This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Edge states in super honeycomb structures with ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetric deformations

Ying Cao Yau Mathematical Sciences Center, Tsinghua Unversity, Beijing, 100084, China (caoy20@mails.tsinghua.edu.cn). โ€ƒโ€ƒ Yi Zhu Yau Mathematical Sciences Center, Tsinghua Unversity, Beijing, 100084, China, and Beijing Institute of Mathematical Sciences and Applications, Beijing, 101408, China(yizhu@tsinghua.edu.cn).
Abstract

The existence of edge states is one of the most vital properties of topological insulators. Although tremendous success has been accomplished in describing and explaining edge states associated with ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry breaking, little work has been done on ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry preserving cases. Two-dimensional Schrรถdinger operators with super honeycomb lattice potentials always have double Dirac cones at the ฮ“\Gamma point โ€“ the zero momentum point on their energy bands due to a rotation symmetry, ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry, and the โ€œfoldingโ€ symmetry โ€“ caused by an additional translation symmetry. There are two topologically different ways to deform such a system by ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry preserving but folding symmetry breaking perturbations. Interestingly, there exist two gapped edge states on the interface between such two kinds of perturbed materials. In this paper, we illustrate the existence of such ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} preserving edge states rigorously for the first time. We use a domain wall modulated Schrรถdinger operator to model the phenomenon under small perturbations and rigorously prove the existence of two gapped edge states. We also provide topological interpretations from the point of view of local topological charges and the parities of degenerate bulk modes. Our work thoroughly explains the existence of โ€œhelicalโ€ like edge states in super honeycomb configurations and lays a foundation for the descriptions of topologies of such systems.

Keywords: super honeycomb lattice potentials; edge states; ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry; Schrรถdinger operator.

AMS Subject Classification: 35C20, 35P99, 35Q40, 35Q60

1 Introduction and notations

1.1 Introduction

The existence of interface conducting states is one of the most significant properties of topological insulators [18, 20]. It originates in certain energy gaps caused by symmetry breaking in the bulk. In the past two decades, there have been many efforts made to reveal the underlying mechanism of interface conducting states, mainly on the edge states caused by ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry breaking [14, 13, 11, 19]. However, physicists also find edge states in two-dimensional ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetric materials [29]. In this paper, we model such phenomena by analyzing the spectral properties of a domain wall modulated Schrรถdinger operator.

One of the typical lattices whose deformed bulk has interface conducting states is the honeycomb lattice. The honeycomb lattice structure obsesses single Dirac cones at KK and Kโ€ฒK^{\prime} points and chiral edge states after time-reversal symmetry breaking [1, 14, 13, 9, 11]. The most famous paradigm is graphene, a two-dimensional topological material [18]. Around 2015, a new way to deform the honeycomb lattice has been reported [29, 30, 31]. They considered the lattice in a supercell so that it has folding symmetry - caused by smaller periods than the supercell lattice. We call it a super honeycomb lattice in our previous work [8]. This new highly symmetric structure has fourfold degeneracy and a double Dirac cone at the ฮ“\Gamma point. Deforming the super honeycomb lattice in two different directions makes the energy bands open a gap with different topologies near the ฮ“\Gamma point [8, 22]. Physicists found a pair of gapped pseudospin edge states when connecting such two types of deformed materials, which are analogs of the helical edge states [24]. The propagation of electromagnetic waves with frequencies between these two edge states is well confined near the interface [7, 26]. Despite the broad applications of this phenomenon, it is rarely studied rigorously. Motivated by this, we consider edge operators interpolating between two kinds of perturbed operators across a rational edge and try to establish the existence of two gapped edge states by rigorous analysis.

Many models are used to develop analysis on edge states. Ammari and his collaborators studied the related mechanism on the subwavelength scale by considering Helmholtz problems [2, 3]. Bal and his collaborators have analyzed properties and topological descriptions of edge states in Dirac operators [4, 5]. Also, some numerical methods are introduced to associated problems [16, 17].

Among all the models, the one particle non-relativistic Schrรถdinger equation is one of the most effective models in illustrating edge conducting states [13, 21, 10, 11, 17]. Fefferman and Weinstein have laid solid foundations of rigorous analysis on such equations in both ๐’ซ{\mathcal{P}} and ๐’ฏ{\mathcal{T}} breaking case [14, 12, 13]. In this paper, we consider the following two-dimensional Schrรถdinger operator:

โ„‹eโ€‹dโ€‹gโ€‹eฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹ฮทโ€‹(ฮดโ€‹๐’2โ‹…๐ฑ)โ€‹Wโ€‹(๐ฑ),{\mathcal{H}}^{\delta}_{edge}=-\Delta+V({\bf x})+\delta\eta(\delta\bm{l}_{2}\cdot{\bf x})W({\bf x}),

with Vโ€‹(๐ฑ)V({\bf x}) a super honeycomb lattice potential, ฮทโ€‹(ฮถ)\eta(\zeta) a domain function, and Wโ€‹(๐ฑ)W({\bf x}) a ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry preseving perturbation; see section 2.3. The limiting perturbed bulk operators on two sides:

โ„‹ยฑฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)ยฑฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}_{\pm}=-\Delta+V({\bf x})\pm\delta W({\bf x})

are ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetric, but the folding symmetry is missing. Different from the analysis of ๐’ซ{\mathcal{P}} or ๐’ฏ{\mathcal{T}} breaking bulk operators [13, 21, 11], we have to deal with the double Dirac cone [8], or two tangent single Dirac cones on the bands of the unperturbed operator โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}), where a nontrivial second-order degeneracy is hidden; see section 3 . This means that only in higher-order terms can we clearly see the interaction between the four branches when discussing edge states. Such behavior is deeply rooted in the ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry preserving property. In the time-reversal symmetry breaking case, a one-dimensional Dirac operator can be obtained as the effective model by asymptotic expansions. An edge state with energy near the Dirac point can be derived from its exponentially decaying zero-energy states [21, 10, 11]. However, when it comes to the time reversal symmetric case, there are a pair of paralleling Dirac operators and therefore, two indistinguishable zero-energy states. Thus, the energy gap between two edge states is of higher order and deserves precise description; see section 4.

Another exciting perspective of understanding the edge states is the interplay between the symmetries and topology. Similar to how the Chern numbers characterize the topology of quantum materials, some topological indices are introduced to characterize the topology of bulk and edge Hamiltonians and the bulk-edge correspondence [23, 25]. There exist results on some one-dimensional models [27, 28] and higher-dimensional Dirac operators [4, 5, 6]. Different from a quantity of the whole band, in this paper, we provide topological intepretations concentrated on the ฮ“\Gamma point by calculating the local topological charge and analyzing the parities of the eigenstates of limiting bulk operators โ„‹ยฑฮด{\mathcal{H}}^{\delta}_{\pm} on two sides of the edge, which connects the symmetries and the topology more explicitly; see Section 6.2.

This paper is organized as follows. Section 2 introduces the problem and our model โ€“ the domain wall modulated edge operator. Results on super honeycomb lattice potentials and double Dirac cones are briefly reviewed in this section. Section 3 establishes the approximations of the eigenstates near the double Dirac cone. Such near-energy approximations play essential roles in calculating the two gapped edge states asymptotically and rigorously proving their existence. The following three sections focus on the main conclusions obtained from our model. Section 4 calculates two edge states explicitly by multiscale expansions. Section 5 proves the existence of two gapped edge states rigorously. Section 6 provides some physical interpretations. Subsection 6.1 is about the effective local topological charge. Subsection 6.2 is about parties of eigenmodes. Section 7 gives numerical simulation of a typical example.

1.2 Notations

  • โ€ข

    The lattice and dual lattice: ๐”=โ„คโ€‹๐ฎ๐ŸโŠ•โ„คโ€‹๐ฎ๐Ÿ\bf{U}={\mathbb{Z}}{\bf u}_{1}\oplus{\mathbb{Z}}{\bf u}_{2} denotes the parallelogram lattice in โ„2{\mathbb{R}}^{2} expanding by ๐ฎ1{\bf u}_{1} and ๐ฎ2{\bf u}_{2}. ฮฉ={๐ฎ=c1โ€‹๐ฎ1+c2โ€‹๐ฎ2:c1,c2โˆˆ(โˆ’1/2,1/2)}\Omega=\big{\{}{\bf u}=c_{1}{\bf u}_{1}+c_{2}{\bf u}_{2}:c_{1},c_{2}\in(-1/2,1/2)\big{\}} denotes its fundamental cell. ๐”โˆ—=โ„คโ€‹๐ค1โŠ•โ„คโ€‹๐ค2{\bf U}^{*}={\mathbb{Z}}{\bf k}_{1}\oplus{\mathbb{Z}}{\bf k}_{2} denotes its dual lattice with ๐คlโ‹…๐ฎj=2โ€‹ฯ€โ€‹ฮดl,j{\bf k}_{l}\cdot{\bf u}_{j}=2\pi\delta_{l,j}. ฮฉโˆ—=โ„2/๐”โˆ—\Omega^{*}={\mathbb{R}}^{2}/{\bf U}^{*} is the fundamental cell of its dual lattice and is called the Brillouin Zone.

  • โ€ข

    Symmetry operators:

    1. 1.

      23โ€‹ฯ€\frac{2}{3}\pi rotation operator โ„›{\mathcal{R}}: โ„›โ€‹[f]โ€‹(๐ฑ)=fโ€‹(Rโˆ—โ€‹๐ฑ){\mathcal{R}}[f]({\bf x})=f(R^{*}{\bf x}) with Rโˆ—=(โˆ’12โˆ’3232โˆ’12)R^{*}=\begin{pmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2}&-\frac{1}{2}\end{pmatrix};

    2. 2.

      reflection operator ๐’ซ{\mathcal{P}}: ๐’ซโ€‹[f]โ€‹(๐ฑ)=fโ€‹(โˆ’๐ฑ){\mathcal{P}}[f]({\bf x})=f(-{\bf x});

    3. 3.

      time reversal operator ๐’ฏ{\mathcal{T}}: ๐’ฏโ€‹[f]โ€‹(๐ฑ)=fโ€‹(๐ฑ)ยฏ{\mathcal{T}}[f]({\bf x})=\overline{f({\bf x})}.

  • โ€ข

    The folding lattice and operator: when ๐ฎ2=โˆ’Rโˆ—โ€‹๐ฎ1{\bf u}_{2}=-R^{*}{\bf u}_{1}, ๐ฏ1{\bf v}_{1} and ๐ฏ2{\bf v}_{2} as following are the periods of the folding lattice.

    ๐ฏ1=13โ€‹(2โ€‹๐ฎ1โˆ’๐ฎ2),๐ฏ2=13โ€‹(๐ฎ1+๐ฎ2).{\bf v}_{1}=\frac{1}{3}(2{\bf u}_{1}-{\bf u}_{2}),{\qquad}{\bf v}_{2}=\frac{1}{3}({\bf u}_{1}+{\bf u}_{2}).

    The associated folding operators are: ๐’ฑlโ€‹[f]โ€‹(๐ฑ)=fโ€‹(x+๐ฏl){\mathcal{V}}_{l}[f]({\bf x})=f(x+{\bf v}_{l}).

  • โ€ข

    The rational edge: ๐’˜1=a1โ€‹๐ฎ1+b1โ€‹๐ฎ2\bm{w}_{1}=a_{1}{\bf u}_{1}+b_{1}{\bf u}_{2}; ๐’˜2=a2โ€‹๐ฎ1+b2โ€‹๐ฎ2\bm{w}_{2}=a_{2}{\bf u}_{1}+b_{2}{\bf u}_{2}. a1,b1,a2,b2a_{1},b_{1},a_{2},b_{2} are integers and a1โ€‹b2โˆ’a2โ€‹b1=1a_{1}b_{2}-a_{2}b_{1}=1. ๐’1=b2โ€‹๐ค1โˆ’a2โ€‹๐ค2\bm{l}_{1}=b_{2}{\bf k}_{1}-a_{2}{\bf k}_{2} and ๐’2=โˆ’b1โ€‹๐ค1+a1โ€‹๐ค2\bm{l}_{2}=-b_{1}{\bf k}_{1}+a_{1}{\bf k}_{2} satisfy ๐’˜mโ‹…๐’j=2โ€‹ฯ€โ€‹ฮดm,j\bm{w}_{m}\cdot\bm{l}_{j}=2\pi\delta_{m,j}. ๐’˜1\bm{w}_{1} is the direction of the rational edge. ๐’2\bm{l}_{2} is its dual direction. ๐’~1=๐’1โˆ’๐’1โ‹…๐’๐Ÿโ€–๐’2โ€–2โ€‹๐’2\tilde{\bm{l}}_{1}=\bm{l}_{1}-\frac{\bm{l}_{1}\cdot\bm{l_{2}}}{\|\bm{l}_{2}\|^{2}}{\bm{l}_{2}} is orthogonal to ๐’2\bm{l}_{2} and satisfies ๐’~1โ‹…๐’˜1=2โ€‹ฯ€\tilde{\bm{l}}_{1}\cdot\bm{w}_{1}=2\pi.

  • โ€ข

    ฮฉe={๐ฎ=c1โ€‹๐’˜1+c2โ€‹๐’˜2:c1โˆˆ(โˆ’1/2,1/2),c2โˆˆโ„}\Omega_{e}=\big{\{}{\bf u}=c_{1}\bm{w}_{1}+c_{2}\bm{w}_{2}:c_{1}\in(-1/2,1/2),c_{2}\in{\mathbb{R}}\big{\}}.

  • โ€ข

    There are three different inner products:

    1. 1.

      โŸจfโ€‹(๐ฑ),gโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โˆซฮฉfโ€‹(๐ฑ)ยฏโ€‹gโ€‹(๐ฑ)โ€‹๐‘‘๐ฑ\langle f({\bf x}),g({\bf x})\rangle_{L^{2}(\Omega)}=\int_{\Omega}\overline{f({\bf x})}g({\bf x})d{\bf x};

    2. 2.

      โŸจfโ€‹(๐ฑ),gโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉe)=โˆซฮฉefโ€‹(๐ฑ)ยฏโ€‹gโ€‹(๐ฑ)โ€‹๐‘‘๐ฑ\langle f({\bf x}),g({\bf x})\rangle_{L^{2}(\Omega_{e})}=\int_{\Omega_{e}}\overline{f({\bf x})}g({\bf x})d{\bf x};

    3. 3.

      โŸจfโ€‹(ฮถ),gโ€‹(ฮถ)โŸฉL2โ€‹(โ„)=โˆซโ„fโ€‹(ฮถ)ยฏโ€‹gโ€‹(ฮถ)โ€‹๐‘‘ฮถ\langle f(\zeta),g(\zeta)\rangle_{L^{2}({\mathbb{R}})}=\int_{{\mathbb{R}}}\overline{f(\zeta)}g(\zeta)d\zeta.

    The first one is mainly used in the bulk problem, and the last two are used in the edge problem.

  • โ€ข

    There are two particular function spaces often used corresponding to bulk and edge problem respectively:

    ฯ‡={fโˆˆLlโ€‹oโ€‹c2โ€‹(โ„2):fโ€‹(๐ฑ+๐ฎl)=fโ€‹(๐ฑ),l=1,2};\chi=\big{\{}f\in L^{2}_{loc}({\mathbb{R}}^{2}):f({\bf x}+{\bf u}_{l})=f({\bf x}),l=1,2\big{\}};
    ฯ‡e={fโˆˆLlโ€‹oโ€‹c2โ€‹(โ„2):fโ€‹(๐ฑ+๐’˜1)=fโ€‹(๐ฑ),โˆซฮฉe|fโ€‹(๐ฑ)|2โ€‹๐‘‘๐ฑ<โˆž}.\chi_{e}=\big{\{}f\in L^{2}_{loc}({\mathbb{R}}^{2}):f({\bf x}+\bm{w}_{1})=f({\bf x}),\int_{\Omega_{e}}|f({\bf x})|^{2}d{\bf x}<\infty\big{\}}.
  • โ€ข

    Pauli matrices:

    ฯƒ1=(0110);ฯƒ2=(0โˆ’ii0);ฯƒ3=(100โˆ’1).\sigma_{1}=\begin{pmatrix}0&\hskip 5.69046pt1\\ 1&\hskip 5.69046pt0\end{pmatrix};\quad\sigma_{2}=\begin{pmatrix}0&\hskip 2.84544pt-i\\ i&\hskip 2.84544pt0\end{pmatrix};{\quad}\sigma_{3}=\begin{pmatrix}1&\hskip 2.84544pt0\\ 0&\hskip 2.84544pt-1\end{pmatrix}.

2 Bulk and edge operators

The original bulk Hamiltonians should have C6C_{6}, ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}}, and folding symmetries. We have studied such Schrรถdinger operators in the form of โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}), where V(x) is a super honeycomb lattice potential as in Definition 2.2. The perturbed bulk operator is โ„‹ฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}=-\Delta+V({\bf x})+\delta W({\bf x}), where W(x) preserves C6C_{6} and ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetries but destroys the folding symmetry [8]. There should be two gapped edge states when gluing two kinds of perturbed bulk operators along certain edges, as shown in Figure 1. In this paper, we talk about an asymptotic model - the domain wall modulated Schrรถdinger operator:

โ„‹eโ€‹dโ€‹gโ€‹eฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹ฮทโ€‹(ฮดโ€‹๐’2โ‹…๐ฑ)โ€‹Wโ€‹(๐ฑ),{\mathcal{H}}^{\delta}_{edge}=-\Delta+V({\bf x})+\delta\eta(\delta\bm{l}_{2}\cdot{\bf x})W({\bf x}),

where ฮทโ€‹(ฮถ)\eta(\zeta) is a domain wall function as in Definition 2.8. โ„‹eโ€‹dโ€‹gโ€‹eฮด{\mathcal{H}}^{\delta}_{edge} is a slow interpolation between โ„‹ยฑฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)ยฑฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}_{\pm}=-\Delta+V({\bf x})\pm\delta W({\bf x}) across a rational edge โ„โ€‹๐’˜1{\mathbb{R}}\bm{w}_{1}. This section briefly reviews bulk operators, including their symmetries and the degeneracy on their bands at the ฮ“\Gamma point, and introduces the edge operator.

Refer to caption
Refer to caption
Figure 1: Numerical simulations of edge states curves of a limiting domain wall model. (a) the figure of the piecewise constant domain wall potential. On one side of the edge, the hexagons of the super honeycomb lattice are shrunk, and on the other side, they are expanded. (b) the figure of the edge states energy curves along kโˆฅโ€‹๐’~1k_{\parallel}\tilde{\bm{l}}_{1}. EDE_{{}_{D}} is the Dirac pointโ€™s energy. The parts of two red curves near the ฮ“\Gamma point correspond to two edge states.

2.1 Super honeycomb lattice potentials and the folding symmetry

In this subsection, we review the symmetries of super honeycomb lattice potentials. It originates in viewing the honeycomb lattice in a supercell. Thus, the super honeycomb lattice possesses a folding symmetry, which results in fourfold degeneracy at the ฮ“\Gamma point on energy bands.

Fefferman and Weinstein have summarized the structures of the honeycomb lattice in their paper [14]. It is such a periodic structure in โ„2{\mathbb{R}}^{2}:

  • โ€ข

    23โ€‹ฯ€\frac{2}{3}\pi-rotation symmetric;

  • โ€ข

    ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} (parity and time reversal) symmetric.

The corresponding transformations in Llโ€‹oโ€‹c2โ€‹(โ„2)L^{2}_{loc}({\mathbb{R}}^{2}) are:

  • โ€ข

    23โ€‹ฯ€\frac{2}{3}\pi rotation operator โ„›{\mathcal{R}}: โ„›โ€‹[f]โ€‹(๐ฑ)=fโ€‹(Rโˆ—โ€‹๐ฑ){\mathcal{R}}[f]({\bf x})=f(R^{*}{\bf x}) with Rโˆ—=(โˆ’12โˆ’3232โˆ’12)R^{*}=\begin{pmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2}&-\frac{1}{2}\end{pmatrix};

  • โ€ข

    reflection operator ๐’ซ{\mathcal{P}}: ๐’ซโ€‹[f]โ€‹(๐ฑ)=fโ€‹(โˆ’๐ฑ){\mathcal{P}}[f]({\bf x})=f(-{\bf x});

  • โ€ข

    time reversal operator ๐’ฏ{\mathcal{T}}: ๐’ฏโ€‹[f]โ€‹(๐ฑ)=fโ€‹(๐ฑ)ยฏ{\mathcal{T}}[f]({\bf x})=\overline{f({\bf x})}.

Definition 2.1.

(Honeycomb lattice potentials) Vโ€‹(๐ฑ)โˆˆCโˆžโ€‹(โ„2)V({\bf x})\in C^{\infty}({\mathbb{R}}^{2}) is called a honeycomb lattice potential, if

  1. 1.

    Vโ€‹(๐ฑ)V({\bf x}) is doubly periodic with periods ๐ฎ1{\bf u}_{1} and ๐ฎ2{\bf u}_{2}, where ๐ฎ2=โˆ’Rโˆ—โ€‹๐ฎ1{\bf u}_{2}=-R^{*}{\bf u}_{1};

  2. 2.

    โ„›โ€‹[V]โ€‹(๐ฑ)=Vโ€‹(๐ฑ){\mathcal{R}}[V]({\bf x})=V({\bf x});

  3. 3.

    ๐’ซโ€‹[V]โ€‹(๐ฑ)=Vโ€‹(๐ฑ){\mathcal{P}}[V]({\bf x})=V({\bf x}) and ๐’ฏโ€‹[V]โ€‹(๐ฑ)=Vโ€‹(๐ฑ){\mathcal{T}}[V]({\bf x})=V({\bf x}).

Consider the parallelogram lattice ๐”=โ„คโ€‹๐ฎ๐ŸโŠ•โ„คโ€‹๐ฎ๐Ÿ\bf{U}={\mathbb{Z}}{\bf u}_{1}\oplus{\mathbb{Z}}{\bf u}_{2}. The corresponding unit cell is

ฮฉ={๐ฎ=c1โ€‹๐ฎ1+c2โ€‹๐ฎ2,c1,c2โˆˆ(โˆ’1/2,1/2)}.\Omega=\big{\{}{\bf u}=c_{1}{\bf u}_{1}+c_{2}{\bf u}_{2},{\quad}c_{1},c_{2}\in(-1/2,1/2)\big{\}}. (2.1)

Denote its dual lattice and dual unit cell ๐”โˆ—=โ„คโ€‹๐ค๐ŸโŠ•โ„คโ€‹๐ค๐Ÿ\bf{U}^{*}={\mathbb{Z}}{\bf k}_{1}\oplus{\mathbb{Z}}{\bf k}_{2} and ฮฉโˆ—=โ„2/๐”โˆ—\Omega^{*}={\mathbb{R}}^{2}/\bf{U}^{*}, where ๐คj{\bf k}_{j} satisfies ๐ฎlโ‹…๐คj=2โ€‹ฯ€โ€‹ฮดl,j{\bf u}_{l}\cdot{\bf k}_{j}=2\pi\delta_{l,j}.

The relation and differences between honeycomb lattice and super honeycomb lattice are shown explicitly in Figure 2. Note that the parallelogram lattice discussed above and the hexagonal lattice in the pictures are equivalent. Compared with the honeycomb lattice potentials, the super honeycomb lattice potential obsesses smaller periods and, therefore, a folding symmetry. Namely, the smaller periods are

๐ฏ1=13โ€‹(2โ€‹๐ฎ1โˆ’๐ฎ2),๐ฏ2=13โ€‹(๐ฎ1+๐ฎ2).{\bf v}_{1}=\frac{1}{3}(2{\bf u}_{1}-{\bf u}_{2}),{\qquad}{\bf v}_{2}=\frac{1}{3}({\bf u}_{1}+{\bf u}_{2}). (2.2)

For simiplicity, denote translation operators: ๐’ฑlโ€‹[f]โ€‹(๐ฑ)=fโ€‹(x+๐ฏl){\mathcal{V}}_{l}[f]({\bf x})=f(x+{\bf v}_{l}). Let ๐ชj{\bf q}_{j} be the dual vectors of ๐ฏl{\bf v}_{l}, i.e., ๐ชjโ‹…๐ฏl=2โ€‹ฯ€โ€‹ฮดj,l{\bf q}_{j}\cdot{\bf v}_{l}=2\pi\delta_{j,l}.

The super honeycomb lattice potential is defined below.

Definition 2.2.

(Super honeycomb lattice potentials) A honeycomb lattice potential Vโ€‹(๐ฑ)โˆˆCโˆžโ€‹(โ„2)V({\bf x})\in C^{\infty}({\mathbb{R}}^{2}) is called a super honeycomb lattice potential if

  1. 4.

    V(x) is ๐ฏ1{\bf v}_{1} and ๐ฏ2{\bf v}_{2} periodic, where ๐ฏ1{\bf v}_{1} and ๐ฏ2{\bf v}_{2} are as in (2.2) and the following condition holds:

    1|ฮฉ|โ€‹โˆซฮฉeโˆ’iโ€‹๐ช1โ‹…๐ฒโ€‹Vโ€‹(๐ฒ)โ€‹๐‘‘๐ฒโ‰ 0.\frac{1}{|\Omega|}\int_{\Omega}e^{-i{\bf q}_{1}\cdot{\bf y}}V({\bf y})d{\bf y}\neq 0. (2.3)

Remark 2.3.

The condition (2.3) guarantees that the lowest Fourier element of Vโ€‹(๐ฑ)V({\bf x}) does not vanish, which prevents Vโ€‹(๐ฑ)V({\bf x}) from being a constant or possessing smaller periods.

Refer to caption
Refer to caption
Figure 2: (a) The lattice, and (b) the dual lattice. The blue lattice corresponds to a honeycomb lattice, with periods ๐ฎ1{\bf u}_{1} and ๐ฎ2{\bf u}_{2} and dual periods ๐ค1{\bf k}_{1} and ๐ค2{\bf k}_{2}. The black lattice corresponds to the associated super honeycomb lattice, with periods ๐ฏ1{\bf v}_{1} and ๐ฏ2{\bf v}_{2} and dual periods ๐ช1{\bf q}_{1} and ๐ช2{\bf q}_{2}.

2.2 Bulk operators

The bulk operators โ„‹ยฑฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)ยฑฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}_{\pm}^{\delta}=-\Delta+V({\bf x})\pm\delta W({\bf x}) on two sides of the edge are deformed from the highly symmetric operator โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}), where Vโ€‹(๐ฑ)V({\bf x}) is a super honeycomb lattice potential. In this subsection, we give two conclusions about โ„‹V{\mathcal{H}}_{V} and โ„‹ฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}=-\Delta+V({\bf x})+\delta W({\bf x}) [8].

Generally, for a ๐ฎ1{\bf u}_{1} and ๐ฎ2{\bf u}_{2} doubly periodic elliptic operator โ„‹{\mathcal{H}}, by Floquet-Bloch theorem, its spectrum can be decomposed into momentum space ฮฉโˆ—\Omega^{*}:

ฯƒL2โ€‹(โ„2)โ€‹(โ„‹)=โ‹ƒ๐คโˆˆฮฉโˆ—ฯƒL๐ค2โ€‹(โ„2/๐”)โ€‹(โ„‹|L๐ค2โ€‹(โ„2/๐”)).\sigma_{L^{2}({\mathbb{R}}^{2})}({\mathcal{H}})=\bigcup_{{\bf k}\in\Omega^{*}}\sigma_{L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U})}({\mathcal{H}}|_{L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U})}).

Here the ๐ค{\bf k}-momentum function space is the Hilbert space

L๐ค2โ€‹(โ„2/๐”)={fโˆˆLlโ€‹oโ€‹c2โ€‹(โ„2):fโ€‹(๐ฑ+๐ฎ)=eiโ€‹๐คโ‹…๐ฎโ€‹fโ€‹(๐ฑ),๐ฑโˆˆโ„2,๐ฎโˆˆ๐”;fโ€‹(๐ฑ)โˆˆL2โ€‹(ฮฉ)}L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U})=\big{\{}f\in L^{2}_{loc}({\mathbb{R}}^{2}):f({\bf x}+{\bf u})=e^{i{\bf k}\cdot{\bf u}}f({\bf x}),{\bf x}\in{\mathbb{R}}^{2},{\bf u}\in{\bf U};f({\bf x})\in L^{2}(\Omega)\big{\}}

equipped with the inner product:

โŸจfโ€‹(๐ฑ),gโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โˆซฮฉfโ€‹(๐ฑ)ยฏโ€‹gโ€‹(๐ฑ)โ€‹๐‘‘๐ฑ.\langle f({\bf x}),g({\bf x})\rangle_{L^{2}(\Omega)}=\int_{\Omega}\overline{f({\bf x})}g({\bf x})d{\bf x}. (2.4)

For our bulk operators, ฯƒL๐ค2โ€‹(โ„2/๐”)โ€‹(โ„‹|L๐ค2โ€‹(โ„2/๐”))\sigma_{L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U})}({\mathcal{H}}|_{L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U})}) is a lower bounded discrete set:

E1โ€‹(๐ค)โ‰คE2โ€‹(๐ค)โ‰คE3โ€‹(๐ค)โ‰คโ€ฆE_{1}({\bf k})\leq E_{2}({\bf k})\leq E_{3}({\bf k})\leq... (2.5)

๐’ฎn={(๐ค,Enโ€‹(๐ค)):๐คโˆˆฮฉโˆ—}{\mathcal{S}}_{n}=\big{\{}\bigl{(}{\bf k},E_{n}({\bf k})\bigr{)}:{\bf k}\in\Omega^{*}\big{\}} is the ntโ€‹hn^{th} energy surface of โ„‹{\mathcal{H}}. Dirac cone describes the phenomenon of conical touch between energy surfaces. It is a kind of degeneracy and singularity on energy surfaces.

The first conclusion is that โ„‹V{\mathcal{H}}_{V} has fourfold degeneracy at the ฮ“\Gamma point and a double Dirac cone for general super honeycomb lattice potential Vโ€‹(๐ฑ)V({\bf x}) due to the symmetry. The key is that the space of ๐ฎ1{\bf u}_{1} and ๐ฎ2{\bf u}_{2} periodic functions ฯ‡=L๐ŸŽ2โ€‹(โ„2/๐”)\chi=L^{2}_{\mathbf{0}}({\mathbb{R}}^{2}/{\bf U}) has the decomposition:

ฯ‡=โจฮพ1,ฮพ2=1,ฯ„,ฯ„ยฏฯ‡ฮพ1,ฮพ2,ฯ„=e23โ€‹ฯ€โ€‹i.\chi=\bigoplus_{\xi_{1},\xi_{2}=1,\tau,\overline{\tau}}\chi_{\xi_{1},\xi_{2}},{\quad}\tau=e^{\frac{2}{3}\pi i}. (2.6)

ฯ‡ฮพ1,ฮพ2\chi_{\xi_{1},\xi_{2}} is the intersection of the characteristic subspace of ๐’ฑ1{\mathcal{V}}_{1} with eigenvalue ฮพ1\xi_{1} and the characteristic subspace of โ„›{\mathcal{R}} with eigenvalue ฮพ2\xi_{2}. Because any super honeycomb lattice potential Vโ€‹(๐ฑ)V({\bf x}) is in ฯ‡1,1\chi_{1,1}, โ„‹V{\mathcal{H}}_{V} has the rotation and folding symmetries. Thus, each ฯ‡ฮพ1,ฮพ2\chi_{\xi_{1},\xi_{2}} is an invariant subspace of โ„‹V{\mathcal{H}}_{V}. The following theorem shows the existence of fourfold degeneracy and its relationship with the above function space decomposition.

Theorem 2.4.

(Fourfold degeneracy at the ฮ“\Gamma point) The following is true for energy surfaces of โ„‹(ฯต)=โˆ’ฮ”+ฯตโ€‹Vโ€‹(๐ฑ){\mathcal{H}}^{(\epsilon)}=-\Delta+\epsilon V({\bf x}) with Vโ€‹(๐ฑ)V({\bf x}) a super honeycomb lattice potential for all ฯตโˆˆโ„โˆ–A\epsilon\in{\mathbb{R}}\setminus A, where AA is a discrete subset of โ„{\mathbb{R}} :

  1. 1.

    there exists nโˆ—โˆˆโ„•n_{*}\in{\mathbb{N}} and EDโˆˆโ„E_{{}_{D}}\in{\mathbb{R}} such that {๐’ฎnโˆ—+j}j=1,2,3,4\big{\{}{\mathcal{S}}_{n_{*}+j}\big{\}}_{j=1,2,3,4} intersect at the ฮ“\Gamma point:

    Enโˆ—โ€‹(๐ŸŽ)<ED=Enโˆ—+1โ€‹(๐ŸŽ)=Enโˆ—+2โ€‹(๐ŸŽ)=Enโˆ—+3โ€‹(๐ŸŽ)=Enโˆ—+4โ€‹(๐ŸŽ)<Enโˆ—+5โ€‹(๐ŸŽ);E_{n_{*}}(\mathbf{0})<E_{{}_{D}}=E_{n_{*}+1}(\mathbf{0})=E_{n_{*}+2}(\mathbf{0})=E_{n_{*}+3}(\mathbf{0})=E_{n_{*}+4}(\mathbf{0})<E_{n_{*}+5}(\mathbf{0}); (2.7)
  2. 2.

    there exists ฯ•1โ€‹(๐ฑ)โˆˆฯ‡ฯ„,ฯ„\phi_{1}({\bf x})\in\chi_{\tau,\tau} normalized, such that

    Kerโก(โ„‹(ฯต)โˆ’ED)=Spanโก{ฯ•1โ€‹(๐ฑ),ฯ•2โ€‹(๐ฑ),ฯ•3โ€‹(๐ฑ),ฯ•4โ€‹(๐ฑ)};\operatorname{Ker}({\mathcal{H}}^{(\epsilon)}-E_{{}_{D}})=\operatorname{Span}\big{\{}\phi_{1}({\bf x}),\phi_{2}({\bf x}),\phi_{3}({\bf x}),\phi_{4}({\bf x})\big{\}};

    and the four eigenstates satisfy:

    ฯ•1โ€‹(๐ฑ)โˆˆฯ‡ฯ„,ฯ„,\displaystyle\phi_{1}({\bf x})\in\chi_{\tau,\tau},{} ฯ•2โ€‹(๐ฑ)=ฯ•1โ€‹(โˆ’๐ฑ)ยฏโˆˆฯ‡ฯ„,ฯ„ยฏ,\displaystyle{\quad}\phi_{2}({\bf x})=\overline{\phi_{1}(-{\bf x})}\in\chi_{\tau,\overline{\tau}}, (2.8)
    ฯ•3โ€‹(๐ฑ)=ฯ•1โ€‹(โˆ’๐ฑ)โˆˆฯ‡ฯ„ยฏ,ฯ„,\displaystyle\phi_{3}({\bf x})=\phi_{1}(-{\bf x})\in\chi_{\overline{\tau},\tau},{} ฯ•4โ€‹(๐ฑ)=ฯ•1โ€‹(๐ฑ)ยฏโˆˆฯ‡ฯ„ยฏ,ฯ„ยฏ.\displaystyle{\quad}\phi_{4}({\bf x})=\overline{\phi_{1}({\bf x})}\in\chi_{\overline{\tau},\overline{\tau}}.

Equation (2.7) indicates the existence of a fourfold degeneracy at the ฮ“\Gamma point. (2.8) provides insight into the four eigenfunctions corresponding to this degeneracy, revealing that they can be related through symmetries. We will give the result of the double Dirac cone later after we calculate the second-order bifurcation terms; see section 3.1.

The second conclusion is that the energy surfaces of โ„‹ฮด{\mathcal{H}}^{\delta} open a gap of order Oโ€‹(ฮด)O(\delta) at the ฮ“\Gamma point when W(x) is a folding symmetry breaking potential as in the following definition.

Definition 2.5.

(Folding symmetry breaking potentials) A folding symmetry breaking potential Wโ€‹(๐ฑ)W({\bf x}) is a function in Cโˆžโ€‹(โ„2)C^{\infty}({\mathbb{R}}^{2}) satisfying:

  • โ€ข

    ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry preserving : Wโ€‹(๐ฑ)W({\bf x}) is a honeycomb lattice potential;

  • โ€ข

    folding symmetry breaking: Wโ€‹(๐ฑ)โˆˆฯ‡ฯ„,1โŠ•ฯ‡ฯ„ยฏ,1W({\bf x})\in{\chi_{\tau,1}}\oplus{\chi_{\bar{\tau},1}}, which means Wโ€‹(๐ฑ)W({\bf x}) is orthogonal to the space of super honeycomb lattice potentials so that it is โ€œpurelyโ€ folding symmetry breaking.

The second conclusion is stated precisely as follows.

Theorem 2.6.

(Local gap under folding symmetry breaking perturbations) Let โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}) be an operator possessing a fourfold degeneracy at the ฮ“\Gamma point as in Theorem 2.4. Assume that Wโ€‹(๐ฑ)W({\bf x}) is a folding symmetry breaking potential as above in Definition 2.5 and satisfies the non-degeneracy condition:

cโ™ฏ=โŸจฯ•1โ€‹(๐ฑ),Wโ€‹(๐ฑ)โ€‹ฯ•1โ€‹(โˆ’๐ฑ)โŸฉL2โ€‹(ฮฉ)โ‰ 0.c_{\sharp}=\langle\phi_{1}({\bf x}),W({\bf x})\phi_{1}(-{\bf x})\rangle_{L^{2}(\Omega)}\neq 0. (2.9)

Then the energy surfaces {๐’ฎnโˆ—+j}j=1,2,3,4\big{\{}{\mathcal{S}}_{n_{*}+j}\big{\}}_{j=1,2,3,4} of perturbed operator โ„‹ฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}=-\Delta+V({\bf x})+\delta W({\bf x}) will open a gap of Oโ€‹(|ฮด|)O(|\delta|) near the ฮ“\Gamma point for ฮด\delta sufficiently small.

Remark 2.7.

The cโ™ฏc_{\sharp} is real and stays invariant under phase transformation [8]. Nonzero cโ™ฏc_{\sharp} guarantees that the gap is of order Oโ€‹(ฮด)O(\delta) exactly.

2.3 Domain wall modulated edge operator

In this paper, we consider two kinds of bulks โ„‹ยฑฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)ยฑฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}_{\pm}=-\Delta+V({\bf x})\pm\delta W({\bf x}) connected along a rational edge โ„โ€‹๐’˜1{\mathbb{R}}\bm{w}_{1}. Here ๐’˜1=a1โ€‹๐ฎ1+b1โ€‹๐ฎ2\bm{w}_{1}=a_{1}{\bf u}_{1}+b_{1}{\bf u}_{2}, where a1a_{1} and b1b_{1} are relatively prime integers. Then there exist relatively prime integers a2,b2a_{2},b_{2} such that a1โ€‹b2โˆ’a2โ€‹b1=1a_{1}b_{2}-a_{2}b_{1}=1. Let ๐’˜2=a2โ€‹๐ฎ1+b2โ€‹๐ฎ2\bm{w}_{2}=a_{2}{\bf u}_{1}+b_{2}{\bf u}_{2}. Take ๐’1=b2โ€‹๐ค1โˆ’a2โ€‹๐ค2\bm{l}_{1}=b_{2}{\bf k}_{1}-a_{2}{\bf k}_{2} and ๐’2=โˆ’b1โ€‹๐ค1+a1โ€‹๐ค2\bm{l}_{2}=-b_{1}{\bf k}_{1}+a_{1}{\bf k}_{2}. Then ๐’˜jโ‹…๐’l=2โ€‹ฯ€โ€‹ฮดj,l\bm{w}_{j}\cdot\bm{l}_{l}=2\pi\delta_{j,l}. Note that ๐’˜1\bm{w}_{1} and ๐’˜2\bm{w}_{2} expands a cell equivalent to ฮฉ\Omega and ๐’1\bm{l}_{1} and ๐’2\bm{l}_{2} expands a cell equivalent to ฮฉโˆ—\Omega^{*}. Let ฮฉe\Omega_{e} denote such an area around the edge:

ฮฉe={๐ฑโˆˆโ„2โˆฃ๐ฑ=pโ€‹๐’˜1+qโ€‹๐’˜2,pโˆˆ(โˆ’1/2,1/2),qโˆˆโ„}.\Omega_{e}=\{{\bf x}\in{\mathbb{R}}^{2}\mid{\bf x}=p\bm{w}_{1}+q\bm{w}_{2},p\in(-1/2,1/2),q\in{\mathbb{R}}\}.

For the rational edge โ„โ€‹๐’˜1{\mathbb{R}}\bm{w}_{1}, we use the following asymptotic domain wall modulated operator:

โ„‹eโ€‹dโ€‹gโ€‹eฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹ฮทโ€‹(ฮดโ€‹๐’2โ‹…๐ฑ)โ€‹Wโ€‹(๐ฑ).{\mathcal{H}}_{edge}^{\delta}=-\Delta+V({\bf x})+\delta\eta(\delta\bm{l}_{2}\cdot{\bf x})W({\bf x}). (2.10)

The limiting bulk operators โ„‹ยฑฮด{\mathcal{H}}^{\delta}_{\pm} have been introduced in the last subsection. The function ฮทโ€‹(ฮดโ€‹๐’2โ‹…๐ฑ)\eta(\delta\bm{l}_{2}\cdot{\bf x}) is the domain wall modulation function. It is flat along the edge direction ๐’˜1\bm{w}_{1} and varies slowly in the direction ๐’˜2\bm{w}_{2}. ฮถ=ฮดโ€‹๐’2โ‹…๐ฑ\zeta=\delta\bm{l}_{2}\cdot{\bf x} is called the slow variable. The rigorous definition of a domain wall function ฮทโ€‹(ฮถ)\eta(\zeta) is below.

Definition 2.8.

(Domain wall functions) A smooth function ฮทโ€‹(ฮถ)โˆˆCโˆžโ€‹(โ„)\eta(\zeta)\in C^{\infty}({\mathbb{R}}) is called a domain wall function if ฮทโ€‹(ฮถ)\eta(\zeta) tends to ยฑ1\pm 1 when ฮถโ†’ยฑโˆž\zeta\to\pm\infty and ฮทโ€‹(0)=0\eta(0)=0.

Similar to that in bulk case, we have:

ฯƒL2โ€‹(โ„2)โ€‹(โ„‹eโ€‹dโ€‹gโ€‹eฮด)=โ‹ƒkโˆฅโˆˆ[โˆ’ฯ€,ฯ€)ฯƒLkโˆฅ2โ€‹(โ„2/โ„คโ€‹๐’˜1)โ€‹(โ„‹eโ€‹dโ€‹gโ€‹eฮด|Lkโˆฅ2โ€‹(โ„2/โ„คโ€‹๐’˜1)).\sigma_{L^{2}({\mathbb{R}}^{2})}({\mathcal{H}}_{edge}^{\delta})=\bigcup_{k_{\parallel}\in[-\pi,\pi)}\sigma_{L^{2}_{k_{\parallel}}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1})}({\mathcal{H}}_{edge}^{\delta}|_{L^{2}_{k_{\parallel}}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1})}).

Here the function space is one-dimensional quasi-periodic:

Lkโˆฅ2โ€‹(โ„2/โ„คโ€‹๐’˜1)={fโˆˆLlโ€‹oโ€‹c2โ€‹(โ„2):fโ€‹(๐ฑ+๐’˜1)=eiโ€‹kโˆฅโ€‹fโ€‹(๐ฑ),๐ฑโˆˆโ„2;fโ€‹(๐ฑ)โˆˆL2โ€‹(ฮฉe)}.L^{2}_{k_{\parallel}}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1})=\big{\{}f\in L^{2}_{loc}({\mathbb{R}}^{2}):f({\bf x}+\bm{w}_{1})=e^{ik_{\parallel}}f({\bf x}),{\bf x}\in{\mathbb{R}}^{2};f({\bf x})\in L^{2}(\Omega_{e})\big{\}}.

The inner product on Lkโˆฅ2โ€‹(โ„2/โ„คโ€‹๐’˜1)L^{2}_{k_{\parallel}}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1}) is :

โŸจf,gโŸฉL2โ€‹(ฮฉe)=โˆซฮฉefโ€‹(๐ฑ)ยฏโ€‹gโ€‹(๐ฑ)โ€‹๐‘‘๐ฑ.\langle f,g\rangle_{L^{2}(\Omega_{e})}=\int_{\Omega_{e}}\overline{f({\bf x})}g({\bf x})d{\bf x}. (2.11)

We summarize our asymptotic model in the following definition.

Definition 2.9.

(Folding symmetry breaking domain wall modulated edge operators) โ„‹eโ€‹dโ€‹gโ€‹eฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹ฮทโ€‹(ฮดโ€‹๐ฅ2โ‹…๐ฑ)โ€‹Wโ€‹(๐ฑ){\mathcal{H}}_{edge}^{\delta}=-\Delta+V({\bf x})+\delta\eta(\delta\bm{l}_{2}\cdot{\bf x})W({\bf x}) is called a folding symmetry breaking domain wall modulated edge operator if it is constructed as follows.

  • โ€ข

    The unperturbed bulk operator has a fourfold degeneracy: โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}) with Vโ€‹(๐ฑ)V({\bf x}) a super honeycomb lattice potential is an operator possessing fourfold degeneracy (๐ŸŽ,ED)({\bf 0},E_{{}_{D}}) at the ฮ“\Gamma point on (nโˆ—+1)tโ€‹h(n_{*}+1)^{th} to (nโˆ—+4)tโ€‹h(n_{*}+4)^{th} bands as (2.7) and (2.8) in Theorem 2.4.

  • โ€ข

    For j=1,2,3,4j=1,2,3,4, the energy band Enโˆ—+jโ€‹(๐ค)E_{n_{*}+j}({\bf k}) of โ„‹V{\mathcal{H}}_{V} satisfies the non-fold condition:

    Enโˆ—+j(ฮป๐’2)=EDโ‡”there existsย m,nโˆˆโ„ค,such thatย ฮป๐’2=m๐ค1+n๐ค2.E_{n_{*}+j}(\lambda\bm{l}_{2})=E_{{}_{D}}\Leftrightarrow\text{there exists }m,n\in{\mathbb{Z}},\text{such that }\lambda\bm{l}_{2}=m{\bf k}_{1}+n{\bf k}_{2}. (2.12)
  • โ€ข

    The folding symmetry is broken but the ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry is preserved: Wโ€‹(๐ฑ)W({\bf x}) is a folding symmetry breaking potential as in Definition 2.5.

  • โ€ข

    The domain wall is rational: ฮทโ€‹(ฮถ)\eta(\zeta) is a domain wall function as in Definition 2.8 and ๐’2=โˆ’b1โ€‹๐ค1+a1โ€‹๐ค2\bm{l}_{2}=-b_{1}{\bf k}_{1}+a_{1}{\bf k}_{2} for some co-prime b1b_{1} and a1a_{1}.

Remark 2.10.

By the continuity of the spectral band, the condition (2.12) means that EDE_{{}_{D}} are the maximum or minimum of the lower or upper bands of the double Dirac cone along the ๐ฅ2\bm{l}_{2} direction. This is a typical case when the four intersecting bands can open an energy gap along the ๐ฅ2\bm{l}_{2} direction across the ฮ“\Gamma point under small folding symmetry breaking perturbations.

Our aim is to solve the following eigenvalue problem near kโˆฅ=0k_{\parallel}=0:

โ„‹eโ€‹dโ€‹gโ€‹eฮดโ€‹ฯˆโ€‹(๐ฑ,kโˆฅ)=โ„ฐโ€‹(kโˆฅ)โ€‹ฯˆโ€‹(๐ฑ,kโˆฅ),ฯˆโ€‹(๐ฑ,kโˆฅ)โˆˆLkโˆฅ2โ€‹(โ„2/โ„คโ€‹๐’˜1).{\mathcal{H}}_{edge}^{\delta}\psi({\bf x},k_{\parallel})={\mathcal{E}}(k_{\parallel})\psi({\bf x},k_{\parallel}),{\quad}\psi({\bf x},k_{\parallel})\in L^{2}_{k_{\parallel}}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1}). (2.13)

The following sections contribute to proving the existence of two gapped edge states near kโˆฅ=0k_{\parallel}=0 and characterizing these two edge states precisely.

3 Near-energy approximation

This section focuses on detailed information on the near-energy approximations โ€“ the approximations of energies and eigenstates of โ„‹V{\mathcal{H}}_{V} with energy near EDE_{{}_{D}}, which helps to approximate the near-energy components when proving the existence of two gapped edges states in the following sections. More accurate results than the previous ones are needed because the first-order bifurcation matrix is still degenerate [8]. For the four branches of energy surfaces intersecting at the ฮ“\Gamma point, the upper two do not separate at order Oโ€‹(โ€–๐คโ€–)O(\|{\bf k}\|), nor do the lower two. The second-order bifurcation matrix is calculated in this section so that the near-energy approximation along the direction ๐’2\bm{l}_{2} can be given precisely.

3.1 Order Oโ€‹(โ€–๐คโ€–2)O(\|{\bf k}\|^{2}) bifurcation matrix

This subsection discusses the bifurcation matrices for any ๐ค{\bf k} sufficiently small to estimate the near-energy eigenstates.

The eigenvalue problem of โ„‹V{\mathcal{H}}_{V} on L๐ค2โ€‹(โ„2/๐”)L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U}):

โ„‹Vโ€‹ฯ•โ€‹(๐ฑ;๐ค)\displaystyle{\mathcal{H}}_{V}\phi({\bf x};{\bf k}) =Eโ€‹(๐ค)โ€‹ฯ•โ€‹(๐ฑ;๐ค),\displaystyle=E({\bf k})\phi({\bf x};{\bf k}),
ฯ•โ€‹(๐ฑ;๐ค)=e\displaystyle\phi({\bf x};{\bf k})=e piโ€‹๐คโ‹…๐ฑโ€‹(๐ฑ),pโ€‹(๐ฑ)โˆˆฯ‡;\displaystyle{}^{i{\bf k}\cdot{\bf x}}p({\bf x}),\quad p({\bf x})\in\chi;

is equivalent to

โ„‹Vโ€‹(๐ค)โ€‹pโ€‹(๐ฑ;๐ค)=Eโ€‹(๐ค)โ€‹pโ€‹(๐ฑ;๐ค),pโ€‹(๐ฑ)โˆˆฯ‡,{\mathcal{H}}_{V}({\bf k})p({\bf x};{\bf k})=E({\bf k})p({\bf x};{\bf k}),\quad p({\bf x})\in\chi,

where โ„‹Vโ€‹(๐ค)=โˆ’(โˆ‡+iโ€‹๐ค)2+Vโ€‹(๐ฑ){\mathcal{H}}_{V}({\bf k})=-(\nabla+i{\bf k})^{2}+V({\bf x}).

We only consider the near-energy solution:

Eโ€‹(๐ค)=ED+ฮผ,pโ€‹(๐ฑ;๐ค)=ฮฆโ€‹(๐ฑ)Tโ€‹๐โ€‹(๐ค)+ฯˆโ€‹(๐ฑ;๐ค).E({\bf k})=E_{{}_{D}}+\mu,\quad p({\bf x};{\bf k})={\Phi}({\bf x})^{\mathrm{T}}\bf{P}({\bf k})+\psi({\bf x};{\bf k}).

where ๐โ€‹(๐ค)\bf{P}({\bf k}) =(p1โ€‹(๐ค),p2โ€‹(๐ค),p3โ€‹(๐ค),p4โ€‹(๐ค))T=(p_{1}({\bf k}),p_{2}({\bf k}),p_{3}({\bf k}),p_{4}({\bf k}))^{\mathrm{T}}, ฯˆ(๐ฑ;๐ค)โˆˆKer(โ„‹Vโˆ’ED)โŸ‚\psi({\bf x};{\bf k})\in\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}})^{\perp}, the corrector ฮผ\mu and ฯˆโ€‹(๐ฑ;๐ค)\psi({\bf x};{\bf k}) are small, and

ฮฆโ€‹(๐ฑ)=(ฯ•1โ€‹(๐ฑ),ฯ•2โ€‹(๐ฑ),ฯ•3โ€‹(๐ฑ),ฯ•4โ€‹(๐ฑ))T.{\Phi}({\bf x})=(\phi_{1}({\bf x}),\phi_{2}({\bf x}),\phi_{3}({\bf x}),\phi_{4}({\bf x}))^{\mathrm{T}}. (3.1)

Here {ฯ•jโ€‹(๐ฑ)}j\{\phi_{j}({\bf x})\}_{j} span Kerโก(โ„‹Vโˆ’ED)\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}}) as in (2.8). Substitute these into the eigenvalue problem and rearrange it into:

(โ„‹Vโˆ’ED)โ€‹ฯˆโ€‹(๐ฑ;๐ค)=(ฮผ+2โ€‹iโ€‹๐คโ‹…โˆ‡โˆ’โ€–๐คโ€–2)โ€‹(ฮฆโ€‹(๐ฑ)Tโ€‹๐โ€‹(๐ค)+ฯˆโ€‹(๐ฑ;๐ค)).({\mathcal{H}}_{V}-E_{{}_{D}})\psi({\bf x};{\bf k})=(\mu+2i{\bf k}\cdot\nabla-\|{\bf k}\|^{2})\bigl{(}{\Phi}({\bf x})^{\mathrm{T}}{\bf{P}}({\bf k})+\psi({\bf x};{\bf k})\bigr{)}. (3.2)

Thus, the corrector ฯˆโ€‹(๐ฑ;๐ค)\psi({\bf x};{\bf k}) is the solution to the problem:

(Iโˆ’(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚(2i๐คโ‹…โˆ‡\displaystyle\bigl{(}I-({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}(2i{\bf k}\cdot\nabla +โˆฅ๐คโˆฅ2+ฮผ))ฯˆ(๐ฑ;๐ค)\displaystyle+\|{\bf k}\|^{2}+\mu)\bigr{)}\psi({\bf x};{\bf k})
=(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹๐คโ‹…โˆ‡ฮฆโ€‹(๐ฑ)Tโ€‹๐โ€‹(๐ค),\displaystyle=({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla{\Phi}({\bf x})^{\mathrm{T}}\bf{P}({\bf k}),

where ๐’ฌโŸ‚{\mathcal{Q}}_{\perp} is the projection map to the orthogonal complement space of Kerโก(โ„‹Vโˆ’ED)\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}}) and

(โ„‹Vโˆ’E)Dโˆ’1:๐’ฌโŸ‚ฯ‡โ†’๐’ฌโŸ‚H1(โ„2/๐”).({\mathcal{H}}_{V}-E{{}_{D}})^{-1}:{\mathcal{Q}}_{\perp}\chi\to{\mathcal{Q}}_{\perp}H^{1}({\mathbb{R}}^{2}/{\bf U}). (3.3)

Here H1โ€‹(โ„2/๐”)H^{1}({\mathbb{R}}^{2}/{\bf U}) is the limitation of ฯ‡\chi in H1โ€‹(โ„2)H^{1}({\mathbb{R}}^{2}). Therefore,

ฯˆโ€‹(๐ฑ;๐ค)=((โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹๐คโ‹…โˆ‡ฮฆโ€‹(๐ฑ)T+Oโ€‹(โ€–๐คโ€–2))โ€‹๐โ€‹(๐ค).\psi({\bf x};{\bf k})=\bigl{(}({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla{\Phi}({\bf x})^{\mathrm{T}}+O(\|{\bf k}\|^{2})\bigr{)}\bf{P}({\bf k}).

Besides, from (3.2), we know that:

โŸจฯ•lโ€‹(๐ฑ),(ฮผ+2โ€‹iโ€‹๐คโ‹…โˆ‡โˆ’โ€–๐คโ€–2)โ€‹(ฮฆโ€‹(๐ฑ)Tโ€‹๐โ€‹(๐ค)+ฯˆโ€‹(๐ฑ;๐ค))โŸฉ=0.\langle\phi_{l}({\bf x}),(\mu+2i{\bf k}\cdot\nabla-\|{\bf k}\|^{2})\bigl{(}{\Phi}({\bf x})^{\mathrm{T}}{\bf{P}}({\bf k})+\psi({\bf x};{\bf k})\bigr{)}\rangle=0.

Based on all these, solving the original eigenvalue problem can be reduced to solving possible ๐โ€‹(๐ค)\bf{P}({\bf k}) in (ฮผโ€‹I+Bโ€‹(๐ค))โ€‹๐โ€‹(๐ค)=๐ŸŽ(\mu I+B({\bf k})){\bf{P}}({\bf k})=\bf{0}, with

Bโ€‹(๐ค)=B1โ€‹(๐ค)+B2โ€‹(๐ค)+Oโ€‹(โ€–๐คโ€–)3.B({\bf k})=B_{1}({\bf k})+B_{2}({\bf k})+O(\|{\bf k}\|)^{3}.

Here

B1โ€‹(๐ค)\displaystyle B_{1}({\bf k}) =(โŸจฯ•lโ€‹(๐ฑ),2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j;\displaystyle=\biggl{(}\big{\langle}\phi_{l}({\bf x}),2i{\bf k}\cdot\nabla\phi_{j}({\bf x})\big{\rangle}_{L^{2}(\Omega)}\biggr{)}_{l,j};
B2โ€‹(๐ค)\displaystyle B_{2}({\bf k}) =(โŸจฯ•l(๐ฑ),(2i๐คโ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2i๐คโ‹…โˆ‡โˆ’โˆฅ๐คโˆฅ2)ฯ•j(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j.\displaystyle=\biggl{(}\big{\langle}\phi_{l}({\bf x}),\bigl{(}2i{\bf k}\cdot\nabla({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla-\|{\bf k}\|^{2}\bigr{)}\phi_{j}({\bf x})\big{\rangle}_{L^{2}(\Omega)}\biggr{)}_{l,j}.

Bโ€‹(๐ค)B({\bf k}) represents the bifurcation matrix.

  1. 1.

    First-order bifurcation matrix B1โ€‹(๐ค)B_{1}({\bf k}).

    Taking advatange of the symmetry relations between ฯ•jโ€‹(๐ฑ)\phi_{j}({\bf x}) in (2.8), we can obtain [8]

    B1โ€‹(๐ค)=(02โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ002โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏ000000โˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ00โˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏ0).B_{1}({\bf k})=\begin{pmatrix}0&2i{\bf k}\cdot\bm{v}_{\sharp}&0&0\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}}&0&0&0\\ 0&0&0&-2i{\bf k}\cdot\bm{v}_{\sharp}\\ 0&0&-\overline{2i{\bf k}\cdot\bm{v}_{\sharp}}&0\end{pmatrix}.

    Here ๐’—โ™ฏ\bm{v}_{\sharp} is such a quantity:

    ๐’—โ™ฏ=โŸจฯ•1โ€‹(๐ฑ),โˆ‡ฯ•1โ€‹(โˆ’๐ฑ)ยฏโŸฉL2โ€‹(ฮฉ)=vF2โ€‹(1i)โ€‹eiโ€‹ฮธโ™ฏ.\bm{v}_{\sharp}=\langle\phi_{1}({\bf x}),\nabla\overline{\phi_{1}(-{\bf x})}\rangle_{L^{2}(\Omega)}=\frac{v_{{}_{F}}}{2}\begin{pmatrix}1\\ i\end{pmatrix}e^{i\theta_{\sharp}}. (3.4)
    Remark 3.1.

    The eigenvalues of bโ€‹(๐ค)b({\bf k}) are ฮปยฑ=ยฑ|2โ€‹iโ€‹๐คโ‹…๐ฏโ™ฏ|=ยฑvFโ€‹โ€–๐คโ€–\lambda_{\pm}=\pm|2i{\bf k}\cdot\bm{v}_{\sharp}|=\pm v_{{}_{F}}\|{\bf k}\|. Both ฮปยฑ\lambda_{\pm} are of multiplicity two, which means that the upper two bands near the fourfold degenerate Dirac point are tangent to each other and so do the lower two bands. To distinguish the tangent bands, we have to calculate higher-order approximations. The Fermi velocity vFv_{{}_{F}} is the slope of the double Dirac cone. It is invariant under phase transformation of ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}). The corresponding eigenvectors are determined by ฮธโ™ฏ\theta_{\sharp}, which naturally changes with the phase transformation of ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}).

  2. 2.

    Second-order bifurcation matrix B2โ€‹(๐ค)B_{2}({\bf k}).

    The second-order bifurcation matrix is Hermitian. Thus, it is enough to discuss the upper part of

    (โŸจฯ•l(๐ฑ),(2i๐คโ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2i๐คโ‹…โˆ‡)ฯ•j(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j.\biggl{(}\big{\langle}\phi_{l}({\bf x}),\bigl{(}2i{\bf k}\cdot\nabla({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\bigr{)}\phi_{j}({\bf x})\big{\rangle}_{L^{2}(\Omega)}\biggr{)}_{l,j}.

    First, due to

    โŸจฯ•l(๐ฑ),2i๐คโ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2i๐คโ‹…โˆ‡ฯ•j(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle\langle\phi_{l}({\bf x}),2i{\bf k}\cdot\nabla({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}
    =\displaystyle= โŸจ๐’ฌโŸ‚โ€‹2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•lโ€‹(๐ฑ),(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ),\displaystyle\langle{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{l}({\bf x}),({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)},

    and the fact that (โ„‹Vโˆ’ED)โˆ’1({\mathcal{H}}_{V}-E_{D})^{-1} is an elliptic and Hermitian operator on the periodic function space ๐’ฌโŸ‚โ€‹L2โ€‹(ฮฉ){\mathcal{Q}}_{\perp}L^{2}(\Omega), โŸจฯ•lโ€‹(๐ฑ),โ€ฆโ€‹ฯ•lโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\langle\phi_{l}({\bf x}),...\phi_{l}({\bf x})\rangle_{L^{2}(\Omega)} are real for all ll. Besides, using the symmetries between the eigenfunctions in Theorem 2.4, โŸจฯ•lโ€‹(๐ฑ),โ€ฆโ€‹ฯ•lโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\langle\phi_{l}({\bf x}),...\phi_{l}({\bf x})\rangle_{L^{2}(\Omega)} are the same for all ll. This means the diagonal elements of the two-order bifurcation matrix are just real multiples of the identity. For other elements, because the translation operator ๐’ฑ1{\mathcal{V}}_{1} is a unitary operator and commutative with both โˆ‡\nabla and (โ„‹Vโˆ’ED)โˆ’1({\mathcal{H}}_{V}-E_{D})^{-1} on L2โ€‹(ฮฉ)L^{2}(\Omega), we have

    โŸจฯ•lโ€‹(๐ฑ),โ€ฆโ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โŸจ๐’ฑ1โ€‹ฯ•lโ€‹(๐ฑ),โ€ฆโ€‹๐’ฑ1โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ).\displaystyle\langle\phi_{l}({\bf x}),...\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}=\langle{\mathcal{V}}_{1}\phi_{l}({\bf x}),...{\mathcal{V}}_{1}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}.

    Because all ฯ•lโ€‹(๐ฑ)\phi_{l}({\bf x}) are eigenfunctions of ๐’ฑ1{\mathcal{V}}_{1}, it turns out that the two-order bifurcation matrix is quasi-diagonal:

    0=\displaystyle 0= โŸจฯ•1โ€‹(๐ฑ),โ€ฆโ€‹ฯ•3โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โŸจฯ•1โ€‹(๐ฑ),โ€ฆโ€‹ฯ•4โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle\langle\phi_{1}({\bf x}),...\phi_{3}({\bf x})\rangle_{L^{2}(\Omega)}=\langle\phi_{1}({\bf x}),...\phi_{4}({\bf x})\rangle_{L^{2}(\Omega)}
    =\displaystyle= โŸจฯ•2โ€‹(๐ฑ),โ€ฆโ€‹ฯ•3โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โŸจฯ•2โ€‹(๐ฑ),โ€ฆโ€‹ฯ•4โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ).\displaystyle\langle\phi_{2}({\bf x}),...\phi_{3}({\bf x})\rangle_{L^{2}(\Omega)}=\langle\phi_{2}({\bf x}),...\phi_{4}({\bf x})\rangle_{L^{2}(\Omega)}.

    Therefore, the second order bifurcation matrix B2โ€‹(๐ค)B_{2}({\bf k}) is equal to:

    (mโ€‹(๐ค)โˆ’โ€–๐คโ€–2bโ€‹(๐ค)00bโ€‹(๐ค)ยฏmโ€‹(๐ค)โˆ’โ€–๐คโ€–20000mโ€‹(๐ค)โˆ’โ€–๐คโ€–2bโ€‹(๐ค)00bโ€‹(๐ค)ยฏmโ€‹(๐ค)โˆ’โ€–๐คโ€–2).\begin{pmatrix}m({\bf k})-\|{\bf k}\|^{2}&b({\bf k})&0&0\\ \overline{b({\bf k})}&m({\bf k})-\|{\bf k}\|^{2}&0&0\\ 0&0&m({\bf k})-\|{\bf k}\|^{2}&b({\bf k})\\ 0&0&\overline{b({\bf k})}&m({\bf k})-\|{\bf k}\|^{2}\end{pmatrix}.

    where

    m(๐ค)=โŸจฯ•1(๐ฑ),2i๐คโ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2i๐คโ‹…โˆ‡ฯ•1(๐ฑ)โŸฉL2โ€‹(ฮฉ);m({\bf k})=\langle\phi_{1}({\bf x}),2i{\bf k}\cdot\nabla({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{1}({\bf x})\rangle_{L^{2}(\Omega)}; (3.5)
    b(๐ค)=โŸจฯ•1(๐ฑ),2i๐คโ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2i๐คโ‹…โˆ‡ฯ•1โ€‹(โˆ’๐ฑ)ยฏโŸฉL2โ€‹(ฮฉ).b({\bf k})=\langle\phi_{1}({\bf x}),2i{\bf k}\cdot\nabla({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\overline{\phi_{1}(-{\bf x})}\rangle_{L^{2}(\Omega)}. (3.6)
    Remark 3.2.

    mโ€‹(๐ค)m({\bf k}) is real. The diagonal part (mโ€‹(๐ค)โˆ’โ€–๐คโ€–2)โ€‹I\bigl{(}m({\bf k})-\|{\bf k}\|^{2}\bigr{)}I of this matrix does no contribution to bifurcation. The term resulting in second-order bifurcation of the upper or lower two bands is bโ€‹(๐ค)b({\bf k}). The form of bโ€‹(๐ค)b({\bf k}) is calculated explicitly in Appendix A.

Remark 3.3.

Both the first-order and second-order bifurcation matrices are quasi-diagonal. This is because the eigenvalue problems of super honeycomb lattice potential on โ‹ƒโˆ—โฃโˆˆ{1,ฯ„,ฯ„ยฏ}ฯ‡ฯ„,โˆ—\bigcup\limits_{*\in\{1,\tau,\bar{\tau}\}}\chi_{\tau,*} and โ‹ƒโˆ—โฃโˆˆ{1,ฯ„,ฯ„ยฏ}ฯ‡ฯ„ยฏ,โˆ—\bigcup\limits_{*\in\{1,\tau,\bar{\tau}\}}\chi_{\bar{\tau},*} are decoupled.

Taking use of these discussions, we finally obtain second-order accurate near-energy approximations of the four branches intersecting at the ฮ“\Gamma point as the following theorem:

Theorem 3.4.

(Double Dirac cone at the ฮ“\Gamma point) Let โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}) be a Schrรถdinger operator with a super honeycomb lattice potential Vโ€‹(๐ฑ)V({\bf x}). Assume that it has a fourfold degeneracy at the ฮ“\Gamma point as in (2.7) and the corresponding four eigenstates {ฯ•lโ€‹(๐ฑ)}\big{\{}\phi_{l}({\bf x})\big{\}} satisfy the symmetry condition (2.8). Let ๐ฏโ™ฏ\bm{v}_{\sharp}, mโ€‹(๐ค)m({\bf k}), and bโ€‹(๐ค)b({\bf k}) denote the same terms as in (3.4) , (3.5) and (3.6). Suppose that ๐ฏโ™ฏ\bm{v}_{\sharp} satisfies the non-degeneracy condition:

vF=โ€–๐’—โ™ฏโ€–=โ€–โŸจฯ•1โ€‹(๐ฑ),โˆ‡ฯ•1โ€‹(โˆ’๐ฑ)ยฏโŸฉL2โ€‹(ฮฉ)โ€–โ‰ 0.v_{{}_{F}}=\|\bm{v}_{\sharp}\|=\|\langle\phi_{1}({\bf x}),\nabla\overline{\phi_{1}(-{\bf x})}\rangle_{L^{2}(\Omega)}\|\neq 0. (3.7)

Then, the intersecting four branches behave conically near the ฮ“\Gamma point:

Enโˆ—+1(๐ค)=EDโˆ’ฮผห‡1(๐ค)+โˆฅ๐คโˆฅ2โˆ’m(๐ค)+O(โˆฅ๐คโˆฅ3)),\displaystyle E_{n_{*}+1}({\bf k})=E_{{}_{D}}-\check{\mu}_{1}({\bf k})+\|{\bf k}\|^{2}-m({\bf k})+O(\|{\bf k}\|^{3})), (3.8)
Enโˆ—+2(๐ค)=EDโˆ’ฮผห‡2(๐ค)+โˆฅ๐คโˆฅ2โˆ’m(๐ค)+O(โˆฅ๐คโˆฅ3)),\displaystyle E_{n_{*}+2}({\bf k})=E_{{}_{D}}-\check{\mu}_{2}({\bf k})+\|{\bf k}\|^{2}-m({\bf k})+O(\|{\bf k}\|^{3})),
Enโˆ—+3(๐ค)=ED+ฮผห‡2(๐ค)+โˆฅ๐คโˆฅ2โˆ’m(๐ค)+O(โˆฅ๐คโˆฅ3)),\displaystyle E_{n_{*}+3}({\bf k})=E_{{}_{D}}+\check{\mu}_{2}({\bf k})+\|{\bf k}\|^{2}-m({\bf k})+O(\|{\bf k}\|^{3})),
Enโˆ—+4(๐ค)=ED+ฮผห‡1(๐ค)+โˆฅ๐คโˆฅ2โˆ’m(๐ค)+O(โˆฅ๐คโˆฅ3)).\displaystyle E_{n_{*}+4}({\bf k})=E_{{}_{D}}+\check{\mu}_{1}({\bf k})+\|{\bf k}\|^{2}-m({\bf k})+O(\|{\bf k}\|^{3})).

The term corresponding to the first two order bifurcation is:

ฮผห‡1โ€‹(๐ค)=maxโก(|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)|,|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)|),\displaystyle\check{\mu}_{1}({\bf k})=\max\bigl{(}|2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})|,|2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})|\bigr{)},
ฮผห‡2โ€‹(๐ค)=minโก(|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)|,|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)|).\displaystyle\check{\mu}_{2}({\bf k})=\min\bigl{(}|2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})|,|2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})|\bigr{)}.

Remark 3.5.

The condition (3.7) guarantees that the intersecting four branches {๐’ฎnโˆ—+jโ€‹(๐ค)}j=1,2,3,4\big{\{}{\mathcal{S}}_{n_{*}+j}({\bf k})\big{\}}_{j=1,2,3,4} do not behave too flat near the ฮ“\Gamma point.

This theorem characterizes the double Dirac cone up to second-order accuracy near the fourfold degenerate point.

Suppose that |2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)|>|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)||2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})|>|2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})|. The related approximations of four branches of ๐โ€‹(๐ค){\bf{P}}({\bf k}) are:

๐nโˆ—+1โ€‹(๐ค)=(|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)ยฏ00)+Oโ€‹(โ€–๐คโ€–3);{\bf{P}}^{n_{*}+1}({\bf k})=\begin{pmatrix}|2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})|\vspace{0.2cm}\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})}\\ 0\\ 0\end{pmatrix}+O(\|{\bf k}\|^{3});
๐nโˆ—+2โ€‹(๐ค)=(00โˆ’|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)ยฏ)+Oโ€‹(โ€–๐คโ€–3);{\bf{P}}^{n_{*}+2}({\bf k})=\begin{pmatrix}0\\ 0\\ -|2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})|\vspace{0.2cm}\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})}\end{pmatrix}+O(\|{\bf k}\|^{3});
๐nโˆ—+3โ€‹(๐ค)=(00|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)ยฏ)+Oโ€‹(โ€–๐คโ€–3);{\bf{P}}^{n_{*}+3}({\bf k})=\begin{pmatrix}0\\ 0\\ |2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})|\vspace{0.2cm}\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})}\end{pmatrix}+O(\|{\bf k}\|^{3});
๐nโˆ—+4โ€‹(๐ค)=(โˆ’|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)ยฏ00)+Oโ€‹(โ€–๐คโ€–3).{\bf{P}}^{n_{*}+4}({\bf k})=\begin{pmatrix}-|2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})|\vspace{0.2cm}\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})}\\ 0\\ 0\end{pmatrix}+O(\|{\bf k}\|^{3}).

Similar results can be obtained for |2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ+bโ€‹(๐ค)|<|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’bโ€‹(๐ค)||2i{\bf k}\cdot\bm{v}_{\sharp}+b({\bf k})|<|2i{\bf k}\cdot\bm{v}_{\sharp}-b({\bf k})| with these Pjโ€‹(๐ค)P^{j}({\bf k}) reordered.

3.2 Near-energy approximation along certain direction

This subsection gives the near-energy approximation along the ๐’2\bm{l}_{2} direction, which can be written in an analytic form.

For the given direction ๐’2\bm{l}_{2}, we can choose a typical eiโ€‹ฮธโˆ—โ€‹ฯ•1โ€‹(๐ฑ)e^{i\theta^{*}}\phi_{1}({\bf x}), which is also in ฯ‡ฯ„,ฯ„\chi_{\tau,\tau}, to replace the original ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}), such that the new ๐’—โ™ฏ\bm{v}_{\sharp} has the following property [11]:

โˆ’2โ€‹iโ€‹๐ซโ‹…๐’—โ™ฏ=vFโ€–๐’2โ€–โ€‹(๐ซโ‹…๐’2โˆ’Detโก[๐ซ,๐’2]โ€‹i),๐ซโˆˆโ„2.-2i{\bf r}\cdot\bm{v}_{\sharp}=\frac{v_{{}_{F}}}{\|\bm{l}_{2}\|}\big{(}{\bf r}\cdot\bm{l}_{2}-\operatorname{Det}[{\bf r},\bm{l}_{2}]i\big{)},{\quad}{\bf r}\in{\mathbb{R}}^{2}. (3.9)

In the following content throughout this paper, we fix the ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}) such that ๐’—โ™ฏ\bm{v}_{\sharp} always take such a simple form (3.9).

Proposition 3.6.

(Near-energy approximation along l2\bm{l}_{2} direction) Let Vโ€‹(๐ฑ)V({\bf x}) be a super honeycomb lattice potential and โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}) be a Schrรถdinger operator as in Theorem 3.4. Assume (3.9) is true for ๐ฏโ™ฏ\bm{v}_{\sharp} and bโ€‹(๐ฅ2)โ‰ 0b(\bm{l}_{2})\neq 0 where bโ€‹(๐ค)b({\bf k}) is as in (3.6). Then there exists a ฮป0>0\lambda_{0}>0 such that for all |ฮป|<ฮป0|\lambda|<\lambda_{0} the following is true:

  1. 1.

    {Enโˆ—+jโ€‹(ฮปโ€‹๐’2)}j=1,2,3,4\{E_{n_{*}+j}(\lambda\bm{l}_{2})\}_{j=1,2,3,4} are equivalent to such four real analytic functions intersecting at ฮป=0\lambda=0:

    ฮธ1โ€‹(ฮป)=EDโˆ’vFโ€‹โ€–๐’2โ€–โ€‹ฮป+r1โ€‹(ฮป)โ€‹ฮป2,\displaystyle\theta_{1}(\lambda)=E_{{}_{D}}-v_{{}_{F}}\|\bm{l}_{2}\|\lambda+r_{1}(\lambda)\lambda^{2}, (3.10)
    ฮธ2โ€‹(ฮป)=EDโˆ’vFโ€‹โ€–๐’2โ€–โ€‹ฮป+r2โ€‹(ฮป)โ€‹ฮป2,\displaystyle\theta_{2}(\lambda)=E_{{}_{D}}-v_{{}_{F}}\|\bm{l}_{2}\|\lambda+r_{2}(\lambda)\lambda^{2},
    ฮธ3โ€‹(ฮป)=ED+vFโ€‹โ€–๐’2โ€–โ€‹ฮป+r3โ€‹(ฮป)โ€‹ฮป2,\displaystyle\theta_{3}(\lambda)=E_{{}_{D}}+v_{{}_{F}}\|\bm{l}_{2}\|\lambda+r_{3}(\lambda)\lambda^{2},
    ฮธ4โ€‹(ฮป)=ED+vFโ€‹โ€–๐’2โ€–โ€‹ฮป+r4โ€‹(ฮป)โ€‹ฮป2,\displaystyle\theta_{4}(\lambda)=E_{{}_{D}}+v_{{}_{F}}\|\bm{l}_{2}\|\lambda+r_{4}(\lambda)\lambda^{2},

    with |rjโ€‹(ฮป)|<C|r_{j}(\lambda)|<C, where CC is a positive constant independent of ฮป\lambda.

  2. 2.

    Corresponding orthonormal eigen modes in Kerโก(โ„‹Vโˆ’ฮธjโ€‹(ฮป))\operatorname{Ker}\bigl{(}{\mathcal{H}}_{V}-\theta_{j}(\lambda)\bigr{)} in Lฮปโ€‹๐’22โ€‹(โ„2/๐”)L^{2}_{\lambda\bm{l}_{2}}({\mathbb{R}}^{2}/{\bf U}) can be chosen real analytically dependent on ฮป\lambda:

    ฮ˜1โ€‹(๐ฑ;ฮป)=12โ€‹eiโ€‹ฮปโ€‹๐’2โ‹…๐ฑโ€‹(ฯ•1โ€‹(๐ฑ)โˆ’ฯ•2โ€‹(๐ฑ))+R1โ€‹(๐ฑ;ฮป),\displaystyle\Theta_{1}({\bf x};\lambda)=\frac{1}{\sqrt{2}}e^{i\lambda\bm{l}_{2}\cdot{\bf x}}\bigl{(}\phi_{1}({\bf x})-\phi_{2}({\bf x})\bigr{)}+R_{1}({\bf x};\lambda), (3.11)
    ฮ˜2โ€‹(๐ฑ;ฮป)=12โ€‹eiโ€‹ฮปโ€‹๐’2โ‹…๐ฑโ€‹(ฯ•3โ€‹(๐ฑ)+ฯ•4โ€‹(๐ฑ))+R2โ€‹(๐ฑ;ฮป),\displaystyle\Theta_{2}({\bf x};\lambda)=\frac{1}{\sqrt{2}}e^{i\lambda\bm{l}_{2}\cdot{\bf x}}\bigl{(}\phi_{3}({\bf x})+\phi_{4}({\bf x})\bigr{)}+R_{2}({\bf x};\lambda),
    ฮ˜3โ€‹(๐ฑ;ฮป)=12โ€‹eiโ€‹ฮปโ€‹๐’2โ‹…๐ฑโ€‹(ฯ•3โ€‹(๐ฑ)โˆ’ฯ•4โ€‹(๐ฑ))+R4โ€‹(๐ฑ;ฮป),\displaystyle\Theta_{3}({\bf x};\lambda)=\frac{1}{\sqrt{2}}e^{i\lambda\bm{l}_{2}\cdot{\bf x}}\bigl{(}\phi_{3}({\bf x})-\phi_{4}({\bf x})\bigr{)}+R_{4}({\bf x};\lambda),
    ฮ˜4โ€‹(๐ฑ;ฮป)=12โ€‹eiโ€‹ฮปโ€‹๐’2โ‹…๐ฑโ€‹(ฯ•1โ€‹(๐ฑ)+ฯ•2โ€‹(๐ฑ))+R3โ€‹(๐ฑ;ฮป).\displaystyle\Theta_{4}({\bf x};\lambda)=\frac{1}{\sqrt{2}}e^{i\lambda\bm{l}_{2}\cdot{\bf x}}\bigl{(}\phi_{1}({\bf x})+\phi_{2}({\bf x})\bigr{)}+R_{3}({\bf x};\lambda).

    Here Rjโ€‹(๐ฑ;ฮป)=OH2โ€‹(โ„2/๐”)โ€‹(ฮป)R_{j}({\bf x};\lambda)=O_{H^{2}({\mathbb{R}}^{2}/{\bf U})}(\lambda).

Remark 3.7.

The quantity bโ€‹(๐ค)b({\bf k}) in (3.6) and mโ€‹(๐ค)m({\bf k}) in (3.5) are closely related to the second-order derivative of the energy, which corresponds to the effective mass in physical literature. For example, one of the four analytic functions ฮธj\theta_{j} can be expressed as:

ฮธj0โ€‹(ฮป)=EDโˆ’|vFโ€–โ€‹๐’2โ€‹โ€–ฮปโˆ’bโ€‹(๐’2)โ€‹ฮป2|+(โ€–๐’2โ€–2โˆ’mโ€‹(๐’2))โ€‹ฮป2+Oโ€‹(ฮป3).\theta_{j_{0}}(\lambda)=E_{{}_{D}}-\left|v_{{}_{F}}\|\bm{l}_{2}\|\lambda-b(\bm{l}_{2})\lambda^{2}\right|+(\|\bm{l}_{2}\|^{2}-m(\bm{l}_{2}))\lambda^{2}+O(\lambda^{3}).

Combined with (3.8), this shows that bโ€‹(๐ค)b({\bf k}) governs the effective mass difference between the upper or lower pair bands. The condition bโ€‹(๐ฅ2)โ‰ 0b(\bm{l}_{2})\neq 0 ensures that these pairs split at order Oโ€‹(โ€–๐คโ€–2)O(\|{\bf k}\|^{2}).

Proof โ€ƒWith (3.9), the expressions of ฮธjโ€‹(ฮป)\theta_{j}(\lambda) and ฮ˜โ€‹(๐ฑ;ฮป)\Theta({\bf x};\lambda) can be obtained directly from the discussion in the last subsection. We first solve out four ฮธjโ€‹(ฮป)\theta_{j}(\lambda) real analytic dependent on ฮป\lambda from det(ฮธโ€‹I+Bโ€‹(ฮปโ€‹๐’2))=0\det(\theta I+B(\lambda\bm{l}_{2}))=0 where Bโ€‹(๐ค)B({\bf k}) is the bifurcation matrix in the last subsection, and then find the four corresponding ฮ˜jโ€‹(๐ฑ;ฮป)\Theta_{j}({\bf x};\lambda) which are also real analytically dependent on ฮป\lambda [13]. โ–ก\Box

4 Multiscale expansions of edge states

In this paper, the proof of the existence of two gapped edge states of the domain wall modulated operator โ„‹eโ€‹dโ€‹gโ€‹eฮด{\mathcal{H}}_{edge}^{\delta} can be divided into two main parts: calculating the main terms of energies and eigenstates by multiscale expansions first and estimating the remaining terms following the classical method as in the paper of Fefferman and Weinstein [13] then. This section focuses on calculating the main terms. The most important conclusion in this section is the existence of the gap of order Oโ€‹(ฮด2)O(\delta^{2}) under natural assumptions on second-order bifurcation terms. Specifically, we can expand the energies of these two edge states at kโˆฅ=0k_{\parallel}=0 as

โ„ฐjโ€‹(0)=ED+ฮดโ€‹โ„ฐj(1)โ€‹(0)+ฮด2โ€‹โ„ฐj(2)โ€‹(0)+Oโ€‹(ฮด3).{\mathcal{E}}_{j}(0)=E_{{}_{D}}+\delta{\mathcal{E}}^{(1)}_{j}(0)+\delta^{2}{\mathcal{E}}^{(2)}_{j}(0)+O(\delta^{3}).

The two main conclusions in this part are:

  • โ€ข

    the linear terms โ„ฐj(1)โ€‹(0){\mathcal{E}}^{(1)}_{j}(0) are both zero for j=1,2j=1,2, and they correspond to a two-dimensional zero energy eigenspace of an operator which can be diagonalized into two Dirac operators;

  • โ€ข

    the quadratic terms โ„ฐj(2)โ€‹(0){\mathcal{E}}^{(2)}_{j}(0) bifurcate when second-order bifurcation term (4.24) is nonzero, which coincides with the non-degeneracy condition of order Oโ€‹(โ€–๐คโ€–2)O(\|{\bf k}\|^{2}) bifurcation matrix; see the last section.

Let us take a more convinient direction ๐’~1=๐’1โˆ’๐’1โ‹…๐’2โ€–๐’2โ€–2โ€‹๐’2\tilde{\bm{l}}_{1}=\bm{l}_{1}-\frac{\bm{l}_{1}\cdot\bm{l}_{2}}{\|\bm{l}_{2}\|^{2}}\bm{l}_{2}, which is orthogonal to ๐’2\bm{l}_{2} and satisfies ๐’~1โ‹…๐’˜1=2โ€‹ฯ€\tilde{\bm{l}}_{1}\cdot\bm{w}_{1}=2\pi. Let kโˆฅ=ฮดโ€‹sโ€‹๐’~1โ‹…๐’˜1k_{\parallel}=\delta s\tilde{\bm{l}}_{1}\cdot\bm{w}_{1}, and denote:

Lห‡s2(โ„2/โ„ค๐’˜1)={fโˆˆL2(ฮฉe)|f(๐ฑ)=eiโ€‹ฮดโ€‹sโ€‹๐’~1โ‹…๐ฑp(๐ฑ),p(๐ฑ+๐’˜1)=p(๐ฑ)}.\check{L}_{s}^{2}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1})=\big{\{}f\in L^{2}(\Omega_{e}){\quad}|{\quad}f({\bf x})=e^{i\delta s\tilde{\bm{l}}_{1}\cdot{\bf x}}p({\bf x}),{\quad}p({\bf x}+\bm{w}_{1})=p({\bf x})\big{\}}.

In this section, we aim to solve the following eigenvalue problem by multiscale expansions:

โ„‹eโ€‹dโ€‹gโ€‹eฮดโ€‹ฯˆโ€‹(๐ฑ;s)=โ„ฐโ€‹(s)โ€‹ฯˆโ€‹(๐ฑ,s),ฯˆโ€‹(๐ฑ;s)โˆˆLห‡s2โ€‹(โ„2/โ„คโ€‹๐’˜1).{\mathcal{H}}_{edge}^{\delta}\psi({\bf x};s)={\mathcal{E}}(s)\psi({\bf x},s),{\quad}\psi({\bf x};s)\in\check{L}_{s}^{2}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1}). (4.1)

For simplicity, we denote the space of ๐’˜1\bm{w}_{1}-periodic functions:

ฯ‡e=Lห‡02(โ„2/โ„ค๐’˜1)={fโˆˆL2(ฮฉe)|f(๐ฑ+๐’˜1)=f(๐ฑ)}.\chi_{e}=\check{L}_{0}^{2}({\mathbb{R}}^{2}/{\mathbb{Z}}\bm{w}_{1})=\{f\in L^{2}(\Omega_{e}){\quad}|{\quad}f({\bf x}+\bm{w}_{1})=f({\bf x})\}. (4.2)

For ฮด\delta small, ss near zero, and โ„ฐโ€‹(s){\mathcal{E}}(s) near EDE_{{}_{D}}, using the slow variable ฮถ=ฮดโ€‹๐’2โ‹…๐ฑ\zeta=\delta\bm{l}_{2}\cdot{\bf x} and associated multiscale solution ฯˆโ€‹(๐ฑ,ฮถ;s)\psi({\bf x},\zeta;s). Expand the solution in powers of ฮด\delta:

ฯˆโ€‹(๐ฑ,ฮถ;s)\displaystyle\psi({\bf x},\zeta;s) =ฯˆ(0)โ€‹(๐ฑ,ฮถ;s)+ฮดโ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ;s)+ฮด2โ€‹ฯˆ(2)โ€‹(๐ฑ,ฮถ;s)+โ€ฆ,\displaystyle=\psi^{(0)}({\bf x},\zeta;s)+\delta\psi^{(1)}({\bf x},\zeta;s)+\delta^{2}\psi^{(2)}({\bf x},\zeta;s)+..., (4.3)
โ„ฐโ€‹(s)\displaystyle{\mathcal{E}}(s) =ED+ฮดโ€‹โ„ฐ(1)โ€‹(s)+ฮด2โ€‹โ„ฐ(2)โ€‹(s)+โ€ฆ\displaystyle=E_{{}_{D}}+\delta{\mathcal{E}}^{(1)}(s)+\delta^{2}{\mathcal{E}}^{(2)}(s)+...

Then, substituting the powers into the equation and grouping the terms by order in ฮด\delta to obtain equations for these ฯˆ(j)โ€‹(๐ฑ,ฮถ,s)\psi^{(j)}({\bf x},\zeta,s) and โ„ฐ(j){\mathcal{E}}^{(j)}.

At order Oโ€‹(1)O(1), it is:

(โ„‹Vโˆ’ED)โ€‹ฯˆ(0)โ€‹(๐ฑ,ฮถ;s)=0,\bigl{(}{\mathcal{H}}_{V}-E_{{}_{D}}\bigr{)}\psi^{(0)}({\bf x},\zeta;s)=0, (4.4)

where โ„‹V=โˆ’ฮ”๐ฑ+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta_{{\bf x}}+V({\bf x}).

At order Oโ€‹(ฮด)O(\delta), it is:

(โ„‹Vโˆ’ED)โ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ;s)=โ„’1โ€‹(s)โ€‹ฯˆ(0)โ€‹(๐ฑ,ฮถ;s),\bigl{(}{\mathcal{H}}_{V}-E_{{}_{D}}\bigr{)}\psi^{(1)}({\bf x},\zeta;s)={\mathcal{L}}_{1}(s)\psi^{(0)}({\bf x},\zeta;s), (4.5)

where โ„’1โ€‹(s)=2โ€‹(iโ€‹sโ€‹๐’~1+โˆ‚ฮถ๐’2)โ‹…โˆ‡๐ฑโˆ’ฮทโ€‹(ฮถ)โ€‹Wโ€‹(๐ฑ)+โ„ฐ(1)โ€‹(s){\mathcal{L}}_{1}(s)=2\bigl{(}is\tilde{\bm{l}}_{1}+\partial_{\zeta}\bm{l}_{2}\bigr{)}\cdot\nabla_{{\bf x}}-\eta(\zeta)W({\bf x})+{\mathcal{E}}^{(1)}(s).

At order Oโ€‹(ฮด2)O(\delta^{2}), it is:

(โ„‹Vโˆ’ED)โ€‹ฯˆ(2)โ€‹(๐ฑ,ฮถ;s)=โ„’1โ€‹(s)โ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ;s)+โ„’2โ€‹(s)โ€‹ฯˆ(0)โ€‹(๐ฑ,ฮถ;s),\bigl{(}{\mathcal{H}}_{V}-E_{{}_{D}}\bigr{)}\psi^{(2)}({\bf x},\zeta;s)={\mathcal{L}}_{1}(s)\psi^{(1)}({\bf x},\zeta;s)+{\mathcal{L}}_{2}(s)\psi^{(0)}({\bf x},\zeta;s), (4.6)

where โ„’2โ€‹(s)=(iโ€‹sโ€‹๐’~1+โˆ‚ฮถ๐’2)2+โ„ฐ(2)โ€‹(s){\mathcal{L}}_{2}(s)=\bigl{(}is\tilde{\bm{l}}_{1}+\partial_{\zeta}\bm{l}_{2}\bigr{)}^{2}+{\mathcal{E}}^{(2)}(s).

At order Oโ€‹(ฮดn)O(\delta^{n}), nโ‰ฅ3n\geq 3, it is:

(โ„‹Vโˆ’ED)โ€‹ฯˆ(n)โ€‹(๐ฑ,ฮถ;s)\displaystyle\bigl{(}{\mathcal{H}}_{V}-E_{{}_{D}}\bigr{)}\psi^{(n)}({\bf x},\zeta;s) (4.7)
=\displaystyle= โ„’1โ€‹(s)โ€‹ฯˆ(nโˆ’1)โ€‹(๐ฑ,ฮถ;s)+โ„’2โ€‹(s)โ€‹ฯˆ(nโˆ’2)โ€‹(๐ฑ,ฮถ;s)+โˆ‘j=3nโ„ฐ(j)โ€‹(s)โ€‹ฯˆ(nโˆ’j)โ€‹(๐ฑ,ฮถ;s).\displaystyle{\mathcal{L}}_{1}(s)\psi^{(n-1)}({\bf x},\zeta;s)+{\mathcal{L}}_{2}(s)\psi^{(n-2)}({\bf x},\zeta;s)+\sum_{j=3}^{n}{\mathcal{E}}^{(j)}(s)\psi^{(n-j)}({\bf x},\zeta;s).

4.1 Order Oโ€‹(ฮด)O(\delta) terms

For equation (4.4), we can use the ansatz

ฯˆ(0)โ€‹(๐ฑ,ฮถ;s)=ฮฆโ€‹(๐ฑ)Tโ€‹๐œถโ€‹(ฮถ;s),\psi^{(0)}({\bf x},\zeta;s)={\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}(\zeta;s), (4.8)

where ๐œถโ€‹(ฮถ;s)=(ฮฑ1โ€‹(ฮถ;s),ฮฑ2โ€‹(ฮถ;s),ฮฑ3โ€‹(ฮถ;s),ฮฑ4โ€‹(ฮถ;s))T\bm{\alpha}(\zeta;s)=(\alpha_{1}(\zeta;s),\alpha_{2}(\zeta;s),\alpha_{3}(\zeta;s),\alpha_{4}(\zeta;s))^{\mathrm{T}}, and ฮฆโ€‹(๐ฑ)\Phi({\bf x}) as in (3.1). Substituting the ansatz into (4.5), by the solvable condition for (โ„‹Vโˆ’ED)({\mathcal{H}}_{V}-E_{{}_{D}}), the right-hand side of (4.5) should be orthogonal to Kerโก(โ„‹Vโˆ’ED)\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}}):

โŸจฮฆโ€‹(๐ฑ),โ„’1โ€‹(s)โ€‹ฮฆโ€‹(๐ฑ)TโŸฉL2โ€‹(ฮฉ)โ€‹๐œถโ€‹(ฮถ,s)=0;\langle\Phi({\bf x}),{\mathcal{L}}_{1}(s)\Phi({\bf x})^{\mathrm{T}}\rangle_{L^{2}(\Omega)}\bm{\alpha}(\zeta,s)=0; (4.9)

to be specific:

0=\displaystyle 0= 2โ€‹โŸจฮฆโ€‹(๐ฑ),โˆ‡๐ฑฮฆโ€‹(๐ฑ)TโŸฉL2โ€‹(ฮฉ)โ‹…(iโ€‹sโ€‹๐’~1โ€‹๐œถโ€‹(ฮถ;s)+โˆ‚ฮถ๐œถโ€‹(ฮถ;s)โ€‹๐’2)\displaystyle\quad 2\langle\Phi({\bf x}),\nabla_{{\bf x}}{\Phi}({\bf x})^{\mathrm{T}}\rangle_{L^{2}(\Omega)}\cdot\biggl{(}is\tilde{\bm{l}}_{1}\bm{\alpha}(\zeta;s)+\partial_{\zeta}\bm{\alpha}(\zeta;s)\bm{l}_{2}\biggr{)} (4.10)
+\displaystyle+ โ„ฐ(1)โ€‹โŸจฮฆโ€‹(๐ฑ),ฮฆโ€‹(๐ฑ)TโŸฉL2โ€‹(ฮฉ)โ€‹๐œถโ€‹(ฮถ;s)โˆ’โŸจฮฆโ€‹(๐ฑ),Wโ€‹(๐ฑ)โ€‹ฮฆโ€‹(๐ฑ)TโŸฉL2โ€‹(ฮฉ)โ€‹ฮทโ€‹(ฮถ)โ€‹๐œถโ€‹(ฮถ;s).\displaystyle{\mathcal{E}}^{(1)}\langle\Phi({\bf x}),{\Phi}({\bf x})^{\mathrm{T}}\rangle_{L^{2}(\Omega)}\bm{\alpha}(\zeta;s)-\langle\Phi({\bf x}),W({\bf x}){\Phi}({\bf x})^{\mathrm{T}}\rangle_{L^{2}(\Omega)}\eta(\zeta)\bm{\alpha}(\zeta;s).

With the help of (3.9), (2.9), and (2.8) the symmetric relations between ฯ•jโ€‹(๐ฑ)\phi_{j}({\bf x}), (4.10) is such an equation:

(๐’Ÿโ€‹(s)โˆ’โ„ฐ(1)โ€‹(s)โ€‹I)โ€‹๐œถโ€‹(ฮถ;s)=0,({\mathcal{D}}(s)-{\mathcal{E}}^{(1)}(s)I)\bm{\alpha}(\zeta;s)=0, (4.11)

where

๐’Ÿโ€‹(s)=Detโก[๐’~1,๐’2]โ€‹vFโ€–๐’2โ€–โ€‹sโ€‹ฯƒ3โŠ—ฯƒ2+1iโ€‹vFโ€‹โ€–๐’2โ€–โ€‹ฯƒ3โŠ—ฯƒ1โ€‹โˆ‚ฮถ+cโ™ฏโ€‹ฮทโ€‹(ฮถ)โ€‹ฯƒ1โŠ—I.{\mathcal{D}}(s)=\operatorname{Det}[\tilde{\bm{l}}_{1},\bm{l}_{2}]\frac{v_{{}_{F}}}{\|\bm{l}_{2}\|}s\sigma_{3}\otimes\sigma_{2}+\frac{1}{i}v_{{}_{F}}\|\bm{l}_{2}\|\sigma_{3}\otimes\sigma_{1}\partial_{\zeta}+c_{\sharp}\eta(\zeta)\sigma_{1}\otimes I. (4.12)

ฯƒj\sigma_{j} are pauli matrices.

Use the following orthogonal transformation QQ to decouple the original 4-dimensional problem (4.11) into two 2-dimensional problems:

Q=(2222222222โˆ’22โˆ’2222).Q=\begin{pmatrix}\frac{\sqrt{2}}{2}&&\frac{\sqrt{2}}{2}&\\ &\frac{\sqrt{2}}{2}&&\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2}&&-\frac{\sqrt{2}}{2}&\\ &-\frac{\sqrt{2}}{2}&&\frac{\sqrt{2}}{2}\\ \end{pmatrix}. (4.13)

Then the effective Dirac operator for order Oโ€‹(ฮด)O(\delta) is

๐’Ÿ~โ€‹(s)=QTโ€‹๐’Ÿโ€‹(s)โ€‹Q=diagโก(๐’Ÿ1โ€‹(s),๐’Ÿ2โ€‹(s)),\tilde{{\mathcal{D}}}(s)=Q^{T}{\mathcal{D}}(s)Q=\operatorname{diag}({\mathcal{D}}_{1}(s),{\mathcal{D}}_{2}(s)), (4.14)

where

๐’Ÿ1โ€‹(s)=Dโ€‹eโ€‹tโ€‹[๐’~1,๐’2]โ€‹vFโ€–๐’2โ€–โ€‹sโ€‹ฯƒ2+1iโ€‹vFโ€‹โ€–๐’2โ€–โ€‹ฯƒ1โ€‹โˆ‚ฮถ+cโ™ฏโ€‹ฮทโ€‹(ฮถ)โ€‹ฯƒ3,\displaystyle{\mathcal{D}}_{1}(s)=Det[\tilde{\bm{l}}_{1},\bm{l}_{2}]\frac{v_{{}_{F}}}{\|\bm{l}_{2}\|}s\sigma_{2}+\frac{1}{i}v_{{}_{F}}\|\bm{l}_{2}\|\sigma_{1}\partial_{\zeta}+c_{\sharp}\eta(\zeta)\sigma_{3}, (4.15)
๐’Ÿ2โ€‹(s)=Dโ€‹eโ€‹tโ€‹[๐’~1,๐’2]โ€‹vFโ€–๐’2โ€–โ€‹sโ€‹ฯƒ2+1iโ€‹vFโ€‹โ€–๐’2โ€–โ€‹ฯƒ1โ€‹โˆ‚ฮถโˆ’cโ™ฏโ€‹ฮทโ€‹(ฮถ)โ€‹ฯƒ3.\displaystyle{\mathcal{D}}_{2}(s)=Det[\tilde{\bm{l}}_{1},\bm{l}_{2}]\frac{v_{{}_{F}}}{\|\bm{l}_{2}\|}s\sigma_{2}+\frac{1}{i}v_{{}_{F}}\|\bm{l}_{2}\|\sigma_{1}\partial_{\zeta}-c_{\sharp}\eta(\zeta)\sigma_{3}.

Thus, solving eigenvalue problem (4.11) is equivalent to finding eigenvalues of ๐’Ÿ1โ€‹(s){\mathcal{D}}_{1}(s) and ๐’Ÿ2โ€‹(s){\mathcal{D}}_{2}(s). Note that ๐’Ÿ2โ€‹(s)=โˆ’๐’Ÿ1โ€‹(s)ยฏ{\mathcal{D}}_{2}(s)=-\overline{{\mathcal{D}}_{1}(s)}. We have the following proposition for the eigenvalue and eigenfunctions for ๐’Ÿ1โ€‹(s){\mathcal{D}}_{1}(s) and ๐’Ÿ2โ€‹(s){\mathcal{D}}_{2}(s). Its proof is simple, and we omit it here.

Proposition 4.1.

(First-order approximation of the edge states) ๐’Ÿ1โ€‹(s){\mathcal{D}}_{1}(s) has a simple eigenvalue

ฮผโ€‹(s)=sgnโก(cโ™ฏ)โ€‹Detโก[๐’~1,๐’2]โ€‹vFโ€–๐’1โ€–โ€‹s\mu(s)=\operatorname{sgn}(c_{\sharp})\operatorname{Det}[\tilde{\bm{l}}_{1},\bm{l}_{2}]\frac{v_{{}_{F}}}{\|\bm{l}_{1}\|}s

with the normalized eigenstate:

๐’…โ€‹(ฮถ)=(sgnโก(cโ™ฏ)i)โ€‹ฮฑโ™ฏโ€‹(ฮถ),\bm{d}(\zeta)=\begin{pmatrix}\operatorname{sgn}(c_{\sharp})\\ i\end{pmatrix}\alpha_{\sharp}(\zeta),

where

ฮฑโ™ฏโ€‹(ฮถ)=cฮฑโ€‹expโก(โˆ’|cโ™ฏ|vFโ€‹โ€–๐’2โ€–โ€‹โˆซ0ฮถฮทโ€‹(t)โ€‹๐‘‘t),\alpha_{\sharp}(\zeta)=c_{\alpha}\exp\biggl{(}-\frac{|c_{\sharp}|}{v_{{}_{F}}\|\bm{l}_{2}\|}\int_{0}^{\zeta}\eta(t)dt\biggr{)}, (4.16)

and cฮฑc_{\alpha} is a real normalization coefficient for ๐โ€‹(ฮถ)\bm{d}(\zeta). Similarly, ๐’Ÿ2โ€‹(s){\mathcal{D}}_{2}(s) has a simple eigenvalue โˆ’ฮผโ€‹(s)-\mu(s) with the eigenstate ๐โ€‹(ฮถ)ยฏ\overline{\bm{d}(\zeta)}.

We can deduce the following conclusions from this proposition.

  1. 1.

    When sโ‰ 0s\neq 0, ๐’Ÿโ€‹(s){\mathcal{D}}(s) has two different eigenvalues โ„ฐ1(1)โ€‹(s)=ฮผโ€‹(s){\mathcal{E}}^{(1)}_{1}(s)=\mu(s) and โ„ฐ2(1)โ€‹(s)=โˆ’ฮผโ€‹(s){\mathcal{E}}^{(1)}_{2}(s)=-\mu(s), and corresponding eigenstates:

    ๐œถ1โ€‹(ฮถ;s)=QTโ€‹(๐’…โ€‹(ฮถ)00);๐œถ2โ€‹(ฮถ;s)=QTโ€‹(00๐’…โ€‹(ฮถ)ยฏ).\bm{\alpha}^{1}(\zeta;s)=Q^{T}\begin{pmatrix}\bm{d}(\zeta)\\ 0\\ 0\end{pmatrix};{\qquad}\bm{\alpha}^{2}(\zeta;s)=Q^{T}\begin{pmatrix}0\\ 0\\ \overline{\bm{d}(\zeta)}\end{pmatrix}.
  2. 2.

    (The first-order degeneracy of the edge statesโ€™ energies) When s=0s=0, 0 is an eigenvalue of ๐’Ÿโ€‹(0){\mathcal{D}}(0) of multiplicity two with such a pair of eigenstates as a basis:

    ๐œถ1โ€‹(ฮถ;0)=ฮฑโ™ฏโ€‹(ฮถ)โ€‹(sgnโก(cโ™ฏ)00โˆ’i),๐œถ2โ€‹(ฮถ;0)=ฮฑโ™ฏโ€‹(ฮถ)โ€‹(0sgnโก(cโ™ฏ)โˆ’i0),\displaystyle\bm{\alpha}^{1}(\zeta;0)=\alpha_{\sharp}(\zeta)\begin{pmatrix}\operatorname{sgn}(c_{\sharp})\\ 0\\ 0\\ -i\end{pmatrix},\qquad\bm{\alpha}^{2}(\zeta;0)=\alpha_{\sharp}(\zeta)\begin{pmatrix}0\\ \operatorname{sgn}(c_{\sharp})\\ -i\\ 0\end{pmatrix}, (4.17)

    Note that we choose two special orthogonal ๐œถlโ€‹(ฮถ;0)\bm{\alpha}^{l}(\zeta;0) in Kerโก(๐’Ÿโ€‹(0))\operatorname{Ker}({\mathcal{D}}(0)) here to simplify the calculation in the next subsection.

Thus, for sโ‰ 0s\neq 0, we have two different solutions at order Oโ€‹(ฮด)O(\delta) as above and we can take ฯˆj(0)โ€‹(๐ฑ,ฮถ;s)=ฮฆโ€‹(๐ฑ)Tโ€‹๐œถjโ€‹(ฮถ;s)\psi^{(0)}_{j}({\bf x},\zeta;s)={\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{j}(\zeta;s) for j=1,2j=1,2 respectively.

But for s=0s=0, โ„ฐ(1)โ€‹(0)=0{\mathcal{E}}^{(1)}(0)=0 is of multiplicity two, and we can only distinguish the two eigenvalues and corresponding eigenstates at higher orders. Now we just set

ฯˆ(0)โ€‹(๐ฑ,ฮถ;0)=c1โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ1โ€‹(ฮถ;0)+c2โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ2โ€‹(ฮถ;0)\psi^{(0)}({\bf x},\zeta;0)=c^{1}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{1}(\zeta;0)+c^{2}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{2}(\zeta;0) (4.18)

and try to solve out two groups of (c1,c2)(c^{1},c^{2}) at the next order.

4.2 Order Oโ€‹(ฮด2)O(\delta^{2}) terms

If ฯˆ(0)โ€‹(๐ฑ,ฮถ;s)\psi^{(0)}({\bf x},\zeta;s) is solved out, we can recursively use the ansatz

ฯˆ(1)โ€‹(๐ฑ,ฮถ;s)=ฮฆโ€‹(๐ฑ)Tโ€‹๐œทโ€‹(ฮถ,s)+(โ„‹Vโˆ’ED)โˆ’1โ€‹โ„’1โ€‹(s)โ€‹ฯˆ(0)โ€‹(๐ฑ,ฮถ;s).\psi^{(1)}({\bf x},\zeta;s)={\Phi}({\bf x})^{\mathrm{T}}\bm{\beta}(\zeta,s)+({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{L}}_{1}(s)\psi^{(0)}({\bf x},\zeta;s). (4.19)

where ๐œทโ€‹(ฮถ;s)=(ฮฒ1โ€‹(ฮถ;s),ฮฒ2โ€‹(ฮถ;s),ฮฒ3โ€‹(ฮถ;s),ฮฒ4โ€‹(ฮถ;s))T\bm{\beta}(\zeta;s)=(\beta_{1}(\zeta;s),\beta_{2}(\zeta;s),\beta_{3}(\zeta;s),\beta_{4}(\zeta;s))^{\mathrm{T}}, and (โ„‹Vโˆ’ED)โˆ’1({\mathcal{H}}_{V}-E_{{}_{D}})^{-1} is as in (3.3).

For sโ‰ 0s\neq 0, the original multiscale eigenvalue problem is split into two different problems whose eigenvalue has the first-order term of ฮผโ€‹(s)โ€‹ฮด\mu(s)\delta and โˆ’ฮผโ€‹(s)โ€‹ฮด-\mu(s)\delta respectively, and the rest work is just in a traditional style. At order Oโ€‹(ฮด2)O(\delta^{2}), using the ansatz (4.19), we can obtain

(โ„‹Vโˆ’ED)โ€‹ฯˆ(2)โ€‹(๐ฑ,ฮถ;s)=โ„’1โ€‹(s)โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œทโ€‹(ฮถ;s)+โ„ฑโ€‹(s)โ€‹ฯˆj(0)โ€‹(๐ฑ,ฮถ;s),\bigl{(}{\mathcal{H}}_{V}-E_{{}_{D}}\bigr{)}\psi^{(2)}({\bf x},\zeta;s)={\mathcal{L}}_{1}(s){\Phi}({\bf x})^{\mathrm{T}}\bm{\beta}(\zeta;s)+{\mathcal{F}}(s)\psi^{(0)}_{j}({\bf x},\zeta;s),

where โ„ฑโ€‹(s)=โ„’1โ€‹(s)โ€‹(โ„‹Vโˆ’ED)โˆ’1โ€‹โ„’1โ€‹(s)+โ„’2โ€‹(s){\mathcal{F}}(s)={\mathcal{L}}_{1}(s)({\mathcal{H}}_{V}-E_{D})^{-1}{\mathcal{L}}_{1}(s)+{\mathcal{L}}_{2}(s). Use the solvable condition of (โ„‹Vโˆ’ED)({\mathcal{H}}_{V}-E_{{}_{D}}) again to solve out ๐œทjโ€‹(ฮถ;s)\bm{\beta}_{j}(\zeta;s) and construct ansatzes like (4.19) recursively for all the rest orders to get the multiscale expansions of two gapped eigenvalues โ„ฐ1โ€‹(s){\mathcal{E}}_{1}(s) and โ„ฐ2โ€‹(s){\mathcal{E}}_{2}(s) and associated eigenstates ฯˆ1โ€‹(๐ฑ,ฮถ;s)\psi_{1}({\bf x},\zeta;s) and ฯˆ2โ€‹(๐ฑ,ฮถ;s)\psi_{2}({\bf x},\zeta;s).

However, for s=0s=0, at order Oโ€‹(ฮด2)O(\delta^{2}), we can only obtain:

(โ„‹Vโˆ’ED)\displaystyle\bigl{(}{\mathcal{H}}_{V}-E_{{}_{D}}\bigr{)} ฯˆ(2)โ€‹(๐ฑ,ฮถ;0)=โ„’1โ€‹(0)โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œทjโ€‹(ฮถ;0)\displaystyle\psi^{(2)}({\bf x},\zeta;0)={\mathcal{L}}_{1}(0){\Phi}({\bf x})^{\mathrm{T}}\bm{\beta}_{j}(\zeta;0) (4.20)
+โ„ฑโ€‹(0)โ€‹(c1โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ1โ€‹(ฮถ;0)+c2โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ2โ€‹(ฮถ;0)).\displaystyle+{\mathcal{F}}(0)\bigl{(}c^{1}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{1}(\zeta;0)+c^{2}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{2}(\zeta;0)\bigr{)}.

Similarly, (4.20) has to satisfy the solvable condition of (โ„‹Vโˆ’ED)({\mathcal{H}}_{V}-E_{{}_{D}}). Thus, the right-hand side of the equation is orthogonal to Kerโก(โ„‹Vโˆ’ED)\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}}), and we can obtain:

๐’Ÿ(0)๐œท(ฮถ;0)=โˆ’โŸจฮฆ(๐ฑ),โ„ฑ(0)(c1(ฮฆ(๐ฑ)T๐œถ1(ฮถ;0)+c2ฮฆ(๐ฑ)T๐œถ2(ฮถ;0))โŸฉL2โ€‹(ฮฉ).\displaystyle{\mathcal{D}}(0)\bm{\beta}(\zeta;0)=-\big{\langle}\Phi({\bf x}),{\mathcal{F}}(0)\bigl{(}c^{1}({\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{1}(\zeta;0)+c^{2}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{2}(\zeta;0)\bigr{)}\big{\rangle}_{L^{2}(\Omega)}. (4.21)

Because ๐’Ÿโ€‹(0){\mathcal{D}}(0) is self-adjoint, (4.21) has a solution if and only if the right-hand side is orthogonal to ๐œถlโ€‹(ฮถ;0)\bm{\alpha}^{l}(\zeta;0) for l=1,2l=1,2:

โŸจ๐œถlโ€‹(ฮถ;0),โŸจฮฆโ€‹(๐ฑ),โ„ฑโ€‹(0)โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ1โ€‹(ฮถ;0)โŸฉL2โ€‹(ฮฉ)โŸฉL2โ€‹(โ„)โ€‹c1\displaystyle\big{\langle}{\bm{\alpha}}^{l}(\zeta;0),\big{\langle}\Phi({\bf x}),{\mathcal{F}}(0){\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{1}(\zeta;0)\big{\rangle}_{L^{2}(\Omega)}\big{\rangle}_{L^{2}({\mathbb{R}})}c^{1} (4.22)
+\displaystyle+ โŸจ๐œถlโ€‹(ฮถ;0),โŸจฮฆโ€‹(๐ฑ),โ„ฑโ€‹(0)โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ2โ€‹(ฮถ;0)โŸฉL2โ€‹(ฮฉ)โŸฉL2โ€‹(โ„)โ€‹c2=0.\displaystyle\big{\langle}{\bm{\alpha}}^{l}(\zeta;0),\big{\langle}\Phi({\bf x}),{\mathcal{F}}(0){\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{2}(\zeta;0)\big{\rangle}_{L^{2}(\Omega)}\big{\rangle}_{L^{2}({\mathbb{R}})}c^{2}=0.

The outer inner product is about ฮถ\zeta in L2โ€‹(โ„)L^{2}({\mathbb{R}}). This equation has nonzero solutions (c1,c2)T(c^{1},c^{2})^{\mathrm{T}} if and only if DetโกBe=0\operatorname{Det}B_{e}=0, where

Be=โŸจ(๐œถ1โ€‹(ฮถ;0)๐œถ2โ€‹(ฮถ;0)),โŸจฮฆโ€‹(๐ฑ),โ„ฑโ€‹(0)โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹(๐œถ1โ€‹(ฮถ;0)๐œถ2โ€‹(ฮถ;0))โŸฉL2โ€‹(ฮฉ)โŸฉL2โ€‹(โ„).B_{e}=\big{\langle}\begin{pmatrix}{\bm{\alpha}}^{1}(\zeta;0)\\ {\bm{\alpha}}^{2}(\zeta;0)\end{pmatrix},\langle\Phi({\bf x}),{\mathcal{F}}(0){\Phi}({\bf x})^{\mathrm{T}}\begin{pmatrix}\bm{\alpha}^{1}(\zeta;0)&\bm{\alpha}^{2}(\zeta;0)\end{pmatrix}\rangle_{L^{2}(\Omega)}\big{\rangle}_{L^{2}({\mathbb{R}})}. (4.23)

BeB_{e} is the bifurcation matrix for the edge statesโ€™ problem with the following property.

Proposition 4.2.

(Second-order approximation of the edge states) DetโกBe=0\operatorname{Det}B_{e}=0 has two real solutions โ„ฐ1(2)โ€‹(0){\mathcal{E}}^{(2)}_{1}(0) and โ„ฐ2(2)โ€‹(0){\mathcal{E}}^{(2)}_{2}(0).

Proof โ€ƒFrom (4.23), we know that

Be=โ„ฐ(2)โ€‹(0)โ€‹I+โŸจ(๐œถ1โ€‹(ฮถ;0)๐œถ2โ€‹(ฮถ;0)),โŸจฮฆโ€‹(๐ฑ),๐’ฉโ€‹ฮฆโ€‹(๐ฑ)Tโ€‹(๐œถ1โ€‹(ฮถ;0)๐œถ2โ€‹(ฮถ;0))โŸฉL2โ€‹(ฮฉ)โŸฉL2โ€‹(โ„).\displaystyle B_{e}={\mathcal{E}}^{(2)}(0)I+\big{\langle}\begin{pmatrix}{\bm{\alpha}}^{1}(\zeta;0)\\ {\bm{\alpha}}^{2}(\zeta;0)\end{pmatrix},\langle\Phi({\bf x}),{\mathcal{N}}{\Phi}({\bf x})^{\mathrm{T}}\begin{pmatrix}\bm{\alpha}^{1}(\zeta;0)&\bm{\alpha}^{2}(\zeta;0)\end{pmatrix}\rangle_{L^{2}(\Omega)}\big{\rangle}_{L^{2}({\mathbb{R}})}.

Here ๐’ฉ=(2โ€‹โˆ‚ฮถ๐’2โ‹…โˆ‡๐ฑโˆ’ฮทโ€‹(ฮถ)โ€‹Wโ€‹(๐ฑ))โ€‹(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹(2โ€‹โˆ‚ฮถ๐’2โ‹…โˆ‡๐ฑโˆ’ฮทโ€‹(ฮถ)โ€‹Wโ€‹(๐ฑ))+(โˆ‚ฮถ๐’2)2{\mathcal{N}}=\big{(}2\partial_{\zeta}\bm{l}_{2}\cdot\nabla_{{\bf x}}-\eta(\zeta)W({\bf x})\big{)}({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}\big{(}2\partial_{\zeta}\bm{l}_{2}\cdot\nabla_{{\bf x}}-\eta(\zeta)W({\bf x})\big{)}+(\partial_{\zeta}\bm{l}_{2})^{2}. Denote ๐’ฉ1=2๐’2โ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2๐’2โ‹…โˆ‡{\mathcal{N}}_{1}=2\bm{l}_{2}\cdot\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2\bm{l}_{2}\cdot\nabla, ๐’ฉ2=2๐’2โ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚W(๐ฑ){\mathcal{N}}_{2}=2\bm{l}_{2}\cdot\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}W({\bf x}), ๐’ฉ3=Wโ€‹(๐ฑ)โ€‹(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹๐’2โ‹…โˆ‡{\mathcal{N}}_{3}=W({\bf x})({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2\bm{l}_{2}\cdot\nabla, and ๐’ฉ4=Wโ€‹(๐ฑ)โ€‹(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹Wโ€‹(๐ฑ){\mathcal{N}}_{4}=W({\bf x})({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}W({\bf x}). Now, let us calculate the following terms first.

  1. 1.

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ1โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j:\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{1}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}:

    This can be calculated similarly with second-order bifurcation terms in section 3.1. The final result is

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ1โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j=m1โ€‹I+IโŠ—M1.\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{1}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}=m_{1}I+I\otimes M_{1}.

    Here M1=(0b1b1ยฏ0)M_{1}=\begin{pmatrix}0&b_{1}\\ \overline{b_{1}}&0\end{pmatrix}, where b1=โŸจฯ•1โ€‹(๐ฑ),๐’ฉ1โ€‹ฯ•2โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)b_{1}=\langle\phi_{1}({\bf x}),{\mathcal{N}}_{1}\phi_{2}({\bf x})\rangle_{L^{2}(\Omega)}.

  2. 2.

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ2โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j:\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{2}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}:

    Because โ„›{\mathcal{R}} is unitary, we have:

    โŸจฯ•l(๐ฑ),โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚W(๐ฑ)ฯ•j(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle\langle\phi_{l}({\bf x}),\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}W({\bf x})\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}
    =\displaystyle= โŸจโ„›(ฯ•l(๐ฑ)),โ„›(โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚W(๐ฑ)ฯ•j(๐ฑ))โŸฉL2โ€‹(ฮฉ)\displaystyle\langle{\mathcal{R}}\bigl{(}\phi_{l}({\bf x})\bigr{)},{\mathcal{R}}\bigl{(}\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}W({\bf x})\phi_{j}({\bf x})\bigr{)}\rangle_{L^{2}(\Omega)}
    =\displaystyle= Rโˆ—โŸจโ„›(ฯ•l(๐ฑ)),โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚W(๐ฑ)โ„›(ฯ•j(๐ฑ))โŸฉL2โ€‹(ฮฉ).\displaystyle R^{*}\langle{\mathcal{R}}\bigl{(}\phi_{l}({\bf x})\bigr{)},\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}W({\bf x}){\mathcal{R}}\bigl{(}\phi_{j}({\bf x})\bigr{)}\rangle_{L^{2}(\Omega)}.

    Since ฯ•jโ€‹(๐ฑ)\phi_{j}({\bf x}) and ฯ•lโ€‹(๐ฑ)\phi_{l}({\bf x}) are eigenfunctions of โ„›{\mathcal{R}}, the above quantity takes a nonzero vector only when it is an eigenvector of Rโˆ—R^{*} with eigenvalue ฯ„\tau or ฯ„ยฏ\bar{\tau}, which means ฯ•jโ€‹(๐ฑ)\phi_{j}({\bf x}) and ฯ•lโ€‹(๐ฑ)\phi_{l}({\bf x}) should correspond to different eigenvalues of โ„›{\mathcal{R}}. By the symmetries between the eigenfunctions in Theorem 2.4, we can get:

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ2โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j=ฯƒ3โŠ—M2+1iโ€‹ฯƒ2โŠ—M3,\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{2}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}=\sigma_{3}\otimes M_{2}+\frac{1}{i}\sigma_{2}\otimes M_{3},

    where

    M2=(0b2โˆ’b2ยฏ0)M3=(0โˆ’b3b3ยฏ0).M_{2}=\begin{pmatrix}0&b_{2}\vspace{0.2cm}\\ -\overline{b_{2}}&0\end{pmatrix}{\qquad}M_{3}=\begin{pmatrix}0&-b_{3}\vspace{0.2cm}\\ \overline{b_{3}}&0\end{pmatrix}.

    b2=โŸจฯ•1โ€‹(๐ฑ),๐’ฉ2โ€‹ฯ•2โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)b_{2}=\langle\phi_{1}({\bf x}),{\mathcal{N}}_{2}\phi_{2}({\bf x})\rangle_{L^{2}(\Omega)} and b3=โŸจฯ•1โ€‹(๐ฑ),๐’ฉ2โ€‹ฯ•4โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)b_{3}=\langle\phi_{1}({\bf x}),{\mathcal{N}}_{2}\phi_{4}({\bf x})\rangle_{L^{2}(\Omega)}.

  3. 3.

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ3โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j:\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{3}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}:

    Note that

    โŸจฯ•lโ€‹(๐ฑ),๐’ฉ3โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โŸจโˆ’๐’ฉ2โ€‹ฯ•lโ€‹(๐ฑ),ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle\langle\phi_{l}({\bf x}),{\mathcal{N}}_{3}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}=\langle-{\mathcal{N}}_{2}\phi_{l}({\bf x}),\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}
    =\displaystyle= โˆ’โŸจฯ•jโ€‹(๐ฑ),๐’ฉ2โ€‹ฯ•lโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)ยฏ.\displaystyle-\overline{\langle\phi_{j}({\bf x}),{\mathcal{N}}_{2}\phi_{l}({\bf x})\rangle_{L^{2}(\Omega)}}.

    Thus, (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ3โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j=โˆ’(โŸจฯ•lโ€‹(๐ฑ),๐’ฉ2โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,jH\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{3}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}=-\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{2}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}^{H}.

  4. 4.

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j:\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{4}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}:

    Again because โ„›{\mathcal{R}} is unitary, โŸจฯ•lโ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\langle\phi_{l}({\bf x}),{\mathcal{N}}_{4}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)} takes a nonzero value only when ฯ•jโ€‹(๐ฑ)\phi_{j}({\bf x}) and ฯ•lโ€‹(๐ฑ)\phi_{l}({\bf x}) correspond to the same eigenvalue of โ„›{\mathcal{R}}. Denote

    m4=โŸจฯ•1โ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•1โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ);m_{4}=\langle\phi_{1}({\bf x}),{\mathcal{N}}_{4}\phi_{1}({\bf x})\rangle_{L^{2}(\Omega)};
    b4=โŸจฯ•1โ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•3โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ).b_{4}=\langle\phi_{1}({\bf x}),{\mathcal{N}}_{4}\phi_{3}({\bf x})\rangle_{L^{2}(\Omega)}.

    Then, due to the fact that ๐’ฉ4{\mathcal{N}}_{4} is Hermitian and the symmetries between ฯ•lโ€‹(๐ฑ)\phi_{l}({\bf x}), m4m_{4} is real and โŸจฯ•lโ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•lโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=m4\langle\phi_{l}({\bf x}),{\mathcal{N}}_{4}\phi_{l}({\bf x})\rangle_{L^{2}(\Omega)}=m_{4} for all ll. ๐’ซ{\mathcal{P}} is unitary, too. Thus,

    b4=\displaystyle b_{4}= โŸจฯ•1โ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•3โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โŸจ๐’ซโ€‹ฯ•1โ€‹(๐ฑ),๐’ซโ€‹๐’ฉ4โ€‹ฯ•3โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle\langle\phi_{1}({\bf x}),{\mathcal{N}}_{4}\phi_{3}({\bf x})\rangle_{L^{2}(\Omega)}=\langle{\mathcal{P}}\phi_{1}({\bf x}),{\mathcal{P}}{\mathcal{N}}_{4}\phi_{3}({\bf x})\rangle_{L^{2}(\Omega)}
    =\displaystyle= โŸจฯ•3โ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•1โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)=โŸจ๐’ฉ4โ€‹ฯ•3โ€‹(๐ฑ),ฯ•1โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle\langle\phi_{3}({\bf x}),{\mathcal{N}}_{4}\phi_{1}({\bf x})\rangle_{L^{2}(\Omega)}=\langle{\mathcal{N}}_{4}\phi_{3}({\bf x}),\phi_{1}({\bf x})\rangle_{L^{2}(\Omega)}

    is real. The final result is:

    (โŸจฯ•lโ€‹(๐ฑ),๐’ฉ4โ€‹ฯ•jโ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ))l,j=m4โ€‹I+ฯƒ1โŠ—M4,\biggl{(}\langle\phi_{l}({\bf x}),{\mathcal{N}}_{4}\phi_{j}({\bf x})\rangle_{L^{2}(\Omega)}\biggr{)}_{l,j}=m_{4}I+\sigma_{1}\otimes M_{4},

    where M4โ€‹(๐ค)=b4โ€‹IM_{4}({\bf k})=b_{4}I.

Based on these and the expressions of ๐œถlโ€‹(ฮถ)\bm{\alpha}^{l}(\zeta), we can finally get that:

Be=(โ„ฐ(2)โ€‹(0)+m0)โ€‹I+b0โ€‹ฯƒ1.B_{e}=({\mathcal{E}}^{(2)}(0)+m_{0})I+b_{0}\sigma_{1}.

Here m0m_{0} and b0b_{0} are such real numbers:

m0=\displaystyle m_{0}= 2โ€‹m1โ€‹โŸจฮฑโ™ฏโ€‹(ฮถ),โˆ‚ฮถ2ฮฑโ™ฏโ€‹(ฮถ)โŸฉL2โ€‹(โ„)โˆ’4โ€‹sgnโก(cโ™ฏ)โ€‹โ„‘โก(b3)โ€‹โŸจฮฑโ™ฏโ€‹(ฮถ),โˆ‚ฮถ(ฮทโ€‹(ฮถ)โ€‹ฮฑโ™ฏโ€‹(ฮถ))โŸฉL2โ€‹(โ„)\displaystyle 2m_{1}\langle\alpha_{\sharp}(\zeta),\partial_{\zeta}^{2}\alpha_{\sharp}(\zeta)\rangle_{L^{2}({\mathbb{R}})}-4\operatorname{sgn}(c_{\sharp})\Im(b_{3})\langle\alpha_{\sharp}(\zeta),\partial_{\zeta}\big{(}\eta(\zeta)\alpha_{\sharp}(\zeta)\big{)}\rangle_{L^{2}({\mathbb{R}})}
+2โ€‹m4โ€‹โŸจฮฑโ™ฏโ€‹(ฮถ),ฮทโ€‹(ฮถ)2โ€‹ฮฑโ™ฏโ€‹(ฮถ)โŸฉL2โ€‹(โ„)+2โ€‹โŸจฮฑโ™ฏโ€‹(ฮถ),โˆ‚ฮถ2ฮฑโ™ฏโ€‹(ฮถ)โŸฉL2โ€‹(โ„);\displaystyle+2m_{4}\langle\alpha_{\sharp}(\zeta),\eta(\zeta)^{2}\alpha_{\sharp}(\zeta)\rangle_{L^{2}({\mathbb{R}})}+2\langle\alpha_{\sharp}(\zeta),\partial_{\zeta}^{2}\alpha_{\sharp}(\zeta)\rangle_{L^{2}({\mathbb{R}})};
b0=\displaystyle b_{0}= 2โ€‹โ„œโก(b1)โ€‹โŸจฮฑโ™ฏโ€‹(ฮถ),โˆ‚ฮถ2ฮฑโ™ฏโ€‹(ฮถ)โŸฉL2โ€‹(โ„).\displaystyle 2\Re(b_{1})\langle\alpha_{\sharp}(\zeta),\partial_{\zeta}^{2}\alpha_{\sharp}(\zeta)\rangle_{L^{2}({\mathbb{R}})}.

Thus, DetโกBe=0\operatorname{Det}B_{e}=0 has two real solutions โ„ฐ1(2)โ€‹(0)=โˆ’m0+b0{\mathcal{E}}^{(2)}_{1}(0)=-m_{0}+b_{0} and โ„ฐ1(2)โ€‹(0)=โˆ’m0โˆ’b0{\mathcal{E}}^{(2)}_{1}(0)=-m_{0}-b_{0}.

โ–ก\Box

(The second-order bifurcation of edge statesโ€™ energies) These two solutions are different if and only if:

โ„œ(โŸจฯ•1(๐ฑ),2๐’2โ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2๐’2โ‹…โˆ‡ฯ•1โ€‹(โˆ’๐ฑ)ยฏโŸฉL2โ€‹(ฮฉ))โ‰ 0,\Re\bigg{(}\langle\phi_{1}({\bf x}),2\bm{l}_{2}\cdot\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2\bm{l}_{2}\cdot\nabla\overline{\phi_{1}(-{\bf x})}\rangle_{L^{2}(\Omega)}\bigg{)}\neq 0, (4.24)

and

โŸจฮฑโ™ฏโ€‹(ฮถ),โˆ‚ฮถ2ฮฑโ™ฏโ€‹(ฮถ)โŸฉL2โ€‹(โ„)โ‰ 0.\langle\alpha_{\sharp}(\zeta),\partial_{\zeta}^{2}\alpha_{\sharp}(\zeta)\rangle_{L^{2}({\mathbb{R}})}\neq 0. (4.25)

Note that โŸจฮฑโ™ฏโ€‹(ฮถ),โˆ‚ฮถ2ฮฑโ™ฏโ€‹(ฮถ)โŸฉL2โ€‹(โ„)=0\langle\alpha_{\sharp}(\zeta),\partial_{\zeta}^{2}\alpha_{\sharp}(\zeta)\rangle_{L^{2}({\mathbb{R}})}=0 if and only if โˆ‚ฮถฮฑโ™ฏโ€‹(ฮถ)=0\partial_{\zeta}\alpha_{\sharp}(\zeta)=0 is true for almost all ฮถโˆˆโ„\zeta\in{\mathbb{R}}, which is certainly not true. Assume the condition (4.24) is true throughout the following discussion so that the two edge states separate at order Oโ€‹(ฮด2)O(\delta^{2}). Then we can solve (c11,c12)\bigl{(}c^{1}_{1},c^{2}_{1}\bigr{)} and (c21,c22)\bigl{(}c^{1}_{2},c^{2}_{2}\bigr{)} for equation (4.22), and ๐œท1โ€‹(ฮถ;0)\bm{\beta}_{1}(\zeta;0) and ๐œท2โ€‹(ฮถ;0)\bm{\beta}_{2}(\zeta;0) for equation (4.21) related to โ„ฐ1(2)โ€‹(0){\mathcal{E}}^{(2)}_{1}(0) and โ„ฐ2(2)โ€‹(0){\mathcal{E}}^{(2)}_{2}(0) respectively.

4.3 Order Oโ€‹(ฮดn)O(\delta^{n}) terms

For edge states with separated energies, repeat using ansatz similar to (4.19) and the solvable conditions for order Oโ€‹(ฮดn)O(\delta^{n}) can solve the multiscale problem recursively. The critical fact is that there are two independent eigenvalue problems with eigenvalues differing from at least at order Oโ€‹(ฮด2)O(\delta^{2}).

5 Rigorous formulation of two gapped edge states

Based on the preparation in the last two sections, we are now ready to establish the existence of two gapped edge states at kโˆฅ=0k_{\parallel}=0 rigorously. Recall that ฯ‡e\chi_{e} is the function space at kโˆฅ=0k_{\parallel}=0; see (4.2). The main theorem stating the existence of two edge states in ฯ‡e\chi_{e} is below.

Theorem 5.1.

(Existence of the gapped edge states) Let HV=โˆ’ฮ”+Vโ€‹(๐ฑ)H_{V}=-\Delta+V({\bf x}) be a bulk Hamiltonian as in Theorem 3.4, Hฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ)H^{\delta}=-\Delta+V({\bf x})+\delta W({\bf x}) be a bulk Hamiltonian as in Theorem 2.6, and the folding symmetry breaking domain wall modulated edge operator โ„‹eโ€‹dโ€‹gโ€‹eฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹ฮทโ€‹(ฮดโ€‹๐ฅ2โ‹…๐ฑ)โ€‹Wโ€‹(๐ฑ){\mathcal{H}}_{edge}^{\delta}=-\Delta+V({\bf x})+\delta\eta(\delta\bm{l}_{2}\cdot{\bf x})W({\bf x}) be as in Definition 2.9. Suppose that when ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}) is chosen to satisfy (3.9), the corresponding second-order non-degeneracy condition

โ„œ(โŸจฯ•1(๐ฑ),2๐’2โ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2๐’2โ‹…โˆ‡ฯ•1โ€‹(โˆ’๐ฑ)ยฏโŸฉL2โ€‹(ฮฉ))โ‰ 0\Re\bigg{(}\langle\phi_{1}({\bf x}),2\bm{l}_{2}\cdot\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2\bm{l}_{2}\cdot\nabla\overline{\phi_{1}(-{\bf x})}\rangle_{L^{2}(\Omega)}\bigg{)}\neq 0 (5.1)

is true. Then there exists ฮด0>0\delta_{0}>0, such that for all 0<ฮด<ฮด00<\delta<\delta_{0}, โ„‹eโ€‹dโ€‹gโ€‹eฮด{\mathcal{H}}_{edge}^{\delta} has two eigen pairs (โ„ฐ1,ฯˆ1โ€‹(๐ฑ))\bigl{(}{\mathcal{E}}_{1},\psi_{1}({\bf x})\bigr{)} and (โ„ฐ2,ฯˆ2โ€‹(๐ฑ))\bigl{(}{\mathcal{E}}_{2},\psi_{2}({\bf x})\bigr{)} in ฯ‡e\chi_{e} satisfying:

  1. 1.

    the energies โ„ฐ1{\mathcal{E}}_{1} and โ„ฐ2{\mathcal{E}}_{2} are near EDE_{D} and gapped of order Oโ€‹(ฮด2)O(\delta^{2}):

    โ„ฐ1=ED+โ„ฐ1(2)โ€‹ฮด2+oโ€‹(ฮด2),โ„ฐ2=ED+โ„ฐ2(2)โ€‹ฮด2+oโ€‹(ฮด2),{\mathcal{E}}_{1}=E_{{}_{D}}+{\mathcal{E}}_{1}^{(2)}\delta^{2}+o(\delta^{2}),\quad{\mathcal{E}}_{2}=E_{{}_{D}}+{\mathcal{E}}_{2}^{(2)}\delta^{2}+o(\delta^{2}), (5.2)

    where โ„ฐ1(2)โ‰ โ„ฐ2(2){\mathcal{E}}_{1}^{(2)}\neq{\mathcal{E}}_{2}^{(2)};

  2. 2.

    ฯˆ1โ€‹(๐ฑ)\psi_{1}({\bf x}) and ฯˆ2โ€‹(๐ฑ)\psi_{2}({\bf x}) are well-approximated by two slow modulations of linear combinations of a basis of Kerโก(โ„‹Vโˆ’ED)\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}}):

    ฯˆ1โ€‹(๐ฑ)\displaystyle\psi_{1}({\bf x}) =c11โ€‹โˆ‘j=14๐œถj1โ€‹(ฮถ)โ€‹ฯ•jโ€‹(๐ฑ)+c12โ€‹โˆ‘j=14๐œถj2โ€‹(ฮถ)โ€‹ฯ•jโ€‹(๐ฑ)+OH2โ€‹(โ„2/โ„คโ€‹๐’˜1)โ€‹(ฮด12),\displaystyle=c^{1}_{1}\sum_{j=1}^{4}\bm{\alpha}^{1}_{j}(\zeta)\phi_{j}({\bf x})+c^{2}_{1}\sum_{j=1}^{4}\bm{\alpha}^{2}_{j}(\zeta)\phi_{j}({\bf x})+O_{H^{2}({\mathbb{R}}^{2}/{{\mathbb{Z}}\bm{w}_{1}})}(\delta^{\frac{1}{2}}), (5.3)
    ฯˆ2โ€‹(๐ฑ)\displaystyle\psi_{2}({\bf x}) =c12โ€‹โˆ‘j=14๐œถj1โ€‹(ฮถ)โ€‹ฯ•jโ€‹(๐ฑ)+c22โ€‹โˆ‘j=14๐œถj2โ€‹(ฮถ)โ€‹ฯ•jโ€‹(๐ฑ)+OH2โ€‹(โ„2/โ„คโ€‹๐’˜1)โ€‹(ฮด12),\displaystyle=c^{2}_{1}\sum_{j=1}^{4}\bm{\alpha}^{1}_{j}(\zeta)\phi_{j}({\bf x})+c^{2}_{2}\sum_{j=1}^{4}\bm{\alpha}^{2}_{j}(\zeta)\phi_{j}({\bf x})+O_{H^{2}({\mathbb{R}}^{2}/{{\mathbb{Z}}\bm{w}_{1}})}(\delta^{\frac{1}{2}}),

    where {ฯ•jโ€‹(๐ฑ)}\{\phi_{j}({\bf x})\} are the basis of Kerโก(โ„‹Vโˆ’ED)\operatorname{Ker}({\mathcal{H}}_{V}-E_{{}_{D}}) as in the Theorem 2.4, ฮถ=ฮดโ€‹๐’2โ‹…๐ฑ\zeta=\delta\bm{l}_{2}\cdot{\bf x} is the slow variable, and ๐œถlโ€‹(ฮถ)\bm{\alpha}^{l}(\zeta) are two orthonormal topologically protected zero-energy eigenstates of Dirac operator ๐’Ÿโ€‹(0){\mathcal{D}}(0) in (4.17).

Remark 5.2.

The second order non-degeneracy condition (5.1) guarantees โ„ฐ1(2)โ‰ โ„ฐ2(2){\mathcal{E}}_{1}^{(2)}\neq{\mathcal{E}}_{2}^{(2)}. The form of this condition changes with the phase transformation of ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}), and therefore we fix a ฯ•1โ€‹(๐ฑ)\phi_{1}({\bf x}) which makes (3.9) valid.

This theorem states that โ„‹eโ€‹dโ€‹gโ€‹eฮด{\mathcal{H}}_{edge}^{\delta} has two gapped edge states at kโˆฅ=0k_{\parallel}=0 when ฮด\delta is sufficiently small and characterizes the two edge modes by degenerate eigenmodes of โ„‹V{\mathcal{H}}_{V}. Before giving the comprehensive proof, we show some numerical results in Figure 3 that explicitly illustrate the conclusions. Figure (a) and (b) are the two gapped edge states at kโˆฅ=0k_{\parallel}=0 near the edge. Figure (c)-(f) are a basis of the four-dimensional eigenspaces of the unperturbed bulk operator with eigenvalue EDE_{{}_{D}}. We choose a particular basis of the four-dimensional eigenspaces such that the eigenstates in figure (a) and figure (b) are modulations of the eigenstates in figure (c) and figure (d) respectively.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Figures of edge and bulk modes. (a) and (b) the figures of numerical solutions of two edge states at kโˆฅ=0k_{\parallel}=0 of the limiting domain wall model in Figure 1. (c), (d), (e), and (f) the figures of numerical solutions of fourfold degenerate bulk modes of corresponding unperturbed bulk operators. The eigenstates in figure (a) and figure (b) are modulations of the eigenstates in figure (c) and figure (d), respectively.

From the last section, we can obtain formal expansions of the two edge states at kโˆฅ=0k_{\parallel}=0:

โ„ฐ1โ€‹(ฮด)=ED+ฮด2โ€‹ฮผ1,ฯˆ1โ€‹(๐ฑ,ฮถ;ฮด)=ฯˆ1(0)โ€‹(๐ฑ,ฮถ)+ฮดโ€‹ฯˆ1(1)โ€‹(๐ฑ,ฮถ)+ฮดโ€‹gโ€‹(๐ฑ);{\mathcal{E}}_{1}(\delta)=E_{{}_{D}}+\delta^{2}\mu_{1},\quad\psi_{1}({\bf x},\zeta;\delta)=\psi^{(0)}_{1}({\bf x},\zeta)+\delta\psi^{(1)}_{1}({\bf x},\zeta)+\delta g({\bf x}); (5.4)
โ„ฐ2โ€‹(ฮด)=ED+ฮด2โ€‹ฮผ2,ฯˆ2โ€‹(๐ฑ,ฮถ;ฮด)=ฯˆ2(0)โ€‹(๐ฑ,ฮถ)+ฮดโ€‹ฯˆ2(1)โ€‹(๐ฑ,ฮถ)+ฮดโ€‹hโ€‹(๐ฑ);{\mathcal{E}}_{2}(\delta)=E_{{}_{D}}+\delta^{2}\mu_{2},\quad\psi_{2}({\bf x},\zeta;\delta)=\psi^{(0)}_{2}({\bf x},\zeta)+\delta\psi^{(1)}_{2}({\bf x},\zeta)+\delta h({\bf x}); (5.5)

where the Oโ€‹(1)O(1) and Oโ€‹(ฮด)O(\delta) terms are as in the last subsection:

ฯˆ1(0)โ€‹(๐ฑ,ฮถ)\displaystyle\psi^{(0)}_{1}({\bf x},\zeta) =c11โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ1โ€‹(ฮถ)+c12โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ2โ€‹(ฮถ),\displaystyle=c^{1}_{1}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{1}(\zeta)+c^{2}_{1}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{2}(\zeta), (5.6)
ฯˆ1(1)โ€‹(๐ฑ,ฮถ)\displaystyle\psi^{(1)}_{1}({\bf x},\zeta) =ฮฆโ€‹(๐ฑ)Tโ€‹๐œท1โ€‹(ฮถ;0)+(โ„‹Vโˆ’ED)โˆ’1โ€‹โ„’1โ€‹(s)โ€‹ฯˆ1(0)โ€‹(๐ฑ,ฮถ);\displaystyle=\Phi({\bf x})^{\mathrm{T}}\bm{\beta}_{1}(\zeta;0)+({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{L}}_{1}(s)\psi^{(0)}_{1}({\bf x},\zeta);
ฯˆ2(0)โ€‹(๐ฑ,ฮถ)\displaystyle\psi^{(0)}_{2}({\bf x},\zeta) =c21โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ1โ€‹(ฮถ)+c22โ€‹ฮฆโ€‹(๐ฑ)Tโ€‹๐œถ2โ€‹(ฮถ),\displaystyle=c^{1}_{2}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{1}(\zeta)+c^{2}_{2}{\Phi}({\bf x})^{\mathrm{T}}\bm{\alpha}^{2}(\zeta), (5.7)
ฯˆ2(1)โ€‹(๐ฑ,ฮถ)\displaystyle\psi^{(1)}_{2}({\bf x},\zeta) =ฮฆโ€‹(๐ฑ)Tโ€‹๐œท2โ€‹(ฮถ;0)+(โ„‹Vโˆ’ED)โˆ’1โ€‹โ„’1โ€‹(s)โ€‹ฯˆ2(0)โ€‹(๐ฑ,ฮถ).\displaystyle=\Phi({\bf x})^{\mathrm{T}}\bm{\beta}_{2}(\zeta;0)+({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{L}}_{1}(s)\psi^{(0)}_{2}({\bf x},\zeta).

Substituting (5.4) into the eigenvalue problem at kโˆฅ=0k_{\parallel}=0, we can obtain the corrector equation:

(โ„‹Vโˆ’ED)โ€‹gโ€‹(๐ฑ)+ฮดโ€‹ฮทโ€‹(ฮดโ€‹๐’2โ‹…๐ฑ)โ€‹Wโ€‹(๐ฑ)โ€‹gโ€‹(๐ฑ)โˆ’ฮด2โ€‹ฮผ1โ€‹gโ€‹(๐ฑ)\displaystyle({\mathcal{H}}_{V}-E_{{}_{D}})g({\bf x})+\delta\eta(\delta\bm{l}_{2}\cdot{\bf x})W({\bf x})g({\bf x})-\delta^{2}\mu_{1}g({\bf x}) (5.8)
=\displaystyle= ฮดโ€‹(โ€–๐’2โ€–2โ€‹โˆ‚ฮถ2+ฮผ1)โ€‹ฯˆ(0)โ€‹(๐ฑ,ฮถ)|ฮถ=ฮดโ€‹๐’2โ‹…๐ฑ+ฮด2โ€‹(โ€–๐’2โ€–2โ€‹โˆ‚ฮถ2+ฮผ1)โ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ)|ฮถ=ฮดโ€‹๐’2โ‹…๐ฑ\displaystyle\delta\bigl{(}\|\bm{l}_{2}\|^{2}\partial_{\zeta}^{2}+\mu_{1}\bigr{)}\psi^{(0)}({\bf x},\zeta)|_{\zeta=\delta\bm{l}_{2}\cdot{\bf x}}+\delta^{2}\bigl{(}\|\bm{l}_{2}\|^{2}\partial_{\zeta}^{2}+\mu_{1}\bigr{)}\psi^{(1)}({\bf x},\zeta)|_{\zeta=\delta\bm{l}_{2}\cdot{\bf x}}
+ฮดโ€‹(2โ€‹๐’2โ‹…โˆ‡๐ฑโ€‹โˆ‚ฮถโˆ’ฮทโ€‹(ฮถ)โ€‹Wโ€‹(๐ฑ))โ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ)|ฮถ=ฮดโ€‹๐’2โ‹…๐ฑ,\displaystyle+\delta\bigl{(}2\bm{l}_{2}\cdot\nabla_{{\bf x}}\partial_{\zeta}-\eta(\zeta)W({\bf x})\bigr{)}\psi^{(1)}({\bf x},\zeta)|_{\zeta=\delta\bm{l}_{2}\cdot{\bf x}}\quad,

and the same equation for ฮผ2\mu_{2} and hโ€‹(๐ฑ)h({\bf x}). It remains to solve this equation and estimate the order of gโ€‹(๐ฑ)g({\bf x}). We only need to construct rigorous results for (5.8)(\ref{eqn-corrector}), and the same can be done for ฮผ2\mu_{2} and hโ€‹(๐ฑ)h({\bf x}). The idea is to decompose gโ€‹(๐ฑ)g({\bf x}) by Floquet-Bloch modes and decompose the equation into different components accordingly [13]. Far-energy components can be solved as a functional of near-energy components. See section 3.2 for the description of near-energy approximation. Finally, we get a closed system of near-energy components, where we can use Lyapunov-Schmidt reduction.

It is obvious that gโ€‹(๐ฑ)g({\bf x}) should be in ฯ‡e\chi_{e}. The following lemma shows that Floquet-Bloch eigenmodes are a complete basis for ฯ‡e\chi_{e}. According to this lemma, equation (5.8) can be decomposed into a family of equations.

Lemma 5.3.

For fโˆˆฯ‡ef\in\chi_{e}, where ฯ‡e\chi_{e} is defined in (4.2), the following decomposition is true:

fโ€‹(๐ฑ)=โˆ‘nโ‰ฅ1โˆซโˆ’1212f~nโ€‹(ฮป)โ€‹enโ€‹(๐ฑ;ฮปโ€‹๐’2)โ€‹๐‘‘ฮป.f({\bf x})=\sum_{n\geq 1}\int_{-\frac{1}{2}}^{\frac{1}{2}}\tilde{f}_{n}(\lambda)e_{n}({\bf x};\lambda\bm{l}_{2})d\lambda. (5.9)

Here {enโ€‹(๐ฑ;๐ค)}nโˆˆโ„•โˆ—\big{\{}e_{n}({\bf x};{\bf k})\big{\}}_{n\in{\mathbb{N}}^{*}} are a complete orthonormal basis of L๐ค2โ€‹(โ„2/๐”)L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U}) given by normarlized eigenstates of โ„‹V{\mathcal{H}}_{V} on L๐ค2โ€‹(โ„2/๐”)L^{2}_{{\bf k}}({\mathbb{R}}^{2}/{\bf U}). They are called Floquet-Bloch modes. And

f~nโ€‹(ฮป)=โŸจfโ€‹(๐ฑ),enโ€‹(๐ฑ;ฮปโ€‹๐’2)โŸฉL2โ€‹(ฮฉe).\tilde{f}_{n}(\lambda)=\langle f({\bf x}),e_{n}({\bf x};\lambda\bm{l}_{2})\rangle_{L^{2}({\Omega_{e}})}. (5.10)

For eigenmodes enโ€‹(๐ฑ;ฮปโ€‹๐’2)e_{n}({\bf x};\lambda\bm{l}_{2}) with eigenvalue near EDE_{{}_{D}}, there exists near energy approximations; see Proposition 3.6. We rearrange the spectrum and complete orthonormal eigenmodes accordingly:

Enโ€‹(ฮป)={ฮธjโ€‹(ฮป),n=nโˆ—+j,j=1,2,3,4,|ฮป|โ‰คฮดฮฝEnโ€‹(ฮปโ€‹๐’2),eโ€‹lโ€‹sโ€‹e;E_{n}(\lambda)=\begin{cases}\theta_{j}(\lambda),\quad n=n_{*}+j,\quad j=1,2,3,4,\quad|\lambda|\leq\delta^{\nu}\\ E_{n}(\lambda\bm{l}_{2}),\quad else;\end{cases}
enโ€‹(๐ฑ;ฮป)={ฮ˜jโ€‹(๐ฑ;ฮป),n=nโˆ—+j,j=1,2,3,4,|ฮป|โ‰คฮดฮฝenโ€‹(๐ฑ;ฮปโ€‹๐’2),eโ€‹lโ€‹sโ€‹e.e_{n}({\bf x};\lambda)=\begin{cases}\Theta_{j}({\bf x};\lambda),\quad n=n_{*}+j,\quad j=1,2,3,4,\quad|\lambda|\leq\delta^{\nu}\\ e_{n}({\bf x};\lambda\bm{l}_{2}),\quad else.\end{cases}

Now let us take inner products of (5.8) with enโ€‹(๐ฑ;ฮป)e_{n}({\bf x};\lambda) to obtain equations of {g~nโ€‹(ฮป)}n\{\tilde{g}_{n}(\lambda)\}_{n}:

(En(ฮป)โˆ’ED)g~n(ฮป)+ฮดโŸจen(โ‹…;ฮป),ฮท(ฮด๐’2โ‹…)W(โ‹…)g(โ‹…)โŸฉL2โ€‹(ฮฉe)\displaystyle(E_{n}(\lambda)-E_{{}_{D}})\tilde{g}_{n}(\lambda)+\delta\langle e_{n}(\cdot;\lambda),\eta(\delta\bm{l}_{2}\cdot)W(\cdot)g(\cdot)\rangle_{L^{2}(\Omega_{e})} (5.11)
=\displaystyle= ฮดโ€‹Fnโ€‹(ฮป;ฮด,ฮผ1)+ฮด2โ€‹ฮผ1โ€‹g~nโ€‹(ฮป).\displaystyle\delta F_{n}(\lambda;\delta,\mu_{1})+\delta^{2}\mu_{1}\tilde{g}_{n}(\lambda).

Here

Fnโ€‹(ฮป;ฮด,ฮผ1)\displaystyle F_{n}(\lambda;\delta,\mu_{1}) =Fn1โ€‹(ฮป;ฮด,ฮผ1)+Fn2โ€‹(ฮป;ฮด,ฮผ1)+ฮดโ€‹Fn3โ€‹(ฮป;ฮด,ฮผ1),\displaystyle=F_{n}^{1}(\lambda;\delta,\mu_{1})+F_{n}^{2}(\lambda;\delta,\mu_{1})+\delta F_{n}^{3}(\lambda;\delta,\mu_{1}),
Fn1โ€‹(ฮป;ฮด,ฮผ1)\displaystyle F_{n}^{1}(\lambda;\delta,\mu_{1}) =โŸจenโ€‹(๐ฑ;ฮป),(โ€–๐’2โ€–2โ€‹โˆ‚ฮถ2+ฮผ1)โ€‹ฯˆ(0)โ€‹(๐ฑ,ฮถ)|ฮถ=ฮดโ€‹๐’2โ‹…๐ฑโŸฉL2โ€‹(ฮฉe),\displaystyle=\langle e_{n}({\bf x};\lambda),\bigl{(}\|\bm{l}_{2}\|^{2}\partial_{\zeta}^{2}+\mu_{1}\bigr{)}\psi^{(0)}({\bf x},\zeta)|_{\zeta=\delta\bm{l}_{2}\cdot{\bf x}}\rangle_{L^{2}(\Omega_{e})},
Fn2โ€‹(ฮป;ฮด,ฮผ1)\displaystyle F_{n}^{2}(\lambda;\delta,\mu_{1}) =โŸจenโ€‹(๐ฑ;ฮป),(2โ€‹๐’2โ‹…โˆ‡๐ฑโ€‹โˆ‚ฮถโˆ’ฮทโ€‹(ฮถ)โ€‹Wโ€‹(๐ฑ))โ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ)|ฮถ=ฮดโ€‹๐’2โ‹…๐ฑโŸฉL2โ€‹(ฮฉe),\displaystyle=\langle e_{n}({\bf x};\lambda),\bigl{(}2\bm{l}_{2}\cdot\nabla_{{\bf x}}\partial_{\zeta}-\eta(\zeta)W({\bf x})\bigr{)}\psi^{(1)}({\bf x},\zeta)|_{\zeta=\delta\bm{l}_{2}\cdot{\bf x}}\rangle_{L^{2}(\Omega_{e})},
Fn3โ€‹(ฮป;ฮด,ฮผ1)\displaystyle F_{n}^{3}(\lambda;\delta,\mu_{1}) =โŸจenโ€‹(๐ฑ;ฮป),(โ€–๐’2โ€–2โ€‹โˆ‚ฮถ2+ฮผ1)โ€‹ฯˆ(1)โ€‹(๐ฑ,ฮถ)|ฮถ=ฮดโ€‹๐’2โ‹…๐ฑโŸฉL2โ€‹(ฮฉe).\displaystyle=\langle e_{n}({\bf x};\lambda),\bigl{(}\|\bm{l}_{2}\|^{2}\partial_{\zeta}^{2}+\mu_{1}\bigr{)}\psi^{(1)}({\bf x},\zeta)|_{\zeta=\delta\bm{l}_{2}\cdot{\bf x}}\rangle_{L^{2}(\Omega_{e})}.

g~nโ€‹(ฮป)\tilde{g}_{n}(\lambda) can be decomposed into several parts g~nโ€‹(ฮป)=โˆ‘j=14g~j,nโ€‹eโ€‹aโ€‹rโ€‹(ฮป)+g~n,fโ€‹aโ€‹rโ€‹(ฮป)\tilde{g}_{n}(\lambda)=\sum_{j=1}^{4}\tilde{g}_{j,near}(\lambda)+\tilde{g}_{n,far}(\lambda):

g~j,nโ€‹eโ€‹aโ€‹rโ€‹(ฮป)=ฯ‡nโ€‹eโ€‹aโ€‹rโ€‹(ฮด)โ€‹g~nโˆ—+jโ€‹(ฮป),\tilde{g}_{j,near}(\lambda)=\chi_{near}(\delta)\tilde{g}_{n_{*}+j}(\lambda), (5.12)
g~n,fโ€‹aโ€‹rโ€‹(ฮป)=ฯ‡n,fโ€‹aโ€‹rโ€‹(ฮด)โ€‹g~nโ€‹(ฮป).\tilde{g}_{n,far}(\lambda)=\chi_{n,far}(\delta)\tilde{g}_{n}(\lambda). (5.13)

Here

ฯ‡nโ€‹eโ€‹aโ€‹rโ€‹(ฮด)=ฯ‡โ€‹(|ฮป|โ‰คฮดฮฝ),ฯ‡n,fโ€‹aโ€‹rโ€‹(ฮด)=ฯ‡โ€‹((โˆ‘j=14ฮดn,nโˆ—+j)โ€‹ฮดฮฝโ‰คฮปโ‰ค12),\chi_{near}(\delta)=\chi(|\lambda|\leq\delta^{\nu}),\quad\chi_{n,far}(\delta)=\chi\biggl{(}\bigl{(}\sum_{j=1}^{4}\delta_{n,n_{*}+j}\bigr{)}\delta^{\nu}\leq\lambda\leq\frac{1}{2}\biggr{)},

ฮฝ\nu is chosen appropriately by spectral no-fold condition (2.12) [11, 13] and ฮดn,nโˆ—+j\delta_{n,n_{*}+j} are Kronecker delta symbols. Accordingly we obtain gโ€‹(๐ฑ)=gnโ€‹eโ€‹aโ€‹rโ€‹(๐ฑ)+gfโ€‹aโ€‹rโ€‹(๐ฑ)g({\bf x})=g_{near}({\bf x})+g_{far}({\bf x}):

gnโ€‹eโ€‹aโ€‹rโ€‹(๐ฑ)=โˆ‘j=14โˆซโˆ’1212g~j,nโ€‹eโ€‹aโ€‹rโ€‹(ฮป)โ€‹ฮ˜jโ€‹(๐ฑ;ฮป)โ€‹๐‘‘ฮป,g_{near}({\bf x})=\sum_{j=1}^{4}\int_{-\frac{1}{2}}^{\frac{1}{2}}\tilde{g}_{j,near}(\lambda)\Theta_{j}({\bf x};\lambda)d\lambda, (5.14)
gfโ€‹aโ€‹rโ€‹(๐ฑ)=โˆ‘nโ‰ฅ1โˆซโˆ’1212g~n,fโ€‹aโ€‹rโ€‹(ฮป)โ€‹enโ€‹(๐ฑ;ฮป)โ€‹๐‘‘ฮป.g_{far}({\bf x})=\sum_{n\geq 1}\int_{-\frac{1}{2}}^{\frac{1}{2}}\tilde{g}_{n,far}(\lambda)e_{n}({\bf x};\lambda)d\lambda. (5.15)

Therefore, we can divide equations (5.11) into near energy components:

(ฮธj(ฮป\displaystyle(\theta_{j}(\lambda )โˆ’ED)g~j,nโ€‹eโ€‹aโ€‹r(ฮป)\displaystyle)-E_{{}_{D}})\tilde{g}_{j,near}(\lambda) (5.16)
+\displaystyle+ ฮดฯ‡nโ€‹eโ€‹aโ€‹r(ฮด)โŸจฮ˜j(โ‹…;ฮป),ฮท(ฮด๐’2โ‹…)W(โ‹…)(gnโ€‹eโ€‹aโ€‹r(โ‹…)+gfโ€‹aโ€‹r(โ‹…))โŸฉL2โ€‹(ฮฉe)\displaystyle\delta\chi_{near}(\delta)\langle\Theta_{j}(\cdot;\lambda),\eta(\delta\bm{l}_{2}\cdot)W(\cdot)\bigl{(}g_{near}(\cdot)+g_{far}(\cdot)\bigr{)}\rangle_{L^{2}(\Omega_{e})}
=ฯ‡nโ€‹eโ€‹aโ€‹r\displaystyle=\chi_{near} (ฮด)โ€‹ฮดโ€‹Fnโˆ—+jโ€‹(ฮป;ฮด,ฮผ1)+ฮด2โ€‹ฮผ1โ€‹g~j,nโ€‹eโ€‹aโ€‹rโ€‹(ฮป);\displaystyle(\delta)\delta F_{n_{*}+j}(\lambda;\delta,\mu_{1})+\delta^{2}\mu_{1}\tilde{g}_{j,near}(\lambda);

and far energy components:

(En(ฮป\displaystyle(E_{n}(\lambda )โˆ’ED)g~n,fโ€‹aโ€‹r(ฮป)\displaystyle)-E_{{}_{D}})\tilde{g}_{n,far}(\lambda) (5.17)
+\displaystyle+ ฮดฯ‡n,fโ€‹aโ€‹r(ฮด)โŸจen(โ‹…;ฮป),ฮท(ฮด๐’2โ‹…)W(โ‹…)(gnโ€‹eโ€‹aโ€‹r(โ‹…)+gfโ€‹aโ€‹r(โ‹…))โŸฉL2โ€‹(ฮฉe)\displaystyle\delta\chi_{n,far}(\delta)\langle e_{n}(\cdot;\lambda),\eta(\delta\bm{l}_{2}\cdot)W(\cdot)\bigl{(}g_{near}(\cdot)+g_{far}(\cdot)\bigr{)}\rangle_{L^{2}(\Omega_{e})}
=ฯ‡n,fโ€‹aโ€‹r\displaystyle=\chi_{n,far} (ฮด)โ€‹ฮดโ€‹Fnโ€‹(ฮป;ฮด,ฮผ1)+ฮด2โ€‹ฮผ1โ€‹g~n,fโ€‹aโ€‹rโ€‹(ฮป).\displaystyle(\delta)\delta F_{n}(\lambda;\delta,\mu_{1})+\delta^{2}\mu_{1}\tilde{g}_{n,far}(\lambda).

Rewrite the equation of far-energy components (5.17) as:

โˆ’ฮดฯ‡n,fโ€‹aโ€‹rโ€‹(ฮด)Enโ€‹(ฮป)โˆ’EDโŸจen(โ‹…;ฮป),ฮท(ฮด๐’2โ‹…)W(โ‹…)(gnโ€‹eโ€‹aโ€‹r(๐ฑ)+gfโ€‹aโ€‹r(โ‹…))โŸฉL2โ€‹(ฮฉe)\displaystyle-\delta\frac{\chi_{n,far}(\delta)}{E_{n}(\lambda)-E_{{}_{D}}}\langle e_{n}(\cdot;\lambda),\eta(\delta\bm{l}_{2}\cdot)W(\cdot)\bigl{(}g_{near}({\bf x})+g_{far}(\cdot)\bigr{)}\rangle_{L^{2}(\Omega_{e})}
+ฮดโ€‹ฯ‡n,fโ€‹aโ€‹rโ€‹(ฮด)Enโ€‹(ฮป)โˆ’EDโ€‹Fnโ€‹(ฮป;ฮด,ฮผ1)+ฮด2โ€‹ฮผ1โ€‹g~n,fโ€‹aโ€‹rโ€‹(ฮป)Enโ€‹(ฮป)โˆ’ED\displaystyle+\delta\frac{\chi_{n,far}(\delta)}{E_{n}(\lambda)-E_{{}_{D}}}F_{n}(\lambda;\delta,\mu_{1})+\delta^{2}\frac{\mu_{1}\tilde{g}_{n,far}(\lambda)}{E_{n}(\lambda)-E_{{}_{D}}} =g~n,fโ€‹aโ€‹rโ€‹(ฮป).\displaystyle=\tilde{g}_{n,far}(\lambda).

This can be viewed as a fixed problem of {g~n,fโ€‹aโ€‹rโ€‹(ฮป)}\{\tilde{g}_{n,far}(\lambda)\} and easily transformed into a fixed point problem of gfโ€‹aโ€‹rโ€‹(๐ฑ)g_{far}({\bf x}) by (5.15). Fixing ฮด\delta and ฮผ1\mu_{1}, via contraction mapping principle, gfโ€‹aโ€‹rโ€‹(๐ฑ)g_{far}({\bf x}) can be solved out as a functional of gnโ€‹eโ€‹aโ€‹rโ€‹(๐ฑ)g_{near}({\bf x}): gfโ€‹aโ€‹rโ€‹(๐ฑ)=gfโ€‹aโ€‹rโ€‹[gnโ€‹eโ€‹aโ€‹r;ฮผ1,ฮด]โ€‹(๐ฑ)g_{far}({\bf x})=g_{far}[g_{near};\mu_{1},\delta]({\bf x}).

Now let us look at (5.16) โ€“ the equation of near-energy components. Substituting gfโ€‹aโ€‹rโ€‹(๐ฑ)=gfโ€‹aโ€‹rโ€‹[gnโ€‹eโ€‹aโ€‹r;ฮผ1,ฮด]โ€‹(๐ฑ)g_{far}({\bf x})=g_{far}[g_{near};\mu_{1},\delta]({\bf x}) into (5.16), using the rescaling ฮพ=ฮปฮด\xi=\frac{\lambda}{\delta} and the results in Proposition 3.6 and canceling a factor of ฮด\delta, we can finally obtain the closed system of near-energy components:

โˆ’vFโˆฅ๐’2โˆฅฮพg~j,nโ€‹eโ€‹aโ€‹r(ฮดฮพ)+ฯ‡nโ€‹eโ€‹aโ€‹r(ฮด)โŸจฮ˜j(โ‹…;ฮดฮพ),ฮท(๐’2โ‹…)W(โ‹…)gnโ€‹eโ€‹aโ€‹r(โ‹…)โŸฉL2โ€‹(ฮฉe)\displaystyle-v_{{}_{F}}\|\bm{l}_{2}\|\xi\tilde{g}_{j,near}(\delta\xi)+\chi_{near}(\delta)\langle\Theta_{j}(\cdot;\delta\xi),\eta(\bm{l}_{2}\cdot)W(\cdot)g_{near}(\cdot)\rangle_{L^{2}(\Omega_{e})} (5.18)
=\displaystyle= ฯ‡nโ€‹eโ€‹aโ€‹rโ€‹(ฮด)โ€‹Fb+jโ€‹(ฮดโ€‹ฮพ;ฮด,ฮผ1)โˆ’ฮดโ€‹rjโ€‹(ฮดโ€‹ฮพ)โ€‹ฮพ2โ€‹g~j,nโ€‹eโ€‹aโ€‹rโ€‹(ฮป)+ฮดโ€‹ฮผ1โ€‹g~j,nโ€‹eโ€‹aโ€‹rโ€‹(ฮดโ€‹ฮพ)\displaystyle\chi_{near}(\delta)F_{b+j}(\delta\xi;\delta,\mu_{1})-\delta r_{j}(\delta\xi)\xi^{2}\tilde{g}_{j,near}(\lambda)+\delta\mu_{1}\tilde{g}_{j,near}(\delta\xi)
โˆ’ฯ‡nโ€‹eโ€‹aโ€‹r(ฮด)โŸจฮ˜j(โ‹…;ฮดฮพ),ฮท(๐’2โ‹…)W(โ‹…)gfโ€‹aโ€‹r[gnโ€‹eโ€‹aโ€‹r;ฮผ1,ฮด](โ‹…)โŸฉL2โ€‹(ฮฉe).\displaystyle-\chi_{near}(\delta)\langle\Theta_{j}(\cdot;\delta\xi),\eta(\bm{l}_{2}\cdot)W(\cdot)g_{far}[g_{near};\mu_{1},\delta](\cdot)\rangle_{L^{2}(\Omega_{e})}.

The rest of the steps are transforming this system into a Dirac system, solving the system by Lyapunov-Schmidt reduction, and obtaining upper bound estimations of ฮผ1\mu_{1} and gโ€‹(๐ฑ)g({\bf x}), which is similar to the ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry breaking case [13].

6 Topological interpretations

In this section, we try to interpret our analytical results obtained in precious sections from topological perspectives. Such an interpretation may provide deeper insights into the intrinsic properties of the two edge states. We include two aspects: one is the topological indices-a traditional approach that may reveal bulk-edge correspondence; the other is the parities of the eigenmodes - which can be clarified only in special symmetry breaking cases, such as the folding symmetry breaking. These two aspects exhibit a high degree of consistency with each other.

6.1 The effective local topological charge

Building on the work of [9], the effective model can be used to approximate the local contribution to the Chern number of eigenfunction fiber bundle of โ„‹ฮด{\mathcal{H}}^{\delta} over the Brillouin zone. This Chern number is exactly the topological index of the bulk operator. And let us call the local contribution approximated by effective models at the ฮ“\Gamma point here as an effective local topological charge. In this subsection, we will establish the local charge step by step and demonstrate the critical importance of the second-order approximation.

Let us begin with the dispersion eigenvalue problem of perturbed bulk operator โ„‹ฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}=-\Delta+V({\bf x})+\delta W({\bf x}) on L๐ค2โ€‹(โ„2/๐”)L_{{\bf k}}^{2}({\mathbb{R}}^{2}/{\bf U}):

โ„‹ฮดโ€‹ฯ•โ€‹(๐ฑ;๐ค)\displaystyle{\mathcal{H}}^{\delta}\phi({\bf x};{\bf k}) =Eโ€‹(๐ค)โ€‹ฯ•โ€‹(๐ฑ;๐ค),\displaystyle=E({\bf k})\phi({\bf x};{\bf k}),
ฯ•โ€‹(๐ฑ;๐ค)=e\displaystyle\phi({\bf x};{\bf k})=e piโ€‹๐คโ‹…๐ฑโ€‹(๐ฑ),pโ€‹(๐ฑ)โˆˆฯ‡,\displaystyle{}^{i{\bf k}\cdot{\bf x}}p({\bf x}),\quad p({\bf x})\in\chi,

which is equivalent to

โ„‹ฮดโ€‹(๐ค)โ€‹pโ€‹(๐ฑ;๐ค)=Eโ€‹(๐ค)โ€‹pโ€‹(๐ฑ;๐ค),pโ€‹(๐ฑ)โˆˆฯ‡,{\mathcal{H}}^{\delta}({\bf k})p({\bf x};{\bf k})=E({\bf k})p({\bf x};{\bf k}),\quad p({\bf x})\in\chi,

where โ„‹ฮดโ€‹(๐ค)=โˆ’(โˆ‡+iโ€‹๐ค)2+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}({\bf k})=-(\nabla+i{\bf k})^{2}+V({\bf x})+\delta W({\bf x}).

We only need to consider the near-energy solution:

Eโ€‹(๐ค)=ED+ฮผ,pโ€‹(๐ฑ;๐ค)=ฮฆโ€‹(๐ฑ)Tโ€‹๐โ€‹(๐ค)+ฯˆโ€‹(๐ฑ;๐ค).E({\bf k})=E_{{}_{D}}+\mu,\quad p({\bf x};{\bf k})={\Phi}({\bf x})^{\mathrm{T}}\bf{P}({\bf k})+\psi({\bf x};{\bf k}).

By reduction procedures similar to those in Section 3.1, we can obtain the equivalent equations:

(ฮผโ€‹I+Bฮดโ€‹(๐ค))โ€‹๐โ€‹(๐ค)=๐ŸŽ(\mu I+B^{\delta}({\bf k})){\bf P}({\bf k})={\bf 0}

with Bฮดโ€‹(๐ค)=B1ฮดโ€‹(๐ค)+B2ฮดโ€‹(๐ค)+Oโ€‹(โ€–๐คโ€–3)B^{\delta}({\bf k})=B_{1}^{\delta}({\bf k})+B_{2}^{\delta}({\bf k})+O(\|{\bf k}\|^{3}), where the first and second-order bifurcation matrices are as below:

B1ฮดโ€‹(๐ค)=(02โ€‹iโ€‹๐คโ‹…๐’—โ™ฏโˆ’ฮดโ€‹cโ™ฏ02โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏ00โˆ’ฮดโ€‹cโ™ฏโˆ’ฮดโ€‹cโ™ฏ00โˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ0โˆ’ฮดโ€‹cโ™ฏโˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏ0);B^{\delta}_{1}({\bf k})=\begin{pmatrix}0&2i{\bf k}\cdot\bm{v}_{\sharp}&-\delta c_{\sharp}&0\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}}&0&0&-\delta c_{\sharp}\\ -\delta c_{\sharp}&0&0&-2i{\bf k}\cdot\bm{v}_{\sharp}\\ 0&-\delta c_{\sharp}&\overline{-2i{\bf k}\cdot\bm{v}_{\sharp}}&0\end{pmatrix};
B2ฮดโ€‹(๐ค)=(mโ€‹(๐ค)โˆ’โ€–๐คโ€–2)โ€‹I+(0bโ€‹(๐ค)00bโ€‹(๐ค)ยฏ000000bโ€‹(๐ค)00bโ€‹(๐ค)ยฏ0).B^{\delta}_{2}({\bf k})=(m({\bf k})-\|{\bf k}\|^{2})I+\begin{pmatrix}0&b({\bf k})&0&0\\ \overline{b({\bf k})}&0&0&0\\ 0&0&0&b({\bf k})\\ 0&0&\overline{b({\bf k})}&0\end{pmatrix}.

Here mโ€‹(๐ค)m({\bf k}) and bโ€‹(๐ค)b({\bf k}) are the second-order term as in Section 3.1. These matrices can be transformed by QQ mentioned in (4.13) into:

B~1ฮดโ€‹(๐ค)=QTโ€‹B1ฮดโ€‹(๐ค)โ€‹Q=(โˆ’ฮดโ€‹cโ™ฏ2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ002โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏฮดโ€‹cโ™ฏ0000ฮดโ€‹cโ™ฏ2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ002โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏโˆ’ฮดโ€‹cโ™ฏ);\tilde{B}^{\delta}_{1}({\bf k})=Q^{T}B^{\delta}_{1}({\bf k})Q=\begin{pmatrix}-\delta c_{\sharp}&2i{\bf k}\cdot\bm{v}_{\sharp}&0&0\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}}&\delta c_{\sharp}&0&0\\ 0&0&\delta c_{\sharp}&2i{\bf k}\cdot\bm{v}_{\sharp}\\ 0&0&\overline{2i{\bf k}\cdot\bm{v}_{\sharp}}&-\delta c_{\sharp}\end{pmatrix}; (6.1)
B~2ฮดโ€‹(๐ค)=QTโ€‹B2ฮดโ€‹(๐ค)โ€‹Q=(mโ€‹(๐ค)โˆ’โ€–๐คโ€–2)โ€‹I+(000bโ€‹(๐ค)00bโ€‹(๐ค)ยฏ00bโ€‹(๐ค)00bโ€‹(๐ค)ยฏ000).\displaystyle\tilde{B}_{2}^{\delta}({\bf k})=Q^{T}B_{2}^{\delta}({\bf k})Q=(m({\bf k})-\|{\bf k}\|^{2})I+\begin{pmatrix}0&0&0&b({\bf k})\\ 0&0&\overline{b({\bf k})}&0\\ 0&b({\bf k})&0&0\\ \overline{b({\bf k})}&0&0&0\end{pmatrix}. (6.2)

The effective local topological charge of this problem is the following integral:

ฮ j=12โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โŸจฮพjโ€‹(๐ค),โˆ‡๐คฮพjโ€‹(๐ค)โŸฉโ‹…๐‘‘๐ค.\Pi_{j}=\frac{1}{2\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\langle\xi_{j}({\bf k}),\nabla_{{\bf k}}\xi_{j}({\bf k})\rangle\cdot d{\bf k}. (6.3)

Here ฮพjโ€‹(๐ค)\xi_{j}({\bf k}) is the jtโ€‹hj^{th} eigenvector of (B~1ฮดโ€‹(๐ค)+B~2ฮดโ€‹(๐ค))\bigl{(}\tilde{B}^{\delta}_{1}({\bf k})+\tilde{B}^{\delta}_{2}({\bf k})\bigr{)}, which needs to be normalized and have singularity at ๐ค=๐ŸŽ{\bf k}={\bf 0}. Our conclusion is as follows.

Theorem 6.1.

(Effective local topological charges) For (B~1ฮดโ€‹(๐ค)+B~2ฮดโ€‹(๐ค))\bigl{(}\tilde{B}_{1}^{\delta}({\bf k})+\tilde{B}_{2}^{\delta}({\bf k})\bigr{)} in (6.1) and (6.2), the local topological charges in (6.3) are:

ฮ 1=ฮ 2=โˆ’sgnโก(ฮดโ€‹cโ™ฏ),ฮ 3=ฮ 4=sgnโก(ฮดโ€‹cโ™ฏ).\Pi_{1}=\Pi_{2}=-\operatorname{sgn}(\delta c_{\sharp}),{\quad}\Pi_{3}=\Pi_{4}=\operatorname{sgn}(\delta c_{\sharp}). (6.4)

This theorem states that the effective local topological charges of the upper pair bands and the lower pair bands are always identical within each pair and opposite to each other. We will prove this theorem by first considering B~1ฮดโ€‹(๐ค)\tilde{B}^{\delta}_{1}({\bf k}) individually, and then considering B~1ฮดโ€‹(๐ค)\tilde{B}^{\delta}_{1}({\bf k}) and B~2ฮดโ€‹(๐ค)\tilde{B}^{\delta}_{2}({\bf k}) together to analyze the influence of second-order terms on the topology.

6.1.1 First-order approximation

We have seen that the first-order bifurcation matrix can be diagonalized into B~1ฮดโ€‹(๐ค)=diagโก(Bsโ€‹(๐ค;ฮด),Bsโ€‹(๐ค;โˆ’ฮด))\tilde{B}^{\delta}_{1}({\bf k})=\operatorname{diag}(B_{s}({\bf k};\delta),B_{s}({\bf k};-\delta)); where

Bsโ€‹(๐ค;ฮด)=(โˆ’ฮดโ€‹cโ™ฏ2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏฮดโ€‹cโ™ฏ).B_{s}({\bf k};\delta)=\begin{pmatrix}-\delta c_{\sharp}&2i{\bf k}\cdot\bm{v}_{\sharp}\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}}&\delta c_{\sharp}\end{pmatrix}. (6.5)

From the diagonal elements, B~1ฮดโ€‹(๐ค)\tilde{B}_{1}^{\delta}({\bf k}) resembles a superposition of two perturbed Dirac operators. However, it is important to note that, despite their appearance of decoupling, they are actually coupled due to sharing the same eigenvalues. This intrinsic coupling arises from the ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry-preserving property. To characterize the topology of each energy band individually, we must separate the bands through certain methods, such as considering higher-order terms, which can also clarify the nature of their coupling.

But now let us just look at the diagonal part Bsโ€‹(๐ค;ฮด)B_{s}({\bf k};\delta). It is the Fourier transformation of a Dirac operator. The solvable condition Detโก(ฮปโ€‹I+Bsโ€‹(๐ค;ฮด))=0\operatorname{Det}(\lambda I+B_{s}({\bf k};\delta))=0 has two solutions ฮปยฑโ€‹(๐ค;ฮด)=ยฑ4โ€‹โ€–๐คโ‹…๐’—โ™ฏโ€–2+ฮด2โ€‹cโ™ฏ2\lambda_{\pm}({\bf k};\delta)=\pm\sqrt{4\|{\bf k}\cdot\bm{v}_{\sharp}\|^{2}+\delta^{2}c_{\sharp}^{2}}. Suppose the corresponding normalized eigenvectors are ฮพยฑโ€‹(๐ค;ฮด)\xi_{\pm}({\bf k};\delta), which should have singularities at ๐ค=๐ŸŽ{\bf k}={\bf 0}. The corresponding topological index is

ฮ ยฑ=12โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โŸจฮพยฑโ€‹(๐ค;ฮด),โˆ‡๐คฮพยฑโ€‹(๐ค;ฮด)โŸฉโ‹…๐‘‘๐ค=ยฑsgnโก(ฮดโ€‹cโ™ฏ).{\Pi}_{\pm}=\frac{1}{2\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\langle\xi_{\pm}({\bf k};\delta),\nabla_{{\bf k}}\xi_{\pm}({\bf k};\delta)\rangle\cdot d{\bf k}=\pm\operatorname{sgn}(\delta c_{\sharp}). (6.6)

The calculation of such topological indices for the energy bands of Dirac operators is standard; see, for example [9].

6.1.2 Second-order approximation

We have known that Detโก(ฮปโ€‹I+B~1ฮดโ€‹(๐ค))=0\operatorname{Det}(\lambda I+\tilde{B}_{1}^{\delta}({\bf k}))=0 have two solutions both of multiplicity two:

ฮปยฑโ€‹(๐ค;ฮด)=ยฑ4โ€‹โ€–๐คโ‹…๐’—โ™ฏโ€–2+ฮด2โ€‹cโ™ฏ2.\lambda_{\pm}({\bf k};\delta)=\pm\sqrt{4\|{\bf k}\cdot\bm{v}_{\sharp}\|^{2}+\delta^{2}c_{\sharp}^{2}}.

Take sgnโก(ฮดโ€‹cโ™ฏ)>0\operatorname{sgn}(\delta c_{\sharp})>0 and the corresponding upper two bands with eigenvalues near ฮป+\lambda_{+} as an example to calculate the effective local topological charge in detail.

For the two diagonal elements of B~1ฮดโ€‹(๐ค)\tilde{B}_{1}^{\delta}({\bf k}), the corresponding topological indices of band ฮป+\lambda_{+} are ยฑ1\pm 1 respectively. The corresponding two normalized eigenvectors with singularities at ๐ค=๐ŸŽ{\bf k}={\bf 0} are:

ฮพ1+=12โ€‹ฮป+โ€‹(ฮป+โˆ’ฮดโ€‹cโ™ฏ)โ€‹(โˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏฮดโ€‹cโ™ฏโˆ’ฮป+00),ฮพ2+=12โ€‹ฮป+โ€‹(ฮป+โˆ’ฮดโ€‹cโ™ฏ)โ€‹(00ฮดโ€‹cโ™ฏโˆ’ฮป+โˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ).\xi_{1}^{+}=\frac{1}{\sqrt{2\lambda_{+}(\lambda_{+}-\delta c_{\sharp})}}\begin{pmatrix}\overline{-2i{\bf k}\cdot\bm{v}_{\sharp}}\\ \delta c_{\sharp}-\lambda_{+}\\ 0\\ 0\end{pmatrix},{\quad}\xi_{2}^{+}=\frac{1}{\sqrt{2\lambda_{+}(\lambda_{+}-\delta c_{\sharp})}}\begin{pmatrix}0\\ 0\\ \delta c_{\sharp}-\lambda_{+}\\ -2i{\bf k}\cdot\bm{v}_{\sharp}\end{pmatrix}.

Now including the second-order bifurcation matrix, we can solve (ฮปโ€‹I+B~1ฮดโ€‹(๐ค)+B~2ฮดโ€‹(๐ค))โ€‹ฮพ=0\bigl{(}\lambda I+\tilde{B}_{1}^{\delta}({\bf k})+\tilde{B}_{2}^{\delta}({\bf k})\bigr{)}\xi=0 with ฮป\lambda near ฮป+\lambda_{+}. By Lyapunov-Schdimt reduction, the associated eigenvectors are:

ฮพ3=12โ€‹ฮพ1+a+โ€‹(๐ค;ฮด)2โ€‹|a+โ€‹(๐ค;ฮด)|โ€‹ฮพ2+Oโ€‹(โ€–๐คโ€–2),ฮพ4=12โ€‹ฮพ1โˆ’a+โ€‹(๐ค;ฮด)2โ€‹|a+โ€‹(๐ค;ฮด)|โ€‹ฮพ2+Oโ€‹(โ€–๐คโ€–2).\xi_{3}=\frac{1}{\sqrt{2}}\xi_{1}+\frac{a_{+}({\bf k};\delta)}{\sqrt{2}|a_{+}({\bf k};\delta)|}\xi_{2}+O(\|{\bf k}\|^{2}),{\quad}\xi_{4}=\frac{1}{\sqrt{2}}\xi_{1}-\frac{a_{+}({\bf k};\delta)}{\sqrt{2}|a_{+}({\bf k};\delta)|}\xi_{2}+O(\|{\bf k}\|^{2}).

Here a+โ€‹(๐ค;ฮด)a_{+}({\bf k};\delta) is of the form:

a+โ€‹(๐ค;ฮด)=|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ|2โ€‹bโ€‹(๐ค)ยฏ+(ฮดโ€‹cโ™ฏโˆ’ฮป+)2โ€‹bโ€‹(๐ค).a_{+}({\bf k};\delta)=|2i{\bf k}\cdot\bm{v}_{\sharp}|^{2}\overline{b({\bf k})}+(\delta c_{\sharp}-\lambda_{+})^{2}{b({\bf k})}. (6.7)

Note that

ฮ 3\displaystyle\Pi_{3} =12โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โŸจฮพ3โ€‹(๐ค;ฮด),โˆ‡๐คฮพ3โ€‹(๐ค;ฮด)โŸฉโ€‹๐‘‘๐ค\displaystyle=\frac{1}{2\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\langle\xi_{3}({\bf k};\delta),\nabla_{{\bf k}}\xi_{3}({\bf k};\delta)\rangle d{\bf k}
=14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)(โŸจฮพ1+,โˆ‡๐คฮพ1+โŸฉ+โŸจa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โ€‹ฮพ2+,โˆ‡๐ค(a+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โ€‹ฮพ2+)โŸฉ)โ€‹๐‘‘๐ค\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\biggl{(}\langle\xi_{1}^{+},\nabla_{{\bf k}}\xi_{1}^{+}\rangle+\langle\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\xi_{2}^{+},\nabla_{{\bf k}}\biggl{(}\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\xi_{2}^{+}\biggr{)}\rangle\biggr{)}d{\bf k}
=12โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โŸจฮพ4โ€‹(๐ค;ฮด),โˆ‡๐คฮพ4โ€‹(๐ค;ฮด)โŸฉโ€‹๐‘‘๐ค=ฮ 4.\displaystyle=\frac{1}{2\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\langle\xi_{4}({\bf k};\delta),\nabla_{{\bf k}}\xi_{4}({\bf k};\delta)\rangle d{\bf k}=\Pi_{4}.

Besides,

ฮ 3\displaystyle\Pi_{3} =12โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โŸจฮพ3โ€‹(๐ค;ฮด),โˆ‡๐คฮพ3โ€‹(๐ค;ฮด)โŸฉโ€‹๐‘‘๐ค\displaystyle=\frac{1}{2\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\langle\xi_{3}({\bf k};\delta),\nabla_{{\bf k}}\xi_{3}({\bf k};\delta)\rangle d{\bf k}
=14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)(โŸจฮพ1+,โˆ‡๐คฮพ1+โŸฉ+โŸจa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โ€‹ฮพ2+,โˆ‡๐ค(a+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โ€‹ฮพ2+)โŸฉ)โ€‹๐‘‘๐ค\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\biggl{(}\langle\xi_{1}^{+},\nabla_{{\bf k}}\xi_{1}^{+}\rangle+\langle\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\xi_{2}^{+},\nabla_{{\bf k}}\biggl{(}\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\xi_{2}^{+}\biggr{)}\rangle\biggr{)}d{\bf k}
=14โ€‹ฯ€โ€‹ilimrโ†’0โˆฎโˆ‚Dโ€‹(0,r)(โŸจฮพ1+,โˆ‡๐คฮพ1+โŸฉ+โŸจa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|ฮพ2+,a+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โˆ‡๐คฮพ2+โŸฉ\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\biggl{(}\langle\xi_{1}^{+},\nabla_{{\bf k}}\xi_{1}^{+}\rangle+\langle\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\xi_{2}^{+},\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\nabla_{{\bf k}}\xi_{2}^{+}\rangle
+โŸจa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|,โˆ‡๐คa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โŸฉโŸจฮพ2+,ฮพ2+โŸฉ)d๐ค\displaystyle{\qquad}{\qquad}{\qquad}{\qquad}{\qquad}{\qquad}+\langle\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|},\nabla_{{\bf k}}\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\rangle\langle\xi_{2}^{+},\xi_{2}^{+}\rangle\biggr{)}d{\bf k}
=14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โŸจa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|,โˆ‡๐คa+โ€‹(๐ค;ฮด)|a+โ€‹(๐ค;ฮด)|โŸฉโ€‹๐‘‘๐ค\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\langle\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|},\nabla_{{\bf k}}\frac{a_{+}({\bf k};\delta)}{|a_{+}({\bf k};\delta)|}\rangle d{\bf k}{\qquad}{\qquad}{\qquad}{\qquad}{\qquad}
=14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โ„‘โก(a+โ€‹(๐ค;ฮด)โ€‹โˆ‡๐คa+โ€‹(๐ค;ฮด)ยฏ)|a+โ€‹(๐ค;ฮด)|2โ€‹๐‘‘๐ค\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\frac{\Im\bigl{(}a_{+}({\bf k};\delta)\nabla_{{\bf k}}\overline{a_{+}({\bf k};\delta)}\bigr{)}}{|a_{+}({\bf k};\delta)|^{2}}d{\bf k}
=14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โ„‘โ€‹โˆ‡๐คa+โ€‹(๐ค;ฮด)ยฏa+โ€‹(๐ค;ฮด)ยฏโ€‹๐‘‘๐ค.\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\frac{\Im\nabla_{{\bf k}}\overline{a_{+}({\bf k};\delta)}}{\overline{a_{+}({\bf k};\delta)}}d{\bf k}.

Let ๐ค=(rโ€‹cosโกฮธrโ€‹sinโกฮธ){\bf k}=\begin{pmatrix}r\cos{\theta}\\ r\sin{\theta}\end{pmatrix}. The local charge is:

ฮ 3\displaystyle\Pi_{3} =14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โ„‘โ€‹โˆ‚ฮธa+โ€‹(๐คโ€‹(r,ฮธ);ฮด)ยฏa+โ€‹(๐คโ€‹(r,ฮธ);ฮด)ยฏโ€‹๐‘‘ฮธ\displaystyle=\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\frac{\Im\partial_{\theta}\overline{a_{+}({\bf k}(r,\theta);\delta)}}{\overline{a_{+}({\bf k}(r,\theta);\delta)}}d\theta (6.8)
=โˆ’14โ€‹ฯ€โ€‹iโ€‹limrโ†’0โˆฎโˆ‚Dโ€‹(0,r)โ„‘โ€‹โˆ‚ฮธa+โ€‹(๐คโ€‹(r,ฮธ);ฮด)a+โ€‹(๐คโ€‹(r,ฮธ);ฮด)โ€‹๐‘‘ฮธ.\displaystyle=-\frac{1}{4\pi i}\lim_{r\to 0}\oint_{\partial D(0,r)}\frac{\Im\partial_{\theta}{a_{+}({\bf k}(r,\theta);\delta)}}{{a_{+}({\bf k}(r,\theta);\delta)}}d\theta.

From the detailed calculation, we know that the local effective topological charge is half of the winding number of a+โ€‹(๐ค;ฮด)ยฏ\overline{a_{+}({\bf k};\delta)}. Here, from the equation (6.7), a+โ€‹(๐ค;ฮด)a_{+}({\bf k};\delta) is:

a+โ€‹(๐ค;ฮด)=|2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏ|2โ€‹bโ€‹(๐ค)ยฏ+(ฮดโ€‹cโ™ฏโˆ’ฮป+)2โ€‹bโ€‹(๐ค).a_{+}({\bf k};\delta)=|2i{\bf k}\cdot\bm{v}_{\sharp}|^{2}\overline{b({\bf k})}+(\delta c_{\sharp}-\lambda_{+})^{2}{b({\bf k})}.

For the form of bโ€‹(๐ค)b({\bf k}) in Appendix A, we can choose a typical eiโ€‹ฮธโˆ—โ€‹ฯ•1โ€‹(๐ฑ)e^{i\theta^{*}}\phi_{1}({\bf x}) such that b0โˆˆโ„b_{0}\in{\mathbb{R}}. vFv_{{}_{F}} and cโ™ฏc_{\sharp} stay invariant under such phase transformations. Thus, we have:

โ„œโกa+โ€‹(๐ค;ฮด)\displaystyle\Re a_{+}({\bf k};\delta) =b0โ€‹(vF2โ€‹r2+(ฮดโ€‹cโ™ฏโˆ’ฮป+)2)โ€‹r2โ€‹sinโก2โ€‹ฮธ,\displaystyle=b_{0}(v_{{}_{F}}^{2}r^{2}+(\delta c_{\sharp}-\lambda_{+})^{2})r^{2}\sin{2\theta},
โ„‘โกa+โ€‹(๐ค;ฮด)\displaystyle\Im a_{+}({\bf k};\delta) =b0โ€‹(โˆ’vF2โ€‹r2+(ฮดโ€‹cโ™ฏโˆ’ฮป+)2)โ€‹r2โ€‹cosโก2โ€‹ฮธ.\displaystyle=b_{0}(-v_{{}_{F}}^{2}r^{2}+(\delta c_{\sharp}-\lambda_{+})^{2})r^{2}\cos{2\theta}.

Then, the parametric curve:

ฮณ+โ€‹(ฮธ)=(โ„œโกa+โ€‹(๐คโ€‹(r,ฮธ);ฮด),โ„‘โกa+โ€‹(๐คโ€‹(r,ฮธ);ฮด)),ฮธโˆˆ[0,2โ€‹ฯ€],\gamma_{+}(\theta)=\bigl{(}\Re a_{+}({\bf k}(r,\theta);\delta),{\quad}\Im a_{+}({\bf k}(r,\theta);\delta)\bigr{)},{\quad}\theta\in[0,2\pi],

is an ellipse revolving around the origin twice. Since

(b0โ€‹(vF2โ€‹r2+(ฮดโ€‹cโ™ฏโˆ’ฮป+)2)โ€‹r2)โ€‹(b0โ€‹(โˆ’vF2โ€‹r2+(ฮดโ€‹cโ™ฏโˆ’ฮป+)2)โ€‹r2)\displaystyle\biggl{(}b_{0}(v_{{}_{F}}^{2}r^{2}+(\delta c_{\sharp}-\lambda_{+})^{2})r^{2}\biggr{)}\biggl{(}b_{0}(-v_{{}_{F}}^{2}r^{2}+(\delta c_{\sharp}-\lambda_{+})^{2})r^{2}\biggr{)}
=\displaystyle= b02โ€‹r4โ€‹(โˆ’vF4โ€‹r4+(ฮดโ€‹cโ™ฏโˆ’ฮป+)4)โ†’0โˆ’,rโ†’0+,\displaystyle b_{0}^{2}r^{4}\biggl{(}-v_{{}_{F}}^{4}r^{4}+(\delta c_{\sharp}-\lambda_{+})^{4}\biggr{)}\to 0_{-},{\quad}r\to 0_{+},

the winding number of a+โ€‹(๐ค;ฮด)a_{+}({\bf k};\delta) is โˆ’2-2. This confirms ฮ 3=ฮ 4=1\Pi_{3}=\Pi_{4}=1 when sgnโก(ฮดโ€‹cโ™ฏ)>0\operatorname{sgn}(\delta c_{\sharp})>0. The calculations in other cases are similar.

6.1.3 Symmetries

Besides, let us consider the grading operator G:G:

G=(000100โˆ’100100โˆ’1000)G=\begin{pmatrix}0{\quad}&0{\quad}&0{\quad}&1\\ 0{\quad}&0{\quad}&-1{\quad}&0\\ 0{\quad}&1{\quad}&0{\quad}&0\\ -1{\quad}&0{\quad}&0{\quad}&0\end{pmatrix}

satisfying G2=โˆ’IG^{2}=-I. The bifurcation matricies satisfy:

Gโˆ—โ€‹B~1ฮดโ€‹(๐ค)โ€‹G=B~1ฮดโ€‹(๐ค)ยฏ;Gโˆ—โ€‹B~2ฮดโ€‹(๐ค)โ€‹G=โˆ’B~2ฮดโ€‹(๐ค)ยฏ.G^{*}\tilde{B}_{1}^{\delta}({\bf k})G=\overline{\tilde{B}_{1}^{\delta}({\bf k})};{\qquad}G^{*}\tilde{B}_{2}^{\delta}({\bf k})G=-\overline{\tilde{B}_{2}^{\delta}({\bf k})}.

Such difference between B~1ฮดโ€‹(๐ค)\tilde{B}_{1}^{\delta}({\bf k}) and B~2ฮดโ€‹(๐ค)\tilde{B}_{2}^{\delta}({\bf k}) indicates that the first order approximation is more โ€œsymmetricโ€ [6]. Therefore, the topology must also be considered with higher-order terms.

6.2 Parities

The differences between perturbed bulk operators โ„‹ยฑฮด{\mathcal{H}}_{\pm}^{\delta} can be explained by the parities of eigenstates. Such parities originate in the 23โ€‹ฯ€\frac{2}{3}\pi rotation symmetry and the ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry. The results regarding parities closely align with the findings on local charges discussed in the previous subsection that the upper pair bands and the lower pair bands are always the same within each pair and different from each other.

Theorem 6.2.

(Parities of eigenstates) Let โ„‹V=โˆ’ฮ”+Vโ€‹(๐ฑ){\mathcal{H}}_{V}=-\Delta+V({\bf x}) be an operator possessing a fourfold degeneracy at the ฮ“\Gamma point as in Theorem 2.4. Assume that Wโ€‹(๐ฑ)W({\bf x}) is a folding symmetry breaking potential as above in (2.5) and satisfies the non-degeneracy condition (2.9):

cโ™ฏ=โŸจฯ•1โ€‹(๐ฑ),Wโ€‹(๐ฑ)โ€‹ฯ•1โ€‹(โˆ’๐ฑ)โŸฉL2โ€‹(ฮฉ)โ‰ 0.c_{\sharp}=\langle\phi_{1}({\bf x}),W({\bf x})\phi_{1}(-{\bf x})\rangle_{L^{2}(\Omega)}\neq 0.

The energy surfaces {๐’ฎnโˆ—+j}j=1,2,3,4\big{\{}{\mathcal{S}}_{n_{*}+j}\big{\}}_{j=1,2,3,4} of perturbed operator โ„‹ฮด=โˆ’ฮ”+Vโ€‹(๐ฑ)+ฮดโ€‹Wโ€‹(๐ฑ){\mathcal{H}}^{\delta}=-\Delta+V({\bf x})+\delta W({\bf x}) will open a gap for ฮด\delta sufficiently small as in Theorem 2.6. Then the parities of eigenfunctions corresponding to these four branches at ๐ค=๐ŸŽ{\bf k}={\bf 0} satisfy one of the following situations:

  1. 1.

    ฮดโ€‹cโ™ฏ>0\delta c_{\sharp}>0: the upper two bandsโ€™ eigenfunctions are odd and the lower two are even;

  2. 2.

    ฮดโ€‹cโ™ฏ<0\delta c_{\sharp}<0: the upper two bandsโ€™ eigenfunctions are even and the lower two are odd.

In this subsection, we will prove this theorem by first solving for the leading terms in the corresponding expressions, then extending the results of these main terms to the exact eigenfunctions through symmetry arguments.

Solve (ฮปโ€‹(๐ค;ฮด)โ€‹I+B1ฮดโ€‹(๐ค))โ€‹๐‘ทโ€‹(๐ค;ฮด)=0\bigl{(}\lambda({\bf k};\delta)I+B^{\delta}_{1}({\bf k})\bigr{)}\bm{P}({\bf k};\delta)=0 and obtain ฮปยฑโ€‹(๐ค;ฮด)=ยฑ4โ€‹โ€–๐คโ‹…๐’—โ™ฏโ€–2+ฮด2โ€‹cโ™ฏ2\lambda_{\pm}({\bf k};\delta)=\pm\sqrt{4\|{\bf k}\cdot\bm{v}_{\sharp}\|^{2}+\delta^{2}c_{\sharp}^{2}}. Both ฮปยฑโ€‹(๐ค;ฮด)\lambda_{\pm}({\bf k};\delta) are of multiplicity two. The corresponding eigenvectors are:

๐‘ทยฑ,1โ€‹(๐ค;ฮด)=12โ€‹ฮปยฑโ€‹(ฮปยฑ2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏยฏโˆ’ฮดโ€‹cโ™ฏ0);๐‘ทยฑ,2โ€‹(๐ค;ฮด)=12โ€‹ฮปยฑโ€‹(0โˆ’ฮดโ€‹cโ™ฏโˆ’2โ€‹iโ€‹๐คโ‹…๐’—โ™ฏฮปยฑ).\bm{P}_{\pm,1}({\bf k};\delta)=\frac{1}{\sqrt{2}\lambda_{\pm}}\begin{pmatrix}\lambda_{\pm}\vspace{0.1cm}\\ \overline{2i{\bf k}\cdot\bm{v}_{\sharp}}\\ -\delta c_{\sharp}\\ 0\end{pmatrix};{\qquad}\bm{P}_{\pm,2}({\bf k};\delta)=\frac{1}{\sqrt{2}\lambda_{\pm}}\begin{pmatrix}0\\ -\delta c_{\sharp}\vspace{0.1cm}\\ -2i{\bf k}\cdot\bm{v}_{\sharp}\\ \lambda_{\pm}\end{pmatrix}.

When ๐ค=0{\bf k}=0, we obtain that:

๐‘ทยฑ,1โ€‹(๐ŸŽ;ฮด)=12โ€‹(10โˆ“sgnโก(ฮดโ€‹cโ™ฏ)0);๐‘ทยฑ,2โ€‹(๐ŸŽ;ฮด)=12โ€‹(0โˆ“sgnโก(ฮดโ€‹cโ™ฏ)01).\bm{P}_{\pm,1}({\bf 0};\delta)=\frac{1}{\sqrt{2}}\begin{pmatrix}1\vspace{0.1cm}\\ 0\\ \mp\operatorname{sgn}({\delta c_{\sharp}})\\ 0\end{pmatrix};{\qquad}\bm{P}_{\pm,2}({\bf 0};\delta)=\frac{1}{\sqrt{2}}\begin{pmatrix}0\\ \mp\operatorname{sgn}(\delta c_{\sharp})\vspace{0.1cm}\\ 0\\ 1\end{pmatrix}.

This means the main terms of the corresponding eigenstates at ๐ค=๐ŸŽ{\bf k}={\bf 0} are:

ฯ•ยฑ,1โ€‹(๐ฑ;ฮด)=12โ€‹(ฯ•1โ€‹(๐ฑ)โˆ“sgnโก(ฮดโ€‹cโ™ฏ)โ€‹ฯ•3โ€‹(๐ฑ));\displaystyle\phi_{\pm,1}({\bf x};\delta)=\frac{1}{\sqrt{2}}\bigl{(}\phi_{1}({\bf x})\mp\operatorname{sgn}(\delta c_{\sharp})\phi_{3}({\bf x})\bigr{)};
ฯ•ยฑ,2โ€‹(๐ฑ;ฮด)=12โ€‹(ฯ•4โ€‹(๐ฑ)โˆ“sgnโก(ฮดโ€‹cโ™ฏ)โ€‹ฯ•2โ€‹(๐ฑ)).\displaystyle\phi_{\pm,2}({\bf x};\delta)=\frac{1}{\sqrt{2}}\bigl{(}\phi_{4}({\bf x})\mp\operatorname{sgn}(\delta c_{\sharp})\phi_{2}({\bf x})\bigr{)}.

The first interesting observation is that ฯ•ยฑ,2โ€‹(๐ฑ)=๐’ฏโ€‹[ฯ•ยฑ,1]โ€‹(๐ฑ)\phi_{\pm,2}({\bf x})={\mathcal{T}}[\phi_{\pm,1}]({\bf x}), which means that these two states are connected by time-reversal symmetry.

Besides, note that ฯ•3โ€‹(๐ฑ)=ฯ•1โ€‹(โˆ’๐ฑ)\phi_{3}({\bf x})=\phi_{1}(-{\bf x}) and ฯ•2โ€‹(๐ฑ)=ฯ•4โ€‹(โˆ’๐ฑ)\phi_{2}({\bf x})=\phi_{4}(-{\bf x}). Thus, ฯ•+,1โ€‹(๐ฑ)\phi_{+,1}({\bf x}) and ฯ•+,2โ€‹(๐ฑ)\phi_{+,2}({\bf x}) are even when sgnโก(ฮดโ€‹cโ™ฏ)=โˆ’1\operatorname{sgn}(\delta c_{\sharp})=-1, and are odd when sgnโก(ฮดโ€‹cโ™ฏ)=1\operatorname{sgn}(\delta c_{\sharp})=1. The parity of ฯ•โˆ’,1โ€‹(๐ฑ)\phi_{-,1}({\bf x}) and ฯ•โˆ’,1โ€‹(๐ฑ)\phi_{-,1}({\bf x}) are opposite to them. This means that the parities of the upper two bands at the ฮ“\Gamma point are always the same and opposite to those of the lower two bands. And the parities change when sgnโก(ฮดโ€‹cโ™ฏ)\operatorname{sgn}(\delta c_{\sharp}) changes.

These observations are true for not only the main terms but also the true eigenstates at the ฮ“\Gamma point when adding small folding symmetry breaking perturbations. This result originates in the C6C_{6} symmetry and ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetry of the operator โ„‹ฮด{\mathcal{H}}^{\delta} and the C6C_{6} symmetry of the ฮ“\Gamma point:

ฯ‡=โจl=05ฯ‡~l;ฯ‡~l={fโˆˆฯ‡:โ„›~โ€‹[f]โ€‹(๐ฑ)=eฯ€โ€‹i3โ€‹lโ€‹fโ€‹(๐ฑ)}.\chi=\bigoplus_{l=0}^{5}\tilde{\chi}_{l};{\qquad}\tilde{\chi}_{l}=\big{\{}f\in\chi:\tilde{{\mathcal{R}}}[f]({\bf x})=e^{\frac{\pi i}{3}l}f({\bf x})\big{\}}. (6.9)

โ„›~\tilde{{\mathcal{R}}} is the ฯ€3\frac{\pi}{3}-rotation operator: โ„›~โ€‹[f]โ€‹(๐ฑ)=fโ€‹(R~โˆ—โ€‹๐ฑ)\tilde{{\mathcal{R}}}[f]({\bf x})=f(\tilde{R}^{*}{\bf x}), where

R~โˆ—=(1232โˆ’3212)\tilde{R}^{*}=\begin{pmatrix}\frac{1}{2}&\frac{\sqrt{3}}{2}\\ -\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}

represents the anticlock ฯ€3\frac{\pi}{3}-rotation in โ„2{\mathbb{R}}^{2}. โ„‹ฮด{\mathcal{H}}^{\delta} is commutative with โ„›~\tilde{{\mathcal{R}}}. Thus, each ฯ‡~l\tilde{\chi}_{l} is an invariant subspace of โ„‹ฮด{\mathcal{H}}^{\delta}. These characteristic subspaces of โ„›~\tilde{{\mathcal{R}}} have the following properties associated with ๐’ซ{\mathcal{P}} and ๐’ฏ{\mathcal{T}} symmetries.

  • โ€ข

    Each ฯ‡~l\tilde{\chi}_{l} is ๐’ซ{\mathcal{P}} invariant: because ๐’ซ=โ„›~โˆ˜โ„›~โˆ˜โ„›~{\mathcal{P}}=\tilde{{\mathcal{R}}}\circ\tilde{{\mathcal{R}}}\circ\tilde{{\mathcal{R}}}, any fโ€‹(๐ฑ)f({\bf x}) in ฯ‡~l\tilde{\chi}_{l} is even when jj is even and odd when jj is odd.

  • โ€ข

    ฯ‡~l\tilde{\chi}_{l} and ฯ‡~6โˆ’l\tilde{\chi}_{6-l} are mapped to each other by ๐’ฏ{\mathcal{T}}: if fโ€‹(๐ฑ)f({\bf x}) is in ฯ‡~l\tilde{\chi}_{l}, then ๐’ฏโ€‹[f]โ€‹(๐ฑ){\mathcal{T}}[f]({\bf x}) is in ฯ‡~6โˆ’l\tilde{\chi}_{6-l}; specially if fโ€‹(๐ฑ)f({\bf x}) is in ฯ‡~0\tilde{\chi}_{0}, ๐’ฏโ€‹[f]โ€‹(๐ฑ){\mathcal{T}}[f]({\bf x}) is in ฯ‡~0\tilde{\chi}_{0}.

The eigenstates ฯ•lโ€‹(๐ฑ)\phi_{l}({\bf x}) of H0=โ„‹VH^{0}={\mathcal{H}}_{V} are in characteristic subspaces of โ„›{\mathcal{R}} and ๐’ฑ1{\mathcal{V}}_{1} as in the second conclusion in Theorem 2.4. After some linear combinations, they can be rearranged into:

ฯ•~1โ€‹(๐ฑ)=12โ€‹(ฯ•1โ€‹(๐ฑ)+ฯ•3โ€‹(๐ฑ))โˆˆฯ‡~4;\displaystyle\tilde{\phi}_{1}({\bf x})=\frac{1}{\sqrt{2}}\bigl{(}\phi_{1}({\bf x})+\phi_{3}({\bf x})\bigr{)}\in\tilde{\chi}_{4};
ฯ•~2โ€‹(๐ฑ)=12โ€‹(ฯ•4โ€‹(๐ฑ)+ฯ•2โ€‹(๐ฑ))โˆˆฯ‡~2;\displaystyle\tilde{\phi}_{2}({\bf x})=\frac{1}{\sqrt{2}}\bigl{(}\phi_{4}({\bf x})+\phi_{2}({\bf x})\bigr{)}\in\tilde{\chi}_{2};
ฯ•~3โ€‹(๐ฑ)=12โ€‹(ฯ•1โ€‹(๐ฑ)โˆ’ฯ•3โ€‹(๐ฑ))โˆˆฯ‡~1;\displaystyle\tilde{\phi}_{3}({\bf x})=\frac{1}{\sqrt{2}}\bigl{(}\phi_{1}({\bf x})-\phi_{3}({\bf x})\bigr{)}\in\tilde{\chi}_{1};
ฯ•~4โ€‹(๐ฑ)=12โ€‹(ฯ•4โ€‹(๐ฑ)โˆ’ฯ•2โ€‹(๐ฑ))โˆˆฯ‡~5.\displaystyle\tilde{\phi}_{4}({\bf x})=\frac{1}{\sqrt{2}}\bigl{(}\phi_{4}({\bf x})-\phi_{2}({\bf x})\bigr{)}\in\tilde{\chi}_{5}.

By the continuity of the spectrum concerning ฮด\delta [12], the four branches {Eb+j(๐ค;ฮด)\big{\{}E_{b+j}({\bf k};\delta) :๐คโˆˆฮฉโˆ—}j=1,2,3,4:{\bf k}\in\Omega^{*}\big{\}}_{j=1,2,3,4} possess eigenstates in ฯ‡~1\tilde{\chi}_{1}, ฯ‡~2\tilde{\chi}_{2}, ฯ‡~4\tilde{\chi}_{4}, ฯ‡~5\tilde{\chi}_{5} respectively and decompose into a pair of twofold degeneracy since ฯ‡~l\tilde{\chi}_{l} and ฯ‡~6โˆ’l\tilde{\chi}_{6-l} are connected by ๐’ฏ{\mathcal{T}} symmetry. This together with the situation of main terms of the eigenstates confirms the theorem.

7 A typical numerical example

A typical example in physics is the kind of ๐’ซโ€‹๐’ฏ{\mathcal{P}}{\mathcal{T}} symmetric structure proposed by Wu and Hu [29]. We numerically study the associated edge Schrรถdinger operator:

โ„‹eโ€‹dโ€‹gโ€‹e=โˆ’ฮ”+Weโ€‹dโ€‹gโ€‹eโ€‹(๐ฑ).{\mathcal{H}}_{edge}=-\Delta+W_{edge}({\bf x}).

Here the potential Weโ€‹dโ€‹gโ€‹eโ€‹(๐ฑ)W_{edge}({\bf x}) is a piecewise constant function in L2โ€‹(โ„2)L^{2}({\mathbb{R}}^{2}). In the analysis in the above sections, we always suppose all the potentials are smooth. For general discontinuous potentials in L2โ€‹(โ„2)L^{2}({\mathbb{R}}^{2}), Theorem 2.6, Theorem 3.4, and the multiscale expansions are still valid, but other results should be treated carefully after smoothing, especially for the error estimation.

The parameters related to the honeycomb lattice are:

๐ฎ1=(3212),๐ฎ2=(32โˆ’12),๐ฎ3=๐ฎ2โˆ’๐ฎ1=(0โˆ’1);{\bf u}_{1}=\begin{pmatrix}\frac{\sqrt{3}}{2}\\ \frac{1}{2}\end{pmatrix},{\quad}{\bf u}_{2}=\begin{pmatrix}\frac{\sqrt{3}}{2}\\ -\frac{1}{2}\end{pmatrix},{\quad}{\bf u}_{3}={\bf u}_{2}-{\bf u}_{1}=\begin{pmatrix}0\\ -1\end{pmatrix};
๐ค1=4โ€‹ฯ€3โ€‹(1232),๐ค2=4โ€‹ฯ€3โ€‹(12โˆ’32).{\bf k}_{1}=\frac{4\pi}{\sqrt{3}}\begin{pmatrix}\frac{1}{2}\\ \frac{\sqrt{3}}{2}\end{pmatrix},{\quad}{\bf k}_{2}=\frac{4\pi}{\sqrt{3}}\begin{pmatrix}\frac{1}{2}\\ -\frac{\sqrt{3}}{2}\end{pmatrix}.

The edge direction is ๐’2=๐ค2.\bm{l}_{2}={\bf k}_{2}. The potential is

Weโ€‹dโ€‹gโ€‹e(๐ฑ)={gโ€‹(๐ฑ;1.13),๐ฑโ‹…๐’2โ‰ฅ0;gโ€‹(๐ฑ;0.93),eโ€‹lโ€‹sโ€‹e.W_{edge}({\bf x})=\left\{\begin{aligned} &g({\bf x};\frac{1.1}{3}),{\quad}{\bf x}\cdot\bm{l}_{2}\geq 0;\\ &g({\bf x};\frac{0.9}{3}),{\quad}else.\end{aligned}\right.

Here gโ€‹(๐ฑ,1.13)g({\bf x},\frac{1.1}{3}) and gโ€‹(๐ฑ,0.93)g({\bf x},\frac{0.9}{3}) are the perturbed bulk potentials on the two sides of the edge with different topologies. They are deformed from gโ€‹(๐ฑ;13)g({\bf x};\frac{1}{3}) โ€“ a potential possessing all the properties of the super honeycomb lattice potential except for the smoothness. They are shrunk and expanded super honeycomb lattice potentials respectively, as shown in Figure 1. They can be constructed by rotation of dimers as below:

gโ€‹(๐ฑ;r)=fโ€‹(๐ฑ;r)+โ„›โ€‹fโ€‹(๐ฑ;r)+โ„›2โ€‹fโ€‹(๐ฑ;r).g({\bf x};r)=f({\bf x};r)+{\mathcal{R}}f({\bf x};r)+{\mathcal{R}}^{2}f({\bf x};r).

The potential of a group of dimers is:

fโ€‹(๐ฑ;r)=aโ€‹(๐ฑโˆ’12โ€‹rโ€‹๐ฎ3)+aโ€‹(๐ฑ+12โ€‹rโ€‹๐ฎ3)f({\bf x};r)=a({\bf x}-\frac{1}{2}r{\bf u}_{3})+a({\bf x}+\frac{1}{2}r{\bf u}_{3})

with aโ€‹(๐ฑ)a({\bf x}) ๐ฎ1{\bf u}_{1} and ๐ฎ2{\bf u}_{2} doubly periodic. In the unit cell, it is

a(๐ฑ)={10,|xโˆ’12โ€‹(๐ฎ1+๐ฎ2)|<0.1,300,eโ€‹lโ€‹sโ€‹e.a({\bf x})=\left\{\begin{aligned} &10,{\qquad}|x-\frac{1}{2}({\bf u}_{1}+{\bf u}_{2})|<0.1,\\ &300,{\qquad}else.\end{aligned}\right.

We use the finite element method [17] to get the picture of โ„‹eโ€‹dโ€‹gโ€‹e{\mathcal{H}}_{edge}โ€™s spectrum and eigenstates as shown in Figure 1 and Figure 3. (b) of Figure 1 shows the existence of two gapped edge states. (a) and (b) of Figure 3 are corresponding eigenstates. (c)-(f) of Figure 3 are a basis of eigenstates of the operator

โ„‹bโ€‹uโ€‹lโ€‹k=โˆ’ฮ”+gโ€‹(๐ฑ;13){\mathcal{H}}_{bulk}=-\Delta+g({\bf x};\frac{1}{3})

with energy EDE_{D} marked in (b) of Figure 1. The operator โ„‹bโ€‹uโ€‹lโ€‹k{\mathcal{H}}_{bulk} has a fourfold degeneracy on its energy band at the ฮ“\Gamma point as in Theorem 2.4 with eigenstates (c)-(f). The edge modes in (a) and (b) are modulations of (c) and (d) in Figure 3.

Acknowledgments

We would like to acknowledge Guochuan Thiang and Borui Miao for inspiring discussions and precious suggestions and Shuo Yang for providing help in establishing numerical simulations.

Appendix A The form of bโ€‹(๐ค)b({\bf k})

From the expression of bโ€‹(๐ค)b({\bf k}) in (3.6), we know that:

bโ€‹(๐ค)\displaystyle b({\bf k}) =โŸจฯ•1(๐ฑ),2i๐คโ‹…โˆ‡(โ„‹Vโˆ’ED)โˆ’1๐’ฌโŸ‚2i๐คโ‹…โˆ‡ฯ•2(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle=\langle\phi_{1}({\bf x}),2i{\bf k}\cdot\nabla({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{2}({\bf x})\rangle_{L^{2}(\Omega)}
=โŸจ2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•1โ€‹(๐ฑ),(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•2โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle=\langle 2i{\bf k}\cdot\nabla\phi_{1}({\bf x}),({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{2}({\bf x})\rangle_{L^{2}(\Omega)}
=โŸจโ„›โ€‹(2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•1โ€‹(๐ฑ)),โ„›โ€‹((โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹๐คโ‹…โˆ‡ฯ•2โ€‹(๐ฑ))โŸฉL2โ€‹(ฮฉ)\displaystyle=\langle{\mathcal{R}}\biggl{(}2i{\bf k}\cdot\nabla\phi_{1}({\bf x})\biggr{)},{\mathcal{R}}\biggl{(}({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2i{\bf k}\cdot\nabla\phi_{2}({\bf x})\biggr{)}\rangle_{L^{2}(\Omega)}
=โŸจ2โ€‹iโ€‹Rโˆ—โ€‹๐คโ‹…โˆ‡โ„›โ€‹ฯ•1โ€‹(๐ฑ),(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹Rโˆ—โ€‹๐คโ‹…โˆ‡โ„›โ€‹ฯ•2โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle=\langle 2iR^{*}{\bf k}\cdot\nabla{\mathcal{R}}\phi_{1}({\bf x}),({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2iR^{*}{\bf k}\cdot\nabla{\mathcal{R}}\phi_{2}({\bf x})\rangle_{L^{2}(\Omega)}
=ฯ„2โ€‹โŸจ2โ€‹iโ€‹Rโˆ—โ€‹๐คโ‹…โˆ‡ฯ•1โ€‹(๐ฑ),(โ„‹Vโˆ’ED)โˆ’1โ€‹๐’ฌโŸ‚โ€‹2โ€‹iโ€‹Rโˆ—โ€‹๐คโ‹…โˆ‡ฯ•2โ€‹(๐ฑ)โŸฉL2โ€‹(ฮฉ)\displaystyle=\tau^{2}\langle 2iR^{*}{\bf k}\cdot\nabla\phi_{1}({\bf x}),({\mathcal{H}}_{V}-E_{{}_{D}})^{-1}{\mathcal{Q}}_{\perp}2iR^{*}{\bf k}\cdot\nabla\phi_{2}({\bf x})\rangle_{L^{2}(\Omega)}
=ฯ„ยฏโ€‹bโ€‹(Rโˆ—โ€‹๐ค),\displaystyle=\bar{\tau}b(R^{*}{\bf k}),

which means it satisfies:

bโ€‹(Rโˆ—โ€‹๐ค)=ฯ„โ€‹bโ€‹(๐ค).b(R^{*}{\bf k})=\tau b({\bf k}). (A.1)

Here

Rโˆ—=(โˆ’12โˆ’3232โˆ’12).R^{*}=\begin{pmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2}&-\frac{1}{2}\end{pmatrix}.

We can write bโ€‹(๐ค)b({\bf k}) into a polynomial of bโ€‹(๐ค)=๐คTโ€‹(AC0B)โ€‹๐คb({\bf k})={\bf k}^{T}\begin{pmatrix}A&C\\ 0&B\end{pmatrix}{\bf k}. We can obtain:

bโ€‹(Rโˆ—โ€‹๐ค)=๐คTโ€‹Rโ€‹(AC0B)โ€‹Rโˆ—โ€‹๐ค.b(R^{*}{\bf k})={\bf k}^{{}^{T}}R\begin{pmatrix}A&C\\ 0&B\end{pmatrix}R^{*}{\bf k}.

Combined with (A.1):

(1434โˆ’3434143432โˆ’32โˆ’12)โ€‹(ABC)=ฯ„โ€‹(ABC).\begin{pmatrix}\frac{1}{4}&\frac{3}{4}&-\frac{\sqrt{3}}{4}\\ \frac{3}{4}&\frac{1}{4}&\frac{\sqrt{3}}{4}\\ \frac{\sqrt{3}}{2}&-\frac{\sqrt{3}}{2}&-\frac{1}{2}\end{pmatrix}\begin{pmatrix}A\\ B\\ C\end{pmatrix}=\tau\begin{pmatrix}A\\ B\\ C\end{pmatrix}. (A.2)

The solution is

(ABC)=b0โ€‹(iโˆ’i2).\begin{pmatrix}A\\ B\\ C\end{pmatrix}=b_{0}\begin{pmatrix}i\\ -i\\ 2\end{pmatrix}. (A.3)

Therefore, we can write bโ€‹(๐ค)=b0โ€‹๐คTโ€‹(i20โˆ’i)โ€‹๐คb({\bf k})=b_{0}{\bf k}^{T}\begin{pmatrix}i&2\\ 0&-i\end{pmatrix}{\bf k}, with b0b_{0} a nonzero constant.

References

  • [1] M. J. Ablowitz and Y. Zhu., Nonlinear waves in shallow honeycomb lattices, SIAM J. Appl. Math. 72(1) (2012) 240โ€“260.
  • [2] H. Ammari and J. Cao., Unidirectional edge modes in time-modulated metamaterials, Proc. R. Soc. A. 478 (2022) 20220395.
  • [3] H. Ammari, B. Davies and E. O. Hiltunen, Robust edge modes in dislocated systems of subwavelength resonators, J. London Math. Soc. 106(3) (2022) 2075โ€“2135.
  • [4] G. Bal, Continuous bulk and interface description of topological insulators, J. Math. Phys. 60(8) (2019), 081506.
  • [5] G. Bal, J. G. Hoskins, and Z.Wang, Asymmetric transport computations in Dirac models of topological insulators, J. Comput. Phys. 487 (2023) 112151.
  • [6] G. Bal, and Z. Wang, โ„ค2{\mathbb{Z}}^{2} classification of FTR symmetric differential operators and obstruction to Anderson localization, arXiv:2311.05872 (2023).
  • [7] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and M. Hafezi, Two-dimensionally con๏ฌned topological edge states in photonic crystals, New J. Phys. 18(11) (2016) 113013.
  • [8] Y. Cao and Y. Zhu, Double Dirac cones in band structures of periodic Schrรถdinger operators, Multiscale Model. Simul. 21(3) (2023) 1147โ€“1169.
  • [9] A. Drouot, The bulk-edge correspondence for continuous honeycomb lattices, Comm. Partial Differential Equations 44(12) (2019) 1406โ€“1430.
  • [10] A. Drouot, C. L. Fefferman, and M. I. Weinstein, Defect modes for dislocated periodic media, Comm. Math. Phys. 377(3) (2020) 1637โ€“1680.
  • [11] A. Drouot and M. I. Weinstein, Edge states and the valley Hall effect, Adv. Math. 368 (2020) 107142.
  • [12] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Topologically protected states in one-dimensional continuous systems and Dirac points, Proc. Natl. Acad. Sci. USA. 111(24) (2014) 8759โ€“8763.
  • [13] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Edge states in honeycomb structures, Ann. PDE 2(2) (2016) 12.
  • [14] C. L. Fefferman and M. I. Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc. 25(4) (2012) 1169โ€“1220.
  • [15] H. Guo and X. Yang, Deep unfitted Nitsche method for elliptic interface problems, Commun. Comput. Phys. 31(4) (2022) 1162โ€“1179.
  • [16] H. Guo, X. Yang, and Y. Zhu, Unfitted Nitscheโ€™s method for computing wave modes in topological materials, J. Sci. Comput. 88(1) (2021) 24.
  • [17] H. Guo, M. Zhang, and Y. Zhu, ThreeFold Weyl Points for the Schrรถdinger Operator with Periodic Potentials, Siam. J. Math. Anal. 54(3) (2022) 3654โ€“3695.
  • [18] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045โ€“3067.
  • [19] P. Hu, P. Xie, and Y. Zhu, Traveling edge states in massive Dirac equations along slowly varying edges, IMA J. Appl. Math. 88(3) (2023) 455โ€“471.
  • [20] A. B. Khanikave, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12 (2013) 233.
  • [21] J. P. Lee-Thorp, M. I. Weinstein, and Y. Zhu, Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal. 232(1) (2019) 1โ€“63.
  • [22] B. Miao and Y. Zhu, Generalized honeycomb-structured materials in the subwavelength regime, arXiv:2303.15719 (2023)
  • [23] Y. Ogata, A โ„ค2\mathbb{Z}^{2}โ€“index of symmetry protected topological phases with time reversal symmetry for quantum spin chains, Commun. Math. Phys. 374 (2020) 705โ€“734.
  • [24] S. J. Palmer and V. Giannini, Berry bands and pseudo-spin of topological photonic phases, Phys. Rev. Res. 3 (2021) L022013.
  • [25] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X. 3(3) (2013) 031005.
  • [26] D. Smirnova, S. Kruk, D. Leykam, E. Melik-Gaykazyan, D. Choi, and Y. Kivshar, Third-harmonic generation in photonic topological metasurfaces, Phys. Rev. Lett. 123 (2019) 103901.
  • [27] G. C. Thiang, Topological edge states of 1D chains and index theory , J. Math. Phys., 64 (2023) 061901.
  • [28] G. C. Thiang, and H. Zhang, Bulk-interface correspondences for one dimensional topological materials with inversion symmetry, Proc. Math. Phys. Eng. Sci., 479 (2023) 20220675.
  • [29] L.Wu and X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material, Phys. Rev. Lett. 114 (2015) 223901.
  • [30] Y. Yang, Y. Xu, T. Xu, H. Wang, J. Jiang, X. Hu, and Z. Hang, Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials, Phys. Rev. Lett. 120 (2018) 217401.
  • [31] S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, Crystallinemeta-materials for topological properties at subwavelength scales, Nat. Commun. 8(1) (2017) 16023.