This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Entropons as collective excitations in active solids

L. Caprini1    U. Marini Bettolo Marconi2,3    A. Puglisi4,5    H. Löwen1 1 Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
2 Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032, Camerino, Italy.
3 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy.
4 Istituto dei Sistemi Complessi - CNR and Università di Roma Sapienza, P.le Aldo Moro 2, 00185, Rome, Italy
5 INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
(May 9, 2025)
Abstract

The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here we consider an active crystal composed of self-propelled particles which bring the system into a non-equilibrium steady-state governed by entropy production. Calculating the entropy production spectrum, we put forward the picture of “entropons”, which are vibrational collective excitations responsible for entropy production. Entropons are purely generated by activity and coexist with phonons but dominate over them for large self-propulsion strength. The existence of entropons can be verified in experiments on dense self-propelled colloidal Janus-particles and granular active matter, as well as in living systems such as dense cell monolayers.

Active matter [1, 2] includes a broad range of systems composed of particles that locally convert energy from the environment into directed motion [3, 4]. The energy exchange with the environment, often induced by chemical reactions or self-imposed gradients, leads to self-propulsion of the particles and, thus, drives an active system intrinsically out of equilibrium.

Dense systems of self-propelled particles are rather ubiquitous in nature and often form crystalline structures. Cells monolayers of the human body [5, 6, 7, 8] and dense colonies of bacteria [9, 10, 11] which populate the human skin are common examples. Moreover, active colloidal Janus particles may cluster and form dense crystallites [12], named “living crystals” [13, 14]. These active crystals show fascinating phenomena uncommon for equilibrium solids [15, 16, 17, 18] ranging from “traveling” crystals [19, 20, 21], intrinsic velocity correlations [22, 23, 24, 25] and spontaneous velocity alignment [26, 27] to collective rotations [16, 28]. Activity also shifts the equilibrium freezing transition significantly [29, 30, 31, 32] and affects the nature of the two-dimensional melting transition [30, 33, 34, 35, 36].

External forces or internal mechanisms that dissipate energy drive a system away from equilibrium and spontaneously produce entropy. While self-propulsion is generated by an uptake of energy from the environment, likewise active particles dissipate energy back into the environment. The resulting energy conversion leads to local entropy production [37, 38, 39, 40, 41]. Quantifying the non-equilibrium character of active systems via entropy production has represented a topic of central interest in recent years [42, 43, 44, 45]. This topic has been investigated numerically, simulating both active field theories [46, 47, 48, 49], active particle dynamics in interacting systems [50, 51, 52], as well as colloids in the presence of an active bath [53, 54]. Particular attention has been devoted to phase-separated configurations where the main contribution to the spatial profile of the entropy production has been observed at the interface between dense and dilute phases [46, 55, 56]. Conversely, analytical results for entropy production have been only derived for simple cases, such as the potential-free particle [57, 58, 59], and for near-equilibrium regimes through perturbative methods [60, 61]. Entropy production in active crystals, however, remains unexplored.

In this Letter, we fill this gap and calculate the entropy production in an active crystal. Performing a systematic spectral analysis, we show the existence of novel collective vibrational excitations in non-equilibrium active solids which are responsible for entropy production. Following the standard nomenclature of solid-state physics [62], we term these new modes “entropons”. Unlike phonons, which describe the vibrational dynamics of equilibrium solids, entropons exist only in non-equilibrium, i.e. they are purely induced by activity. Entropons coexist with phonons but dominate over them for large activity and therefore represent the thermodynamically most relevant modes of an active crystal far from equilibrium. The underlying basic picture is shown in Fig. 1: in equilibrium, the thermal bath coupled to a crystal induces collective vibrational excitations like phonons (yellow color in Fig. 1); in non-equilibrium, the active force, acting on each particle and producing their self-propulsion, injects energy into the crystal, this energy is dissipated in the environment, and the system produces entropy. In this process, entropons are generated as new collective vibrations, encoding the entropy production (orange color in Fig. 1). Our analysis is based on analytical theory combined with particle-resolved computer simulations and can in principle be verified in experiments with highly packed self-propelled colloidal Janus-particles [63] or vibrated granular grains [64, 65, 66], as well as in living systems such as confluent cell monolayers [6, 8].

Refer to caption
Figure 1: Schematic representation of a solid formed by self-propelled particles that locally inject energy via their active force. Each particle is represented by a capped sphere. The orientation of the green hemisphere denotes the direction of the active force, while red hexagons are drawn to highlight the hexagonal crystal structure. Undulated curves on the solid are schematic illustrations of the vibrational excitations: the phonons (yellow) in both equilibrium and non-equilibrium, and the entropons (orange) in non-equilibrium.

We study a two-dimensional crystal of NN inertial active Brownian particles, in a square box of size LL with periodic boundary conditions. Each particle with mass mm evolves through an underdamped dynamics [67, 68, 69, 70] for its position, 𝐱i\mathbf{x}_{i} and velocity 𝐯i=𝐱˙i\mathbf{v}_{i}=\dot{\mathbf{x}}_{i}

m𝐯˙i=γ𝐯i+𝐅i+2Tγ𝜻i+𝐟ia\displaystyle m\dot{\mathbf{v}}_{i}=-\gamma\mathbf{v}_{i}+\mathbf{F}_{i}+\sqrt{2T\gamma}\boldsymbol{\zeta}_{i}+\mathbf{f}^{a}_{i} (1a)
θ˙i=2Drηi,\displaystyle\dot{\theta}_{i}=\sqrt{2D_{r}}\eta_{i}\,, (1b)

where 𝜻i\boldsymbol{\zeta}_{i} and ηi\eta_{i} are Gaussian white noises with zero average and unit variance. The term 𝐟ia=γv0𝐧i\mathbf{f}^{a}_{i}=\gamma v_{0}\mathbf{n}_{i} models the active force, v0v_{0} being the swim velocity and 𝐧i=(cosθi,sinθi)\mathbf{n}_{i}=(\cos\theta_{i},\sin\theta_{i}) the orientational unit vector, determined by an orientational angle θi\theta_{i}. The coefficients γ\gamma and TT correspond to the friction coefficient and the temperature of the solvent bath, respectively, and define the inertial time τI=m/γ\tau_{I}=m/\gamma. DrD_{r} is the rotational diffusion coefficient which determines the persistence time, τ=1/Dr\tau=1/D_{r}, i.e. the time that the particle needs to randomize its orientation. The single-particle dynamics is often described in terms of the so-called active temperature, Ta=v02τγT_{a}=v_{0}^{2}\tau\gamma that vanishes in the equilibrium limits, either τ0\tau\to 0 or v00v_{0}\to 0. The interaction force 𝐅i\mathbf{F}_{i} stems from a soft repulsive pair potential, Utot=iU(|𝐱i𝐱i|)U_{\text{tot}}=\sum_{i}U(|\mathbf{x}_{i}-\mathbf{x}_{i}|), where U=4ϵ[(d0/r)12(d0/r)6]U=4\epsilon[(d_{0}/r)^{12}-(d_{0}/r)^{6}] if r<21/6r<2^{1/6} and zero otherwise (WCA potential), ϵ\epsilon and d0d_{0} being the energy scale and the particle diameter, respectively. The packing fraction ϕ=ρd02π/4\phi=\rho d_{0}^{2}\pi/4 (where ρ=N/L2\rho=N/L^{2} denotes the number density), is chosen high enough to ensure a solid-like behavior characterized by a defect-free triangular lattice as illustrated in Fig. 1. Further details are reported in the Supplemental Material (SM).

The non-equilibrium properties of the system are investigated by applying path-integral techniques to calculate the total entropy production, s˙=limtlog(𝒫/𝒫r)/t\dot{s}=\lim_{t\to\infty}\langle\log\left(\mathcal{P}/\mathcal{P}_{r}\right)\rangle/t, where 𝒫\mathcal{P} and 𝒫r\mathcal{P}_{r} represent the path probabilities of the forward and backward trajectory [42, 43], respectively, see SM for details and Ref. [71] for a general review. The steady-state entropy production can be decomposed into its space-time Fourier spectrum as

s˙=Ωd𝐪Ωdω2πσ(ω,𝐪)\dot{s}=\int_{\Omega}\frac{d{\mathbf{q}}}{\Omega}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\,\sigma(\omega,\mathbf{q}) (2)

where 𝐪\mathbf{q} is the wave vector, ω\omega the frequency and Ω\Omega represents the area of the first two-dimensional Brillouin zone.

As a main result of this Letter, σ(ω,𝐪)\sigma(\omega,\mathbf{q}) is analytically predicted as (see SM)

σ(ω,𝐪)\displaystyle\sigma(\omega,\mathbf{q}) =limt1t12T(𝐯~(ω,𝐪)𝐟~a(ω,𝐪)+CC)\displaystyle=\lim_{t\to\infty}\frac{1}{t}\frac{1}{2T}\left(\langle\tilde{\mathbf{v}}(\omega,\mathbf{q})\cdot\tilde{\mathbf{f}}_{a}(-\omega,-\mathbf{q})\rangle+\text{CC}\right)
TaTK(ω)τI2τI2ω2τI2(ω2ω2(𝐪))2+ω2,\displaystyle\approx\frac{T_{a}}{T}\frac{K(\omega)}{\tau_{I}^{2}}\frac{\tau_{I}^{2}\omega^{2}}{\tau_{I}^{2}(\omega^{2}-\omega^{2}(\mathbf{q}))^{2}+\omega^{2}}\,, (3)

where the symbol CC stands for complex conjugate. The vectors 𝐟~a(ω,𝐪)\tilde{\mathbf{f}}_{a}(-\omega,-\mathbf{q}) and 𝐯~(ω,𝐪)\tilde{\mathbf{v}}(\omega,\mathbf{q}) are the Fourier transforms of active force and velocity fields in the frequency and wave vector domains (see SM for their definitions). The second line of Eq. (Entropons as collective excitations in active solids) is obtained in the limit of a harmonic crystal and expresses σ\sigma as a function of the parameters of the model since the shape function K(ω)K(\omega) explicitly reads

K(ω)=11+ω2τ2.K(\omega)=\frac{1}{1+\omega^{2}\tau^{2}}\,. (4)

The term ω2(𝐪)\omega^{2}(\mathbf{q}) in Eq. (Entropons as collective excitations in active solids) denotes the phonon dispersion relation of equilibrium solids, whose expression is reported in the SM for a triangular lattice. In general, ω2(𝐪)ωE\omega^{2}(\mathbf{q})\propto\omega_{E} where ωE=12m(U′′(x¯)+U(x¯)x¯)\omega_{E}=\frac{1}{2m}\left(U^{\prime\prime}(\bar{x})+\frac{U^{\prime}(\bar{x})}{\bar{x}}\right) is the Einstein frequency of the solid determined by the derivative of the potential calculated at the average distance between neighboring particles, x¯1/ρ\bar{x}\sim 1/\sqrt{\rho}.

The dynamical correlation function, 𝐮~(ω,𝐪)𝐮~(ω,𝐪)\left\langle{\tilde{\mathbf{u}}}(\omega,\mathbf{q})\cdot{\tilde{\mathbf{u}}}(-\omega,-\mathbf{q})\right\rangle, where 𝐮~\tilde{\mathbf{u}} is the Fourier transform of the particle displacement with respect to the unperturbed position of its lattice, can be expressed in terms of σ\sigma as (see SM)

1T𝐮~(ω,𝐪)𝐮~(ω,𝐪)=Im[uu(ω,𝐪)]ω+σ(ω,𝐪)ω2γ\frac{1}{T}\left\langle{\tilde{\mathbf{u}}}(\omega,\mathbf{q})\cdot{\tilde{\mathbf{u}}}(-\omega,-\mathbf{q})\right\rangle=\frac{\text{Im}[\mathcal{R}_{uu}(\omega,\mathbf{q})]}{\omega}+\frac{\sigma(\omega,\mathbf{q})}{\omega^{2}\gamma} (5)

where Im[uu(ω,𝐪)]\text{Im}[\mathcal{R}_{uu}(\omega,\mathbf{q})] is the imaginary part of the response function due to a small perturbation, hh, evaluated in the frequency and wave vector domains. The response is defined as uu(ω,𝐪)=δ𝐮^(ω)/δh(ω)|h=0\mathcal{R}_{uu}(\omega,\mathbf{q})=\delta\langle\hat{\mathbf{u}}(\omega)\rangle/\delta h(\omega)|_{h=0} and one has

Im[uu(𝐪,ω)]=ωτIτI2(ω2ω2(𝐪))2+ω2.\text{Im}[\mathcal{R}_{uu}(\mathbf{q},\omega)]=\frac{\omega\tau_{I}}{\tau_{I}^{2}\left(\omega^{2}-\omega^{2}(\mathbf{q})\right)^{2}+\omega^{2}}\,. (6)

The relation (5) indicates that 𝐮~(ω,𝐪)𝐮~(ω,𝐪)\left\langle{\tilde{\mathbf{u}}}(\omega,\mathbf{q})\cdot{\tilde{\mathbf{u}}}(-\omega,-\mathbf{q})\right\rangle is the sum of two terms corresponding to: i) thermally excited crystal vibrations, independent of activity that we identify with phonons and ii) additional vibrational contributions of the solid associated with the entropy production that are purely induced by the active force. We remark that the latter are dominant if Ta=v02τγTT_{a}=v_{0}^{2}\tau\gamma\gg T, i.e. far from equilibrium: There exists a typical τ\tau (or v0v_{0}) at which their contribution becomes negligible with respect to the one of the phonons. In the limit of zero active force (Ta0T_{a}\to 0), the response balances the l.h.s of Eq. (5) and the entropy production vanishes as equilibrium imposes.

A typical shape of σ(ω,𝐪)T/Ta\sigma(\omega,\mathbf{q})T/T_{a} is shown in Fig. 2 (a) as a function of ω/ωE\omega/\omega_{E} for a given 𝐪\mathbf{q}. A sharp peak occurs at a characteristic frequency ω(𝐪)\omega^{*}(\mathbf{q}). We identify this peak with an elementary excitation in the crystal and coin the term “entropon” to describe it following the standard notation of elementary excitations in solids [62]: Each entropon is identified with a peak of σ(ω,𝐪){\sigma}(\omega,\mathbf{q}).

Fig. 2 (b) and (c) show σ(ω,𝐪)T/Ta\sigma(\omega,\mathbf{q})T/T_{a} as a function of ω/ωE\omega/\omega_{E} for different values of 𝐪\mathbf{q} revealing a good agreement between numerical simulations and theory, Eq.(Entropons as collective excitations in active solids). Close to the equilibrium, in the regime of small persistence time such that τ=1/Dr1/ωE\tau=1/D_{r}\ll 1/\omega_{E} (Fig. 2 (b)), the peaks of σ(ω,𝐪)T/Ta\sigma(\omega,\mathbf{q})T/T_{a} occur at the phonon frequency ω(𝐪)=ω(𝐪)\omega^{*}(\mathbf{q})=\omega(\mathbf{q}). In this regime, entropons have the same properties of phonons but their amplitudes are small and proportional to τ\tau (because of the prefactor TaT_{a}). In these conditions, the active force behaves as an additional thermal source at effective temperature TaT_{a}. In the opposite regime of large persistence time, τ=1/Dr1/ωE\tau=1/D_{r}\gg 1/\omega_{E}, (Fig. 2 (c)), the peaks of σ(ω,𝐪)\sigma(\omega,\mathbf{q}) are shifted to ω(𝐪)<ω(𝐪)\omega^{*}(\mathbf{q})<\omega(\mathbf{q}). As a consequence, entropons are different from phonons since the crystal vibrations are now peaked at frequencies not coinciding with those typical of equilibrium solids. The frequency ω(𝐪)\omega^{*}(\mathbf{q}) which maximizes σ(ω,𝐪)\sigma(\omega,\mathbf{q}) is reported in Fig. 2 (d) as a function of 𝐪\mathbf{q} for different values of the rescaled persistence time, τωE\tau\omega_{E}, while the difference ω(𝐪)ω(𝐪)\omega(\mathbf{q})-\omega^{*}(\mathbf{q}) is shown in Fig. 2 (e) as a function of τωE\tau\omega_{E} for different values of 𝐪\mathbf{q}. Despite ω(𝐪)\omega^{*}(\mathbf{q}) linearly increases with 𝐪\mathbf{q} in the small persistence regime, a clear discrepancy from the linear law emerges in the large persistence regime for small 𝐪\mathbf{q}, where entropons follow a non-linear dispersion relation. As a consequence, the difference ω(𝐪)ω(𝐪)\omega(\mathbf{q})-\omega^{*}(\mathbf{q}) grows when τωE\tau\omega_{E} is increased much more as 𝐪\mathbf{q} is decreased.

Refer to caption
Figure 2: Spectral entropy production. (a): schematic representation of the spectral entropy production σ(ω,𝐪)T/Ta\sigma(\omega,\mathbf{q})T/T_{a} to identify entropons as a peak in the spectrum. (b) and (c): σ(ω,𝐪)T/Ta\sigma(\omega,\mathbf{q})T/T_{a} as a function of ω/ωE\omega/\omega_{E} for different values of the rescaled wave vector qd0qd_{0} for τωE=7×102,7\tau\omega_{E}=7\times 10^{-2},7, respectively. (d): frequency, ω/ωE\omega^{*}/\omega_{E} where σ(ω,𝐪)\sigma(\omega,\mathbf{q}) is peaked as a function of qd0qd_{0} for different value of the rescaled persistence time τωE\tau\omega_{E}. The black dotted line is an eye guide to show a linear curve. (e): difference between the frequency of the phonon, ω(𝐪)T/Ta\omega(\mathbf{q}^{*})T/T_{a}, and ω(𝐪)T/Ta\omega^{*}(\mathbf{q}^{*})T/T_{a} as a function of τωE=ωE/Dr\tau\omega_{E}=\omega_{E}/D_{r} for different values of qd0qd_{0}. (f): Integrated entropy production, s(𝐪)T/(v02γ)s(\mathbf{q})T/(v_{0}^{2}\gamma) as a function of τωE\tau\omega_{E} for different values of qd0qd_{0}. (g): maximal value of the entropy production, σ(ω,𝐪)T/Ta\sigma(\omega^{*},\mathbf{q})T/T_{a}, as a function of τωE\tau\omega_{E} for different values of qd0qd_{0}. Lines are obtained by fitting the function 1/(1+bτ2ωE2)1/(1+b\tau^{2}\omega_{E}^{2}), where bb is a fitting parameter.

Fig. 2 (f) displays the integral over ω\omega of the spectral entropy production, s(𝐪)=𝑑ωσ(ω,𝐪)=ρTaT(τI+τ)1(1+τ2τIτ+τIω2(𝐪))1s(\mathbf{q})=\int d\omega\sigma(\omega,\mathbf{q})=\rho\frac{T_{a}}{T}(\tau_{I}+\tau)^{-1}(1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q}))^{-1}, as a function of τωE\tau\omega_{E} for different 𝐪\mathbf{q} to quantify the weight of each entropons. This observable is nearly 𝐪\mathbf{q}-independent for τωE1\tau\omega_{E}\lesssim 1 but increases with τωE\tau\omega_{E}: The larger τωE\tau\omega_{E} the larger is the contribution of each entropon to the entropy production. This linear behavior is due to the increase of the prefactor TaτT_{a}\sim\tau. For τωE1\tau\omega_{E}\gtrsim 1, the value of s(𝐪)T/(v02γ)s(\mathbf{q})T/(v_{0}^{2}\gamma) strongly depends on 𝐪\mathbf{q} displaying higher values for smaller 𝐪\mathbf{q}. In addition, s(𝐪)T/(v02γ)s(\mathbf{q})T/(v_{0}^{2}\gamma) decreases as τωE\tau\omega_{E} is increased and, consequently, shows a non-monotonic behavior with a maximum that shifts for larger τωE\tau\omega_{E} as 𝐪\mathbf{q} is decreased.

To shed light on this non-monotonicity, the height of the peak of the rescaled spectral entropy production, σ(ω,𝐪)T/Ta\sigma(\omega^{*},\mathbf{q})T/T_{a}, is shown in Fig. 2 (g) versus τωE\tau\omega_{E} for different values of 𝐪\mathbf{q}, revealing approximately the profile 1/(1+bτ2ωE2)\sim 1/(1+b\tau^{2}\omega_{E}^{2}) where b=b(𝐪)b=b(\mathbf{q}) is a fitting parameter. The main contribution to σ(ω,𝐪)T/Ta\sigma(\omega^{*},\mathbf{q})T/T_{a} is due to frequencies lower than ω(𝐪)\omega^{*}(\mathbf{q}). Considering formula (Entropons as collective excitations in active solids), the heigth of the peak of σ\sigma is roughly determined by σ(ω,𝐪)T/TaK(ω)\sigma(\omega^{*},\mathbf{q})T/T_{a}\sim K(\omega^{*}). By approximating ωω(𝐪)\omega\sim\omega(\mathbf{q}), we obtain

σ(ω,𝐪)TTa=11+ω2(𝐪)τ211+(1+ττI)ξ2𝐪2\sigma(\omega^{*},\mathbf{q})\frac{T}{T_{a}}=\frac{1}{1+\omega^{2}(\mathbf{q})\tau^{2}}\approx\frac{1}{1+\left(1+\frac{\tau}{\tau_{I}}\right)\xi^{2}\mathbf{q}^{2}} (7)

where ξ\xi is the correlation length of the spatial velocity correlation, 𝐯(𝐫)𝐯(0)\langle\mathbf{v}(\mathbf{r})\cdot\mathbf{v}(0)\rangle, of an active solid and reads [23]

ξ2=32x¯2τ2τIτI+τωE2.\xi^{2}=\frac{3}{2}\bar{x}^{2}\frac{\tau^{2}\tau_{I}}{\tau_{I}+\tau}\omega^{2}_{E}\,. (8)

Evaluating the denominator of Eq. (7), and requiring that the 𝐪\mathbf{q}-dependence is negligible, we determine the typical wave vectors at which σT/Ta\sigma T/T_{a} starts decreasing

𝐪2=1ξ2(1+τ/τI).\mathbf{q}_{*}^{2}=\frac{1}{\xi^{2}\left(1+\tau/\tau_{I}\right)}\,. (9)

The wave-vectors with 𝐪𝐪1/ξ\mathbf{q}\lesssim\mathbf{q}_{*}\sim 1/\xi provide the main contribution to the rescaled entropy, while those with 𝐪𝐪1/ξ\mathbf{q}\gtrsim\mathbf{q}_{*}\sim 1/\xi have a much smaller weight. Since ξ\xi increases with τωE\tau\omega_{E}, the modes with larger 𝐪\mathbf{q} give a smaller contributions as τωE\tau\omega_{E} is increased.

Refer to caption
Figure 3: Total entropy production. (a): Rescaled entropy production s˙T/(mv02)\dot{s}\,T/(mv_{0}^{2}) as a function of τωE\tau\omega_{E}. (b): Entropy production s˙/s˙free\dot{s}/\dot{s}_{\text{free}} as a function of ξ/d0\xi/d_{0}. Solid lines are obtained by theoretical predictions, while points by numerical simulations.

By integrating our prediction for σ(ω,𝐪)\sigma(\omega,\mathbf{q}) (Eq. (2)) over ω\omega and 𝐪\mathbf{q}, we can derive analytically the expression for the global density of entropy production of the solid, s˙\dot{s}.

s˙s˙freeΩd𝐪Ω11+τ2τIτ+τIω2(𝐪)\dot{s}\approx\dot{s}_{\text{free}}\int_{\Omega}\frac{d{\mathbf{q}}}{\Omega}\frac{1}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})} (10)

where s˙free=ρTaT(τI+τ)1\dot{s}_{\text{free}}=\rho\frac{T_{a}}{T}(\tau_{I}+\tau)^{-1} is the density of entropy production of non-interacting active particles. s˙free\dot{s}_{\text{free}} is proportional to the ratio between the active temperature (Ta=v02γτT_{a}=v_{0}^{2}\gamma\tau) and the thermal temperature (TT), and is a function of the dynamical properties of the system, such as persistence time τ\tau and inertial time τI\tau_{I}. The integral in Eq. (10) can be analytically expressed in terms of elliptic functions in terms of the parameters of the model (see SM). Figure 3 (a) plots s˙\dot{s} as a function of τωE\tau\omega_{E} showing a non-monotic behavior: in the small persistence regime (τωE1\tau\omega_{E}\ll 1), s˙0\dot{s}\sim 0 because the system behaves as an inertial solid in equilibrium. Increasing τωE\tau\omega_{E}, the system departs from equilibrium and entropy production grows until reaching a maximum, roughly at τωE1\tau\omega_{E}\sim 1. For further increase of τωE\tau\omega_{E}, the value of s˙\dot{s} decreases until almost vanishes.

While the increase of s˙\dot{s} is expected when the system departs from equilibrium and is well-explained by the increase (up to saturation) of the non-interacting entropy production s˙freeτ/(τ+τI)\dot{s}_{\text{free}}\sim\tau/(\tau+\tau_{I}), the physical picture behind the decrease in the large persistence regime can be understood by expressing s˙\dot{s} as a function of ξ\xi. Here, we report the scaling behavior of σ˙\dot{\sigma} for ξ1\xi\gg 1

s˙s˙freelog(ξ)23ξ2,for ξ1,\frac{\dot{s}}{\dot{s}_{\text{free}}}\sim\dfrac{\log{\left(\xi\right)}}{2\sqrt{3}\,\xi^{2}},\text{for }\xi\gtrsim 1\,, (11)

which is shown in Fig. 3 (b). The decrease of s˙\dot{s} as ξ\xi increases suggests that the onset of spatial velocity correlations characterizing the solid at higher densities reduces the entropy production. Coherent domains of strongly correlated velocities produce less entropy, while the incoherent behavior of the velocities of the particles determines a higher dissipation, as if coherent motion, somehow, minimizes the effective friction between different particles.

In conclusion, we have predicted new elementary vibrational excitations in active solids, termed entropons, which emerge from the spectral entropy production and are generated uniquely by activity. Our combined numerical and theoretical study revealed the properties of entropons and demonstrated that they dominate over phonons far from equilibrium.

The concept of “entropons” as additional lattice vibrations has a broad generality that goes beyond monodisperse active crystals. It will certainly apply to binary crystals composed of active and passive particles [72]. Moreover, we expect that in disordered dense systems, such as active glasses [73, 74, 75, 76] and dense active liquid crystals [77], entropons could play the dominant role of system excitations in determining entropy production. For instance, they could shed light on the activity-induced shift of the glass transition temperature.

Many experimental realizations of active crystals are available. Examples include biological tissues [78], confluent cell monolayers [6, 8], dense assemblies of active colloids [63] as well as highly packed active granular systems [64, 66], for which the solid structure has been recently achieved by connecting Hexbug particles by springs [79]. Therefore the existence of entropons can in principle be verified by analyzing particle trajectories in real space.

Future studies on entropons can be manifold by including the scattering of entropons near crystalline defects, the shifted spectra of entropons in a crystal exposed to a temperature gradient. This could lead to possible applications like shock absorbers and active mass dampers as well as controlled heat radiators obtained by active crystals.

Acknowledgements.
Acknowledgments — LC acknowledges support from the Alexander Von Humboldt foundation. UMBM and AP acknowledge support from the MIUR PRIN 2017 project 201798CZLJ. HL acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) through the SPP 2265 under the grant number LO 418/25-1.

References

  • Marchetti et al. [2013] M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost, M. Rao,  and R. A. Simha, Reviews of Modern Physics 85, 1143 (2013).
  • Elgeti et al. [2015] J. Elgeti, R. G. Winkler,  and G. Gompper, Reports on Progress in Physics 78, 056601 (2015).
  • Bechinger et al. [2016] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe,  and G. Volpe, Reviews of Modern Physics 88, 045006 (2016).
  • Gompper et al. [2020] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp, L. Alvarez, et al., Journal of Physics: Condensed Matter 32, 193001 (2020).
  • Alert and Trepat [2020] R. Alert and X. Trepat, Annual Review of Condensed Matter Physics 11, 77 (2020).
  • Garcia et al. [2015] S. Garcia, E. Hannezo, J. Elgeti, J.-F. Joanny, P. Silberzan,  and N. S. Gov, PNAS 112, 15314 (2015).
  • Yang et al. [2017] X. Yang, D. Bi, M. Czajkowski, M. Merkel, M. L. Manning,  and M. C. Marchetti, Proceedings of the National Academy of Sciences 114, 12663 (2017).
  • Henkes et al. [2020] S. Henkes, K. Kostanjevec, J. M. Collinson, R. Sknepnek,  and E. Bertin, Nature Communications 11, 1 (2020).
  • Peruani et al. [2012] F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-Andersen, A. Deutsch,  and M. Bär, Physical Review Letters 108, 098102 (2012).
  • Petroff et al. [2015] A. P. Petroff, X.-L. Wu,  and A. Libchaber, Physical Review Letters 114, 158102 (2015).
  • Wioland et al. [2016] H. Wioland, F. G. Woodhouse, J. Dunkel,  and R. E. Goldstein, Nature Physics 12, 341 (2016).
  • Buttinoni et al. [2013] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,  and T. Speck, Physical Review Letters 110, 238301 (2013).
  • Palacci et al. [2013] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine,  and P. M. Chaikin, Science 339, 936 (2013).
  • Mognetti et al. [2013] B. M. Mognetti, A. Šarić, S. Angioletti-Uberti, A. Cacciuto, C. Valeriani,  and D. Frenkel, Physical Review Letters 111, 245702 (2013).
  • Menzel [2013] A. M. Menzel, Journal of Physics: Condensed Matter 25, 505103 (2013).
  • Ferrante et al. [2013] E. Ferrante, A. E. Turgut, M. Dorigo,  and C. Huepe, Physical Review Letters 111, 268302 (2013).
  • Lin et al. [2021] G. Lin, Z. Han,  and C. Huepe, New Journal of Physics 23, 023019 (2021).
  • Ophaus et al. [2021] L. Ophaus, E. Knobloch, S. V. Gurevich,  and U. Thiele, Physical Review E 103, 032601 (2021).
  • Menzel and Löwen [2013] A. M. Menzel and H. Löwen, Physical Review Letters 110, 055702 (2013).
  • Praetorius et al. [2018] S. Praetorius, A. Voigt, R. Wittkowski,  and H. Löwen, Physical Review E 97, 052615 (2018).
  • Briand et al. [2018] G. Briand, M. Schindler,  and O. Dauchot, Physical Review Letters 120, 208001 (2018).
  • Szamel et al. [2015] G. Szamel, E. Flenner,  and L. Berthier, Physical Review E 91, 062304 (2015).
  • Caprini and Marconi [2021] L. Caprini and U. M. B. Marconi, Soft Matter 17, 4109 (2021).
  • Szamel and Flenner [2021] G. Szamel and E. Flenner, EPL (Europhysics Letters) 133, 60002 (2021).
  • Kuroda et al. [2022] Y. Kuroda, H. Matsuyama, T. Kawasaki,  and K. Miyazaki, arXiv preprint arXiv:2202.04436  (2022).
  • Caprini et al. [2020a] L. Caprini, U. M. B. Marconi,  and A. Puglisi, Physical Review Letters 124, 078001 (2020a).
  • Caprini et al. [2020b] L. Caprini, U. M. B. Marconi, C. Maggi, M. Paoluzzi,  and A. Puglisi, Physical Review Research 2, 023321 (2020b).
  • Huang et al. [2020] Z.-F. Huang, A. M. Menzel,  and H. Löwen, Physical Review Letters 125, 218002 (2020).
  • Bialké et al. [2012] J. Bialké, T. Speck,  and H. Löwen, Physical Review Letters 108, 168301 (2012).
  • Digregorio et al. [2018] P. Digregorio, D. Levis, A. Suma, L. F. Cugliandolo, G. Gonnella,  and I. Pagonabarraga, Physical Review Letters 121, 098003 (2018).
  • Klamser et al. [2018] J. U. Klamser, S. C. Kapfer,  and W. Krauth, Nature Communications 9, 1 (2018).
  • Omar et al. [2021] A. K. Omar, K. Klymko, T. GrandPre,  and P. L. Geissler, Physical Review Letters 126, 188002 (2021).
  • Pasupalak et al. [2020] A. Pasupalak, L. Yan-Wei, R. Ni,  and M. P. Ciamarra, Soft Matter 16, 3914 (2020).
  • Li and Ai [2021] J.-j. Li and B.-q. Ai, New Journal of Physics 23, 083044 (2021).
  • Negro et al. [2022] G. Negro, C. B. Caporusso, P. Digregorio, G. Gonnella, A. Lamura,  and A. Suma, arXiv preprint arXiv:2201.10019  (2022).
  • Hopkins et al. [2022] A. Hopkins, M. Chiang, B. Loewe, D. Marenduzzo,  and M. C. Marchetti, arXiv preprint arXiv:2203.02071  (2022).
  • Speck [2016] T. Speck, EPL (Europhysics Letters) 114, 30006 (2016).
  • Pigolotti et al. [2017] S. Pigolotti, I. Neri, É. Roldán,  and F. Jülicher, Physical Review Letters 119, 140604 (2017).
  • Mandal et al. [2017] D. Mandal, K. Klymko,  and M. R. DeWeese, Physical Review Letters 119, 258001 (2017).
  • Caprini et al. [2018] L. Caprini, U. M. B. Marconi, A. Puglisi,  and A. Vulpiani, Physical Review Letters 121, 139801 (2018).
  • Szamel [2019] G. Szamel, Physical Review E 100, 050603 (2019).
  • Dabelow et al. [2019] L. Dabelow, S. Bo,  and R. Eichhorn, Physical Review X 9, 021009 (2019).
  • Caprini et al. [2019] L. Caprini, U. M. B. Marconi, A. Puglisi,  and A. Vulpiani, Journal of Statistical Mechanics: Theory and Experiment 2019, 053203 (2019).
  • Fodor et al. [2021] É. Fodor, R. L. Jack,  and M. E. Cates, Annual Review of Condensed Matter Physics 13 (2021).
  • O’Byrne et al. [2022] J. O’Byrne, Y. Kafri, J. Tailleur,  and F. van Wijland, Nature Reviews Physics , 1 (2022).
  • Nardini et al. [2017] C. Nardini, É. Fodor, E. Tjhung, F. Van Wijland, J. Tailleur,  and M. E. Cates, Physical Review X 7, 021007 (2017).
  • Borthne et al. [2020] Ø. L. Borthne, É. Fodor,  and M. E. Cates, New Journal of Physics 22, 123012 (2020).
  • Paoluzzi [2022] M. Paoluzzi, Physical Review E 105, 044139 (2022).
  • Cates et al. [2022] M. E. Cates, É. Fodor, T. Markovich, C. Nardini,  and E. Tjhung, Entropy 24, 254 (2022).
  • Crosato et al. [2019] E. Crosato, M. Prokopenko,  and R. E. Spinney, Physical Review E 100, 042613 (2019).
  • Chiarantoni et al. [2020] P. Chiarantoni, F. Cagnetta, F. Corberi, G. Gonnella,  and A. Suma, Journal of Physics A: Mathematical and Theoretical 53, 36LT02 (2020).
  • GrandPre et al. [2021] T. GrandPre, K. Klymko, K. K. Mandadapu,  and D. T. Limmer, Physical Review E 103, 012613 (2021).
  • Pietzonka and Seifert [2017] P. Pietzonka and U. Seifert, Journal of Physics A: Mathematical and Theoretical 51, 01LT01 (2017).
  • Chaki and Chakrabarti [2018] S. Chaki and R. Chakrabarti, Physica A: Statistical Mechanics and its Applications 511, 302 (2018).
  • Martin et al. [2021] D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini, J. Tailleur,  and F. van Wijland, Physical Review E 103, 032607 (2021).
  • Guo et al. [2021] B. Guo, S. Ro, A. Shih, T. V. Phan, R. H. Austin, S. Martiniani, D. Levine,  and P. M. Chaikin, arXiv preprint arXiv:2105.12707  (2021).
  • Shankar and Marchetti [2018] S. Shankar and M. C. Marchetti, Physical Review E 98, 020604 (2018).
  • Razin [2020] N. Razin, Physical Review E 102, 030103 (2020).
  • Cocconi et al. [2020] L. Cocconi, R. Garcia-Millan, Z. Zhen, B. Buturca,  and G. Pruessner, Entropy 22, 1252 (2020).
  • Fodor et al. [2016] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco,  and F. van Wijland, Physical Review Letters 117, 038103 (2016).
  • Marconi et al. [2017] U. M. B. Marconi, A. Puglisi,  and C. Maggi, Scientific Reports 7, 46496 (2017).
  • Pines [2018] D. Pines, Elementary Excitations in Solids Lectures on Protons, Electrons, and Plasmons (CRC Press, 2018).
  • Klongvessa et al. [2019a] N. Klongvessa, F. Ginot, C. Ybert, C. Cottin-Bizonne,  and M. Leocmach, Physical Review E 100, 062603 (2019a).
  • Dauchot et al. [2005] O. Dauchot, G. Marty,  and G. Biroli, Physical Review Letters 95, 265701 (2005).
  • Puglisi et al. [2012] A. Puglisi, A. Gnoli, G. Gradenigo, A. Sarracino,  and D. Villamaina, The Journal of Chemical Physics 136, 014704 (2012).
  • Briand and Dauchot [2016] G. Briand and O. Dauchot, Physical Review Letters 117, 098004 (2016).
  • Takatori and Brady [2017] S. C. Takatori and J. F. Brady, Physical Review Fluids 2, 094305 (2017).
  • Mandal et al. [2019] S. Mandal, B. Liebchen,  and H. Löwen, Physical Review Letters 123, 228001 (2019).
  • Leoni et al. [2020] M. Leoni, M. Paoluzzi, S. Eldeen, A. Estrada, L. Nguyen, M. Alexandrescu, K. Sherb,  and W. W. Ahmed, Physical Review Research 2, 043299 (2020).
  • Caprini and Marini Bettolo Marconi [2021] L. Caprini and U. Marini Bettolo Marconi, The Journal of Chemical Physics 154, 024902 (2021).
  • Seifert [2012] U. Seifert, Reports on Progress in Physics 75, 126001 (2012).
  • Ni et al. [2014] R. Ni, M. A. C. Stuart, M. Dijkstra,  and P. G. Bolhuis, Soft Matter 10, 6609 (2014).
  • Flenner et al. [2016] E. Flenner, G. Szamel,  and L. Berthier, Soft Matter 12, 7136 (2016).
  • Nandi et al. [2018] S. K. Nandi, R. Mandal, P. J. Bhuyan, C. Dasgupta, M. Rao,  and N. S. Gov, Proceedings of the National Academy of Sciences 115, 7688 (2018).
  • Klongvessa et al. [2019b] N. Klongvessa, F. Ginot, C. Ybert, C. Cottin-Bizonne,  and M. Leocmach, Physical Review Letters 123, 248004 (2019b).
  • Paoluzzi et al. [2022] M. Paoluzzi, D. Levis,  and I. Pagonabarraga, Communications Physics 5, 1 (2022).
  • Doostmohammadi et al. [2018] A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans,  and F. Sagués, Nature communications 9, 1 (2018).
  • Vilfan and Frey [2005] A. Vilfan and E. Frey, Journal of Physics: Condensed Matter 17, S3901 (2005).
  • Baconnier et al. [2021] P. Baconnier, D. Shohat, C. Hernandèz, C. Coulais, V. Démery, G. Düring,  and O. Dauchot, arXiv preprint arXiv:2110.01516  (2021).