This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Electronic chiralization as an indicator of the anomalous Hall effect in unconventional magnetic systems

Hua Chen Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, USA
Abstract

The anomalous Hall effect (AHE) can appear in certain antiferromagnetic metals when it is allowed by symmetry. Since the net magnetization is usually small in such anomalous Hall antiferromagnets, it is useful to have other physical indicators of the AHE that have the same symmetry properties as the latter and can be conveniently measured and calculated. Here we propose such indicators named as electronic chiralization (EC), which are constructed using spatial gradients of spin and charge densities in general periodic crystals, and can potentially be measured directly by scattering experiments. Such constructions particularly reveal the important role of magnetic charge in the AHE in unconventional magnetic systems with vanishing net magnetization. Guided by the EC we give two examples of the AHE when magnetic charge is explicitly present: A minimum honeycomb model inspired by the magnetic-charge-ordered phase of kagome spin ice, and skew scattering of two-dimensional Dirac electrons by magnetic charge.

I Introduction

The anomalous Hall effect (AHE) describes the transverse flow of charge currents driven by a longitudinal electric field in the absence of external magnetic fields [1, 2, 3]. The mechanisms of the AHE in ferromagnets have been well understood by now [4, 5, 6, 7, 3, 8]. In recent years particular interests have been devoted to the AHE appearing in certain antiferromagnets with vanishing net magnetization [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], in contrast to the conventional wisdom that the anomalous Hall response is proportional to net magnetization. Although it is now clear that the AHE is generally nonvanishing as long as it is not forbidden by symmetry, it remains an open question whether one can find a convenient indicator of the AHE, that is similar to the net magnetization as a gauge-invariant observable but is not small because of energetic reasons in the AHE antiferromagnets. Such indicators, once identified, can help to understand the existence and variation of the AHE in inhomogeneous and disordered systems or across phase transitions, the dependence of the AHE on reorientation of the microscopic spin density field, and the scaling of the AHE with continuously tunable parameters such as temperature, doping, and strain, etc.

There have been a couple of proposals on constructing such indicators of the AHE in general magnetic crystals [22, 23], based on the idea of multipole expansion. Ref. 22 considered the magnetic (spherical) multipole moments of a finite atomic cluster having the same point group symmetry as the parent magnetic crystal. By decomposing the representation of a given point group in the basis of such cluster magnetic multipoles, the ones that resemble that formed by a magnetic dipole can be identified. The basis functions of such irreducible representations then transform in the same way as the magnetic dipole or the Hall conductivity vector under symmetry operations in the given point group, but not necessarily so under general O(3) operations applied on the whole magnetic crystal. More recently, Reference 23 proposed to use the anisotropic magnetic dipole (AMD) as an indicator of the AHE. The AMD is a time-reversal-odd pseudovector and transforms in the same way as the Hall conductivity vector under general O(3) operations. However, to calculate the AMD for a given magnetic structure one still needs to first construct a finite atomic cluster using the approaches of [22] or [24].

The difficulty of defining multipole moments of an infinite crystal is long standing. In classical electromagnetism it is known that only the lowest-order nonvanishing multipole moment of a given charge or current distribution is independent of the choice of origin. Moreover, it has been realized through the studies on the electric polarization [25, 26], orbital magnetization [27, 28, 29], and magnetic toroidization [30, 31] that even these low-order multipole moments cannot be directly obtained from the local charge and current densities in a unit cell, but require the information of the ground state wavefunctions of the whole crystal. However, for the purpose of finding a physical indicator of the AHE in antiferromagnets, it is more convenient to base the construction on readily available data of the magnetic structure such as that from neutron and X-ray experiments. Such scattering experiments directly probe the Fourier components of spin and charge distributions in a periodic crystal which themselves are gauge-invariant quantities. Moreover, constructions based on scattering amplitudes may allow direct determination of the AHE indicators without having to first fix the magnetic order. Finally, the indicators may point out new mechanisms or prototypical examples for the AHE in unconventional magnetic systems.

In this paper we propose a new class of indicators of the AHE, which we name as electronic chiralization (EC) due to resemblance to their optical counterparts [32, 33, 34, 35], based on spatial gradients of periodic spin and charge densities of infinite crystals. In Sec. II we first introduce EC based on the symmetry properties of the AHE and then give convenient formulas for calculating EC in realistic systems. In Sec. III we demonstrate EC’s computation and behavior in several model examples: Anomalous Hall antiferromagnets Mn3X (X = Ir, Pt, Sn, Ge etc.) and a 2D ferromagnetic Rashba model in plane wave basis. In Sec. IV we give two nontrivial examples of the AHE inspired by the prominent role of magnetic charge in the EC: a minimal model based on the charge-ordered kagome spin ice [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] and skew scattering of 2D Dirac electrons by magnetic charge. Finally in Sec. V we briefly discuss further implications of the EC.

II Symmetry properties of the AHE and construction of the EC

II.1 Symmetry properties of the AHE

We first discuss the symmetry properties of the AHE of a crystal. The AHE is described by the anomalous Hall (pseudo)vector (𝝈AH)α=12ϵαβγσβγ(\bm{\sigma}_{\rm AH})_{\alpha}=\frac{1}{2}\epsilon_{\alpha\beta\gamma}\sigma_{\beta\gamma}. 𝝈AH\bm{\sigma}_{\rm AH} changes sign under time reversal (TR, acting on the equilibrium state of the system) as a consequence of the Onsager relation; it rotates as a pseudovector under O(3) and is invariant under continuous translation operations because it is the response of a uniform current to a uniform electric field.

It is obvious why 𝝈AH\bm{\sigma}_{\rm AH} must transform as a vector under proper rotations. By transform we mean the comparison between 𝝈AH\bm{\sigma}_{\rm AH} of two systems that are related to each other by such a transformation. Suppose that system 2 is obtained from system 1 by rigidly rotating the former. Then 𝝈AH\bm{\sigma}_{\rm AH} for system 2 is measured by applying the external electric field and attaching the current probes in the same manner as that for 1. In other words, we have the response relation

𝐄1𝐣1,𝐄2𝐣2\displaystyle\mathbf{E}\xrightarrow{\text{1}}\mathbf{j}_{1},\;\mathbf{E}\xrightarrow{\text{2}}\mathbf{j}_{2} (1)

and the linear response function is defined as

σ1,2αβ=j1,2αEβ\displaystyle\sigma_{1,2}^{\alpha\beta}=\frac{\partial j_{1,2}^{\alpha}}{\partial E_{\beta}} (2)

However, because the rotation is equivalent to a coordinate transformation, we immediately know that if the electric field is rotated together with the system, the result should not change. In other words

R𝐄2R𝐣1=𝐣2.\displaystyle R\mathbf{E}\xrightarrow{\text{2}}R\mathbf{j}_{1}=\mathbf{j}_{2}. (3)

where RR is a rotation matrix. Therefore

σ2αβ=(R𝐣1)α(R𝐄)β=(Rσ1R1)αβ.\displaystyle\sigma_{2}^{\alpha\beta}=\frac{\partial(R\mathbf{j}_{1})^{\alpha}}{\partial(R\mathbf{E})^{\beta}}=(R\sigma_{1}R^{-1})^{\alpha\beta}. (4)

It then follows that 𝝈AH,2=R𝝈AH,1\bm{\sigma}_{\rm AH,2}=R\bm{\sigma}_{\rm AH,1}. A similar argument can be made for improper rotation and continuous translation. Alternatively one can use linear response theory and show that all unitary transformations due to O(3) operations cancel out when taking the trace.

In addition to the system-independent properties above, 𝝈AH\bm{\sigma}_{\rm AH} must also be invariant under any symmetry operations of the crystal, as dictated by Neumann’s principle. In particular, for symmetry operations that combine a point group operation RR with a spatial translation TT, since 𝝈AH\bm{\sigma}_{\rm AH} is invariant under continuous translation, it must be invariant under RR even if RR is not a symmetry of the crystal.

II.2 Definition of the electronic chiralization

Based on the discussion above, a suitable indicator of the AHE should be (1) a TR-odd pseudovector, and (2) invariant under all symmetry operations of the crystal. Then 𝝈AH\bm{\sigma}_{\rm AH} will be linearly dependent on this indicator to the lowest order of the latter. An important consequence of (1) is that the indicator must be translationally invariant.

The TR-odd property of 𝝈AH\bm{\sigma}_{\rm AH} is fundamentally due to the microscopic magnetization density 𝐦(𝐫)\mathbf{m}(\mathbf{r}) in equilibrium. In ferromagnets the spatial average of 𝐦(𝐫)\mathbf{m}(\mathbf{r}), 𝐦¯\bar{\mathbf{m}} serves as a suitable indicator of the AHE. When 𝐦¯\bar{\mathbf{m}} nearly vanishes, it is reasonable to associate the AHE with the spatial variation of 𝐦(𝐫)\mathbf{m}(\mathbf{r}). We thus propose indicators of the AHE constructed from the spatial gradients of 𝐦(𝐫)\mathbf{m}(\mathbf{r}). For definiteness we only consider the first-order spatial derivative of 𝐦(𝐫)\mathbf{m}(\mathbf{r}) in this work, although indicators based on higher orders in 𝐦\mathbf{m} or its derivatives can be constructed similarly and may be useful in different cases. We start from a Cartesian tensor TijkT_{ijk} defined as

Tijk1Vd3𝐫iϕjmk=1Vucucd3𝐫iϕjmk\displaystyle T_{ijk}\equiv\frac{1}{V}\int d^{3}\mathbf{r}\partial_{i}\phi\partial_{j}m_{k}=\frac{1}{V_{\rm uc}}\int_{\rm uc}d^{3}\mathbf{r}\partial_{i}\phi\partial_{j}m_{k} (5)

where ϕ\phi is a TR-even scalar field observable of the crystal, which can be the charge density ρ(𝐫)\rho(\mathbf{r}) or the nonmagnetic potential V(𝐫)V(\mathbf{r}); uc stands for unit cell. We ignore any boundary contributions to 𝐦(𝐫)\mathbf{m}(\mathbf{r}) and ϕ(𝐫)\phi(\mathbf{r}) so that they have the same discrete translation symmetry as the infinite crystal. The inclusion of ϕ\phi ensures that TijkT_{ijk} does not become a boundary term and also signifies the role of orbital degrees of freedom in the AHE. TijkT_{ijk} is a TR-odd rank-3 pseudotensor and is translationally invariant. It is also invariant under any symmetry operations of the crystal since both ϕ(𝐫)\phi(\mathbf{r}) and 𝐦(𝐫)\mathbf{m}(\mathbf{r}) are physical observables of the crystal. A pseudovector can be obtained from TijkT_{ijk} by contracting it with Kronecker δ\delta or Levi-Civita symbol ϵ\epsilon. The only two independent pseudovectors obtained from this construction are

𝝌11Vd3𝐫(ϕ)(𝐦),\displaystyle\bm{\chi}_{1}\equiv\frac{1}{V}\int d^{3}\mathbf{r}(\nabla\phi)(\nabla\cdot\mathbf{m}), (6)
𝝌21Vd3𝐫(ϕ)×(×𝐦).\displaystyle\bm{\chi}_{2}\equiv\frac{1}{V}\int d^{3}\mathbf{r}(\nabla\phi)\times(\nabla\times\mathbf{m}).

We name 𝝌1,2\bm{\chi}_{1,2} generally as “electronic chiralization” to emphasize their electronic origin and pseudovector nature, analogous to the optical chirality (flow) in optics [33, 34, 32, 35]. Several comments are in order:

(i) One can define 𝝌31Vd3𝐫(2ϕ)𝐦\bm{\chi}_{3}\equiv\frac{1}{V}\int d^{3}\mathbf{r}(\nabla^{2}\phi)\mathbf{m} which is a linear combination of 𝝌1,2\bm{\chi}_{1,2}. However, a nonzero 𝝌3\bm{\chi}_{3} in antiferromagnets suggests an AHE that is due to compensated 𝐦\mathbf{m} located on structurally inequivalent sites (different 2ϕ\nabla^{2}\phi) and is relatively trivial. We thus focus on 𝝌1\bm{\chi}_{1} in this work only.

(ii) 𝝌1\bm{\chi}_{1} and 𝝌2\bm{\chi}_{2} are respectively related to the magnetic charge density ρm𝐦\rho_{m}\equiv-\nabla\cdot\mathbf{m} and the electric current density 𝐣=×𝐦\mathbf{j}=\nabla\times\mathbf{m}. When 𝐦\mathbf{m} can be approximated by gμB𝐬(𝐫)g\mu_{\rm B}\mathbf{s}(\mathbf{r}) with 𝐬(𝐫)\mathbf{s}(\mathbf{r}) the spin density, ×𝐬(𝐫)\nabla\times\mathbf{s}(\mathbf{r}) is the “spin current” contribution to the conserved charge current in the Dirac theory of electrons.

(iii) Using the electron charge density ρ(𝐫)\rho(\mathbf{r}) as the scalar field ϕ\phi, one can potentially obtain 𝝌1,2\bm{\chi}_{1,2} directly from magnetic neutron or X-ray diffraction data since it only requires the knowledge of ρ𝐊𝐦𝐊\rho_{\mathbf{K}}^{*}\mathbf{m}_{\mathbf{K}}, where 𝐊\mathbf{K} is a reciprocal lattice vector (see Sec. II.3 below). Such a combination can appear, e.g. (for 𝝌2\bm{\chi}_{2}), in the interference term of elastic neutron scattering cross-section between magnetic and electrostatic scatterings [48].

(iv) EC exists in ferromagnets as well, though in this case the net magnetization is a more straightforward indicator. In Sec. III.2 we show that in a modified Rashba model [49, 3] the local spin and charge densities exhibit the characteristic textures that lead to nonzero 𝝌1,2,3\bm{\chi}_{1,2,3}.

(v) One can generalize the above definition of EC by considering higher powers of ϕ\phi or its derivative. For example:

𝝌1=1Vd3𝐫ϕ(ϕ)(𝐦),\displaystyle\bm{\chi}_{1}^{\prime}=\frac{1}{V}\int d^{3}\mathbf{r}\phi(\nabla\phi)(\nabla\cdot\mathbf{m}), (7)
𝝌1′′=1Vd3𝐫(ϕ)(2ϕ)(𝐦),\displaystyle\bm{\chi}_{1}^{\prime\prime}=\frac{1}{V}\int d^{3}\mathbf{r}(\nabla\phi)(\nabla^{2}\phi)(\nabla\cdot\mathbf{m}),
\displaystyle\dots

which are also nonzero in general if 𝝌1,20\bm{\chi}_{1,2}\neq 0. In a particular model it may be that 𝝌1,2\bm{\chi}_{1,2} accidentally become zero due to certain artificial symmetry of the model (e.g. assuming a spherical charge/spin distribution for each atom). In such cases the alternative constructions above may be used. One example is hematite (Fe2O3) in the canted antiferromagnetic phase. We found that the EC calculated using the formula Eq. (10) are zero, but 𝝌1′′\bm{\chi}_{1}^{\prime\prime} is nonzero.

II.3 Formulas for computing EC in realistic systems

In this subsection we discuss how to efficiently calculate EC in realistic systems. Since crystallographic models are usually represented by localized atomic charge and magnetic moments, we consider such cases first by assuming that the atomic charge and spin densities are described by Gaussians, which gives

ρ(𝐫)=𝐑nQng(𝐫𝐑𝐫n)\displaystyle\rho(\mathbf{r})=\sum_{\mathbf{R}}\sum_{n}Q_{n}g(\mathbf{r}-\mathbf{R}-\mathbf{r}_{n}) (8)
𝐦(𝐫)=𝐑n𝐌ng(𝐫𝐑𝐫n)\displaystyle\mathbf{m}(\mathbf{r})=\sum_{\mathbf{R}}\sum_{n}\mathbf{M}_{n}g(\mathbf{r}-\mathbf{R}-\mathbf{r}_{n})

where QnQ_{n} and 𝐌n\mathbf{M}_{n} are the charge and magnetic moment on a lattice site located at 𝐫n\mathbf{r}_{n} in the unit cell, 𝐑\mathbf{R} stands for Bravais lattice vectors, and g(𝐫)=(2πσ2)32er22σ2g(\mathbf{r})=(2\pi\sigma^{2})^{-\frac{3}{2}}e^{-\frac{r^{2}}{2\sigma^{2}}} is the Gaussian function whose Fourier transform is g𝐤=eσ2k22g_{\mathbf{k}}=e^{-\frac{\sigma^{2}k^{2}}{2}}. The Fourier transform of ρ(𝐫)\rho(\mathbf{r}) and 𝐦(𝐫)\mathbf{m}(\mathbf{r}) are therefore

ρ𝐊=1VucnQng𝐊eı𝐊𝐫n,\displaystyle\rho_{\mathbf{K}}=\frac{1}{V_{\rm uc}}\sum_{n}Q_{n}g_{\mathbf{K}}e^{-\imath\mathbf{K}\cdot\mathbf{r}_{n}}, (9)
𝐦𝐊=1Vucn𝐌ng𝐊eı𝐊𝐫n,\displaystyle\mathbf{m}_{\mathbf{K}}=\frac{1}{V_{\rm uc}}\sum_{n}\mathbf{M}_{n}g_{\mathbf{K}}e^{-\imath\mathbf{K}\cdot\mathbf{r}_{n}},

from which we can obtain 𝝌1,2\bm{\chi}_{1,2}

𝝌1=𝐊𝐊ρ𝐊(𝐊𝐦𝐊)=1Vuc2𝐊g𝐊2𝐊(𝐊𝐗𝐊)\displaystyle\bm{\chi}_{1}=\sum_{\mathbf{K}}\mathbf{K}\rho^{*}_{\mathbf{K}}(\mathbf{K}\cdot\mathbf{m}_{\mathbf{K}})=\frac{1}{V_{\rm uc}^{2}}\sum_{\mathbf{K}}g_{\mathbf{K}}^{2}\mathbf{K}(\mathbf{K}\cdot\mathbf{X}_{\mathbf{K}}) (10)
𝝌2=𝐊𝐊ρ𝐊×(𝐊×𝐦𝐊)=1Vuc2𝐊g𝐊2𝐊×(𝐊×𝐗𝐊)\displaystyle\bm{\chi}_{2}=\sum_{\mathbf{K}}\mathbf{K}\rho^{*}_{\mathbf{K}}\times(\mathbf{K}\times\mathbf{m}_{\mathbf{K}})=\frac{1}{V_{\rm uc}^{2}}\sum_{\mathbf{K}}g_{\mathbf{K}}^{2}\mathbf{K}\times(\mathbf{K}\times\mathbf{X}_{\mathbf{K}})

where

𝐗𝐊mnQm𝐌neı𝐊(𝐫m𝐫n).\displaystyle\mathbf{X}_{\mathbf{K}}\equiv\sum_{mn}Q_{m}\mathbf{M}_{n}e^{\imath\mathbf{K}\cdot(\mathbf{r}_{m}-\mathbf{r}_{n})}. (11)

Because of the g𝐊2g_{\mathbf{K}}^{2} in Eq. (10) the summation will converge quickly if σ\sigma is comparable to the lattice constant.

Although the momentum space expressions above can be directly applied to scattering data (with the g𝐊g_{\mathbf{K}} replaced by appropriate form factors) and plane-wave-based DFT calculations (see Sec. III.2 for an example), they do not necessarily provide a transparent picture on the real-space charge and magnetization distributions. Moreover, when the charge and magnetization densities are very localized around individual atoms, and have fine structures at small length scales (or equivalently at high energy scales) that can be irrelevant to transport phenomena, the values of 𝝌1,2\bm{\chi}_{1,2} can be sensitive to the cutoff in 𝐊\mathbf{K}. We therefore discuss real-space expressions of 𝝌1,2\bm{\chi}_{1,2} next, still assuming that the local densities for each atom are described by Gaussians.

For 𝝌1\bm{\chi}_{1} we have

𝝌1=\displaystyle\bm{\chi}_{1}= (12)
1Vucmn𝐑d3𝐫Qn𝐌m[g(𝐫𝐫m)][g(𝐫𝐑𝐫n)]\displaystyle\frac{1}{V_{\rm uc}}\sum_{mn}\sum_{\mathbf{R}}\int d^{3}\mathbf{r}Q_{n}\mathbf{M}_{m}\cdot[\nabla g(\mathbf{r}-\mathbf{r}_{m})][\nabla g(\mathbf{r}-\mathbf{R}-\mathbf{r}_{n})]
1Vucmn𝐑Qn𝐌mI(𝐑+𝐫n𝐫m)\displaystyle\equiv\frac{1}{V_{\rm uc}}\sum_{mn}\sum_{\mathbf{R}}Q_{n}\mathbf{M}_{m}\cdot\overleftrightarrow{I}(\mathbf{R}+\mathbf{r}_{n}-\mathbf{r}_{m})

in which the integral

Iij(𝐚)\displaystyle I_{ij}(\mathbf{a}) =\displaystyle= aiajd3𝐫g(𝐫)g(𝐫+𝐚)\displaystyle-\partial_{a_{i}}\partial_{a_{j}}\int d^{3}\mathbf{r}g(\mathbf{r})g(\mathbf{r}+\mathbf{a})
=\displaystyle= 116π32σ5(δijaiaj2σ2)ea24σ2.\displaystyle\frac{1}{16\pi^{\frac{3}{2}}\sigma^{5}}\left(\delta_{ij}-\frac{a_{i}a_{j}}{2\sigma^{2}}\right)e^{-\frac{a^{2}}{4\sigma^{2}}}.

Because of the Gaussian factor in I\overleftrightarrow{I} one can potentially truncate the summation in Eq. (12) at e.g. nearest neighbor. Note that the second term in I\overleftrightarrow{I} has the form of an electric quadrupole. The main difference between it and the quadrupole moment in [23] is that the origin of the former is different for different pairs of ions.

Using the same I\overleftrightarrow{I} one can express 𝝌2\bm{\chi}_{2} as

χ2k\displaystyle\chi_{2k} =\displaystyle= 1Vucmn𝐑QnMmbϵijkϵabjIai(𝐑+𝐫mn)\displaystyle\frac{1}{V_{\rm uc}}\sum_{mn}\sum_{\mathbf{R}}Q_{n}M^{b}_{m}\epsilon_{ijk}\epsilon_{abj}I_{ai}(\mathbf{R}+\mathbf{r}_{mn})
=\displaystyle= 1Vucmn𝐑QnMmb(IbkδbkTrI).\displaystyle\frac{1}{V_{\rm uc}}\sum_{mn}\sum_{\mathbf{R}}Q_{n}M^{b}_{m}\left(I_{bk}-\delta_{bk}{\rm Tr}\overleftrightarrow{I}\right).

The contributions due to the traceless part of I\overleftrightarrow{I} to 𝝌1,2\bm{\chi}_{1,2} are therefore the same. The trace of I\overleftrightarrow{I} gives rise to a weighted sum of electric charge surrounding a given magnetic moment 𝐌m\mathbf{M}_{m}. A compensated ferrimagnet will have a nonzero 𝝌1\bm{\chi}_{1} mainly due to this contribution. We will focus the traceless part of I\overleftrightarrow{I} in Sec. III below since it is less trivial. This also makes it sufficient to consider 𝝌1\bm{\chi}_{1} only. Real-space formulas for the generalized EC introduced in Eq. (7) are given in Appendix A.

III EC in model examples

In this section we calculate the EC using the formulas given in the last section and discuss their connections with the AHE in several model examples.

III.1 EC in AHE antiferromagnets

We first calculate 𝝌1\bm{\chi}_{1} using crystallographic models for the noncollinear AHE antiferromagnets Mn3X (X = Ir, Pt, Sn, Ge, etc.) and the real-space formula Eq. (12). Considering nearest neighbors and the traceless part of I\overleftrightarrow{I} only, we have 𝝌1=Cm𝐌m𝒬m\bm{\chi}_{1}=C\sum_{m}\mathbf{M}_{m}\cdot\mathcal{Q}_{m}, where C=ernn24σ2/(32π32σ7Vuc)C=-e^{\frac{r_{\rm nn}^{2}}{4\sigma^{2}}}/(32\pi^{\frac{3}{2}}\sigma^{7}V_{\rm uc}) is a system dependent constant and rnnr_{\rm nn} is the distance between a magnetic atom and its nearest neighbors. 𝒬m\mathcal{Q}_{m} is the total electric quadrupole relative to the position of site mm:

𝒬m=i{i}mQi(𝐫mi𝐫mi13rnn2𝕀)\displaystyle\mathcal{Q}_{m}=\sum_{i\in\{i\}_{m}}Q_{i}\left(\mathbf{r}_{mi}\mathbf{r}_{mi}-\frac{1}{3}r_{\rm nn}^{2}\mathbb{I}\right) (15)

where {i}m\{i\}_{m} stands for the set of nearest neighbors of site mm. 𝒬m\mathcal{Q}_{m} has the same symmetry as a second-order, i.e. easy-axis or easy-plane, magnetic anisotropy. The origin of weak ferromagnetism and hence the AHE in systems with a nonzero 𝝌1\bm{\chi}_{1} is thus a site-dependent second order anisotropy, which applies to the known examples of Mn3X and collinear AHE antiferromagnets [20, 21]. If such a site-dependent second order anisotropy is forbidden by symmetry, as in the case of hematite, one needs to consider the generalizations of EC as mentioned in Sec. II.3.

For the structure of cubic Mn3X, e.g. Mn3Ir [Fig. 1 (a)], 𝒬m\mathcal{Q}_{m} is diagonal with the principal axis of the largest eigenvalue along the four-fold axis on each Mn atom. One can then obtain the dependence of 𝝌1\bm{\chi}_{1} on rigid rotations of the sublattice moments, which is very different from rotating the pseudovector 𝝌1\bm{\chi}_{1} directly since the latter is not required to transform as a pseudovector under separate rotations of the lattice and magnetic moments. For example, the length of 𝝌1\bm{\chi}_{1} depends on the rotation about its direction as |cosγ||\cos\gamma| [Fig. 1 (b)], where γ\gamma is the rotation angle, similar to 𝝈AH\bm{\sigma}_{\rm AH} (see below) and the orbital magnetization [50]. For the structure of hexagonal Mn3X, e.g. Mn3Sn [Fig. 1 (c)], one can follow the same procedure and obtain a compact expression:

𝝌1cos2(β2)[sin(α+γ)x^+cos(α+γ)y^]\displaystyle\bm{\chi}_{1}\propto\cos^{2}\left(\frac{\beta}{2}\right)\left[\sin(\alpha+\gamma)\hat{x}+\cos(\alpha+\gamma)\hat{y}\right] (16)

where α,β,γ\alpha,\beta,\gamma are Euler angles about the z,y,z′′z,y^{\prime},z^{\prime\prime} axes, respectively. Here zz and yy are the original crystalline axes [0001][0001] and [011¯0][01\bar{1}0], while the primed and double-primed axes correspond to those co-rotated with the local moments successively by α\alpha and β\beta, respectively. The expression captures the phenomenon that a counterclockwise rotation about [0001][0001] of all sublattice moments leads to clockwise rotation of the weak magnetization and 𝝈AH\bm{\sigma}_{\rm AH} [12]. Moreover, rotation about the [011¯0][01\bar{1}0] axis in Fig. 1 (c) by π\pi makes 𝝌1\bm{\chi}_{1} vanish [Fig. 1 (d)], since in this case the magnetic order becomes triangular rather than inverse triangular, and the AHE or weak ferromagnetism are forbidden by a C3C_{3} symmetry.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 1: (Color online) (a) Crystal structure and magnetic order of cubic Mn3X. (b) Dependence of |𝝌1||\bm{\chi}_{1}| on rigid rotation of all sublattice magnetic moments about [111][111] (perpendicular to the initial kagome plane that all moments are parallel with) and [1¯1¯2][\bar{1}\bar{1}2] (along the initial direction of a sublattice moment), respectively. (c) Crystal structure and magnetic order of hexagonal Mn3X. (d) Dependence of |𝝌1||\bm{\chi}_{1}| on rigid rotation of all sublattice magnetic moments about [0001][0001] (perpendicular to the kagome plane) and [011¯0][01\bar{1}0] [along the initial direction of the moment on the topmost atom in (c)], respectively.

To compare the angular dependence of |𝝌1||\bm{\chi}_{1}| with that of |𝝈AH||\bm{\sigma}_{\rm AH}|, we use the following generic tight-binding model [50] adapted to the structures of cubic and hexagonal Mn3X to calculate the intrinsic contribution to the anomalous Hall conductivity:

H=Ht+Hso+HJ\displaystyle H=H_{t}+H_{\rm so}+H_{J} (17)
tijαciαcjα+ıλsoijαβ(r^ij×𝜼ij)𝝈αβciαcjβ\displaystyle\equiv-t\sum_{\langle ij\rangle\alpha}c_{i\alpha}^{\dagger}c_{j\alpha}+\imath\lambda_{\rm so}\sum_{\langle ij\rangle\alpha\beta}(\hat{r}_{ij}\times\bm{\eta}_{ij})\cdot\bm{\sigma}_{\alpha\beta}c_{i\alpha}^{\dagger}c_{j\beta}
Jiαβn^i𝝈αβciαciβ\displaystyle-J\sum_{i\alpha\beta}\hat{n}_{i}\cdot\bm{\sigma}_{\alpha\beta}c_{i\alpha}^{\dagger}c_{i\beta}

where i,ji,j label lattice sites, \langle\rangle means nearest neighbor, α,β\alpha,\beta label spin, t>0t>0 is the spin-independent hopping amplitude and is chosen as the energy unit, λso\lambda_{\rm so} is the spin-orbit coupling strength, r^ij\hat{r}_{ij} is a unit vector along the position vector 𝐫j𝐫i\mathbf{r}_{j}-\mathbf{r}_{i}, 𝜼ij\bm{\eta}_{ij} is the electric field or electric dipole moment vector at the center of the nearest-neighbor ijij bond [50] (normalized using the largest |ηij||{\eta}_{ij}|), JJ is the strength of a local exchange field along n^i\hat{n}_{i} mimicking the noncollinear magnetic order in a given material.

The anomalous Hall conductivity is calculated as

σAHγ=12ϵαβγσαβ(ω=0)\displaystyle\sigma_{\rm AH}^{\gamma}=\frac{1}{2}\epsilon^{\alpha\beta\gamma}\sigma^{\alpha\beta}(\omega=0) (18)
=e2ϵαβγ2N𝐤Vucnm;𝐤fn𝐤fm𝐤(ϵn𝐤ϵm𝐤)2+η2Im(vnm𝐤αvmn𝐤β)\displaystyle=\frac{e^{2}\hbar\epsilon^{\alpha\beta\gamma}}{2N_{\mathbf{k}}V_{\rm uc}}\sum_{n\neq m;\mathbf{k}}\frac{f_{n\mathbf{k}}-f_{m\mathbf{k}}}{(\epsilon_{n\mathbf{k}}-\epsilon_{m\mathbf{k}})^{2}+\eta^{2}}{\rm Im}\left(v^{\alpha}_{nm\mathbf{k}}v^{\beta}_{mn\mathbf{k}}\right)

where σαβ(ω)\sigma^{\alpha\beta}(\omega) is the optical conductivity tensor, N𝐤N_{\mathbf{k}} is the number of points of the kk-mesh, and η\eta is a band broadening parameter that depends on disorder. To facilitate rapid convergence of the Brillouin zone integration we have used η=0.1\eta=0.1 (in units of tt) and a thermal smearing with kBT=0.3k_{\rm B}T=0.3. Such smearing parameters also help to eliminate any spurious abrupt changes of the zero-temperature intrinsic AHC in a perfect crystal versus smooth changes of tuning parameters such as the rotation angle, since the former is sensitively dependent on small band splittings at the Fermi energy. In reality the dependence of transport coefficients on orientations of the magnetic order parameter are expected to consist of low-order Fourier components due to both thermal and disorder effects. The Brillouin zone integration is performed using a 31×31×3131\times 31\times 31 mesh.

Figures. 2 (b) and (d) agree qualitatively with the angular dependence of the EC in Figs. 1 (b) and (d). Such an agreement to some extent depends on the parameter values used, but is generally expected based on symmetry arguments: For an arbitrary rotation of the local magnetic moments along a closed path one can generally expand the 𝝈AH\bm{\sigma}_{\rm AH} and EC as Fourier series. The high-symmetry points on the rotation path, either corresponding to exact vanishing of the 𝝈AH\bm{\sigma}_{\rm AH} and EC (e.g., π\pi rotation about [111][111] in Mn3Ir), or equivalent to certain magnetic space group operations (e.g., 2π/32\pi/3 rotation about [0001][0001] in Mn3Sn), place identical constraints on the Fourier coefficients of 𝝈AH\bm{\sigma}_{\rm AH} and EC. As a result, when the angular dependence is smooth so that only a few low-order Fourier coefficients are relevant, it is expected that 𝝈AH\bm{\sigma}_{\rm AH} and EC should behave similarly. Such a symmetry analysis is analogous to that commonly used in ferromagnetic crystals [51]. Nonetheless, 𝝈AH\bm{\sigma}_{\rm AH} and EC are not required to have the same angular dependence, which is also similar to the relation between 𝝈AH\bm{\sigma}_{\rm AH} and the net magnetization in a ferromagnet.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 2: (Color online) (a) Band structure of the model in Eq. (17) for the cubic Mn3X structure, obtained using t=1,λso=0.1,J=1,μ=6t=1,\,\lambda_{\rm so}=0.1,\,J=1,\,\mu=-6, where μ\mu is the chemical potential. (b) Angular dependence of the norm of the AHC vector for the cubic Mn3X model. (c) Band structure for the hexagonal Mn3X structure, obtained using t=1,λso=0.2,J=1,μ=7t=1,\,\lambda_{\rm so}=0.2,\,J=1,\,\mu=-7. (d) Angular dependence of the norm of the AHC vector for the hexagonal Mn3X model.

III.2 EC in a ferromagnetic Rashba model

In this subsection we give an example of a microscopic calculation of 𝝌1\bm{\chi}_{1} by using a 2D Rashba-type continuum model. The procedure can be straightforwardly applied to plane-wave-based density functional theory calculations. The model also serves as an example of the applicability of EC for conventional ferromagnets. The Hamiltonian describes itinerant electrons subject to periodic scalar, Zeeman, and Rashba spin-orbit coupling potentials on a square lattice:

H=22m2+ı2λR{G(𝐫),z^(𝝈×)}JG(𝐫)σz\displaystyle H=-\frac{\hbar^{2}}{2m}\nabla^{2}+\frac{\imath}{2}\lambda_{R}\{G(\mathbf{r}),\hat{z}\cdot(\bm{\sigma}\times\nabla)\}-JG(\mathbf{r})\sigma_{z} (19)
VG(𝐫),\displaystyle-VG(\mathbf{r}),

where λR\lambda_{R} is the strength of the Rashba spin-orbit coupling, JJ is that of a Zeeman field along z^\hat{z}, and VV is that of a scalar confinement potential. {,}\{,\} stands for anti-commutation and is needed to ensure that the position-dependent Rashba term is Hermitian. G(𝐫)G(\mathbf{r}) is a periodic Gaussian-like function:

G(𝐫)=1Vuc𝐊ucd2𝐫g(𝐫)eı𝐊(𝐫𝐫)𝐊G𝐊eı𝐊𝐫,\displaystyle G(\mathbf{r})=\frac{1}{V_{\rm uc}}\sum_{\mathbf{K}}\int_{\rm uc}d^{2}\mathbf{r}^{\prime}g(\mathbf{r}^{\prime})e^{\imath\mathbf{K}\cdot(\mathbf{r}-\mathbf{r}^{\prime})}\equiv\sum_{\mathbf{K}}G_{\mathbf{K}}e^{\imath\mathbf{K}\cdot\mathbf{r}}, (20)

where uc stands for unit cell defined by the lattice vectors 𝐚1=ax^,𝐚2=ay^\mathbf{a}_{1}=a\hat{x},\mathbf{a}_{2}=a\hat{y}, 𝐊\mathbf{K} are reciprocal lattice vectors, and g(𝐫)g(\mathbf{r}) is the 2D Gaussian g(𝐫)=12πσ2er22σ2g(\mathbf{r})=\frac{1}{2\pi\sigma^{2}}e^{-\frac{r^{2}}{2\sigma^{2}}}. In practice we will set G𝐊=0G_{\mathbf{K}}=0 when max(|Kx|,|Ky|)>KG\max(|K_{x}|,|K_{y}|)>K_{G}, KGK_{G} being a parameter. We choose aa as the length unit, and E0=2/(2ma2)E_{0}=\hbar^{2}/(2ma^{2}) as the energy unit. An illustration of G(𝐫)G(\mathbf{r}) with KG=10(2πa)K_{G}=10\left(\frac{2\pi}{a}\right) is shown in Fig. 3 (a). In the plane wave basis an arbitrary eigenfunction can be written as

ψ=𝐤c𝐤eı𝐤𝐫𝐤BZ𝐊c𝐊(𝐤)eı(𝐤+𝐊)𝐫,\displaystyle\psi=\sum_{\mathbf{k}}c_{\mathbf{k}}e^{\imath\mathbf{k}\cdot\mathbf{r}}\equiv\sum_{\mathbf{k}\in{\rm BZ}}\sum_{\mathbf{K}}c_{\mathbf{K}}(\mathbf{k})e^{\imath(\mathbf{k}+\mathbf{K})\cdot\mathbf{r}}, (21)

where cc are 2×12\times 1 column vectors. Substituting this wavefunction into the eigen-equation Hψ=ϵψH\psi=\epsilon\psi for the dimensionless Hamiltonian and using the orthogonality between plane waves we obtain

(𝐤+𝐊)2c𝐊(𝐤)+𝐊G𝐊𝐊U𝐊𝐊(𝐤)c𝐊(𝐤)\displaystyle(\mathbf{k}+\mathbf{K})^{2}c_{\mathbf{K}}(\mathbf{k})+\sum_{\mathbf{K}^{\prime}}G_{\mathbf{K}-\mathbf{K}^{\prime}}U_{\mathbf{K}\mathbf{K}^{\prime}}(\mathbf{k})c_{\mathbf{K}^{\prime}}(\mathbf{k}) (22)
ϵc𝐊(𝐤)=0\displaystyle-\epsilon c_{\mathbf{K}}(\mathbf{k})=0

where

U𝐊𝐊(𝐤)JσzV\displaystyle U_{\mathbf{K}\mathbf{K}^{\prime}}(\mathbf{k})\equiv-J\sigma_{z}-V (23)
+λR[(kx+Kx+Kx2)σy(ky+Ky+Ky2)σx].\displaystyle+\lambda_{R}\left[\left(k_{x}+\frac{K_{x}+K^{\prime}_{x}}{2}\right)\sigma_{y}-\left(k_{y}+\frac{K_{y}+K^{\prime}_{y}}{2}\right)\sigma_{x}\right].

Equation (22) represents infinite coupled linear equations for a given 𝐤\mathbf{k}, or a matrix equation for the column vector c𝐊(𝐤)c_{\mathbf{K}}(\mathbf{k}), with 𝐊\mathbf{K} understood as a row or column index. We truncate the Hamiltonian matrix by requiring max(|Kx|,|Ky|)KH\max(|K_{x}|,|K_{y}|)\leq K_{H}. Note that KHK_{H} is generally different from KGK_{G} defined above. The dimension of the Hamiltonian matrix for our model is therefore N×NN\times N, N=2(2KH+1)2N=2(2K_{H}+1)^{2} (KHK_{H} is in units of 2π/a2\pi/a). Figure 3 (b) shows a typical band structure of the model [KH=10(2πa)K_{H}=10\left(\frac{2\pi}{a}\right), only the lowest six bands are plotted].

The spin density (at position 𝝉\bm{\tau}) operator has the following matrix elements (taking 2\frac{\hbar}{2} as the units of spin)

𝐬𝐊𝐊(𝝉)=𝝈eı(𝐊𝐊)𝝉\displaystyle\mathbf{s}_{\mathbf{K}\mathbf{K}^{\prime}}(\bm{\tau})=\bm{\sigma}e^{-\imath(\mathbf{K}-\mathbf{K}^{\prime})\cdot\bm{\tau}} (24)

whose Fourier transform at reciprocal lattice vector 𝐊0\mathbf{K}_{0} is

𝐬𝐊𝐊(𝐊0)=𝝈δ𝐊0,𝐊𝐊\displaystyle\mathbf{s}_{\mathbf{K}\mathbf{K}^{\prime}}(\mathbf{K}_{0})=\bm{\sigma}\delta_{\mathbf{K}_{0},\mathbf{K}^{\prime}-\mathbf{K}} (25)

The expectation value of the spin density for a given chemical potential is therefore

𝐬(𝝉)=n𝐤n𝐤|𝐬(𝝉)|n𝐤fn𝐤\displaystyle\mathbf{s}(\bm{\tau})=\sum_{n\mathbf{k}}\langle n\mathbf{k}|\mathbf{s}(\bm{\tau})|n\mathbf{k}\rangle f_{n\mathbf{k}} (26)

where fn𝐤f_{n\mathbf{k}} is the Fermi-Dirac distribution function at eigen-energy ϵn𝐤\epsilon_{n\mathbf{k}}. Its Fourier transform at reciprocal lattice vector 𝐊0\mathbf{K}_{0} is

𝐬𝐊0=n𝐤n𝐤|𝐬(𝐊0)|n𝐤fn𝐤.\displaystyle\mathbf{s}_{\mathbf{K}_{0}}=\sum_{n\mathbf{k}}\langle n\mathbf{k}|\mathbf{s}(\mathbf{K}_{0})|n\mathbf{k}\rangle f_{n\mathbf{k}}. (27)

The ferromagnetic Rashba model [49] is known to have the AHE with an out-of-plane 𝝈AH\bm{\sigma}_{\rm AH} [3]. Therefore we only consider the out-of-plane components of the EC. Taking the spatial dependence of the Rashba coefficient as zϕ(𝐫)\partial_{z}\phi(\mathbf{r}) in the definition of 𝝌1\bm{\chi}_{1}, we can finally obtain

χ1z=ı𝐊G𝐊𝐊𝐬𝐊.\displaystyle\chi_{1}^{z}=\imath\sum_{\mathbf{K}}G^{*}_{\mathbf{K}}\mathbf{K}\cdot\mathbf{s}_{\mathbf{K}}. (28)

Moreover, the spatial dependence of the Gaussian potentials allows us to calculate 𝝌2\bm{\chi}_{2} and 𝝌3\bm{\chi}_{3} as well, for which we will directly use the electron density ρ(𝝉)\rho(\bm{\tau}) as the scalar field, whose expressions are similar to Eqs. (24)–(27) but with 𝝈\bm{\sigma} replaced by σ0\sigma_{0}. Then

χ2z=𝐊K2ρ𝐊s𝐊z=χ3z.\displaystyle\chi_{2}^{z}=-\sum_{\mathbf{K}}K^{2}\rho_{\mathbf{K}}^{*}s^{z}_{\mathbf{K}}=\chi_{3}^{z}. (29)

Note that in the present case 𝝌3\bm{\chi}_{3} is not a linear combination of 𝝌1,2\bm{\chi}_{1,2} any more.

Figures 3 (c-f) show representative results of the spin densities and the EC from this model. The in-plane spin components have a nonzero divergence near the center of the unit cell, and become large when the gradient of the confinement potential is significant, which leads to a finite χ1z\chi_{1}^{z}. The out-of-plane spin component is largest near the center of the unit cell, where the Laplacian of the confinement potential is also largest, leading to a finite χ2z\chi_{2}^{z}. The summands of Eqs. (28) and (29) are plotted in Figs. 3 (d) and (f), respectively. The bright dots represent the (Bragg) peaks in diffraction experiments and the color coding in log scale suggests fast decay versus increasing crystal momentum. The final results are χ1z=0.02685\chi_{1}^{z}=0.02685, χ2z=0.03058\chi_{2}^{z}=-0.03058 [in the units implied in Eqs. (28) and (29)] for the parameter values listed in the caption of Fig. 3.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Refer to caption
(e)
Refer to caption
(f)
Figure 3: (Color online) (a) Spatial profile of the periodic confinement potential G(𝐫)G(\mathbf{r}) in Eq. (20); KG=10(2πa)K_{G}=10\left(\frac{2\pi}{a}\right). (b) Band structure along the high-symmetry lines in the Brillouin zone. The parameter values are: t=1,λR=0.2,J=0.5,V=2,μ=0,KH=KG=10(2πa)t=1,\,\lambda_{R}=0.2,\,J=0.5,\,V=2,\,\mu=0,\,K_{H}=K_{G}=10\left(\frac{2\pi}{a}\right). Only the 6 lowest bands are shown. (c) In-plane components of the spin density in the unit cell. The color coding represents the size of the local in-plane spin density in units of 2a2\frac{\hbar}{2a^{2}}. The arrows represent both the size and direction of the spin density. (d) Out-of-plane component of the spin density in the unit cell. (e) Bragg peaks corresponding to the summand of χ1z\chi_{1}^{z} in Eq. (28) plotted in log scale. (f) Bragg peaks for χ2z\chi_{2}^{z} in Eq. (29).

IV AHE induced by magnetic charge

The EC introduced above not only serves as an indicator of the AHE in known materials but also provides intuitive guidance for the search of new AHE systems with vanishing net magnetization. To give a glimpse of the predictive power of EC, in this section we show two experimentally relevant model examples in which the magnetic charge appears explicitly and leads to the AHE, inspired by the way that ϕ\nabla\phi and the magnetic charge density ρm\rho_{m} cooperatively give rise to finite 𝝌1\bm{\chi}_{1}.

IV.1 Minimal model of the AHE due to magnetic charge order

We first consider a minimal tight-binding model having the essential ingredients for magnetic-charge-induced AHE. The model describes ss electrons hopping between nearest neighbors on a honeycomb lattice, with magnetic charge of opposite signs residing on the two sublattices [Fig. 4 (a)]:

H\displaystyle H =\displaystyle= tijαciαcjαtMijαβηij𝝈αβr^ijciαcjβ\displaystyle-t\sum_{\langle ij\rangle\alpha}c_{i\alpha}^{\dagger}c_{j\alpha}-t_{M}\sum_{\langle ij\rangle\alpha\beta}\eta_{ij}\bm{\sigma}_{\alpha\beta}\cdot\hat{r}_{ij}c_{i\alpha}^{\dagger}c_{j\beta}
+ıλRijαβ𝝈αβ(z^×r^ij)ciαcjβ+Δiαγiciαciα\displaystyle+\imath\lambda_{R}\sum_{\langle ij\rangle\alpha\beta}\bm{\sigma}_{\alpha\beta}\cdot(\hat{z}\times\hat{r}_{ij})c_{i\alpha}^{\dagger}c_{j\beta}+\Delta\sum_{i\alpha}\gamma_{i}c_{i\alpha}^{\dagger}c_{i\alpha}

where the four terms respectively correspond to spin-independent hopping, spin-dependent hopping due to the magnetic charge, Rashba spin-orbit coupling, and an on-site potential breaking the sublattice symmetry; ηij=+1(1)\eta_{ij}=+1(-1) if r^ij\hat{r}_{ij} points from sublattice A (B) to B (A); ηij\eta_{ij} together with 𝝈r^ij\bm{\sigma}\cdot\hat{r}_{ij} capture the spin-dependent hopping due to the magnetic field (𝐇\mathbf{H} field) lines between neighboring magnetic charges; γi=+1(1)\gamma_{i}=+1(-1) on A (B) sublattice. The Rashba term is needed to provide the direction of 𝝌1\bm{\chi}_{1} along zz as suggested by the expression of 𝝌1\bm{\chi}_{1}, and the sublattice potential is needed to break the degeneracy between the opposite magnetic charges on the two sublattices.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 4: (Color online) (a) Honeycomb lattice model with opposite magnetic charges residing on the two sublattices, respectively. The arrows correspond to the magnetic field lines. (b) Band structure (top) and Berry curvature summed over occupied bands (bottom) of the model. 𝐌=𝐌\bf M^{\prime}=-M and 𝐊=𝐊\bf K^{\prime}=-K. The parameter values are: t=1,tM=0.7,λR=0.2,Δ=0.5t=1,t_{M}=0.7,\lambda_{R}=0.2,\Delta=0.5. (c) Berry curvature obtained using the same parameters as in (b) but plotted in the 2D momentum space.

Figure 4 (b) shows the typical band structure and Berry curvature of model (IV.1). The Berry curvature is generally nonzero and is largest near the Brillouin zone corners K,KK,K^{\prime}. However, the Berry curvatures at opposite momenta do not cancel each other due to the broken time-reversal symmetry by the tMt_{M} term, which is also evident from the 2D plot in Fig. 4 (c). Therefore the AHE is generally nonzero, except when the Fermi energy is in the gap opened by Δ\Delta which we explain next.

After Fourier transform the toy model becomes [for convenience we rotate the honeycomb lattice in Fig. 4 (a) clockwisely by π/6\pi/6]

H\displaystyle H =\displaystyle= 𝐤C𝐤(Δσ0tf𝐤σ0[tM𝐠𝐤ıλR(z^×𝐠𝐤)]𝝈tf𝐤σ0[tM𝐠𝐤+ıλR(z^×𝐠𝐤)]𝝈Δσ0)C𝐤\displaystyle\sum_{\mathbf{k}}C_{\mathbf{k}}^{\dagger}\begin{pmatrix}\Delta\sigma_{0}&-tf_{\mathbf{k}}\sigma_{0}-[t_{M}\mathbf{g}_{\mathbf{k}}-\imath\lambda_{R}(\hat{z}\times\mathbf{g}_{\mathbf{k}})]\cdot\bm{\sigma}\\ -tf^{*}_{\mathbf{k}}\sigma_{0}-[t_{M}\mathbf{g}^{*}_{\mathbf{k}}+\imath\lambda_{R}(\hat{z}\times\mathbf{g}^{*}_{\mathbf{k}})]\cdot\bm{\sigma}&-\Delta\sigma_{0}\end{pmatrix}C_{\mathbf{k}}
\displaystyle\equiv 𝐤C𝐤h(𝐤)C𝐤\displaystyle\sum_{\mathbf{k}}C_{\mathbf{k}}^{\dagger}h(\mathbf{k})C_{\mathbf{k}}

where C𝐤=(c𝐤A,c𝐤A,c𝐤B,c𝐤B)C_{\mathbf{k}}^{\dagger}=(c_{\mathbf{k}A\uparrow}^{\dagger},c_{\mathbf{k}A\downarrow}^{\dagger},c_{\mathbf{k}B\uparrow}^{\dagger},c_{\mathbf{k}B\downarrow}^{\dagger}),

f𝐤\displaystyle f_{\mathbf{k}} =\displaystyle= n=13eıa3𝐤𝐫n\displaystyle\sum_{n=1}^{3}e^{\imath\frac{a}{\sqrt{3}}\mathbf{k}\cdot\mathbf{r}_{n}} (32)
𝐠𝐤\displaystyle\mathbf{g}_{\mathbf{k}} =\displaystyle= n=13𝐫neıa3𝐤𝐫n,\displaystyle\sum_{n=1}^{3}\mathbf{r}_{n}e^{\imath\frac{a}{\sqrt{3}}\mathbf{k}\cdot\mathbf{r}_{n}},

and 𝐫1=32x^12y^,𝐫2=y^,𝐫3=32x^12y^\mathbf{r}_{1}=\frac{\sqrt{3}}{2}\hat{x}-\frac{1}{2}\hat{y},\mathbf{r}_{2}=\hat{y},\mathbf{r}_{3}=-\frac{\sqrt{3}}{2}\hat{x}-\frac{1}{2}\hat{y}. aa is the lattice constant. Near ±𝐊=±4π3ax^\pm\mathbf{K}=\pm\frac{4\pi}{3a}\hat{x} we have

f𝐪±𝐊\displaystyle f_{\mathbf{q}\pm\mathbf{K}} \displaystyle\approx 3a2(±qxıqy)+O(q2),\displaystyle-\frac{\sqrt{3}a}{2}(\pm q_{x}-\imath q_{y})+O(q^{2}), (33)
𝐠𝐪±𝐊\displaystyle\mathbf{g}_{\mathbf{q}\pm\mathbf{K}} \displaystyle\approx 32(±ıx^+y^)+O(q).\displaystyle\frac{3}{2}(\pm\imath\hat{x}+\hat{y})+O(q).

The Dirac Hamiltonian at each valley ±𝐊ηv𝐊\pm\mathbf{K}\equiv\eta_{v}\mathbf{K} is therefore

h(𝐪+ηv𝐊)Δτzσ0+3at2(ηvqxτx+qyτy)σ0\displaystyle h(\mathbf{q}+\eta_{v}\mathbf{K})\approx\Delta\tau_{z}\sigma_{0}+\frac{\sqrt{3}at}{2}(\eta_{v}q_{x}\tau_{x}+q_{y}\tau_{y})\sigma_{0} (34)
32(tM+ηvλR)(τxσyηvτyσx),\displaystyle-\frac{3}{2}(t_{M}+\eta_{v}\lambda_{R})(\tau_{x}\sigma_{y}-\eta_{v}\tau_{y}\sigma_{x}),

where 𝝉\bm{\tau} is the Pauli matrix vector in the sublattice space. One can see that the magnetic-charge contribution only changes the magnitude of the Rashba terms in each valley. Since the Rashba terms do not gap the Dirac Hamiltonian by themselves [52], the magnetic charge contribution cannot lead to topological phase transitions. Separately, since tMt_{M} effectively changes the relative strength of the Rashba spin-orbit coupling at the two valleys, when the Fermi energy is not within the gap, the Berry curvature at the two valleys will not cancel out, leading to the finite anomalous Hall conductivity.

The minimal model can be connected with the magnetic-charge-ordered state of the kagome spin ice [37, 38, 45] by the duality between honeycomb and kagome lattices. The background magnetic field connecting neighboring magnetic charges can be regarded, as a first approximation, as the homogenized effect of the fluctuating magnetic dipole moments in the charge-ordered state of the kagome spin ice on itinerant electrons. In comparison with the models studied in [53, 54] where the local spins on the kagome lattice is noncoplanar, the present model has a vanishing net magnetization. More importantly, the essential symmetry breaking in the non-magnetic part of model (IV.1) is already present in the pyrochlore iridate Pr2Ir2O7 [9], in which an AHE in the absence of long-range dipolar order and of net magnetization has been observed [55]. Although the ground state of Pr2Ir2O7 may be elusive and the direct measurement [56] of scalar spin chirality by scattering techniques is challenging, it is possible to alternatively measure the EC which, if nonzero, can help to solve the puzzle of the zero-field AHE in [55].

IV.2 Skew scattering by magnetic charge

In this subsection we predict an extrinsic contribution to the AHE by magnetic charge through skew scattering. Again motivated by the expression of 𝝌1\bm{\chi}_{1}, we consider the following model of 2D Dirac electrons with Rashba-type spin-momentum locking scattered by a magnetic charge whose magnetic field is truncated at finite radius RR:

H\displaystyle H =\displaystyle= ıλ(σxyσyx)Δ2πrr^𝝈Θ(Rr)\displaystyle-\imath\hbar\lambda(\sigma_{x}\partial_{y}-\sigma_{y}\partial_{x})-\frac{\Delta}{2\pi r}\hat{r}\cdot\bm{\sigma}\Theta(R-r)
\displaystyle\equiv HD+HΔ\displaystyle H_{D}+H_{\Delta}

where Θ(x)\Theta(x) is the step function. HΔH_{\Delta} represents the Zeeman coupling between the electron spin and the magnetic field 𝐡(𝐫)=𝐦(𝐫)=Δr^/(2πr)\mathbf{h}(\mathbf{r})=-\mathbf{m}(\mathbf{r})=\Delta\hat{r}/(2\pi r) generated by a magnetic charge located at the origin within a radius RR. Here we consider the analytically simpler case of αΔ/(2πλ)=1\alpha\equiv\Delta/(2\pi\hbar\lambda)=1 and relegate the more general solution to Appendix B. Assuming a positive chemical potential, the solution for r<Rr<R with energy E=λk0>0E=\hbar\lambda k_{0}>0 is

Ψ<=n=an(Jn1(k0r)eınθJn(k0r)eı(n+1)θ)\displaystyle\Psi_{<}=\sum_{n=-\infty}^{\infty}a_{n}\begin{pmatrix}J_{n-1}(k_{0}r)e^{{\imath}n\theta}\\ J_{n}(k_{0}r)e^{{\imath}(n+1)\theta}\end{pmatrix} (36)

while that for r>Rr>R with an incident plane wave traveling along x^\hat{x} is

Ψ>=Ψin+Ψscatt\displaystyle\Psi_{>}=\Psi_{\rm in}+\Psi_{\rm scatt} (37)
=eık0x22π(ı1)+n=bn(Hn(k0r)eınθHn+1(k0r)eı(n+1)θ)\displaystyle=\frac{e^{\imath k_{0}x}}{2\sqrt{2}\pi}\begin{pmatrix}\imath\\ 1\end{pmatrix}+\sum_{n=-\infty}^{\infty}b_{n}\begin{pmatrix}H_{n}(k_{0}r)e^{\imath n\theta}\\ H_{n+1}(k_{0}r)e^{\imath(n+1)\theta}\end{pmatrix}

where Hn=Jn+ıYnH_{n}=J_{n}+\imath Y_{n} is the Hankel function of the first kind, and YnY_{n} is the Bessel function of the second kind. The appearance of the Hankel function is because Ψ>\Psi_{>} does not include the origin where YnY_{n} diverges. Also the Hankel function of the first kind represents outgoing waves [5]. Solving bnb_{n} from the boundary condition Ψ<|r=R=Ψ>|r=R\Psi_{<}|_{r=R}=\Psi_{>}|_{r=R} and taking the large-distance asymptotic form of Ψscatt\Psi_{\rm scatt}, we obtain the scattering cross section

σ(θ)𝐣r^scatt(r,θ)=4λπk0r|nbneın(θπ2)|2.\displaystyle\sigma(\theta)\propto\langle\mathbf{j}\cdot\hat{r}\rangle_{\rm scatt}(r,\theta)=\frac{4\lambda}{\pi k_{0}r}\Big{|}\sum_{n}b_{n}e^{{\imath}n(\theta-\frac{\pi}{2})}\Big{|}^{2}. (38)

When k0R1k_{0}R\ll 1 one can consider up to pp-wave contributions to σ(θ)\sigma(\theta). The Hall angle due to scattering by the magnetic charge only can be calculated as [57]

tanθH\displaystyle\tan\theta_{\rm H} =\displaystyle= σ(θ)sinθdθσ(θ)(1cosθ)𝑑θRe(b1+b1b0)\displaystyle\frac{\int\sigma(\theta)\sin\theta d\theta}{\int\sigma(\theta)(1-\cos\theta)d\theta}\approx{\rm Re}\left(\frac{b_{-1}+b_{1}}{b_{0}}\right)
\displaystyle\approx π8(k0R)2\displaystyle\frac{\pi}{8}(k_{0}R)^{2}

The result in the last line above turns out to be a good approximation even at k0R1k_{0}R\sim 1, for which tanθH0.39\tan\theta_{\rm H}\approx 0.39. We also found that when α=1\alpha=-1, tanθHπ8(k0R)2\tan\theta_{\rm H}\approx-\frac{\pi}{8}(k_{0}R)^{2}, confirming the time-reversal-odd property of the AHE.

Experimental detection of such an effect may be performed using topological insulator surface states [58] or 2D electron gas with large Rashba spin-orbit coupling that are proximate-coupled to magnetic textures [59, 60] having a nonzero 2D magnetic charge density. With λ101eVÅ\hbar\lambda\sim 10^{1}\,{\rm eV\cdot\AA} and R1/k0100R\sim 1/k_{0}\sim 100 Å, the Zeeman coupling Δ/(2πR)0.1\Delta/(2\pi R)\sim 0.1 eV is reasonable to achieve experimentally.

V Discussion

The electronic chiralization introduced in this work is a construction based on charge and spin densities that themselves are physical observables measured by scattering techniques. Therefore it does not directly correspond to a thermodynamic variable that is conjugate to a single external field configuration, such as the magnetization or toroidization. However, a corresponding thermodynamic variable for EC may be defined through the coupling with multipole moments of non-Gaussian electromagnetic waves. First-principles calculations of the EC in plane-wave basis is also straightforward, as demonstrated in Sec. III.2, but to get meaningful values a proper treatment of the cutoff (e.g., by using an atomic form factor) may be essential due to the fluctuation of the gradients of charge and spin densities at high energies. Alternatively, one may use the expressions of EC derived by assuming localized atomic magnetic moments and charge.

Although we mainly focused on the magnetic-charge-related 𝝌1\bm{\chi}_{1}, it is possible to predict the existence of the AHE in other systems based on the forms of 𝝌2,3\bm{\chi}_{2,3} and their generalizations. For example, the use of a sublattice potential in the honeycomb model in Sec. IV.1 makes the AHE more precisely correspond to 𝝌1′′\bm{\chi}^{\prime\prime}_{1} in Eq. (7). We stress that such predictions based on the grounds of symmetry do not necessarily yield universal microscopic mechanisms for the AHE, since similar to ferromagnets, in a given system with nonzero EC all mechanisms relevant to the AHE should generally coexist if without fine-tuning. Nonetheless, the examples given in Sec. IV suggest that there are new “building blocks” for the intrinsic and extrinsic mechanisms of the AHE inspired by the EC, similar to the case of scalar spin chirality [61, 60]. Finally, EC can be used as an indicator of other anomalous response functions such as the anomalous Nernst effect or magneto-optical Kerr effect that have similar symmetry properties as the AHE.

Acknowledgements.
H.C. was supported by NSF CAREER Grant No. DMR-1945023. H.C. is grateful to A. MacDonald, O. Pinaud, K. Zhao, and K. Ross for valuable discussions.

Appendix A Real-space formulas for the generalized EC

Real-space formulas for the generalized EC constructions in Eq. (7) can be generated by integrals of three or more Gaussians:

I(𝐚1,𝐚2,,𝐚n)=d3𝐫i=1ng(𝐫𝐚i)\displaystyle I(\mathbf{a}_{1},\mathbf{a}_{2},\dots,\mathbf{a}_{n})=\int d^{3}\mathbf{r}\prod_{i=1}^{n}g(\mathbf{r}-\mathbf{a}_{i}) (40)
=(2πσ2)3(n1)2n32exp[n2σ2(a2𝐚𝐚)]\displaystyle=(2\pi\sigma^{2})^{-\frac{3(n-1)}{2}}n^{-\frac{3}{2}}\exp\left[-\frac{n}{2\sigma^{2}}\left(\langle a^{2}\rangle-\langle\mathbf{a}\rangle\cdot\langle\mathbf{a}\rangle\right)\right]

where

a2=1ni=1nai2,𝐚=1ni=1n𝐚i\displaystyle\langle a^{2}\rangle=\frac{1}{n}\sum_{i=1}^{n}a_{i}^{2},\;\langle\mathbf{a}\rangle=\frac{1}{n}\sum_{i=1}^{n}\mathbf{a}_{i} (41)

Using Eq. (40) we can obtain

Iij(𝐚,𝐛,𝐜)d3𝐫g(𝐫𝐚)ig(𝐫𝐛)jg(𝐫𝐜)\displaystyle I_{ij}(\mathbf{a},\mathbf{b},\mathbf{c})\equiv\int d^{3}\mathbf{r}g(\mathbf{r}-\mathbf{a})\partial_{i}g(\mathbf{r}-\mathbf{b})\partial_{j}g(\mathbf{r}-\mathbf{c}) (42)
=bicjI(𝐚,𝐛,𝐜)\displaystyle=\partial_{b_{i}}\partial_{c_{j}}I(\mathbf{a},\mathbf{b},\mathbf{c})
=124π3332σ8[δij+13σ2(2biaici)(2cjajbj)]\displaystyle=\frac{1}{24\pi^{3}3^{\frac{3}{2}}\sigma^{8}}\left[\delta_{ij}+\frac{1}{3\sigma^{2}}(2b_{i}-a_{i}-c_{i})(2c_{j}-a_{j}-b_{j})\right]
×exp[13σ2(a2+b2+c2𝐚𝐛𝐛𝐜𝐜𝐚)]\displaystyle\times\exp\left[-\frac{1}{3\sigma^{2}}(a^{2}+b^{2}+c^{2}-\mathbf{a}\cdot\mathbf{b}-\mathbf{b}\cdot\mathbf{c}-\mathbf{c}\cdot\mathbf{a})\right]

which enters the real-space expression of 𝝌1\bm{\chi}^{\prime}_{1}

χ1i=1Vuc𝐑𝐑mnpQmQnMpjIij(𝐫m,𝐫n+𝐑,𝐫p+𝐑)\displaystyle\chi^{\prime}_{1i}=\frac{1}{V_{\rm uc}}\sum_{\mathbf{R}\mathbf{R}^{\prime}}\sum_{mnp}Q_{m}Q_{n}M^{j}_{p}I_{ij}(\mathbf{r}_{m},\mathbf{r}_{n}+\mathbf{R},\mathbf{r}_{p}+\mathbf{R}^{\prime}) (43)

Because the exponent in IijI_{ij} is proportional to the standard deviation of the positions of the three sites in the summand, only near neighbors need to be considered.

For the calculation of 𝝌1′′\bm{\chi}_{1}^{\prime\prime} we need

Iijkl(𝐚,𝐛,𝐜)aibjbkclI(𝐚,𝐛,𝐜).\displaystyle I_{ijkl}(\mathbf{a},\mathbf{b},\mathbf{c})\equiv\partial_{a_{i}}\partial_{b_{j}}\partial_{b_{k}}\partial_{c_{l}}I(\mathbf{a},\mathbf{b},\mathbf{c}). (44)

The evaluation of this quantity can be simplified by defining the following Feynman rules. Writing the exponent in II as ff, one can see that derivatives of ff higher than 2nd order will vanish. One can therefore represent the variables in the derivatives as nodes and ff as lines. 1st and 2nd derivatives of ff can be represented by an open-ended line and a line connecting two nodes, respectively. IijklI_{ijkl} can therefore be represented by a sum over topologically distinct diagrams of 4 nodes. There are in total 10 diagrams: 1 with 4 lines, 6 with 3 lines, and 3 with 2 lines. If j=kj=k, there are 7 terms in the expression of IijjlI_{ijjl}

Iijjl\displaystyle I_{ijjl} =\displaystyle= ef8π3332σ6[2(aibjf)(bjclf)+(aiclf)(bj2f)+2(aibjf)(bjf)(clf)\displaystyle\frac{e^{f}}{8\pi^{3}3^{\frac{3}{2}}\sigma^{6}}\big{[}2(\partial_{a_{i}}\partial_{b_{j}}f)(\partial_{b_{j}}\partial_{c_{l}}f)+(\partial_{a_{i}}\partial_{c_{l}}f)(\partial^{2}_{b_{j}}f)+2(\partial_{a_{i}}\partial_{b_{j}}f)(\partial_{b_{j}}f)(\partial_{c_{l}}f)
+\displaystyle+ (aiclf)(bjf)2+(aif)(bj2f)(clf)+2(aif)(bjf)(bjclf)+(aif)(bjf)(bjf)(clf)]\displaystyle(\partial_{a_{i}}\partial_{c_{l}}f)(\partial_{b_{j}}f)^{2}+(\partial_{a_{i}}f)(\partial^{2}_{b_{j}}f)(\partial_{c_{l}}f)+2(\partial_{a_{i}}f)(\partial_{b_{j}}f)(\partial_{b_{j}}\partial_{c_{l}}f)+(\partial_{a_{i}}f)(\partial_{b_{j}}f)(\partial_{b_{j}}f)(\partial_{c_{l}}f)\big{]}
=\displaystyle= ef8π3332σ6[49σ4δil227σ6(2biaici)(2clalbl)127σ6δil|2𝐛𝐚𝐜|2\displaystyle\frac{e^{f}}{8\pi^{3}3^{\frac{3}{2}}\sigma^{6}}\Big{[}-\frac{4}{9\sigma^{4}}\delta_{il}-\frac{2}{27\sigma^{6}}(2b_{i}-a_{i}-c_{i})(2c_{l}-a_{l}-b_{l})-\frac{1}{27\sigma^{6}}\delta_{il}|2\mathbf{b}-\mathbf{a}-\mathbf{c}|^{2}
+\displaystyle+ 29σ6(2aibici)(2clalbl)227σ6(2aibici)(2blalcl)\displaystyle\frac{2}{9\sigma^{6}}(2a_{i}-b_{i}-c_{i})(2c_{l}-a_{l}-b_{l})-\frac{2}{27\sigma^{6}}(2a_{i}-b_{i}-c_{i})(2b_{l}-a_{l}-c_{l})
+\displaystyle+ 181σ8(2aibici)(2clalbl)|2𝐛𝐚𝐜|2]\displaystyle\frac{1}{81\sigma^{8}}(2a_{i}-b_{i}-c_{i})(2c_{l}-a_{l}-b_{l})|2\mathbf{b}-\mathbf{a}-\mathbf{c}|^{2}\Big{]}
\displaystyle\equiv ef72π3332σ10[(4+|𝐛~|23σ2)𝕀23σ2(𝐛~𝐜~+𝐚~𝐛~)+(2σ2+|𝐛~|29σ4)𝐚~𝐜~]il\displaystyle\frac{e^{f}}{72\pi^{3}3^{\frac{3}{2}}\sigma^{10}}\Big{[}-\left(4+\frac{|\tilde{\mathbf{b}}|^{2}}{3\sigma^{2}}\right)\mathbb{I}-\frac{2}{3\sigma^{2}}(\tilde{\mathbf{b}}\tilde{\mathbf{c}}+\tilde{\mathbf{a}}\tilde{\mathbf{b}})+\left(\frac{2}{\sigma^{2}}+\frac{|\tilde{\mathbf{b}}|^{2}}{9\sigma^{4}}\right)\tilde{\mathbf{a}}\tilde{\mathbf{c}}\Big{]}_{il}

For Fe2O3 the cluster with two Fe atoms sandwiched between three layers of O has D3D_{3} symmetry [62, 63]. The EC would have been forbidden if the symmetry were D3hD_{3h}, i.e., if the top and bottom oxygen layers were not distorted. The nonzero contribution to 𝝌1′′\bm{\chi}_{1}^{\prime\prime} comes from the last term in Eq. (A).

Appendix B Dirac electrons scattered by a magnetic charge

Ignoring the step function Θ(Rr)\Theta(R-r) first, the Hamiltonian in Eq. (IV.2) can be written in the polar coordinates as

H=(0ff0).\displaystyle H=\begin{pmatrix}0&f\\ f^{\dagger}&0\end{pmatrix}. (46)

where feıθ[λ(rırθ)Δ2πr]f\equiv e^{-\imath\theta}\left[\hbar\lambda\left(\partial_{r}-\frac{\imath}{r}\partial_{\theta}\right)-\frac{\Delta}{2\pi r}\right]. Since the Hamiltonian is invariant under rotation with respect to the zz axis going through the origin, the total angular momentum along zz is a good quantum number:

Jz\displaystyle J_{z} =\displaystyle= Lz+sz=ıθ+2σz.\displaystyle L_{z}+s_{z}=-\imath\hbar\partial_{\theta}+\frac{\hbar}{2}\sigma_{z}. (47)

JzJ_{z} satisfies the following eigenequation

Jz(eınθeı(n+1)θ)=(n+12)(eınθeı(n+1)θ)\displaystyle J_{z}\begin{pmatrix}e^{\imath n\theta}\\ e^{\imath(n+1)\theta}\end{pmatrix}=\left(n+\frac{1}{2}\right)\hbar\begin{pmatrix}e^{\imath n\theta}\\ e^{\imath(n+1)\theta}\end{pmatrix} (48)

Therefore we can take the following trial solution

ψ=(u(r)eınθv(r)eı(n+1)θ).\displaystyle\psi=\begin{pmatrix}u(r)e^{\imath n\theta}\\ v(r)e^{\imath(n+1)\theta}\end{pmatrix}. (49)

The resulting radial equations are

Eλu(r+n+1r)v+αrv=0,\displaystyle\frac{E}{\hbar\lambda}u-\left(\partial_{r}+\frac{n+1}{r}\right)v+\frac{\alpha}{r}v=0, (50)
Eλv(r+nr)u+αru=0,\displaystyle\frac{E}{\hbar\lambda}v-\left(-\partial_{r}+\frac{n}{r}\right)u+\frac{\alpha}{r}u=0,

where αΔ/(2πλ)\alpha\equiv\Delta/(2\pi\hbar\lambda).

When α\alpha is an integer, using the recurrence relations of the Bessel functions one can immediately see uJnα(κr)u\propto J_{n-\alpha}(\kappa r), vJnα+1(κr)v\propto J_{n-\alpha+1}(\kappa r), and E=±λκE=\pm\hbar\lambda\kappa. The normalized eigenfunction is

ψp,n,κ=κ4π(Jnα(κr)eınθpJnα+1(κr)eı(n+1)θ)\displaystyle\psi_{p,n,\kappa}=\sqrt{\frac{\kappa}{4\pi}}\begin{pmatrix}J_{n-\alpha}(\kappa r)e^{\imath n\theta}\\ pJ_{n-\alpha+1}(\kappa r)e^{\imath(n+1)\theta}\end{pmatrix} (51)

where p=±p=\pm. Note that when α\alpha is an integer, the HΔH_{\Delta} term can be removed by a gauge transformation:

ψψeıαθ,\displaystyle\psi\rightarrow\psi e^{\imath\alpha\theta}, (52)

which is the reason why ψp,n,κ\psi_{p,n,\kappa} becomes an eigenstate (ψp,nα,κ\psi_{p,n-\alpha,\kappa}) of HDH_{D} in this case. The magnetic charge is nonetheless still able to induce skew scattering because the truncation Θ(Rr)\Theta(R-r) makes it impossible for the HΔH_{\Delta} term to be removed by a pure gauge transformation.

When α\alpha is not an integer the solution is less trivial. To avoid ambiguity we consider the magnetic charge potential regularized by replacing Δ\Delta with ΔΘ(rr0)\Delta\Theta(r-r_{0}). The solution for r<r0r<r_{0} is simply (the arguments of the Bessel functions are omitted for brevity)

ψ<=κ4π(JneınθpJn+1eı(n+1)θ)\displaystyle\psi_{<}=\sqrt{\frac{\kappa}{4\pi}}\begin{pmatrix}J_{n}e^{\imath n\theta}\\ pJ_{n+1}e^{\imath(n+1)\theta}\end{pmatrix} (53)

while that for r>r0r>r_{0} involves both JνJ_{\nu} and JνJ_{-\nu} which are linearly independent solutions of the Bessel equation when ν\nu is not an integer. More explicitly:

ψ>=κ4π((AJnα+BJn+α)eınθp(AJnα+1BJn+α1)eı(n+1)θ)\displaystyle\psi_{>}=\sqrt{\frac{\kappa}{4\pi}}\begin{pmatrix}(AJ_{n-\alpha}+BJ_{-n+\alpha})e^{\imath n\theta}\\ p(AJ_{n-\alpha+1}-BJ_{-n+\alpha-1})e^{\imath(n+1)\theta}\end{pmatrix} (54)

where A,BA,B are coefficients depending on nn.

Using the boundary condition ψ<(r=r0)=ψ>(r=r0)\psi_{<}(r=r_{0})=\psi_{>}(r=r_{0}) leads to

A\displaystyle A =\displaystyle= Jn+α1Jn+Jn+αJn+1Jn+αJnα+1+Jn+α1Jnα\displaystyle\frac{J_{-n+\alpha-1}J_{n}+J_{-n+\alpha}J_{n+1}}{J_{-n+\alpha}J_{n-\alpha+1}+J_{-n+\alpha-1}J_{n-\alpha}} (55)
B\displaystyle B =\displaystyle= Jnα+1JnJnαJn+1Jn+αJnα+1+Jn+α1Jnα\displaystyle\frac{J_{n-\alpha+1}J_{n}-J_{n-\alpha}J_{n+1}}{J_{-n+\alpha}J_{n-\alpha+1}+J_{-n+\alpha-1}J_{n-\alpha}}

where the arguments of the Bessel functions are all κr0\kappa r_{0}. To understand the asymptotic behavior as r00r_{0}\rightarrow 0 we consider the ratio A/BA/B:

AB=Jn+α1Jn+Jn+αJn+1Jnα+1JnJnαJn+1.\displaystyle\frac{A}{B}=\frac{J_{-n+\alpha-1}J_{n}+J_{-n+\alpha}J_{n+1}}{J_{n-\alpha+1}J_{n}-J_{n-\alpha}J_{n+1}}. (56)

We found that when α>0\alpha>0, A/BA/B diverges when n>α1n>\alpha-1 and vanishes when n<α1n<\alpha-1. However, when α<0\alpha<0, A/BA/B diverges when n>αn>\alpha and vanishes when n<αn<\alpha. Therefore the solution is, for α>0\alpha>0:

ψp,n,κ=\displaystyle\psi_{p,n,\kappa}= (57)
κ4π×{(Jnα(κr)eınθpJnα+1(κr)eı(n+1)θ)n>α1,(Jn+α(κr)eınθpJn+α1(κr)eı(n+1)θ)n<α1,\displaystyle\sqrt{\frac{\kappa}{4\pi}}\times\begin{cases}\begin{pmatrix}J_{n-\alpha}(\kappa r)e^{\imath n\theta}\\ pJ_{n-\alpha+1}(\kappa r)e^{\imath(n+1)\theta}\end{pmatrix}&n>\alpha-1,\\ \begin{pmatrix}J_{-n+\alpha}(\kappa r)e^{\imath n\theta}\\ -pJ_{-n+\alpha-1}(\kappa r)e^{\imath(n+1)\theta}\end{pmatrix}&n<\alpha-1,\end{cases}

and for α<0\alpha<0:

ψp,n,κ=\displaystyle\psi_{p,n,\kappa}= (58)
κ4π×{(Jnα(κr)eınθpJnα+1(κr)eı(n+1)θ)n>α,(Jn+α(κr)eınθpJn+α1(κr)eı(n+1)θ)n<α\displaystyle\sqrt{\frac{\kappa}{4\pi}}\times\begin{cases}\begin{pmatrix}J_{n-\alpha}(\kappa r)e^{\imath n\theta}\\ pJ_{n-\alpha+1}(\kappa r)e^{\imath(n+1)\theta}\end{pmatrix}&n>\alpha,\\ \begin{pmatrix}J_{-n+\alpha}(\kappa r)e^{\imath n\theta}\\ -pJ_{-n+\alpha-1}(\kappa r)e^{\imath(n+1)\theta}\end{pmatrix}&n<\alpha\end{cases}

One can check that when α=0\alpha=0, the above solution returns to Eq. (53). In addition, when α\alpha is an arbitrary integer, by using the relation

Jn(x)=(1)nJn(x)\displaystyle J_{-n}(x)=(-1)^{n}J_{n}(x) (59)

Eq. (51) is recovered.

We next calculate the skew scattering by considering the truncated magnetic charge potential:

HΔ=Δ2πrr^𝝈Θ(Rr).\displaystyle H_{\Delta}=-\frac{\Delta}{2\pi r}\hat{r}\cdot\bm{\sigma}\Theta(R-r). (60)

The solution for r<Rr<R with energy λk0\hbar\lambda k_{0} is

Ψ<=n=an4πk0ψ+,n,k0\displaystyle\Psi_{<}=\sum_{n=-\infty}^{\infty}a_{n}\sqrt{\frac{4\pi}{k_{0}}}\psi_{+,n,k_{0}} (61)

where ψ+,n,k0\psi_{+,n,k_{0}} is given in Eqs. (51), (57), or (58) depending on the value of α\alpha, while that for r>Rr>R is

Ψ>=n=122πınJn(k0r)eınθ(ı1)\displaystyle\Psi_{>}=\sum_{n=-\infty}^{\infty}\frac{1}{2\sqrt{2}\pi}\imath^{n}J_{n}(k_{0}r)e^{\imath n\theta}\begin{pmatrix}\imath\\ 1\end{pmatrix} (62)
+n=bn(Hn(k0r)eınθHn+1(k0r)eı(n+1)θ).\displaystyle+\sum_{n=-\infty}^{\infty}b_{n}\begin{pmatrix}H_{n}(k_{0}r)e^{\imath n\theta}\\ H_{n+1}(k_{0}r)e^{\imath(n+1)\theta}\end{pmatrix}.

where Hn=Jn+ıYnH_{n}=J_{n}+\imath Y_{n} is the Hankel function of the first kind [5], and YnY_{n} is the Bessel function of the second kind. The boundary condition Ψ<(r=R)=Ψ>(r=R)\Psi_{<}(r=R)=\Psi_{>}(r=R) leads to the following relation for n>α1n>\alpha-1 (α>0\alpha>0) or n>αn>\alpha (α<0\alpha<0):

anJnαbnHn=ın+122πJn\displaystyle a_{n}J_{n-\alpha}-b_{n}H_{n}=\frac{\imath^{n+1}}{2\sqrt{2}\pi}J_{n}
anJnα+1bnHn+1=ın+122πJn+1\displaystyle a_{n}J_{n-\alpha+1}-b_{n}H_{n+1}=\frac{\imath^{n+1}}{2\sqrt{2}\pi}J_{n+1}

which has the solution

(anbn)=ın+122π1HnJnα+1Hn+1Jnα\displaystyle\begin{pmatrix}a_{n}\\ b_{n}\end{pmatrix}=\frac{\imath^{n+1}}{2\sqrt{2}\pi}\frac{1}{H_{n}J_{n-\alpha+1}-H_{n+1}J_{n-\alpha}} (64)
×(HnJn+1Hn+1JnJn+1JnαJnJnα+1).\displaystyle\times\begin{pmatrix}H_{n}J_{n+1}-H_{n+1}J_{n}\\ J_{n+1}J_{n-\alpha}-J_{n}J_{n-\alpha+1}\end{pmatrix}.

The above result also applies to any nn when α\alpha is an integer.

When n<α1n<\alpha-1 (α>0\alpha>0) or n<αn<\alpha (α<0\alpha<0), we have

(anbn)=ın+122π1HnJn+α1+Hn+1Jn+α\displaystyle\begin{pmatrix}a_{n}\\ b_{n}\end{pmatrix}=-\frac{\imath^{n+1}}{2\sqrt{2}\pi}\frac{1}{H_{n}J_{-n+\alpha-1}+H_{n+1}J_{-n+\alpha}} (65)
×(HnJn+1Hn+1JnJn+1Jn+α+JnJn+α1).\displaystyle\times\begin{pmatrix}H_{n}J_{n+1}-H_{n+1}J_{n}\\ J_{n+1}J_{-n+\alpha}+J_{n}J_{-n+\alpha-1}\end{pmatrix}.

To go further, we consider the limit k0r1k_{0}r\gg 1 and use the asymptotic form of HνH_{\nu}:

Hν(x)2πxeı(xνπ2π4),\displaystyle H_{\nu}(x)\approx\sqrt{\frac{2}{\pi x}}e^{\imath\left(x-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)}, (66)

so that the scattered wave becomes

Ψscatt=Ψ>Ψin\displaystyle\Psi_{\rm scatt}=\Psi_{>}-\Psi_{\rm in} (67)
n=2πk0rbn(eı[k0rnπ2π4+nθ]eı[k0r(n+1)π2π4+(n+1)θ]).\displaystyle\approx\sum_{n=-\infty}^{\infty}\sqrt{\frac{2}{\pi k_{0}r}}b_{n}\begin{pmatrix}e^{\imath\left[k_{0}r-\frac{n\pi}{2}-\frac{\pi}{4}+n\theta\right]}\\ e^{\imath\left[k_{0}r-\frac{(n+1)\pi}{2}-\frac{\pi}{4}+(n+1)\theta\right]}&\end{pmatrix}.

The scattering cross section is

σ(θ)=\displaystyle\sigma(\theta)= (68)
Ψscatt(𝐣𝐫)ΨscattΨinjxΨin=16πk0|nbneın(θπ2)|2.\displaystyle\frac{\Psi_{\rm scatt}^{\dagger}(\mathbf{j}\cdot\mathbf{r})\Psi_{\rm scatt}}{\Psi_{\rm in}^{\dagger}j_{x}\Psi_{\rm in}}=\frac{16\pi}{k_{0}}\Big{|}\sum_{n}b_{n}e^{\imath n(\theta-\frac{\pi}{2})}\Big{|}^{2}.

The skew cross section is therefore

σskew\displaystyle\sigma_{\rm skew}\equiv (69)
02πsinθσ(θ)𝑑θ=32π2k0nRe(bn+1bn).\displaystyle\int_{0}^{2\pi}\sin\theta\sigma(\theta)d\theta=\frac{32\pi^{2}}{k_{0}}\sum_{n}{\rm Re}(b_{n+1}^{*}b_{n}).

Fig. 5 (solid black line) plots σskew\sigma_{\rm skew} versus α\alpha. It is evident that σskew\sigma_{\rm skew} is odd under αα\alpha\rightarrow-\alpha. That the skewness decreases quickly with increasing α>2\alpha>2 is because the large α\alpha effectively suppresses the contributions at small nn which give the dominant scattering amplitudes. The apparent discontinuity of σskew/α\partial\sigma_{\rm skew}/\partial\alpha at integer values of α0\alpha\neq 0 originates from the singularity of ψp,n,κ\psi_{p,n,\kappa} in Eqs. (57) and (58) when α1<n<α\alpha-1<n<\alpha. Such singularity can be removed by regularizing the magnetic charge potential at r0r\rightarrow 0 as in Eq. (54). For example, by choosing k0r0=0.01k_{0}r_{0}=0.01, the discontinuities of the derivative of σskew\sigma_{\rm skew} are absent (gray dashed line in Fig. 5).

Refer to caption
Figure 5: Skew scattering cross section plotted against α\alpha. k0R=1k_{0}R=1. The solid line is the result by using Eqs. (57) and (58) as the solution for r<Rr<R, while the dashed line is the result by using the regularized solution Eq. (54) for r<Rr<R, with k0r0=0.01k_{0}r_{0}=0.01.

References

  • Hall [1881] E. Hall, XVIII. On the “Rotational Coefficient” in nickel and cobalt, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12, 157 (1881)https://doi.org/10.1080/14786448108627086 .
  • Smith [1921] A. W. Smith, The Hall Effect and the Nernst Effect in Magnetic Alloys, Phys. Rev. 17, 23 (1921).
  • Nagaosa et al. [2010] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).
  • Karplus and Luttinger [1954] R. Karplus and J. M. Luttinger, Hall Effect in Ferromagnetics, Phys. Rev. 95, 1154 (1954).
  • Smit [1958] J. Smit, The spontaneous Hall effect in ferromagnetics II, Physica 24, 39 (1958).
  • Berger [1970] L. Berger, Side-Jump Mechanism for the Hall Effect of Ferromagnets, Phys. Rev. B 2, 4559 (1970).
  • Ye et al. [1999] J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tešanović, Berry Phase Theory of the Anomalous Hall Effect: Application to Colossal Magnetoresistance Manganites, Phys. Rev. Lett. 83, 3737 (1999).
  • Xiao et al. [2010] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
  • Tomizawa and Kontani [2009] T. Tomizawa and H. Kontani, Anomalous Hall effect in the t2g{t}_{2g} orbital kagome lattice due to noncollinearity: Significance of the orbital Aharonov-Bohm effect, Phys. Rev. B 80, 100401 (2009).
  • Chen et al. [2014] H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism, Phys. Rev. Lett. 112, 017205 (2014).
  • Kübler and Felser [2014] J. Kübler and C. Felser, Non-collinear antiferromagnets and the anomalous Hall effect, EPL (Europhysics Letters) 108, 67001 (2014).
  • Nakatsuji et al. [2015] S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527, 212 (2015).
  • Nayak et al. [2016] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Science Advances 2, e1501870 (2016).
  • Zhou et al. [2019] X. Zhou, J.-P. Hanke, W. Feng, F. Li, G.-Y. Guo, Y. Yao, S. Blügel, and Y. Mokrousov, Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN{\mathrm{Mn}}_{3}X\mathrm{N} with X=GaX=\mathrm{Ga}, Zn, Ag, or Ni, Phys. Rev. B 99, 104428 (2019).
  • Gurung et al. [2019] G. Gurung, D.-F. Shao, T. R. Paudel, and E. Y. Tsymbal, Anomalous Hall conductivity of noncollinear magnetic antiperovskites, Phys. Rev. Materials 3, 044409 (2019).
  • Boldrin et al. [2019] D. Boldrin, I. Samathrakis, J. Zemen, A. Mihai, B. Zou, F. Johnson, B. D. Esser, D. W. McComb, P. K. Petrov, H. Zhang, and L. F. Cohen, Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN{\mathrm{Mn}}_{3}\mathrm{NiN} thin films, Phys. Rev. Materials 3, 094409 (2019).
  • Zhao et al. [2019] K. Zhao, T. Hajiri, H. Chen, R. Miki, H. Asano, and P. Gegenwart, Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1xCuxN{\mathrm{Mn}}_{3}{\mathrm{Ni}}_{1-x}{\mathrm{Cu}}_{x}\mathrm{N}Phys. Rev. B 100, 045109 (2019).
  • Liu et al. [2018] Z. Q. Liu, H. Chen, J. M. Wang, J. H. Liu, K. Wang, Z. X. Feng, H. Yan, X. R. Wang, C. B. Jiang, J. M. D. Coey, and A. H. MacDonald, Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature, Nature Electronics 1, 172 (2018).
  • Sürgers et al. [2014] C. Sürgers, G. Fischer, P. Winkel, and H. v. Löhneysen, Large topological Hall effect in the non-collinear phase of an antiferromagnet, Nature Communications 5, 3400 (2014).
  • Šmejkal et al. [2020] L. Šmejkal, R. González-Hernández, T. Jungwirth, and J. Sinova, Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets, Science Advances 6, eaaz8809 (2020).
  • Li et al. [2019] X. Li, A. H. MacDonald, and H. Chen, Quantum Anomalous Hall Effect through Canted Antiferromagnetism,   (2019), arXiv:1902.10650 .
  • Suzuki et al. [2017] M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory for anomalous Hall effect in antiferromagnets, Phys. Rev. B 95, 094406 (2017).
  • Hayami and Kusunose [2021] S. Hayami and H. Kusunose, Essential role of the anisotropic magnetic dipole in the anomalous Hall effect, Phys. Rev. B 103, L180407 (2021).
  • Suzuki et al. [2019] M.-T. Suzuki, T. Nomoto, R. Arita, Y. Yanagi, S. Hayami, and H. Kusunose, Multipole expansion for magnetic structures: A generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group, Phys. Rev. B 99, 174407 (2019).
  • King-Smith and Vanderbilt [1993] R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993).
  • Resta [1994] R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach, Rev. Mod. Phys. 66, 899 (1994).
  • Xiao et al. [2005] D. Xiao, J. Shi, and Q. Niu, Berry Phase Correction to Electron Density of States in Solids, Phys. Rev. Lett. 95, 137204 (2005).
  • Thonhauser et al. [2005] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Orbital Magnetization in Periodic Insulators, Phys. Rev. Lett. 95, 137205 (2005).
  • Shi et al. [2007] J. Shi, G. Vignale, D. Xiao, and Q. Niu, Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems, Phys. Rev. Lett. 99, 197202 (2007).
  • Spaldin et al. [2008] N. A. Spaldin, M. Fiebig, and M. Mostovoy, The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect, Journal of Physics: Condensed Matter 20, 434203 (2008).
  • Gao et al. [2018] Y. Gao, D. Vanderbilt, and D. Xiao, Microscopic theory of spin toroidization in periodic crystals, Phys. Rev. B 97, 134423 (2018).
  • Lipkin [1964] D. M. Lipkin, Existence of a New Conservation Law in Electromagnetic Theory, Journal of Mathematical Physics 5, 696 (1964)https://doi.org/10.1063/1.1704165 .
  • Tang and Cohen [2010] Y. Tang and A. E. Cohen, Optical Chirality and Its Interaction with Matter, Phys. Rev. Lett. 104, 163901 (2010).
  • Bliokh and Nori [2011] K. Y. Bliokh and F. Nori, Characterizing optical chirality, Phys. Rev. A 83, 021803 (2011).
  • Coles and Andrews [2012] M. M. Coles and D. L. Andrews, Chirality and angular momentum in optical radiation, Phys. Rev. A 85, 063810 (2012).
  • Wills et al. [2002] A. S. Wills, R. Ballou, and C. Lacroix, Model of localized highly frustrated ferromagnetism: The kagomé spin ice, Phys. Rev. B 66, 144407 (2002).
  • Möller and Moessner [2009] G. Möller and R. Moessner, Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays, Phys. Rev. B 80, 140409 (2009).
  • Chern et al. [2011] G.-W. Chern, P. Mellado, and O. Tchernyshyov, Two-Stage Ordering of Spins in Dipolar Spin Ice on the Kagome Lattice, Phys. Rev. Lett. 106, 207202 (2011).
  • Qi et al. [2008] Y. Qi, T. Brintlinger, and J. Cumings, Direct observation of the ice rule in an artificial kagome spin ice, Phys. Rev. B 77, 094418 (2008).
  • Ladak et al. [2010] S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford, Direct observation of magnetic monopole defects in an artificial spin-ice system, Nature Physics 6, 359 (2010).
  • Dun et al. [2016] Z. L. Dun, J. Trinh, K. Li, M. Lee, K. W. Chen, R. Baumbach, Y. F. Hu, Y. X. Wang, E. S. Choi, B. S. Shastry, A. P. Ramirez, and H. D. Zhou, Magnetic Ground States of the Rare-Earth Tripod Kagome Lattice Mg2RE3Sb3O14{\mathrm{Mg}}_{2}{\mathrm{RE}}_{3}{\mathrm{Sb}}_{3}{\mathrm{O}}_{14} (RE=Gd,Dy,Er\mathrm{RE}=\mathrm{Gd},\mathrm{Dy},\mathrm{Er}), Phys. Rev. Lett. 116, 157201 (2016).
  • Matsuhira et al. [2002] K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, and T. Sakakibara, A new macroscopically degenerate ground state in the spin ice compound Dy2Ti2O7 under a magnetic field, Journal of Physics: Condensed Matter 14, L559 (2002).
  • Tabata et al. [2006] Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, and B. Fåk, Kagomé Ice State in the Dipolar Spin Ice Dy2Ti2O7{\mathrm{Dy}}_{2}{\mathrm{Ti}}_{2}{\mathrm{O}}_{7}Phys. Rev. Lett. 97, 257205 (2006).
  • Takagi and Mekata [1993] T. Takagi and M. Mekata, Magnetic Ordering of Ising Spins on Kagomé Lattice with the 1st and the 2nd Neighbor Interactions, Journal of the Physical Society of Japan 62, 3943 (1993)https://doi.org/10.1143/JPSJ.62.3943 .
  • Chern and Tchernyshyov [2012] G.-W. Chern and O. Tchernyshyov, Magnetic charge and ordering in kagome spin ice, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 5718 (2012).
  • Wolf and Schotte [1988] M. Wolf and K. D. Schotte, Ising model with competing next-nearest-neighbour interactions on the Kagome lattice, Journal of Physics A: Mathematical and General 21, 2195 (1988).
  • Zhao et al. [2020] K. Zhao, H. Deng, H. Chen, K. A. Ross, V. Petříček, G. Günther, M. Russina, V. Hutanu, and P. Gegenwart, Realization of the kagome spin ice state in a frustrated intermetallic compound, Science 367, 1218 (2020).
  • Lovesey [1986] S. Lovesey, Theory of Neutron Scattering from Condensed Matter, Volume II: Polarization Effects and Magnetic Scattering (Clarendon Press, 1986).
  • Bychkov and Rashba [1984] Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, Journal of Physics C: Solid State Physics 17, 6039 (1984).
  • Chen et al. [2020] H. Chen, T.-C. Wang, D. Xiao, G.-Y. Guo, Q. Niu, and A. H. MacDonald, Manipulating anomalous Hall antiferromagnets with magnetic fields, Phys. Rev. B 101, 104418 (2020).
  • Birss [1964] R. Birss, Symmetry and magnetism, Selected topics in solid state physics (North-Holland Pub. Co., 1964).
  • Tse et al. [2011] W.-K. Tse, Z. Qiao, Y. Yao, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in single-layer and bilayer graphene, Phys. Rev. B 83, 155447 (2011).
  • Ishizuka and Motome [2013] H. Ishizuka and Y. Motome, Quantum anomalous Hall effect in kagome ice, Phys. Rev. B 87, 081105 (2013).
  • Chern et al. [2014] G.-W. Chern, A. Rahmani, I. Martin, and C. D. Batista, Quantum Hall ice, Phys. Rev. B 90, 241102 (2014).
  • Machida et al. [2010] Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order, Nature 463, 210 (2010).
  • van der Laan [2021] G. van der Laan, Determination of spin chirality using x-ray magnetic circular dichroism, Phys. Rev. B 104, 094414 (2021).
  • Ferreira et al. [2014] A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro Neto, Extrinsic Spin Hall Effect Induced by Resonant Skew Scattering in Graphene, Phys. Rev. Lett. 112, 066601 (2014).
  • Hsieh et al. [2009] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature 460, 1101 (2009).
  • Araki and Nomura [2017] Y. Araki and K. Nomura, Skyrmion-induced anomalous Hall conductivity on topological insulator surfaces, Phys. Rev. B 96, 165303 (2017).
  • Ishizuka and Nagaosa [2018] H. Ishizuka and N. Nagaosa, Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets, Science Advances 4, eaap9962 (2018).
  • Tokura and Nagaosa [2018] Y. Tokura and N. Nagaosa, Nonreciprocal responses from non-centrosymmetric quantum materials, Nature Communications 9, 3740 (2018).
  • Dzyaloshinsky [1958] I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, Journal of Physics and Chemistry of Solids 4, 241 (1958).
  • Moriya [1960] T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev. 120, 91 (1960).