This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Effective-Field-Theory Approach to
Top-Quark Production and Decay

Cen Zhang and Scott Willenbrock

Department of Physics, University of Illinois at Urbana-Champaign
1110 West Green Street, Urbana, IL 61801
Abstract

We discuss new physics in top-quark interactions, using an effective field theory approach. We consider top-quark decay, single top production, and top-quark pair production. We identify 15 dimension-six operators that contribute to these processes, and we compute the deviation from the Standard Model induced by these operators. The results provide a systematic way of searching for (or obtaining bounds on) physics beyond the Standard Model.

1 Introduction

The standard model (SM) of the strong and electroweak interactions has been very successful phenomenologically. However, there are reasons to believe that the SM is not a complete description of nature. It contains many arbitrary parameters with no connections, and provides no explanation for the symmetry-breaking mechanism that gives rise to the masses of gauge bosons and fermions. In addition, the existence of dark matter and dark energy are not accommodated by the SM. It also provides no explanation of the strong CP problem. Consequently, there could be further particles and interactions as one probes higher energy scales. These energy scales could be the Planck scale or an intermediate scale Λ\Lambda.

A complete description of any new physics beyond the SM requires a fundamental theory. There are many models proposed for new physics. For example, the new particles could be those of supersymmetric theories or fermions that transform under different representations of the SM gauge group. The new interactions may also originate from quark substructure or preon exchange. Because of the diversity of these models, it is useful to introduce a model-independent approach.

If the physics beyond the SM lies at an energy scale Λ\Lambda less than 1 TeV, then we should be able to observe it directly at high-energy colliders. If it lies at a scale much greater than 1 TeV, then we can parameterize its effects via higher-dimension operators, suppressed by inverse powers of the scale Λ\Lambda. If the new physics is too heavy to appear directly in low energy processes, then we can integrate it out from the Lagrangian. In this way, the effective Lagrangian is:

L𝑒𝑓𝑓=L0+1ΛL1+1Λ2L2+L_{\mathit{eff}}=L_{0}+\frac{1}{\Lambda}L_{1}+\frac{1}{\Lambda^{2}}L_{2}+\cdots (1)

where L0L_{0} is the SM Lagrangian of dimension four, L1L_{1} is the new interaction of dimension five, L2L_{2} is of dimension six, etc. The procedure is quite general and independent of the new interactions at scale Λ\Lambda. The only constraint is that all LiL_{i} are SU(3)C×SU(2)L×U(1)Y{\rm SU(3)}_{C}\times{\rm SU(2)}_{L}\times{\rm U(1)}_{Y} invariant.

At dimension five, the only operator allowed by gauge invariance is [1]

L𝑒𝑓𝑓=cijΛ(LiTϵϕ)C(ϕTϵLj)+h.c.L_{\mathit{eff}}=\frac{c^{ij}}{\Lambda}(L^{iT}\epsilon\phi)C(\phi^{T}\epsilon L^{j})+h.c. (2)

where LiL^{i} is the lepton doublet field of the ithi^{th} generation and ϕ\phi is the Higgs doublet field. When the Higgs doublet acquires a vacuum-expectation value, this term gives rise to a Majorana mass for neutrinos. Due to the tiny neutrino masses, the scale Λ\Lambda is probably around 101510^{15} GeV. In contrast to this unique dimension-five operator, there are many independent dimension-six operators [2, 3].

Because the top quark is heavy relative to all the other observed SM fermions, we expect that the new physics at higher energy scales may reveal itself at lower energies through the effective interactions of the top quark, and deviations with respect to the SM predictions might be detectable. In this paper we will study the effect of these dimension-six operators on top quark interactions at hadron colliders. We focus on three different processes: top quark decay, single top production, and top pair production. If no deviation is observed experimentally, then one can place bounds on the coefficients of the dimension-six operators. The effects of non-standard interactions on top-quark physics at linear colliders and photon colliders can be found in Refs. [4, 5, 6, 7].

We choose the effective Lagrangian to realize the weak symmetry linearly, as the precision electroweak data favors a light Higgs boson. The situation where the weak symmetry is realized nonlinearly is studied in Ref. [8, 9, 10, 11, 12]. We will use the operator set introduced by Buchmuller and Wyler [3]. In their paper they categorize all possible gauge-invariant dimension-six operators, and use the equations of motion (EOM) to simplify them into 80 independent operators (for one generation). Subsequently it was found that several of these operators are actually not independent [13, 14, 15]. We focus on the operators that have an influence on the top quark.

We expect the leading modification to SM processes at order 1Λ2\frac{1}{\Lambda^{2}}. In this paper we don’t consider higher order contributions. We expect the scale Λ\Lambda to be large (at least larger than the scale we can probe directly) so 1Λ4\frac{1}{\Lambda^{4}} contributions would be small compared to the uncertainty on top quark measurements. Thus we ignore all dimension-eight (and higher) operators, as well as effects involving two dimension-six operators.

For any physical observable, the 1Λ2\frac{1}{\Lambda^{2}} contribution comes from the interference between dimension-six operators and the SM Lagrangian. This contribution might be suppressed for a variety reasons. For example, since all quark and lepton masses are negligible compared to the top quark mass, a new interaction that involves a right-handed quark or lepton (except for the top quark) has a very small interference with the SM charged-current weak interactions, which only involve left-handed fermions. It turns out that although there are a large number of dimension-six operators, only a few of them have significant effects at order 1Λ2\frac{1}{\Lambda^{2}}. We list these operators in Tables 1 and 2.

operator process
Oϕq(3)=i(ϕ+τIDμϕ)(q¯γμτIq)O_{\phi q}^{(3)}=i(\phi^{+}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q) top decay, single top
OtW=(q¯σμντIt)ϕ~WμνIO_{tW}=(\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} (with real coefficient) top decay, single top
Oqq(1,3)=(q¯iγμτIqj)(q¯γμτIq)O_{qq}^{(1,3)}=(\bar{q}^{i}\gamma_{\mu}\tau^{I}q^{j})(\bar{q}\gamma^{\mu}\tau^{I}q) single top
OtG=(q¯σμνλAt)ϕ~GμνAO_{tG}=(\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu} (with real coefficient) single top, qq¯,ggtt¯q\bar{q},gg\rightarrow t\bar{t}
OG=fABCGμAνGνBρGρCμO_{G}=f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} ggtt¯gg\rightarrow t\bar{t}
OϕG=12(ϕ+ϕ)GμνAGAμνO_{\phi G}=\frac{1}{2}(\phi^{+}\phi)G^{A}_{\mu\nu}G^{A\mu\nu} ggtt¯gg\rightarrow t\bar{t}
7 four-quark operators qq¯tt¯q\bar{q}\rightarrow t\bar{t}
Table 1: CP-even operators that have effects on top-quark processes at order 1/Λ21/\Lambda^{2}. Here qq is the left-handed quark doublet, while tt is the right-handed top quark. The field ϕ\phi (ϕ~=ϵϕ\tilde{\phi}=\epsilon\phi^{*}) is the Higgs boson doublet. Dμ=μigs12λAGμAig12τIWμIigYBμD_{\mu}=\partial_{\mu}-ig_{s}\frac{1}{2}\lambda^{A}G_{\mu}^{A}-ig\frac{1}{2}\tau^{I}W_{\mu}^{I}-ig^{\prime}YB_{\mu} is the covariant derivative. WμνI=μWνIνWμI+gϵIJKWμJWνKW_{\mu\nu}^{I}=\partial_{\mu}W_{\nu}^{I}-\partial_{\nu}W^{I}_{\mu}+g\epsilon_{IJK}W^{J}_{\mu}W^{K}_{\nu} is the WW boson field strength, and GμνA=μGνAνGμA+gsfABCGμBGνCG_{\mu\nu}^{A}=\partial_{\mu}G_{\nu}^{A}-\partial_{\nu}G^{A}_{\mu}+g_{s}f^{ABC}G^{B}_{\mu}G^{C}_{\nu} is the gluon field strength. Because of the Hermiticity of the Lagrangian, the coefficients of these operators are real, except for OtWO_{tW} and OtGO_{tG}. The operator Oϕq(3)O_{\phi q}^{(3)} with an imaginary coefficient can be removed using the EOM.
operator process
OtW=(q¯σμντIt)ϕ~WμνIO_{tW}=(\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} (with imaginary coefficient) top decay, single top
OtG=(q¯σμνλAt)ϕ~GμνAO_{tG}=(\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu} (with imaginary coefficient) single top, qq¯,ggtt¯q\bar{q},gg\rightarrow t\bar{t}
OG~=fABCG~μAνGνBρGρCμO_{\tilde{G}}=f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} ggtt¯gg\rightarrow t\bar{t}
OϕG~=12(ϕ+ϕ)G~μνAGAμνO_{\phi\tilde{G}}=\frac{1}{2}(\phi^{+}\phi)\tilde{G}^{A}_{\mu\nu}G^{A\mu\nu} ggtt¯gg\rightarrow t\bar{t}
Table 2: CP-odd operators that have effects on top-quark processes at order 1/Λ21/\Lambda^{2}. Notations are the same as in Table 1, and G~μν=ϵμνρσGρσ\tilde{G}_{\mu\nu}=\epsilon_{\mu\nu\rho\sigma}G^{\rho\sigma}.

In Table 1, only one of the four-quark operators, Oqq(1,3)=(q¯iγμτIqj)(q¯γμτIq)O_{qq}^{(1,3)}=(\bar{q}^{i}\gamma_{\mu}\tau^{I}q^{j})(\bar{q}\gamma^{\mu}\tau^{I}q), is listed explicitly. Here the superscripts i,ji,j denote the first two quark generations, while qq without superscript denotes the third generation. In single top production, this is the only (independent) four-quark operator that contributes. However, there are many other four-quark operators with different isospin and color structures [2, 3]. In the top pair production process qq¯tt¯q\bar{q}\rightarrow t\bar{t}, seven such operators contribute. The details are discussed in Section 4.

In Table 2, the CP-odd operators are listed. These interactions interfere with the SM only if the spin of the top quark is taken into account. The reason is that the SM conserves CP to a good approximation (the only CP violation is in the CKM matrix), and the inteference between a CP-odd operator and a CP-even operator is a CP violation effect. It was shown in Ref. [16] that, in the absence of final-state interactions, any CP violation observable can assume non-zero value only if it is TNT_{N}-odd, where TNT_{N} is the “naive” time reversal, which means to apply time reversal without interchanging the initial and final states. Thus an observable is TNT_{N}-odd if it is proportional to a term of the form ϵμνρσvμvνvρvσ\epsilon_{\mu\nu\rho\sigma}v^{\mu}v^{\nu}v^{\rho}v^{\sigma}. If we don’t consider the top quark spin, vv must be the momentum of the particles, and such a term will not be present because the reactions we consider here involve at most three independent momenta. Therefore top polarimetry is essential for the study of CP violation. Since the top quark rapidly undergoes two-body weak decay tWbt\rightarrow Wb with a time much shorter than the time scale necessary to depolarize the spin, information on the top spin can be obtained from its decay products. CP violation will be discussed in Section 5.

There is an argument that can be used to neglect some of the new operators [17]. Some new operators can be generated at tree level from an underlying gauge theory, while others must be generated at loop order. In general the loop generated operators are suppressed by a factor of 1/16π21/16\pi^{2}. However, the underlying theory may not be a weakly coupled gauge theory, or the loop diagrams could be enhanced due to the index of a fermion in a large representation. Furthermore, the underlying theory may not be a gauge theory at all. Fortunately, the effective field theory approach does not depend on the underlying theory. We will consider all dimension-six operators, without making any assumptions about the nature of the underlying theory.

We do not make any assumptions about the flavor structure of the dimension-six operators, although we don’t consider any flavor-changing neutral currents in this paper. The charged-current weak interaction of the top quark is proportional to VtbV_{tb}, so the SM rate for top decay and single top production is proportional to Vtb2V_{tb}^{2}. We write all dimension-six operators in terms of mass-eigenstate fields, so no diagonalization of the new interactions is necessary. Hence, in charged-current weak interactions, the interference between the SM amplitude and the new interaction is proportional to VtbCiV_{tb}C_{i}, where CiC_{i} is the (real) coefficient of the dimension-six Hermitian operator OiO_{i} (also recall that VtbV_{tb} itself is purely real in the standard parameterization [18]). If the operator is not Hermitian, the coefficient CiC_{i} is complex; CP-conserving processes are proportional to VtbReCiV_{tb}{\rm Re}C_{i}, while CP-violating processes are instead proportional to VtbImCiV_{tb}{\rm Im}C_{i}.

Deviations of top-quark processes from SM predictions have often been discussed using a vertex-function approach, where the WtbWtb vertex is parameterized in terms of four unknown form factors [19]. Given our precision knowledge of the electroweak interaction, this approach is too crude. The effective field theory approach is well motivated; it takes into consideration the unbroken SU(3)C×SU(2)L×U(1)Y{\rm SU(3)}_{C}\times{\rm SU(2)}_{L}\times{\rm U(1)}_{Y} gauge symmetry; it includes contact interactions as well as vertex corrections; it is valid for both on-shell and off-shell quarks; and it can be used for loop processes [20]. None of these virtues are shared by the vertex function approach [21].

2 Top Quark Decay

When the fermion masses (except for the top quark) are ignored, there are only two independent dimension-six operators in [3] that contribute to top-quark decay at leading order:111The operator ODt=(q¯Dμt)Dμϕ~O_{Dt}=(\bar{q}D_{\mu}t)D^{\mu}\tilde{\phi} listed in Ref. [3] can be removed using the EOM [14].

Oϕq(3)\displaystyle O_{\phi q}^{(3)} =\displaystyle= i(ϕ+τIDμϕ)(q¯γμτIq)\displaystyle i(\phi^{+}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q) (3)
OtW\displaystyle O_{tW} =\displaystyle= (q¯σμντIt)ϕ~WμνI\displaystyle(\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} (4)

The operators Oϕq(3)O_{\phi q}^{(3)} and OtWO_{tW} modify the SM WtbWtb interaction. Upon symmetry breaking, they generate the following terms in the Lagrangian:

L𝑒𝑓𝑓=Cϕq(3)Λ2gv22b¯γμPLtWμ+h.c.\displaystyle L_{\mathit{eff}}=\frac{C_{\phi q}^{(3)}}{\Lambda^{2}}\frac{gv^{2}}{\sqrt{2}}\bar{b}\gamma^{\mu}P_{L}tW^{-}_{\mu}+h.c. (5)
L𝑒𝑓𝑓=2CtWΛ2vb¯σμνPRtνWμ+h.c.\displaystyle L_{\mathit{eff}}=-2\frac{C_{tW}}{\Lambda^{2}}v\bar{b}\sigma^{\mu\nu}P_{R}t\partial_{\nu}W^{-}_{\mu}+h.c. (6)

where v=246v=246 GeV is the vacuum expectation value (VEV) of ϕ\phi. The operator Oϕq(3)O_{\phi q}^{(3)} simply leads to a rescaling of the SM WtbWtb vertex by a factor of (1+Cϕq(3)v2Λ2Vtb)(1+\frac{C_{\phi q}^{(3)}v^{2}}{\Lambda^{2}V_{tb}}), so it does not affect any distributions, and is therefore impossible to detect in angular distributions of top-quark decays. The vertex-function approach to top-quark decay is pursued in Refs. [22, 23].

These operators interfere with the SM amplitude, as is shown in Figure 1. We can compute their correction to the SM amplitude. The tbe+νt\rightarrow be^{+}\nu squared amplitude is:

12Σ|M|2=Vtb2g4u(mt2u)2(smW2)2+Cϕq(3)Vtbv2Λ2g4u(mt2u)(smW2)2+42ReCtWVtbmtmWΛ2g2su(smW2)2\frac{1}{2}\Sigma|M|^{2}=\frac{V_{tb}^{2}g^{4}u(m_{t}^{2}-u)}{2(s-m_{W}^{2})^{2}}+\frac{C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\frac{g^{4}u(m_{t}^{2}-u)}{(s-m_{W}^{2})^{2}}+\frac{4\sqrt{2}{\rm Re}C_{tW}V_{tb}m_{t}m_{W}}{\Lambda^{2}}\frac{g^{2}su}{(s-m_{W}^{2})^{2}} (7)

where CiC_{i} is the coefficient of operator OiO_{i}, and s,t,us,t,u are generalizations of the usual Mandelstam variables (s=(ptpb)2,t=(ptpν)2,u=(ptpe+)2s=(p_{t}-p_{b})^{2},\quad t=(p_{t}-p_{\nu})^{2},\quad u=(p_{t}-p_{e^{+}})^{2}). Cϕq(3)C_{\phi q}^{(3)} is real.

Refer to caption
Figure 1: The Feynman diagrams for tbe+νt\rightarrow be^{+}\nu. (a) is the SM amplitude; (b) represents the vertex correction induced by the operator Oϕq(3)O_{\phi q}^{(3)} and OtWO_{tW}.

Using the narrow width approximation for the WW boson, the differential decay rate is

dΓdcosθ\displaystyle\frac{d\Gamma}{d\cos\theta} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g44096π2mt3mWΓW(mt2mW2)2[mt2+mW2+(mt2mW2)cosθ](1cosθ)\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}}{4096\pi^{2}m_{t}^{3}m_{W}\Gamma_{W}}(m_{t}^{2}-m_{W}^{2})^{2}[m_{t}^{2}+m_{W}^{2}+(m_{t}^{2}-m_{W}^{2})\cos\theta](1-\cos\theta) (8)
+ReCtWVtbg21282π2Λ2mt2ΓWmW2(mt2mW2)2(1cosθ)\displaystyle+\frac{{\rm Re}C_{tW}V_{tb}g^{2}}{128\sqrt{2}\pi^{2}\Lambda^{2}m_{t}^{2}\Gamma_{W}}m_{W}^{2}(m_{t}^{2}-m_{W}^{2})^{2}(1-\cos\theta)

Here θ\theta is the angle between the momenta of top quark and the neutrino in the WW rest frame, and ΓW\Gamma_{W} is the width of the WW boson. In the SM, at tree level ΓW\Gamma_{W} is given by:

ΓW=3αW4mW.\Gamma_{W}=\frac{3\alpha_{W}}{4}m_{W}\;. (9)

The angular dependence is shown in Figure 2. The curves are normalized to have equal areas. The contribution from Oϕq(3)O_{\phi q}^{(3)} is the same as the SM contribution, because Oϕq(3)O_{\phi q}^{(3)} simply rescales the SM WtbWtb vertex. It therefore does not affect angular distributions. The angular dependence of the contribution from OtWO_{tW} is not dramatically different from the SM.

The partial width is given by

Γ=(Vtb2+2Cϕq(3)Vtbv2Λ2)g4(mt63mW4mt2+2mW6)3072π2ΓWmt3mW+ReCtWVtbg2mW2(mt2mW2)2642π2Λ2ΓWmt2.\Gamma=\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(m_{t}^{6}-3m_{W}^{4}m_{t}^{2}+2m_{W}^{6})}{3072\pi^{2}\Gamma_{W}m_{t}^{3}m_{W}}+{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{W}^{2}(m_{t}^{2}-m_{W}^{2})^{2}}{64\sqrt{2}\pi^{2}\Lambda^{2}\Gamma_{W}m_{t}^{2}}\;. (10)

Both dimension-six operators affect the partial width. The total width is given by the above expression times a factor of nine. Unfortunately, it is not known how to measure the partial or total widths in a hadron collider environment.

Refer to caption
Figure 2: The differential decay rate induced by different operators. The curves are normalized so that the area is the same.

We also consider the energy dependence of the leptons in the top quark rest frame. The SM computation can be found in [24, 25]. The correction from dimension-six operators at leading order is:

dΓdEe+\displaystyle\frac{d\Gamma}{dE_{e^{+}}} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4Ee+(mt2Ee+)128π2mWΓW+ReCtWVtbg2mW2(mt2Ee+)162π2Λ2ΓW\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}E_{e^{+}}(m_{t}-2E_{e^{+}})}{128\pi^{2}m_{W}\Gamma_{W}}+\frac{{\rm Re}C_{tW}V_{tb}g^{2}m_{W}^{2}(m_{t}-2E_{e^{+}})}{16\sqrt{2}\pi^{2}\Lambda^{2}\Gamma_{W}}
dΓdEν\displaystyle\frac{d\Gamma}{dE_{\nu}} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4(4Eν2mt2+2Eν(mt3+2mW2mt)mW2(mt2+mW2))256π2mt2mWΓW\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(-4E_{\nu}^{2}m_{t}^{2}+2E_{\nu}(m_{t}^{3}+2m_{W}^{2}m_{t})-m_{W}^{2}(m_{t}^{2}+m_{W}^{2}))}{256\pi^{2}m_{t}^{2}m_{W}\Gamma_{W}} (11)
+ReCtWVtbg2mW2(2EνmtmW2)162π2Λ2mtΓW\displaystyle+\frac{{\rm Re}C_{tW}V_{tb}g^{2}m_{W}^{2}(2E_{\nu}m_{t}-m_{W}^{2})}{16\sqrt{2}\pi^{2}\Lambda^{2}m_{t}\Gamma_{W}}

where mW2/2mt<Ee+,Eν<mt/2m_{W}^{2}/2m_{t}<E_{e^{+}},E_{\nu}<m_{t}/2 are the energies of the electron and neutrino, respectively. We don’t list the energy dependence of the bottom quark, because the narrow width approximation for the WW boson is used and the energy of the bottom quark is given by Eb=(mt2mW2)/2mtE_{b}=(m_{t}^{2}-m_{W}^{2})/2m_{t}. These results are shown in Figure 4 and 4. Again the curves are normalized so that the areas are the same. Compared to Figure 2, the two curves are more distinct, which implies the effect of OtWO_{tW} would be more apparent in the energy distribution of the leptons.

The angular distribution and the energy distribution are not independent. The energy of the leptons are fixed in the WW rest frame. Therefore their energy in the top quark rest frame is given by a boost, which only depends on the angle θ\theta:

Eν=12(E+|q|cosθ)\displaystyle E_{\nu}=\frac{1}{2}(E+|q|\cos\theta) (12)
Ee+=12(E|q|cosθ)\displaystyle E_{e^{+}}=\frac{1}{2}(E-|q|\cos\theta) (13)

where E=(mt2+mW2)/2mtE=(m_{t}^{2}+m_{W}^{2})/2m_{t} and |q|=(mt2mW2)/2mt|q|=(m_{t}^{2}-m_{W}^{2})/2m_{t} are the energy and momentum of the WW boson in the top quark rest frame. Furthermore, both the angular distribution and energy distribution can be expressed using the WW helicity fractions [22]:

1ΓdΓdcosθ=38(1+cosθ)2FR+38(1cosθ)2FL+34sin2θF0\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta}=\frac{3}{8}(1+\cos\theta)^{2}F_{R}+\frac{3}{8}(1-\cos\theta)^{2}F_{L}+\frac{3}{4}\sin^{2}\theta F_{0} (14)

and

1ΓdΓdEe+=1(EmaxEmin)3(3(Ee+Emin)2FR+3(EmaxEe+)2FL+6(EmaxEe+)(Ee+Emin)F0)\frac{1}{\Gamma}\frac{d\Gamma}{dE_{e^{+}}}=\frac{1}{(E_{max}-E_{min})^{3}}\left(3(E_{e^{+}}-E_{min})^{2}F_{R}+3(E_{max}-E_{e^{+}})^{2}F_{L}+6(E_{max}-E_{e^{+}})(E_{e^{+}}-E_{min})F_{0}\right) (15)

where Emax=mt/2E_{max}=m_{t}/2 and Emin=mW2/2mtE_{min}=m_{W}^{2}/2m_{t}, Fi=Γi/ΓF_{i}=\Gamma_{i}/\Gamma are the WW boson helicity fractions, corresponding to positive (R), negative (L), or zero (0) helicity. The helicity fraction is affected by the operator OtWO_{tW}:

F0\displaystyle F_{0} =\displaystyle= mt2mt2+2mW242ReCtWv2Λ2VtbmtmW(mt2mW2)(mt2+2mW2)2\displaystyle\frac{m_{t}^{2}}{m_{t}^{2}+2m_{W}^{2}}-\frac{4\sqrt{2}{\rm Re}C_{tW}v^{2}}{\Lambda^{2}V_{tb}}\frac{m_{t}m_{W}(m_{t}^{2}-m_{W}^{2})}{(m_{t}^{2}+2m_{W}^{2})^{2}}
FL\displaystyle F_{L} =\displaystyle= 2mW2mt2+2mW2+42ReCtWv2Λ2VtbmtmW(mt2mW2)(mt2+2mW2)2\displaystyle\frac{2m_{W}^{2}}{m_{t}^{2}+2m_{W}^{2}}+\frac{4\sqrt{2}{\rm Re}C_{tW}v^{2}}{\Lambda^{2}V_{tb}}\frac{m_{t}m_{W}(m_{t}^{2}-m_{W}^{2})}{(m_{t}^{2}+2m_{W}^{2})^{2}}
FR\displaystyle F_{R} =\displaystyle= 0\displaystyle 0 (16)

These equations make manifest the earlier observation that the operator Oϕq(3)O_{\phi q}^{(3)}, which simply rescales the SM vertex, cannot affect any distributions. Thus top-quark decay is sensitive only to the operator OtWO_{tW}, and can be used to measure (or bound) its coefficient.

Refer to caption
Figure 3: The energy dependence of the electron.
Refer to caption
Figure 4: The energy dependence of the neutrino.

Finally, we investigate the polarized differential decay rate. In the rest frame of the top quark, the angular distribution of any top quark decay product is given by [24, 25]

1ΓdΓdcosθi=1+αicosθi2\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{i}}=\frac{1+\alpha_{i}\cos\theta_{i}}{2} (17)

where θi=θb,θv,θe+\theta_{i}=\theta_{b},\theta_{v},\theta_{e^{+}} is the angle between the spin axis of the top quark and the momentum of the bottom quark, neutrino or positron. The “analyzing power” αi\alpha_{i} measures the degree to which the direction of the decay product ii is correlated with the top spin. If dimension-six operators are added, the relation still holds, but the coefficient αi\alpha_{i} will be affected by the new operators. Since Oϕq(3)O_{\phi q}^{(3)} is just a rescaling of the SM interaction, the only correction is from OtWO_{tW}. This could be an independent way to determine the coefficient ReCtW{\rm Re}C_{tW}. At leading order, the correction is given by:

αb\displaystyle\alpha_{b} =\displaystyle= mt22mW2mt2+2mW2+ReCtWv2Λ2Vtb82mtmW(mt2mW2)(mt2+2mW2)2\displaystyle-\frac{m_{t}^{2}-2m_{W}^{2}}{m_{t}^{2}+2m_{W}^{2}}+\frac{{\rm Re}C_{tW}v^{2}}{\Lambda^{2}V_{tb}}\frac{8\sqrt{2}m_{t}m_{W}(m_{t}^{2}-m_{W}^{2})}{(m_{t}^{2}+2m_{W}^{2})^{2}}
αv\displaystyle\alpha_{v} =\displaystyle= mt612mt4mW2+3mt2mW4(3+8ln(mt/mW))+2mW6mt63mt2mW4+2mW6\displaystyle\frac{m_{t}^{6}-12m_{t}^{4}m_{W}^{2}+3m_{t}^{2}m_{W}^{4}(3+8\ln(m_{t}/m_{W}))+2m_{W}^{6}}{m_{t}^{6}-3m_{t}^{2}m_{W}^{4}+2m_{W}^{6}}
ReCtWv2Λ2Vtb122mtmW(mt66mt4mW2+3mt2mW4(1+4ln(mt/mW))+2mW6)(mt2+2mW2)2(mt2mW2)2\displaystyle-\frac{{\rm Re}C_{tW}v^{2}}{\Lambda^{2}V_{tb}}\frac{12\sqrt{2}m_{t}m_{W}(m_{t}^{6}-6m_{t}^{4}m_{W}^{2}+3m_{t}^{2}m_{W}^{4}(1+4\ln(m_{t}/m_{W}))+2m_{W}^{6})}{(m_{t}^{2}+2m_{W}^{2})^{2}(m_{t}^{2}-m_{W}^{2})^{2}}
αe+\displaystyle\alpha_{e^{+}} =\displaystyle= 1\displaystyle 1 (18)

The same equations hold for hadronic top decay, with αu=αν\alpha_{u}=\alpha_{\nu}, αd¯=αe+\alpha_{\bar{d}}=\alpha_{e^{+}}. The coefficient αe+\alpha_{e^{+}} is not affected by dimension-six operators. This is consistent with the results in Ref. [26].

The measurement of these coefficients requires a source of polarized top quarks. This is addressed in the next section.

3 Single Top Production

Single top quarks are produced through the electroweak interaction. There are three separate processes: ss-channel [27], tt-channel [28, 29, 30], and WtWt production [31]. An effective field theory approach to the ss- and tt-channel processes was advocated in Ref. [32]. We update that analysis by including an additional operator, which was neglected in that study because it is loop-suppressed if the underlying theory is a gauge theory. We also perform an effective field theory analysis of the WtWt process. The vertex-function approach to single-top production is pursued in Refs. [33, 34, 35].

Single top production contains four distinct channels: the ss-channel process ud¯tb¯u\bar{d}\rightarrow t\bar{b}, the tt-channel processes ubdtub\rightarrow dt and d¯bu¯t\bar{d}b\rightarrow\bar{u}t, and the WtWt associated production channel gbWtgb\rightarrow Wt. We first consider the ss and tt channels. The following operators contribute [32]:

Oϕq(3)\displaystyle O_{\phi q}^{(3)} =\displaystyle= i(ϕ+τIDμϕ)(q¯γμτIq)\displaystyle i(\phi^{+}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q) (19)
OtW\displaystyle O_{tW} =\displaystyle= (q¯σμντIt)ϕ~WμνI\displaystyle(\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} (20)
Oqq(1,3)\displaystyle O_{qq}^{(1,3)} =\displaystyle= (q¯iγμτIqj)(q¯γμτIq)\displaystyle(\bar{q}^{i}\gamma_{\mu}\tau^{I}q^{j})(\bar{q}\gamma^{\mu}\tau^{I}q) (21)

For the four-quark operator Oqq(1,3)O_{qq}^{(1,3)}, the superscripts i,ji,j denote the first two quark generations. Another four-quark operator that could contribute is (q¯iγμq)(q¯γμqj)(\bar{q}^{i}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q^{j}). However, using the Fierz identity, this can be turned into a linear combination of Oqq(1,3)O_{qq}^{(1,3)} and some other four-quark operators with different isospin and color structures which do not contribute to this process. Four-quark operators are neglected in the vertex-function approach to the WtbWtb vertex.

The Feynman diagrams are shown in Figure 5. Since the operator OtWO_{tW} will be measured (or bounded) from studies of top-quark decay, the ss- and tt-channel production of single top quarks can be used to measure (or bound) the operators Oϕq(3)O_{\phi q}^{(3)} and Oqq(1,3)O_{qq}^{(1,3)}.

Refer to caption
Figure 5: Feynman diagrams for the ss- and tt-channel single top production. (a-c) are the ss-channel diagrams, while (d-f) are the tt-channel diagrams. (a,d) are the SM amplitude, (b,e) are the correction from Oϕq(3)O_{\phi q}^{(3)} and OtWO_{tW}, and (c,f) are the four-fermion interaction from Oqq(1,3)O_{qq}^{(1,3)}. The diagrams for the tt-channel process d¯bu¯t\bar{d}b\rightarrow\bar{u}t can be obtained by interchanging uu and dd quarks in (d-f).

Now we turn to consider the gbWtgb\rightarrow Wt process. The contributing operators are

Oϕq(3)\displaystyle O_{\phi q}^{(3)} =\displaystyle= i(ϕ+τIDμϕ)(q¯γμτIq)\displaystyle i(\phi^{+}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q) (22)
OtW\displaystyle O_{tW} =\displaystyle= (q¯σμντIt)ϕ~WμνI\displaystyle(\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} (23)
OtG\displaystyle O_{tG} =\displaystyle= (q¯σμνλAt)ϕ~GμνA\displaystyle(\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu} (24)

Again, the first two operators Oϕq(3)O_{\phi q}^{(3)} and OtWO_{tW} will affect the WtbWtb coupling. The “chromomagnetic moment” operator OtGO_{tG} modifies the gttgtt coupling:

L𝑒𝑓𝑓=ReCtG2Λ2v(t¯σμνλAt)GμνAL_{\mathit{eff}}=\frac{{\rm Re}C_{tG}}{{\sqrt{2}}\Lambda^{2}}v\left(\bar{t}\sigma^{\mu\nu}\lambda^{A}t\right)G_{\mu\nu}^{A} (25)

This interaction is neglected in the vertex-function approach to the WtbWtb vertex.

The Feynman diagrams are shown in Figure 6. Since the operators Oϕq(3)O_{\phi q}^{(3)} and OtWO_{tW} will be measured (or bounded) from single-top production and top-quark decay, respectively, the WtWt associated production process can be used to measure (or bound) the operator OtGO_{tG}, which is also present in tt¯t\bar{t} production (see Section 4).

Refer to caption
Figure 6: The Feynman diagrams for WtWt associated production process. (a,b) are the SM amplitude. (c,d) are corrections due to the operator Oϕq(3)O_{\phi q}^{(3)} and OtWO_{tW}. (e) is a modification on the gttgtt vertex.

Here we list all the corrections to the SM amplitudes and cross sections. The squared amplitude of the three channels are:

ss-channel:
14Σ|Mud¯tb¯|2\displaystyle\frac{1}{4}\Sigma|M_{u\bar{d}\rightarrow t\bar{b}}|^{2}\!\!\!\!\! =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4u(umt2)4(smW2)222ReCtWVtbmtmWΛ2g2su(smW2)2+2Cqq(1,3)VtbΛ2g2u(umt2)smW2\displaystyle\!\!\!\!\!\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}u(u-m_{t}^{2})}{4(s-m_{W}^{2})^{2}}-\frac{2\sqrt{2}{\rm Re}C_{tW}V_{tb}m_{t}m_{W}}{\Lambda^{2}}\frac{g^{2}su}{(s-m_{W}^{2})^{2}}+\frac{2C_{qq}^{(1,3)}V_{tb}}{\Lambda^{2}}\frac{g^{2}u(u-m_{t}^{2})}{s-m_{W}^{2}} (26)
tt-channel:
14Σ|Mubdt|2\displaystyle\frac{1}{4}\Sigma|M_{ub\rightarrow dt}|^{2}\!\!\!\!\! =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4s(smt2)4(tmW2)222ReCtWVtbmtmWΛ2g2st(tmW2)2+2Cqq(1,3)VtbΛ2g2s(smt2)tmW2\displaystyle\!\!\!\!\!\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}s(s-m_{t}^{2})}{4(t-m_{W}^{2})^{2}}-\frac{2\sqrt{2}{\rm Re}C_{tW}V_{tb}m_{t}m_{W}}{\Lambda^{2}}\frac{g^{2}st}{(t-m_{W}^{2})^{2}}+\frac{2C_{qq}^{(1,3)}V_{tb}}{\Lambda^{2}}\frac{g^{2}s(s-m_{t}^{2})}{t-m_{W}^{2}} (27)
14Σ|Md¯bu¯t|2\displaystyle\frac{1}{4}\Sigma|M_{\bar{d}b\rightarrow\bar{u}t}|^{2}\!\!\!\!\! =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4u(umt2)4(tmW2)222ReCtWVtbmtmWΛ2g2ut(tmW2)2+2Cqq(1,3)VtbΛ2g2u(umt2)tmW2\displaystyle\!\!\!\!\!\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}u(u-m_{t}^{2})}{4(t-m_{W}^{2})^{2}}-\frac{2\sqrt{2}{\rm Re}C_{tW}V_{tb}m_{t}m_{W}}{\Lambda^{2}}\frac{g^{2}ut}{(t-m_{W}^{2})^{2}}+\frac{2C_{qq}^{(1,3)}V_{tb}}{\Lambda^{2}}\frac{g^{2}u(u-m_{t}^{2})}{t-m_{W}^{2}} (28)

WtWt associated production:

196Σ|MgbWt|2\displaystyle\frac{1}{96}\Sigma|M_{gb\rightarrow Wt}|^{2} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g2gs224mW2s(tmt2)2(mt8(2s+t)mt6+((s+t)22tmW22mW4)mt4\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{2}g_{s}^{2}}{24m_{W}^{2}s(t-m_{t}^{2})^{2}}\left(m_{t}^{8}-(2s+t)m_{t}^{6}+((s+t)^{2}-2tm_{W}^{2}-2m_{W}^{4})m_{t}^{4}\right. (29)
(t(s+t)22(s2st+2t2)mW2+2tmW44mW6)mt2\displaystyle\left.-(t(s+t)^{2}-2(s^{2}-st+2t^{2})m_{W}^{2}+2tm_{W}^{4}-4m_{W}^{6})m_{t}^{2}\right.
2tmW2(s2+t22(s+t)mW2+2mW4))\displaystyle\left.-2tm_{W}^{2}(s^{2}+t^{2}-2(s+t)m_{W}^{2}+2m_{W}^{4})\right)
+2ReCtWVtbgs2mtmW32Λ2s(tmt2)2(3mt6(2s+3t+6mW2)mt4\displaystyle+\frac{2{\rm Re}C_{tW}V_{tb}g_{s}^{2}m_{t}m_{W}}{3\sqrt{2}\Lambda^{2}s(t-m_{t}^{2})^{2}}\left(3m_{t}^{6}-(2s+3t+6m_{W}^{2})m_{t}^{4}\right.
(s2+2st3t26mW4)mt2+t(s22st3t2+6(s+t)mW26mW4))\displaystyle\left.-(s^{2}+2st-3t^{2}-6m_{W}^{4})m_{t}^{2}+t(s^{2}-2st-3t^{2}+6(s+t)m_{W}^{2}-6m_{W}^{4})\right)
+ReCtGVtb2g2gsmtv32Λ2(mt2t)(mt2+2st)\displaystyle+\frac{{\rm Re}C_{tG}V_{tb}^{2}g^{2}g_{s}m_{t}v}{3\sqrt{2}\Lambda^{2}(m_{t}^{2}-t)}(m_{t}^{2}+2s-t)

As before, CiC_{i} is the coefficient of operator OiO_{i} and s,t,us,t,u are the usual Mandelstam variables. We have set Vud=1V_{ud}=1 for simplicity. The differential cross sections are as follows:

dσud¯tb¯dcosθ\displaystyle\frac{d\sigma_{u\bar{d}\rightarrow t\bar{b}}}{d\cos\theta} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4(smt2)2512πs2(smW2)2(1+cosθ)(s+mt2+(smt2)cosθ)\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(s-m_{t}^{2})^{2}}{512\pi s^{2}(s-m_{W}^{2})^{2}}(1+\cos\theta)\left(s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta\right) (30)
+ReCtWVtbg2mtmW(smt2)2162πΛ2s(smW2)2(1+cosθ)\displaystyle+{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{t}m_{W}(s-m_{t}^{2})^{2}}{16\sqrt{2}\pi\Lambda^{2}s(s-m_{W}^{2})^{2}}(1+\cos\theta)
+Cqq(1,3)Vtbg2(smt2)264πΛ2s2(smW2)(1+cosθ)(s+mt2+(smt2)cosθ)\displaystyle+C_{qq}^{(1,3)}V_{tb}\frac{g^{2}(s-m_{t}^{2})^{2}}{64\pi\Lambda^{2}s^{2}(s-m_{W}^{2})}(1+\cos\theta)(s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta)

with θ\theta the angle between up quark and top quark momenta in the center of mass frame;

dσubdtdcosθ\displaystyle\frac{d\sigma_{ub\rightarrow dt}}{d\cos\theta}\!\!\! =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4(smt2)232πs(2mW2+(smt2)(1cosθ))2\displaystyle\!\!\!\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(s-m_{t}^{2})^{2}}{32\pi s(2m_{W}^{2}+(s-m_{t}^{2})(1-\cos\theta))^{2}} (31)
+ReCtWVtbg2mtmW(smt2)2(1cosθ)42πΛ2s(2mW2+(smt2)(1cosθ))2Cqq(1,3)Vtbg2(smt2)28πΛ2s(2mW2+(smt2)(1cosθ))\displaystyle\!\!\!\!\!+{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{t}m_{W}(s-m_{t}^{2})^{2}(1-\cos\theta)}{4\sqrt{2}\pi\Lambda^{2}s(2m_{W}^{2}+(s-m_{t}^{2})(1-\cos\theta))^{2}}-C_{qq}^{(1,3)}V_{tb}\frac{g^{2}(s-m_{t}^{2})^{2}}{8\pi\Lambda^{2}s(2m_{W}^{2}+(s-m_{t}^{2})(1-\cos\theta))}
dσd¯bu¯tdcosθ\displaystyle\frac{d\sigma_{\bar{d}b\rightarrow\bar{u}t}}{d\cos\theta} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4(smt2)2(1+cosθ)(s+mt2+(smt2)cosθ)128πΛ2s2(2mW2+(smt2)(1cosθ))2\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(s-m_{t}^{2})^{2}(1+\cos\theta)(s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta)}{128\pi\Lambda^{2}s^{2}(2m_{W}^{2}+(s-m_{t}^{2})(1-\cos\theta))^{2}} (32)
ReCtWVtbg2mtmW(smt2)3sin2θ82πΛ2s2(2mW2+(smt2)(1cosθ))2\displaystyle-{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{t}m_{W}(s-m_{t}^{2})^{3}\sin^{2}\theta}{8\sqrt{2}\pi\Lambda^{2}s^{2}(2m_{W}^{2}+(s-m_{t}^{2})(1-\cos\theta))^{2}}
Cqq(1,3)Vtbg2(smt2)2(1+cosθ)(s+mt2+(smt2)cosθ)32πΛ2s2(2mW2+(smt2)(1cosθ))\displaystyle-C_{qq}^{(1,3)}V_{tb}\frac{g^{2}(s-m_{t}^{2})^{2}(1+\cos\theta)(s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta)}{32\pi\Lambda^{2}s^{2}(2m_{W}^{2}+(s-m_{t}^{2})(1-\cos\theta))}

with θ\theta the angle between bottom quark and top quark momenta in the center of mass frame;

dσgbWtdcosθ\displaystyle\frac{d\sigma_{gb\rightarrow Wt}}{d\cos\theta}\!\!\!\!\! =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g2gs2λ1/21536πs3mW2(s+mt2mW2λ1/2cosθ)2((mt2+10mW2)s3\displaystyle\!\!\!\!\!\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{2}g_{s}^{2}\lambda^{1/2}}{1536\pi s^{3}m_{W}^{2}(s+m_{t}^{2}-m_{W}^{2}-\lambda^{1/2}\cos\theta)^{2}}\left((m_{t}^{2}+10m_{W}^{2})s^{3}\right. (33)
+(3mt4+19mt2mW222mW4)s2(9mt6+8mt4mW2+5mt2mW422mW6)s+5(mt2mW2)3(mt2+2mW2)\displaystyle\left.+(3m_{t}^{4}+19m_{t}^{2}m_{W}^{2}-22m_{W}^{4})s^{2}-(9m_{t}^{6}+8m_{t}^{4}m_{W}^{2}+5m_{t}^{2}m_{W}^{4}-22m_{W}^{6})s+5(m_{t}^{2}-m_{W}^{2})^{3}(m_{t}^{2}+2m_{W}^{2})\right.
(mt2+2mW2)λ3/2cos3θ+((6mW2mt2)smt4mt2mW2+2mW4)λcos2θ\displaystyle\left.-(m_{t}^{2}+2m_{W}^{2})\lambda^{3/2}\cos^{3}\theta+\left((6m_{W}^{2}-m_{t}^{2})s-m_{t}^{4}-m_{t}^{2}m_{W}^{2}+2m_{W}^{4}\right)\lambda\cos^{2}\theta\right.
((14mW2mt2)s22(mt47mt2mW2+6mW4)s+3(mt63mt2mW4+2mW6))λ1/2cosθ)\displaystyle\left.-\left((14m_{W}^{2}-m_{t}^{2})s^{2}-2(m_{t}^{4}-7m_{t}^{2}m_{W}^{2}+6m_{W}^{4})s+3(m_{t}^{6}-3m_{t}^{2}m_{W}^{4}+2m_{W}^{6})\right)\lambda^{1/2}\cos\theta\right)
ReCtWVtbgs2mtmWλ1/2962πΛ2s3(s+mt2mW2λ1/2cosθ)2(5s39(mt2mW2)s2\displaystyle-{\rm Re}C_{tW}V_{tb}\frac{g_{s}^{2}m_{t}m_{W}\lambda^{1/2}}{96\sqrt{2}\pi\Lambda^{2}s^{3}\left(s+m_{t}^{2}-m_{W}^{2}-\lambda^{1/2}\cos\theta\right)^{2}}\left(5s^{3}-9(m_{t}^{2}-m_{W}^{2})s^{2}\right.
+(19mt4+10mt2mW229mW4)s15(mt2mW2)3+3λ3/2cos3θ(5s3mt2+3mW2)λcos2θ\displaystyle\left.+(19m_{t}^{4}+10m_{t}^{2}m_{W}^{2}-29m_{W}^{4})s-15(m_{t}^{2}-m_{W}^{2})^{3}+3\lambda^{3/2}\cos^{3}\theta-(5s-3m_{t}^{2}+3m_{W}^{2})\lambda\cos^{2}\theta\right.
(3s210(mt2mW2)s9(mt2mW2)2)λ1/2cosθ)\displaystyle\left.-\left(3s^{2}-10(m_{t}^{2}-m_{W}^{2})s-9(m_{t}^{2}-m_{W}^{2})^{2}\right)\lambda^{1/2}\cos\theta\right)
+ReCtGVtb2g2gsvmtλ1/2(mt2mW2+5sλ1/2cosθ)962πΛ2s2(mt2mW2+sλ1/2cosθ)\displaystyle+{\rm Re}C_{tG}V_{tb}^{2}\frac{g^{2}g_{s}vm_{t}\lambda^{1/2}\left(m_{t}^{2}-m_{W}^{2}+5s-\lambda^{1/2}\cos\theta\right)}{96\sqrt{2}\pi\Lambda^{2}s^{2}\left(m_{t}^{2}-m_{W}^{2}+s-\lambda^{1/2}\cos\theta\right)}

with θ\theta the angle between gluon and top quark momenta in the center of mass frame, and
λ=s2+mt4+mW42smt22smW22mt2mW2\lambda=s^{2}+m_{t}^{4}+m_{W}^{4}-2sm_{t}^{2}-2sm_{W}^{2}-2m_{t}^{2}m_{W}^{2}. The angular dependence at s=2mt\sqrt{s}=2m_{t} (recall that the kinematic threshold is s=mt\sqrt{s}=m_{t}) is shown in Figures 8-10 (areas are normalized).

Refer to caption
Figure 7: The s-channel differential cross section at s=2mt\sqrt{s}=2m_{t}.
Refer to caption
Figure 8: The t-channel (ubdtub\rightarrow dt) differential cross section at s=2mt\sqrt{s}=2m_{t}.
Refer to caption
Figure 9: The t-channel (d¯bu¯t\bar{d}b\rightarrow\bar{u}t) differential cross section at s=2mt\sqrt{s}=2m_{t}.
Refer to caption
Figure 10: The gbWtgb\rightarrow Wt channel differential cross section at s=2mt\sqrt{s}=2m_{t}.

The total cross sections are:

σud¯tb¯\displaystyle\sigma_{u\bar{d}\rightarrow t\bar{b}} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4(smt2)2(2s+mt2)384πΛ2s2(smW2)2\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(s-m_{t}^{2})^{2}(2s+m_{t}^{2})}{384\pi\Lambda^{2}s^{2}(s-m_{W}^{2})^{2}} (34)
+ReCtWVtbg2mtmW(smt2)282πΛ2s(smW2)2+Cqq(1,3)Vtbg2(smt2)2(2s+mt2)48πΛ2s2(smW2)\displaystyle+{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{t}m_{W}(s-m_{t}^{2})^{2}}{8\sqrt{2}\pi\Lambda^{2}s(s-m_{W}^{2})^{2}}+C_{qq}^{(1,3)}V_{tb}\frac{g^{2}(s-m_{t}^{2})^{2}(2s+m_{t}^{2})}{48\pi\Lambda^{2}s^{2}(s-m_{W}^{2})}
σubdt\displaystyle\sigma_{ub\rightarrow dt} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4(smt2)264πΛ2smW2(smt2+mW2)\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}(s-m_{t}^{2})^{2}}{64\pi\Lambda^{2}sm_{W}^{2}(s-m_{t}^{2}+m_{W}^{2})} (35)
ReCtWVtbg2mtmW(smt2(smt2+mW2)lnsmt2+mW2mW2)42πΛ2s(smt2+mW2)Cqq(1,3)Vtbg2(smt2)lnsmt2+mW2mW28πΛ2s\displaystyle-{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{t}m_{W}\left(s-m_{t}^{2}-(s-m_{t}^{2}+m_{W}^{2})\ln\frac{s-m_{t}^{2}+m_{W}^{2}}{m_{W}^{2}}\right)}{4\sqrt{2}\pi\Lambda^{2}s(s-m_{t}^{2}+m_{W}^{2})}-C_{qq}^{(1,3)}V_{tb}\frac{g^{2}(s-m_{t}^{2})\ln\frac{s-m_{t}^{2}+m_{W}^{2}}{m_{W}^{2}}}{8\pi\Lambda^{2}s}
σd¯bu¯t\displaystyle\sigma_{\bar{d}b\rightarrow\bar{u}t} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g4((s+2mW2)(smt2)mW2(2s+2mW2mt2)lns+mW2mt2mW2)64πs2mW2\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{4}\left((s+2m_{W}^{2})(s-m_{t}^{2})-m_{W}^{2}(2s+2m_{W}^{2}-m_{t}^{2})\ln\frac{s+m_{W}^{2}-m_{t}^{2}}{m_{W}^{2}}\right)}{64\pi s^{2}m_{W}^{2}} (36)
ReCtWVtbg2mtmW((s+2mW2mt2)lns+mW2mt2mW22(smt2))42πΛ2s2\displaystyle-{\rm Re}C_{tW}V_{tb}\frac{g^{2}m_{t}m_{W}\left((s+2m_{W}^{2}-m_{t}^{2})\ln\frac{s+m_{W}^{2}-m_{t}^{2}}{m_{W}^{2}}-2(s-m_{t}^{2})\right)}{4\sqrt{2}\pi\Lambda^{2}s^{2}}
Cqq(1,3)Vtbg2(2(s+mW2mt2)(s+mW2)lns+mW2mt2mW2(smt2)(3s+2mW2mt2))16πΛ2s2\displaystyle-C_{qq}^{(1,3)}V_{tb}\frac{g^{2}\left(2(s+m_{W}^{2}-m_{t}^{2})(s+m_{W}^{2})\ln\frac{s+m_{W}^{2}-m_{t}^{2}}{m_{W}^{2}}-(s-m_{t}^{2})(3s+2m_{W}^{2}-m_{t}^{2})\right)}{16\pi\Lambda^{2}s^{2}}
σgbWt\displaystyle\sigma_{gb\rightarrow Wt} =\displaystyle= (Vtb2+2Cϕq(3)Vtbv2Λ2)g2gs2384s3mW2(((3mt22mW2)s+7(mt2mW2)(mt2+2mW2))λ1/2.\displaystyle\left(V_{tb}^{2}+\frac{2C_{\phi q}^{(3)}V_{tb}v^{2}}{\Lambda^{2}}\right)\frac{g^{2}g_{s}^{2}}{384s^{3}m_{W}^{2}}\biggl{(}-\left((3m_{t}^{2}-2m_{W}^{2})s+7(m_{t}^{2}-m_{W}^{2})(m_{t}^{2}+2m_{W}^{2})\right)\lambda^{1/2}\biggr{.} (37)
+2(mt2+2mW2)(s2+2(mt2mW2)s+2(mt2mW2)2)ln(s+mt2mW2+λ1/2s+mt2mW2λ1/2))\displaystyle\left.+2(m_{t}^{2}+2m_{W}^{2})(s^{2}+2(m_{t}^{2}-m_{W}^{2})s+2(m_{t}^{2}-m_{W}^{2})^{2})\ln\left(\frac{s+m_{t}^{2}-m_{W}^{2}+\lambda^{1/2}}{s+m_{t}^{2}-m_{W}^{2}-\lambda^{1/2}}\right)\right)
ReCtWVtbgs2mtmW242Λ2s3((s+21(mt2mW2))λ1/2.\displaystyle-{\rm Re}C_{tW}V_{tb}\frac{g_{s}^{2}m_{t}m_{W}}{24\sqrt{2}\Lambda^{2}s^{3}}\biggl{(}\left(s+21(m_{t}^{2}-m_{W}^{2})\right)\lambda^{1/2}\biggr{.}
+2(s26(mt2mW2)s6(mt2mW2)2)ln(s+mt2mW2+λ1/2s+mt2mW2λ1/2))\displaystyle\left.+2\left(s^{2}-6(m_{t}^{2}-m_{W}^{2})s-6(m_{t}^{2}-m_{W}^{2})^{2}\right)\ln\left(\frac{s+m_{t}^{2}-m_{W}^{2}+\lambda^{1/2}}{s+m_{t}^{2}-m_{W}^{2}-\lambda^{1/2}}\right)\right)
+ReCtGVtb2g2gsvmt242Λ2s2(2sln(s+mt2mW2+λ1/2s+mt2mW2λ1/2)+λ1/2)\displaystyle+{\rm Re}C_{tG}V_{tb}^{2}\frac{g^{2}g_{s}vm_{t}}{24\sqrt{2}\Lambda^{2}s^{2}}\left(2s\ln\left(\frac{s+m_{t}^{2}-m_{W}^{2}+\lambda^{1/2}}{s+m_{t}^{2}-m_{W}^{2}-\lambda^{1/2}}\right)+\lambda^{1/2}\right)

The operators Oϕq(3)O_{\phi q}^{(3)} and Oqq(1,3)O_{qq}^{(1,3)} will be measured (or bounded) by single top production. Because they enter with the opposite relative sign in ss- and tt- channel production (see Eqs. (30),(31)), it will be valuable to measure these two processes separately.

The operator OtWO_{tW} also has an effect on the produced top quark spin. In the SM ss- and tt-channel single top production, the top quark is always polarized in the direction of dd or d¯\bar{d} three-momentum in the top rest frame [36]. When OtWO_{tW} is present, the top quark spin devitates from its original direction, but is still in the production plane. For example, in the ss-channel process, the top spin deviates away from the three-momentum of the b¯\bar{b}, with an angle (in the top rest frame)

δθ=ReCtW22v2Λ2smW(smt2)sinθs+mt2+(smt2)cosθ\delta\theta={\rm Re}C_{tW}\frac{2\sqrt{2}v^{2}}{\Lambda^{2}}\frac{\sqrt{s}}{m_{W}}\frac{(s-m_{t}^{2})\sin\theta}{s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta} (38)

where θ\theta is the scattering angle in the WW rest frame. Similarly, in the tt-channel process bd¯tu¯b\bar{d}\rightarrow t\bar{u}, the top spin deviates toward the three-momentum of u¯\bar{u}, with the same angle. In the tt-channel process butdbu\rightarrow td, the top spin deviates toward the three-momentum of the incoming bb quark, with an angle

δθ=ReCtW2v2Λ2smWsinθ\delta\theta={\rm Re}C_{tW}\frac{\sqrt{2}v^{2}}{\Lambda^{2}}\frac{\sqrt{s}}{m_{W}}\sin\theta (39)

In Eq. (18) we reported the effect of the operator OtWO_{tW} on the analyzing power of top decay. Let 𝐬^\hat{\mathbf{s}} be the unit vector in the top quark spin direction and 𝐩^i\hat{\mathbf{p}}_{i} be the unit vector in the direction of the three-momentum of the decay product ii in the top rest frame, we have

αi=3<𝐬^𝐩^i>\alpha_{i}=3<\hat{\mathbf{s}}\cdot\hat{\mathbf{p}}_{i}> (40)

In practice, we can use the ss- and tt-channel single top production as a source of polarized top quark. To measure the analyzing power, we can replace 𝐬^\hat{\mathbf{s}} with 𝐩^d,d¯\hat{\mathbf{p}}_{d,\bar{d}}, the unit vector in the direction of three-momentum of dd or d¯\bar{d}, depending on the production channel:

αi=3<𝐩^d,d¯𝐩^i>\alpha_{i}=3<\hat{\mathbf{p}}_{d,\bar{d}}\cdot\hat{\mathbf{p}}_{i}> (41)

In single top production the top quark spin is affected by OtWO_{tW}, so 𝐬^\hat{\mathbf{s}} and 𝐩^d,d¯\hat{\mathbf{p}}_{d,\bar{d}} are not exactly aligned. However, the direction in which the top quark spin deviates from the three-momentum of dd or d¯\bar{d} is independent of the 𝐩^i\hat{\mathbf{p}}_{i}, i.e.

<(𝐩^d,d¯𝐬^)𝐩^i>=0<(\hat{\mathbf{p}}_{d,\bar{d}}-\hat{\mathbf{s}})\cdot\hat{\mathbf{p}}_{i}>=0 (42)

Therefore Eq. (41) still holds. In other words, the effect of OtWO_{tW} on the production vertex doesn’t affect the measurement of the analyzing power.

4 Top Pair Production

The effect of higher dimension operators on top quark pair production is studied in [37, 38, 39]. In Ref. [37], two dimension-six operators, the chromomagnetic moment operator, OtGO_{tG}, and the triple gluon field strength operator, OGO_{G}, are considered:

OtG\displaystyle O_{tG} =\displaystyle= (q¯σμνλAt)ϕ~GμνA\displaystyle(\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu} (43)
OG\displaystyle O_{G} =\displaystyle= fABCGμAνGνBρGρCμ\displaystyle f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} (44)

It is shown that OGO_{G} will generate observable cross section deviations from QCD at the LHC even for relatively small values of its coefficient.

Here we redo the leading order calculation, and also take into account the operator OϕGO_{\phi G}:

OϕG=12(ϕ+ϕ)GμνAGAμν\displaystyle O_{\phi G}=\frac{1}{2}(\phi^{+}\phi)G^{A}_{\mu\nu}G^{A\mu\nu} (45)

which is a Higgs-gluon interaction. Its effect on the Higgs production rate and branching ratios has been discussed in [40]. We include this operator because it contributes to top pair production through gghtt¯gg\rightarrow h\rightarrow t\bar{t},

L𝑒𝑓𝑓=12CϕGΛ2vhGμνAGAμνL_{\mathit{eff}}=\frac{1}{2}\frac{C_{\phi G}}{\Lambda^{2}}vhG^{A}_{\mu\nu}G^{A\mu\nu} (46)

which could be significant because the top quark has a large Yukawa coupling.

Top quark pair production proceeds at the tree level through the parton reactions ggtt¯gg\rightarrow t\bar{t} and qq¯tt¯q\bar{q}\rightarrow t\bar{t}. We first consider the gluon channel. The Feynman diagrams are shown in Figure 11. The operator OtGO_{tG} changes the SM gttgtt coupling, and also generates a new ggttggtt interaction. OGO_{G} affects the three-point gluon vertex in QCD. OϕGO_{\phi G} generates a new diagram with an ss-channel Higgs boson.

Refer to caption
Figure 11: The Feynman diagrams for ggtt¯gg\rightarrow t\bar{t} process. Diagram (a-c) are the SM amplitude. (d-h) are the gttgtt vertex correction induced by OtGO_{tG}. (i) is the g3g^{3} vertex correction induced by OGO_{G}. (j) is a ggttggtt interaction from OtGO_{tG}, and (k) is a gghttgg\rightarrow h\rightarrow tt process, induced by OϕGO_{\phi G}.

The squared amplitude is:

1256|M|2\displaystyle\frac{1}{256}|M|^{2} =\displaystyle= 3gs44(m2t)(m2u)s2gs424m2(s4m2)(m2t)(m2u)+gs46tum2(3t+u)m4(m2t)2\displaystyle\frac{3g_{s}^{4}}{4}\frac{(m^{2}-t)(m^{2}-u)}{s^{2}}-\frac{g_{s}^{4}}{24}\frac{m^{2}(s-4m^{2})}{(m^{2}-t)(m^{2}-u)}+\frac{g_{s}^{4}}{6}\frac{tu-m^{2}(3t+u)-m^{4}}{(m^{2}-t)^{2}} (47)
+gs46tum2(t+3u)m4(m2u)23gs48tu2m2t+m4s(m2t)3gs48tu2m2u+m4s(m2u)\displaystyle+\frac{g_{s}^{4}}{6}\frac{tu-m^{2}(t+3u)-m^{4}}{(m^{2}-u)^{2}}-\frac{3g_{s}^{4}}{8}\frac{tu-2m^{2}t+m^{4}}{s(m^{2}-t)}-\frac{3g_{s}^{4}}{8}\frac{tu-2m^{2}u+m^{4}}{s(m^{2}-u)}
+2ReCtGgs3vm3Λ24s29tu9m2s+9m4(m2t)(m2u)+9CGgs38Λ2m2(tu)2(m2t)(m2u)\displaystyle+\frac{\sqrt{2}{\rm Re}C_{tG}g_{s}^{3}vm}{3\Lambda^{2}}\frac{4s^{2}-9tu-9m^{2}s+9m^{4}}{(m^{2}-t)(m^{2}-u)}+\frac{9C_{G}g_{s}^{3}}{8\Lambda^{2}}\frac{m^{2}(t-u)^{2}}{(m^{2}-t)(m^{2}-u)}
CϕGgs2m28Λ2s2(s4m2)(smh2)(tm2)(um2)\displaystyle-\frac{C_{\phi G}g_{s}^{2}m^{2}}{8\Lambda^{2}}\frac{s^{2}(s-4m^{2})}{(s-m_{h}^{2})(t-m^{2})(u-m^{2})}

where mm is the mass of the top quark and mhm_{h} is the mass of the Higgs boson.

The differential and total cross sections are

dσdcosθ\displaystyle\frac{d\sigma}{d\cos\theta}\!\!\!\!\! =\displaystyle= gs4β1536πs(1β2cos2θ)2\displaystyle\!\!\!\!\!\frac{g_{s}^{4}\beta}{1536\pi s(1-\beta^{2}\cos^{2}\theta)^{2}} (48)
(7(1+2β22β4)β2(532β2+18β4)cos2θ(25β418β6)cos4θ9β6cos6θ)\displaystyle\!\!\!\!\!\left(7(1+2\beta^{2}-2\beta^{4})-\beta^{2}(5-32\beta^{2}+18\beta^{4})\cos^{2}\theta-(25\beta^{4}-18\beta^{6})\cos^{4}\theta-9\beta^{6}\cos^{6}\theta\right)
+ReCtGgs3vβ1β2(7+9β2cos2θ)962πΛ2s(1β2cos2θ)+CG9gs3β3(1β2)cos2θ256πΛ2(1β2cos2θ)CϕGgs2sβ3(1β2)256πΛ2(smh2)(1β2cos2θ)\displaystyle\!\!\!\!\!+{\rm Re}C_{tG}\frac{g_{s}^{3}v\beta\sqrt{1-\beta^{2}}(7+9\beta^{2}\cos^{2}\theta)}{96\sqrt{2}\pi\Lambda^{2}\sqrt{s}(1-\beta^{2}\cos^{2}\theta)}+C_{G}\frac{9g_{s}^{3}\beta^{3}(1-\beta^{2})\cos^{2}\theta}{256\pi\Lambda^{2}(1-\beta^{2}\cos^{2}\theta)}-C_{\phi G}\frac{g_{s}^{2}s\beta^{3}(1-\beta^{2})}{256\pi\Lambda^{2}(s-m_{h}^{2})(1-\beta^{2}\cos^{2}\theta)}
σ\displaystyle\sigma =\displaystyle= gs4768πs(31β359β+(3318β2+β4)ln1+β1β)+ReCtGgs3v1β2482πΛ2s(8ln1+β1β9β)\displaystyle\frac{g_{s}^{4}}{768\pi s}\left(31\beta^{3}-59\beta+(33-18\beta^{2}+\beta^{4})\ln\frac{1+\beta}{1-\beta}\right)+{\rm Re}C_{tG}\frac{g_{s}^{3}v\sqrt{1-\beta^{2}}}{48\sqrt{2}\pi\Lambda^{2}\sqrt{s}}\left(8\ln\frac{1+\beta}{1-\beta}-9\beta\right) (49)
+CG9gs3(1β2)256πΛ2(ln1+β1β2β)CϕGgs2sβ2(1β2)256πΛ2(smh2)ln1+β1β\displaystyle+C_{G}\frac{9g_{s}^{3}(1-\beta^{2})}{256\pi\Lambda^{2}}\left(\ln\frac{1+\beta}{1-\beta}-2\beta\right)-C_{\phi G}\frac{g_{s}^{2}s\beta^{2}(1-\beta^{2})}{256\pi\Lambda^{2}(s-m_{h}^{2})}\ln\frac{1+\beta}{1-\beta}

Here θ\theta is the angle between the gluon and top quark momenta in the center of mass frame; β14m2s\beta\equiv\sqrt{1-\frac{4m^{2}}{s}} is the velocity of the top quark. Top quark pair production can be used to measure (or bound) the coefficients of the operators OtGO_{tG}, OGO_{G} and OϕGO_{\phi G}. The operator OtGO_{tG} is also probed by WtWt associated production, as discussed above, and the operator OϕGO_{\phi G} is probed by Higgs production [40].

Now we turn to consider the quark process qq¯tt¯q\bar{q}\rightarrow t\bar{t}. There are a large number of four-quark operators with different chiral and flavor structures [2, 3, 37]. Here we consider all possible chirality and color structures. In Ref. [3], only one generation is considered. When there are three generations, the quark field in these operators can be of any generation. For example, (q¯iγμqj)(q¯γμq)(\bar{q}^{i}\gamma_{\mu}q^{j})(\bar{q}\gamma^{\mu}q) and (q¯iγμq)(q¯γμqj)(\bar{q}^{i}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q^{j}) (superscripts i,ji,j are used to denote the first two generations) should be considered as different operators. The effect of some of these operators are suppressed by the color structure or by the small quark mass. For example, (q¯iγμqj)(q¯γμq)(\bar{q}^{i}\gamma_{\mu}q^{j})(\bar{q}\gamma^{\mu}q) doesn’t interfere with the SM, because the tt and t¯\bar{t} form a color singlet; an operator like (q¯t)ϵ(q¯idj)(\bar{q}t)\epsilon(\bar{q}^{i}d^{j}) doesn’t interfere either, because it involves a left-handed and a right-handed down quark while the SM gdd¯gd\bar{d} coupling doesn’t change chirality.

Using the Fierz transformation and the following SU(2) and SU(3) identities

τabIτcdI\displaystyle\tau^{I}_{ab}\tau^{I}_{cd} =\displaystyle= δabδcd+2δadδbc\displaystyle-\delta_{ab}\delta_{cd}+2\delta_{ad}\delta_{bc}
tijAtklA\displaystyle t^{A}_{ij}t^{A}_{kl} =\displaystyle= 16δijδkl+12δilδjk\displaystyle-\frac{1}{6}\delta_{ij}\delta_{kl}+\frac{1}{2}\delta_{il}\delta_{jk} (50)

we find that only the following four-quark operators contribute to the uu¯,dd¯tt¯u\bar{u},d\bar{d}\rightarrow t\bar{t} reaction:

Oqq(8,1)=14(q¯iγμλAqj)(q¯γμλAq)Oqq(8,3)=14(q¯iγμτIλAqj)(q¯γμτIλAq)Out(8)=14(u¯iγμλAuj)(t¯γμλAt)Odt(8)=14(d¯iγμλAdj)(t¯γμλAt)Oqu(1)=(q¯ui)(u¯jq)Oqd(1)=(q¯di)(d¯jq)Oqt(1)=(q¯it)(t¯qj)\begin{array}[]{ll}O^{(8,1)}_{qq}=\frac{1}{4}(\bar{q}^{i}\gamma_{\mu}\lambda^{A}q^{j})(\bar{q}\gamma^{\mu}\lambda^{A}q)&O^{(8,3)}_{qq}=\frac{1}{4}(\bar{q}^{i}\gamma_{\mu}\tau^{I}\lambda^{A}q^{j})(\bar{q}\gamma^{\mu}\tau^{I}\lambda^{A}q)\\ O^{(8)}_{ut}=\frac{1}{4}(\bar{u}^{i}\gamma_{\mu}\lambda^{A}u^{j})(\bar{t}\gamma^{\mu}\lambda^{A}t)&O^{(8)}_{dt}=\frac{1}{4}(\bar{d}^{i}\gamma_{\mu}\lambda^{A}d^{j})(\bar{t}\gamma^{\mu}\lambda^{A}t)\\ O^{(1)}_{qu}=(\bar{q}u^{i})(\bar{u}^{j}q)&O^{(1)}_{qd}=(\bar{q}d^{i})(\bar{d}^{j}q)\\ O^{(1)}_{qt}=(\bar{q}^{i}t)(\bar{t}q^{j})\end{array} (51)

We don’t include the operators that have the form (q¯λAui)(u¯jλAq)(\bar{q}\lambda^{A}u^{i})(\bar{u}^{j}\lambda^{A}q). This operator can be turned into a linear combination of Oqu(1)O^{(1)}_{qu}, which is already considered, and another operator (q¯cubi)(u¯ajqd)δabδcd(\bar{q}_{c}u^{i}_{b})(\bar{u}^{j}_{a}q_{d})\delta_{ab}\delta_{cd} (a,b,c,da,b,c,d denote color indices), which does not contribute because the tt and t¯\bar{t} form a color singlet. In addition, we also need to consider the operator OtGO_{tG}, whose effect is to change the gttgtt coupling. The diagrams are shown in Figure 12.

Refer to caption
Figure 12: The Feynman diagrams for uu¯tt¯u\bar{u}\rightarrow t\bar{t} process. (a) is the SM amplitude, (b) is the correction on gttgtt coupling induced by OtGO_{tG}, and (c) is the four-fermion interactions. The dd¯tt¯d\bar{d}\rightarrow t\bar{t} process has the same diagrams.

The result is

136|Mu¯ut¯t|2\displaystyle\frac{1}{36}|M_{\bar{u}u\rightarrow\bar{t}t}|^{2} =\displaystyle= gs2(M12+M22)+322ReCtGgs3vm9Λ2+Cu1sΛ2M12+Cu2sΛ2M22\displaystyle g_{s}^{2}(M_{1}^{2}+M_{2}^{2})+\frac{32\sqrt{2}{\rm Re}C_{tG}g_{s}^{3}vm}{9\Lambda^{2}}+C_{u}^{1}\frac{s}{\Lambda^{2}}M_{1}^{2}+C_{u}^{2}\frac{s}{\Lambda^{2}}M_{2}^{2}
136|Md¯dt¯t|2\displaystyle\frac{1}{36}|M_{\bar{d}d\rightarrow\bar{t}t}|^{2} =\displaystyle= gs2(M12+M22)+322ReCtGgs3vm9Λ2+Cd1sΛ2M12+Cd2sΛ2M22\displaystyle g_{s}^{2}(M_{1}^{2}+M_{2}^{2})+\frac{32\sqrt{2}{\rm Re}C_{tG}g_{s}^{3}vm}{9\Lambda^{2}}+C_{d}^{1}\frac{s}{\Lambda^{2}}M_{1}^{2}+C_{d}^{2}\frac{s}{\Lambda^{2}}M_{2}^{2} (52)

where

Cu1\displaystyle C_{u}^{1} =\displaystyle= Cqq(8,1)+Cqq(8,3)+Cut(8)\displaystyle C^{(8,1)}_{qq}+C^{(8,3)}_{qq}+C^{(8)}_{ut} (53)
Cu2\displaystyle C_{u}^{2} =\displaystyle= Cqu(1)+Cqt(1)\displaystyle C^{(1)}_{qu}+C^{(1)}_{qt} (54)
Cd1\displaystyle C_{d}^{1} =\displaystyle= Cqq(8,1)Cqq(8,3)+Cdt(8)\displaystyle C^{(8,1)}_{qq}-C^{(8,3)}_{qq}+C^{(8)}_{dt} (55)
Cd2\displaystyle C_{d}^{2} =\displaystyle= Cqd(1)+Cqt(1)\displaystyle C^{(1)}_{qd}+C^{(1)}_{qt} (56)
M12\displaystyle M_{1}^{2} =\displaystyle= 4gs29s2(3m4m2(t+3u)+u2)\displaystyle\frac{4g_{s}^{2}}{9s^{2}}(3m^{4}-m^{2}(t+3u)+u^{2}) (57)
M22\displaystyle M_{2}^{2} =\displaystyle= 4gs29s2(3m4m2(3t+u)+t2)\displaystyle\frac{4g_{s}^{2}}{9s^{2}}(3m^{4}-m^{2}(3t+u)+t^{2}) (58)

The cross section is

dσu¯u,d¯dt¯tdcosθ\displaystyle\frac{d\sigma_{\bar{u}u,\bar{d}d\rightarrow\bar{t}t}}{d\cos\theta} =\displaystyle= gs4144πsβ(2β2sin2θ)+ReCtGgs3vβ1β292πΛ2s\displaystyle\frac{g_{s}^{4}}{144\pi s}\beta(2-\beta^{2}\sin^{2}\theta)+{\rm Re}C_{tG}\frac{g_{s}^{3}v\beta\sqrt{1-\beta^{2}}}{9\sqrt{2}\pi\Lambda^{2}\sqrt{s}} (59)
+Cu,d1gs2288πΛ2β(2+2βcosθβ2sin2θ)\displaystyle+C_{u,d}^{1}\frac{g_{s}^{2}}{288\pi\Lambda^{2}}\beta(2+2\beta\cos\theta-\beta^{2}\sin^{2}\theta)
+Cu,d2gs2288πΛ2β(22βcosθβ2sin2θ)\displaystyle+C_{u,d}^{2}\frac{g_{s}^{2}}{288\pi\Lambda^{2}}\beta(2-2\beta\cos\theta-\beta^{2}\sin^{2}\theta)

where θ\theta is the angle between up or down quark and the top quark momenta, in the center of mass frame. The total cross section is

σu¯u,d¯dt¯t\displaystyle\sigma_{\bar{u}u,\bar{d}d\rightarrow\bar{t}t} =\displaystyle= gs4108πsβ(3β2)+ReCtG2gs3v9πΛ2sβ1β2+(Cu,d1+Cu,d2)gs2216πΛ2β(3β2)\displaystyle\frac{g_{s}^{4}}{108\pi s}\beta(3-\beta^{2})+{\rm Re}C_{tG}\frac{\sqrt{2}g_{s}^{3}v}{9\pi\Lambda^{2}\sqrt{s}}\beta\sqrt{1-\beta^{2}}+(C_{u,d}^{1}+C_{u,d}^{2})\frac{g_{s}^{2}}{216\pi\Lambda^{2}}\beta(3-\beta^{2}) (60)

Although there are seven four-fermion operators, their effects on top-quark pair production are summarized by only four coefficients Cu,d1,2C_{u,d}^{1,2}. Thus top-quark pair production can be used to bound four linear combinations of the four-quark operators as well as the operator OtGO_{tG}.

If Cu,d1C_{u,d}^{1} and Cu,d2C_{u,d}^{2} are distinct, they will generate a forward-backward asymmetry:

AFBt\displaystyle A^{t}_{FB} =\displaystyle= N(cosθ>0)N(cosθ<0)N(cosθ>0)+N(cosθ<0)\displaystyle\frac{N(\cos\theta>0)-N(\cos\theta<0)}{N(\cos\theta>0)+N(\cos\theta<0)} (61)
=\displaystyle= (Cu,d1Cu,d2)3sβ4gs2Λ2(3β2)\displaystyle(C^{1}_{u,d}-C^{2}_{u,d})\frac{3s\beta}{4g_{s}^{2}\Lambda^{2}(3-\beta^{2})}

The recent measurements of the top quark forward-backward asymmetry from the CDF and the D0 experiments can be found in [41, 42, 43, 44, 45]. The SM prediction is dominated by O(αS3)O(\alpha_{S}^{3}) QCD interference effects and is 5%5\% in the lab frame [46, 47, 48, 49]. There is a discrepancy of about 2σ2\sigma between theory and experiment. It is interesting to ask whether this discrepancy can be accommodated within the effective field theory framework. The challenge is to avoid too large a modification of the tt¯t\bar{t} production cross section, since the current measurement is in good agreement with the SM prediction [50]. In the effective field theory approach, this can be done if Cu,d1C_{u,d}^{1} and Cu,d2C_{u,d}^{2} have similar non-zero values but with opposite sign, i.e. Cu,d1Cu,d2C_{u,d}^{1}\approx-C_{u,d}^{2}.

5 CP Violation

Violations of the CP symmetry are of great interest in particle physics especially since its origin is still unclear. Better understanding of this rare phenomenon can lead to new physics which may explain both the origin of mass and the preponderance of matter over anti-matter in the present universe.

The SM predicts that CP-violating effects in top physics are very small. This is primarily due to the fact that its large mass renders the Glashow-Iliopoulos-Maiani (GIM) [51] cancellation particularly effective [52, 53]. Therefore, the study of CP-violation effects in top physics is important because any observation of such effects would be a clear evidence of physics beyond the SM.

Effective field theory is a complete and model-independent approach to physics beyond the SM. Its CP-odd operators can be used to describe the CP-violation effects in top quark physics. We find that there are four CP-odd operators that can have significant contribution to top quark production and decay processes, as listed in Table 2. In this section we will consider the effects of these four operators.

5.1 Polarized Top Quark Decay

In top quark decay, the momenta of the four particles, tt,bb,e+e^{+} and ν\nu are not independent because of the energy-momentum conservation. However, if we define the top quark spin vector (in the top rest frame):

s=(0,𝐬^)s=(0,\hat{\mathbf{s}}) (62)

where the unit vector 𝐬^\hat{\mathbf{s}} is the direction of the top quark spin, then a term proportional to ϵμνρσptμpbνpe+ρsσ\epsilon_{\mu\nu\rho\sigma}p_{t}^{\mu}p_{b}^{\nu}p_{e^{+}}^{\rho}s^{\sigma} is TNT_{N}-odd. Thus it becomes possible to observe CP violation effects.

In the top quark decay process, there is only one operator that contributes at leading order:

OtW=(q¯σμντIt)ϕ~WμνIO_{tW}=(\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} (63)

This operator is CP-odd if its coefficient is imaginary.

To investigate the effect of OtWO_{tW}, we choose the coordinate axes in the top rest frame such that the positron momentum is in the zz-direction, and the bottom momentum is in the xzxz plane, with a positive xx component. The top quark spin is 𝐬^=(sinθcosϕ,sinθsinϕ,cosθ)\hat{\mathbf{s}}=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta). The decay rate is given by:

dΓdcosθdϕ=Vtb2g4(mt63mW4mt2+2mW6)12288π3mt3mWΓW(1+cosθ)ImCtWVtbg2mW(mt2mW2)320482π2Λ2ΓWmt3sinθsinϕ\frac{d\Gamma}{d\cos\theta d\phi}=\frac{V_{tb}^{2}g^{4}(m_{t}^{6}-3m_{W}^{4}m_{t}^{2}+2m_{W}^{6})}{12288\pi^{3}m_{t}^{3}m_{W}\Gamma_{W}}(1+\cos\theta)-\frac{{\rm Im}C_{tW}V_{tb}g^{2}m_{W}(m_{t}^{2}-m_{W}^{2})^{3}}{2048\sqrt{2}\pi^{2}\Lambda^{2}\Gamma_{W}m_{t}^{3}}\sin\theta\sin\phi (64)

The CP-odd contribution is proportional to sinϕ\sin\phi, so it doesn’t affect the total decay rate and the analyzing power αi\alpha_{i} defined in Eq. (17).

We now define the following triple-product and evaluate it in the top rest frame:

T=1mtϵμνρσptμpbνpe+ρsσ=(𝐩b×𝐩e+)𝐬^T=-\frac{1}{m_{t}}\epsilon_{\mu\nu\rho\sigma}p_{t}^{\mu}p_{b}^{\nu}p_{e^{+}}^{\rho}s^{\sigma}=(\mathbf{p}_{b}\times\mathbf{p}_{e^{+}})\cdot\hat{\mathbf{s}} (65)

which corresponds to the projection of the top spin onto the direction perpendicular to the plane formed by the bottom quark and the positron. This leads to an asymmetry:

AtWb\displaystyle A_{t\to Wb} =\displaystyle= N(T>0)N(T<0)N(T>0)+N(T<0)\displaystyle\frac{N(T>0)-N(T<0)}{N(T>0)+N(T<0)} (66)
=\displaystyle= ImCtW3πv2(mt2mW2)42Λ2Vtb(mt2+2mW2)\displaystyle{\rm Im}C_{tW}\frac{3\pi v^{2}(m_{t}^{2}-m_{W}^{2})}{4\sqrt{2}\Lambda^{2}V_{tb}(m_{t}^{2}+2m_{W}^{2})}

Such an asymmetry is a sign of CP violation. To observe such an asymmetry requires a source of polarized top quarks. This is addressed in the next section.

5.2 Spin Asymmetry in Single Top Production

In single top production, we can construct CP-odd observables in a similar way. In the ss- and tt-channel processes, OtWO_{tW} (with imaginary coefficient) is the only CP-odd operator that contributes. Consider the ss-channel process ud¯tb¯u\bar{d}\rightarrow t\bar{b}. We can define the following triple-product in the top rest frame

T=1mtϵμνρσptμpuνpd¯ρsσ=(𝐩u×𝐩d¯)𝐬^T=-\frac{1}{m_{t}}\epsilon_{\mu\nu\rho\sigma}p_{t}^{\mu}p_{u}^{\nu}p_{\bar{d}}^{\rho}s^{\sigma}=(\mathbf{p}_{u}\times\mathbf{p}_{\bar{d}})\cdot\mathbf{\hat{s}} (67)

In the SM, the top spin in its rest frame is in the direction of the d¯\bar{d} three-momentum [36], therefore T=0T=0. When the CP-odd operator is added, the direction of the top quark spin can be computed. It deviates from the production plane, with an angle (in the top rest frame)

θ=ImCtW22v2s(smt2)sinθWΛ2VtbmW(s+mt2+(smt2)cosθW)\theta={\rm Im}C_{tW}\frac{2\sqrt{2}v^{2}\sqrt{s}(s-m_{t}^{2})\sin\theta_{W}}{\Lambda^{2}V_{tb}m_{W}(s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta_{W})} (68)

where θW\theta_{W} is the angle between the momenta of the up quark and the top quark in the WW rest frame. The value of TT is then given by

T=2ImCtWv2s(smt2)2sin2θW2Λ2VtbmWmt[s+mt2+(smt2)cosθW]T=-\frac{\sqrt{2}{\rm Im}C_{tW}v^{2}s(s-m_{t}^{2})^{2}\sin^{2}\theta_{W}}{2\Lambda^{2}V_{tb}m_{W}m_{t}[s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta_{W}]} (69)

In practice, assume the top spin 𝐬^\mathbf{\hat{s}} is measured in the direction perpendicular to the production plane, i.e. 𝐬\mathbf{s}_{\perp} takes either 11 or 1-1, then this will lead to an asymmetry:

Aud¯tb¯\displaystyle A_{u\bar{d}\rightarrow t\bar{b}} =\displaystyle= N(𝐬=1)N(𝐬=1)N(𝐬=1)+N(𝐬=1)\displaystyle\frac{N(\mathbf{s}_{\perp}=1)-N(\mathbf{s}_{\perp}=-1)}{N(\mathbf{s}_{\perp}=1)+N(\mathbf{s}_{\perp}=-1)} (70)
=\displaystyle= ImCtW3πv2s(smt2)22Λ2VtbmW(2s+mt2)\displaystyle{\rm Im}C_{tW}\frac{3\pi v^{2}\sqrt{s}(s-m_{t}^{2})}{2\sqrt{2}\Lambda^{2}V_{tb}m_{W}(2s+m_{t}^{2})}

Similarly, for the tt-channel process butdbu\rightarrow td, we find

T=(𝐩b×𝐩u)𝐬^=ImCtWv2s(smt2)sin2θW22Λ2VtbmWmtT=(\mathbf{p}_{b}\times\mathbf{p}_{u})\cdot\hat{\mathbf{s}}=\frac{{\rm Im}C_{tW}v^{2}s(s-m_{t}^{2})\sin^{2}\theta_{W}}{2\sqrt{2}\Lambda^{2}V_{tb}m_{W}m_{t}} (71)

and for the process bd¯tu¯b\bar{d}\rightarrow t\bar{u},

T=(𝐩b×𝐩d¯)𝐬^=2ImCtWv2s(smt2)2sin2θW2Λ2VtbmWmt(s+mt2+(smt2)cosθW)T=(\mathbf{p}_{b}\times\mathbf{p}_{\bar{d}})\cdot\hat{\mathbf{s}}=\frac{\sqrt{2}{\rm Im}C_{tW}v^{2}s(s-m_{t}^{2})^{2}\sin^{2}\theta_{W}}{2\Lambda^{2}V_{tb}m_{W}m_{t}(s+m_{t}^{2}+(s-m_{t}^{2})\cos\theta_{W})} (72)

If the top spin 𝐬^\mathbf{\hat{s}} is measured in the direction perpendicular to the production plane, the corresponding asymmetries are

Abutd\displaystyle A_{bu\rightarrow td} =\displaystyle= N(𝐬=1)N(𝐬=1)N(𝐬=1)+N(𝐬=1)\displaystyle\frac{N(\mathbf{s}_{\perp}=1)-N(\mathbf{s}_{\perp}=-1)}{N(\mathbf{s}_{\perp}=1)+N(\mathbf{s}_{\perp}=-1)} (73)
=\displaystyle= ImCtW2πv2s((smt2+2mW2)smt2+mW22mW(smt2+mW2))Λ2Vtb(smt2)2\displaystyle-{\rm Im}C_{tW}\frac{\sqrt{2}\pi v^{2}\sqrt{s}((s-m_{t}^{2}+2m_{W}^{2})\sqrt{s-m_{t}^{2}+m_{W}^{2}}-2m_{W}(s-m_{t}^{2}+m_{W}^{2}))}{\Lambda^{2}V_{tb}(s-m_{t}^{2})^{2}}
Abd¯tu¯\displaystyle A_{b\bar{d}\rightarrow t\bar{u}} =\displaystyle= N(𝐬=1)N(𝐬=1)N(𝐬=1)+N(𝐬=1)\displaystyle\frac{N(\mathbf{s}_{\perp}=1)-N(\mathbf{s}_{\perp}=-1)}{N(\mathbf{s}_{\perp}=1)+N(\mathbf{s}_{\perp}=-1)} (74)
=\displaystyle= ImCtW2πv2s((smt2+4mW2)smt2+mW2(3s3mt2+4mW2)mW)Λ2Vtb((smt2)(s+2mW2)mW2(2s+2mW2mt2)lnsmt2+mW2mW2)\displaystyle-{\rm Im}C_{tW}\frac{\sqrt{2}\pi v^{2}\sqrt{s}((s-m_{t}^{2}+4m_{W}^{2})\sqrt{s-m_{t}^{2}+mW^{2}}-(3s-3m_{t}^{2}+4m_{W}^{2})m_{W})}{\Lambda^{2}V_{tb}((s-m_{t}^{2})(s+2m_{W}^{2})-m_{W}^{2}(2s+2m_{W}^{2}-m_{t}^{2})\ln\frac{s-m_{t}^{2}+m_{W}^{2}}{m_{W}^{2}})}

In WtWt associated production channel gbWtgb\rightarrow Wt, the chromo-electric dipole moment operator

OtG=(q¯σμνλAt)ϕ~GμνAO_{tG}=(\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu} (75)

will also contribute. We find

AgbWt=N(𝐬=1)N(𝐬=1)N(𝐬=1)+N(𝐬=1)\displaystyle\!\!\!\!\!A_{gb\rightarrow Wt}=\frac{N(\mathbf{s}_{\perp}=1)-N(\mathbf{s}_{\perp}=-1)}{N(\mathbf{s}_{\perp}=1)+N(\mathbf{s}_{\perp}=-1)} (76)
=\displaystyle= ImCtWv22smWλ2Λ2Vtb(λ((2mW23mt2)s7(mt2+2mW2)(mt2mW2))2(mt2+2mW2)(λ+4smt2+(mt2mW2)2)logy)\displaystyle\!\!\!\!\!{\rm Im}C_{tW}\frac{v^{2}\sqrt{2s}m_{W}\lambda}{2\Lambda^{2}V_{tb}\left(\sqrt{\lambda}((2m_{W}^{2}-3m_{t}^{2})s-7(m_{t}^{2}+2m_{W}^{2})(m_{t}^{2}-m_{W}^{2}))-2(m_{t}^{2}+2m_{W}^{2})(\lambda+4sm_{t}^{2}+(m_{t}^{2}-m_{W}^{2})^{2})\log y\right)}
ImCtG22vmt2s3/2gsΛ2(s+mt2mW2+λ)3y2\displaystyle\!\!\!\!\!-{\rm Im}C_{tG}\frac{2\sqrt{2}vm_{t}^{2}s^{3/2}}{g_{s}\Lambda^{2}(s+m_{t}^{2}-m_{W}^{2}+\sqrt{\lambda})^{3}y^{2}}
{[(7mt28mW2)λ+4smt2(11mt215mW2)4mt2(mt2mW2)2](λ+s+mt2mW2)\displaystyle\!\!\!\!\!\left\{\left[(7m_{t}^{2}-8m_{W}^{2})\lambda+4sm_{t}^{2}(11m_{t}^{2}-15m_{W}^{2})-4m_{t}^{2}(m_{t}^{2}-m_{W}^{2})^{2}\right]\left(\sqrt{\lambda}+s+m_{t}^{2}-m_{W}^{2}\right)\right.
8y[2(mt22mW2)(mt2mW2)+s(3mt24mW2)][λ+(s+mt2mW2)λ+2smt2]}\displaystyle\!\!\!\!\!\left.-8y\left[2(m_{t}^{2}-2m_{W}^{2})(m_{t}^{2}-m_{W}^{2})+s(3m_{t}^{2}-4m_{W}^{2})\right]\left[\lambda+(s+m_{t}^{2}-m_{W}^{2})\sqrt{\lambda}+2sm_{t}^{2}\right]\right\}
(λ(s(2mW23mt2)7(mt2+2mW2)(mt2mW2))2(mt2+2mW2)(λ+4smt2+(mt2mW2)2)logy)1\displaystyle\!\!\!\!\!\left(\sqrt{\lambda}\left(s(2m_{W}^{2}-3m_{t}^{2})-7(m_{t}^{2}+2m_{W}^{2})(m_{t}^{2}-m_{W}^{2})\right)-2(m_{t}^{2}+2m_{W}^{2})(\lambda+4sm_{t}^{2}+(m_{t}^{2}-m_{W}^{2})^{2})\log y\right)^{-1}

where

λ=s2+mt4+mW42smt22smW22mt2mW2\lambda=s^{2}+m_{t}^{4}+m_{W}^{4}-2sm_{t}^{2}-2sm_{W}^{2}-2m_{t}^{2}m_{W}^{2} (77)

and

y=s+mt2mW2λs+mt2mW2+λy=\sqrt{\frac{s+m_{t}^{2}-m_{W}^{2}-\sqrt{\lambda}}{s+m_{t}^{2}-m_{W}^{2}+\sqrt{\lambda}}} (78)

In practice there is no way to measure the top spin directly, so we need to use the momentum of the decay products as the spin analyzer. The positron has a spin analyzing power αe+=1\alpha_{e^{+}}=1. It can be shown that, if the top production process is followed by a semileptonic decay, one can replace the top spin in the triple-product TT by the positron three-momentum, and the corresponding asymmetry will be decreased by a factor of 1/2. For example, in the ss-channel process, consider

T=(𝐩u×𝐩d¯)𝐩e+T=(\mathbf{p}_{u}\times\mathbf{p}_{\bar{d}})\cdot\mathbf{p}_{e^{+}} (79)

We find

Aud¯tb¯\displaystyle A_{u\bar{d}\rightarrow t\bar{b}} =\displaystyle= N(T>0)N(T<0)N(T>0)+N(T<0)\displaystyle\frac{N(T>0)-N(T<0)}{N(T>0)+N(T<0)} (80)
=\displaystyle= ImCtW3πv2s(smt2)42Λ2VtbmW(2s+mt2)\displaystyle-{\rm Im}C_{tW}\frac{3\pi v^{2}\sqrt{s}(s-m_{t}^{2})}{4\sqrt{2}\Lambda^{2}V_{tb}m_{W}(2s+m_{t}^{2})}

which is exactly half of Eq. (70), as expected. Similarly, for tt-channel and gbtWgb\rightarrow tW channel, the results in Eqs. (73), (74) and (76) should also be reduced by a factor of 1/21/2. Note that although the CP-odd operator has effects on both production and decay processes, this asymmetry only reflects its effect on the production, because the decay process is only used as the spin analyzer, and the analyzing power αe+=1\alpha_{e^{+}}=1 is not affected by the CP-odd effect.

We can also reverse the procedure and construct a CP-odd observable that only reflects the CP-odd effect in the decay process. In single top production, the top spin in its rest frame is always in the direction of the dd or d¯\bar{d} quark [36]. Although this gets modified by the operator OtWO_{tW} in the production vertex as is shown in Eqs. (38), (39), the direction in which the top spin deviates is independent of the decay process, and thus the leading order effect gets averaged out as one considers the asymmetries. Therefore the dd or d¯\bar{d} three-momentum can be used to replace the top spin in Eq. (65):

T=(𝐩b×𝐩e+)𝐩d,d¯T=(\mathbf{p}_{b}\times\mathbf{p}_{e^{+}})\cdot\mathbf{p}_{d,\bar{d}} (81)

and the asymmetry becomes

AtWb\displaystyle A_{t\to Wb} =\displaystyle= N(T>0)N(T<0)N(T>0)+N(T<0)\displaystyle\frac{N(T>0)-N(T<0)}{N(T>0)+N(T<0)} (82)
=\displaystyle= ImCtW3πv2(mt2mW2)42Λ2Vtb(mt2+2mW2)\displaystyle{\rm Im}C_{tW}\frac{3\pi v^{2}(m_{t}^{2}-m_{W}^{2})}{4\sqrt{2}\Lambda^{2}V_{tb}(m_{t}^{2}+2m_{W}^{2})}

which agrees with Eq. (66).

5.3 CP-Violation in Top Pair Production

The CP-violation effects in top pair production and decay have been considered in the literature before. Refs. [54, 55] have considered the CP-violation effect in the multi-Higgs doublet extensions of the SM. The effect of the top quark “chromoelectric” dipole moment, which corresponds the operator OtGO_{tG} with an imaginary coefficient, can be found in Refs. [56, 57, 58], where [58] has also considered the other two operators, OG~O_{\tilde{G}} and OtWO_{tW}. An analysis of the lepton transverse energy asymmetry at the Tevatron can be found in Ref. [59]. A recent numerical study of the ATLAS sensitivity to the complex phase of the WtbWtb anomalous couplings can be found in Ref. [23]. The CP-violation effects of the top quark at linear colliders and photon colliders are discussed in Refs. [4, 60, 13].

In the top pair production processes, there are three operators that will contribute to CP violating observables:

OtG\displaystyle O_{tG} =\displaystyle= (q¯σμνλAt)ϕ~GμνA\displaystyle(\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu}
OG~\displaystyle O_{\tilde{G}} =\displaystyle= fABCG~μAνGνBρGρCμ\displaystyle f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}
OϕG~\displaystyle O_{\phi\tilde{G}} =\displaystyle= 12(ϕ+ϕ)G~μνAGAμν\displaystyle\frac{1}{2}(\phi^{+}\phi)\tilde{G}^{A}_{\mu\nu}G^{A\mu\nu} (83)

where G~μν=ϵμνρσGρσ\tilde{G}_{\mu\nu}=\epsilon_{\mu\nu\rho\sigma}G^{\rho\sigma}. The first one contributes to both ggtt¯gg\rightarrow t\bar{t} and qq¯tt¯q\bar{q}\rightarrow t\bar{t} channels, while the last two contribute only to the ggtt¯gg\rightarrow t\bar{t} channel.

A natural choice of the CP-odd observable is the triple-product considered in single top production. One could define similar quantities such as

T=(𝐩g×𝐩g)𝐬tT=(\mathbf{p}_{g}\times\mathbf{p}_{g})\cdot\mathbf{s}_{t} (84)

However this quantity doesn’t result in any asymmetry, because the three CP-odd operators are P-odd but C-even. For both ggtt¯gg\rightarrow t\bar{t} and qq¯tt¯q\bar{q}\rightarrow t\bar{t} channels, under PTNPT_{N} symmetry the initial and final state do not change, except that the spins of tt and t¯\bar{t} are flipped. This means that TT defined in Eq. (84) is PTNPT_{N}-odd and therefore the C-even operators cannot result in non-zero expectation values for TT. We will need the spin information of both tt and t¯\bar{t} to observe CP-violation effect.

Here we define our CP-odd observables in a different way than the usual CP-odd triple product in most of the literature. In the top quark semileptonic decay, the amplitude contains a factor which is the inner product of the top spin and the lepton spin [56], and therefore we can use the spin projection operator to project the top spin on to the direction of the lepton three-momentum and ignore the other two decay products, in order to reduce the problem to a 2 to 2 scattering problem.

Consider the quark channel process qq¯tt¯q\bar{q}\rightarrow t\bar{t} followed by the semileptonic decays of both tt and t¯\bar{t} quarks. We choose the coordinate axes such that in the CM frame, the top quark momentum is in the zz-direction, the qq and q¯\bar{q} momenta are in xzxz plane, and the angle between the qq and tt momenta is θ\theta. Let 𝐩^e+=(sinα1cosβ1,sinα1sinβ1,cosα1)\hat{\mathbf{p}}_{e^{+}}=(\sin\alpha_{1}\cos\beta_{1},\sin\alpha_{1}\sin\beta_{1},\cos\alpha_{1}) be the unit vector of the positron three-momentum in the top rest frame, 𝐩^e=(sinα2cosβ2,sinα2sinβ2,cosα2)\hat{\mathbf{p}}_{e}=(\sin\alpha_{2}\cos\beta_{2},\sin\alpha_{2}\sin\beta_{2},\cos\alpha_{2}) be the unit vector of the electron three-momentum in the anti-top rest frame, and 𝐯=(cosθ,0,1β2sinθ)\mathbf{v}=(\cos\theta,0,\sqrt{1-\beta^{2}}\sin\theta). Define the following triple-product:

T=(𝐩^e+×𝐩^e)𝐯T=(\hat{\mathbf{p}}_{e^{+}}\times\hat{\mathbf{p}}_{e})\cdot\mathbf{v} (85)

we find that the the contribution from OtGO_{tG} can be written as:

dσdcosθdcosα1dβ1dcosα2dβ2=ImCtGgs3vβ2sinθ233282π3Λ2sT\frac{d\sigma}{d\cos\theta d\cos\alpha_{1}d\beta_{1}d\cos\alpha_{2}d\beta_{2}}=-{\rm Im}C_{tG}\frac{g_{s}^{3}v\beta^{2}\sin\theta}{23328\sqrt{2}\pi^{3}\Lambda^{2}\sqrt{s}}T (86)

Clearly TT leads to an asymmetry:

Aqq¯tt¯\displaystyle A_{q\bar{q}\rightarrow t\bar{t}} =\displaystyle= N(T>0)N(T<0)N(T>0)+N(T<0)\displaystyle\frac{N(T>0)-N(T<0)}{N(T>0)+N(T<0)} (87)
=\displaystyle= ImCtGπsv1β222gsΛ2β(3β2)(K(β2β21)(12β2)E(β2β21))\displaystyle-{\rm Im}C_{tG}\frac{\pi\sqrt{s}v\sqrt{1-\beta^{2}}}{2\sqrt{2}g_{s}\Lambda^{2}\beta(3-\beta^{2})}\left(K\left(\frac{\beta^{2}}{\beta^{2}-1}\right)-(1-2\beta^{2})E\left(\frac{\beta^{2}}{\beta^{2}-1}\right)\right)

where

K(k2)=0π/2dθ1k2sin2θK(k^{2})=\int^{\pi/2}_{0}\frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} (88)

and

E(k2)=0π/21k2sin2θ𝑑θE(k^{2})=\int^{\pi/2}_{0}\sqrt{1-k^{2}\sin^{2}\theta}d\theta (89)

are the complete elliptic integral of the first and the second kind. The SM has no contribution to this asymmetry because TT is parity-odd while the strong interaction is parity-even.

Now consider the gluon channel ggtt¯gg\rightarrow t\bar{t}. We use the same coordinate system, i.e. top quark momentum is in the zz-direction and gluon momenta are in the xzxz plane. 𝐩^e+\hat{\mathbf{p}}_{e^{+}} (𝐩^e\hat{\mathbf{p}}_{e}) is the unit vector in the direction of the momentum of the positron (electron) in the top (anti-top) rest frame. Define two triple-products TzT_{z} and TxT_{x}:

Tz=(𝐩^e+×𝐩^e)𝐳^\displaystyle T_{z}=(\hat{\mathbf{p}}_{e^{+}}\times\hat{\mathbf{p}}_{e})\cdot\mathbf{\hat{z}} (90)
Tx=(𝐩^e+×𝐩^e)𝐱^\displaystyle T_{x}=(\hat{\mathbf{p}}_{e^{+}}\times\hat{\mathbf{p}}_{e})\cdot\mathbf{\hat{x}} (91)

The cross-section due to the CP-odd operators is

dσdcosθdcosα1dβ1dcosα2dβ2=ImCtG(ftGzTz+ftGxTx)+CG~(fG~zTz+fG~xTx)+CϕG~fϕG~zTz\frac{d\sigma}{d\cos\theta d\cos\alpha_{1}d\beta_{1}d\cos\alpha_{2}d\beta_{2}}={\rm Im}C_{tG}(f_{tG}^{z}T_{z}+f_{tG}^{x}T_{x})+C_{\tilde{G}}(f_{\tilde{G}}^{z}T_{z}+f_{\tilde{G}}^{x}T_{x})+C_{\phi\tilde{G}}f_{\phi\tilde{G}}^{z}T_{z} (92)

where

ftGz\displaystyle f_{tG}^{z} =\displaystyle= gs3vβ22488322π3Λ2s(1β2cos2θ)21β2\displaystyle-\frac{g_{s}^{3}v\beta^{2}}{248832\sqrt{2}\pi^{3}\Lambda^{2}\sqrt{s}(1-\beta^{2}\cos^{2}\theta)^{2}}\sqrt{1-\beta^{2}} (93)
(9β4cos6θ+(7β218β4)cos4θ+(18β425β2+16)cos2θ+7(2β23))\displaystyle\left(9\beta^{4}\cos^{6}\theta+(7\beta^{2}-18\beta^{4})\cos^{4}\theta+(18\beta^{4}-25\beta^{2}+16)\cos^{2}\theta+7(2\beta^{2}-3)\right)
ftGx\displaystyle f_{tG}^{x} =\displaystyle= gs3vβ22488322π3Λ2s(1β2cos2θ)2\displaystyle\frac{g_{s}^{3}v\beta^{2}}{248832\sqrt{2}\pi^{3}\Lambda^{2}\sqrt{s}(1-\beta^{2}\cos^{2}\theta)^{2}} (94)
(9β4cos4θ+(7β29β4)cos2θ(23β216))sinθcosθ\displaystyle\left(9\beta^{4}\cos^{4}\theta+(7\beta^{2}-9\beta^{4})\cos^{2}\theta-(23\beta^{2}-16)\right)\sin\theta\cos\theta
fG~z\displaystyle f_{\tilde{G}}^{z} =\displaystyle= 3gs3β2(1β2)cos2θ165888π3Λ2(1β2cos2θ)\displaystyle\frac{3g_{s}^{3}\beta^{2}(1-\beta^{2})\cos^{2}\theta}{165888\pi^{3}\Lambda^{2}(1-\beta^{2}\cos^{2}\theta)} (95)
fG~x\displaystyle f_{\tilde{G}}^{x} =\displaystyle= 3gs3β21β2sinθcosθ165888π3Λ2(1β2cos2θ)\displaystyle-\frac{3g_{s}^{3}\beta^{2}\sqrt{1-\beta^{2}}\sin\theta\cos\theta}{165888\pi^{3}\Lambda^{2}(1-\beta^{2}\cos^{2}\theta)} (96)
fϕG~z\displaystyle f_{\phi\tilde{G}}^{z} =\displaystyle= gs2sβ2(1β2)165888π3Λ2(smh2)(1β2cos2θ)\displaystyle-\frac{g_{s}^{2}s\beta^{2}(1-\beta^{2})}{165888\pi^{3}\Lambda^{2}(s-m_{h}^{2})(1-\beta^{2}\cos^{2}\theta)} (97)

In general, any quantity that has the form T(𝐚^)=(𝐩^e+×𝐩^e)𝐚^T(\mathbf{\hat{a}})=(\hat{\mathbf{p}}_{e^{+}}\times\hat{\mathbf{p}}_{e})\cdot\mathbf{\mathbf{\hat{a}}} may lead to an asymmetry. Using the following property of T(𝐚^)T(\mathbf{\hat{a}}):

dΩe+dΩeT(𝐚^)sign(T(𝐛^))=2π3(𝐚^𝐛^)\int\mbox{d}\Omega_{e^{+}}\mbox{d}\Omega_{e}T(\mathbf{\hat{a}})\mbox{sign}\left(T(\mathbf{\hat{b}})\right)=2\pi^{3}\left(\mathbf{\hat{a}}\cdot\mathbf{\hat{b}}\right) (98)

we find the asymmetry of T(𝐚^)T(\mathbf{\hat{a}}) is

dσ(T(𝐚^)>0)dcosθdσ(T(𝐚^)<0)dcosθ\displaystyle\frac{d\sigma(T(\mathbf{\hat{a}})>0)}{d\cos\theta}-\frac{d\sigma(T(\mathbf{\hat{a}})<0)}{d\cos\theta} (99)
=\displaystyle= 2π3[ImCtG(ftGzaz+ftGxax)+CG~(fG~zaz+fG~xax)+CϕG~fϕG~zaz]\displaystyle 2\pi^{3}\left[{\rm Im}C_{tG}(f_{tG}^{z}a_{z}+f_{tG}^{x}a_{x})+C_{\tilde{G}}(f_{\tilde{G}}^{z}a_{z}+f_{\tilde{G}}^{x}a_{x})+C_{\phi\tilde{G}}f_{\phi\tilde{G}}^{z}a_{z}\right]

6 Summary

We have considered the effects of dimension-six operators in top quark physics. The analysis is linear in the coefficients of these operators, therefore the deviation from the SM is the interference terms between the SM and the new operators. In general, integrating out heavy particles leads not to just one but to several operators whose coefficients are related. Therefore it is necessary to consider all dimension-six operators simultaneously. Fortunately, although the total number of these operators is large, we found that there are only 15 operators that can have significant interference terms. In addition, for each decay or production process, only a few of them will contribute. This is one of the advantages of the effective field theory approach: although we don’t have any knowledge of the new physics beyond the SM, by making use of power counting and symmetries, the number of parameters required to describe the new physics can be largely reduced.

We have obtained the deviation from the SM caused by these operators. This allows us to constrain the new physics in a systematic way. For example, we can measure (or put bounds on) the operator OtWO_{tW} by measuring the WW boson helicity fraction FL,R,0F_{L,R,0} and the analyzing power αb,ν\alpha_{b,\nu}, and then use the ss- and tt-channel single top production to put bounds on Oϕq(3)O_{\phi q}^{(3)} and Oqq(1,3)O_{qq}^{(1,3)}. The operator OtGO_{tG} can be constrained from the WtWt associated production and the gluon channel tt¯t\bar{t} production, while the latter process also constrains OGO_{G} and OϕGO_{\phi G}. Finally, the quark channel tt¯t\bar{t} production can be used to put bounds on the four linear combinations of the four-quark operators.

The CP-violation effects in top quark physics are of particular interest. We have calculated the spin asymmetries caused by the 4 CP-odd operators. The observation of these asymmetries can be evidence of physics beyond the SM. In the single top production, these are the spin asymmetries in the direction perpendicular to the production plane. One could use the top decay process as a spin analyzer to study the asymmetry in the top production process, or vice versa. In tt¯t\bar{t} production, we showed that both the top quark spin and anti-top quark spin are required to construct CP-odd observables.

Acknowledgments

We are grateful for correspondence with Tim Tait and we thank Céline Degrande for checking many of our results. This work was supported in part by the U. S. Department of Energy under contract No. DE-FG02-91ER40677.

References

  • [1] S. Weinberg, Phys. Rev. Lett.  43, 1566 (1979).
  • [2] C. N. Leung, S. T. Love and S. Rao, Z. Phys.  C 31, 433 (1986).
  • [3] W. Buchmuller and D. Wyler, Nucl. Phys.  B 268, 621 (1986).
  • [4] G. A. Ladinsky and C. P. Yuan, Phys. Rev.  D 49, 4415 (1994) [arXiv:hep-ph/9211272].
  • [5] L. Brzezinski, B. Grzadkowski and Z. Hioki, Int. J. Mod. Phys.  A 14, 1261 (1999) [arXiv:hep-ph/9710358]; B. Grzadkowski and Z. Hioki, Phys. Rev.  D 61, 014013 (1999) [arXiv:hep-ph/9805318]; Phys. Lett.  B 476, 87 (2000) [arXiv:hep-ph/9911505].
  • [6] B. Grzadkowski, Acta Phys. Polon.  B 27, 921 (1996) [arXiv:hep-ph/9511279]; B. Grzadkowski, Z. Hioki and M. Szafranski, Phys. Rev.  D 58, 035002 (1998) [arXiv:hep-ph/9712357].
  • [7] B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Phys. Lett.  B 593, 189 (2004) [arXiv:hep-ph/0403174]; JHEP 0511, 029 (2005) [arXiv:hep-ph/0508183].
  • [8] T. M. P. Tait and C. P. Yuan, Phys. Rev.  D 63, 014018 (2000) [arXiv:hep-ph/0007298].
  • [9] R. D. Peccei and X. Zhang, Nucl. Phys.  B 337, 269 (1990).
  • [10] R. D. Peccei, S. Peris and X. Zhang, Nucl. Phys.  B 349, 305 (1991).
  • [11] F. Larios and C. P. Yuan, Phys. Rev.  D 55, 7218 (1997) [arXiv:hep-ph/9606397].
  • [12] E. Malkawi and C. P. Yuan, Phys. Rev.  D 50, 4462 (1994) [arXiv:hep-ph/9405322].
  • [13] B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Nucl. Phys.  B 689, 108 (2004) [arXiv:hep-ph/0310159].
  • [14] J. A. Aguilar-Saavedra, Nucl. Phys.  B 812, 181 (2009) [arXiv:0811.3842 [hep-ph]].
  • [15] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, arXiv:1008.4884 [hep-ph].
  • [16] D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, Phys. Rept.  347, 1 (2001) [arXiv:hep-ph/0006032].
  • [17] C. Arzt, M. B. Einhorn and J. Wudka, Nucl. Phys.  B 433, 41 (1995) [arXiv:hep-ph/9405214].
  • [18] C. Amsler et al. [Particle Data Group], Phys. Lett.  B 667, 1 (2008).
  • [19] G. L. Kane, G. A. Ladinsky and C. P. Yuan, Phys. Rev.  D 45, 124 (1992).
  • [20] J. Gomis and S. Weinberg, Nucl. Phys.  B 469, 473 (1996) [arXiv:hep-th/9510087].
  • [21] C. Zhang and S. Willenbrock, to appear in the Proceedings of the International Workshop on Top Quark Physics (top2010), Bruges, Belgium, May 31–June 4, 2010, arXiv:1008.3155 [hep-ph].
  • [22] J. A. Aguilar-Saavedra, J. Carvalho, N. F. Castro, F. Veloso and A. Onofre, Eur. Phys. J.  C 50, 519 (2007) [arXiv:hep-ph/0605190].
  • [23] J. A. Aguilar-Saavedra, J. Carvalho, N. F. Castro, A. Onofre and F. Veloso, Eur. Phys. J.  C 53, 689 (2008) [arXiv:0705.3041 [hep-ph]].
  • [24] M. Jezabek and J. H. Kuhn, Phys. Lett.  B 329, 317 (1994) [arXiv:hep-ph/9403366].
  • [25] M. Jezabek, Nucl. Phys. Proc. Suppl.  37B, 197 (1994) [arXiv:hep-ph/9406411].
  • [26] B. Grzadkowski and Z. Hioki, Phys. Lett.  B 557, 55 (2003) [arXiv:hep-ph/0208079].
  • [27] S. Cortese and R. Petronzio, Phys. Lett.  B 253, 494 (1991).
  • [28] S. S. D. Willenbrock and D. A. Dicus, Phys. Rev.  D 34, 155 (1986).
  • [29] C. P. Yuan, Phys. Rev.  D 41, 42 (1990).
  • [30] R. K. Ellis and S. J. Parke, Phys. Rev.  D 46, 3785 (1992).
  • [31] A. Heinson, A. S. Belyaev and E. E. Boos, Phys. Rev.  D 56, 3114 (1997) [arXiv:hep-ph/9612424].
  • [32] Q. H. Cao, J. Wudka and C. P. Yuan, Phys. Lett.  B 658, 50 (2007) [arXiv:0704.2809 [hep-ph]].
  • [33] E. Boos, L. Dudko and T. Ohl, Eur. Phys. J.  C 11, 473 (1999) [arXiv:hep-ph/9903215].
  • [34] C. R. Chen, F. Larios and C. P. Yuan, Phys. Lett.  B 631, 126 (2005) [AIP Conf. Proc.  792, 591 (2005)] [arXiv:hep-ph/0503040].
  • [35] J. A. Aguilar-Saavedra, Nucl. Phys.  B 804, 160 (2008) [arXiv:0803.3810 [hep-ph]].
  • [36] G. Mahlon and S. J. Parke, Phys. Rev.  D 55, 7249 (1997) [arXiv:hep-ph/9611367].
  • [37] P. L. Cho and E. H. Simmons, Phys. Rev.  D 51, 2360 (1995) [arXiv:hep-ph/9408206].
  • [38] K. Kumar, T. M. P. Tait and R. Vega-Morales, JHEP 0905, 022 (2009) [arXiv:0901.3808 [hep-ph]].
  • [39] B. Lillie, J. Shu and T. M. P. Tait, JHEP 0804, 087 (2008) [arXiv:0712.3057 [hep-ph]].
  • [40] A. V. Manohar and M. B. Wise, Phys. Lett.  B 636, 107 (2006) [arXiv:hep-ph/0601212].
  • [41] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett.  101, 202001 (2008) [arXiv:0806.2472 [hep-ex]].
  • [42] G. Stricker et al. , CDF note 9724 (2009).
  • [43] The CDF Collaboration, CDF note 10224 (2010).
  • [44] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett.  100, 142002 (2008) [arXiv:0712.0851 [hep-ex]].
  • [45] The D0 Collaboration, D0 Note 6062-CONF (2010)
  • [46] J. H. Kuhn and G. Rodrigo, Phys. Rev. Lett.  81, 49 (1998) [arXiv:hep-ph/9802268].
  • [47] J. H. Kuhn and G. Rodrigo, Phys. Rev.  D 59, 054017 (1999) [arXiv:hep-ph/9807420].
  • [48] M. T. Bowen, S. D. Ellis and D. Rainwater, Phys. Rev.  D 73, 014008 (2006) [arXiv:hep-ph/0509267].
  • [49] L. G. Almeida, G. F. Sterman and W. Vogelsang, Phys. Rev.  D 78, 014008 (2008) [arXiv:0805.1885 [hep-ph]].
  • [50] T. Aaltonen et al. , CDF note 9448 (2009).
  • [51] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev.  D 2, 1285 (1970).
  • [52] G. Eilam, J. L. Hewett and A. Soni, Phys. Rev.  D 44, 1473 (1991) [Erratum-ibid.  D 59, 039901 (1999)].
  • [53] B. Grzadkowski, J. F. Gunion and P. Krawczyk, Phys. Lett.  B 268, 106 (1991).
  • [54] W. Bernreuther and A. Brandenburg, Phys. Rev.  D 49, 4481 (1994) [arXiv:hep-ph/9312210].
  • [55] G. Valencia and Y. Wang, Phys. Rev.  D 73, 053009 (2006) [arXiv:hep-ph/0512127].
  • [56] D. Atwood, A. Aeppli and A. Soni, Phys. Rev. Lett.  69, 2754 (1992).
  • [57] O. Antipin and G. Valencia, Phys. Rev.  D 79, 013013 (2009) [arXiv:0807.1295 [hep-ph]].
  • [58] A. Brandenburg and J. P. Ma, Phys. Lett.  B 298, 211 (1993).
  • [59] B. Grzadkowski, B. Lampe and K. J. Abraham, Phys. Lett.  B 415, 193 (1997) [arXiv:hep-ph/9706489].
  • [60] D. Chang, W. Y. Keung and I. Phillips, Nucl. Phys.  B 408, 286 (1993) [Erratum-ibid.  B 429, 255 (1994)] [arXiv:hep-ph/9301259]; B. Grzadkowski and Z. Hioki, Nucl. Phys.  B 484, 17 (1997) [arXiv:hep-ph/9604301]; Phys. Lett.  B 391, 172 (1997) [arXiv:hep-ph/9608306]; J. M. Yang and B. L. Young, Phys. Rev.  D 56, 5907 (1997) [arXiv:hep-ph/9703463]; M. S. Baek, S. Y. Choi and C. S. Kim, Phys. Rev.  D 56, 6835 (1997) [arXiv:hep-ph/9704312]; A. Bartl, E. Christova, T. Gajdosik and W. Majerotto, Phys. Rev.  D 58, 074007 (1998) [arXiv:hep-ph/9802352].