This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Effects of correlated magnetic noises from shared control lines on two-qubit gate

Yinan Fang1,2 ynfang@ynu.edu.cn 1School of Physics and Astronomy and Yunnan Key Laboratory for Quantum Information, Yunnan University, Kunming 650500, China 
2Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
Abstract

Recent proposals for building scalable quantum computational devices in semi-conductor based spin qubits introduce shared control lines in order to reduce the overhead of qubits controls. In principle, noises from the shared controls could introduce correlated errors to multi-qubit gates, and identifying them will be helpful for achieving higher gate fidelity in those setups. Here, we introduce a method based on the randomized benchmarking protocols that is capable of distinguishing among different correlated noises in a particular two-qubit model motivated by the crossbar architecture.

I Introduction

Fault-tolerant quantum computation requires synergy over a large number of physical qubits: Depending on the error rate, a logical qubit based on the surface code can take thousands of physical qubits to encode.(Fowler et al., 2012; Preskill, 2018) This motivates the construction of large scale quantum computational devices. Despite that single-qubit and two-qubit gates with the gate fidelity above the fault-tolerant threshold had been achieved across various platforms,(Ballance et al., 2016; Noiri et al., 2022; Xue et al., 2022) upto now only 72 qubits were realized experimentally based on the superconducting circuit,(Google Quantum, 2023) and it was not until recently that the logical qubit could be demonstrated.(Zhao et al., 2022; Krinner et al., 2022)

One of the difficulties involved in building a desired large scale device capable of implementing error correction code is to maintain uniformity in the characteristic parameters across all the underlying qubits. (Laucht et al., 2021; Meyer et al., 2023) In this regard, semi-conductor based spin qubits stands out with a unique advantage of being compatible with the matured industrial fabrication technologies. (Veldhorst et al., 2017) Following this approach, several proposals for building scalable devices had been put-forward.(Hill Charles et al., 2015; Veldhorst et al., 2017; Li et al., 2018; Gonzalez-Zalba et al., 2021) Later in experiments, a two-dimensional crossbar array containing 36×3636\times 36 gates were reported,(Bavdaz et al., 2022) while recently a two-dimensional array of 16 qubits with the inter-dot coupling above 10GHz was experimentally realized in terms of the SiGe based hole-spin quantum dots. (Borsoi et al., 2023)

Unlike the traditional few-qubit setups for the proof-of-principle demonstrations where each qubit could be individually addressable, those scalable proposals usually features common control lines that borrowed from the CMOS or crossbar architectures.(Veldhorst et al., 2017; Li et al., 2018) On one hand they reduce the complexity of control layers and enable the integration of plenty of qubits, on the other hand, however, the noises imposed on such shared control lines may affect several qubits at the same time, thus result in correlated errors among the qubits. Although cryo-CMOS techniques have been developed for the purpose of qubit operation,(Patra et al., 2018; Charbon et al., 2021) since those noises differ from the influences of the local environment that experienced by individual qubit, it would be still useful to distinguish between those noises in order to further reduce the control errors that associated with the multi-qubit operations.

In this work, we explore several possible sources of correlated magnetic noises in a simplified two-qubit model motivated by the crossbar proposal for scalable quantum computation. (Li et al., 2018) To distinguish among those noises, we apply a method based on the interleaved randomized benchmarking (IRB). (Magesan et al., 2012a) In additional to the standard random circuit in the IRB, we introduce an additional measurement induced decoherence process to selective address certain components of the noisy quantum channel. Although the investigation is based on a specific model, the method should be generally applicable also to other scenarios.

This paper is organized as follows: In Sec. II, we introduce the model and derive the magnetic field at the qubit location. In Sec. III, different possible magnetic noises are discussed, with the corresponding perturbative Hamiltonian given explicitly. In Sec. IV, the method based on the IRB is introduced and applied to distinguish between two particular correlated magnetic noises. Further discussions are provided in Sec. V, and we draw the conclusion in Sec. VI. Technique details can be found in the Appendices.

II Magnetic field profile

Following several papers about the proposal of crossbar architecture for salable quantum computation, (Hill Charles et al., 2015; Veldhorst et al., 2017; Li et al., 2018) here we consider the following simplified model that schematically shown in FIG. 1(a). The system features an array of equally spacing parallel wires carrying currents in alternating directions. For an estimation of the magnetic field generated by the nn-th wire at the qubit position, we use an effective media description such that (Jackson, 1999)

𝐛n=μeffI2πrn2𝐞n×𝐫n,\mathbf{b}_{n}=\frac{\mu_{\mathrm{eff}}I}{2\pi r_{n}^{2}}\mathbf{e}_{n}\times\mathbf{r}_{n}, (1)

where μeff\mu_{\mathrm{eff}} is the effective

Refer to caption
Figure 1: (a) Schematic plot of a spin qubit subjecting to magnetic field that generated from parallel wires carrying alternating d.c. current. (b) The total magnetic field as a function of the qubit location. Solid curves are calculated from Eq. (3) with a cut-off 100100 for the nn summation, the dashed curves are obtained from the two nearest wires [highlighted by the dashed orange box in (a)] with a calibration coefficient, cf. Eq. (9). In above calculation we have assumed z0=Lz_{0}=L for clarity, while for z0Lz_{0}\ll L the agreement between the solid and dashed curves will be improved.

permeability of the media, II is the current through the nn-th wire with the current direction indicated by the unit vector 𝐞n\mathbf{e}_{n}. 𝐫n\mathbf{r}_{n} is the position vector in the xx-zz plane jointing from the wire to the spin qubit. The total magnetic field experienced by the qubit then amounts to the sum over the individual contributions from each wire

𝐁=n𝐛n,\mathbf{B}=\sum_{n}\mathbf{b}_{n}, (2)

Specifically, for a qubit located at (x,0,0)(x,0,0) under the configuration of FIG. 1(a), the total magnetic field is given by

𝐁=Bx𝐞x+Bz𝐞z,\mathbf{B}=B_{x}\mathbf{e}_{x}+B_{z}\mathbf{e}_{z}, (3)
Bx=B0n=(z02rn,12z02rn,22),B_{x}=B_{0}\sum_{n=-\infty}^{\infty}\left(\frac{z_{0}^{2}}{r_{n,1}^{2}}-\frac{z_{0}^{2}}{r_{n,2}^{2}}\right), (4)

and

Bz=B0n=(z0xn,1rn,12z0xn,2rn,22).B_{z}=B_{0}\sum_{n=-\infty}^{\infty}\left(\frac{z_{0}x_{n,1}}{r_{n,1}^{2}}-\frac{z_{0}x_{n,2}}{r_{n,2}^{2}}\right). (5)

Here, B0=μeffI/(2πz0)B_{0}=\mu_{\mathrm{eff}}I/(2\pi z_{0}) is the magnetic field generated by a single wire provided that the qubit is located right below the wire with the distance z0z_{0}. rn,j=xn,j2+z02r_{n,j}=\sqrt{x_{n,j}^{2}+z_{0}^{2}} and xn,jx_{n,j} with j=1,2j=1,2 are defined respectively as follows:

xn,1=x4Ln, xn,2=x2L(2n+1).x_{n,1}=x-4Ln,\text{ }x_{n,2}=x-2L(2n+1). (6)

The magnetic field profile calculated according to Eq. (3) is shown in FIG. 1(b). In particular, the magnetic field in the zz direction is insensitive to the qubit position near the center between adjacent wires, i.e., odd multiples of LL. Therefore, the frequency of the qubit that operated at such locations will be insensitive to the qubit’s displacements along xx to the first order. (Li et al., 2018) The exact sum in Eq. (3) can be carried out, giving the magnetic field at those ideal operation points xk(2k+1)Lx_{k}\equiv(2k+1)L as follows

𝐁(xk)=(1)kB0ζsechζ𝐞z,\mathbf{B}(x_{k})=(-1)^{k}B_{0}\zeta\mathrm{sech}\zeta\mathbf{e}_{z}, (7)

where the dimensionless quantity ζ=πz0/(2L)\zeta=\pi z_{0}/(2L). Similarly, one can also obtain the magnetic field at x=2kLx=2kL as

𝐁|x=2kL=(1)kB0ζcschζ𝐞x,\mathbf{B}|_{x=2kL}=(-1)^{k}B_{0}\zeta\mathrm{csch}\zeta\mathbf{e}_{x}, (8)

which provides the BxB_{x} noise insensitive operation points for the qubit.

If the qubit is located away from xkx_{k}, provided that z0Lz_{0}\ll L and |xxk|L|x-x_{k}|\ll L then simplification for the magnetic field at the qubit location can be still made. This is achieved by restricting the sum over nn in Eq. (3) to the nearest two wires [cf. the orange dashed box in FIG. 1(a)]. To ensure the agreement between the overall magnitude for BB at the ideal operation point x=xkx=x_{k}, one could introduce a calibration coefficient which we take as λk=B(xk)/[bk,1(xk)+bk,2(xk)]\lambda_{k}=B(x_{k})/[b_{k,1}(x_{k})+b_{k,2}(x_{k})], such that

𝐁(x)λkj=1,2𝐛k,j(x), for xxk.\mathbf{B}(x)\simeq\lambda_{k}\sum_{j=1,2}\mathbf{b}_{k,j}(x),\text{ for }x\simeq x_{k}. (9)

Here, 𝐛n,j\mathbf{b}_{n,j} is obtained from Eq. (1) by replacing 𝐫n\mathbf{r}_{n} and 𝐞n\mathbf{e}_{n} with 𝐫n,j\mathbf{r}_{n,j} and 𝐞n,j(1)j1𝐞y\mathbf{e}_{n,j}\equiv(-1)^{j-1}\mathbf{e}_{y}, respectively. In FIG. 1(b), we also show the magnetic field for k=0k=0 calculated from this approximation.

III Model and the source of correlated magnetic noises

In order to implement two-qubit gates in a crossbar architecture, spins are usually shuttled close to each other such that their mutual exchange interaction can induce entanglement among the spin qubits. (Li et al., 2018) In this sense, current fluctuations in a shared control wire, or a shift of the qubits positions due to mutual charge interaction, acts as a source of noise in the two-qubit operation but in a correlated way. Our goals in this section is to provide a description of such correlated noise at the Hamiltonian level.

The standard model for two-spin

Refer to caption
Figure 2: Two examples of correlated magnetic noise. (a) Change of the current at the central wire (highlighted in red) from II to I+δII+\delta I causes related magnetic fields perturbations at the location of qubit 1 and qubit 2. While the independent change of the currents at the two side wires by δI1\delta I_{1} and δI2\delta I_{2} induces uncorrelated magnetic field perturbations. (b) Mutual charge repulsion shifts the qubits locations by δx\delta x in a correlated way, thus the magnetic fields at the new locations differs from the original values that experienced by the qubits.

qubits operating in the (1,1)(1,1) charge configuration is well know, (Burkard, 1999; Meunier et al., 2011) which can be described by the following Hamiltonian upto an overall constant

H^=J𝐒^1𝐒^2+12[ω(S^1z+S^2z)+δω(S^1zS^2z)],\hat{H}=J\hat{\mathbf{S}}_{1}\cdot\hat{\mathbf{S}}_{2}+\frac{1}{2}\left[\omega\left(\hat{S}_{1}^{z}+\hat{S}_{2}^{z}\right)+\delta\omega\left(\hat{S}_{1}^{z}-\hat{S}_{2}^{z}\right)\right], (10)

where JJ is the exchange interaction which depends on the tunneling coupling as well as the detuning between the two spin qubits, ω=ω1+ω2\omega=\omega_{1}+\omega_{2} and δω=ω1ω2+δωcor\delta\omega=\omega_{1}-\omega_{2}+\delta\omega_{\mathrm{cor}} are the sum as well as the difference of local Zeeman splittings ω1\omega_{1} and ω2\omega_{2} at the two qubits locations, while δωcor\delta\omega_{\mathrm{cor}} is a correction due to the mixture of different charge states. (Fang, 2023)

The local Zeeman splittings ω1\omega_{1} and ω2\omega_{2} could be affected in a correlated way, e.g., when the noisy source acts on the both qubits. To be more specific, let us consider the configurations shown in FIG. 2 where the two spin qubits are shuttled next to each other in a row along the xx-axis, typical for implementing controlled phase operation or spin-to-charge conversion. (Li et al., 2018) As analyzed in the previous section, we shall focus on the magnetic fields generated only by the nearest wires [cf. FIG. 1(b)]. Thus the Zeeman splittings for the two qubits in the absence of noises are

ω1=2gμBB0z02L2+z02, ω2=2gμBB0z02L2+z02.\omega_{1}=-2\frac{g\mu_{\mathrm{B}}B_{0}}{\hbar}\frac{z_{0}^{2}}{L^{2}+z_{0}^{2}},\text{ }\omega_{2}=2\frac{g\mu_{\mathrm{B}}B_{0}}{\hbar}\frac{z_{0}^{2}}{L^{2}+z_{0}^{2}}. (11)

Here, gg is the g-factor for the spin qubit, μB\mu_{\mathrm{B}} is the Bohr magneton, and the angle θ=arctanz0/L\theta=\arctan z_{0}/L. In general, the perturbation Hamiltonian through the mechanisms shown in FIG. 2 could be written into the following form,

δH^=δωx(S^1x+S^2x)δωz(S^1zS^2z),\delta\hat{H}=\delta\omega_{x}\left(\hat{S}_{1}^{x}+\hat{S}_{2}^{x}\right)-\delta\omega_{z}\left(\hat{S}_{1}^{z}-\hat{S}_{2}^{z}\right), (12)

while the specific values δωx\delta\omega_{x} and δωz\delta\omega_{z} depend on the details of the noisy scenarios. For the case of FIG. 2(a) with a perturbation δI\delta I on the central wire, they are given by

δωx=gμBδB0z02L2+z02, δωz=gμBδB0z0LL2+z02,\delta\omega_{x}=\frac{g\mu_{\mathrm{B}}\delta B_{0}}{\hbar}\frac{z_{0}^{2}}{L^{2}+z_{0}^{2}},\text{ }\delta\omega_{z}=\frac{g\mu_{\mathrm{B}}\delta B_{0}}{\hbar}\frac{z_{0}L}{L^{2}+z_{0}^{2}}, (13)

and δB0=μeffδI/(2πz0)\delta B_{0}=\mu_{\mathrm{eff}}\delta I/(2\pi z_{0}). Instead, for the position shifts scheme as shown in FIG. 2(b), the values are

δωx=gμBB0[z02(L+δx)2+z02z02(Lδx)2+z02],\delta\omega_{x}=\frac{g\mu_{\mathrm{B}}B_{0}}{\hbar}\left[\frac{z_{0}^{2}}{(L+\delta x)^{2}+z_{0}^{2}}-\frac{z_{0}^{2}}{(L-\delta x)^{2}+z_{0}^{2}}\right], (14)
δωz=gμBB0[z0(L+δx)(L+δx)2+z02+z0(Lδx)(Lδx)2+z02].\delta\omega_{z}=\frac{g\mu_{\mathrm{B}}B_{0}}{\hbar}\left[\frac{z_{0}(L+\delta x)}{(L+\delta x)^{2}+z_{0}^{2}}+\frac{z_{0}(L-\delta x)}{(L-\delta x)^{2}+z_{0}^{2}}\right]. (15)

For comparison, if the current fluctuations δI1\delta I_{1} and δI2\delta I_{2} on the two side wires colored in black in FIG. 2(a) act independently from each other, the resulting perturbation Hamiltonian would be

δH^=δωx,1S^1xδωx,2S^2xδωz,1S^1z+δωz,2S^2z,\delta\hat{H}=-\delta\omega_{x,1}\hat{S}_{1}^{x}-\delta\omega_{x,2}\hat{S}_{2}^{x}-\delta\omega_{z,1}\hat{S}_{1}^{z}+\delta\omega_{z,2}\hat{S}_{2}^{z}, (16)

where

δωα,i=δωα|δB0=δBi,\delta\omega_{\alpha,i}=\delta\omega_{\alpha}|_{\delta B_{0}=\delta B_{i}}, (17)

for i=1,2i=1,2 and α=x,z\alpha=x,z, while δBi=μeffδIi/(2πz0)\delta B_{i}=\mu_{\mathrm{eff}}\delta I_{i}/(2\pi z_{0}). Because here the noise is not due to a correlated source, thus the perturbation Eq. (16) is formally different from Eq. (12), expect for special situations, e.g. δI1=δI2\delta I_{1}=\delta I_{2} or δI1=δI2\delta I_{1}=-\delta I_{2}, where the perturbation Eq. (16) coincide with the form of the correlated perturbation.

IV Reveal the effects of correlated noises by randomized benchmarking

In the presence of noises, the actual implementation of a quantum gate deviates from the ideal one and this usually degrades the gate fidelity. However, in the context of highly integrated device implementation with shared controls where the noisy source could affects several qubits at the same time, it would be more useful to reveal the structure, e.g., the correlation, of the underlying noises instead of knowing the gate fidelity alone.

In this section, we investigate the correlated noisy effects of the model configuration in FIG. 2(a) by the interleaved randomized benchmarking (IRB). (Magesan et al., 2012a) Our scheme is illustrated in FIG. 3, where

Refer to caption
Figure 3: (a) Gate sequence in the interleaved banchmakring protocol (IRB), where 𝒞i\mathcal{C}_{i} is random two-qubit Clifford gate and 𝒞\mathcal{C} is the gate of interest. After a sequence of mm random evolution unit, the last gate 𝒞m+1\mathcal{C}_{m+1} reverts the effect of all previous gates, such that the measurement at the end of the gate sequence yields a result corresponding to the initial state with unit probability in the absence of noisy effects. (b) The modified IRB protocol, where a measurement process described with the quantum channel ΛM\Lambda_{\mathrm{M}} is applied after each random Clifford gate.

in additional to the standard circuit implementing the IRB. We introduced a measurement process ΛM\Lambda_{\mathrm{M}} in between the random Clifford gates and the gate of interest U^c\hat{U}_{\mathrm{c}}. By chosen the basis for the measurement process, certain components of the noisy channel could be selected, such that one can distinguish between the two particular cases δI1=δI2\delta I_{1}=\delta I_{2} and δI1=δI2\delta I_{1}=-\delta I_{2} based on the scenario of FIG. 2(a), here we refer them as the correlated and the anti-correlated noisy perturbations.

For simplicity, we shall assume that in the ideal case U^c\hat{U}_{\mathrm{c}} is also an element from the two-qubit Clifford group 𝒞2\mathcal{C}_{2}. This can be achieved from time evolution of the Hamiltonian H^\hat{H} with the following conditions: (Fang, 2023)

t=πJ1, δω=15J, ω=4kJ,t=\pi J^{-1},\text{ }\delta\omega=\sqrt{15}J,\text{ }\omega=4kJ, (18)

where kk is any positive integer. With the above conditions, in the computational basis one has

U^c=eiH^t=eiπ/4[10000i0000i00001],\hat{U}_{\mathrm{c}}=e^{-i\hat{H}t}=e^{-i\pi/4}\left[\begin{array}[]{cccc}1&0&0&0\\ 0&i&0&0\\ 0&0&i&0\\ 0&0&0&1\end{array}\right], (19)

which belongs to 𝒞2\mathcal{C}_{2} up to an overall phase factor.

The actually implemented gate of interest (denoted as U^\hat{U}) evolves from the full Hamiltonian H^+δH^\hat{H}+\delta\hat{H} and, in the presence of magnetic noises, it

Refer to caption
Figure 4: (a) Main panel: average error rate rCestr_{C}^{\mathrm{est}}associated with the actual implementation of the two-qubit gate U^c\hat{U}_{\mathrm{c}} subjected to independent noises δI1\delta I_{1} and δI2\delta I_{2}, which are proportional to the Zeeman splittings according to Eqs.(13,17). The error rate is obtained from the standard IRB protocol. Lower panel: rCestr_{C}^{\mathrm{est}} along the black and red dashed cuts in the main panel. (b) Main panel: The error rate r~Cest\tilde{r}_{C}^{\mathrm{est}} extracted from the modified protocol as in FIG. 3(b), lower panel: r~Cest\tilde{r}_{C}^{\mathrm{est}} along the black and red cuts of the main panel. Here, we choose the initial state |,|\uparrow,\uparrow\rangle for simulation, and P^=|T0(1,1)T0(1,1)|\hat{P}=|\mathrm{T}_{0}(1,1)\rangle\langle\mathrm{T}_{0}(1,1)| for constructing ΛM\Lambda_{\mathrm{M}}. Parameters used in the calculation: t=π/Jt=\pi/J, ω=20J\omega=20J, δω=15J\delta\omega=\sqrt{15}J, z0=Lz_{0}=L, Navg=103N_{\mathrm{avg}}=10^{3}, m=200m=200 in (a) and m=30m=30 in (b).

deviates from U^c\hat{U}_{\mathrm{c}}. The associated effect of the gate error on time evolution can be formally written in terms of a quantum channel Λc\Lambda_{\mathrm{c}} given by

Λc[ρ^]=δU^ρ^δU^,\Lambda_{\mathrm{c}}[\hat{\rho}]=\delta\hat{U}\hat{\rho}\delta\hat{U}^{\dagger}, (20)

where δU^=U^cU^\delta\hat{U}=\hat{U}_{\mathrm{c}}^{\dagger}\hat{U}. Thus the time evolution of the actual gate is written as U^ρ^U^=𝒞Λc[ρ^]\hat{U}\hat{\rho}\hat{U}^{\dagger}=\mathcal{C}\circ\Lambda_{\mathrm{c}}[\hat{\rho}] with 𝒞[ρ^]=U^cρ^U^c\mathcal{C}[\hat{\rho}]=\hat{U}_{\mathrm{c}}\hat{\rho}\hat{U}_{\mathrm{c}}^{\dagger}.

Following the standard approach (see also Appendix A for a brief review), (Magesan et al., 2012b, a) we prepared the two-qubit system in the initial state |,|\uparrow,\uparrow\rangle and performed the usual randomized benchmarking (RB) to extract the depolarization parameter pp associated with noise channel Λ\Lambda for the random Clifford gates. For simplicity, we assume a gate independent noise channel Λ\Lambda such that the zero-th order fitting model is applicable to extract pp. Then by interleaving the actual implementation of U^c\hat{U}_{\mathrm{c}} in between each random Clifford gate [cf. FIG. 3(a)], one obtains a modified depolarization parameter pcp_{\mathrm{c}} that associates with the combined noisy channel ΛcΛ\Lambda_{\mathrm{c}}\circ\Lambda. From pcp_{\mathrm{c}} and pp the average error rate of Λc\Lambda_{\mathrm{c}} could be estimated from (Magesan et al., 2012a)

rCest=d1d(1pcp),r_{C}^{\mathrm{est}}=\frac{d-1}{d}\left(1-\frac{p_{\mathrm{c}}}{p}\right), (21)

where dd is the dimension of the Hilbert space. In the absence of noises for implementing the random Clifford gates, p=1p=1 and Eq. (21) reduces to the well known RB result (d1)(1pc)/d(d-1)(1-p_{\mathrm{c}})/d.(Magesan et al., 2011, 2012b)

From the above approach, the average error rate for the actual implementation of the gate U^c\hat{U}_{\mathrm{c}} is simulated and shown in FIG. 4(a). The result suggests that rCestr_{C}^{\mathrm{est}} obtained from the standard IRB is symmetric with respective to rotations in the δI1\delta I_{1}-δI2\delta I_{2} plane, i.e., rCestr_{C}^{\mathrm{est}} depends only on δI12+δI22\sqrt{\delta I_{1}^{2}+\delta I_{2}^{2}}. This is more clearly seen by comparing the two special cases with δI1=δI2\delta I_{1}=\delta I_{2} and δI1=δI2\delta I_{1}=-\delta I_{2} as shown in the lower panel of FIG. 4(a), where the calculated rCestr_{C}^{\mathrm{est}} overlaps with each other, even though those two cases represent completely different correlations among the perturbations applied to the side wires [cf. FIG. 2(a)].

To better distinguish between the correlated and the anti-correlated cases, we modify the gate sequence in the standard IRB protocol, which is illustrated in FIG. 3(b). As mentioned before, the main difference here is to introduce a measurement induced decoherence process, given in term of a noisy channel ΛM[ρ^]=P^ρ^P^+Q^ρ^Q^\Lambda_{\mathrm{M}}[\hat{\rho}]=\hat{P}\hat{\rho}\hat{P}^{\dagger}+\hat{Q}\hat{\rho}\hat{Q}^{\dagger}, where P^\hat{P} and Q^\hat{Q} are complementary projection operators satisfying P^+Q^=I^\hat{P}+\hat{Q}=\hat{I}. Introducing ΛM\Lambda_{\mathrm{M}} is motivated by the fact that the insensitive of the standard IRB circuit to δI1\delta I_{1} and δI2\delta I_{2} could be related to the symmetry of the perturbation Hamiltonian. In particular, one can show that for the perturbation term δH^\delta\hat{H} given by Eq. (16), there are two dark states for each of the two special cases, i.e., δH^λ|Diλ=0\delta\hat{H}_{\lambda}|D_{i}\rangle_{\lambda}=0 with λ{S,A}\lambda\in\{\mathrm{S},\mathrm{A}\}, where δH^λ\delta\hat{H}_{\lambda} is defined as follows

δH^S=δH^|δI1=δI2, δH^A=δH^δI1=δI2.\delta\hat{H}_{\mathrm{S}}=\delta\hat{H}|_{\delta I_{1}=\delta I_{2}},\text{ }\delta\hat{H}_{\mathrm{A}}=\delta\hat{H}_{\delta I_{1}=-\delta I_{2}}. (22)

The specific form of those dark states are listed in the Appendix B. Furthermore, the projectors P^λ,i=|DiλDi|\hat{P}_{\lambda,i}=|D_{i}\rangle_{\lambda}\langle D_{i}| satisfy P^S,iP^A,j=0\hat{P}_{\mathrm{S},i}\hat{P}_{\mathrm{A},j}=0. Therefore, projection with P^S,i\hat{P}_{\mathrm{S},i} (P^A,i\hat{P}_{\mathrm{A},i}) during the implementation of the random circuit will reduce the effects of noisy perturbation in the anti-correlated (correlated) case and lead to higher sequence fidelity, thus enables the distinguishing between the two situations.

Based on the scheme of FIG. 3(b), the sequence fidelity from a particular realization of the random circuit becomes

Fseq=Tr{E^ξΛ𝒞m+1[i=1m𝒞ΛcΛMΛ𝒞i]ρ^0},F_{\mathrm{seq}}=\mathrm{Tr}\left\{\hat{E}_{\xi}\Lambda\circ\mathcal{C}_{m+1}\left[\prod_{i=1}^{m}\mathcal{C}\circ\Lambda_{\mathrm{c}}\circ\Lambda_{\mathrm{M}}\circ\Lambda\circ\mathcal{C}_{i}\right]\hat{\rho}_{0}\right\}, (23)

where 𝒞m+1=[i=1m𝒞𝒞i]1\mathcal{C}_{m+1}=[\prod_{i=1}^{m}\mathcal{C}\circ\mathcal{C}_{i}]^{-1}. Then by averaging FseqF_{\mathrm{seq}} over NavgN_{\mathrm{avg}} realizations over the random circuits, one has

Fseq=Tr{E^ξΛ[ΛcΛMΛ]dmρ^0}Ap~cm+B,\langle F_{\mathrm{seq}}\rangle=\mathrm{Tr}\left\{\hat{E}_{\xi}\Lambda\circ[\Lambda_{\mathrm{c}}\circ\Lambda_{\mathrm{M}}\circ\Lambda]_{\mathrm{d}}^{m}\hat{\rho}_{0}\right\}\equiv A\tilde{p}_{\mathrm{c}}^{m}+B, (24)

where p~c\tilde{p}_{\mathrm{c}} is the depolarization parameter associated with the combined depolarization noisy channels [ΛcΛMΛ]d[\Lambda_{\mathrm{c}}\circ\Lambda_{\mathrm{M}}\circ\Lambda]_{\mathrm{d}}, after taking the twirling operation over the two-qubit Clifford group. (Dankert et al., 2009; Magesan et al., 2012b) Alternatively, removing 𝒞Λc\mathcal{C}\circ\Lambda_{\mathrm{c}} from Eq. (23) provides a circuit that gives rise to a referential value for the sequence fidelity, whose average leads to the depolarization parameter p~\tilde{p} associated with [ΛMΛ]d[\Lambda_{\mathrm{M}}\circ\Lambda]_{\mathrm{d}}. Thus by inserting p~\tilde{p} and p~c\tilde{p}_{\mathrm{c}} into Eq. (21), one can extract another error rate r~Cest\tilde{r}_{C}^{\mathrm{est}} associated with gate of interest.

With properly chosen basis for the measurement related projection operator P^\hat{P}, the error rate r~Cest\tilde{r}_{C}^{\mathrm{est}} could distinguish between the correlated and anti-correlated noises cases. This is shown in FIG. 4(b) for P^=|T0(1,1)T0(1,1)|\hat{P}=|\mathrm{T}_{0}(1,1)\rangle\langle\mathrm{T}_{0}(1,1)|, where |T0(1,1)|\mathrm{T}_{0}(1,1)\rangle is the triplet state |,+|,|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle and also one of the dark states for δH^A\delta\hat{H}_{\mathrm{A}}. Here, the error rate shows asymmetry as δI1\delta I_{1} and δI2\delta I_{2} varying, and the error rate grows more slowly for the correlated noise perturbation as δI1\delta I_{1} and δI2\delta I_{2} increasing.

V Discussions

Although here we only analysis through a particular perturbation δH^\delta\hat{H} that described by the configuration of FIG. 2(a), the idea of introducing measurement induced decoherence to distinguish noisy correlations should be also applicable to other types of noisy sources, for example, apart from alternating current-carrying wires, other way of generating the magnetic field gradient include the use of micromagnets,(Tokura et al., 2006; Pioro-Ladriere et al., 2008) as well as the Overhauser fields from polarized nuclear spins.(Baugh et al., 2007, 2008) However, in order to construct r~Cest\tilde{r}_{C}^{\mathrm{est}} that will be sensitive to the noisy correlation, the proper choice of projection operators P^\hat{P} and Q^\hat{Q} are crucial. To find out those operators, one may wish to enable simpler calculation instead of the full IRB simulations. In fact, we found similar asymmetry behavior in the depolarization parameter p~c\tilde{p}_{\mathrm{c}} of [ΛcΛMΛ]d[\Lambda_{\mathrm{c}}\circ\Lambda_{\mathrm{M}}\circ\Lambda]_{\mathrm{d}}. Notice that this is directly related to the twirling of ΛcΛMΛ\Lambda_{\mathrm{c}}\circ\Lambda_{\mathrm{M}}\circ\Lambda under the two-qubit Clifford group. Thus for theoretical analysis, it is useful to first consider [ΛcΛMΛ]d[\Lambda_{\mathrm{c}}\circ\Lambda_{\mathrm{M}}\circ\Lambda]_{\mathrm{d}} instead of r~Cest\tilde{r}_{C}^{\mathrm{est}}.

The sequence fidelity depends also on the system initial state, thus choosing proper initial state could be also useful to distinguish the noisy correlations. For example, suppose the initial state of the two-qubit system is |T0(1,1)|,+|,|\mathrm{T}_{0}(1,1)\rangle\propto|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle, since this state is also a dark state of δH^A\delta\hat{H}_{\mathrm{A}} [cf. Eq. (34)], thus calculating with this initial state amounts to applying the projection operator P^\hat{P} at the beginning and end of the random circuit. Throughout the calculation we have assumed that the two-qubit system is prepared in the |,|\uparrow,\uparrow\rangle state. For spin qubits based on the double quantum dot, this state can be prepared by adiabatically changing the detuning through the S\mathrm{S}-T+\mathrm{T}_{+} anti-crossing that induced with the transverse field of micromagnet. (Wu et al., 2014; Chesi et al., 2014)

For the purpose of illustration, we did not apply realistic parameters in the simulation. In silicon based double quantum dot, the exchange coupling above 10MHz10\mathrm{MHz} had been measured,(Veldhorst et al., 2015) while for the crossbar system, the magnetic field was designed such that δω10MHz\delta\omega\sim 10\mathrm{MHz} and ω100MHz\omega\sim 100\mathrm{MHz}. (Li et al., 2018) Also, the calculations were performed in the absence of qubit relaxation or dephasing, and the dynamical aspect of the current fluctuation in δI1\delta I_{1} and δI2\delta I_{2} are ignored. The detailed treatment of those effects are out of the current scope and will be addressed in the future works.

VI Conclusions

In this paper, we have explored correlated magnetic noise in a two-qubit model stimulated by the recent proposals of scalable quantum computation in semi-conductor based spin qubits. With the method introduced here, we could distinguish between the correlated and anti-correlated noisy cases from their different magnetic field dependence of the error rate, obtained from the interleaved randomized bechmarking protocol by using the modified random circuit. The key idea is to introduce a measurement based docherence process such that certain component of the noisy channel associated with the correlated noise could be singled out.

Acknowledgements.
Y.F. acknowledges support from NSFC (Grant No. 12005011) and Yunnan Fundamental Research Projects (Grant No. 202201AU070118).

Appendix A Interleaved randomized benchmarking

In this Appendix, we follow Refs. (Emerson et al., 2005; Magesan et al., 2011, 2012a, 2012b) to provide a brief summary of the interleaved randomized benchmarking (IRB) protocol.

In general, the protocol involves three steps: First perform the usual randomized benchmarking (RB) to extract pp;(Emerson et al., 2005; Magesan et al., 2011, 2012b) Then perform an interleaved version of the random circuits to extract pcp_{\mathrm{c}};(Magesan et al., 2012a) Finally, from pcp_{\mathrm{c}} and pp one obtain an estimate for the average error rate rCestr_{C}^{\mathrm{est}} associated with the gate of interest, given in terms of the average fidelity rCest=1Favg[Λc]r_{C}^{\mathrm{est}}=1-F_{\mathrm{avg}}[\Lambda_{\mathrm{c}}] associated with noisy channel to implement the gate of interest

Favg[Λc]=𝑑ψψ|Λc[|ψψ|]|ψ.F_{\mathrm{avg}}[\Lambda_{\mathrm{c}}]=\int d\psi\langle\psi|\Lambda_{\mathrm{c}}[|\psi\rangle\langle\psi|]|\psi\rangle. (25)

Next, we describe the above steps in more detail. In the first step, to extract pp the sequence fidelity is calculated as a function of the number of random gates mm applied to the circuit

Fseq=Tr{E^ξΛ𝒞m+1[i=1mΛ𝒞i]ρ^0},F_{\mathrm{seq}}=\mathrm{Tr}\left\{\hat{E}_{\xi}\Lambda\circ\mathcal{C}_{m+1}\left[\prod_{i=1}^{m}\Lambda\circ\mathcal{C}_{i}\right]\hat{\rho}_{0}\right\}, (26)

where ρ^0\hat{\rho}_{0} is the initial state, E^ξ\hat{E}_{\xi} is the final measurement operator. In the absence of state preparing and measurement errors one could set ρ^0=|ψ0ψ0|\hat{\rho}_{0}=|\psi_{0}\rangle\langle\psi_{0}| and also E^ξ=|ψ0ψ0|\hat{E}_{\xi}=|\psi_{0}\rangle\langle\psi_{0}|. 𝒞i[ρ^]=U^(gi)ρ^U^(gi)\mathcal{C}_{i}[\hat{\rho}]=\hat{U}(g_{i})\hat{\rho}\hat{U}(g_{i})^{\dagger} with gi𝒞ng_{i}\in\mathcal{C}_{n} being an element of the nn-qubit Clifford group 𝒞n\mathcal{C}_{n}, while Λ\Lambda is the gate-independent quantum channel describing the noisy effect involved in implementing the Clifford gate 𝒞i\mathcal{C}_{i}. Notice that there are only mm random gates, which uniquely determines the last gate 𝒞m+1[𝒞m𝒞1]1\mathcal{C}_{m+1}\equiv[\mathcal{C}_{m}\circ...\circ\mathcal{C}_{1}]^{-1}. Since FseqF_{\mathrm{seq}} is random because of {𝒞i}\{\mathcal{C}_{i}\}. Thus one should consider the averaged quantity Fseq\langle F_{\mathrm{seq}}\rangle by random sampling over the random Clifford gates, for sufficiently large number of samples NavgN_{\mathrm{avg}}, the averaged sequence fidelity approximates the following exact value

FseqlargeNavg1|𝒞n|m𝒞1..𝒞mFseq.\langle F_{\mathrm{seq}}\rangle\overset{\mathrm{large}N_{\mathrm{avg}}}{\simeq}\frac{1}{|\mathcal{C}_{n}|^{m}}\sum_{\mathcal{C}_{1}..\mathcal{C}_{m}}F_{\mathrm{seq}}. (27)

Since the Clifford group form a unitary 2-design,(Dankert et al., 2009) thus the discrete sum over the Clifford group element can reproduce the continuous average over SU(n)\mathrm{SU}(n) appeared in the definition of the average fidelity Eq. (25). In particular, the twirling operation on Λ\Lambda by the Clifford group yields a depolarization channel

[Λ]tw1|𝒞n|g𝒞n𝒞(g)Λ𝒞(g)1=[Λ]d,[\Lambda]_{\mathrm{tw}}\equiv\frac{1}{|\mathcal{C}_{n}|}\sum_{g\in\mathcal{C}_{n}}\mathcal{C}(g)\circ\Lambda\circ\mathcal{C}(g)^{-1}=[\Lambda]_{\mathrm{d}}, (28)

such that [Λ]dρ^=pρ^+(1p)I^/d[\Lambda]_{\mathrm{d}}\hat{\rho}=p\hat{\rho}+(1-p)\hat{I}/d, where pp is known as the depolarization parameter. Importantly, due to the unitary 2-design property, the average fidelity of [Λ]d[\Lambda]_{\mathrm{d}} is the same as that for Λ\Lambda.(Magesan et al., 2012a) By the group rearrangement theorem, [Λ]d[\Lambda]_{\mathrm{d}} commutes with arbitrary Clifford gate 𝒞(g)\mathcal{C}(g), thus the average sequence fidelity follows simply the zero-th order fitting model given by (Magesan et al., 2011)

Fseq=Apm+B.\langle F_{\mathrm{seq}}\rangle=Ap^{m}+B. (29)

In the second step, to extract pcp_{\mathrm{c}} one interleaves the gate of interest U^c\hat{U}_{\mathrm{c}} in between random Clifford gates, thus the sequence fidelity of the modified circuit becomes

Fseq,c=Tr{E^ξΛ𝒞m+1[i=1m𝒞ΛcΛ𝒞i]ρ^0},F_{\mathrm{seq,c}}=\mathrm{Tr}\left\{\hat{E}_{\xi}\Lambda\circ\mathcal{C}_{m+1}\left[\prod_{i=1}^{m}\mathcal{C}\circ\Lambda_{\mathrm{c}}\circ\Lambda\circ\mathcal{C}_{i}\right]\hat{\rho}_{0}\right\}, (30)

where 𝒞[ρ^]=U^cρ^U^c\mathcal{C}[\hat{\rho}]=\hat{U}_{\mathrm{c}}\hat{\rho}\hat{U}_{\mathrm{c}}^{\dagger} and 𝒞m+1=[i=1m𝒞𝒞i]1\mathcal{C}_{m+1}=[\prod_{i=1}^{m}\mathcal{C}\circ\mathcal{C}_{i}]^{-1}. Similar consideration leads to the conclusion that the average sequence fidelity again follows the fitting model Eq. (29) but with modified parameters

Fseq,c=Apcm+B.\langle F_{\mathrm{seq,c}}\rangle=Ap_{\mathrm{c}}^{m}+B. (31)

Now pcp_{\mathrm{c}} is the depolarization parameter of [ΛcΛ]d[\Lambda_{\mathrm{c}}\circ\Lambda]_{\mathrm{d}}.

In the third step, one estimates rCestr_{C}^{\mathrm{est}} according to Eq. (21), which can be derived by identifying the average fidelity of ΛcΛ\Lambda_{\mathrm{c}}\circ\Lambda with that of Λc[Λ]d\Lambda_{\mathrm{c}}\circ[\Lambda]_{\mathrm{d}}.(Magesan et al., 2012a)

Appendix B Dark states of δH^\delta\hat{H}

Here, we list all the dark states for δH^S\delta\hat{H}_{\mathrm{S}} and δH^A\delta\hat{H}_{\mathrm{A}}, i.e., the perturbation term defined in Eq. (22). For δH^S\delta\hat{H}_{\mathrm{S}} the two dark states are

|D1S=12[|,|,],|D_{1}\rangle_{\mathrm{S}}=\frac{1}{\sqrt{2}}\left[|\uparrow,\uparrow\rangle-|\downarrow,\downarrow\rangle\right], (32)

and

|D2S=12[|,|,+|,+|,].|D_{2}\rangle_{\mathrm{S}}=\frac{1}{2}\left[|\uparrow,\uparrow\rangle-|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle+|\downarrow,\downarrow\rangle\right]. (33)

While for δH^A\delta\hat{H}_{\mathrm{A}} the two dark states are

|D1A=12[|,+|,],|D_{1}\rangle_{\mathrm{A}}=\frac{1}{\sqrt{2}}\left[|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle\right], (34)

and

|D2A=12[|,+|,|,+|,].|D_{2}\rangle_{\mathrm{A}}=\frac{1}{2}\left[|\uparrow,\uparrow\rangle+|\uparrow,\downarrow\rangle-|\downarrow,\uparrow\rangle+|\downarrow,\downarrow\rangle\right]. (35)

References

  • Fowler et al. (2012) A. Fowler, M. Mariantoni, J. M. Martinis,  and A. N. Cleland, Phys. Rev. A 86 (2012).
  • Preskill (2018) J. Preskill, Quantum 2, 79 (2018).
  • Ballance et al. (2016) C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol,  and D. M. Lucas, Phys. Rev. Lett. 117, 060504 (2016).
  • Noiri et al. (2022) A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci,  and S. Tarucha, Nature 601, 338 (2022).
  • Xue et al. (2022) X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci,  and L. M. K. Vandersypen, Nature 601, 343 (2022).
  • Google Quantum (2023) A. I. Google Quantum, Nature 614, 676 (2023).
  • Zhao et al. (2022) Y. Zhao, Y. Ye, H.-L. Huang, Y. Zhang, D. Wu, H. Guan, Q. Zhu, Z. Wei, T. He, S. Cao, F. Chen, T.-H. Chung, H. Deng, D. Fan, M. Gong, C. Guo, S. Guo, L. Han, N. Li, S. Li, Y. Li, F. Liang, J. Lin, H. Qian, H. Rong, H. Su, L. Sun, S. Wang, Y. Wu, Y. Xu, C. Ying, J. Yu, C. Zha, K. Zhang, Y.-H. Huo, C.-Y. Lu, C.-Z. Peng, X. Zhu,  and J.-W. Pan, Phys. Rev. Lett. 129, 030501 (2022).
  • Krinner et al. (2022) S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Muller, A. Blais, C. Eichler,  and A. Wallraff, Nature 605, 669 (2022).
  • Laucht et al. (2021) A. Laucht, F. Hohls, N. Ubbelohde, M. F. Gonzalez-Zalba, D. J. Reilly, S. Stobbe, T. Schroder, P. Scarlino, J. V. Koski, A. Dzurak, C.-H. Yang, J. Yoneda, F. Kuemmeth, H. Bluhm, J. Pla, C. Hill, J. Salfi, A. Oiwa, J. T. Muhonen, E. Verhagen, M. D. LaHaye, H. H. Kim, A. W. Tsen, D. Culcer, A. Geresdi, J. A. Mol, V. Mohan, P. K. Jain,  and J. Baugh, Nanotechnology 32, 162003 (2021).
  • Meyer et al. (2023) M. Meyer, C. Deprez, T. R. van Abswoude, I. N. Meijer, D. Liu, C.-A. Wang, S. Karwal, S. Oosterhout, F. Borsoi, A. Sammak, N. W. Hendrickx, G. Scappucci,  and M. Veldhorst, Nano Lett. 23, 2522 (2023).
  • Veldhorst et al. (2017) M. Veldhorst, H. G. J. Eenink, C. H. Yang,  and A. S. Dzurak, Nat. Commun. 8, 1766 (2017).
  • Hill Charles et al. (2015) D. Hill Charles, P. Eldad, J. Hile Samuel, G. House Matthew, F. Martin, R. Sven, Y. Simmons Michelle,  and L. Hollenberg Lloyd C., Sci. Adv. 1, e1500707 (2015).
  • Li et al. (2018) R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner, L. M. K. Vandersypen, J. S. Clarke,  and M. Veldhorst, Sci. Adv. 4, eaar3960 (2018).
  • Gonzalez-Zalba et al. (2021) M. F. Gonzalez-Zalba, S. de Franceschi, E. Charbon, T. Meunier, M. Vinet,  and A. S. Dzurak, Nat. Electron. 4, 872 (2021).
  • Bavdaz et al. (2022) P. L. Bavdaz, H. G. J. Eenink, J. van Staveren, M. Lodari, C. G. Almudever, J. S. Clarke, F. Sebasatiano, M. Veldhorst,  and G. Scappucci, npj Quantum Inf. 8 (2022).
  • Borsoi et al. (2023) F. Borsoi, N. W. Hendrickx, V. John, M. Meyer, S. Motz, F. van Riggelen, A. Sammak, S. L. de Snoo, G. Scappucci,  and M. Veldhorst, Nat. Nanotechnol.  (2023), 10.1038/s41565-023-01491-3.
  • Patra et al. (2018) B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano,  and E. Charbon, IEEE J. Solid-State Circuits 53, 309 (2018).
  • Charbon et al. (2021) E. Charbon, M. Babaie, A. Vladimirescu,  and F. Sebastiano, IEEE Microwave Mag. 22, 60 (2021).
  • Magesan et al. (2012a) E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, M. B. Ketchen,  and M. Steffen, Phys. Rev. Lett. 109, 080505 (2012a).
  • Jackson (1999) J. D. Jackson, Classical Electrodyanmics (John Wiley & Sons, Inc., United States, 1999).
  • Burkard (1999) G. Burkard, Phys. Rev. B 60, 11404 (1999).
  • Meunier et al. (2011) T. Meunier, V. E. Calado,  and L. M. K. Vandersypen, Phys. Rev. B 83, 121403 (2011).
  • Fang (2023) Y. Fang, arXiv: 2312.12892v1  (2023).
  • Magesan et al. (2012b) E. Magesan, J. M. Gambetta,  and J. Emerson, Phys. Rev. A 85, 042311 (2012b).
  • Magesan et al. (2011) E. Magesan, J. M. Gambetta,  and J. Emerson, Phys. Rev. Lett. 106, 180504 (2011).
  • Dankert et al. (2009) C. Dankert, R. Cleve, J. Emerson,  and E. Livine, Phys. Rev. A 80, 012304 (2009).
  • Tokura et al. (2006) Y. Tokura, W. G. van der Wiel, T. Obata,  and S. Tarucha, Phys. Rev. Lett. 96, 047202 (2006).
  • Pioro-Ladriere et al. (2008) M. Pioro-Ladriere, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama,  and S. Tarucha, Nat. Phys. 4, 776 (2008).
  • Baugh et al. (2007) J. Baugh, Y. Kitamura, K. Ono,  and S. Tarucha, Phys. Rev. Lett. 99, 096804 (2007).
  • Baugh et al. (2008) J. Baugh, Y. Kitamura, K. Ono,  and S. Tarucha, Phys. Status Solidi C 5, 302 (2008).
  • Wu et al. (2014) X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble, R. T. Mohr, Z. Shi, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith,  and M. A. Eriksson, Proc. Natl. Acad. Sci. 111, 11938 (2014).
  • Chesi et al. (2014) S. Chesi, Y.-D. Wang, J. Yoneda, T. Otsuka, S. Tarucha,  and D. Loss, Phys. Rev. B 90, 235311 (2014).
  • Veldhorst et al. (2015) M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello,  and A. S. Dzurak, Nature 526, 410 (2015).
  • Emerson et al. (2005) J. Emerson, R. Alicki,  and K. Zyczkowski, J. Phys. B At. Mol. Opt. 7, s347 (2005).