists a KP(B)KP(B)-basis of KP(A)KP(A) of the following form:

{aibi|i=1,2,,D,biBni,aiAni}.\left\{\left.\frac{a_{i}}{b_{i}}\ \right|i=1,2,\ldots,D,\ b_{i}\in B_{n_{i}},a_{i}\in A_{n_{i}}\right\}.
Proof.

We write KK for the field KP(B)KP(B). Let {aiaii=1,2,,D,ai,aiAni}\{\frac{a_{i}}{a^{\prime}_{i}}\mid i=1,2,\ldots,D,\ a_{i},a^{\prime}_{i}\in A_{n_{i}}\} be a KK-basis of KP(A)KP(A). If Bni=0B_{n_{i}}=0 we replace (ai,ai)(a_{i},a^{\prime}_{i}) by (aai,aai)(aa_{i},aa^{\prime}_{i}) for aAa\in A of sufficiently large degree, and then we can assume Bni0B_{n_{i}}\neq 0 and take biAni{0}b_{i}\in A_{n_{i}}\setminus\{0\}. We have

K(a1b1,a1b1,,aDbD,aDbD)=KP(A)K\left(\frac{a_{1}}{b_{1}},\frac{a^{\prime}_{1}}{b_{1}},\ldots,\frac{a_{D}}{b_{D}},\frac{a^{\prime}_{D}}{b_{D}}\right)=KP(A)

and each aibi\frac{a_{i}}{b_{i}} or aibi\frac{a^{\prime}_{i}}{b_{i}} is integral over KK. Therefore, for sufficiently large NN,

{a1e1aDeDa1e1aDeDb1e1+e1bDeD+eD|iei+ieiN}\left\{\left.\frac{a_{1}^{e_{1}}\cdots a_{D}^{e_{D}}a_{1}^{\prime e^{\prime}_{1}}\cdots a_{D}^{\prime e^{\prime}_{D}}}{b_{1}^{e_{1}+e^{\prime}_{1}}\cdots b_{D}^{e_{D}+e^{\prime}_{D}}}\ \right|\sum_{i}e_{i}+\sum_{i}e^{\prime}_{i}\leq N\right\}

is a generator of KP(A)KP(A) as a KK-vector space. ∎

By reducing to a common denominator, we obtain the following:

Corollary 3.8.

There exists a KP(B)KP(B)-basis of KP(A)KP(A) which is the form

{aib0|i=1,2,,D,b0Bn,aiAn}.\left\{\left.\frac{a_{i}}{b_{0}}\ \right|i=1,2,\ldots,D,\ b_{0}\in B_{n},a_{i}\in A_{n}\right\}.
Proposition 3.9.

We have

Vol(A)Vol(B)sAVol(A)sBVol(B)[KP(A):KP(B)],\frac{\operatorname{Vol}(A)}{\operatorname{Vol}(B)}\geq\frac{s_{A}\operatorname{Vol}(A)}{s_{B}\operatorname{Vol}(B)}\geq[KP(A):KP(B)],

where sAs_{A} and sBs_{B} are the satulators of AA and BB respectively.

Proof.

The first inequality is immediate from the inclusion BAB\subset A.

Let {aib0i=1,2,,D,b0Bm,aiAm}\{\frac{a_{i}}{b_{0}}\mid i=1,2,\ldots,D,\ b_{0}\in B_{m},a_{i}\in A_{m}\} be a KP(B)KP(B)-basis of KP(A)KP(A) given by Corollary 3.8. Then, the morphism

BD(bi)i=1DaibiAB^{\oplus D}\ni(b_{i})\mapsto\sum_{i=1}^{D}a_{i}b_{i}\in A

is injective. Therefore, we have dimAm+nDdimBm\dim A_{m+n}\geq D\dim B_{m} for an arbitrary mm. By applying Corollary 3.6, we have

sAVol(A)(m+n)r1(r1)!+O((m+n)r2)DsBVol(B)mr1(r1)!+O(mr2)(m).\frac{s_{A}\operatorname{Vol}(A)(m+n)^{r-1}}{(r-1)!}+O((m+n)^{r-2})\geq D\frac{s_{B}\operatorname{Vol}(B)m^{r-1}}{(r-1)!}+O(m^{r-2})(m\to\infty).

Therefore, we have

sAVol(A)DsBVol(B).s_{A}\operatorname{Vol}(A)\geq Ds_{B}\operatorname{Vol}(B).

4 Degree Bound of Multiplier Map

The volumes of the invariant algebras of irreducible representations of SL2\operatorname{SL}_{2} are classically calculated by Hilbert and the reducible cases are done in [dCCPHHS20].

4.1 Schur Polynomial

In [dCCPHHS20], Schur Polynomials are used to express the volumes of invariant rings. We briefly introduce the polynomials in a form that we can instantly give an explicit evaluation of the volumes.

Definition 4.1.

(Schur Polynomial) For a sequence of nonnegative integers (di)(d_{i}) of length ll, the Schur polynomial s(di)(xi)s_{(d_{i})}(x_{i}) of (di)(d_{i}) is the symmetric polynomial of ll variables such that

s(di)(xi)=det(xij+dj1)i,j=1ldet(xij1)i,j=1l.s_{(d_{i})}(x_{i})=\frac{\det(x_{i}^{j+d_{j}-1})_{i,j=1}^{l}}{\det(x_{i}^{j-1})_{i,j=1}^{l}}.
Definition 4.2.

For a nonincreasing sequence of nonnegative integers (di)(d_{i}), the Young tableau of (di)(d_{i}) is the set of lattice points

T(di):={(i,j)21idj}.T(d_{i}):=\{(i,j)\in\mathbb{Z}^{2}\mid 1\leq i\leq d_{j}\}.

The set of nn-semistandard tableau is the set

SSTn(di):={f:T(di){1,,n}f(i,j)f(i+1,j),f(i,j)<f(i,j+1)}.\operatorname{SST}_{n}(d_{i}):=\{f:T(d_{i})\to\{1,\ldots,n\}\mid f(i,j)\leq f(i+1,j),f(i,j)<f(i,j+1)\}.
Theorem 4.3.

(Kostka’s Definition [Pra19, Corollary 12.5]) For a decreasing sequence of nonnegative integers (d1,,dl)(d_{1},\ldots,d_{l}), we have

s(d1,,dl,0,0,,0)(x1,,xl+k)=fSSTl+k(di)(i,j)T(di)xf(i,j).s_{(d_{1},\ldots,d_{l},0,0,\ldots,0)}(x_{1},\ldots,x_{l+k})=\sum_{f\in\operatorname{SST}_{l+k}(d_{i})}\prod_{(i,j)\in T(d_{i})}x_{f(i,j)}.

4.2 Degrees of Linear Systems of Multiplier Maps

The graph cycle Γd,e\Gamma_{d,e} over the moduli of correspondence is the irreducible hyperplane

V+(i,jaijxiyj)(aij)×x1×y1=Corrd,e×x1×y1.V_{+}\left(\sum_{i,j}a_{ij}x^{i}y^{j}\right)\subset\mathbb{P}(\langle a_{ij}\rangle)\times\mathbb{P}^{1}_{x}\times\mathbb{P}^{1}_{y}=\operatorname{Corr}_{d,e}\times\mathbb{P}^{1}_{x}\times\mathbb{P}^{1}_{y}.

As a hyperplane, this is of degree (1,d,e)(1,d,e). Let f(x,y):=i,jaijxiyjf(x,y):=\sum_{i,j}a_{ij}x^{i}y^{j} be the defining polynomial of Γ\Gamma. The nn-th iteration of ff, Ψn(f)\Psi_{n}(f) is given by

Ψn(f)(z0,zn)=resz1,,zn1(f(z0,z1),f(z1,z2),,f(zn1,zn)).\Psi_{n}(f)(z_{0},z_{n})=\operatorname{res}_{z_{1},\ldots,z_{n-1}}(f(z_{0},z_{1}),f(z_{1},z_{2}),\ldots,f(z_{n-1},z_{n})).

Let ΨnΓ\Psi_{n}\Gamma be the graph of iteration morphism

ΨnΓ:=V+(Ψn(f)(x,y))Corrd,e×x1×y1.\Psi_{n}\Gamma:=V_{+}\left(\Psi_{n}(f)(x,y)\right)\subset\operatorname{Corr}_{d,e}\times\mathbb{P}^{1}_{x}\times\mathbb{P}^{1}_{y}.

By using the expression of composition using the resultant [Got23, Section 5] and the Sylvester formula, ΨnΓ\Psi_{n}\Gamma is of degree (dnende,dn,en)(\frac{d^{n}-e^{n}}{d-e},d^{n},e^{n}). The cycle of periodic points Pern\operatorname{Per}_{n} of period nn is given by

Pern:=V+(Ψn(f)(z,z))Corrd,e×z1.\operatorname{Per}_{n}:=V_{+}(\Psi_{n}(f)(z,z))\subset\operatorname{Corr}_{d,e}\times\mathbb{P}^{1}_{z}.

From the degree of ΨnΓ\Psi_{n}\Gamma, the degree of Pern\operatorname{Per}_{n} is (dnende,dn+en)(\frac{d^{n}-e^{n}}{d-e},d^{n}+e^{n}).

We remark that the cycle of periodic points Pern\operatorname{Per}_{n} includes the cycles of fixed points, and moreover the cycles Perm\operatorname{Per}_{m} for m|nm|n. We define the scheme Pern\operatorname{Per}_{n}^{*} of periodic points of formal period nn by extracting the periodic points of shorter periods. More explicitly, we define effective divisors Pern\operatorname{Per}^{*}_{n} inductively as

Per1:=Per1,Pern:=Pernm<n,m|nPerm.\operatorname{Per}^{*}_{1}:=\operatorname{Per}_{1},\operatorname{Per}_{n}^{*}:=\operatorname{Per}_{n}-\sum_{m<n,m|n}\operatorname{Per}_{m}.

Let νn(x)\nu_{n}(x) be the family of polynomials, asymptotically defined by

ν1(x)=x,νn(x)=xnm<n,m|nνm(x).\nu_{1}(x)=x,\nu_{n}(x)=x^{n}-\sum_{m<n,m|n}\nu_{m}(x).

In a closed form, νn\nu_{n} is written by using the Möbius function μ\mu,

νn(x)=m|nμ(n/m)xn.\nu_{n}(x)=\sum_{m|n}\mu\left(n/m\right)x^{n}.

Then the degree of Pern\operatorname{Per}^{*}_{n} is given by

(νn(d)νn(e)de,νn(d)+νn(e)).\left(\frac{\nu_{n}(d)-\nu_{n}(e)}{d-e},\nu_{n}(d)+\nu_{n}(e)\right).

We write Πnf(z)\Pi_{n}^{*}f(z) for a defining form of the divisor Pern\operatorname{Per}^{*}_{n}.

Remark 4.4.

We have νn(1)=0\nu_{n}(1)=0 for n>1n>1. For the cases only considering rational maps, νn(d)+νn(1)\nu_{n}(d)+\nu_{n}(1) is sometimes used instead of νn(d)\nu_{n}(d) (for instance, νn(d)\nu_{n}(d) in [Sil07, Remark 4.3] and Nn(d)N_{n}(d) in [DM06, Chapter 4]).

Proposition 4.5.

If the multiplier map

λn,(d,e):Corrd,eCorrdn,endn+en\lambda_{n,(d,e)}:\operatorname{Corr}_{d,e}\dashrightarrow\operatorname{Corr}_{d^{n},e^{n}}\dashrightarrow\mathbb{P}^{d^{n}+e^{n}}

is well-defined, then it is given by a linear system of degree

2(dn+en1)dnende.2(d^{n}+e^{n}-1)\frac{d^{n}-e^{n}}{d-e}.

Moreover, in this case, we can define the multiplier map of the periodic orbits of period nn,

λn,(d,e):Corrd,e(νn(d)+νn(e))/n\lambda^{\circ}_{n,(d,e)}:\operatorname{Corr}_{d,e}\dashrightarrow\mathbb{P}^{(\nu_{n}(d)+\nu_{n}(e))/n}

and it is given by a linear system of degree at most

2((dn1)νn(d)(en1)νn(e))n(de).\frac{2((d^{n}-1)\nu_{n}(d)-(e^{n}-1)\nu_{n}(e))}{n(d-e)}.
Proof.

By [Got23, Section 7] and the Sylvester formula, the degree of fixed point multiplier map is 2(d+e1)2(d+e-1). Since the morphism Ψn:Corrd,eCorrdn,en\Psi_{n}:\operatorname{Corr}_{d,e}\dashrightarrow\operatorname{Corr}_{d^{n},e^{n}} is given by a linear system of degree dnende\frac{d^{n}-e^{n}}{d-e}, we obtain the first assertion. Moreover, the morphism λn:=λn,(d,e)\lambda_{n}:=\lambda_{n,(d,e)} is given by

λn([f])\displaystyle\lambda_{n}([f]) =λ1,(d,e)([Ψnf])\displaystyle=\lambda_{1,(d,e)}([\Psi_{n}f])
=[z:Ψnf(z,z)=0(xΨnf(z,z)dx+yΨnf(z,z)dy)](DN),\displaystyle=\left[\prod_{z:\Psi_{n}f(z,z)=0}\left(\partial_{x}\Psi_{n}f(z,z)dx+\partial_{y}\Psi_{n}f(z,z)dy\right)\right]\in\mathbb{P}(D_{N}), (3)

where N=degzΨnf(z,z)=dn+enN=\deg_{z}\Psi_{n}f(z,z)=d^{n}+e^{n}. The well-definedness of λn\lambda_{n} implies that the factors of (3) are not zero. Therefore, we can define λn([f])\lambda^{\bullet}_{n}([f]) as

λn([f]):=[z:Πnf(z)=0(xΨnf(z,z)dx+yΨnf(z,z)dy)](DM),\lambda^{\bullet}_{n}([f]):=\left[\prod_{z:\Pi_{n}^{*}f(z)=0}\left(\partial_{x}\Psi_{n}f(z,z)dx+\partial_{y}\Psi_{n}f(z,z)dy\right)\right]\in\mathbb{P}(D_{M}), (4)

where M=degzΠnf(z)=νn(d)+νn(e)M=\deg_{z}\Pi_{n}^{*}f(z)=\nu_{n}(d)+\nu_{n}(e). By [Got23, Remark 7.6], we can write this multiplier map as

λn([f])\displaystyle\lambda^{\bullet}_{n}([f]) =[resz(Πnf(z),xΨnf(z,z)dx+yΨnf(z,z)dy)]\displaystyle=\left[\operatorname{res}_{z}\left(\Pi_{n}^{*}f(z),\partial_{x}\Psi_{n}f(z,z)dx+\partial_{y}\Psi_{n}f(z,z)dy\right)\right]
=[resz(Πnf(z),dzΨnf(z,z)dz0+z0z1Ω1Ψnf(z)dz1)/An,0An,1],\displaystyle=\left[\operatorname{res}_{z}\left(\Pi_{n}^{*}f(z),d_{z}\Psi_{n}f(z,z)dz_{0}+z_{0}z_{1}\Omega^{1}\Psi_{n}f(z)dz_{1}\right)/A_{n,0}A_{n,1}\right], (5)

where An,0A_{n,0} and An,1A_{n,1} are the coefficients of respectively z0Mz_{0}^{M} and z1Mz_{1}^{M} of Πnf(z)\Pi_{n}^{*}f(z). Therefore, by the Sylvester formula, the rational map λn([f])\lambda^{\circ}_{n}([f]) is given by the linear system given by the coefficients of dz0idz1Midz_{0}^{i}dz_{1}^{M-i} of

resz(Πnf(z),dzΨnf(z,z)dz0+z0z1Ω1Ψnf(z)dz1)/An,0An,1,\operatorname{res}_{z}\left(\Pi_{n}^{*}f(z),d_{z}\Psi_{n}f(z,z)dz_{0}+z_{0}z_{1}\Omega^{1}\Psi_{n}f(z)dz_{1}\right)/A_{n,0}A_{n,1}, (6)

and their degree is

(dn+en)νn(d)νn(e)de+(νn(d)+νn(e))dnende2νn(d)νn(e)de.(d^{n}+e^{n})\frac{\nu_{n}(d)-\nu_{n}(e)}{d-e}+(\nu_{n}(d)+\nu_{n}(e))\frac{d^{n}-e^{n}}{d-e}-2\frac{\nu_{n}(d)-\nu_{n}(e)}{d-e}. (7)

Any periodic orbit of formal period nn, of a correspondence defined by f(x,y)f(x,y) is given by a tuple of points (z0,z1,,zn=z0)(z_{0},z_{1},\ldots,z_{n}=z_{0}) such that f(zi,zi+1)=0f(z_{i},z_{i+1})=0. From the differential of composite functions, for the periodic points of the same periodic orbits, the factor in (4) takes the same value, that is,

λn([f])=[(z0,,zn1):Periodic orbits of f(x,y)(dx+yΨnf(z0,z0)xΨnf(z0,z0)dy)n].\lambda^{\bullet}_{n}([f])=\left[\prod_{\begin{subarray}{c}(z_{0},\ldots,z_{n-1}):\\ \text{Periodic orbits of }f(x,y)\end{subarray}}\left(dx+\frac{\partial_{y}\Psi_{n}f(z_{0},z_{0})}{\partial_{x}\Psi_{n}f(z_{0},z_{0})}dy\right)^{n}\right]. (8)

This leads that the map λn,(d,e)([f])\lambda^{\bullet}_{n,(d,e)}([f]) is given by an nn-th power of some rational function. Therefore, we can define λn\lambda^{\circ}_{n} as an nn-th root of some quotient of (6). ∎

Remark 4.6.

By definition, for the Veronese embedding

νn:M/n(k[x,y]M/n)(k[x,y]M)M:ffn,\nu_{n}:\mathbb{P}^{M/n}\simeq\mathbb{P}(k[x,y]_{M/n})\to\mathbb{P}(k[x,y]_{M})\simeq\mathbb{P}^{M}:f\mapsto f^{n},

we have λn=νnλn\lambda^{\bullet}_{n}=\nu_{n}\circ\lambda^{\circ}_{n}. Moreover, since for any periodic orbit (z0,,zn1,zn=z0)(z_{0},\ldots,z_{n-1},z_{n}=z_{0}) we have

yΨmnf(z0,z0)xΨmnf(z0,z0)=(yΨnf(z0,z0)xΨnf(z0,z0))m,\frac{\partial_{y}\Psi_{mn}f(z_{0},z_{0})}{\partial_{x}\Psi_{mn}f(z_{0},z_{0})}=\left(\frac{\partial_{y}\Psi_{n}f(z_{0},z_{0})}{\partial_{x}\Psi_{n}f(z_{0},z_{0})}\right)^{m},

we can see that

ImΛnImΛnImΛn,\operatorname{Im}\Lambda_{n}\simeq\operatorname{Im}\Lambda^{\bullet}_{n}\simeq\operatorname{Im}\Lambda^{\circ}_{n},

where

Λnα:=m:m|nλmα for α{,}.\Lambda^{\alpha}_{n}:=\prod_{m:m|n}\lambda^{\alpha}_{m}\text{ for }\alpha\in\{\circ,\bullet\}.
Remark 4.7.

Despite the form in (5) is given by an nn-th power of some polynomial, it is difficult to obtain more explicit form of the nn-th root λn\lambda^{\circ}_{n}. This phenomenon happens in computing resultant by Cayley’s formula ([ESW03]). If n=2n=2, Pfaffian is sometimes used to compute Cayley’s formula. Whether analogous method exist for the second multiplier map is a problem. As we see in (16), if we have a method to choose a specified branch of the roots, we can compute the root directly by interpolation.

4.3 Evaluation

We use the following result to calculate the volume.

Theorem 4.8.

([dCCPHHS20]) Let VRepk(V1)V\in\operatorname{Rep}_{k}(V_{1}) be a representation of SL2(k)\operatorname{SL}_{2}(k) and dimkV=n\operatorname{dim}_{k}V=n. Then the Taylor expansion of the Hilbert function of the invariant ring I(V):=k[V]SL2(k)I(V):=k[V]^{\operatorname{SL}_{2}(k)} at t=1t=1 has the form

HI(V)(t)=(1t)d+3i=0γi(1t)i.H_{I(V)}(t)=(1-t)^{-d+3}\cdot\sum_{i=0}^{\infty}\gamma_{i}(1-t)^{i}.

Let (ai)(a_{i}) be the positive weights of VV and ll be the length of the sequence. Then we have

γ0=gcd(2,a1,,al)s(l3,l3,l3,l4,l5,,2,1,0)(a1,a2,,al)s(l1,l2,l3,l4,l5,,2,1,0)(a1,a2,,al).\gamma_{0}=\gcd(2,a_{1},\ldots,a_{l})\frac{s_{(l-3,l-3,l-3,l-4,l-5,\ldots,2,1,0)}(a_{1},a_{2},\ldots,a_{l})}{s_{(l-1,l-2,l-3,l-4,l-5,\ldots,2,1,0)}(a_{1},a_{2},\ldots,a_{l})}.
Remark 4.9.

In [dCCPHHS20], higher terms (γ1,γ2,γ3\gamma_{1},\gamma_{2},\gamma_{3}) are also computed.

Throughout this subsection, we put n:=d+en:=d+e. We give a rough estimate of γ0\gamma_{0} for the case V=VdVeV=V_{d}\otimes V_{e} of the moduli space of dynamical systems.

Lemma 4.10.

We have

VolI(VdVe)gcd(n,2)2(n2)(n1)n.\operatorname{Vol}I(V_{d}\otimes V_{e})\leq\frac{\gcd(n,2)}{2(n-2)(n-1)n}.
Proof.

We put α:=(l3,l3,l3,l4,l5,,1)\alpha:=(l-3,l-3,l-3,l-4,l-5,\ldots,1) and δ:=(l1,l2,,2,1)\delta:=(l-1,l-2,\ldots,2,1). Let Φk:SSTl(α)SSTl(δ)\Phi_{k}:\operatorname{SST}_{l}(\alpha)\to\operatorname{SST}_{l}(\delta) for k=1,2k=1,2 be the map such that for any fSSTl(α)f\in\operatorname{SST}_{l}(\alpha)

Φk(f)(i,j):={f(i,j)((i,j)T(α))l1((i,j)=(1,l2))l((i,j)=(2,l2))l1((i,j)=(1,l1),k=1)l((i,j)=(1,l1),k=2).\Phi_{k}(f)(i,j):=\begin{cases}f(i,j)&((i,j)\in T(\alpha))\\ l-1&((i,j)=(1,l-2))\\ l&((i,j)=(2,l-2))\\ l-1&((i,j)=(1,l-1),\ k=1)\\ l&((i,j)=(1,l-1),\ k=2)\end{cases}.

The maps Φ1\Phi_{1} and Φ2\Phi_{2} are both injective and the images are disjoint. Therefore by Theorem 4.3 we have

sδ(x1,,xl)=\displaystyle s_{\delta}(x_{1},\ldots,x_{l})= (xl1xl2+xl12xl)sα(x1,,xl)\displaystyle(x_{l-1}x_{l}^{2}+x_{l-1}^{2}x_{l})s_{\alpha}(x_{1},\ldots,x_{l})
+(polynomial with nonnegative coefficients).\displaystyle+(\text{polynomial with nonnegative coefficients}). (9)

The three largest among the weights of the representation VdVeV_{d}\otimes V_{e} are (n2,n2,n)(n-2,n-2,n) and other weights are smaller than n2n-2. By substituting the weights into (9), we obtain

sδ(ν,n2,n2,n)2(n2)(n1)nsα(ν,n2,n2,n),s_{\delta}(\nu,n-2,n-2,n)\geq 2(n-2)(n-1)n\cdot s_{\alpha}(\nu,n-2,n-2,n),

where we put the sequence of positive weights smaller than n2n-2 by ν\nu. By Theorem 4.8, we have

Vol(I(VdVe))\displaystyle\operatorname{Vol}(I(V_{d}\otimes V_{e})) =gcd(2,n)sα(ν,n2,n2,n)sδ(ν,n2,n2,n)\displaystyle=\gcd(2,n)\frac{s_{\alpha}(\nu,n-2,n-2,n)}{s_{\delta}(\nu,n-2,n-2,n)}
gcd(2,n)12(n2)(n1)n.\displaystyle\leq\gcd(2,n)\frac{1}{2(n-2)(n-1)n}.

Theorem 4.11.

Let pp be a prime number. If the first and the pp-th multiplier map to the image

Λp:=λ1,(d,e)×λp,(d,e):Dynd,eΛ(Dynd,e)(Dd+e)×(DM)\Lambda^{\circ}_{p}:=\lambda^{\circ}_{1,(d,e)}\times\lambda^{\circ}_{p,(d,e)}:\operatorname{Dyn}_{d,e}\dashrightarrow\Lambda(\operatorname{Dyn}_{d,e})\subset\mathbb{P}(D_{d+e})\times\mathbb{P}(D_{M})

is finite, then its degree is at most

gcd(n,2)Nde+n3(n3)!(de3)!2n(de+n3)!,\frac{\gcd(n,2)N^{de+n-3}(n-3)!(de-3)!}{2n\cdot(de+n-3)!},

where

N:=2(d+e1)+2((dp1)(dpd)(ep1)(epe))p(de).N:=2(d+e-1)+\frac{2((d^{p}-1)(d^{p}-d)-(e^{p}-1)(e^{p}-e))}{p(d-e)}.
Proof.

We put A:=I(VdVe)A:=I(V_{d}\otimes V_{e}). Let L1L_{1} and LpL_{p} be the linear systems which gives λ1\lambda^{\circ}_{1} and λp\lambda^{\circ}_{p}. By Proposition 4.5, we can take the linear systems in AA such that whose degrees are respectively at most

2(d+e1) and 2((dp1)(dpd)(ep1)(epe))p(de).2(d+e-1)\text{ and }\frac{2((d^{p}-1)(d^{p}-d)-(e^{p}-1)(e^{p}-e))}{p(d-e)}.

By assumption and algebraic independence of discriminant-resultant [Gor15], we can take nn elements f1,,fnf_{1},\ldots,f_{n} in L1L_{1} and dimDynd,e(n1)=de2\dim\operatorname{Dyn}_{d,e}-(n-1)=de-2 elements g1,,gde2g_{1},\ldots,g_{de-2} in LmL_{m} to be algebraically independent.

Let k[L1Lp]Ak[L_{1}\otimes L_{p}]\to A be the morphism of graded kk-algebras defined by L1LpfgfgAL_{1}\otimes L_{p}\ni f\otimes g\mapsto fg\in A and B(1,p)B_{(1,p)} be its image. Then we have the degree of the morphism Λ\Lambda is the extension degree [KP(A):KP(B(1,p))][KP(A):KP(B_{(1,p)})] of rational function fields.

The graded subalgebra B(1,p)B:=k[figj1in, 1jde2]B_{(1,p)}\supset B:=k[f_{i}g_{j}\mid 1\leq i\leq n,\ 1\leq j\leq de-2] of AA has the Hilbert series

HB(t)=i=0(i+n1n1)(i+de3de3)tiN.H_{B}(t)=\sum_{i=0}^{\infty}\binom{i+n-1}{n-1}\binom{i+de-3}{de-3}t^{iN}.

By Corollary 3.6, we have

Vol(B)=1Nde+n3(de+n3)!(de3)!(n1)!.\displaystyle\operatorname{Vol}(B)=\frac{1}{N^{de+n-3}}\cdot\frac{(de+n-3)!}{(de-3)!(n-1)!}.

Therefore we have

[KP(A):KP(B(1,p))]\displaystyle[KP(A):KP(B_{(1,p)})] [KP(A):KP(B)]\displaystyle\leq[KP(A):KP(B)]
Vol(A)Vol(B)\displaystyle\leq\frac{\operatorname{Vol}(A)}{\operatorname{Vol}(B)}
gcd(n,2)2n(n1)(n2)Nde+n3(n1)!(de3)!(de+n3)!\displaystyle\leq\frac{\gcd(n,2)}{2n(n-1)(n-2)}\cdot\frac{N^{de+n-3}(n-1)!(de-3)!}{(de+n-3)!} (10)
=gcd(n,2)Nde+n3(n3)!(de3)!2n(de+n3)!\displaystyle=\frac{\gcd(n,2)N^{de+n-3}(n-3)!(de-3)!}{2n\cdot(de+n-3)!}

from Proposition 3.9. ∎

Remark 4.12.

By skipping Lemma 4.10, we can use

sδ(positive weights of VdVe)sα(positive weights of VdVe)\frac{s_{\delta}(\text{positive weights of }V_{d}\otimes V_{e})}{s_{\alpha}(\text{positive weights of }V_{d}\otimes V_{e})} (11)

instead of 1/2n(n1)(n2)1/2n(n-1)(n-2) in (10). Experimentally (11) looks like of order O(n(4+O(1)))O(n^{-(4+O(1))}), but this difference of orders may be very small comparing to Nde+d+e3N^{de+d+e-3}.

Remark 4.13.

From number of periodic orbit, and Holomorphic Lefschetz formula ([Ill77], [Got23]) for CC and Ψ2C\Psi_{2}C, the dimension of fiber of Λ2\Lambda_{2}^{\circ} is at least

(d+e1)+(d2d)+(e2e)21(de+d+e3)\displaystyle(d+e-1)+\frac{(d^{2}-d)+(e^{2}-e)}{2}-1-(de+d+e-3)
=(de)2(d+e)+22.\displaystyle=\frac{(d-e)^{2}-(d+e)+2}{2}. (12)

In particular, the map Λ2\Lambda_{2}^{\circ} can be generically finite to its image only if (de)2d+e2(d-e)^{2}\geq d+e-2.

5 Birationality of the Second Multiplier Map of Cubic Maps

In this section, we give two proofs of the following theorem.

Theorem 5.1.

The multiplier map Λ2,(1,3)\Lambda_{2,(1,3)} is birational to its image.

5.1 Finite field reduction

The counting of the degree of

Λ2:=λ1,(1,3)×λ2,(1,3):Dyn1,33×9\Lambda_{2}:=\lambda_{1,(1,3)}\times\lambda_{2,(1,3)}:\operatorname{Dyn}_{1,3}\to\mathbb{P}^{3}\times\mathbb{P}^{9}

to its image is done in [HT13] by the following method. First, we fix a point Pλ1(Dyn1,3)P\in\lambda_{1}(\operatorname{Dyn}_{1,3}) and consider the inverse image l:=λ11(P)l:=\lambda_{1}^{-1}(P). An explicit morphism ϕP:1Corr1,3\phi_{P}:\mathbb{P}^{1}\to\operatorname{Corr}_{1,3} such that ll is birational to the image of 1ϕPCorr1,3𝜋Dyn1,3\mathbb{P}^{1}\xrightarrow{\phi_{P}}\operatorname{Corr}_{1,3}\xrightarrow{\pi}\operatorname{Dyn}_{1,3} is given in [HT13]. We denote the endomorphism on 1\mathbb{P}^{1} indicated by the point ϕP(a)\phi_{P}(a) by ϕP,a\phi_{P,a}. Then we will solve the equations in the two variables aa and bb,

ϕP,a2(b)\displaystyle\phi_{P,a}^{2}(b) =b\displaystyle=b (13)
(ϕP,a2)(b)\displaystyle(\phi_{P,a}^{2})^{\prime}(b) =λ\displaystyle=\lambda (14)
ϕP,a(b)\displaystyle\phi_{P,a}(b) b\displaystyle\neq b (15)

for a given PP and λ\lambda. The equations (13) and (14) are of degree 9 and 16 respectively, in variables aa and bb. By a MAGMA computation over a finite field, we obtain the solutions as a 0-dimensional closed subscheme ZZ of degree 144 on 2\mathbb{P}^{2}. Under a base-change to the algebraically closed field, the support of ZZ consists of 18 points. Six of them are non-reduced and does not satisfy the inequality (15). Remaining 12 points satisfies (15), moreover the MAGMA computation shows that they are reduced.

That was the computation done in [HT13]. We proceed computation from here. At first, we note that for a solution (a,b)(a,b) of (13),(14) and (15), the points (a,ϕP,a(b))(a,\phi_{P,a}(b)) is also a solution of equation. Therefore, we obtain 6 rational maps ϕP,a\phi_{P,a} with periodic points of period two. For a value λ\lambda, the solutions are given by explicit values of (a,b)(a,b). For the 6 rational maps, we compute other multipliers of periodic points of period 2. Then we obtain that the values of other multipliers are mutually different, so we obtain that Λ3,2\Lambda_{3,2} is injective.

5.2 Direct computation with Graded-decomposition and interpolation

In this section, we show Theorem 5.1 by computing the full formula of the second multiplier map Λ2,(1,3)\Lambda^{\circ}_{2,(1,3)}.

In the computational process of the explicit expression, we use the information that the resulting polynomials are SL2\operatorname{SL}_{2}-invariant. Our algorithm (Subsection A.2) of graded-piece-wise computation is applied for limited cases, but this method makes the computation much faster.

We refer the expression of generators of the invariant ring A:=I(V1V3)=I(V4V2)A:=I(V_{1}\otimes V_{3})=I(V_{4}\oplus V_{2}) given in [Wes15]. The invariant ring is given by

Ak[d,i,j,a,b,c]/r,A\simeq k[d,i,j,a,b,c]/r,

where d,i,j,a,b,cd,i,j,a,b,c are generators of degree respectively 2,2,3,3,4,62,2,3,3,4,6 and rr is the relation

2c2=154d3i319d3j2112di2a213ja3+djab+12ia2b12dib2b3.2c^{2}=\frac{1}{54}d^{3}i^{3}-\frac{1}{9}d^{3}j^{2}-\frac{1}{12}di^{2}a^{2}-\frac{1}{3}ja^{3}+djab+\frac{1}{2}ia^{2}b-\frac{1}{2}dib^{2}-b^{3}.

Let f4(z)f_{4}(z) and f2(z)f_{2}(z) be the fundamental covariants of V4V_{4} and V2V_{2} respectively (denoted by 𝐟\mathbf{f} and 𝐠\mathbf{g} in [Wes15] respectively). By [Got23, Remark 7.6], the first multiplier map λ1\lambda_{1} is given by the linear system consists of discriminant-resultants (named in [Got22])

σr:=DR4,r(f4,f2)(r=0,2,3,4) of degree (6r,r),\sigma_{r}:=DR_{4,r}(f_{4},f_{2})\ (r=0,2,3,4)\text{ of degree }(6-r,r),

which are defined by

r=04DR4,r(f4,f2)tr=resz(f4,zf4+zf2t).\sum_{r=0}^{4}DR_{4,r}(f_{4},f_{2})t^{r}=\operatorname{res}_{z}(f_{4},\partial_{z}f_{4}+zf_{2}t).

We put

Σ±:=σ0+σ2±σ3+σ4.\Sigma_{\pm}:=\sigma_{0}+\sigma_{2}\pm\sigma_{3}+\sigma_{4}.

By Proposition 4.5, we can have a linear system of λ2\lambda_{2}^{\circ} of degree at most 24. Let

L2(t):=resz(Π2f(z),dzΩ0(Ψ2f)(z)+tΩ1(Ψ2f)(z)).L_{2}(t):=\operatorname{res}_{z}(\Pi_{2}^{*}f(z),d_{z}\Omega^{0}(\Psi_{2}f)(z)+t\cdot\Omega^{1}(\Psi_{2}f)(z)).

In this case, L2(t)L_{2}(t) has a divisor Σ4\Sigma_{-}^{4} and we can take a square root of L2(t)/Σ4L_{2}(t)/\Sigma_{-}^{4}. We put the square root of L2(t)L_{2}(t) as

L2(t)=:δ(t)=:δ0+δ1t+δ2t2+δ3t3.\sqrt{L_{2}(t)}=:\delta(t)=:\delta_{0}+\delta_{1}t+\delta_{2}t^{2}+\delta_{3}t^{3}.

The forms δi\delta_{i}’s are invariants in AA of degree (4846)/2=12(48-4\cdot 6)/2=12. We have

δ02Σ4\displaystyle\delta_{0}^{2}\cdot\Sigma_{-}^{4} =resz(Π2f(z),dzΩ0(Ψ2f)(z))\displaystyle=\operatorname{res}_{z}(\Pi_{2}^{*}f(z),d_{z}\Omega^{0}(\Psi_{2}f)(z))
=Δz(Π2f(z))resz(Π2f(z),Π1f(z))\displaystyle=\Delta_{z}(\Pi_{2}^{*}f(z))\cdot\operatorname{res}_{z}(\Pi_{2}^{*}f(z),\Pi_{1}^{*}f(z))

and by a direct computation we obtain

Δz(Π2f(z))\displaystyle\Delta_{z}(\Pi_{2}^{*}f(z)) =Σ+Σ2ϕ2 and\displaystyle=\Sigma_{+}\cdot\Sigma_{-}^{2}\cdot\phi^{2}\text{ and }
resz(Π2f(z),Π1f(z))\displaystyle\operatorname{res}_{z}(\Pi_{2}^{*}f(z),\Pi_{1}^{*}f(z)) =Σ+Σ2, where\displaystyle=\Sigma_{+}\cdot\Sigma_{-}^{2}\text{, where}
ϕ\displaystyle\phi =227(d312d2i+48di264i3+384j2+288ja+54a2),\displaystyle=2^{-27}\cdot(d^{3}-12d^{2}i+48di^{2}-64i^{3}+384j^{2}+288ja+54a^{2}),

so we have δ0=±Σ+ϕ\delta_{0}=\pm\Sigma_{+}\cdot\phi. By fixing the sign to be ++, we can compute δ(t)\delta(t) and obtain

δ1=12(9σ0+σ2+6σ3+11σ4)ϕ,δ2,δ3A12.\displaystyle\delta_{1}=-\frac{1}{2}(-9\sigma_{0}+\sigma_{2}+6\sigma_{3}+11\sigma_{4})\cdot\phi,\delta_{2},\delta_{3}\in A_{12}. (16)

Here we remark that

K2:=K(Λ2(Dyn1,3))=k(σiσj,δiδj)KP(A).K_{2}:=K(\Lambda_{2}(\operatorname{Dyn}_{1,3}))=k\left(\frac{\sigma_{i}}{\sigma_{j}},\frac{\delta_{i}}{\delta_{j}}\right)\subset KP(A).

So we start from the algebra

B1:=k[σiϕ(i=0,2,3,4),δ2,δ3](A)B_{1}:=k[\sigma_{i}\cdot\phi(i=0,2,3,4),\delta_{2},\delta_{3}](\subset A)

to larger sub-graded-algebras of AA with keeping the condition KP(Bi)=K2KP(B_{i})=K_{2}. By seeking factorizable linear combinations of the generators of B1B_{1}, we find

δ2+ϕ(10σ0+σ2+10σ3)=Σψ,\displaystyle\delta_{2}+\phi(-10\sigma_{0}+\sigma_{2}+10\sigma_{3})=\Sigma_{-}\cdot\psi,
where ψ=1231(26048i3+9936i2d884id2+7d3\displaystyle\text{where }\psi=\frac{1}{2^{31}}(-26048i^{3}+9936i^{2}d-884id^{2}+7d^{3}
102912j238784ja72a29600ib+2400db) and\displaystyle\hskip 80.0pt-102912j^{2}-38784ja-72a^{2}-9600ib+2400db)\text{ and}
(δ2+δ3)12(11σ0+σ24σ39σ4)ϕ=53219(Σ+2σ3)(Σ2σ3).\displaystyle(\delta_{2}+\delta_{3})-\frac{1}{2}(11\sigma_{0}+\sigma_{2}-4\sigma_{3}-9\sigma_{4})\phi=\frac{5^{3}}{2^{19}}(\Sigma_{-}+\sqrt{2}\sigma_{3})(\Sigma_{-}-\sqrt{2}\sigma_{3}).

Therefore, we can replace B1B_{1} by

B2:=k[σi,ϕ,ψ].B_{2}:=k[\sigma_{i},\phi,\psi].

By computing the elimination ideal of generators of B2B_{2}, we obtain that the only relation among the generators is only a relation of degree 6060 (degree 1010 polynomial of σi,ϕ,ψ\sigma_{i},\phi,\psi), so we can see that the Hilbert series of B2B_{2} is given by

HB2(t)=1t60(1t6)6.H_{B_{2}}(t)=\frac{1-t^{60}}{(1-t^{6})^{6}}.

Here we have

HA(t)\displaystyle H_{A}(t) =1+t6(1t2)2(1t3)2(1t4).\displaystyle=\frac{1+t^{6}}{(1-t^{2})^{2}(1-t^{3})^{2}(1-t^{4})}.

We recall that for any graded algebra CC, C[n]:=i0CinC^{[n]}:=\bigoplus_{i\geq 0}C_{in} with degCin=i\deg C_{in}=i. By a direct computation, we have

HA[6](t)\displaystyle H_{A^{[6]}}(t) =(1+t)(1+5t+9t2+4t3)(1t)4(1t2) and HB2[6](t)=1t10(1t)6.\displaystyle=\frac{(1+t)(1+5t+9t^{2}+4t^{3})}{(1-t)^{4}(1-t^{2})}\text{ and }H_{B_{2}^{[6]}}(t)=\frac{1-t^{10}}{(1-t)^{6}}.

By Proposition 3.9, we have

deg(Λ2)=[KP(A[6]):KP(B2[6])]Vol(A[6])Vol(B2[6])=95,\deg(\Lambda_{2})=[KP(A^{[6]}):KP(B_{2}^{[6]})]\leq\frac{\operatorname{Vol}(A^{[6]})}{\operatorname{Vol}(B_{2}^{[6]})}=\frac{9}{5},

this shows that deg(Λ2)=1\deg(\Lambda_{2})=1.

Remark 5.2.

Throughout this ad hoc proof, there are three steps completed unexpectedly easily. The first is that there are factorizable linear combinations including δ2\delta_{2} and δ3\delta_{3}. The second is that a linear combination moreover belongs to k[σi]12k[\sigma_{i}]_{12}. The third is that the relation among σi,ϕ,ψ\sigma_{i},\phi,\psi was of degree 60. Because of this small degree (the expected degree from the Hilbert series is 108), we can obtain the result in a few minutes by simply computing the elimination ideal. Moreover, this degree is also the lower bound to determine the extension degree to be 11.

Appendix A Appendix: Programs

A.1 Programs used in Subsection 5.1

The MAGMA program run in [HT13] were the following.

  • l0:=3;
    l1:=2;
    l8:=4;
    lB:=-5;
    R<a,B,z>:=ProjectiveSpace(GF(101),2);
    function h(P,d) Q:=0;
    for i:=0 to d do for j:=0 to d-i do Q:=Q+ Term(Term(P,a,i),B,j)*z^(d-i-j);
    end for;
    end for;
    return(Q);
    end function;
    function f(x,y) return((((l0 - 1)*l1 + (-l0 + 1))*x^3 + ((a*l0*l1 + (-l0 + (-a + 1)))*l8 + (((-a - 1)*l0 +1)*l1 + (2*l0 + (a - 2))))*x^2*y + ((-a*l0*l1 + a*l0)*l8 + (a*l0*l1 - a*l0))*x*y^2));
    end function;
    function g(x,y) return((((l0 - 1)*l1 + (-l0 + 1))*l8*x^2*y + (((-l0 + (a + 1))*l1 + (a*l0 - 2*a))*l8 + (-a*l1 + ((-a + 1)*l0 +(2*a - 1))))*x*y^2 + ((-a*l1 + a)*l8 + (a*l1 - a))*y^3));
    end function;
    f1:=f(f(B,1),g(B,1));
    g1:=g(f(B,1),g(B,1));
    F1:=f1-B*g1;
    F2:=g1*Derivative(f1,B) - f1*Derivative(g1,B) - lB*g1*g1;
    G1:=h(F1,9);
    G2:=h(F2,16);
    C:=Scheme(R,[G1,G2]);
    D:=ReducedSubscheme(C);
    Degree(D);

After running this computation, we firstly compute the coordinates of the points of DD.

  • PointsOverSplittingField(D);
    Output:
    {@ (0 : 0 : 1), (0 : 4 : 1), (1 : 1 : 1), (1 : 49 : 1), (4 : 93*$.1^7 + 44*$.1^6 + 24*$.1^5 + 23*$.1^4 + 48*$.1^3 + 26*$.1^2 + 65*$.1 + 90 : 1), (4 : 8*$.1^7 + 57*$.1^6 + 77*$.1^5 + 78*$.1^4 + 53*$.1^3 + 75*$.1^2 + 36*$.1 + 79 : 1), (96 : 27 : 1), (96 : 6 : 1), (18*$.1^7 + 50*$.1^6 + 68*$.1^5 + 24*$.1^4 + 59*$.1^3 + 22*$.1^2 + 93*$.1 + 93 : 55*$.1^7 + 55*$.1^6 + 80*$.1^5 + 72*$.1^4 + 5*$.1^3 + 89*$.1^2 + 52*$.1 + 10 : 1), (18*$.1^7 + 50*$.1^6 + 68*$.1^5 + 24*$.1^4 + 59*$.1^3 + 22*$.1^2 + 93*$.1 + 93 : 15*$.1^7 + 56*$.1^6 + 83*$.1^5 + 3*$.1^4 + 62*$.1^3 + 95*$.1^2 + 21*$.1 + 80 : 1), (14*$.1^7 + 52*$.1^6 + 48*$.1^5 + 18*$.1^4 + 53*$.1^3 + 62*$.1^2 + 42*$.1 + 50 : 70*$.1^7 + 7*$.1^6 + 3*$.1^5 + 27*$.1^4 + 47*$.1^3 + 32*$.1^2 + 64*$.1 + 28 : 1), (14*$.1^7 + 52*$.1^6 + 48*$.1^5 + 18*$.1^4 + 53*$.1^3 + 62*$.1^2 + 42*$.1 + 50 : 88*$.1^7 + 85*$.1^6 + 73*$.1^5 + 50*$.1^4 + 65*$.1^3 + 59*$.1^2 + 96*$.1 + 70 : 1), (75*$.1^7 + 95*$.1^6 + 57*$.1^5 + 100*$.1^4 + 90*$.1^3 + 4*$.1^2 + 73*$.1 + 55 : 5*$.1^7 + 72*$.1^6 + 70*$.1^5 + 39*$.1^4 + 32*$.1^3 + 31*$.1^2 + 74*$.1 + 26 : 1), (75*$.1^7 + 95*$.1^6 + 57*$.1^5 + 100*$.1^4 + 90*$.1^3 + 4*$.1^2 + 73*$.1 + 55 : 86*$.1^7 + 93*$.1^6 + 92*$.1^5 + 67*$.1^4 + 46*$.1^3 + 95*$.1^2 + 22*$.1 + 78 : 1), (95*$.1^7 + 5*$.1^6 + 29*$.1^5 + 60*$.1^4 + 13*$.1^2 + 95*$.1 + 87 : 66*$.1^7 + 33*$.1^6 + 62*$.1^5 + 50*$.1^4 + 83*$.1^3 + 87*$.1^2 + 29*$.1 + 25 : 1), (95*$.1^7 + 5*$.1^6 + 29*$.1^5 + 60*$.1^4 + 13*$.1^2 + 95*$.1 + 87 : 19*$.1^7 + 3*$.1^6 + 42*$.1^5 + 96*$.1^4 + 64*$.1^3 + 17*$.1^2 + 46*$.1 + 2 : 1), (47 : 1 : 0), (1 : 0 : 0) @}
    Finite field of size 101^8

These are the coordinates (a:b:z)(a:b:z) of the solutions of (14) and (13) on 2\mathbb{P}^{2}, with the homogenizing variable zz. The parameters aa of 12 reduced points, consisted of 6 values as expected are the following.

  • {4,96,18*$.1^7 + 50*$.1^6 + 68*$.1^5 + 24*$.1^4 + 59*$.1^3 + 22*$.1^2 + 93*$.1 + 93, 14*$.1^7 + 52*$.1^6 + 48*$.1^5 + 18*$.1^4 + 53*$.1^3 + 62*$.1^2 + 42*$.1 + 50, 75*$.1^7 + 95*$.1^6 + 57*$.1^5 + 100*$.1^4 + 90*$.1^3 + 4*$.1^2 + 73*$.1 + 55, 95*$.1^7 + 5*$.1^6 + 29*$.1^5 + 60*$.1^4 + 13*$.1^2 + 95*$.1 + 87},

The multipliers are given by:

  • l0:=3;
    l1:=2;
    l8:=4;
    lB:=-5;

    F<w>:= GF(101,8);
    R<a,B,z>:=PolynomialRing(F,3);

    function f(x,y)
    return((((l0 - 1)*l1 + (-l0 + 1))*x^3 + ((a*l0*l1 + (-l0 + (-a + 1)))*l8 + (((-a - 1)*l0 +1)*l1 + (2*l0 + (a - 2))))*x^2*y + ((-a*l0*l1 + a*l0)*l8 + (a*l0*l1 - a*l0))*x*y^2));
    end function;
    function g(x,y)
    return((((l0 - 1)*l1 + (-l0 + 1))*l8*x^2*y + (((-l0 + (a + 1))*l1 + (a*l0 - 2*a))*l8 + (-a*l1 + ((-a + 1)*l0 +(2*a - 1))))*x*y^2 + ((-a*l1 + a)*l8 + (a*l1 - a))*y^3));
    end function;
    f2:=f(f(B,1),g(B,1));
    g2:=g(f(B,1),g(B,1));
    F2:=f2-B*g2;
    redF2:=R!(F2/(f(B,1) - B * g(B,1)));
    dF2:=g2*Derivative(f2,B) - f2*Derivative(g2,B) - z*g2*g2;

    function mult(c);
    return(Resultant(Evaluate(redF2,a,c),Evaluate(dF2,a,c),B));
    end function;

    result:
    > Factorization(mult(4));
    [ <z + 5, 2>, <z + 50, 2>, <z + 90, 2> ]
    > Factorization(mult(96));
    [ <z + 5, 2>, <z + 26, 2>, <z + 66, 2> ]
    > Factorization(mult(18*w^7 + 50*w^6 + 68*w^5 + 24*w^4 + 59*w^3 + 22*w^2 + 93*w + 93));
    [ <z + 5, 2>, <z + 78*w^7 + 93*w^6 + 47*w^5 + 57*w^4 + 23*w^3 + 80*w^2 + 73*w + 52, 2>, <z + 70*w^7 + 79*w^6 + 53*w^5 + 6*w^4 + 42*w^3 + 86*w^2 + 96*w + 53, 2> ]
    > Factorization(mult(14*w^7 + 52*w^6 + 48*w^5 + 18*w^4 + 53*w^3 + 62*w^2 + 42*w + 50));
    [ <z + 5, 2>, <z + 60*w^7 + 98*w^6 + 74*w^4 + 4*w^3 + 24*w^2 + 24*w + 21, 2>, <z + 27*w^7 + 14*w^6 + 59*w^5 + 73*w^4 + 55*w^3 + 12*w^2 + 37*w + 11, 2> ]
    > Factorization(mult(75*w^7 + 95*w^6 + 57*w^5 + 100*w^4 + 90*w^3 + 4*w^2 + 73*w + 55));
    [ <z + 5, 2>, <z + 100*w^7 + 39*w^6 + 25*w^5 + 12*w^4 + 20*w^3 + 99*w^2 + 21*w + 73, 2>, <z + 84*w^7 + 84*w^6 + 91*w^5 + 31*w^4 + 44*w^3 + 70*w^2 + 92*w + 13, 2> ]
    > Factorization(mult(95*w^7 + 5*w^6 + 29*w^5 + 60*w^4 + 13*w^2 + 95*w + 87));
    [ <z + 5, 2>, <z + 89*w^7 + 42*w^6 + 58*w^5 + 91*w^4 + 11*w^3 + 22*w^2 + 91*w + 80, 2>, <z + 98*w^7 + 56*w^6 + 71*w^5 + 60*w^4 + 3*w^3 + 11*w^2 + 71*w + 81, 2> ]

This computation shows the other multipliers of period two orbits are mutually different for the six solutions of (13).

A.2 An algorithm for Subsection 5.2

In order to make up block-decomposed interpolation matrix, we used the following algorithm. The program file written by SAGE[The22] is attached, or at [Got].

Algorithm 1 Degree-wise random-sampling interpolation method (probabilistic)
0:  
  Algorithms to compute g1,g2,,gβg_{1},g_{2},\ldots,g_{\beta} and H=h(g1,,gβ)H=h(g_{1},\ldots,g_{\beta}),
  the set of monomials M={𝐲𝐝|𝐝{𝐝1,,𝐝l}}M=\left\{\left.\mathbf{y}^{\mathbf{d}}\right|\mathbf{d}\in\{\mathbf{d}_{1},\ldots,\mathbf{d}_{l}\}\right\}
  such that h=c𝐝𝐲𝐝(c𝐝β)h=\sum c_{\mathbf{d}}\mathbf{y}^{\mathbf{d}}\ (c_{\mathbf{d}}\in\mathbb{Q}^{\beta})
  A map σ:[n][m]\sigma:[n]\to[m] such that gi(a1xσ(1),,anxσ(n))g_{i}(a_{1}x_{\sigma(1)},\ldots,a_{n}x_{\sigma(n)}) is a monomial with coefficient for each gig_{i} and 𝐚n\mathbf{a}\in\mathbb{Q}^{n}.
  [Probably] The polynomial h(y1,,yβ)h(y_{1},\ldots,y_{\beta})
  Separate MM by the degree of (𝐠(𝐱σ))𝐝\left(\mathbf{g}(\mathbf{x_{\sigma}})\right)^{\mathbf{d}} into M1,,MpM_{1},\ldots,M_{p}
  lp:=max#Mil_{p}:=\max\#M_{i}
  for  jj from 1 to lp+ll_{p}+l^{\prime} do
     Take a random vector 𝐚jn\mathbf{a}_{j}\in\mathbb{Q}^{n}
     Compute H(𝐚j𝐱σ)H(\mathbf{a}_{j}\mathbf{x_{\sigma}})
     Compute gi(𝐚j)g_{i}(\mathbf{a}_{j})’s and 𝐠(𝐚j)𝐝\mathbf{g}(\mathbf{a}_{j})^{\mathbf{d}}
  end for
  for  kk from 1 to pp do
     Let Hj,kH_{j,k} be the coefficient of the term of degree 𝐠(𝐱σ)𝐝\mathbf{g}(\mathbf{x}_{\sigma})^{\mathbf{d}} of H(𝐚j𝐱σ)H(\mathbf{a}_{j}\mathbf{x}_{\sigma}) for 𝐝\mathbf{d} in MkM_{k}
     Solve the system of linear equations Hj,k=𝐝Mkc𝐝𝐠(𝐚j)𝐝(j=1,,lp+l)H_{j,k}=\sum_{\mathbf{d}\in M_{k}}c_{\mathbf{d}}\mathbf{g}(\mathbf{a}_{j})^{\mathbf{d}}\ (j=1,\ldots,l_{p}+l^{\prime}) for c𝐝c_{\mathbf{d}}’s.
  end for
  h(𝐲)=𝐝Mc𝐝𝐲𝐝h(\mathbf{y})=\sum_{\mathbf{d}\in M}c_{\mathbf{d}}\mathbf{y}^{\mathbf{d}}.

In our case, we only use addition and multiplication of the polynomials degree less than HH to compute HH, so the numbers of terms appears in the computation are O(p)O(p), thus it costs O(p2tH)O(p^{2}t_{H}) to compute H(𝐚j𝐱σ)H(\mathbf{a}_{j}\mathbf{x_{\sigma}}) par once. Therefore, the computational complexity of we have O(lpp2tH+lpcp)=O(N(ptH+lpc1))O(l_{p}p^{2}t_{H}+l_{p}^{c}p)=O(N(pt_{H}+l_{p}^{c-1})). In our case lp=70l_{p}=70 and the constants are sufficiently small. Moreover, we set l=5l^{\prime}=5 in the computation.

A.3 Data for Subsection 5.2

Explicit formula of δ2\delta_{2} and δ3\delta_{3} are

δ2=\displaystyle\delta_{2}= 12313(306d5i2072d4i220544d3i3+300800d2i41691136di5\displaystyle\frac{-1}{2^{31}\cdot 3}(306d^{5}i-2072d^{4}i^{2}-20544d^{3}i^{3}+300800d^{2}i^{4}-1691136di^{5}
+3483648i6+96192d3j21286400d2ij2+10146816di2j216920576i3j2\displaystyle+3483648i^{6}+96192d^{3}j^{2}-1286400d^{2}ij^{2}+10146816di^{2}j^{2}-16920576i^{3}j^{2}
+1008d3ja+42432d2ija+1430784di2ja4451328i3ja+459d3a2\displaystyle+1008d^{3}ja+42432d^{2}ija+1430784di^{2}ja-4451328i^{3}ja+459d^{3}a^{2}
+14316d2ia26768di2a2775104i3a21836d4b+6624d3ib\displaystyle+14316d^{2}ia^{2}-6768di^{2}a^{2}-775104i^{3}a^{2}-1836d^{4}b+6624d^{3}ib
+173568d2i2b1850880di3b+4672512i4b23887872j410616832j3a\displaystyle+173568d^{2}i^{2}b-1850880di^{3}b+4672512i^{4}b-23887872j^{4}-10616832j^{3}a
156672j2a2+244224ja3+26136a4589824dj2b+9289728ij2b\displaystyle-156672j^{2}a^{2}+244224ja^{3}+26136a^{4}-589824dj^{2}b+9289728ij^{2}b
672768djab+4202496ijab111744da2b+39168ia2b+28800d2b2\displaystyle-672768djab+4202496ijab-111744da^{2}b+39168ia^{2}b+28800d^{2}b^{2}
460800dib2+1382400i2b22208d3c+103296d2ic1027584di2c\displaystyle-460800dib^{2}+1382400i^{2}b^{2}-2208d^{3}c+103296d^{2}ic-1027584di^{2}c
+2598912i3c+9289728j2c+3280896jac76032a2c230400dbc+921600ibc),\displaystyle+2598912i^{3}c+9289728j^{2}c+3280896jac-76032a^{2}c-230400dbc+921600ibc),
δ3=\displaystyle\delta_{3}= 123133(1458d5i+2904d4i243072d3i3+2453760d2i411570688di5\displaystyle\frac{1}{2^{31}\cdot 3^{3}}(1458d^{5}i+2904d^{4}i^{2}-43072d^{3}i^{3}+2453760d^{2}i^{4}-11570688di^{5}
+40310784i6358464d3j210056960d2ij2+69424128di2j2259780608i3j2\displaystyle+40310784i^{6}-358464d^{3}j^{2}-10056960d^{2}ij^{2}+69424128di^{2}j^{2}-259780608i^{3}j^{2}
1296d3ja730944d2ija+12379392di2ja58973184i3ja+2187d3a2\displaystyle-1296d^{3}ja-730944d^{2}ija+12379392di^{2}ja-58973184i^{3}ja+2187d^{3}a^{2}
+100188d2ia2730224di2a21881792i3a28748d4b95328d3ib\displaystyle+100188d^{2}ia^{2}-730224di^{2}a^{2}-1881792i^{3}a^{2}-8748d^{4}b-95328d^{3}ib
+2674944d2i2b20113920di3b+82861056i4b+107495424j4+17915904j3a\displaystyle+2674944d^{2}i^{2}b-20113920di^{3}b+82861056i^{4}b+107495424j^{4}+17915904j^{3}a
3856896j2a22521728ja3+143748a4+18413568dj2b161243136ij2b\displaystyle-3856896j^{2}a^{2}-2521728ja^{3}+143748a^{4}+18413568dj^{2}b-161243136ij^{2}b
+8280576djab21399552ijab693792da2b+5664384ia2b+475200d2b2\displaystyle+8280576djab-21399552ijab-693792da^{2}b+5664384ia^{2}b+475200d^{2}b^{2}
12787200dib2+43545600i2b2+7776d3c+1173888d2ic7921152di2c\displaystyle-12787200dib^{2}+43545600i^{2}b^{2}+7776d^{3}c+1173888d^{2}ic-7921152di^{2}c
+49268736i3c6912000b371663616j2c3981312jac+1672704a2c\displaystyle+49268736i^{3}c-6912000b^{3}-71663616j^{2}c-3981312jac+1672704a^{2}c
5529600dbc+49766400ibc).\displaystyle-5529600dbc+49766400ibc).

The relation among σi,ϕ,ψ\sigma_{i},\phi,\psi has 1261 terms. The data is attached, or at [Got].

References

  • [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The magma algebra system i: The user language, Journal of Symbolic Computation 24 (1997), no. 3-4, 235–265.
  • [dCCPHHS20] Pedro de Carvalho Cayres Pinto, Hans-Christian Herbig, Daniel Herden, and Christopher Seaton, The hilbert series of sl 2-invariants, Communications in Contemporary Mathematics 22 (2020), no. 07, 1950017.
  • [DK15] Harm Derksen and Gregor Kemper, Computational invariant theory, Encyclopaedia of Mathematical Sciences 130. Invariant Theory and Algebraic Transformation Groups VIII, Springer, 2015, Second enlarged edition. With two appendices by Vladimir L. Popov, and an addendum by Norbert A’Campo and Popov.
  • [DM06] Valery Dolotin and Alexei Yurievich Morozov, The universal mandelbrot set: Beginning of the story, World Scientific, 2006.
  • [ESW03] David Eisenbud, Frank-Olaf Schreyer, and Jerzy Weyman, Resultants and chow forms via exterior syzygies, Journal of the American Mathematical Society 16 (2003), no. 3, 537–579.
  • [Fuj06] Masayo Fujimura, Projective moduli space for the polynomials, Dynamics of Continuous, Discrete and Impulsive Systems Series A 13 (2006), no. 6, 787.
  • [Fuj07]  , The moduli space of rational maps and surjectivity of multiplier representation, Computational Methods and Function Theory 7 (2007), 345–360.
  • [Gor15] Igors Gorbovickis, Algebraic independence of multipliers of periodic orbits in the space of rational maps of the riemann sphere, Moscow Mathematical Journal 15 (2015), no. 1, 73–87.
  • [Got] Rin Gotou, Program files of “dynamical systems of correspondences on the projective line ii: Number of isospectral maps”, https://github.com/Rin-Gotou/dyn_corr_p1_II_multiplier_map.
  • [Got22]  , Bracket polynomial expression of discriminant-resultants as sl2sl_{2}-invariant, arXiv preprint arXiv:2211.15862 (2022).
  • [Got23]  , Dynamical systems of correspondences on the projective line i: Moduli spaces and multiplier maps, Conformal Geometry and Dynamics of the American Mathematical Society 27 (2023), no. 08, 294–321.
  • [HT13] Benjamin Hutz and Michael Tepper, Multiplier spectra and the moduli space of degree 3 morphisms on 1\mathbb{P}^{1}, JP Journal of Algebra, Number Theory and Applications 29 (2013), no. 2, 189–206.
  • [Hut21] Benjamin Hutz, Errata for multiplier spectra and the moduli space of degree 3 morphisms on 1\mathbb{P}^{1}, 2021, https://mathstat.slu.edu/~hutzba/multipliers_errata.pdf.
  • [Ill77] Luc Illusie, Séminaire de géométrie algébrique du bois-marie 1965–66 - cohomologie l-adique et fonctions l - (sga 5), Lecture Notes in Mathematics (1977), 252.
  • [JX23] Zhuchao Ji and Junyi Xie, The multiplier morphism is generically injective, 2023.
  • [Liu06] Qing Liu, Algebraic geometry and arithmetic curves, Translated from the French by Reinie Erné. Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, 2006.
  • [McM87] Curt McMullen, Families of rational maps and iterative root-finding algorithms, Annals of Mathematics 125 (1987), no. 1, 467–493.
  • [Mil93] John Milnor, Geometry and dynamics of quadratic rational maps, Experimental mathematics 2 (1993), no. 1, 37–83, With an appendix by the author and Lei Tan.
  • [Oli17] Marc Olive, About gordan’s algorithm for binary forms, Foundations of Computational Mathematics 17 (2017), 1407–1466.
  • [Pra19] Amritanshu Prasad, An introduction to schur polynomials, Graduate Journal of Mathematics 4 (2019), 62–84.
  • [Sch16] Johannes Schmitt, A compactification of the moduli space of self-maps of 1\mathbb{CP}^{1} via stable maps, arXiv preprint arXiv:1604.08917v1 (2016).
  • [Sil98] Joseph H Silverman, The space of rational maps on 1\mathbb{P}^{1}, Duke mathematical journal 94 (1998), 41–77.
  • [Sil07]  , The arithmetic of dynamical systems, Graduate Texts in Mathematics 241 (2007).
  • [Sug17] Toshi Sugiyama, The moduli space of polynomial maps and their fixed-point multipliers, Advances in Mathematics 322 (2017), 132–185.
  • [Sug20]  , The moduli space of polynomial maps and their holomorphic indices: I. generic properties in the case of having multiple fixed points, arXiv preprint arXiv:2009.11815 (2020).
  • [The22] The Sage Developers, SageMath, the Sage Mathematics Software System, 2022, DOI 10.5281/zenodo.6259615.
  • [Wes15] Lloyd William West, The moduli space of rational maps, Ph.D. thesis, City University of New York, 2015, p. 88.