This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Eigenvalue embedding problem for quadratic regular matrix polynomials with symmetry structures

Tinku Ganai    and    Bibhas Adhikari Department of Mathematics, IIT Kharagpur, India, E-mail: tinkuganaimath@gmail.com Corresponding author, Department of Mathematics, IIT Kharagpur, India, E-mail: bibhas@maths.iitkgp.ac.in

Abstract. In this paper, we propose a unified approach for solving structure-preserving eigenvalue embedding problem (SEEP) for quadratic regular matrix polynomials with symmetry structures. First, we determine perturbations of a quadratic matrix polynomial, unstructured or structured , such that the perturbed polynomials reproduce a desired invariant pair while maintaining the invariance of another invariant pair of the unperturbed polynomial. If the latter is unknown, it is referred to as no spillover perturbation. Then we use these results for solving the SEEP for structured quadratic matrix polynomials that include: symmetric, Hermitian, \star-even and \star-odd quadratic matrix polynomials. Finally, we show that the obtained analytical expressions of perturbations can realize existing results for structured polynomials that arise in real-world applications, as special cases. The obtained results are supported with numerical examples.

Keywords. Eigenvalue embedding problem, model updating, invariant pair, inverse eigenvalue problem, no spillover

AMS subject classifications. 15A22, 65F18, 93B55, 47A75

1 Introduction

In this paper, we investigate preservation of invariant pairs of unstructured and structured quadratic matrix polynomials under perturbations of the coefficient matrices. This leads to determine perturbations of coefficients of a quadratic matrix polynomial such that a desired set of eigenvalues can be reproduced by the perturbed polynomials that replace a given set of eigenvalues of the unperturbed polynomial. This problem arises in real-world vibrating structural models, and hence we revisit and propose solutions for the well-known quadratic finite element model updating problem (MUP) [45]. In addition, if the structure-preserving perturbed polynomials preserve the rest of the eigenvalues (need not be known) of the unperturbed structured polynomial then the problem is referred to as structure-preserving eigenvalue embedding problem (SEEP) or MUP with no spillover in the literature [36, 14]. We formulate the SEEP in terms of reproducing a desired invariant pair for the perturbed polynomials while preserving another invariant pair of the unperturbed polynomial that need not be known, and consequently we obtain analytical solution for SEEP for a variety of structured quadratic matrix polynomials. Here we mention that SEEP or MUP with no spillover can also be defined as partial inverse eigenvalue problem for structured matrix polynomials [44].

Let 𝕂{,},{\mathbb{K}}\in\{{\mathbb{R}},{\mathbb{C}}\}, where {\mathbb{R}} and {\mathbb{C}} denote the field of real and complex numbers respectively. A pair (X,Λ)𝕂n×p×𝕂p×p(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} is called an invariant pair [9, 10] of a quadratic matrix polynomial Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda] if

Q(X,Λ):=MXΛ2+DXΛ+KX=0.Q(X,{\Lambda}):=MX{\Lambda}^{2}+DX{\Lambda}+KX=0. (1)

If Λ=λ0IJ\Lambda=\lambda_{0}I-J where II is the identity matrix of order p,p, JJ is the Jordan block of size pp and λ0\lambda_{0} is an eigenvalue of Q(λ)Q(\lambda) then the columns of XX form a Jordan chain of Q(λ),Q(\lambda), and the pair (X,Λ)(X,{\Lambda}) is called a Jordan pair of Q(λ)Q(\lambda) [28]. If p=np=n and XX is invertible then S=XΛX1S=X{\Lambda}X^{-1} is a solvent, that is, SS is a solution of the quadratic matrix equation associated with Q(λ)Q(\lambda) [30]. Further, if p=1p=1 then (Λ,X)({\Lambda},X) is an eigenpair of Q(λ)Q(\lambda). If ζ\zeta is an eigenvector of Λ{\Lambda} corresponding to the eigenvalue λ0\lambda_{0} then it follows that (λ0,Xζ)(\lambda_{0},X\zeta) is an eigenpair of Q(λ)Q(\lambda). Consequently, the eigenvalues of Λ{\Lambda} are eigenvalues of Q(λ)Q(\lambda). Thus invariant pair provides a unified perspective on the problem of computing several eigenpairs for a given matrix polynomial [5, 22, 23, 33, 50]. Obviously, invariant pair extends the concepts of standard pair [28] and null pair [4]. Besides, invariant pairs play a key role in developing several algorithms related to nonlinear eigenvalue problems, for example, see [8, 34]. In [9], the authors analyze the behavior of invariant pairs of a matrix polynomial under the perturbations of the coefficients of the polynomial, and they propose a first-order perturbation expansion. See also [48].

On the other hand, as invariant subspaces of matrices can be interpreted as a generalization of eigenvectors, deflating pairs and invariant pairs can be seen as generalizations of eigenpairs for matrix pencils and matrix polynomials respectively. Recently, structure-preserving perturbations for structured matrices and matrix pencils are determined to preserve invariant subspaces and deflating pairs respectively in [26, 1]. Then these results are used to reproduce a desired scalars as eigenvalues of the perturbed structured matrices and matrix pencils without effecting a set of desired eigenpairs of the unperturbed matrix and matrix pencils, respectively. In this paper, we consider the analogous approach for invariant pairs of regular structured matrix polynomials that can be employed to preserve desired spectral properties in the perturbed polynomials. We mention that Mackey et al. have investigated preserving invariant pairs under Möbius transformation of a matrix polynomial [42]. Now we describe the structured matrix polynomials which we consider in this paper.

Let MM^{*} and MTM^{T} denote the conjugate transpose and transpose of a matrix M𝕂q×rM\in{\mathbb{K}}^{q\times r} respectively. Then a polynomial Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda] is said to have (,ϵ1,ϵ2)(\star,\epsilon_{1},\epsilon_{2})-structure if

M=ϵ1M,D=ϵ2D,K=ϵ1K,M^{\star}=\epsilon_{1}M,\qquad D^{\star}=\epsilon_{2}D,\qquad K^{\star}=\epsilon_{1}K, (2)

where ϵ1,ϵ2{1,1},\epsilon_{1},\epsilon_{2}\in\{1,-1\}, {,T}.{\star}\in\{*,T\}. These structured quadratic matrix polynomials are known under the following names in the literature, and the symmetry of coefficient matrices induces eigenvalue pairing of the polynomials [40].

name (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2}) eigenvalue pairing
symmetric (T,1,1)(T,1,1) λ\lambda if 𝕂={\mathbb{K}}={\mathbb{C}} and (λ,λ¯)(\lambda,\overline{\lambda}) if 𝕂={\mathbb{K}}={\mathbb{R}}
Hermitian (,1,1)(*,1,1) (λ,λ¯)(\lambda,\overline{\lambda})
TT-odd (T,1,1)(T,-1,1) (λ,λ)(\lambda,-\lambda) if 𝕂={\mathbb{K}}={\mathbb{C}} and (λ,λ¯,λ,λ¯)(\lambda,\overline{\lambda},-\lambda,-\overline{\lambda}) if 𝕂={\mathbb{K}}={\mathbb{R}}
*-odd (,1,1)(*,-1,1) (λ,λ¯)(\lambda,-\overline{\lambda})
TT-even (T,1,1)(T,1,-1) (λ,λ)(\lambda,-\lambda) if 𝕂={\mathbb{K}}={\mathbb{C}} and (λ,λ¯,λ,λ¯)(\lambda,\overline{\lambda},-\lambda,-\overline{\lambda}) if 𝕂={\mathbb{K}}={\mathbb{R}}
*-even (,1,1)(*,1,-1) (λ,λ¯)(\lambda,-\overline{\lambda})

Thus we consider the following problem in this paper.

(P) (Change of invariant pairs with no spillover) Let (Xc,Λc)𝕂n×p1×𝕂p1×p1(X_{c},{\Lambda}_{c})\in{\mathbb{K}}^{n\times p_{1}}\times{\mathbb{K}}^{p_{1}\times p_{1}} and (Xf,Λf)𝕂n×p2×𝕂p2×p2(X_{f},{\Lambda}_{f})\in{\mathbb{K}}^{n\times p_{2}}\times{\mathbb{K}}^{p_{2}\times p_{2}} be invariant pairs of a quadratic matrix polynomial Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda]. Let (Xa,Λa)(X_{a},{\Lambda}_{a}) be a matrix pair of the same dimension as (Xc,Λc)(X_{c},{\Lambda}_{c}). Then find perturbations M,D,K𝕂n×n\triangle M,\,\triangle D,\,\triangle K\in{\mathbb{K}}^{n\times n} such that (Xa,Λa)(X_{a},{\Lambda}_{a}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) are invariant pairs of a perturbed quadratic matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K).Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K). Moreover, determine perturbations M,D,K𝕂n×n\triangle M,\,\triangle D,\,\triangle K\in{\mathbb{K}}^{n\times n} such that Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) whenever Q(λ)n(,ϵ1,ϵ2)Q(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) need not be known, the phenomena which is known as no spillover effect in the literature of structural models. (Note that Λc,Λf,Λa{\Lambda}_{c},\,{\Lambda}_{f},\,{\Lambda}_{a} are not necessarily diagonal. The notations ,fc,a{}^{c},\,^{f},\,^{a} stand for change,fixedchange,\,fixed and aimedaimed respectively.)

We call the invariant pairs (Xc,Λc)(X_{c},{\Lambda}_{c}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) of the quadratic matrix polynomial Q(λ)Q(\lambda) in (P) as change and fixed invariant pairs respectively. Note that when Λc{\Lambda}_{c} and Λf{\Lambda}_{f} are diagonal matrices, the diagonal entries are eigenvalues of Q(λ)Q(\lambda) and the columns of XcX_{c} and XfX_{f} are eigenvectors associated with those eigenvalues, and hence the Problem (P) boils down to SEEP or MUP with no spillover for (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured quadratic matrix polynomials. The SEEP or MUP arises in quadratic finite element models for real systems in vibration industries [13, 21, 27, 43, 45, 49]. In particular, MUP has applications in damage detection and health monitoring of vibrating structures such as bridges, highways [31, 32], and to control resonance vibration of such structures [18, 24]. A detailed study on MUP and its applications can be found in the seminal book by Friswell and Mottershead [25]. Indeed, the finite element model corresponding to such a real system is described by a system of second-order ordinary differential equations as

Mx¨(t)+Dx˙(t)+Kx(t)=0M\ddot{x}(t)+D\dot{x}(t)+Kx(t)=0 (3)

where M,D,KM,\,D,\,K are real or complex matrices of order n×nn\times n and x(t)x(t) is a column vector of order nn. Solutions of (3) can be obtained as x(t)=x0eλ0tx(t)=x_{0}e^{\lambda_{0}t}, where (λ0,x0)(\lambda_{0},x_{0}) turns out to be eigenpairs of the quadratic matrix polynomial Q(λ)=λ2M+λD+KQ(\lambda)=\lambda^{2}M+\lambda D+K. Further, depending on applications, the matrices M,DM,D and KK have certain structures. For example, in vibrating structural systems, MM is symmetric positive definite, KK is positive semi-definite and DD is symmetric and they are called mass, stiffness and damping matrices, respectively [13]. Hence the corresponding Q(λ)Q(\lambda) is a symmetric matrix polynomial. On the other hand, for gyroscopic systems, such as rotors of the generator, solar panels on the satellite, MM is symmetric positive definite, KK is positive semi-definite and DD is skew-symmetric known as mass, stiffness and gyroscopic matrices, respectively [43], which corresponds to a TT-even polynomial Q(λ)Q(\lambda) [40].

There is a voluminous literature on solving MUP or SEEP for vibrating structural models using different methods [2, 3, 6, 7, 11, 12, 15, 16, 17, 19, 20, 36, 43, 51]. However, there are only a few articles that provide analytical expressions of the perturbations Q(λ)=λ2M+λD+K\triangle Q(\lambda)=\lambda^{2}\triangle M+\lambda\triangle D+\triangle K which solve SEEP for structured Q(λ)Q(\lambda) [12, 15, 36, 43]. There are several articles that consider the MUP for symmetric or Hermitian quadratic matrix polynomials [12, 14, 35, 37, 38]. There are a few articles on quadratic MUP with no spillover condition that provide explicit expression of the updating matrices [12, 15, 36, 43]. However, perturbation matrices presented in these articles can not replace a zero eigenvalue by a nonzero eigenvalue in the perturbed polynomials. For undamped structural models, that is, setting D=0D=0 in equation (3), solutions of MUP with no spillover effect is obtained recently in [1] where the corresponding matrix pencils are symmetric, Hermitian, {\star}-even and \star-odd. On the other hand, in [43], the authors consider TT-even quadratic matrix polynomials with MM and KK as positive definite or semi-definite matrices respectively.

In this paper, we consider only regular matrix polynomials with the leading coefficient matrix nonsingular. The contribution of our work are as follows. First, analytical expression of perturbations is obtained that solve Problem (P) for unstructured quadratic matrix polynomials when the fixed invariant pair of the polynomial is known. Then we provide explicit expression of structured perturbations that solve the Problem (P) when Q(λ)n(,ϵ1,ϵ2)Q(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) and the fixed invariant pair of Q(λ)Q(\lambda) need not be known. We utilize these results to obtain parametric solutions for MUP, and SEEP or MUP with no spillover for (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured quadratic matrix polynomials. Finally, we show that these solutions can identify the solutions for SEEP that are obtained in [15], [36] (see Remark 4.2), and in [43] (see Remark 4.3) for specific structured polynomials.

This paper is organized as follows. Next section presents some basic facts on eigenpairs and invariant pairs of quadratic matrix polynomials, and we analyze the connection between invariant pairs and the coefficient matrices of the associated quadratic matrix polynomials having (,ϵ1,ϵ2)(\star,\epsilon_{1},\epsilon_{2})-structure. In Section 3, we provide solution of Problem (P) for unstructured quadratic matrix polynomials when the fixed invariant pair is completely known. In addition, we provide parametric solutions of the Problem (P) for (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured quadratic matrix polynomials when (Xf,Λf)(X_{f},{\Lambda}_{f}) need not be known. In the next section, we present solutions of the SEEP for specially structured quadratic matrix polynomials. Finally, in Section 5 we illustrate our results with the help of numerical examples.

Notation. We denote 𝕂n×n[λ]{\mathbb{K}}^{n\times n}[\lambda] as the space of one parameter (λ)(\lambda) matrix polynomials whose coefficient matrices are of order n×nn\times n with its entries are from the field 𝕂{\mathbb{K}}. We mention that i\mathrm{i}{\mathbb{R}} denote the set of all imaginary numbers. By σ(A)\sigma(A) we denote the spectrum (set of all eigenvalues) of AA. A0A\geq 0 denotes that AA is a Hermitian positive semi-definite matrix while A>0A>0 denote that AA is a Hermitian positive definite matrix. XF\|X\|_{F} denotes the Frobenius norm of XX. 𝗋𝖾(x)\mathsf{re}(x) and 𝗂𝗆(x)\mathsf{im}(x) denote the real and imaginary parts of a vector or scalar xx. Finally, ImI_{m} denotes the identity matrix of order m×mm\times m.

2 Invariant pairs of quadratic matrix polynomials

As mentioned before, we consider regular polynomials Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda] in this paper, that is, the characteristic polynomial χ(λ)=det(λ2M+λD+K)\chi(\lambda)=\det(\lambda^{2}M+\lambda D+K) is not a zero polynomial. We also assume that MM is nonsingular and hence the roots of the equation χ(λ0)=0,\chi(\lambda_{0})=0, known as eigenvalues of Q(λ)Q(\lambda) are all finite. A nonzero vector x0𝕂nx_{0}\in{\mathbb{K}}^{n} is said to be an eigenvector corresponding to an eigenvalue λ0\lambda_{0}\in{\mathbb{C}} if Q(λ0,x0):=(λ02M+λ0D+K)x0=0Q(\lambda_{0},x_{0}):=(\lambda_{0}^{2}M+\lambda_{0}D+K)x_{0}=0. Consequently, (λ0,x0)(\lambda_{0},x_{0}) is called an eigenpair of Q(λ)Q(\lambda).

It is evident that invariant pair is independent of the choice of the basis: If (X,Λ)𝕂n×p×𝕂p×p(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} is an invariant pair of Q(λ)Q(\lambda) and X~=XZ,\widetilde{X}=XZ, where Z𝕂p×pZ\in{\mathbb{K}}^{p\times p} is a nonsingular matrix then (X~,Λ~),(\widetilde{X},\widetilde{{\Lambda}}), Λ~=Z1ΛZ\widetilde{{\Lambda}}=Z^{-1}{\Lambda}Z is also an invariant pair of Q(λ).Q(\lambda). An application of this fact is as follows. Let Q(λ)n×n[λ]Q(\lambda)\in{\mathbb{R}}^{n\times n}[\lambda] and (λ0,x0)(\lambda_{0},x_{0}) be an eigenpair of Q(λ)Q(\lambda) such that λ0.\lambda_{0}\in{\mathbb{C}}\smallsetminus{\mathbb{R}}. Then (λ¯0,x¯0)(\overline{\lambda}_{0},\overline{x}_{0}) is also an eigenpair of Q(λ)Q(\lambda). Now setting X=[x0x¯0]X=\left[x_{0}\,\,\overline{x}_{0}\right] and Λ=diag(λ0,λ¯0){\Lambda}=\mathrm{diag}(\lambda_{0},\overline{\lambda}_{0}) it can be checked that (X,Λ)n×2×2×2(X,{\Lambda})\in{\mathbb{C}}^{n\times 2}\times{\mathbb{C}}^{2\times 2} is an invariant pair of Q(λ)Q(\lambda). However, setting Z=12[1i1i],Z=\dfrac{1}{2}\left[\begin{matrix}1&-\mathrm{i}\\ 1&\mathrm{i}\end{matrix}\right], a corresponding real invariant pair is given by (Xr,Λr)(X_{r},{\Lambda}_{r}) of Q(λ),Q(\lambda), where

Xr:=XZ=[𝗋𝖾(x0)𝗂𝗆(x0)],Λr:=Z1ΛZ=[𝗋𝖾(λ0)𝗂𝗆(λ0)𝗂𝗆(λ0)𝗋𝖾(λ0)].X_{r}:=XZ=\left[\begin{matrix}\mathsf{re}(x_{0})&\mathsf{im}(x_{0})\end{matrix}\right],\,\,{\Lambda}_{r}:=Z^{-1}{\Lambda}Z=\left[\begin{matrix}\mathsf{re}(\lambda_{0})&\mathsf{im}(\lambda_{0})\\ -\mathsf{im}(\lambda_{0})&\mathsf{re}(\lambda_{0})\end{matrix}\right].

Now we recall the following definition from [9].

Definition 2.1.

A pair (X,Λ)𝕂n×k×𝕂k×k(X,{\Lambda})\in{\mathbb{K}}^{n\times k}\times{\mathbb{K}}^{k\times k} is called minimal if there exists a positive integer mm such that the matrix

[XΛm1XΛm2XΛX]\left[\begin{matrix}X{\Lambda}^{m-1}\\ X{\Lambda}^{m-2}\\ \vdots\\ X{\Lambda}\\ X\end{matrix}\right]

has full column rank. The smallest such mm is called minimality index of (X,Λ)(X,{\Lambda}).

If (X1,Λ1)𝕂n×p1×𝕂p1×p1(X_{1},{\Lambda}_{1})\in{\mathbb{K}}^{n\times p_{1}}\times{\mathbb{K}}^{p_{1}\times p_{1}} and (X2,Λ2)𝕂n×p2×𝕂p2×p2(X_{2},{\Lambda}_{2})\in{\mathbb{K}}^{n\times p_{2}}\times{\mathbb{K}}^{p_{2}\times p_{2}} are two invariant pairs of a polynomial Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda] then it is easy to verify that (X=[X1X2],Λ=diag(Λ1,Λ2))𝕂n×(p1+p2)×𝕂(p1+p2)×(p1+p2)\left(X=[X_{1}\,\,X_{2}],{\Lambda}=\mathrm{diag}({\Lambda}_{1},{\Lambda}_{2})\right)\in{\mathbb{K}}^{n\times(p_{1}+p_{2})}\times{\mathbb{K}}^{(p_{1}+p_{2})\times(p_{1}+p_{2})} is an invariant pair of Q(λ).Q(\lambda). It is also known that minimality index of any minimal invariant pair of a quadratic matrix polynomial is less or equal to 22 [Lemma 5, [9]]. Obviously, a sufficient condition for an invariant pair (X,Λ)𝕂n×p×𝕂p×p(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} of Q(λ)Q(\lambda) is minimal if XX is a full column rank matrix.

2.1 Structured quadratic matrix polynomials

Recall that Q(λ):=λ2M+λD+K𝕂n×n[λ]Q(\lambda):=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda] is said to have (,ϵ1,ϵ2)(\star,\epsilon_{1},\epsilon_{2})-structure if

M=ϵ1M,D=ϵ2D,K=ϵ1K,M^{\star}=\epsilon_{1}M,\hskip 28.45274ptD^{\star}=\epsilon_{2}D,\hskip 28.45274ptK^{\star}=\epsilon_{1}K,

where ϵ1,ϵ2{1,1}\epsilon_{1},\epsilon_{2}\in\{1,-1\} and {,T}.{\star}\in\{*,T\}. We denote these structured quadratic matrix polynomials as n(,ϵ1,ϵ2){\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}). Suppose λ\lambda\in{\mathbb{C}} then we define λ=λ¯\lambda^{\star}=\overline{\lambda} (the conjugate of λ\lambda) if ={\star}=* and λ=λ\lambda^{\star}=\lambda if =T{\star}=T. Now we briefly discuss some properties of invariant pairs of structured quadratic matrix polynomials that will be used in sequel.

Proposition 2.2.

Let Q(λ):=λ2M+λD+Kn(,ϵ1,ϵ2)Q(\lambda):=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) and (Xj,Λj)𝕂n×pj×𝕂pj×pj,j{1,2}(X_{j},{\Lambda}_{j})\in{\mathbb{K}}^{n\times p_{j}}\times{\mathbb{K}}^{p_{j}\times p_{j}},\,j\in\{1,2\} be invariant pairs of Q(λ).Q(\lambda). Suppose Sjk:=XjMXkΛk+ϵ1ϵ2ΛjXjMXk+XjDXk,j,k{1,2}.S_{jk}:=X_{j}^{\star}MX_{k}{\Lambda}_{k}+\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}X_{j}^{\star}MX_{k}+X_{j}^{\star}DX_{k},\,j,k\in\{1,2\}. Then:

  • (a)(a)

    λ0\lambda_{0} is an eigenvalue of Q(λ)Q(\lambda) if and only if ϵ1ϵ2λ0\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star} is an eigenvalue of Q(λ)Q(\lambda),

  • (b)(b)

    SjkΛk=ϵ1ϵ2ΛjSjk,S_{jk}{\Lambda}_{k}=\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}S_{jk},

  • (c)(c)

    Sjk=0S_{jk}=0 whenever σ(ϵ1ϵ2Λj)σ(Λk)=.\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star})\cap\sigma({\Lambda}_{k})=\emptyset.

Proof: Note that det(λ02M+λ0D+K)=0det((λ0)2M+λ0D+K)=0det(ϵ1(λ0)2M+ϵ2λ0D+ϵ1K)=0det((ϵ1ϵ2λ0)2M+(ϵ1ϵ2λ0)D+K)=0\det\left(\lambda_{0}^{2}M+\lambda_{0}D+K\right)=0\Leftrightarrow\det\left((\lambda_{0}^{\star})^{2}M^{\star}+\lambda_{0}^{\star}D^{\star}+K^{\star}\right)=0\linebreak\Leftrightarrow\det\left(\epsilon_{1}(\lambda_{0}^{\star})^{2}M+\epsilon_{2}\lambda_{0}^{\star}D+\epsilon_{1}K\right)=0\Leftrightarrow\det\left((\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star})^{2}M+(\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star})D+K\right)=0. Thus (a)(a) follows. As (Xj,Λj)(X_{j},{\Lambda}_{j}) is an invariant pair of Q(λ)Q(\lambda) so we have Q(Xj,Λj)=MXjΛj2+DXjΛj+KXj=0,Q(X_{j},{\Lambda}_{j})=MX_{j}{\Lambda}_{j}^{2}+DX_{j}{\Lambda}_{j}+KX_{j}=0, that is KXj=MXjΛj2+DXjΛj-KX_{j}=MX_{j}{\Lambda}_{j}^{2}+DX_{j}{\Lambda}_{j} then operating \star on it we get ϵ1XjK=ϵ1(Λj)2XjM+ϵ2ΛjXjD-\epsilon_{1}X_{j}^{\star}K=\epsilon_{1}({\Lambda}_{j}^{\star})^{2}X_{j}^{\star}M+\epsilon_{2}\Lambda_{j}^{\star}X_{j}^{\star}D and postmultiplying it by XkX_{k} we obtain

XjKXk=(Λj)2XjMXk+ϵ1ϵ2ΛjXjDXk.-X_{j}^{\star}KX_{k}=({\Lambda}_{j}^{\star})^{2}X_{j}^{\star}MX_{k}+\epsilon_{1}\epsilon_{2}\Lambda_{j}^{\star}X_{j}^{\star}DX_{k}. (4)

Since (Xk,Λk)(X_{k},{\Lambda}_{k}) is an invariant pair of Q(λ)Q(\lambda) so we have Q(Xk,Λk)=MXkΛk2+DXkΛk+KXk=0Q(X_{k},{\Lambda}_{k})=MX_{k}{\Lambda}_{k}^{2}+DX_{k}{\Lambda}_{k}+KX_{k}=0 then premultiplying it by XjX_{j}^{\star} it gives

XjKXk=XjMXkΛk2+XjDXkΛk.-X_{j}^{\star}KX_{k}=X_{j}^{\star}MX_{k}{\Lambda}_{k}^{2}+X_{j}^{\star}DX_{k}{\Lambda}_{k}. (5)

From (4)(\ref{ortho1}) and (5)(\ref{ortho2}) it follows that

(Λj)2XjMXk+ϵ1ϵ2ΛjXjDXk=XjMXkΛk2+XjDXkΛk.({\Lambda}_{j}^{\star})^{2}X_{j}^{\star}MX_{k}+\epsilon_{1}\epsilon_{2}\Lambda_{j}^{\star}X_{j}^{\star}DX_{k}=X_{j}^{\star}MX_{k}{\Lambda}_{k}^{2}+X_{j}^{\star}DX_{k}{\Lambda}_{k}. (6)

Then adding both sides of (6)(\ref{ortho3}) by ϵ1ϵ2ΛjXjMXkΛk\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}X_{j}^{\star}MX_{k}{\Lambda}_{k} we get

ϵ1ϵ2Λj(XjMXkΛk+ϵ1ϵ2ΛjXjMXk+XjDXk)=(XjMXkΛk+ϵ1ϵ2ΛjXjMXk+XjDXk)Λk\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}\left(X_{j}^{\star}MX_{k}{\Lambda}_{k}+\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}X_{j}^{\star}MX_{k}+X_{j}^{\star}DX_{k}\right)=\left(X_{j}^{\star}MX_{k}{\Lambda}_{k}+\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}X_{j}^{\star}MX_{k}+X_{j}^{\star}DX_{k}\right){\Lambda}_{k}

that is SjkΛk=ϵ1ϵ2ΛjSjkS_{jk}{\Lambda}_{k}=\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}S_{jk} hence (b)(b) follows. Now solving the homogeneous Sylvester equation ϵ1ϵ2ΛjSjkSjkΛk=0\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}S_{jk}-S_{jk}{\Lambda}_{k}=0 we get Sjk=0S_{jk}=0 whenever σ(ϵ1ϵ2Λj)σ(Λk)=.\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star})\cap\sigma({\Lambda}_{k})=\emptyset. Hence (c)(c) follows. \hfill{\square} Then we have the following corollary.

Corollary 2.3.

From Proposition 2.2 it follows that Sjj=XjMXjΛj+ϵ1ϵ2ΛjXjMXj+XjDXjS_{jj}=X_{j}^{\star}MX_{j}{\Lambda}_{j}+\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}X_{j}^{\star}MX_{j}+X_{j}^{\star}DX_{j} for j{1,2}j\in\{1,2\}. Then Sjj=ϵ2XjMXjΛj+ϵ1ΛjXjMXj+ϵ2XjDXj=ϵ2Sjj.S_{jj}^{\star}=\epsilon_{2}X_{j}^{\star}MX_{j}{\Lambda}_{j}+\epsilon_{1}{\Lambda}_{j}^{\star}X_{j}^{\star}MX_{j}+\epsilon_{2}X_{j}^{\star}DX_{j}=\epsilon_{2}S_{jj}. Further by Proposition 2.2 (b)(b) it follows that SjjΛj=ϵ1ϵ2ΛjSjj=ϵ1(SjjΛj)S_{jj}{\Lambda}_{j}=\epsilon_{1}\epsilon_{2}{\Lambda}_{j}^{\star}S_{jj}=\epsilon_{1}(S_{jj}{\Lambda}_{j})^{\star}.

Suppose λ\lambda\in{\mathbb{C}} and xnx\in{\mathbb{C}}^{n} then using Corollary 2.3 we note that

(λ+ϵ1ϵ2λ)xMx+xDx{if (,ϵ2)=(,1),iif (,ϵ2)=(,1),=0if (,ϵ2)=(T,1).(\lambda+\epsilon_{1}\epsilon_{2}\lambda^{\star})x^{\star}Mx+x^{\star}Dx\begin{cases}\in{\mathbb{R}}&\text{if }({\star},\epsilon_{2})=(*,1),\\ \in\mathrm{i}{\mathbb{R}}&\text{if }({\star},\epsilon_{2})=(*,-1),\\ =0&\text{if }({\star},\epsilon_{2})=(T,-1).\end{cases}

It should be noted that the matrices X1X_{1} and X2X_{2} in Proposition 2.2 may be identical, then we have the following corollary.

Corollary 2.4.

Let (X,Λ)(X,{\Lambda}) be an invariant pair of λ2M+λD+Kn(,ϵ1,ϵ2)\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) with σ(ϵ1ϵ2Λ)σ(Λ)=\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}^{\star})\cap\sigma({\Lambda})=\emptyset leads to XMXΛ+ϵ1ϵ2ΛXMX+XDX=0.X^{\star}MX{\Lambda}+\epsilon_{1}\epsilon_{2}{\Lambda}^{\star}X^{\star}MX+X^{\star}DX=0.

On choosing X1,X2X_{1},\,X_{2} in Proposition 2.2 as column vectors we have the following corollary.

Corollary 2.5.

Let (λ1,x1)(\lambda_{1},x_{1}) and (λ2,x2)(\lambda_{2},x_{2}) be eigenpairs of λ2M+λD+Kn(,ϵ1,ϵ2).\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}). Then λ2x1Mx2+ϵ1ϵ2λ1x1Mx2+x1Dx2=0\lambda_{2}x_{1}^{\star}Mx_{2}+\epsilon_{1}\epsilon_{2}\lambda_{1}^{\star}x_{1}^{\star}Mx_{2}+x_{1}^{\star}Dx_{2}=0 whenever λ2ϵ1ϵ2λ1\lambda_{2}\neq\epsilon_{1}\epsilon_{2}\lambda^{\star}_{1}.

Corollary 2.6.

Let (λ0,x0)(\lambda_{0},x_{0}) be an eigenpair of Q(λ):=λ2M+λD+Kn(,ϵ1,ϵ2)Q(\lambda):=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) with λ0ϵ1ϵ2λ0\lambda_{0}\neq\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star}. Then Proposition 2.2 (a)(a) implies that ϵ1ϵ2λ0\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star} is also an eigenvalue of Q(λ)Q(\lambda) with corresponding eigenvector x~0\tilde{x}_{0}, that is (ϵ1ϵ2λ0,x~0)(\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star},\tilde{x}_{0}) is an eigenpair of Q(λ).Q(\lambda). Clearly (X0,Λ0)(X_{0},{\Lambda}_{0}) is an invariant pair of Q(λ)Q(\lambda) where X0:=[x0x~0]X_{0}:=\left[\begin{matrix}x_{0}&\tilde{x}_{0}\end{matrix}\right] and Λ0:=diag(λ0,ϵ1ϵ2λ0){\Lambda}_{0}:=\mathrm{diag}(\lambda_{0},\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star}). Setting s0:=2ϵ1ϵ2λ0x0Mx~0+x0Dx~0s_{0}:=2\epsilon_{1}\epsilon_{2}\lambda_{0}^{\star}x_{0}^{\star}M\tilde{x}_{0}+x_{0}^{\star}D\tilde{x}_{0} we obtain,

X0MX0Λ0+ϵ1ϵ2Λ0X0MX0+X0DX0=[0s0ϵ2s00]X_{0}^{\star}MX_{0}{\Lambda}_{0}+\epsilon_{1}\epsilon_{2}{\Lambda}_{0}^{\star}X_{0}^{\star}MX_{0}+X_{0}^{\star}DX_{0}=\left[\begin{matrix}0&s_{0}\\ \epsilon_{2}s_{0}^{\star}&0\end{matrix}\right].

3 Preserving invariant pairs under perturbations

In this section we determine perturbations of unstructured and structured quadratic matrix polynomials that reproduce a desired matrix pair as an invariant pair of the perturbed polynomials and preserve a desired invariant pair of the corresponding unperturbed polynomial.

3.1 Unstructured perturbations

First we show that given any minimal pair (X,Λ)𝕂n×p×𝕂p×p(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} can be reproduced as an invariant pair of infinitely many matrix polynomials as follows.

Proposition 3.1.

Let (X,Λ)𝕂n×p×𝕂p×p(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} be a minimal pair. Then any polynomial Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda] such that (X,Λ)(X,{\Lambda}) can be an invariant pair of Q(λ)Q(\lambda) is given by

M\displaystyle M =\displaystyle= Z1(In(XΛ2)QX(XΛ2))Z2(XΛ)QX(XΛ2)Z3XQX(XΛ2),\displaystyle Z_{1}\left(I_{n}-(X{\Lambda}^{2})Q_{X}(X{\Lambda}^{2})^{*}\right)-Z_{2}(X{\Lambda})Q_{X}(X{\Lambda}^{2})^{*}-Z_{3}XQ_{X}(X{\Lambda}^{2})^{*},
D\displaystyle D =\displaystyle= Z1(XΛ2)QX(XΛ)+Z2(In(XΛ)QX(XΛ))Z3XQX(XΛ),\displaystyle-Z_{1}(X{\Lambda}^{2})Q_{X}(X{\Lambda})^{*}+Z_{2}\left(I_{n}-(X{\Lambda})Q_{X}(X{\Lambda})^{*}\right)-Z_{3}XQ_{X}(X{\Lambda})^{*},
K\displaystyle K =\displaystyle= Z1(XΛ2)QXXZ2(XΛ)QXX+Z3(InXQXX),\displaystyle-Z_{1}(X{\Lambda}^{2})Q_{X}X^{*}-Z_{2}(X{\Lambda})Q_{X}X^{*}+Z_{3}(I_{n}-XQ_{X}X^{*}),

where QX=[(XΛ2)(XΛ2)+(XΛ)(XΛ)+XX]1Q_{X}=[(X{\Lambda}^{2})^{*}(X{\Lambda}^{2})+(X{\Lambda})^{*}(X{\Lambda})+X^{*}X]^{-1} and Zj𝕂n×n,Z_{j}\in{\mathbb{K}}^{n\times n}, j=1, 2, 3j=1,\,2,\,3.

Proof: The pair (X,Λ)(X,{\Lambda}) is an invariant pair of some Q(z)=z2M+zD+KQ(z)=z^{2}M+zD+K if and only if

Q(X,Λ)=0[MDK][XΛ2XΛX]=0,Q(X,{\Lambda})=0\,\,\Leftrightarrow\,\,\left[\begin{matrix}M&D&K\end{matrix}\right]\left[\begin{matrix}X{\Lambda}^{2}\\ X{\Lambda}\\ X\end{matrix}\right]=0,

which is a homogeneous linear system AY=0.AY=0. Any solution of this system is of the form A=Z(I3nYY),A=Z(I_{3n}-YY^{\dagger}), where Y=(YY)1YY^{\dagger}=(Y^{*}Y)^{-1}Y^{*} is the pseudoinverse of Y,Y, and Z𝕂n×3nZ\in{\mathbb{K}}^{n\times 3n} is arbitrary. Thus

[MDK]=Z(I3n[(XΛ2)QX(XΛ2)(XΛ2)QX(XΛ)(XΛ2)QXX(XΛ)QX(XΛ2)(XΛ)QX(XΛ)(XΛ)QXXXQX(XΛ2)XQX(XΛ)XQXX]),\left[\begin{matrix}M&D&K\end{matrix}\right]=Z\left(I_{3n}-\left[\begin{matrix}(X{\Lambda}^{2})Q_{X}(X{\Lambda}^{2})^{*}&(X{\Lambda}^{2})Q_{X}(X{\Lambda})^{*}&(X{\Lambda}^{2})Q_{X}X^{*}\\ (X{\Lambda})Q_{X}(X{\Lambda}^{2})^{*}&(X{\Lambda})Q_{X}(X{\Lambda})^{*}&(X{\Lambda})Q_{X}X^{*}\\ XQ_{X}(X{\Lambda}^{2})^{*}&XQ_{X}(X{\Lambda})^{*}&XQ_{X}X^{*}\end{matrix}\right]\right),

where QX=[(XΛ2)(XΛ2)+(XΛ)(XΛ)+XX]1.Q_{X}=[(X{\Lambda}^{2})^{*}(X{\Lambda}^{2})+(X{\Lambda})^{*}(X{\Lambda})+X^{*}X]^{-1}. Then the desired result follows by writing Z=[Z1Z2Z3],Z=[Z_{1}\,\,Z_{2}\,\,Z_{3}], Zj𝕂n×n.Z_{j}\in{\mathbb{K}}^{n\times n}. \square

Recall that the MUP or SEEP is concerned with finding perturbations of coefficients of a given quadratic matrix polynomial Q(λ)Q(\lambda) such that a set of known eigenvalues λic,\lambda_{i}^{c}, i=1,,pi=1,\ldots,p of Q(λ)Q(\lambda) are changed by a desired set of compatible scalars λia,i=1,,p\lambda_{i}^{a},i=1,\ldots,p as eigenvalues of perturbed quadratic matrix polynomials Q(λ)Q_{\triangle}(\lambda). If xicx_{i}^{c} is an eigenvector corresponding to the eigenvalue λic\lambda_{i}^{c} of Q(λ)Q(\lambda) then setting Λc=diag(λ1c,,λpc){\Lambda}_{c}=\mathrm{diag}(\lambda_{1}^{c},\ldots,\lambda_{p}^{c}) and Xc=[x1cxpc]X_{c}=\left[\begin{matrix}x_{1}^{c}&\ldots&x_{p}^{c}\end{matrix}\right] the MUP can be stated as changing the invariant pair (Xc,Λc)(X_{c},{\Lambda}_{c}) of Q(λ)Q(\lambda) by (Xc,Λa)(X_{c},{\Lambda}_{a}) as invariant pair of the perturbed polynomials Q(λ)Q_{\triangle}(\lambda), where Λa=diag(λ1a,,λpa).{\Lambda}_{a}=\mathrm{diag}(\lambda_{1}^{a},\ldots,\lambda_{p}^{a}). The following theorem provides explicit analytical expression of perturbations of the coefficients of Q(λ)Q(\lambda) that solves this problem when Λc,Λa{\Lambda}_{c},{\Lambda}_{a} are not necessarily diagonal matrices.

Theorem 3.2.

Let (Xc,Λc)𝕂n×p×𝕂p×p(X_{c},{\Lambda}_{c})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} be an invariant pair of the matrix polynomial Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda]. Let Λa𝕂p×p{\Lambda}_{a}\in{\mathbb{K}}^{p\times p} be such that (Xc,Λa)(X_{c},{\Lambda}_{a}) is minimal. Then any matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)𝕂n×n[λ]Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K)\in{\mathbb{K}}^{n\times n}[\lambda] for which (Xc,Λa)(X_{c},{\Lambda}_{a}) is an invariant pair is given by

M=Z1WR(Λa2)Xc,D=Z2WRΛaXc,K=Z3WRXc,\triangle M=Z_{1}-WR({\Lambda}_{a}^{2})^{*}X_{c}^{*},\,\,\,\,\triangle D=Z_{2}-WR{\Lambda}_{a}^{*}X_{c}^{*},\,\,\,\,\triangle K=Z_{3}-WRX_{c}^{*},

where W=MXc(Λa2Λc2)+DXc(ΛaΛc)+Z1XcΛa2+Z2XcΛa+Z3Xc,R=((XcΛa2)XcΛa2+(XcΛa)XcΛa+XcXc)1W=MX_{c}({\Lambda}_{a}^{2}-{\Lambda}_{c}^{2})+DX_{c}({\Lambda}_{a}-{\Lambda}_{c})+Z_{1}X_{c}{\Lambda}_{a}^{2}+Z_{2}X_{c}{\Lambda}_{a}+Z_{3}X_{c},\,R=((X_{c}{\Lambda}_{a}^{2})^{*}X_{c}{\Lambda}_{a}^{2}+(X_{c}{\Lambda}_{a})^{*}X_{c}{\Lambda}_{a}+X_{c}^{*}X_{c})^{-1} and Zj𝕂n×n,j=1, 2, 3Z_{j}\in{\mathbb{K}}^{n\times n},\,j=1,\,2,\,3 are arbitrary.

Proof: Since (Xc,Λc)(X_{c},{\Lambda}_{c}) is an invariant pair of Q(λ)Q(\lambda), that is, Q(Xc,Λc)=0,Q(X_{c},{\Lambda}_{c})=0, hence KXc=MXcΛc2DXcΛcKX_{c}=-MX_{c}{\Lambda}_{c}^{2}-DX_{c}{\Lambda}_{c}. Then (Xc,Λa)(X_{c},{\Lambda}_{a}) is an invariant pair of Q(λ)Q_{\triangle}(\lambda) if and only if the matrices M,D,K\triangle M,\,\triangle D,\,\triangle K satisfy

[MDK]A[XcΛa2XcΛaXc]X=MXc(Λc2Λa2)+DXc(ΛcΛa)B.\underbrace{\left[\begin{matrix}\triangle M&\triangle D&\triangle K\end{matrix}\right]}_{A}\underbrace{\left[\begin{matrix}X_{c}{\Lambda}_{a}^{2}\\ X_{c}{\Lambda}_{a}\\ X_{c}\end{matrix}\right]}_{X}=\underbrace{MX_{c}({\Lambda}_{c}^{2}-{\Lambda}_{a}^{2})+DX_{c}({\Lambda}_{c}-{\Lambda}_{a})}_{B}. (7)

Then the equation (7)(\ref{MUP_unstructured_eqn}) has a solution if and only if it satisfies BXX=BBX^{\dagger}X=B and any solution can be written as

A=BX+Z(I3nXX),A=BX^{\dagger}+Z(I_{3n}-XX^{\dagger}), (8)

where Z𝕂n×3nZ\in{\mathbb{K}}^{n\times 3n} is arbitrary and XX^{\dagger} denotes the Moore-Penrose pseudoinverse of XX [47]. As the matrix pair (Xc,Λa)(X_{c},{\Lambda}_{a}) is minimal so its minimality index must be less than or equal to 2,2, so it implies that XX is a full column rank matrix, and hence X=(XX)1X=RXX^{\dagger}=(X^{*}X)^{-1}X^{*}=RX^{*}, thus BXX=BBX^{\dagger}X=B holds. Therefore the desired result follows by setting Z=[Z1Z2Z3],Zj𝕂n×nZ=[Z_{1}\,\,Z_{2}\,\,Z_{3}],\,Z_{j}\in{\mathbb{K}}^{n\times n}. \hfill{\square}

In the following theorem we determine perturbations of a quadratic matrix polynomial such that the perturbed polynomials change an invariant pair of the corresponding unperturbed polynomial by a desired invariant pair while preserving another invariant pair of the unperturbed polynomial. Thus the following theorem provides solution for the Problem (P) for unstructured quadratic matrix polynomials.

Theorem 3.3.

Let (Xc,Λc)𝕂n×p1×𝕂p1×p1(X_{c},{\Lambda}_{c})\in{\mathbb{K}}^{n\times p_{1}}\times{\mathbb{K}}^{p_{1}\times p_{1}} and (Xf,Λf)𝕂n×p2×𝕂p2×p2(X_{f},{\Lambda}_{f})\in{\mathbb{K}}^{n\times p_{2}}\times{\mathbb{K}}^{p_{2}\times p_{2}} be two invariant pairs of Q(λ)=λ2M+λD+K𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{K}}^{n\times n}[\lambda]. Let (Xa,Λa)𝕂n×p1×𝕂p1×p1(X_{a},{\Lambda}_{a})\in{\mathbb{K}}^{n\times p_{1}}\times{\mathbb{K}}^{p_{1}\times p_{1}} be a matrix pair such that (X=[XaXf],Λ=diag(Λa,Λf))(X=[X_{a}\,\,X_{f}],{\Lambda}=\mathrm{diag}({\Lambda}_{a},{\Lambda}_{f})) is minimal. Then the perturbed polynomials Q(λ)=λ2(M+M)+λ(D+D)+(K+K)𝕂n×n[λ]Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K)\in{\mathbb{K}}^{n\times n}[\lambda] that reproduce the pairs (Xa,Λa)(X_{a},{\Lambda}_{a}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) as invariant pairs, are given by

M=Z1FM,D=Z2FD,K=Z3FK,\triangle M=Z_{1}-F_{M},\,\,\triangle D=Z_{2}-F_{D},\,\,\triangle K=Z_{3}-F_{K},

where

FM\displaystyle F_{M} =\displaystyle= (Q(Xa,Λa)+ZX~a)(U(XaΛa2)+V(XfΛf2))+(ZX~f)(V(XaΛa2)+W(XfΛf2)),\displaystyle(Q(X_{a},{\Lambda}_{a})+Z\widetilde{X}_{a})(U(X_{a}{\Lambda}_{a}^{2})^{*}+V(X_{f}{\Lambda}_{f}^{2})^{*})+(Z\widetilde{X}_{f})(V^{*}(X_{a}{\Lambda}_{a}^{2})^{*}+W(X_{f}{\Lambda}_{f}^{2})^{*}),
FD\displaystyle F_{D} =\displaystyle= (Q(Xa,Λa)+ZX~a)(U(XaΛa)+V(XfΛf))+(ZX~f)(V(XaΛa)+W(XfΛf)),\displaystyle(Q(X_{a},{\Lambda}_{a})+Z\widetilde{X}_{a})(U(X_{a}{\Lambda}_{a})^{*}+V(X_{f}{\Lambda}_{f})^{*})+(Z\widetilde{X}_{f})(V^{*}(X_{a}{\Lambda}_{a})^{*}+W(X_{f}{\Lambda}_{f})^{*}),
FK\displaystyle F_{K} =\displaystyle= (Q(Xa,Λa)+ZX~a)(UXa+VXf)+(ZX~f)(VXa+WXf),\displaystyle(Q(X_{a},{\Lambda}_{a})+Z\widetilde{X}_{a})(UX_{a}^{*}+VX_{f}^{*})+(Z\widetilde{X}_{f})(V^{*}X_{a}^{*}+WX_{f}^{*}),

with Z=[Z1Z2Z3],Zj𝕂n×n,j=1, 2, 3Z=[Z_{1}\,\,Z_{2}\,\,Z_{3}],Z_{j}\in{\mathbb{K}}^{n\times n},\,j=1,\,2,\,3 are arbitrary,

X~a=[XaΛa2XaΛaXa],X~f=[XfΛf2XfΛfXf],X~=[XΛ2XΛX],[Up1×p1Vp1×p2Vp2×p1Wp2×p2]=(X~X~)1.\widetilde{X}_{a}=\left[\begin{matrix}X_{a}{\Lambda}_{a}^{2}\\ X_{a}{\Lambda}_{a}\\ X_{a}\end{matrix}\right],\widetilde{X}_{f}=\left[\begin{matrix}X_{f}{\Lambda}_{f}^{2}\\ X_{f}{\Lambda}_{f}\\ X_{f}\end{matrix}\right],\widetilde{X}=\left[\begin{matrix}X{\Lambda}^{2}\\ X{\Lambda}\\ X\end{matrix}\right],\,\left[\begin{array}[]{c|c}U_{p_{1}\times p_{1}}&V_{p_{1}\times p_{2}}\\ \hline\cr V^{*}_{p_{2}\times p_{1}}&W_{p_{2}\times p_{2}}\end{array}\right]=(\widetilde{X}^{*}\widetilde{X})^{-1}.

Proof: Since (Xc,Λc)(X_{c},{\Lambda}_{c}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) are invariant pairs of Q(λ)Q(\lambda) so we have

Q(Xc,Λc)=0=Q(Xf,Λf).Q(X_{c},{\Lambda}_{c})=0=Q(X_{f},{\Lambda}_{f}). (9)

As (Xa,Λa)(X_{a},{\Lambda}_{a}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) need to be invariant pairs of the updated matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K) so the matrices M,D,K\triangle M,\,\triangle D,\,\triangle K must satisfy

Q(Xa,Λa)=0=Q(Xf,Λf).Q_{\triangle}(X_{a},{\Lambda}_{a})=0=Q_{\triangle}(X_{f},{\Lambda}_{f}). (10)

Then by equation (9)(\ref{uns_given_eqn})

Q(Xa,Λa)=Q(Xa,Λa),Q(Xf,Λf)=0,\triangle Q(X_{a},{\Lambda}_{a})=-Q(X_{a},{\Lambda}_{a}),\,\,\,\triangle Q(X_{f},{\Lambda}_{f})=0, (11)

where Q(λ)=λ2M+λD+K\triangle Q(\lambda)=\lambda^{2}\triangle M+\lambda\triangle D+\triangle K. Thus equation (11)(\ref{uns_needed_eqn2}) can be written as,

[MDK]AX~=[Q(Xa,Λa)0]B.\underbrace{\left[\begin{matrix}\triangle M&\triangle D&\triangle K\end{matrix}\right]}_{A}\widetilde{X}=\underbrace{\left[\begin{matrix}-Q(X_{a},{\Lambda}_{a})&0\end{matrix}\right]}_{B}. (12)

Then the desired result follows by equation (8). \square

It can be seen that the unstructured solution matrices M,D,K\triangle M,\,\triangle D,\,\triangle K require the knowledge of (Xf,Λf).(X_{f},{\Lambda}_{f}). However, this information is not always available in real world applications. In the next subsection on (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured quadratic matrix polynomials we find structured perturbations whose construction requires only the knowledge of invariant pair (Xc,Λc)(X_{c},{\Lambda}_{c}) and a property of spectrum σ(Λf)\sigma({\Lambda}_{f}) which is generically satisfied.

3.2 Structured perturbations

First we consider the problem of determining (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured polynomials that preserve a desired a pair (X,Λ)𝕂n×p×𝕂p×p,pn(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p},p\leq n as invariant pair.

Theorem 3.4.

Let (X,Λ)𝕂n×p×𝕂p×p,pn(X,{\Lambda})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p},\,p\leq n and rank(X)=p.\mathrm{rank}(X)=p. Then XX can be factorized as X=[Q1Q2][R0]X=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\left[\begin{matrix}R\\ 0\end{matrix}\right] where Q=[Q1Q2]𝕂n×nQ=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\in{\mathbb{K}}^{n\times n} satisfies QQ=QQ=InQQ^{\star}=Q^{\star}Q=I_{n} and R𝕂p×pR\in{\mathbb{K}}^{p\times p} is nonsingular. Then a set of polynomials Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2)Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) such that (X,Λ)(X,{\Lambda}) is an invariant pair of Q(λ)Q(\lambda) is given by

M=Q[0ϵ1M12M12M22]Q,D=Q[0ϵ2D12D12D22]Q,K=Q[0ϵ1K12K12K22]QM=Q\left[\begin{matrix}0&\epsilon_{1}M_{12}^{\star}\\ M_{12}&M_{22}\end{matrix}\right]Q^{\star},\,\,\,\,\,\,D=Q\left[\begin{matrix}0&\epsilon_{2}D_{12}^{\star}\\ D_{12}&D_{22}\end{matrix}\right]Q^{\star},\,\,\,\,\,\,K=Q\left[\begin{matrix}0&\epsilon_{1}K_{12}^{\star}\\ K_{12}&K_{22}\end{matrix}\right]Q^{\star}

where

M12\displaystyle M_{12} =\displaystyle= [Z1(IpΛ2S(Λ2))Z2ΛS(Λ2)Z3S(Λ2)]R1,\displaystyle[Z_{1}(I_{p}-{\Lambda}^{2}S({\Lambda}^{2})^{*})-Z_{2}{\Lambda}S({\Lambda}^{2})^{*}-Z_{3}S({\Lambda}^{2})^{*}]R^{-1},
D12\displaystyle D_{12} =\displaystyle= [Z1Λ2SΛ+Z2(IpΛSΛ)Z3SΛ]R1,\displaystyle[-Z_{1}{\Lambda}^{2}S{\Lambda}^{*}+Z_{2}(I_{p}-{\Lambda}S{\Lambda}^{*})-Z_{3}S{\Lambda}^{*}]R^{-1},
K12\displaystyle K_{12} =\displaystyle= [Z1Λ2SZ2ΛS+Z3(IpS)]R1,\displaystyle[-Z_{1}{\Lambda}^{2}S-Z_{2}{\Lambda}S+Z_{3}(I_{p}-S)]R^{-1},

M22=ϵ1M22,M_{22}^{\star}=\epsilon_{1}M_{22}, D22=ϵ2D22,D_{22}^{\star}=\epsilon_{2}D_{22}, K22=ϵ1K22K_{22}^{\star}=\epsilon_{1}K_{22} are arbitrary matrices of order (np)×(np),(n-p)\times(n-p), and Z1,Z2,Z3𝕂(np)×p,S=((Λ2)Λ2+ΛΛ+Ip)1Z_{1},Z_{2},Z_{3}\in{\mathbb{K}}^{(n-p)\times p},\,S=\left(({\Lambda}^{2})^{*}{\Lambda}^{2}+{\Lambda}^{*}{\Lambda}+I_{p}\right)^{-1}.

Proof: As rank(X)=p\mathrm{rank}(X)=p so there exists a nonsingular matrix R𝕂p×pR\in{\mathbb{K}}^{p\times p} such that X=[Q1Q2][R0]X=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\left[\begin{matrix}R\\ 0\end{matrix}\right] holds where Q=[Q1Q2]𝕂n×nQ=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\in{\mathbb{K}}^{n\times n} satisfies QQ=In=QQQ^{\star}Q=I_{n}=QQ^{\star}. Then the pair (X,Λ)(X,{\Lambda}) is an invariant pair of Q(λ)Q(\lambda) if and only if

QMQQXΛ2+QDQQXΛ+QKQQX=0\displaystyle Q^{{\star}}MQQ^{\star}X{\Lambda}^{2}+Q^{{\star}}DQQ^{\star}X{\Lambda}+Q^{{\star}}KQQ^{\star}X=0 (13)
\displaystyle\Rightarrow [M11RΛ2M12RΛ2]+[D11RΛD12RΛ]+[K11RK12R]=[00],\displaystyle\left[\begin{matrix}M_{11}R{\Lambda}^{2}\\ M_{12}R{\Lambda}^{2}\end{matrix}\right]+\left[\begin{matrix}D_{11}R{\Lambda}\\ D_{12}R{\Lambda}\end{matrix}\right]+\left[\begin{matrix}K_{11}R\\ K_{12}R\end{matrix}\right]=\left[\begin{matrix}0\\ 0\end{matrix}\right],

where

M=Q[M11ϵ1M12M12M22]Q,D=Q[D11ϵ2D12D12D22]Q,K=Q[K11ϵ1K12K12K22]Q.M=Q\left[\begin{matrix}M_{11}&\epsilon_{1}M_{12}^{\star}\\ M_{12}&M_{22}\end{matrix}\right]Q^{\star},\,D=Q\left[\begin{matrix}D_{11}&\epsilon_{2}D_{12}^{\star}\\ D_{12}&D_{22}\end{matrix}\right]Q^{\star},\,K=Q\left[\begin{matrix}K_{11}&\epsilon_{1}K_{12}^{\star}\\ K_{12}&K_{22}\end{matrix}\right]Q^{\star}.

Then setting M11=D11=K11=0,M_{11}=D_{11}=K_{11}=0, the equation (13) reduces to solving

[M12D12K12]R[Λ2ΛIp]=0.\left[\begin{matrix}M_{12}&D_{12}&K_{12}\end{matrix}\right]R\left[\begin{matrix}{\Lambda}^{2}\\ {\Lambda}\\ I_{p}\end{matrix}\right]=0.

Then by equation (8) the desired result follows. \square

Now we determine structure-preserving perturbations of a polynomial Q(λ)n(,ϵ1,ϵ2)Q(\lambda)\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) such that the perturbed polynomials Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) replace a known invariant pair (Xc,Λc)(X_{c},{\Lambda}_{c}) of Q(λ)Q(\lambda) and preserve a desired invariant pair (Xc,Λa)(X_{c},{\Lambda}_{a}) when Λa{\Lambda}_{a} has the same dimension as Λc{\Lambda}_{c} and XcX_{c} is a full column rank matrix.

Theorem 3.5.

Let (Xc,Λc)𝕂n×p×𝕂p×p(X_{c},{\Lambda}_{c})\in{\mathbb{K}}^{n\times p}\times{\mathbb{K}}^{p\times p} be an invariant pair of the polynomial Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2)Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) with rank(Xc)=pn\mathrm{rank}(X_{c})=p\leq n. Suppose Xc=[Q1Q2][R0]X_{c}=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\left[\begin{matrix}R\\ 0\end{matrix}\right] where R𝕂p×pR\in{\mathbb{K}}^{p\times p} is nonsingular and Q=[Q1Q2]𝕂n×nQ=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\in{\mathbb{K}}^{n\times n} satisfies QQ=QQ=InQ^{\star}Q=QQ^{\star}=I_{n}. Let Λa𝕂p×p{\Lambda}_{a}\in{\mathbb{K}}^{p\times p}. Set

M=Q[Q1MQ1ϵ1M12M12M22]Q,D=Q[Q1DQ1ϵ2D12D12D22]Q,K=Q[Q1KQ1ϵ1K12K12K22]Q\triangle M=Q\left[\begin{matrix}-Q_{1}^{\star}MQ_{1}&\epsilon_{1}M_{12}^{\star}\\ M_{12}&M_{22}\end{matrix}\right]Q^{\star},\triangle D=Q\left[\begin{matrix}-Q_{1}^{\star}DQ_{1}&\epsilon_{2}D_{12}^{\star}\\ D_{12}&D_{22}\end{matrix}\right]Q^{\star},\triangle K=Q\left[\begin{matrix}-Q_{1}^{\star}KQ_{1}&\epsilon_{1}K_{12}^{\star}\\ K_{12}&K_{22}\end{matrix}\right]Q^{\star}

with

M12=[Z1WS(Λa2)]R1,D12=[Z2WSΛa]R1,K12=[Z3WS]R1,M_{12}=[Z_{1}-WS({\Lambda}_{a}^{2})^{*}]R^{-1},\,\,\,\,D_{12}=[Z_{2}-WS{\Lambda}_{a}^{*}]R^{-1},\,\,\,\,K_{12}=[Z_{3}-WS]R^{-1},

M22=ϵ1M22,D22=ϵ2D22,K22=ϵ1K22M_{22}=\epsilon_{1}M_{22}^{\star},\,D_{22}=\epsilon_{2}D_{22}^{\star},\,K_{22}=\epsilon_{1}K_{22}^{\star} are arbitrary matrices of order (np)×(np)(n-p)\times(n-p) and W=Q2MXc(Λa2Λc2)+Q2DXc(ΛaΛc)+Z1Λa2+Z2Λa+Z3,S=((Λa2)Λa2+ΛaΛa+Ip)1,Z1,Z2,Z3𝕂(np)×pW=Q_{2}^{\star}MX_{c}({\Lambda}_{a}^{2}-{\Lambda}_{c}^{2})+Q_{2}^{\star}DX_{c}({\Lambda}_{a}-{\Lambda}_{c})+Z_{1}{\Lambda}_{a}^{2}+Z_{2}{\Lambda}_{a}+Z_{3},\,S=(({\Lambda}_{a}^{2})^{*}{\Lambda}_{a}^{2}+{\Lambda}_{a}^{*}{\Lambda}_{a}+I_{p})^{-1},\,Z_{1},\,Z_{2},\,Z_{3}\in{\mathbb{K}}^{(n-p)\times p}. Then (Xc,Λa)(X_{c},{\Lambda}_{a}) is an invariant pair of Q(λ)=λ2(M+M)+λ(D+D)+(K+K)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K)\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}).

Proof: Note that KXc=MXcΛc2DXcΛcKX_{c}=-MX_{c}{\Lambda}_{c}^{2}-DX_{c}{\Lambda}_{c} since (Xc,Λc)(X_{c},{\Lambda}_{c}) is an invariant pair of Q(λ),Q(\lambda), that is, Q(Xc,Λc)=0.Q(X_{c},{\Lambda}_{c})=0. Now (Xc,Λa)(X_{c},{\Lambda}_{a}) is an invariant pair of Q(λ)=λ2(M+M)+λ(D+D)+(K+K)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K) if and only if the matrices M,D,K\triangle M,\,\triangle D,\,\triangle K satisfy

QMQQXcΛa2+QDQQXcΛa+QKQQXc=Q[MXc(Λc2Λa2)+DXc(ΛcΛa)]\displaystyle Q^{\star}\triangle MQQ^{\star}X_{c}{\Lambda}_{a}^{2}+Q^{\star}\triangle DQQ^{\star}X_{c}{\Lambda}_{a}+Q^{\star}\triangle KQQ^{\star}X_{c}=Q^{\star}[MX_{c}({\Lambda}_{c}^{2}-{\Lambda}_{a}^{2})+DX_{c}({\Lambda}_{c}-{\Lambda}_{a})]
[M11RΛa2M12RΛa2]+[D11RΛaD12RΛa]+[K11RK12R]=[Q1MQ1R(Λc2Λa2)+Q1DQ1R(ΛcΛa)Q2(MXc(Λc2Λa2)+DXc(ΛcΛa))]\displaystyle\Rightarrow\left[\begin{matrix}M_{11}R{\Lambda}_{a}^{2}\\ M_{12}R{\Lambda}_{a}^{2}\end{matrix}\right]+\left[\begin{matrix}D_{11}R{\Lambda}_{a}\\ D_{12}R{\Lambda}_{a}\end{matrix}\right]+\left[\begin{matrix}K_{11}R\\ K_{12}R\end{matrix}\right]=\left[\begin{matrix}Q_{1}^{\star}MQ_{1}R({\Lambda}_{c}^{2}-{\Lambda}_{a}^{2})+Q_{1}^{\star}DQ_{1}R({\Lambda}_{c}-{\Lambda}_{a})\\ Q_{2}^{\star}\left(MX_{c}({\Lambda}_{c}^{2}-{\Lambda}_{a}^{2})+DX_{c}({\Lambda}_{c}-{\Lambda}_{a})\right)\end{matrix}\right] (14)

where M=Q[M11ϵ1M12M12M22]Q,D=Q[D11ϵ2D12D12D22]Q,K=Q[K11ϵ1K12K12K22]Q\triangle M=Q\left[\begin{matrix}M_{11}&\epsilon_{1}M_{12}^{\star}\\ M_{12}&M_{22}\end{matrix}\right]Q^{\star},\,\triangle D=Q\left[\begin{matrix}D_{11}&\epsilon_{2}D_{12}^{\star}\\ D_{12}&D_{22}\end{matrix}\right]Q^{\star},\,\triangle K=Q\left[\begin{matrix}K_{11}&\epsilon_{1}K_{12}^{\star}\\ K_{12}&K_{22}\end{matrix}\right]Q^{\star}. Since Xc=[Q1Q2][R0]=Q1RX_{c}=\left[\begin{matrix}Q_{1}&Q_{2}\end{matrix}\right]\left[\begin{matrix}R\\ 0\end{matrix}\right]=Q_{1}R and KXc=MXcΛc2DXcΛcKX_{c}=-MX_{c}{\Lambda}_{c}^{2}-DX_{c}{\Lambda}_{c} so setting M11=Q1MQ1,D11=Q1DQ1,K11=Q1KQ1M_{11}=-Q_{1}^{\star}MQ_{1},\,D_{11}=-Q_{1}^{\star}DQ_{1},\,K_{11}=-Q_{1}^{\star}KQ_{1} the equation (14) boils down to solving

[M12D12K12]R[Λa2ΛaIp]=Q2(MXc(Λc2Λa2)+DXc(ΛcΛa)).\left[\begin{matrix}M_{12}&D_{12}&K_{12}\end{matrix}\right]R\left[\begin{matrix}{\Lambda}_{a}^{2}\\ {\Lambda}_{a}\\ I_{p}\end{matrix}\right]=Q_{2}^{\star}\left(MX_{c}({\Lambda}_{c}^{2}-{\Lambda}_{a}^{2})+DX_{c}({\Lambda}_{c}-{\Lambda}_{a})\right).

Hence the desired result follows by using equation (8)(\ref{eqn:map}). \hfill{\square}

Now we present the solution of Problem (P) for (,ϵ1,ϵ2)(\star,\epsilon_{1},\epsilon_{2})-structured quadratic matrix polynomials when (Xf,Λf)(X_{f},{\Lambda}_{f}) need not be known. When XfX_{f} is completely unknown, we assume that Xa=XcPX_{a}=X_{c}P that is, (Xa)=(Xc)\mathfrak{R}(X_{a})=\mathfrak{R}(X_{c}) where (X)\mathfrak{R}(X) denotes the range space of XX and P𝕂p1×p1P\in{\mathbb{K}}^{p_{1}\times p_{1}} is nonsingular. First, we consider P=Ip1,P=I_{p_{1}}, that is, in the perturbed polynomials an invariant pair (Xc,Λc)(X_{c},{\Lambda}_{c}) is replaced by (Xc,Λa),(X_{c},{\Lambda}_{a}), ΛaΛc{\Lambda}_{a}\neq{\Lambda}_{c} while keeping another invariant pair (Xf,Λf)(X_{f},{\Lambda}_{f}) of the unperturbed polynomial unchanged.

Theorem 3.6.

Suppose (Xc,Λc)𝕂n×p1×𝕂p1×p1(X_{c},{\Lambda}_{c})\in{\mathbb{K}}^{n\times p_{1}}\times{\mathbb{K}}^{p_{1}\times p_{1}} and (Xf,Λf)𝕂n×p2×𝕂p2×p2(X_{f},{\Lambda}_{f})\in{\mathbb{K}}^{n\times p_{2}}\times{\mathbb{K}}^{p_{2}\times p_{2}} are invariant pairs of the quadratic matrix polynomial Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2).Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}). Let Λa𝕂p1×p1,{\Lambda}_{a}\in{\mathbb{K}}^{p_{1}\times p_{1}}, and denote S=XcMXcΛc+ϵ1ϵ2ΛcXcMXc+XcDXcS=X_{c}^{\star}MX_{c}{\Lambda}_{c}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}. Assume that

  1. 1.

    σ(Λc)σ(ϵ1ϵ2Λf)=,\sigma({\Lambda}_{c})\cap\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{f}^{\star})=\emptyset,

  2. 2.

    R:=XcMXcΛa+ϵ1ϵ2ΛcXcMXc+XcDXcR:=X_{c}^{\star}MX_{c}{\Lambda}_{a}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c} is nonsingular.

Then (Xc,Λa)(X_{c},{\Lambda}_{a}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) are invariant pairs of the quadratic matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)𝕂n×n[λ]Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K)\in{\mathbb{K}}^{n\times n}[\lambda] where

M\displaystyle\triangle M =\displaystyle= MXcZXcM,\displaystyle MX_{c}ZX_{c}^{\star}M,
D\displaystyle\triangle D =\displaystyle= ϵ1ϵ2MXcZΛcXcM+MXcZXcD+MXcΛcZXcM+DXcZXcM,\displaystyle\epsilon_{1}\epsilon_{2}MX_{c}Z{\Lambda}_{c}^{\star}X_{c}^{\star}M+MX_{c}ZX_{c}^{\star}D+MX_{c}{\Lambda}_{c}ZX_{c}^{\star}M+DX_{c}ZX_{c}^{\star}M,
K\displaystyle\triangle K =\displaystyle= ϵ1ϵ2MXcΛcZΛcXcM+MXcΛcZXcD+ϵ1ϵ2DXcZΛcXcM+DXcZXcD,\displaystyle\epsilon_{1}\epsilon_{2}MX_{c}{\Lambda}_{c}Z{\Lambda}_{c}^{\star}X_{c}^{\star}M+MX_{c}{\Lambda}_{c}ZX_{c}^{\star}D+\epsilon_{1}\epsilon_{2}DX_{c}Z{\Lambda}_{c}^{\star}X_{c}^{\star}M+DX_{c}ZX_{c}^{\star}D,

Z=(ΛcΛa)R1.Z=({\Lambda}_{c}-{\Lambda}_{a})R^{-1}. Moreover, if SΛa=ϵ1(SΛa)S{\Lambda}_{a}=\epsilon_{1}(S{\Lambda}_{a})^{\star} then Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}).

Proof: If (Xc,Λc)(X_{c},{\Lambda}_{c}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) are invariant pairs of Q(λ)Q(\lambda) then

Q(Xc,Λc)=0=Q(Xf,Λf).Q(X_{c},{\Lambda}_{c})=0=Q(X_{f},{\Lambda}_{f}). (15)

Consequently, by Proposition 2.2 (c)(c) we have XcMXfΛf+ϵ1ϵ2ΛcXcMXf+XcDXf=0X_{c}^{\star}MX_{f}{\Lambda}_{f}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{f}+X_{c}^{\star}DX_{f}=0 whenever σ(Λc)σ(ϵ1ϵ2Λf)=\sigma({\Lambda}_{c})\cap\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{f}^{\star})=\emptyset. Further, (Xf,Λf)(X_{f},{\Lambda}_{f}) is an invariant pair of Q(λ)Q_{\triangle}(\lambda) if Q(Xf,Λf)=0,Q_{\triangle}(X_{f},{\Lambda}_{f})=0, which means that M,D,K\triangle M,\,\triangle D,\,\triangle K must satisfy Q(Xf,Λf)=0,\triangle Q(X_{f},{\Lambda}_{f})=0, by equation (15)(\ref{given_eqn}) where Q(λ)=λ2M+λD+K\triangle Q(\lambda)=\lambda^{2}\triangle M+\lambda\triangle D+\triangle K.

Setting the matrices M,D,K\triangle M,\,\triangle D,\,\triangle K as described in the statement of the theorem, we obtain

Q(Xf,Λf)\displaystyle\triangle Q(X_{f},{\Lambda}_{f})
=\displaystyle= MXcZ(XcMXfΛf+ϵ1ϵ2ΛcXcMXf+XcDXf)Λf+MXcΛcZ(XcMXfΛf\displaystyle MX_{c}Z\left(X_{c}^{\star}MX_{f}{\Lambda}_{f}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{f}+X_{c}^{\star}DX_{f}\right){\Lambda}_{f}+MX_{c}{\Lambda}_{c}Z(X_{c}^{\star}MX_{f}{\Lambda}_{f}
+ϵ1ϵ2ΛcXcMXf+XcDXf)+DXcZ(XcMXfΛf+ϵ1ϵ2ΛcXcMXf+XcDXf)\displaystyle+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{f}+X_{c}^{\star}DX_{f})+DX_{c}Z\left(X_{c}^{\star}MX_{f}{\Lambda}_{f}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{f}+X_{c}^{\star}DX_{f}\right)
=\displaystyle= 0,\displaystyle 0,

where the last equality follows by using XcMXfΛf+ϵ1ϵ2ΛcXcMXf+XcDXf=0X_{c}^{\star}MX_{f}{\Lambda}_{f}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{f}+X_{c}^{\star}DX_{f}=0. Thus (Xf,Λf)(X_{f},{\Lambda}_{f}) is an invariant pair of Q(λ)=λ2(M+M)+λ(D+D)+(K+K)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K).

Next, using KXc=MXcΛc2DXcΛcKX_{c}=-MX_{c}{\Lambda}_{c}^{2}-DX_{c}{\Lambda}_{c} we obtain

(M+M)XcΛa2+(D+D)XcΛa+(K+K)Xc\displaystyle(M+\triangle M)X_{c}{\Lambda}_{a}^{2}+(D+\triangle D)X_{c}{\Lambda}_{a}+(K+\triangle K)X_{c}
=\displaystyle= MXcΛa2+DXcΛa+KXc+MXc(Λa2Λc2)+DXc(ΛaΛc)\displaystyle\triangle MX_{c}{\Lambda}_{a}^{2}+\triangle DX_{c}{\Lambda}_{a}+\triangle KX_{c}+MX_{c}({\Lambda}_{a}^{2}-{\Lambda}_{c}^{2})+DX_{c}({\Lambda}_{a}-{\Lambda}_{c})
=\displaystyle= MXc[Z(XcMXcΛa+ϵ1ϵ2ΛcXcMXc+XcDXc)Λa+ΛcZ(XcMXcΛa+ϵ1ϵ2ΛcXcMXc\displaystyle MX_{c}[Z(X_{c}^{\star}MX_{c}{\Lambda}_{a}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}){\Lambda}_{a}+{\Lambda}_{c}Z(X_{c}^{\star}MX_{c}{\Lambda}_{a}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}
+XcDXc)+Λa2Λc2]+DXc[Z(XcMXcΛa+ϵ1ϵ2ΛcXcMXc+XcDXc)+ΛaΛc]\displaystyle+X_{c}^{\star}DX_{c})+{\Lambda}_{a}^{2}-{\Lambda}_{c}^{2}]+DX_{c}\left[Z\left(X_{c}^{\star}MX_{c}{\Lambda}_{a}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}\right)+{\Lambda}_{a}-{\Lambda}_{c}\right]
=\displaystyle= MXc[ZRΛa+ΛcZR+Λa2Λc2]+DXc[ZR+ΛaΛc]\displaystyle MX_{c}\left[ZR{\Lambda}_{a}+{\Lambda}_{c}ZR+{\Lambda}_{a}^{2}-{\Lambda}_{c}^{2}\right]+DX_{c}\left[ZR+{\Lambda}_{a}-{\Lambda}_{c}\right]
=\displaystyle= 0,\displaystyle 0,

where the last equality follows by setting Z=(ΛcΛa)R1,Z=\left({\Lambda}_{c}-{\Lambda}_{a}\right)R^{-1}, R=XcMXcΛa+ϵ1ϵ2ΛcXcMXc+XcDXcR=X_{c}^{\star}MX_{c}{\Lambda}_{a}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}. Therefore (Xc,Λa)(X_{c},{\Lambda}_{a}) is an invariant pair of Q(λ).Q_{\triangle}(\lambda).

Finally, note that Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) if and only if M=ϵ1M,D=ϵ2D,K=ϵ1K.\triangle M=\epsilon_{1}\triangle M^{\star},\,\triangle D=\epsilon_{2}\triangle D^{\star},\,\triangle K=\epsilon_{1}\triangle K^{\star}. Hence Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) if Z=ϵ1ZZ=\epsilon_{1}Z^{\star} holds. Moreover, R=SXcMXc(ΛcΛa)R=S-X_{c}^{\star}MX_{c}({\Lambda}_{c}-{\Lambda}_{a}) where S=XcMXcΛc+ϵ1ϵ2ΛcXcMXc+XcDXcS=X_{c}^{\star}MX_{c}{\Lambda}_{c}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}. By Corollary 2.3, we have S=ϵ2SS^{\star}=\epsilon_{2}S and SΛc=ϵ1ϵ2ΛcS,S{\Lambda}_{c}=\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}S, that is, SΛc=ϵ1(SΛc)S{\Lambda}_{c}=\epsilon_{1}(S{\Lambda}_{c})^{\star}. Then

Z=ϵ1Z\displaystyle Z=\epsilon_{1}Z^{\star}
\displaystyle\Leftrightarrow R(ΛcΛa)=ϵ1(ΛcΛa)R\displaystyle R^{\star}({\Lambda}_{c}-{\Lambda}_{a})=\epsilon_{1}({\Lambda}_{c}^{\star}-{\Lambda}_{a}^{\star})R
\displaystyle\Leftrightarrow [Sϵ1(ΛcΛa)XcMXc](ΛcΛa)=ϵ1(ΛcΛa)[SXcMXc(ΛcΛa)]\displaystyle\left[S^{\star}-\epsilon_{1}({\Lambda}_{c}^{\star}-{\Lambda}_{a}^{\star})X_{c}^{\star}MX_{c}\right]({\Lambda}_{c}-{\Lambda}_{a})=\epsilon_{1}({\Lambda}_{c}^{\star}-{\Lambda}_{a}^{\star})\left[S-X_{c}^{\star}MX_{c}({\Lambda}_{c}-{\Lambda}_{a})\right]
\displaystyle\Leftrightarrow SΛcSΛa=ϵ1ΛcSϵ1ΛaS\displaystyle S^{\star}{\Lambda}_{c}-S^{\star}{\Lambda}_{a}=\epsilon_{1}{\Lambda}_{c}^{\star}S-\epsilon_{1}{\Lambda}_{a}^{\star}S
\displaystyle\Leftrightarrow SΛa=ϵ1(SΛa),\displaystyle S{\Lambda}_{a}=\epsilon_{1}(S{\Lambda}_{a})^{\star},

where the last statement follows by using S=ϵ2SS^{\star}=\epsilon_{2}S and SΛc=ϵ1ϵ2ΛcSS{\Lambda}_{c}=\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}S. Therefore the perturbed quadratic matrix polynomial Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) whenever SΛa=ϵ1(SΛa)S{\Lambda}_{a}=\epsilon_{1}(S{\Lambda}_{a})^{\star} holds. Hence the desired result follows. \hfill{\square}

Remark 3.7.

Note that the spectral condition (1)(1) in Theorem 3.6 is generically satisfied. Indeed, the spectrum of Λc{\Lambda}_{c} is closed with respect to (,ϵ1,ϵ2)(\star,\epsilon_{1},\epsilon_{2})-symmetry, that is, if σ(Λc)=σ(ϵ1ϵ2Λc)\sigma({\Lambda}_{c})=\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}) then the condition (1)(1) in Theorem 3.6 is satisfied if all the eigenvalues of Λc{\Lambda}_{c} are different from the eigenvalues of Λf{\Lambda}_{f}.

The next theorem describes a set of structured perturbations of a structured matrix polynomial that change the invariant pair (Xc,Λc)(X_{c},{\Lambda}_{c}) by (Xa=XcP,Λa)(X_{a}=X_{c}P,{\Lambda}_{a}) while fixing (Xf,Λf)(X_{f},{\Lambda}_{f}) as an invariant pair of the perturbed polynomials, where PP is nonsingular.

Theorem 3.8.

Suppose (Xc,Λc)𝕂n×p1×𝕂p1×p1(X_{c},{\Lambda}_{c})\in{\mathbb{K}}^{n\times p_{1}}\times{\mathbb{K}}^{p_{1}\times p_{1}} and (Xf,Λf)𝕂n×p2×𝕂p2×p2(X_{f},{\Lambda}_{f})\in{\mathbb{K}}^{n\times p_{2}}\times{\mathbb{K}}^{p_{2}\times p_{2}} are invariant pairs of a matrix polynomial Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2)Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}). Suppose Λa𝕂p1×p1{\Lambda}_{a}\in{\mathbb{K}}^{p_{1}\times p_{1}}. Let P𝕂p1×p1P\in{\mathbb{K}}^{p_{1}\times p_{1}} be a nonsingular matrix such that R:=XcMXcPΛaP1+ϵ1ϵ2ΛcXcMXc+XcDXcR:=X_{c}^{\star}MX_{c}P{\Lambda}_{a}P^{-1}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c} is nonsingular. Let σ(Λc)σ(ϵ1ϵ2Λf)=\sigma({\Lambda}_{c})\cap\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{f}^{\star})=\emptyset. Then (Xa=XcP,Λa)(X_{a}=X_{c}P,{\Lambda}_{a}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) are invariant pairs of the quadratic matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)𝕂n×n[λ]Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K)\in{\mathbb{K}}^{n\times n}[\lambda] where

M\displaystyle\triangle M =\displaystyle= MXcZXcM,\displaystyle MX_{c}ZX_{c}^{\star}M,
D\displaystyle\triangle D =\displaystyle= ϵ1ϵ2MXcZΛcXcM+MXcZXcD+MXcΛcZXcM+DXcZXcM,\displaystyle\epsilon_{1}\epsilon_{2}MX_{c}Z{\Lambda}_{c}^{\star}X_{c}^{\star}M+MX_{c}ZX_{c}^{\star}D+MX_{c}{\Lambda}_{c}ZX_{c}^{\star}M+DX_{c}ZX_{c}^{\star}M,
K\displaystyle\triangle K =\displaystyle= ϵ1ϵ2MXcΛcZΛcXcM+MXcΛcZXcD+ϵ1ϵ2DXcZΛcXcM+DXcZXcD,\displaystyle\epsilon_{1}\epsilon_{2}MX_{c}{\Lambda}_{c}Z{\Lambda}_{c}^{\star}X_{c}^{\star}M+MX_{c}{\Lambda}_{c}ZX_{c}^{\star}D+\epsilon_{1}\epsilon_{2}DX_{c}Z{\Lambda}_{c}^{\star}X_{c}^{\star}M+DX_{c}ZX_{c}^{\star}D,

Z=(ΛcPΛaP1)R1.Z=({\Lambda}_{c}-P{\Lambda}_{a}P^{-1})R^{-1}.

Moreover, if SPΛaP1=ϵ1(SPΛaP1)SP{\Lambda}_{a}P^{-1}=\epsilon_{1}(SP{\Lambda}_{a}P^{-1})^{\star} then Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)\in{\mathbb{Q}}_{n}(\star,\epsilon_{1},\epsilon_{2}) where S:=XcMXcΛc+ϵ1ϵ2ΛcXcMXc+XcDXcS:=X_{c}^{\star}MX_{c}{\Lambda}_{c}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}.

Proof: Since PP is nonsingular so it can be verified that (Xa=XcP,Λa)(X_{a}=X_{c}P,{\Lambda}_{a}) is an invariant pair of Q(λ)Q_{\triangle}(\lambda) if and only if (Xc,PΛaP1)(X_{c},P{\Lambda}_{a}P^{-1}) is an invariant pair of Q(λ)Q_{\triangle}(\lambda). Hence the desired result follows from Theorem 3.6. \hfill{\square}

Observe that the assumption of the existence of a nonsingular matrix P𝕂p1×p1P\in{\mathbb{K}}^{p_{1}\times p_{1}} in Theorem 3.8 such that R=XcMXcPΛaP1+ϵ1ϵ2ΛcXcMXc+XcDXcR=X_{c}^{\star}MX_{c}P{\Lambda}_{a}P^{-1}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c} is nonsingular, is not obvious. Indeed, there exists a nonsingular matrix PP such that RR will be nonsingular if and only if the matrix equation

(RR1)P(XcMXc)PΛa=0,(R-R_{1})P-(X_{c}^{\star}MX_{c})P{\Lambda}_{a}=0,

where R1=ϵ1ϵ2Λc(XcMXc)+(XcDXc)R_{1}=\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}(X_{c}^{\star}MX_{c})+(X_{c}^{\star}DX_{c}) has a nonsingular solution PP for a nonsingular matrix R.R. Setting R=SP1R=SP^{-1} for some nonsingular matrix S,S, the matrix equation reduces to

R1P+(XcMXc)PΛa=S,R_{1}P+(X_{c}^{\star}MX_{c})P{\Lambda}_{a}=S, (16)

and the problem is to find a nonsingular solution PP of this equation for a given nonsingular matrix S.S. If XcMXcX_{c}^{\star}MX_{c} is nonsingular then the above equation becomes the Sylvester equation of the form

TABT=C,TA-BT=C, (17)

where T=P,T=P, B=(XcMXc)1R1,B=-(X_{c}^{\star}MX_{c})^{-1}R_{1}, A=ΛaA={\Lambda}_{a}, and C=(XcMXc)1S,C=(X_{c}^{\star}MX_{c})^{-1}S, which is nonsingular. Now the equation (17) has a nonsingular solution TT if (C)(T)\mathfrak{R}(C)\subseteq\mathfrak{R}(T) and (B,C)(B,C) is controllable, that is, [CBCBp11C]\left[\begin{matrix}C&BC&\ldots&B^{p_{1}-1}C\end{matrix}\right] has rank p1p_{1} [Theorem 2, [29]]. Now since CC is nonsingular, it is evident that these conditions are satisfied, and hence such a nonsingular matrix PP can be obtained that satisfies equation (16).

We emphasize that the expressions of the perturbation matrices M,D,K\triangle M,\,\triangle D,\,\triangle K in Theorem 3.6 and Theorem 3.8 do not require knowledge of (Xf,Λf).(X_{f},{\Lambda}_{f}).

4 Solution of SEEP for quadratic matrix polynomials with symmetry structures

Let Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2)𝕂n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2})\subseteq{\mathbb{K}}^{n\times n}[\lambda] be a quadratic matrix polynomial. Then due to the symmetry structures of the coefficients, the polynomial Q(λ)Q(\lambda) inherits certain spectral symmetry, called eigenvalue-paring [41]. Besides, the algebraic, geometric, and partial multiplicities of the two eigenvalues in the pair are equal. Indeed, from Proposition 2.2 (a) it follows that if λ0\lambda_{0} is an eigenvalue of Q(λ)Q(\lambda) then ϵ1ϵ2λ0\epsilon_{1}\epsilon_{2}\lambda^{\star}_{0} is also an eigenvalue of Q(λ)Q(\lambda), when λ0ϵ1ϵ2λ0.\lambda_{0}\neq\epsilon_{1}\epsilon_{2}\lambda^{\star}_{0}. This induces an eigenvalue pairing (λ0,ϵ1ϵ2λ0)(\lambda_{0},\epsilon_{1}\epsilon_{2}\lambda^{\star}_{0}) of Q(λ).Q(\lambda). Then the SEEP for (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured polynomials is described as follows [15, 17, 43]. Let σsc={λjc,ϵ1ϵ2(λjc),λkc:λjcϵ1ϵ2(λjc),λkc=ϵ1ϵ2(λkc),j=1,,m,k=2m+1,,p}\sigma^{c}_{s}=\{\lambda_{j}^{c},\,\epsilon_{1}\epsilon_{2}(\lambda_{j}^{c})^{\star},\,\lambda_{k}^{c}:\lambda_{j}^{c}\neq\epsilon_{1}\epsilon_{2}(\lambda_{j}^{c})^{\star},\,\lambda_{k}^{c}=\epsilon_{1}\epsilon_{2}(\lambda_{k}^{c})^{\star},\,j=1,\ldots,m,\,k=2m+1,\ldots,p\} be a set of finite eigenvalues of Q(λ)Q(\lambda) that are known, and λlf,l=p+1,,2n\lambda_{l}^{f},\,l=p+1,\ldots,2n are the rest of the eigenvalues that need not be known. Then, given a set of scalars σsa={λja,ϵ1ϵ2(λja),λka:λjaϵ1ϵ2(λja),λka=ϵ1ϵ2(λka),j=1,,m,k=2m+1,,p},\sigma^{a}_{s}=\{\lambda_{j}^{a},\,\epsilon_{1}\epsilon_{2}(\lambda_{j}^{a})^{\star},\,\lambda_{k}^{a}:\lambda_{j}^{a}\neq\epsilon_{1}\epsilon_{2}(\lambda_{j}^{a})^{\star},\,\lambda_{k}^{a}=\epsilon_{1}\epsilon_{2}(\lambda_{k}^{a})^{\star},\,j=1,\ldots,m,\,k=2m+1,\ldots,p\}, determine polynomials Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2)\triangle Q(\lambda)=\lambda^{2}\triangle M+\lambda\triangle D+\triangle K\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) such that the complete set of eigenvalues of the perturbed polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K) is given by {λja,ϵ1ϵ2(λja),λka,λlf:1jm, 2m+1kp,p+1l2n}.\{\lambda^{a}_{j},\,\epsilon_{1}\epsilon_{2}(\lambda_{j}^{a})^{\star},\,\lambda_{k}^{a},\,\lambda^{f}_{l}:1\leq j\leq m,\,2m+1\leq k\leq p,\,p+1\leq l\leq 2n\}.

Then the SEEP can be defined in terms of preserving invariant pairs of structured polynomials under structure-preserving perturbations. The invariant pairs are defined by using eigenpairs of the polynomial. Let (Xc,Λc)(X_{c},{\Lambda}_{c}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) be the invariant pairs of a given polynomial Q(λ)n(,ϵ1,ϵ2)𝕂n×n[λ]Q(\lambda)\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2})\subset{\mathbb{K}}^{n\times n}[\lambda], where Λc,Λf{\Lambda}_{c},\,{\Lambda}_{f} are block diagonal matrices whose eigenvalues are eigenvalues of Q(λ)Q(\lambda) and the columns of Xc,XfX_{c},\,X_{f} are eigenvectors corresponding to those eigenvalues respectively. Then given a block diagonal matrix Λa{\Lambda}_{a} determine polynomials Q(λ)=λ2M+λD+K𝕂n×n[λ]\triangle Q(\lambda)=\lambda^{2}\triangle M+\lambda\triangle D+\triangle K\in{\mathbb{K}}^{n\times n}[\lambda] such that

Q(XcP,Λa)=0andQ(Xf,Λf)=0,Q_{\triangle}(X_{c}P,{\Lambda}_{a})=0\,\,\mbox{and}\,\,Q_{\triangle}(X_{f},{\Lambda}_{f})=0,

where Q(λ)=Q(λ)+Q(λ)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)=Q(\lambda)+\triangle Q(\lambda)\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) and PP is a suitably chosen nonsingular matrix. Note that the invariant pair (Xf,Λf)(X_{f},{\Lambda}_{f}) need not be known, and σ(Λc)σ(Λf)=.\sigma({\Lambda}_{c})\cap\sigma({\Lambda}_{f})=\emptyset. Below we describe the structure of the invariant pairs of Q(λ)Q(\lambda) that depends on the structure of the polynomial Q(λ).Q(\lambda).

  • Q(λ)n(,ϵ1,ϵ2)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(*,\epsilon_{1},\epsilon_{2})\subset{\mathbb{C}}^{n\times n}[\lambda]: Let xjc,x~jc,x^{c}_{j},\,\widetilde{x}^{c}_{j}, and xkcx_{k}^{c} denote the eigenvectors corresponding to the eigenvalues λjc,\lambda_{j}^{c}, ϵ1ϵ2λjc¯(λjc)\epsilon_{1}\epsilon_{2}\overline{\lambda_{j}^{c}}\,(\neq\lambda_{j}^{c}) and λkc=ϵ1ϵ2λkc¯\lambda_{k}^{c}=\epsilon_{1}\epsilon_{2}\overline{\lambda_{k}^{c}} of Q(λ)Q(\lambda) respectively, j=1,,m,k=2m+1,,pj=1,\ldots,m,\,k=2m+1,\ldots,p. Let λja,ϵ1ϵ2λja¯,λka,j=1,,m,k=2m+1,,p\lambda^{a}_{j},\,\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}},\,\lambda^{a}_{k},\,j=1,\ldots,m,\,k=2m+1,\ldots,p be a collection of scalars such that λjaϵ1ϵ2λja¯\lambda^{a}_{j}\neq\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}} and λka=ϵ1ϵ2λka¯\lambda^{a}_{k}=\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{k}}. Further, let xlfx_{l}^{f} denote an eigenvector corresponding to the eigenvalue λlf,\lambda_{l}^{f}, l=p+1,,2nl=p+1,\ldots,2n which need not be known. Then setting

    Λjc=[λjc00ϵ1ϵ2λjc¯],Λja=[λja00ϵ1ϵ2λja¯],Xjc=[xjcx~jc],j=1,,m,{\Lambda}_{j}^{c}=\left[\begin{matrix}\lambda_{j}^{c}&0\\ 0&\epsilon_{1}\epsilon_{2}\overline{\lambda^{c}_{j}}\end{matrix}\right],{\Lambda}^{a}_{j}=\left[\begin{matrix}\lambda_{j}^{a}&0\\ 0&\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}}\end{matrix}\right],X_{j}^{c}=\left[\begin{matrix}x_{j}^{c}&\widetilde{x}_{j}^{c}\end{matrix}\right],\,j=1,\ldots,m,

    we have

    Q(Xc,Λc)=0where{Λc=diag(Λ1c,,Λmc,λ2m+1c,,λpc),Xc=[X1cXmcx2m+1cxpc].Q(X_{c},{\Lambda}_{c})=0\,\,\mbox{where}\left\{\begin{array}[]{l}{\Lambda}_{c}=\mathrm{diag}({\Lambda}_{1}^{c},\ldots,{\Lambda}_{m}^{c},\lambda_{2m+1}^{c},\ldots,\lambda_{p}^{c}),\\ X_{c}=\left[\begin{matrix}X_{1}^{c}&\ldots&X_{m}^{c}&x_{2m+1}^{c}&\ldots&x_{p}^{c}\end{matrix}\right].\end{array}\right.

    Also, Λf=diag(λp+1f,,λ2nf),{\Lambda}_{f}=\mathrm{diag}(\lambda_{p+1}^{f},\ldots,\lambda_{2n}^{f}), Xf=[xp+1fx2nf]X_{f}=\left[\begin{matrix}x_{p+1}^{f}&\ldots&x_{2n}^{f}\end{matrix}\right] such that Q(Xf,Λf)=0,Q(X_{f},{\Lambda}_{f})=0, and Λa=diag(Λ1a,,Λma,λ2m+1a,,λpa).{\Lambda}_{a}=\mathrm{diag}({\Lambda}_{1}^{a},\ldots,{\Lambda}_{m}^{a},\lambda_{2m+1}^{a},\ldots,\lambda_{p}^{a}).

  • Q(λ)n(T,1,1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{C}}^{n\times n}[\lambda]: Let (λjc,xjc), 1jp(\lambda^{c}_{j},x_{j}^{c}),\,1\leq j\leq p and (λlf,xlf),p+1l2n(\lambda_{l}^{f},x_{l}^{f}),\,p+1\leq l\leq 2n be the collection of eigenpairs of Q(λ)Q(\lambda), where the later pairs need not be known. Then we have Q(Xc,Λc)=0Q(X_{c},{\Lambda}_{c})=0 where

    Λc=diag(λ1c,,λpc),Xc=[x1cxpc]{\Lambda}_{c}=\mathrm{diag}(\lambda_{1}^{c},\ldots,\lambda_{p}^{c}),X_{c}=\left[\begin{matrix}x_{1}^{c}&\ldots&x_{p}^{c}\end{matrix}\right]

    and Λa=diag(λ1a,,λpa){\Lambda}_{a}=\mathrm{diag}(\lambda^{a}_{1},\ldots,\lambda_{p}^{a}) where λja\lambda_{j}^{a}s are scalars, Λf=diag(λp+1f,,λ2nf),{\Lambda}_{f}=\mathrm{diag}(\lambda_{p+1}^{f},\ldots,\lambda_{2n}^{f}), Xf=[xp+1fx2nf]X_{f}=\left[\begin{matrix}x_{p+1}^{f}&\ldots&x_{2n}^{f}\end{matrix}\right] with Q(Xf,Λf)=0.Q(X_{f},{\Lambda}_{f})=0.

  • Q(λ)n(T,1,1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{R}}^{n\times n}[\lambda]: Let (λjc,xjc),(\lambda_{j}^{c},x_{j}^{c}), (λjc¯,xjc¯)(\overline{\lambda_{j}^{c}},\overline{x_{j}^{c}}) and (λkc,xkc)(\lambda_{k}^{c},x_{k}^{c}) are known eigenpairs of Q(λ),Q(\lambda), where λjc,\lambda_{j}^{c}\in{\mathbb{C}}\smallsetminus{\mathbb{R}}, λkc\lambda^{c}_{k}\in{\mathbb{R}}, 1jm,1\leq j\leq m, 2m+1kp.2m+1\leq k\leq p. Let λlf,\lambda_{l}^{f}, p+1l2np+1\leq l\leq 2n be the rest of the eigenvalues of Q(λ)Q(\lambda) and xlfx^{f}_{l} are the corresponding eigenvectors, which need not be known. Let λja,λka,j=1,,m,k=2m+1,,p\lambda^{a}_{j},\,\lambda^{a}_{k},\,j=1,\ldots,m,\,k=2m+1,\ldots,p be a collection of scalars such that λja,λka\lambda^{a}_{j}\in{\mathbb{C}}\smallsetminus{\mathbb{R}},\,\lambda^{a}_{k}\in{\mathbb{R}}. Then setting

    Λjc=[𝗋𝖾(λjc)𝗂𝗆(λjc)𝗂𝗆(λjc)𝗋𝖾(λjc)],Λja=[𝗋𝖾(λja)𝗂𝗆(λja)𝗂𝗆(λja)𝗋𝖾(λja)],Xjc=[𝗋𝖾(xjc)𝗂𝗆(xjc)],j=1,,m,{\Lambda}_{j}^{c}=\left[\begin{matrix}\mathsf{re}(\lambda_{j}^{c})&\mathsf{im}(\lambda_{j}^{c})\\ -\mathsf{im}(\lambda_{j}^{c})&\mathsf{re}(\lambda_{j}^{c})\end{matrix}\right],\,{\Lambda}^{a}_{j}=\left[\begin{matrix}\mathsf{re}(\lambda_{j}^{a})&\mathsf{im}(\lambda_{j}^{a})\\ -\mathsf{im}(\lambda_{j}^{a})&\mathsf{re}(\lambda_{j}^{a})\end{matrix}\right],\,X_{j}^{c}=\left[\begin{matrix}\mathsf{re}(x_{j}^{c})&\mathsf{im}(x_{j}^{c})\end{matrix}\right],\,j=1,\ldots,m,

    we have

    Q(Xc,Λc)=0where{Λc=diag(Λ1c,,Λmc,λ2m+1c,,λpc),Xc=[X1cXmcx2m+1cxpc].Q(X_{c},{\Lambda}_{c})=0\,\,\mbox{where}\left\{\begin{array}[]{l}{\Lambda}_{c}=\mathrm{diag}({\Lambda}_{1}^{c},\ldots,{\Lambda}_{m}^{c},\lambda_{2m+1}^{c},\ldots,\lambda_{p}^{c}),\\ X_{c}=\left[\begin{matrix}X_{1}^{c}&\ldots&X_{m}^{c}&x_{2m+1}^{c}&\ldots&x_{p}^{c}\end{matrix}\right].\end{array}\right.

    Also, Λa=diag(Λ1a,,Λma,λ2m+1a,,λpa).{\Lambda}_{a}=\mathrm{diag}({\Lambda}_{1}^{a},\ldots,{\Lambda}_{m}^{a},\lambda_{2m+1}^{a},\ldots,\lambda_{p}^{a}). Besides, Λf=diag(λp+1f,,λ2nf),{\Lambda}_{f}=\mathrm{diag}(\lambda_{p+1}^{f},\ldots,\lambda_{2n}^{f}),
    Xf=[xp+1fx2nf]X_{f}=\left[\begin{matrix}x_{p+1}^{f}&\ldots&x_{2n}^{f}\end{matrix}\right] such that Q(Xf,Λf)=0.Q(X_{f},{\Lambda}_{f})=0.

  • Q(λ)n(T,ϵ1,ϵ1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,\epsilon_{1},-\epsilon_{1})\subset{\mathbb{C}}^{n\times n}[\lambda]: Let (λjc,xjc),(\lambda_{j}^{c},x_{j}^{c}), (λjc,x~jc),j=1,,p(-\lambda_{j}^{c},\widetilde{x}_{j}^{c}),\,j=1,\ldots,p be known eigenpairs of Q(λ),Q(\lambda), where 0λjc.0\neq\lambda_{j}^{c}\in{\mathbb{C}}. Let λlf, 2p+1l2n\lambda_{l}^{f},\,2p+1\leq l\leq 2n be the rest of the eigenvalues of Q(λ),Q(\lambda), and xlfx_{l}^{f} are corresponding eigenvectors, which need not be known. Let λja,j=1,,p\lambda^{a}_{j},\,j=1,\ldots,p be a collection of scalars. Then setting

    Λjc=[λjc00λjc],Λja=[λja00λja],Xjc=[xjcx~jc],j=1,,p,{\Lambda}_{j}^{c}=\left[\begin{matrix}\lambda_{j}^{c}&0\\ 0&-\lambda^{c}_{j}\end{matrix}\right],\,{\Lambda}^{a}_{j}=\left[\begin{matrix}\lambda_{j}^{a}&0\\ 0&-\lambda^{a}_{j}\end{matrix}\right],\,X_{j}^{c}=\left[\begin{matrix}x_{j}^{c}&\widetilde{x}_{j}^{c}\end{matrix}\right],\,j=1,\ldots,p,

    we have

    Q(Xc,Λc)=0where{Λc=diag(Λ1c,,Λpc),Xc=[X1cXpc].Q(X_{c},{\Lambda}_{c})=0\,\,\mbox{where}\left\{\begin{array}[]{l}{\Lambda}_{c}=\mathrm{diag}({\Lambda}_{1}^{c},\ldots,{\Lambda}_{p}^{c}),\\ X_{c}=\left[\begin{matrix}X_{1}^{c}&\ldots&X_{p}^{c}\end{matrix}\right].\end{array}\right.

    Also, Λf=diag(λ2p+1f,,λ2nf),{\Lambda}_{f}=\mathrm{diag}(\lambda_{2p+1}^{f},\ldots,\lambda_{2n}^{f}), Xf=[x2p+1fx2nf]X_{f}=\left[\begin{matrix}x_{2p+1}^{f}&\ldots&x_{2n}^{f}\end{matrix}\right] such that Q(Xf,Λf)=0,Q(X_{f},{\Lambda}_{f})=0, and Λa=diag(Λ1a,,Λpa).{\Lambda}_{a}=\mathrm{diag}({\Lambda}_{1}^{a},\ldots,{\Lambda}_{p}^{a}).

  • Q(λ)n(T,ϵ1,ϵ1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,\epsilon_{1},-\epsilon_{1})\subset{\mathbb{R}}^{n\times n}[\lambda]: Let (λjc,xjc),(λjc¯,xjc¯),(λjc,x~jc),(λjc¯,x~jc¯),(\lambda^{c}_{j},x^{c}_{j}),\,(\overline{\lambda^{c}_{j}},\overline{x^{c}_{j}}),\,(-\lambda^{c}_{j},\tilde{x}^{c}_{j}),\,(-\overline{\lambda^{c}_{j}},\overline{\tilde{x}^{c}_{j}}), (λkc,xkc),(λkc¯,xkc¯),(\lambda^{c}_{k},x^{c}_{k}),\,(\overline{\lambda^{c}_{k}},\overline{x^{c}_{k}}), (λlc,xlc),(λlc,x~lc)(\lambda^{c}_{l},x^{c}_{l}),\,(-\lambda^{c}_{l},\tilde{x}^{c}_{l}) be eigenpairs of Q(λ)Q(\lambda) with λjc0(i),\lambda^{c}_{j}\neq 0\in{\mathbb{C}}\smallsetminus({\mathbb{R}}\cup\mathrm{i}{\mathbb{R}}), λkc0i,\lambda^{c}_{k}\neq 0\in\mathrm{i}{\mathbb{R}}, λlc0,\lambda^{c}_{l}\neq 0\in{\mathbb{R}}, j=1,,m1,k=m1+1,,m2,l=m2+1,,pj=1,\ldots,m_{1},\,k=m_{1}+1,\ldots,m_{2},\,l=m_{2}+1,\ldots,p. Let λrf,r=2m1+2p+1,,2n\lambda^{f}_{r},\,r=2m_{1}+2p+1,\ldots,2n be the rest of the eigenvalues of Q(λ)Q(\lambda) corresponding to eigenvectors xrfx_{r}^{f}, which need not be known. Let λja,λka,λla,j=1,,m1,k=m1+1,,m2,l=m2+1,,p\lambda^{a}_{j},\,\lambda^{a}_{k},\,\lambda^{a}_{l},\,j=1,\ldots,m_{1},\,k=m_{1}+1,\ldots,m_{2},\,l=m_{2}+1,\ldots,p be a collection of scalars where λja(i),λkai\lambda^{a}_{j}\in{\mathbb{C}}\smallsetminus({\mathbb{R}}\cup\mathrm{i}{\mathbb{R}}),\,\lambda^{a}_{k}\in\mathrm{i}{\mathbb{R}} and λla\lambda^{a}_{l}\in{\mathbb{R}}. Then setting

    Λ~jc=[𝗋𝖾(λjc)𝗂𝗆(λjc)𝗂𝗆(λjc)𝗋𝖾(λjc)],Λkc=[0𝗂𝗆(λkc)𝗂𝗆(λkc)0],Λlc=[λlc00λlc],\displaystyle\tilde{{\Lambda}}^{c}_{j}=\left[\begin{matrix}\mathsf{re}(\lambda^{c}_{j})&\mathsf{im}(\lambda^{c}_{j})\\ -\mathsf{im}(\lambda^{c}_{j})&\mathsf{re}(\lambda^{c}_{j})\end{matrix}\right],\,{\Lambda}^{c}_{k}=\left[\begin{matrix}0&\mathsf{im}(\lambda^{c}_{k})\\ -\mathsf{im}(\lambda^{c}_{k})&0\end{matrix}\right],\,{\Lambda}^{c}_{l}=\left[\begin{matrix}\lambda^{c}_{l}&0\\ 0&-\lambda^{c}_{l}\end{matrix}\right],
    Λ~ja=[𝗋𝖾(λja)𝗂𝗆(λja)𝗂𝗆(λja)𝗋𝖾(λja)],Λka=[0𝗂𝗆(λka)𝗂𝗆(λka)0],Λla=[λla00λla],\displaystyle\tilde{{\Lambda}}^{a}_{j}=\left[\begin{matrix}\mathsf{re}(\lambda^{a}_{j})&\mathsf{im}(\lambda^{a}_{j})\\ -\mathsf{im}(\lambda^{a}_{j})&\mathsf{re}(\lambda^{a}_{j})\end{matrix}\right],\,{\Lambda}^{a}_{k}=\left[\begin{matrix}0&\mathsf{im}(\lambda^{a}_{k})\\ -\mathsf{im}(\lambda^{a}_{k})&0\end{matrix}\right],\,{\Lambda}^{a}_{l}=\left[\begin{matrix}\lambda^{a}_{l}&0\\ 0&-\lambda^{a}_{l}\end{matrix}\right],

    we have

    Q(Xc,Λc)=0where{Λc=diag(Λ1c,,Λm1c,Λm1+1c,,Λm2c,Λm2+1c,,Λpc),Xc=[X1cXm1cXm1+1cXm2cXm2+1cXpc],Q(X_{c},{\Lambda}_{c})=0\,\,\mbox{where}\left\{\begin{array}[]{l}{\Lambda}_{c}=\mathrm{diag}({\Lambda}_{1}^{c},\ldots,{\Lambda}_{m_{1}}^{c},{\Lambda}^{c}_{m_{1}+1},\ldots,{\Lambda}_{m_{2}}^{c},{\Lambda}_{m_{2}+1}^{c},\ldots,{\Lambda}_{p}^{c}),\\ X_{c}=\left[\begin{matrix}X_{1}^{c}&\ldots&X_{m_{1}}^{c}\,\,X_{m_{1}+1}^{c}&\ldots&X_{m_{2}}^{c}\,\,X_{m_{2}+1}^{c}&\ldots&X_{p}^{c}\end{matrix}\right],\end{array}\right.

    where Λjc=diag(Λ~jc,Λ~jc){\Lambda}^{c}_{j}=\mathrm{diag}(\tilde{{\Lambda}}^{c}_{j},\,-\tilde{{\Lambda}}^{c}_{j}), Xjc=[GjcHjc],Gjc=[𝗋𝖾(xjc)𝗂𝗆(xjc)],Hjc=[𝗋𝖾(x~jc)𝗂𝗆(x~jc)],Xkc=[𝗋𝖾(xkc)𝗂𝗆(xkc)],X^{c}_{j}=\left[\begin{matrix}G^{c}_{j}&H^{c}_{j}\end{matrix}\right],\,G^{c}_{j}=\left[\begin{matrix}\mathsf{re}(x^{c}_{j})&\mathsf{im}(x^{c}_{j})\end{matrix}\right],\,H^{c}_{j}=\left[\begin{matrix}\mathsf{re}(\tilde{x}^{c}_{j})&\mathsf{im}(\tilde{x}^{c}_{j})\end{matrix}\right],\\ X^{c}_{k}=\left[\begin{matrix}\mathsf{re}(x^{c}_{k})&\mathsf{im}(x^{c}_{k})\end{matrix}\right], Xlc=[xlcx~lc].X^{c}_{l}=\left[\begin{matrix}x^{c}_{l}&\tilde{x}^{c}_{l}\end{matrix}\right]. Also,

    Λa=diag(Λ1a,,Λm1a,Λm1+1a,,Λm2a,Λm2+1a,,Λpa),{\Lambda}_{a}=\mathrm{diag}\left({\Lambda}^{a}_{1},\ldots,{\Lambda}^{a}_{m_{1}},\,{\Lambda}^{a}_{m_{1}+1},\ldots,{\Lambda}^{a}_{m_{2}},\,{\Lambda}^{a}_{m_{2}+1},\ldots,{\Lambda}^{a}_{p}\right),

    where Λja=diag(Λ~ja,Λ~ja),j=1,,m1,{\Lambda}^{a}_{j}=\mathrm{diag}(\tilde{{\Lambda}}^{a}_{j},\,-\tilde{{\Lambda}}^{a}_{j}),\,j=1,\ldots,m_{1}, and Λf=diag(λ2m1+2p+1f,,λ2nf),{\Lambda}_{f}=\mathrm{diag}(\lambda_{2m_{1}+2p+1}^{f},\ldots,\lambda_{2n}^{f}), Xf=[x2m1+2p+1fx2nf]\linebreak X_{f}=\left[\begin{matrix}x_{2m_{1}+2p+1}^{f}&\ldots&x_{2n}^{f}\end{matrix}\right] with Q(Xf,Λf)=0.Q(X_{f},{\Lambda}_{f})=0.

Then analytical solutions of MUP can be obtained by employing Theorem 3.5 for structured polynomials. The following corollary provides analytical solutions of SEEP for (,ϵ1,ϵ2)({\star},\epsilon_{1},\epsilon_{2})-structured polynomials by employing Theorem 3.8.

Corollary 4.1.

Let (Xc,Λc)(X_{c},{\Lambda}_{c}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) be the invariant pairs corresponding to eigenpairs of a polynomial Q(λ)n(,ϵ1,ϵ2)Q(\lambda)\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) as discussed above and the later pair need not be known. Let the eigenvalues of Λc{\Lambda}_{c} be simple and distinct. If σ(Λc)σ(ϵ1ϵ2Λf)=\sigma({\Lambda}_{c})\cap\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{f}^{\star})=\emptyset then the polynomial Q(λ)=λ2M+λD+Kn(,ϵ1,ϵ2)\triangle Q(\lambda)=\lambda^{2}\triangle M+\lambda\triangle D+\triangle K\in{\mathbb{Q}}_{n}({\star},\epsilon_{1},\epsilon_{2}) such that Q(Xa=XcP,Λa)=0=Q(Xf,Λf)Q_{\triangle}(X_{a}=X_{c}P,{\Lambda}_{a})=0=Q_{\triangle}(X_{f},{\Lambda}_{f}) where Q(λ)=Q(λ)+Q(λ)Q_{\triangle}(\lambda)=Q(\lambda)+\triangle Q(\lambda) is given by Theorem 3.8, and PP is an invertible matrix that depends on {,T},{\star}\in\{*,T\}, ϵ1,ϵ2{1,1}\epsilon_{1},\epsilon_{2}\in\{1,-1\} such that R=XcMXcPΛaP1+ϵ1ϵ2ΛcXcMXc+XcDXcR=X_{c}^{\star}MX_{c}P{\Lambda}_{a}P^{-1}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c} is nonsingular. The solution matrix PP which defines the structured polynomial Q(λ)\triangle Q(\lambda) is constructed as:

  • Q(λ)n(,ϵ1,ϵ2)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(*,\epsilon_{1},\epsilon_{2})\subset{\mathbb{C}}^{n\times n}[\lambda]: P=diag(P1,,Pm,Ip2m)P=\mathrm{diag}(P_{1},\ldots,P_{m},I_{p-2m}) where

    Pj=[ϵ1αjaj(λjaϵ1ϵ2λja¯)1bjϵ1(λjaϵ1ϵ2λja¯)1ajϵ1bjα¯j],P_{j}=\left[\begin{matrix}\sqrt{\epsilon_{1}}\alpha_{j}a_{j}&(\lambda^{a}_{j}-\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}})^{-1}b_{j}\\ -\epsilon_{1}(\lambda^{a}_{j}-\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}})^{-1}a_{j}&\sqrt{\epsilon_{1}}b_{j}\overline{\alpha}_{j}\end{matrix}\right],

    αj=2ϵ1ϵ2λjc¯(xjc)Mx~jc+(xjc)Dx~jc,\alpha_{j}=2\epsilon_{1}\epsilon_{2}\overline{\lambda^{c}_{j}}(x^{c}_{j})^{*}M\tilde{x}^{c}_{j}+(x^{c}_{j})^{*}D\tilde{x}^{c}_{j}, and aj,bj,1jma_{j},b_{j},1\leq j\leq m are arbitrarily chosen nonzero real numbers.

  • Q(λ)n(T,1,1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{C}}^{n\times n}[\lambda]: PP is a diagonal matrix of order p×pp\times p with non-zero diagonal entries.

  • Q(λ)n(T,1,1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{R}}^{n\times n}[\lambda]: P=diag(P1,,Pm,Ip2m),P=\mathrm{diag}(P_{1},\ldots,P_{m},I_{p-2m}), where

    Pj={[ajβjajαjαj2βjajαj+αj2aj],ifαj0[aj1ajaj2],otherwiseP_{j}=\left\{\begin{array}[]{l}\left[\begin{matrix}a_{j}&\dfrac{\beta_{j}a_{j}}{\alpha_{j}}-\dfrac{\alpha_{j}}{2}\\ \dfrac{\beta_{j}a_{j}}{\alpha_{j}}+\dfrac{\alpha_{j}}{2}&-a_{j}\end{matrix}\right],\,\,\mbox{if}\,\,\alpha_{j}\neq 0\\ \left[\begin{matrix}a_{j}&1\\ -a_{j}&a_{j}^{2}\end{matrix}\right],\,\,\mbox{otherwise}\end{array}\right.

    αj=𝗋𝖾(γj)/2,βj=𝗂𝗆(γj)/2,\alpha_{j}=\mathsf{re}(\gamma_{j})/2,\,\beta_{j}=-\mathsf{im}(\gamma_{j})/2, γj=2λjc¯(xjc)Mxjc¯+(xjc)Dxjc¯,\gamma_{j}=2\overline{\lambda^{c}_{j}}(x^{c}_{j})^{*}M\overline{x^{c}_{j}}+(x^{c}_{j})^{*}D\overline{x^{c}_{j}}, and aja_{j} is an arbitrarily chosen real number such that PjP_{j} is nonsingular.

  • Q(λ)n(T,ϵ1,ϵ1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,\epsilon_{1},-\epsilon_{1})\subset{\mathbb{C}}^{n\times n}[\lambda]:

    P={diag(P1,,Pp),ifϵ1=1WI2,ifϵ1=1,P=\left\{\begin{array}[]{l}\mathrm{diag}(P_{1},\ldots,P_{p}),\,\,\mbox{if}\,\,\epsilon_{1}=1\\ W\otimes I_{2},\,\,\mbox{if}\,\,\epsilon_{1}=-1,\end{array}\right.

    where Pj2×2P_{j}\in{\mathbb{C}}^{2\times 2} is an arbitrary nonsingular matrix, and WW is a diagonal matrix of order p×pp\times p with non-zero diagonal entries, \otimes denotes the Kronecker product of matrices.

  • Q(λ)n(T,ϵ1,ϵ1)n×n[λ]:Q(\lambda)\in{\mathbb{Q}}_{n}(T,\epsilon_{1},-\epsilon_{1})\subset{\mathbb{R}}^{n\times n}[\lambda]: Set γj=2λjc¯(xjc)Mx~jc¯+(xjc)Dx~jc¯,αj=𝗋𝖾(γj)/2,βj=𝗂𝗆(γj)/2\gamma_{j}=-2\overline{\lambda^{c}_{j}}(x^{c}_{j})^{*}M\overline{\tilde{x}^{c}_{j}}+(x^{c}_{j})^{*}D\overline{\tilde{x}^{c}_{j}},\,\alpha_{j}=\mathsf{re}(\gamma_{j})/2,\,\beta_{j}=-\mathsf{im}(\gamma_{j})/2. Then

    P={diag(P1,,Pm1,Pm1+1,,Pm2,Pm2+1,,Pp),ifϵ1=1,diag(P1,,Pm1,I2p2m1),ifϵ1=1,P=\left\{\begin{array}[]{l}\mathrm{diag}(P_{1},\ldots,P_{m_{1}},P_{m_{1}+1},\ldots,P_{m_{2}},P_{m_{2}+1},\ldots,P_{p}),\,\,\mbox{if}\,\,\epsilon_{1}=1,\\ \mathrm{diag}(P_{1},\ldots,P_{m_{1}},I_{2p-2m_{1}}),\,\,\mbox{if}\,\,\epsilon_{1}=-1,\end{array}\right.

    where

    Pj\displaystyle P_{j} =\displaystyle= {[0𝔓j𝔓j0],ifϵ1=1,[0𝔓j𝔓j0],ifϵ1=1,𝔓j={[rjβjrjαjαj2βjrjαj+αj2rj]ifαj0,[rj1rjrj2],ifαj=0,rj, 1jm1\displaystyle\left\{\begin{array}[]{l}\left[\begin{matrix}0&\mathfrak{P}_{j}\\ -\mathfrak{P}_{j}&0\end{matrix}\right],\,\,\mbox{if}\,\,\epsilon_{1}=1,\\ \left[\begin{matrix}0&\mathfrak{P}_{j}\\ \mathfrak{P}_{j}&0\end{matrix}\right],\,\,\mbox{if}\,\,\epsilon_{1}=-1,\end{array}\right.\mathfrak{P}_{j}=\left\{\begin{array}[]{l}\left[\begin{matrix}r_{j}&\frac{\beta_{j}r_{j}}{\alpha_{j}}-\frac{\alpha_{j}}{2}\\ \frac{\beta_{j}r_{j}}{\alpha_{j}}+\frac{\alpha_{j}}{2}&-r_{j}\end{matrix}\right]\,\,\mbox{if}\,\,\alpha_{j}\neq 0,\\ \left[\begin{matrix}r_{j}&1\\ -r_{j}&r_{j}^{2}\end{matrix}\right],\,\,\mbox{if}\,\,\alpha_{j}=0,\end{array}\right.r_{j}\in{\mathbb{R}},\,1\leq j\leq m_{1}
    Pk\displaystyle P_{k} =\displaystyle= [akbkckck],ak,bk,ck,m1+1km2,\displaystyle\left[\begin{matrix}a_{k}&b_{k}\\ -c_{k}&c_{k}\end{matrix}\right],\,\,a_{k},\,b_{k},\,c_{k}\in{\mathbb{R}},\,m_{1}+1\leq k\leq m_{2},

    and Pl2×2,m2+1lp.P_{l}\in{\mathbb{R}}^{2\times 2},\,m_{2}+1\leq l\leq p. The free parameters are chosen such that Pj,Pk,PlP_{j},\,P_{k},\,P_{l} are nonsingular matrices for all j,k,l.j,\,k,\,l.

Proof: The proof follows from the fact that SPΛaP1=ϵ1(SPΛaP1)SP{\Lambda}_{a}P^{-1}=\epsilon_{1}(SP{\Lambda}_{a}P^{-1})^{\star} due to Theorem 3.8 and Proposition 2.2, where S=XcMXcΛc+ϵ1ϵ2ΛcXcMXc+XcDXcS=X_{c}^{\star}MX_{c}{\Lambda}_{c}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{\star}X_{c}^{\star}MX_{c}+X_{c}^{\star}DX_{c}. Indeed, MXcΛc2+DXcΛc+KXc=0MX_{c}{\Lambda}_{c}^{2}+DX_{c}{\Lambda}_{c}+KX_{c}=0 holds. Since σ(Λc)σ(ϵ1ϵ2Λf)=\sigma({\Lambda}_{c})\cap\sigma(\epsilon_{1}\epsilon_{2}{\Lambda}_{f}^{\star})=\emptyset and nonsingular matrix PP is chosen such that RR is invertible then the expression for structured perturbation matrices M,D,K\triangle M,\,\triangle D,\,\triangle K follows from Theorem 3.8.

Let Q(λ)n(,ϵ1,ϵ2).Q(\lambda)\in{\mathbb{Q}}_{n}(*,\epsilon_{1},\epsilon_{2}). As the eigenvalues λjc,ϵ1ϵ2λjc¯,λkc\lambda^{c}_{j},\,\epsilon_{1}\epsilon_{2}\overline{\lambda^{c}_{j}},\,\lambda^{c}_{k} are distinct, applying Proposition 2.2 (c)(c) we obtain S=XcMXcΛc+ϵ1ϵ2ΛcXcMXc+XcDXc=diag(S1,,Sm,s2m+1,,sp)S=X_{c}^{*}MX_{c}{\Lambda}_{c}+\epsilon_{1}\epsilon_{2}{\Lambda}_{c}^{*}X_{c}^{*}MX_{c}+X_{c}^{*}DX_{c}=\mathrm{diag}(S_{1},\ldots,S_{m},\,s_{2m+1},\ldots,s_{p}) where Sj=(Xjc)MXjcΛjc+ϵ1ϵ2(Λjc)(Xjc)MXjc+(Xjc)DXjc,sk=2λkc(xkc)Mxkc+(xkc)Dxkc,j=1,,m,k=2m+1,,pS_{j}=(X^{c}_{j})^{*}MX^{c}_{j}{\Lambda}^{c}_{j}+\epsilon_{1}\epsilon_{2}({\Lambda}^{c}_{j})^{*}(X^{c}_{j})^{*}MX^{c}_{j}+(X^{c}_{j})^{*}DX^{c}_{j},\,s_{k}=2\lambda^{c}_{k}(x^{c}_{k})^{*}Mx^{c}_{k}+(x^{c}_{k})^{*}Dx^{c}_{k},\,j=1,\ldots,m,\,k=2m+1,\ldots,p. Again by Corollary 2.6 it follows that

Sj=(Xjc)MXjcΛjc+ϵ1ϵ2(Λjc)(Xjc)MXjc+(Xjc)DXjc=[0αjϵ2α¯j0]S_{j}=(X^{c}_{j})^{*}MX^{c}_{j}{\Lambda}^{c}_{j}+\epsilon_{1}\epsilon_{2}({\Lambda}^{c}_{j})^{*}(X^{c}_{j})^{*}MX^{c}_{j}+(X^{c}_{j})^{*}DX^{c}_{j}=\left[\begin{matrix}0&\alpha_{j}\\ \epsilon_{2}\overline{\alpha}_{j}&0\end{matrix}\right]

where αj=2ϵ1ϵ2λjc¯(xjc)Mx~jc+(xjc)Dx~jc\alpha_{j}=2\epsilon_{1}\epsilon_{2}\overline{\lambda^{c}_{j}}(x^{c}_{j})^{*}M\tilde{x}^{c}_{j}+(x^{c}_{j})^{*}D\tilde{x}^{c}_{j}. Then choosing P=diag(P1,,Pm,Ip2m)P=\mbox{diag}\left(P_{1},\ldots,P_{m},\,I_{p-2m}\right) with

Pj=[ϵ1αjaj(λaϵ1ϵ2λja¯)1bjϵ1(λaϵ1ϵ2λja¯)1ajϵ1bjα¯j]P_{j}=\left[\begin{matrix}\sqrt{\epsilon_{1}}\alpha_{j}a_{j}&(\lambda^{a}-\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}})^{-1}b_{j}\\ -\epsilon_{1}(\lambda^{a}-\epsilon_{1}\epsilon_{2}\overline{\lambda^{a}_{j}})^{-1}a_{j}&\sqrt{\epsilon_{1}}b_{j}\overline{\alpha}_{j}\end{matrix}\right]

it follows that SPΛaP1=ϵ1(SPΛaP1)SP{\Lambda}_{a}P^{-1}=\epsilon_{1}(SP{\Lambda}_{a}P^{-1})^{*} holds, where aj,bja_{j},\,b_{j} are arbitrarily chosen nonzero real numbers. Hence, by Theorem 3.8 it follows that Z=ϵ1ZZ=\epsilon_{1}Z^{*} holds, thus M=ϵ1M,D=ϵ2D,K=ϵ1K\triangle M=\epsilon_{1}\triangle M^{*},\,\triangle D=\epsilon_{2}\triangle D^{*},\,\triangle K=\epsilon_{1}\triangle K^{*} holds. Therefore the updated quadratic matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)n(,ϵ1,ϵ2)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K)\in{\mathbb{Q}}_{n}(*,\epsilon_{1},\epsilon_{2}). The results for other structures follow using similar arguments. \hfill{\square}

Next we present the following remark.

Remark 4.2.

(Recovery of results in Chu et al. [15], and Kuo and Datta [36]) Let Q(λ)=λ2M+λD+KQ(\lambda)=\lambda^{2}M+\lambda D+K be a polynomial such that M,KM,K are real symmetric positive definite matrices and DD is a real symmetric matrix. Thus the eigenvalues that are to be changed, are nonzero, and hence Λc{\Lambda}_{c} is nonsingular. Now Q(Xc,Λc)=0Q(X_{c},{\Lambda}_{c})=0 implies MXcΛc+DXc=KXcΛc1MX_{c}{\Lambda}_{c}+DX_{c}=-KX_{c}{\Lambda}_{c}^{-1} and ΛcTXcTM+XcTD=(ΛcT)1XcTK{\Lambda}_{c}^{T}X_{c}^{T}M+X_{c}^{T}D=-({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K. Assume that eigenvalues of Λa{\Lambda}_{a} are nonzero. Thus by Corollary 4.1 when Q(λ)n(T,1,1)n×n[λ]Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{R}}^{n\times n}[\lambda] we have

M\displaystyle\triangle M =\displaystyle= MXcZXcTM,\displaystyle MX_{c}ZX_{c}^{T}M,
D\displaystyle\triangle D =\displaystyle= MXcZ(ΛcTXcTM+XcTD)+(MXcΛc+DXc)ZXcTM\displaystyle MX_{c}Z\left({\Lambda}_{c}^{T}X_{c}^{T}M+X_{c}^{T}D\right)+\left(MX_{c}{\Lambda}_{c}+DX_{c}\right)ZX_{c}^{T}M
=\displaystyle= MXcZ(ΛcT)1XcTKKXcΛc1ZXcTM,\displaystyle-MX_{c}Z({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K-KX_{c}{\Lambda}_{c}^{-1}ZX_{c}^{T}M,
K\displaystyle\triangle K =\displaystyle= (MXcΛc+DXc)Z(ΛcTXcTM+XcTD)=KXcΛc1Z(ΛcT)1XcTK,\displaystyle\left(MX_{c}{\Lambda}_{c}+DX_{c}\right)Z\left({\Lambda}_{c}^{T}X_{c}^{T}M+X_{c}^{T}D\right)=KX_{c}{\Lambda}_{c}^{-1}Z({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K,

where

Z\displaystyle Z =\displaystyle= (ΛcPΛaP1)(XcTMXcPΛaP1+(ΛcTXcTM+XcTD)Xc)1\displaystyle\left({\Lambda}_{c}-P{\Lambda}_{a}P^{-1}\right)\left(X_{c}^{T}MX_{c}P{\Lambda}_{a}P^{-1}+({\Lambda}_{c}^{T}X_{c}^{T}M+X_{c}^{T}D)X_{c}\right)^{-1}
=\displaystyle= (ΛcPΛaP1)(XcTMXcPΛaP1(ΛcT)1XcTKXc)1\displaystyle\left({\Lambda}_{c}-P{\Lambda}_{a}P^{-1}\right)\left(X_{c}^{T}MX_{c}P{\Lambda}_{a}P^{-1}-({\Lambda}_{c}^{T})^{-1}X_{c}^{T}KX_{c}\right)^{-1}
=\displaystyle= (PΛaΛcP)((ΛcT)1XcTKXcPXcTMXcPΛa)1\displaystyle\left(P{\Lambda}_{a}-{\Lambda}_{c}P\right)\left(({\Lambda}_{c}^{T})^{-1}X_{c}^{T}KX_{c}P-X_{c}^{T}MX_{c}P{\Lambda}_{a}\right)^{-1}
=\displaystyle= (PΛaΛcP)(XcTKXcPΛcTXcTMXcPΛa)1ΛcT.\displaystyle\left(P{\Lambda}_{a}-{\Lambda}_{c}P\right)\left(X_{c}^{T}KX_{c}P-{\Lambda}_{c}^{T}X_{c}^{T}MX_{c}P{\Lambda}_{a}\right)^{-1}{\Lambda}_{c}^{T}.

Besides, choosing PP as described in Corollary 4.1 in such a way that ((PΛaP1)TXcTMXcXcTKXcΛc1)(ΛcPΛaP1)((P{\Lambda}_{a}P^{-1})^{T}X_{c}^{T}MX_{c}-X_{c}^{T}KX_{c}{\Lambda}_{c}^{-1})({\Lambda}_{c}-P{\Lambda}_{a}P^{-1}) (which is symmetric due to the definition of PP) is a positive semi-definite matrix, we obtain a positive semi-definite matrix ZZ and consequently M,\triangle M, K\triangle K are also symmetric positive semi-definite matrices. Thus M+MM+\triangle M and K+KK+\triangle K are real symmetric positive definite matrices. It can be verified that the structured perturbations proposed in [15] and the obtained perturbations are same.

On the other hand, MM is a nonsingular symmetric matrix, and D,KD,\,K are symmetric matrices in [36]. The perturbations proposed in [36] are given by

M\displaystyle\triangle M =\displaystyle= (d1)M+MXcΦXcTM,\displaystyle(d-1)M+MX_{c}\Phi X_{c}^{T}M,
D\displaystyle\triangle D =\displaystyle= (d1)DMXcΦ(ΛcT)1XcTKKXcΛc1ΦXcTM,\displaystyle(d-1)D-MX_{c}\Phi({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K-KX_{c}{\Lambda}_{c}^{-1}\Phi X_{c}^{T}M,
K\displaystyle\triangle K =\displaystyle= (d1)K+KXcΛc1Φ(ΛcT)1XcTK\displaystyle(d-1)K+KX_{c}{\Lambda}_{c}^{-1}\Phi({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K

where d0d\neq 0\in{\mathbb{R}} and Φ\Phi is a symmetric matrix that can be obtained by solving the Sylvester equation

(ΘTM1K1Λc1)ΦM1+M1Φ(M1Θ(ΛcT)1K1)=d(ΛcΘ)TM1+dM1(ΛcΘ)\left(\Theta^{T}M_{1}-K_{1}{\Lambda}_{c}^{-1}\right)\Phi M_{1}+M_{1}\Phi\left(M_{1}\Theta-({\Lambda}_{c}^{T})^{-1}K_{1}\right)=d\left({\Lambda}_{c}-\Theta\right)^{T}M_{1}+dM_{1}\left({\Lambda}_{c}-\Theta\right)

with M1=XcTMXc,K1=XcTKXc,Θ=PΛaP1M_{1}=X_{c}^{T}MX_{c},\,K_{1}=X_{c}^{T}KX_{c},\,\Theta=P{\Lambda}_{a}P^{-1}. Note that these expressions coincide with the expressions obtained in this paper as given above by setting d=1,d=1, and Φ=Z.\Phi=Z.

It may further be noted that the matrix Λc{\Lambda}_{c} is considered as a nonsingular matrix in [36], that is, the proposed perturbations can change only the nonzero eigenvalues.

Now summarizing the above results we provide an algorithm for solving SEEP that arises in structural models, that is, for quadratic polynomials Q(λ)=λ2M+λD+Kn×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{R}}^{n\times n}[\lambda] with M,KM,K are positive definite matrices, and DD is a symmetric matrix.

 
Algorithm
 
Input: Real symmetric positive definite matrices M,KM,\,K and real symmetric matrix DD.
Output: Real symmetric positive semi-definite matrices M,K\triangle M,\,\triangle K and real symmetric matrix D\triangle D.
1. Form the matrices Xc,Λc,ΛaX_{c},\,{\Lambda}_{c},\,{\Lambda}_{a} as mentioned above.
2. Choose the matrix PP as defined in Corollary 4.1 for the case when Q(λ)=λ2M+λD+Kn(T,1,1)n×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{R}}^{n\times n}[\lambda] in such a way that ((PΛaP1)TXcTMXcXcTKXcΛc1)(ΛcPΛaP1)((P{\Lambda}_{a}P^{-1})^{T}X_{c}^{T}MX_{c}-X_{c}^{T}KX_{c}{\Lambda}_{c}^{-1})({\Lambda}_{c}-P{\Lambda}_{a}P^{-1}) is positive semi-definite.
3. Compute the matrix ZZ as defined in Remark 4.2. Consequently we obtain the positive semi-definite matrices M,K\triangle M,\,\triangle K and symmetric matrix D\triangle D by applying Remark 4.2.
 

Next we have the following remark.

Remark 4.3.

(Recovery of results in Mao and Dai [43]) Let Q(λ)=λ2M+λD+Kn×n[λ]Q(\lambda)=\lambda^{2}M+\lambda D+K\in{\mathbb{R}}^{n\times n}[\lambda] be a matrix polynomial with M,KM,\,K as symmetric positive definite matrices and DD is a skew-symmetric matrix. Then Q(λ)Q(\lambda) has purely imaginary eigenvalues. Thus (λ0,x0)(\lambda_{0},x_{0}) is an eigenpair of Q(λ)Q(\lambda) if and only if (λ¯0,x¯0)(\overline{\lambda}_{0},\overline{x}_{0}) is also an eigenpair of Q(λ)Q(\lambda) where 0λ0i0\neq\lambda_{0}\in\mathrm{i}{\mathbb{R}}. Then the matrix Λc=diag(Λ1c,,Λpc){\Lambda}_{c}=\mathrm{diag}({\Lambda}^{c}_{1},\ldots,{\Lambda}^{c}_{p}) is nonsingular, where Λjc=[0𝗂𝗆(λjc)𝗂𝗆(λjc)0],j=1,,p.{\Lambda}^{c}_{j}=\left[\begin{matrix}0&\mathsf{im}(\lambda^{c}_{j})\\ -\mathsf{im}(\lambda^{c}_{j})&0\end{matrix}\right],\,j=1,\ldots,p. Since Λc{\Lambda}_{c} is invertible so we have MXcΛc+DXc=KXcΛc1MX_{c}{\Lambda}_{c}+DX_{c}=-KX_{c}{\Lambda}_{c}^{-1} and ΛcTXcTMXcTD=(ΛcT)1XcTK{\Lambda}_{c}^{T}X_{c}^{T}M-X_{c}^{T}D=-({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K. Let λja0i,j=1,,p.\lambda^{a}_{j}\neq 0\in\mathrm{i}{\mathbb{R}},\,j=1,\ldots,p. Then set Λa=diag(Λ1a,,Λpa){\Lambda}_{a}=\mathrm{diag}({\Lambda}^{a}_{1},\ldots,{\Lambda}^{a}_{p}) with Λja=[0𝗂𝗆(λja)𝗂𝗆(λja)0]{\Lambda}^{a}_{j}=\left[\begin{matrix}0&\mathsf{im}(\lambda^{a}_{j})\\ -\mathsf{im}(\lambda^{a}_{j})&0\end{matrix}\right].

Therefore by Corollary 4.1 when Q(λ)n(T,1,1)n×n[λ]Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,-1)\subset{\mathbb{R}}^{n\times n}[\lambda], we have

M\displaystyle\triangle M =\displaystyle= MXcZXcTM,\displaystyle MX_{c}ZX_{c}^{T}M,
D\displaystyle\triangle D =\displaystyle= MXcZ(ΛcTXcTMXcTD)+(MXcΛc+DXc)ZXcTM\displaystyle-MX_{c}Z\left({\Lambda}_{c}^{T}X_{c}^{T}M-X_{c}^{T}D\right)+\left(MX_{c}{\Lambda}_{c}+DX_{c}\right)ZX_{c}^{T}M
=\displaystyle= MXcZ(ΛcT)1XcTKKXcΛc1ZXcTM,\displaystyle MX_{c}Z({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K-KX_{c}{\Lambda}_{c}^{-1}ZX_{c}^{T}M,
K\displaystyle\triangle K =\displaystyle= (MXcΛc+DXc)Z(ΛcTXcTMXcTD)=KXcΛc1Z(ΛcT)1XcTK\displaystyle-\left(MX_{c}{\Lambda}_{c}+DX_{c}\right)Z\left({\Lambda}_{c}^{T}X_{c}^{T}M-X_{c}^{T}D\right)=-KX_{c}{\Lambda}_{c}^{-1}Z({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K\,\,

with

Z\displaystyle Z =\displaystyle= (ΛcPΛaP1)(XcTMXcPΛaP1(ΛcTXcTMXcTD)Xc)1\displaystyle\left({\Lambda}_{c}-P{\Lambda}_{a}P^{-1}\right)\left(X_{c}^{T}MX_{c}P{\Lambda}_{a}P^{-1}-({\Lambda}_{c}^{T}X_{c}^{T}M-X_{c}^{T}D)X_{c}\right)^{-1}
=\displaystyle= (ΛcPPΛa)(XcTMXcPΛa+(ΛcT)1XcTKXcP)1\displaystyle\left({\Lambda}_{c}P-P{\Lambda}_{a}\right)\left(X_{c}^{T}MX_{c}P{\Lambda}_{a}+({\Lambda}_{c}^{T})^{-1}X_{c}^{T}KX_{c}P\right)^{-1}

where P=diag(P1,,Pp),P=\mathrm{diag}(P_{1},\ldots,P_{p}), Pj=[ajbjcjcj],j=1,,pP_{j}=\left[\begin{matrix}a_{j}&b_{j}\\ -c_{j}&c_{j}\end{matrix}\right],\,j=1,\ldots,p and aj,bj,cja_{j},\,b_{j},\,c_{j} are arbitrarily chosen real numbers for which PP and RR in Corollary 4.1 are nonsingular matrices. Note that for such choice of P,P, the matrix ZZ is real symmetric and

Z=(PTXcTKXcΛc1ΛaPTXcTMXc)1(ΛaPTPTΛc)Z=\left(P^{T}X_{c}^{T}KX_{c}{\Lambda}_{c}^{-1}-{\Lambda}_{a}P^{T}X_{c}^{T}MX_{c}\right)^{-1}\left({\Lambda}_{a}P^{T}-P^{T}{\Lambda}_{c}\right)

since ΛcT=Λc,ΛaT=Λa.{\Lambda}_{c}^{T}=-{\Lambda}_{c},\,{\Lambda}_{a}^{T}=-{\Lambda}_{a}.

Observe that this solution realizes the solution obtained by Mao and Dai in [43] as follows. The perturbations obtained in their paper (Theorem 3.1 and Theorem 3.2, [43]) are given by

M\displaystyle\triangle M =\displaystyle= MXcEXcTM,\displaystyle MX_{c}EX_{c}^{T}M,
D\displaystyle\triangle D =\displaystyle= MXcE(ΛcT)1XcTKKXcΛc1EXcTM,\displaystyle MX_{c}E({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K-KX_{c}{\Lambda}_{c}^{-1}EX_{c}^{T}M,
K\displaystyle\triangle K =\displaystyle= KXcΛc1E(ΛcT)1XcTK\displaystyle-KX_{c}{\Lambda}_{c}^{-1}E({\Lambda}_{c}^{T})^{-1}X_{c}^{T}K

with

E=(PTXcTKXcΛc1ΛaPTXcTMXc)1(ΛaPTPTΛc).E=\left(P^{T}X_{c}^{T}KX_{c}{\Lambda}_{c}^{-1}-{\Lambda}_{a}P^{T}X_{c}^{T}MX_{c}\right)^{-1}\left({\Lambda}_{a}P^{T}-P^{T}{\Lambda}_{c}\right).

5 Numerical examples

In this section, we consider numerical examples of structured matrix polynomials and illustrate the applications of the obtained solutions for SEEP. Let (Xc,Λc)(X_{c},{\Lambda}_{c}) be an invariant pair of a structured polynomial Q(λ)=λ2M+λD+K.Q(\lambda)=\lambda^{2}M+\lambda D+K. Let (Xf,Λf)(X_{f},{\Lambda}_{f}) and (XcP,Λa)(X_{c}P,{\Lambda}_{a}) be the invariant pairs of the updated matrix polynomial Q(λ)=λ2(M+M)+λ(D+D)+(K+K)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K). Then we define the relative residuals of (Xf,Λf)(X_{f},{\Lambda}_{f}) and (XcP,Λa)(X_{c}P,{\Lambda}_{a}) for the updated matrix polynomial Q(λ)Q_{\triangle}(\lambda) by

RRf=(M+M)XfΛf2+(D+D)XfΛf+(K+K)XfF(M+M)XfΛf2F+(D+D)XfΛfF+(K+K)XfFRR_{f}=\dfrac{\|(M+\triangle M)X_{f}{\Lambda}_{f}^{2}+(D+\triangle D)X_{f}{\Lambda}_{f}+(K+\triangle K)X_{f}\|_{F}}{\|(M+\triangle M)X_{f}{\Lambda}_{f}^{2}\|_{F}+\|(D+\triangle D)X_{f}{\Lambda}_{f}\|_{F}+\|(K+\triangle K)X_{f}\|_{F}}

and RRa=(M+M)XcPΛa2+(D+D)XcPΛa+(K+K)XcPF(M+M)XcPΛa2F+(D+D)XcPΛaF+(K+K)XcPFRR_{a}=\dfrac{\|(M+\triangle M)X_{c}P{\Lambda}_{a}^{2}+(D+\triangle D)X_{c}P{\Lambda}_{a}+(K+\triangle K)X_{c}P\|_{F}}{\|(M+\triangle M)X_{c}P{\Lambda}_{a}^{2}\|_{F}+\|(D+\triangle D)X_{c}P{\Lambda}_{a}\|_{F}+\|(K+\triangle K)X_{c}P\|_{F}}

respectively [46]. Given (Xc,Λc)(X_{c},{\Lambda}_{c}), we determine the perturbation matrices M,D,K\triangle M,\triangle D,\triangle K and then calculate the relative residuals to verify the efficiency of reproducing the invariant pairs (XcP,Λa)(X_{c}P,{\Lambda}_{a}) and (Xf,Λf)(X_{f},{\Lambda}_{f}) for a structure-preserving perturbed polynomial Q(λ)Q_{\triangle}(\lambda), when the later pair is not known, Λa{\Lambda}_{a} is given, and PP is constructed by the procedure as described in Corollary 4.1.

Example 5.1.

Consider the example of a mass-spring system [39] of 1010 degrees of freedom where all the rigid bodies have mass of 1Kg1\,Kg and all springs have stiffness 1kN/m1\,kN/m. Then the quadratic matrix polynomial associated to the model is given by Q(λ)=λ2M+λD+KQ(\lambda)=\lambda^{2}M+\lambda D+K with M=I10>0,M=I_{10}>0,

D=[0.48108.3809000000008.38098.38091.0254000000001.02541.02547.2827000000007.28277.28274.4050000000004.40504.40509.9719000000009.97199.97195.6247000000005.62475.62474.6585000000004.65854.65854.1901000000004.19014.19012.1160000000002.11602.1160],\displaystyle\small D=\left[\begin{matrix}0.4810&-8.3809&0&0&0&0&0&0&0&0\\ -8.3809&8.3809&-1.0254&0&0&0&0&0&0&0\\ 0&-1.0254&1.0254&-7.2827&0&0&0&0&0&0\\ 0&0&-7.2827&7.2827&-4.4050&0&0&0&0&0\\ 0&0&0&-4.4050&4.4050&-9.9719&0&0&0&0\\ 0&0&0&0&-9.9719&9.9719&-5.6247&0&0&0\\ 0&0&0&0&0&-5.6247&5.6247&-4.6585&0&0\\ 0&0&0&0&0&0&-4.6585&4.6585&-4.1901&0\\ 0&0&0&0&0&0&0&-4.1901&4.1901&-2.1160\\ 0&0&0&0&0&0&0&0&-2.1160&2.1160\end{matrix}\right],
K=[2000100000000000100030001000010000000001000200010000000000010003000100000100000010000100030001000000000001000200010000000000010002000100000000100000100030001000000000001000200010000000000010002000]>0.\small K=\left[\begin{matrix}2000&-1000&0&0&0&0&0&0&0&0\\ -1000&3000&-1000&0&-1000&0&0&0&0&0\\ 0&-1000&2000&-1000&0&0&0&0&0&0\\ 0&0&-1000&3000&-1000&0&0&-1000&0&0\\ 0&-1000&0&-1000&3000&-1000&0&0&0&0\\ 0&0&0&0&-1000&2000&-1000&0&0&0\\ 0&0&0&0&0&-1000&2000&-1000&0&0\\ 0&0&0&-1000&0&0&-1000&3000&-1000&0\\ 0&0&0&0&0&0&0&-1000&2000&-1000\\ 0&0&0&0&0&0&0&0&-1000&2000\end{matrix}\right]>0.

Computing the eigenvalues of Q(λ),Q(\lambda), set λ1c=6.7757+71.1468i,λ2c=6.2938+65.6677i.\lambda^{c}_{1}=-6.7757+71.1468\mathrm{i},\,\lambda^{c}_{2}=-6.2938+65.6677\mathrm{i}. Assume λ1a=6.16+69.8i,λ2a=4.7+64.9i\lambda^{a}_{1}=-6.16+69.8\mathrm{i},\,\lambda^{a}_{2}=-4.7+64.9\mathrm{i}. Clearly λ1c,λ1c¯,λ2c,λ2c¯\lambda^{c}_{1},\,\overline{\lambda^{c}_{1}},\,\lambda^{c}_{2},\,\overline{\lambda^{c}_{2}} are eigenvalues of Q(λ)Q(\lambda). Then we want to find the perturbation matrices M,D,K\triangle M,\,\triangle D,\,\triangle K such that λ1a,λ1a¯,λ2a,λ2a¯\lambda^{a}_{1},\,\overline{\lambda^{a}_{1}},\,\lambda^{a}_{2},\,\overline{\lambda^{a}_{2}} become eigenvalues of the real symmetric matrix polynomial Q(λ):=λ2(M+M)+λ(D+D)+(K+K),Q_{\triangle}(\lambda):=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K), whereas the rest of the eigenpairs of Q(λ)Q_{\triangle}(\lambda) are same as those unknown (remaining) eigenpairs of Q(λ)Q(\lambda) and M,K\triangle M,\,\triangle K must be positive semi-definite.

Then consider the matrices

Λc=[6.775771.14680071.14686.775700006.293865.66770065.66776.2938],Λa=[6.1669.80069.86.1600004.764.90064.94.7]\displaystyle{\Lambda}_{c}=\left[\begin{matrix}-6.7757&71.1468&0&0\\ -71.1468&-6.7757&0&0\\ 0&0&-6.2938&65.6677\\ 0&0&-65.6677&-6.2938\end{matrix}\right],\,\,\,\,{\Lambda}_{a}=\left[\begin{matrix}-6.16&69.8&0&0\\ -69.8&-6.16&0&0\\ 0&0&-4.7&64.9\\ 0&0&-64.9&-4.7\end{matrix}\right]

and      Xc=[0.282110.089660.297230.079500.837280.035820.609140.295430.596760.027450.100530.211151.0000000.261370.028700.919050.058690.449550.108550.214140.232710.450590.217960.165810.136910.608700.175160.638990.234271.0000000.236400.070210.515210.006170.072200.030480.212170.03517],X_{c}=\left[\begin{matrix}-0.28211&-0.08966&-0.29723&0.07950\\ 0.83728&0.03582&0.60914&-0.29543\\ -0.59676&-0.02745&-0.10053&0.21115\\ 1.00000&0&-0.26137&-0.02870\\ -0.91905&-0.05869&-0.44955&0.10855\\ 0.21414&0.23271&0.45059&0.21796\\ 0.16581&-0.13691&-0.60870&-0.17516\\ -0.63899&0.23427&1.00000&0\\ 0.23640&-0.07021&-0.51521&0.00617\\ -0.07220&0.03048&0.21217&-0.03517\end{matrix}\right],

such that (Xc,Λc)(X_{c},{\Lambda}_{c}) is an invariant pair of Q(λ).Q(\lambda).

By Remark 4.2 we have γ1=4.2986485.9606i,γ2=20.523319.028i,α1=2.1493,α2=10.2615,β1=242.9803,β2=159.514\gamma_{1}=4.2986-485.9606\mathrm{i},\,\gamma_{2}=20.523-319.028\mathrm{i},\,\alpha_{1}=2.1493,\,\alpha_{2}=10.2615,\,\beta_{1}=242.9803,\,\beta_{2}=159.514 and taking a1=0.00098,a2=0.00831a_{1}=0.00098,\,a_{2}=0.00831 we have

P=[0.000980.96441001.184880.0009800000.008315.00141005.259880.00831].P=\left[\begin{matrix}0.00098&-0.96441&0&0\\ 1.18488&-0.00098&0&0\\ 0&0&0.00831&-5.00141\\ 0&0&5.25988&-0.00831\end{matrix}\right].

Consequently, we obtain the real symmetric positive definite matrix

Z=[0.074480.003280.000420.000650.003280.060750.000800.000290.000420.000800.025860.011010.000650.000290.011010.01727].Z=\left[\begin{matrix}0.07448&-0.00328&0.00042&-0.00065\\ -0.00328&0.06075&0.00080&-0.00029\\ 0.00042&0.00080&0.02586&-0.01101\\ -0.00065&-0.00029&-0.01101&0.01727\end{matrix}\right].

Hence on applying Remark 4.2 we obtain the real symmetric matrices as

M=103[9.309524.427914.503118.743123.94168.47181.66753.47740.06410.665024.427967.943741.967157.973767.665919.46330.760520.67134.75600.021614.503141.967128.181343.323643.813810.72035.144323.29657.83021.936518.743157.973743.323675.911965.262412.780616.176154.374820.94516.816423.941667.665943.813865.262469.784919.23994.468230.30689.25721.84478.471819.463310.720312.780619.239910.44514.90983.01522.28231.39021.66750.76055.144316.17614.46824.909811.173424.122210.80574.26383.477420.671323.296554.374830.30683.015224.122260.431725.88599.82900.06414.75607.830220.94519.25722.282310.805725.885911.46074.46930.66500.02161.93656.81641.84471.39024.26389.82904.46931.8039]0,\displaystyle\scriptsize\triangle M=10^{-3}\left[\begin{matrix}9.3095&-24.4279&14.5031&-18.7431&23.9416&-8.4718&1.6675&3.4774&-0.0641&-0.6650\\ -24.4279&67.9437&-41.9671&57.9737&-67.6659&19.4633&0.7605&-20.6713&4.7560&0.0216\\ 14.5031&-41.9671&28.1813&-43.3236&43.8138&-10.7203&-5.1443&23.2965&-7.8302&1.9365\\ -18.7431&57.9737&-43.3236&75.9119&-65.2624&12.7806&16.1761&-54.3748&20.9451&-6.8164\\ 23.9416&-67.6659&43.8138&-65.2624&69.7849&-19.2399&-4.4682&30.3068&-9.2572&1.8447\\ -8.4718&19.4633&-10.7203&12.7806&-19.2399&10.4451&-4.9098&3.0152&-2.2823&1.3902\\ 1.6675&0.7605&-5.1443&16.1761&-4.4682&-4.9098&11.1734&-24.1222&10.8057&-4.2638\\ 3.4774&-20.6713&23.2965&-54.3748&30.3068&3.0152&-24.1222&60.4317&-25.8859&9.8290\\ -0.0641&4.7560&-7.8302&20.9451&-9.2572&-2.2823&10.8057&-25.8859&11.4607&-4.4693\\ -0.6650&0.0216&1.9365&-6.8164&1.8447&1.3902&-4.2638&9.8290&-4.4693&1.8039\end{matrix}\right]\geq 0,
D=[0.12250.22160.23150.48450.18140.04670.26840.43640.21220.06890.22160.17240.31010.72760.00570.07880.58630.68780.40140.11920.23150.31010.28400.50460.21950.20470.23890.25130.16950.03140.48450.72760.50460.70660.65320.63960.02670.09790.04620.04960.18140.00570.21950.65320.06490.18250.50810.60430.39350.11950.04670.07880.20470.63960.18250.06790.32340.72180.34380.13730.26840.58630.23890.02670.50810.32340.31820.57630.27160.14210.43640.68780.25130.09790.60430.72180.57631.14910.46050.24510.21220.40140.16950.04620.39350.34380.27160.46050.19550.10510.06890.11920.03140.04960.11950.13730.14210.24510.10510.0505],\scriptsize\triangle D=\left[\begin{matrix}0.1225&-0.2216&0.2315&-0.4845&0.1814&-0.0467&-0.2684&0.4364&-0.2122&0.0689\\ -0.2216&0.1724&-0.3101&0.7276&-0.0057&0.0788&0.5863&-0.6878&0.4014&-0.1192\\ 0.2315&-0.3101&0.2840&-0.5046&0.2195&-0.2047&-0.2389&0.2513&-0.1695&0.0314\\ -0.4845&0.7276&-0.5046&0.7066&-0.6532&0.6396&0.0267&0.0979&0.0462&0.0496\\ 0.1814&-0.0057&0.2195&-0.6532&-0.0649&-0.1825&-0.5081&0.6043&-0.3935&0.1195\\ -0.0467&0.0788&-0.2047&0.6396&-0.1825&0.0679&0.3234&-0.7218&0.3438&-0.1373\\ -0.2684&0.5863&-0.2389&0.0267&-0.5081&0.3234&-0.3182&0.5763&-0.2716&0.1421\\ 0.4364&-0.6878&0.2513&0.0979&0.6043&-0.7218&0.5763&-1.1491&0.4605&-0.2451\\ -0.2122&0.4014&-0.1695&0.0462&-0.3935&0.3438&-0.2716&0.4605&-0.1955&0.1051\\ 0.0689&-0.1192&0.0314&0.0496&0.1195&-0.1373&0.1421&-0.2451&0.1051&-0.0505\end{matrix}\right],
K=[28.057781.594252.746781.458988.522828.08351.652438.117811.12662.869881.5942241.9383160.7575255.6535262.638475.007919.1931137.217543.908112.584452.7467160.7575112.0746186.2415175.559642.099727.4937117.461241.185212.983781.4589255.6535186.2415323.4317283.443257.552264.8610228.180184.449327.984988.5228262.6384175.5596283.4432290.165885.876419.0487152.920649.726814.687228.083575.007942.099757.552285.876442.965222.89150.17375.33973.01831.652419.193127.493764.861019.048722.891549.315288.818638.710714.205238.1178137.2175117.4612228.1801152.92060.173788.8186214.387387.015130.781111.126643.908141.185284.449349.72685.339738.710787.015136.241213.06672.869812.584412.983727.984914.68723.018314.205230.781113.06674.7860]0.\scriptsize\triangle K=\left[\begin{matrix}28.0577&-81.5942&52.7467&-81.4589&88.5228&-28.0835&-1.6524&38.1178&-11.1266&2.8698\\ -81.5942&241.9383&-160.7575&255.6535&-262.6384&75.0079&19.1931&-137.2175&43.9081&-12.5844\\ 52.7467&-160.7575&112.0746&-186.2415&175.5596&-42.0997&-27.4937&117.4612&-41.1852&12.9837\\ -81.4589&255.6535&-186.2415&323.4317&-283.4432&57.5522&64.8610&-228.1801&84.4493&-27.9849\\ 88.5228&-262.6384&175.5596&-283.4432&290.1658&-85.8764&-19.0487&152.9206&-49.7268&14.6872\\ -28.0835&75.0079&-42.0997&57.5522&-85.8764&42.9652&-22.8915&-0.1737&-5.3397&3.0183\\ -1.6524&19.1931&-27.4937&64.8610&-19.0487&-22.8915&49.3152&-88.8186&38.7107&-14.2052\\ 38.1178&-137.2175&117.4612&-228.1801&152.9206&-0.1737&-88.8186&214.3873&-87.0151&30.7811\\ -11.1266&43.9081&-41.1852&84.4493&-49.7268&-5.3397&38.7107&-87.0151&36.2412&-13.0667\\ 2.8698&-12.5844&12.9837&-27.9849&14.6872&3.0183&-14.2052&30.7811&-13.0667&4.7860\end{matrix}\right]\geq 0.

Let (Xf,Λf)(X_{f},{\Lambda}_{f}) denote the ‘fixed’ (unknown) invariant pair of Q(λ).Q(\lambda). Then the relative residuals of (Xf,Λf),(XcP,Λa)(X_{f},{\Lambda}_{f}),\,(X_{c}P,{\Lambda}_{a}) for the updated system Q(λ)Q_{\triangle}(\lambda) are given by

RRf=7.5511×10140,RRa=4.6172×10140,RR_{f}=7.5511\times 10^{-14}\approx 0,\,\,\,\,RR_{a}=4.6172\times 10^{-14}\approx 0,

which ensures that λ1a,λ1a¯,λ2a,λ2a¯\lambda^{a}_{1},\,\overline{\lambda^{a}_{1}},\,\lambda^{a}_{2},\,\overline{\lambda^{a}_{2}} are the eigenvalues of Q(λ)Q_{\triangle}(\lambda) and rest of the eigenpairs of Q(λ)Q_{\triangle}(\lambda) are same as those unknown eigenpairs of Q(λ)Q(\lambda).

In the following figures we plot the relative residuals of (Xf,Λf)(X_{f},{\Lambda}_{f}) and (XcP,Λa)(X_{c}P,{\Lambda}_{a}) for the updated system Q(λ)Q_{\triangle}(\lambda) for different parametric values of a1,a2a_{1},\,a_{2} as mentioned in Corollary 4.1 for the case when Q(λ)n(T,1,1)n×n[λ]Q(\lambda)\in{\mathbb{Q}}_{n}(T,1,1)\subset{\mathbb{R}}^{n\times n}[\lambda]. We plot RRf,RRaRR_{f},\,RR_{a} by choosing a1=0.00098,a2=0.01(j5)a_{1}=0.00098,\,a_{2}=0.01(j-5) and a1=0.0024,a2=0.01(j5),j=1,,10a_{1}=-0.0024,\,a_{2}=0.01(j-5),\,j=1,\ldots,10 in Figure 1.

Refer to caption
(a) Relative residuals corresponding to the fixed eigenpairs
Refer to caption
(b) Relative residuals corresponding to the aimed eigenpairs
Figure 1: Relative residuals for different perturbations corresponding to the parameters a1,a2a_{1},a_{2} which define the parameter matrix PP for the perturbations M,D,K\triangle M,\triangle D,\triangle K.
Example 5.2.

We consider this example from [43]. Consider the TT-even quadratic matrix polynomial Q(λ)=λ2M+λD+KQ(\lambda)=\lambda^{2}M+\lambda D+K with

M=I3>0,D=[024202420],K=[1321272124]>0.\displaystyle M=I_{3}>0,\,\,D=\left[\begin{matrix}0&-2&4\\ 2&0&-2\\ -4&2&0\end{matrix}\right],\,\,K=\left[\begin{matrix}13&2&1\\ 2&7&2\\ 1&2&4\end{matrix}\right]>0.

Let λ1c=0.8878i,λ2c=3.1895i\lambda^{c}_{1}=0.8878\mathrm{i},\,\lambda^{c}_{2}=3.1895\mathrm{i} and λ1a=2i,λ2a=3.5i\lambda^{a}_{1}=2\mathrm{i},\,\lambda^{a}_{2}=3.5\mathrm{i}. Then it is easy to verify that λ1c,λ1c¯,λ2c,λ2c¯\lambda^{c}_{1},\,\overline{\lambda^{c}_{1}},\,\lambda^{c}_{2},\,\overline{\lambda^{c}_{2}} are eigenvalues of Q(λ)Q(\lambda). Now it is necessary to determine the real perturbation matrices M,D,K\triangle M,\,\triangle D,\,\triangle K in such a manner that λ1a,λ1a¯,λ2a,λ2a¯\lambda^{a}_{1},\,\overline{\lambda^{a}_{1}},\,\lambda^{a}_{2},\,\overline{\lambda^{a}_{2}} become the eigenvalues of the TevenT-even quadratic matrix polynomial Q(λ):=λ2(M+M)+λ(D+D)+(K+K),Q_{\triangle}(\lambda):=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K), whereas rest of the eigenpairs of Q(λ)Q_{\triangle}(\lambda) are same as those unknown eigenpairs of Q(λ)Q(\lambda). Then applying Remark 4.3 we have

Λc=[00.8878000.88780000003.1895003.18950],Λa=[020020000003.5003.50]\displaystyle{\Lambda}_{c}=\left[\begin{matrix}0&0.8878&0&0\\ -0.8878&0&0&0\\ 0&0&0&3.1895\\ 0&0&-3.1895&0\end{matrix}\right],\,\,\,\,{\Lambda}_{a}=\left[\begin{matrix}0&2&0&0\\ -2&0&0&0\\ 0&0&0&3.5\\ 0&0&-3.5&0\end{matrix}\right]

and      Xc=[0.078090.424470.369930.041280.418170.4448410100.469260.27553]X_{c}=\left[\begin{matrix}-0.07809&-0.42447&0.36993&0.04128\\ -0.41817&0.44484&1&0\\ 1&0&0.46926&0.27553\end{matrix}\right]

such that (Xc,Λc)(X_{c},{\Lambda}_{c}) is an invariant pair of Q(λ)Q(\lambda). Using Remark 4.3 we choose the matrix

P=[0.641460.87909001.275001.2750000000.556890.99159000.900160.90016]P=\left[\begin{matrix}-0.64146&-0.87909&0&0\\ 1.27500&-1.27500&0&0\\ 0&0&0.55689&0.99159\\ 0&0&-0.90016&0.90016\end{matrix}\right]

and obtain the real symmetric matrix

Z=[0.069740.059870.003910.006140.059870.467730.002870.029370.003910.002870.008920.208980.006140.029370.208980.12565].Z=\left[\begin{matrix}-0.06974&-0.05987&0.00391&0.00614\\ -0.05987&-0.46773&0.00287&0.02937\\ 0.00391&0.00287&-0.00892&-0.20898\\ 0.00614&0.02937&-0.20898&-0.12565\end{matrix}\right].

Therefore, we obtain the real matrices M,D,K\triangle M,\,\triangle D,\,\triangle K so that

M+M=0.1[9.01320.64350.00050.64359.07890.52600.00050.52608.7177],D+D=[01.65342.85431.653401.21192.85431.21190],\displaystyle M+\triangle M=0.1\left[\begin{matrix}9.0132&0.6435&-0.0005\\ 0.6435&9.0789&-0.5260\\ -0.0005&-0.5260&8.7177\end{matrix}\right],\,D+\triangle D=\left[\begin{matrix}0&-1.6534&2.8543\\ 1.6534&0&-1.2119\\ -2.8543&1.2119&0\end{matrix}\right],
K+K=[15.13042.03370.28382.03379.50260.38970.28380.38979.2174]K+\triangle K=\left[\begin{matrix}15.1304&2.0337&0.2838\\ 2.0337&9.5026&-0.3897\\ 0.2838&-0.3897&9.2174\end{matrix}\right]

and MF=0.2202,DF=2.0268,KF=7.1044\|\triangle M\|_{F}=0.2202,\,\|\triangle D\|_{F}=2.0268,\,\|\triangle K\|_{F}=7.1044. Let (Xf,Λf)(X_{f},{\Lambda}_{f}) denote the invariant pair corresponding to the fixed eigenpairs of Q(λ).Q(\lambda). Then the relative residuals of (Xf,Λf),(XcP,Λa)(X_{f},{\Lambda}_{f}),\,(X_{c}P,{\Lambda}_{a}) for the updated polynomial Q(λ)Q_{\triangle}(\lambda) are given by

RRf=7.0842×10160,RRa=3.2018×10160,RR_{f}=7.0842\times 10^{-16}\approx 0,\,\,\,\,RR_{a}=3.2018\times 10^{-16}\approx 0,

which ensures that the unknown eigenpairs of Q(λ)Q(\lambda) remains to be the eigenpairs of Q(λ)Q_{\triangle}(\lambda) and λ1a,λ1a¯,λ2a,λ2a¯\lambda^{a}_{1},\,\overline{\lambda^{a}_{1}},\,\lambda^{a}_{2},\,\overline{\lambda^{a}_{2}} are eigenvalues of the TT-even matrix polynomial Q(λ)Q_{\triangle}(\lambda). Hence, eigenvalues are replaced successfully with maintaining no spillover on unmeasured eigenpairs of Q(λ)Q(\lambda).

Moreover, choosing

P=[0.641460.8790900c1c100000.556890.9915900c2c2]P=\left[\begin{matrix}-0.64146&-0.87909&0&0\\ -c_{1}&c_{1}&0&0\\ 0&0&0.55689&0.99159\\ 0&0&-c_{2}&c_{2}\end{matrix}\right]

we plot the relative residuals of (Xf,Λf)(X_{f},{\Lambda}_{f}) and (XcP,Λa)(X_{c}P,{\Lambda}_{a}) for the updated matrix polynomial Q(λ)Q_{\triangle}(\lambda) for various parametric values of c1,c2c_{1},\,c_{2} as mentioned in Remark 4.3. In Figure 2, we plot RRf,RRaRR_{f},\,RR_{a} choosing c1=1.2750,c2=0.2jc_{1}=-1.2750,\,c_{2}=0.2j and c1=11.0214,c2=0.2j,j=1,,10c_{1}=11.0214,\,c_{2}=0.2j,\,j=1,\ldots,10.

Refer to caption
(a) Relative residuals corresponding to the fixed eigenpairs
Refer to caption
(b) Relative residuals corresponding to the aimed eigenpairs
Figure 2: Relative residuals for different perturbations corresponding to the parameters c1,c2c_{1},c_{2} which define the parameter matrix PP for the perturbations M,D,K\triangle M,\triangle D,\triangle K.
Example 5.3.

In this example, we consider the matrices M,KM,\,K as randomly generated real symmetric positive definite matrices of order 52×5252\times 52 and DD is a randomly generated real skew-symmetric matrix of order 52×5252\times 52. Let λ1c=46.76551i,λ2c=16.58514i,λ3c=14.33130i,λ4c=8.44632i\lambda^{c}_{1}=46.76551\mathrm{i},\,\lambda^{c}_{2}=16.58514\mathrm{i},\,\lambda^{c}_{3}=14.33130\mathrm{i},\,\lambda^{c}_{4}=8.44632\mathrm{i} and λ1a=2.1145i,λ2a=0.2374i,λ3a=11.3266i,λ4a=0.0752i\lambda^{a}_{1}=2.1145\mathrm{i},\,\lambda^{a}_{2}=0.2374\mathrm{i},\,\lambda^{a}_{3}=11.3266\mathrm{i},\,\lambda^{a}_{4}=0.0752\mathrm{i}. Suppose we want to replace the 88 eigenvalues λ1c,λ1c,λ2c,λ2c,λ3c,λ3c,λ4c,λ4c\lambda^{c}_{1},\,-\lambda^{c}_{1},\,\lambda^{c}_{2},\,-\lambda^{c}_{2},\,\lambda^{c}_{3},\,-\lambda^{c}_{3},\,\lambda^{c}_{4},\,-\lambda^{c}_{4} of Q(λ)=λ2M+λD+KQ(\lambda)=\lambda^{2}M+\lambda D+K by the desired scalars λ1a,λ1a,λ2a,λ2a,λ3a,λ3a,λ4a,λ4a\lambda^{a}_{1},\,-\lambda^{a}_{1},\,\lambda^{a}_{2},\,-\lambda^{a}_{2},\,\lambda^{a}_{3},\,-\lambda^{a}_{3},\,\lambda^{a}_{4},\,-\lambda^{a}_{4} with maintaining no spillover effect on unmeasured eigenpairs of Q(λ)Q(\lambda). Then applying Remark 4.3 we define the matrices Λc,Λa,Xc{\Lambda}_{c},\,{\Lambda}_{a},\,X_{c} accordingly and choosing the matrix

P=diag([0.248210.105100.009730.00973],[0.131070.150400.047130.04713],[0.111820.051320.108600.10860],[0.006600.057180.166880.16688])P=\mathrm{diag}\left(\left[\begin{matrix}0.24821&0.10510\\ -0.00973&0.00973\end{matrix}\right],\,\left[\begin{matrix}-0.13107&0.15040\\ -0.04713&0.04713\end{matrix}\right],\,\left[\begin{matrix}0.11182&0.05132\\ -0.10860&0.10860\end{matrix}\right],\,\left[\begin{matrix}0.00660&-0.05718\\ 0.16688&-0.16688\end{matrix}\right]\right)

we obtain the real perturbation matrices M,D,K\triangle M,\,\triangle D,\,\triangle K with MF=6.1883,DF=52.153,KF=189.74\|\triangle M\|_{F}=6.1883,\,\|\triangle D\|_{F}=52.153,\linebreak\|\triangle K\|_{F}=189.74 and MMTF=7.4674×1013,D+DTF=1.4374×1011,KKTF=2.2838×1011\|\triangle M-\triangle M^{T}\|_{F}=7.4674\times 10^{-13},\,\|\triangle D+\triangle D^{T}\|_{F}=1.4374\times 10^{-11},\,\|\triangle K-\triangle K^{T}\|_{F}=2.2838\times 10^{-11}, which ensures that M,K\triangle M,\,\triangle K are symmetric matrices while D\triangle D is a skew-symmetric matrix. It should be noted that RRa=1.1668×1012RR_{a}=1.1668\times 10^{-12} is nearly zero, which implies that λ1a,λ1a,λ2a,λ2a,λ3a,λ3a,λ4a,λ4a\lambda^{a}_{1},\,-\lambda^{a}_{1},\,\lambda^{a}_{2},\,-\lambda^{a}_{2},\,\lambda^{a}_{3},\,-\lambda^{a}_{3},\,\lambda^{a}_{4},\,-\lambda^{a}_{4} are eigenvalues of Q(λ)=λ2(M+M)+λ(D+D)+(K+K)Q_{\triangle}(\lambda)=\lambda^{2}(M+\triangle M)+\lambda(D+\triangle D)+(K+\triangle K). Let (Xf,Λf)(X_{f},{\Lambda}_{f}) denote the fixed invariant pair corresponding to the fixed eigenpairs of Q(λ).Q(\lambda). Then we have

MXfΛf2+DXfΛf+KXfFMXfΛf2F+DXfΛfF+KXfF=5.0119×1014.\dfrac{\|MX_{f}{\Lambda}_{f}^{2}+DX_{f}{\Lambda}_{f}+KX_{f}\|_{F}}{\|MX_{f}{\Lambda}_{f}^{2}\|_{F}+\|DX_{f}{\Lambda}_{f}\|_{F}+\|KX_{f}\|_{F}}=5.0119\times 10^{-14}.

Besides, RRf=3.1912×1013RR_{f}=3.1912\times 10^{-13} is nearly zero, which guarantees that fixed eigenpairs of Q(λ)Q(\lambda) remain the eigenpairs of Q(λ)Q_{\triangle}(\lambda). Hence, it shows that a few eigenvalues of Q(λ)Q(\lambda) are replaced by the desired scalars with maintaining no spillover.

However, choosing

P=diag([0.248210.105100.009730.00973],[0.131070.150400.047130.04713],[0.111820.051320.108600.10860],[a40.05718c4c4])P=\mathrm{diag}\left(\left[\begin{matrix}0.24821&0.10510\\ -0.00973&0.00973\end{matrix}\right],\,\left[\begin{matrix}-0.13107&0.15040\\ -0.04713&0.04713\end{matrix}\right],\,\left[\begin{matrix}0.11182&0.05132\\ -0.10860&0.10860\end{matrix}\right],\,\left[\begin{matrix}a_{4}&-0.05718\\ -c_{4}&c_{4}\end{matrix}\right]\right)

the relative residuals of (Xf,Λf)(X_{f},{\Lambda}_{f}) and (XcP,Λa)(X_{c}P,{\Lambda}_{a}) for the updated system Q(λ)Q_{\triangle}(\lambda) has been plotted in the following figures for several parametric values of a4,c4a_{4},\,c_{4} as given in Remark 4.3. In particular, we plot RRf,RRaRR_{f},\,RR_{a} choosing c4=6.52,a4=0.02jc_{4}=6.52,\,a_{4}=0.02j and c4=0.2654,a4=0.02j,j=1,,10c_{4}=0.2654,\,a_{4}=0.02j,\,j=1,\ldots,10 in Figure 3.

Refer to caption
(a) Relative residuals corresponding to the fixed eigenpairs
Refer to caption
(b) Relative residuals corresponding to the aimed eigenpairs
Figure 3: Relative residuals for different perturbations corresponding to the parameters a4,c4a_{4},c_{4} which define the parameter matrix PP for the perturbations M,D,K\triangle M,\triangle D,\triangle K.

Conclusion. We consider the structure-preserving eigenvalue embedding problem (SEEP) for regular quadratic polynomials with symmetry structures. First we derive structure-preserving perturbations of a structured qudratic polynomial that reproduce a desired invariant pair and preserve an invariant pair (need not be known) of the unperturbed polynomial. Then we utilize these results for solving the SEEP for quadratic structured matrix polynomials which include symmetric, Hermitian, \star-odd and \star-even matrix polynomials. We show that the obtained solutions for SEEP correspond to existing results in the literature for certain structured matrix polynomials that arise in real-world applications. Finally, we illustrate the applicability of the obtained results through numerical examples.

References

  • [1] B. Adhikari, B.N. Datta, T. Ganai, and M. Karow, Updating structured matrix pencils with no spillover effect on unmeasured spectral data and deflating pair, arXiv preprint arXiv:2003.03150, (2020), to appear in Linear Algebra and its Applications.
  • [2] Z.-J. Bai, D. Chu, and D. Sun, A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure, SIAM J. Sci. Comput., 29 (2007), pp. 2531–2561.
  • [3] Z.-J. Bai, B.N. Datta, and J. Wang, Robust and minimum norm partial quadratic eigenvalue assignment for vibrating systems: a new optimization approach, Mechanical Systems and Signal Processing 24 (2010), pp. 766-783.
  • [4] J. Ball, and I. Gohberg, Interpolation of rational matrix functions, (Vol. 45). Birkhäuser, 2013.
  • [5] M. Barkatou, P. Boito, and E.S. Ugalde, A contour integral approach to the computation of invariant pairs, Theoretical Computer Science, 681, (2017) pp. 3-26.
  • [6] M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA journal, 16 (1978), pp. 1208-1210.
  • [7] A. Berman, and E.J. Nagy, Improvement of a large analytical model using test data, AIAA journal, 21.8 (1983), pp. 1168-1173.
  • [8] R.V. Beeumen, K. Meerbergen, and W. Michiels, Computing a partial Schur factorization of nonlinear eigenvalue problems using the infinite Arnoldi method, SIAM Journal on Matrix Analysis and Applications, 36.2, (2015) pp. 820-838.
  • [9] T. Betcke, and D. Kressner, Perturbation, extraction and refinement of invariant pairs for matrix polynomials, Linear Algebra Appl., 435.3 (2011), pp. 514-536.
  • [10] W.J. Beyn, and V. Thümmler, Continuation of invariant subspaces for parameterized quadratic eigenvalue problems, SIAM Journal on Matrix Analysis and Applications, 31.3 (2010), pp. 1361-1381.
  • [11] S. Brahma, and B.N. Datta, An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures, Journal of Sound and Vibration, 324 (2009) pp. 471-489.
  • [12] J.B. Carvalho, B.N. Datta, W.W. Lin, and C.S. Wang, Symmetry preserving eigenvalue embedding in finite-element model updating of vibrating structures, Journal of Sound and Vibration, 290.3(2006), pp. 839-864.
  • [13] J.B. Carvalho, B.N. Datta, A. Gupta, and M. Lagadapati, A direct method for model updating with incomplete measured data and without spurious modes, Mechanical Systems and Signal Processing, 21(7) (2007), pp. 2715-2731.
  • [14] M.T. Chu, B.N. Datta, W.W. Lin, and S. Xu, Spillover phenomenon in quadratic model updating, AIAA journal, 46.2(2008), pp. 420-428.
  • [15] D. Chu, M.T. Chu, and W.W. Lin, Quadratic model updating with symmetry, positive definiteness, and no spill-over, SIAM Journal on Matrix Analysis and Applications, 31 (2009), pp. 546-564.
  • [16] M.T. Chu, W.W. Lin, and S.F. Xu, Updating quadratic models with no spillover effect on unmeasured spectral data, Inverse Problems, 23(1), (2007) pp. 243.
  • [17] B.N. Datta, Finite-element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems, Mechanical Systems and Signal Processing 16.1 (2002), pp. 83-96.
  • [18] B.N. Datta, and D.R. Sarkissian, Feedback control in distributed parameter systems: a solution of the partial eigenvalue assignment problem, Mechanical Systems and Signal Processing 16 (1) (2001), pp. 3-17.
  • [19] B.N. Datta, and D.R. Sarkissian, Theory and computations of some inverse eigenvalue problems for the quadratic pencil, Contemporary Mathematics, 280(2001), pp. 221-240.
  • [20] B.N. Datta, S. Deng, V.O. Sokolov, and D.R. Sarkissian, An optimization technique for damped model updating with measured data satisfying quadratic orthogonality constraint, Mechanical Systems and Signal Processing, 23(6), (2009), pp. 1759-1772.
  • [21] B.N.  Datta, Numerical Linear Algebra and Applications, Vol. 116. Siam, 2010.
  • [22] C. Effenberger, Robust successive computation of eigenpairs for nonlinear eigenvalue problems, SIAM Journal on Matrix Analysis and Applications, 34.3, (2013) pp. 1231-1256.
  • [23] C. Effenberger, and D. Kressner, Chebyshev interpolation for nonlinear eigenvalue problems, BIT Numerical Mathematics, 52.4, (2012) pp. 933-951.
  • [24] S. Elhay, Some inverse eigenvalue and pole placement problems for linear and quadratic pencils, Numerical Linear Algebra in Signals, Systems and Control, Springer, Dordrecht, 2011, pp. 217-249.
  • [25] M. Friswell, and J.E. Mottershead, Finite element model updating in structural dynamics, Vol. 38, Springer Science and Business Media, 2013.
  • [26] T. Ganai, and B. Adhikari, Preserving spectral properties of structured matrices under structured perturbations, arXiv preprint arXiv:2006.09434.
  • [27] I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser, (2005).
  • [28] I. Gohberg, P. Lancaster, and L. Rodman, Matrix polynomials, Birkhäuser, (2005).
  • [29] J.Z. Hearon, Nonsingular solutions of TABT=CTA-BT=C, Linear Algebra Appl., 16(1), (1977) pp. 57-63.
  • [30] N.J. Higham, and H.M. Kim, Numerical analysis of a quadratic matrix equation, IMA Journal of Numerical Analysis 20.4 (2000), pp. 499-519.
  • [31] B. Jaishi, and W.X.  Ren, Damage detection by finite element model updating using modal flexibility residual, Journal of Sound and Vibration 290 (2006), pp. 369-387.
  • [32] H.M. Kim, and T.J. Bartkowicz, Damage detection and health monitoring of large space structures, Journal of Sound and Vibration 27(6) (1993), pp. 12-17.
  • [33] D. Kressner, A block Newton method for nonlinear eigenvalue problems, Numerische Mathematik, 114.2 (2009), pp. 355-372.
  • [34] D. Kressner, and J.E. Roman, Memory‐efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis, Numerical Linear Algebra with Applications, 21.4, (2014) pp. 569-588.
  • [35] Y.C. Kuo, W.W. Lin, and S. Xu, New methods for finite element model updating problems, AIAA journal, 44.6 (2006) pp. 1310-1316.
  • [36] Y.C. Kuo, and B.N. Datta, Quadratic model updating with no spill-over and incomplete measured data: Existence and computation of solution, Linear Algebra Appl., 436.7(2012), pp. 2480-2493.
  • [37] P. Lancaster, Model-updating for symmetric quadratic eigenvalue problems, (2006).
  • [38] P. Lancaster, Model-updating for self-adjoint quadratic eigenvalue problems, Linear Algebra Appl., 428.11(2008), pp. 2778-2790.
  • [39] J. Li, and X. Hu, A CG-Type Method for Inverse Quadratic Eigenvalue Problems in Model Updating of Structural Dynamics, Advances in Applied Mathematics and Mechanics, 3.1 (2011), pp. 65-86.
  • [40] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28(4) (2006) pp. 971-1004.
  • [41] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM Journal on Matrix Analysis and Applications, 28(4) (2006) pp. 1029-1051.
  • [42] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Möbius transformations of matrix polynomials, Linear Algebra Appl., 470, (2015) pp. 120-184.
  • [43] X. Mao, and H. Dai, Structure preserving eigenvalue embedding for undamped gyroscopic systems, Applied Mathematical Modelling 38.17-18 (2014), pp. 4333-4344.
  • [44] X. Mao, and H. Dai, A quadratic inverse eigenvalue problem in damped structural model updating, Applied Mathematical Modelling 40.13-14 (2016), pp. 6412-6423.
  • [45] J.E. Mottershead, and M.I. Friswell, Model updating in structural dynamics: a survey, Journal of Sound and Vibration 167.2 (1993), pp. 347-375.
  • [46] J. Qian, Y. Cai, D. Chu, and R.C. Tan, Eigenvalue Embedding of Undamped Vibroacoustic Systems with No-spillover, SIAM Journal on Matrix Analysis and Applications, 38.4 (2017) pp. 1190-1209.
  • [47] J.G. Sun, Backward perturbation analysis of certain characteristic subspaces, Numerische Mathematik 65.1 (1993) pp. 357-382.
  • [48] D.B. Szyld, and F. Xue, Several properties of invariant pairs of nonlinear algebraic eigenvalue problems, IMA Journal of Numerical Analysis, 34.3, (2014) pp. 921-954.
  • [49] F. Tisseur, and K. Meerbergen, The quadratic eigenvalue problem, SIAM review, 43(2001), pp. 235-286.
  • [50] E.S. Ugalde, Computation of invariant pairs and matrix solvents, Doctoral dissertation, Université de Limoges, 2015.
  • [51] D.C. Zimmerman, and M. Windengren, Correcting finite element models using a symmetric eigenstructure assignment technique, AIAA journal, 28 (1990) pp. 1670-1676.