This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Enumeration of regular multipartite hypergraphs

Mikhail Isaev
School of Mathematics and Statistics
University of New South Wales
Sydney, NSW, Australia
m.isaev@unsw.edu.au
Supported by the Australian Research Council grant DP250101611.
   Tamás Makai
Department of Mathematics
LMU Munich
Munich 80333, Germany
makai@math.lmu.de
Supported by the Australian Research Council grant DP190100977.
   Brendan D. McKay11footnotemark: 1
School of Computing
Australian National University
Canberra, ACT 2601, Australia
brendan.mckay@anu.edu.au
Abstract

We determine the asymptotic number of regular multipartite hypergraphs, also known as multidimensional binary contingency tables, for all values of the parameters.

1 Introduction

Let [n]:={1,,n}[n]:=\{1,\ldots,n\} be a vertex set partitioned into rr disjoint classes V1,,VrV_{1},\ldots,V_{r}. We consider multipartite rr-uniform hypergraphs such that every edge has exactly one vertex in each class and there are no repeated edges. We call such hypergraphs (r,r)(r,r)-graphs. Note that (2,2)(2,2)-graphs are just bipartite graphs. These objects are also known as rr-dimensional binary contingency tables.

The degree of a vertex is the number of edges that contain it. If every vertex has degree dd then the hypergraph is called dd-regular, which implies (unless there are no edges) that all the classes have the same size. We are interested in the number of labelled dd-regular (r,r)(r,r)-graphs with n=mrn=mr vertices where every partition class contains exactly mm vertices. We denote this number by Hr(d,m)H_{r}(d,m).

In order to motivate our answer, we start with a non-rigorous argument. Consider a (r,r)(r,r)-graph GG with classes of size mm and mdmd edges, created by choosing uniformly at random mdmd distinct edges out of the mrm^{r} available. Let \mathcal{R} be the event that GG is dd-regular. Then

Hr(d,m)=(mrmd)().H_{r}(d,m)=\binom{m^{r}}{md}\operatorname{\mathbb{P}}\nolimits(\mathcal{R}).

To estimate ()\operatorname{\mathbb{P}}\nolimits(\mathcal{R}), we first look at one class ViV_{i}, i[r]i\in[r]. The probability of the event i\mathcal{R}_{i} that every vertex in ViV_{i} has degree dd is

(i):=(mr1d)m(mrmd),\operatorname{\mathbb{P}}\nolimits(\mathcal{R}_{i}):=\frac{\binom{m^{r-1}}{d}^{m}}{\binom{m^{r}}{md}},

since (mr1d)\binom{m^{r-1}}{d} is the number of ways to choose dd edges of a (r,r)(r,r)-graph incident to one vertex in ViV_{i} and these choices are independent. If the events i\mathcal{R}_{i} were also independent, we would have ()=i=1r(i)\operatorname{\mathbb{P}}\nolimits(\mathcal{R})=\prod_{i=1}^{r}\operatorname{\mathbb{P}}\nolimits(\mathcal{R}_{i}), providing the estimate

H^r(d,m):=(mrmd)i[r](i)=(mr1d)rm(mrmd)r1.\hat{H}_{r}(d,m):=\binom{m^{r}}{md}\prod_{i\in[r]}\operatorname{\mathbb{P}}\nolimits(\mathcal{R}_{i})=\frac{\binom{m^{r-1}}{d}^{rm}}{\binom{m^{r}}{md}^{r-1}}. (1.1)

Of course, the events i\mathcal{R}_{i} are not independent, but comparing H^r(d,m)\hat{H}_{r}(d,m) with the correct value Hr(d,m)H_{r}(d,m) will be instructive.

In the case of (2,2)(2,2)-graphs, that is for dd-regular bipartite graphs, we have as n=2mn=2m\to\infty that

H2(d,m)=(1+o(1))e1H^2(d,m)H_{2}(d,m)=(1+o(1))\,e^{-1}\hat{H}_{2}(d,m)

except in the trivial cases d=0d=0 and d=md=m. This is the result of three previous investigations. The sparse range was solved by McKay [7] (see also [4]), the intermediate range of densities by Liebenau and Wormald [6], and the dense range by Canfield and McKay [3].

In this paper we show that, for r3r\geqslant 3, the estimate H^r(d,m)\hat{H}_{r}(d,m) is asymptotically correct.

Theorem 1.1.

Let n=rmn=rm\to\infty, where m=m(n)m=m(n) and r=r(n)3r=r(n)\geqslant 3. Then for any 0dmr10\leqslant d\leqslant m^{r-1} we have

Hr(d,m)=(1+o(1))H^r(d,m).H_{r}(d,m)=(1+o(1))\,\hat{H}_{r}(d,m).

In the sparse range we employ a combinatorial model introduced in 1972 by Békéssy, Békéssy and Komlós [1] and later developed under the name “configurations” by Bollobás and others [2, 9]. For r4r\geqslant 4 we show that this model produces a uniform random dd-regular (r,r)(r,r)-graph with probability 1o(1)1-o(1). When r=3r=3, this is insufficient to cover all of the sparse cases. However, the result can be extended to the whole sparse range by applying the method of switchings [7]. Furthermore, for the dense regime we use the complex-analytic approach, relying on the machinery developed by Isaev and McKay [5].

In Section 2 we introduce our key lemmas for both the sparse and the dense regimes and prove Theorem 1.1. We then consider the sparse regime in Section 3 and the dense regime in Section 4.

2 The four regimes covering all possibilities

We prove Theorem 1.1, considering the following four regimes separately.

  • (a)

    d=o(m)d=o(m) for r=3r=3;

  • (b)

    rd2=o(mr2)rd^{2}=o(m^{r-2}) for r3r\geqslant 3;

  • (c)

    The complements of cases (a) and (b); i.e., replacing dd by mr1dm^{r-1}-d.

  • (d)

    min{d,mr1d}=Ω(r16m)\min\{d,m^{r-1}-d\}=\Omega(r^{16}m).

Each of the following lemmas covers one of the regimes (a), (b), and (d), while region (c) follows from (a) and (b) as Hr(mr1d,m)=Hr(d,m)H_{r}(m^{r-1}{-}d,m)=H_{r}(d,m) and H^r(mr1d,m)=H^r(d,m)\hat{H}_{r}(m^{r-1}{-}d,m)=\hat{H}_{r}(d,m).

Lemma 2.1.

If d=o(m)d=o(m) then H3(d,m)=(1+o(1))H^3(d,m)H_{3}(d,m)=(1+o(1))\hat{H}_{3}(d,m).

Lemma 2.2.

If r3r\geqslant 3 and rd2=o(mr2)rd^{2}=o(m^{r-2}) then Hr(d,m)=(1+o(1))H^r(d,m)H_{r}(d,m)=(1+o(1))\hat{H}_{r}(d,m).

Lemma 2.3.

If r3r\geqslant 3 and min{d,mr1d}=Ω(r16m)\min\{d,m^{r-1}-d\}=\Omega(r^{16}m), then Hr(d,m)=(1+o(1))H^r(d,m)H_{r}(d,m)=(1+o(1))\hat{H}_{r}(d,m).

We prove Lemmas 2.1 and 2.2 in Section 3 and Lemma 2.3 in Section 4. To see that four regimes (a)–(d) together cover 0dmr10\leqslant d\leqslant m^{r-1}, we employ the following short lemma. It is stated in a slightly more general form as it will be useful in a few other places in the paper.

Lemma 2.4.

Let a,b,c,r0a,b,c,r_{0} be constants with c>0c>0. Then, as nn\to\infty with rr0r\geqslant r_{0} and m2m\geqslant 2,

ramcr+b=O(nbcr0).r^{a}m^{-cr+b}=O(n^{b-cr_{0}}).
Proof.

Recall that n=mrn=mr. If m=2m=2 then ramcr+b=eΩ(n)r^{a}m^{-cr+b}=e^{-\Omega(n)} so the stated bound is immediate. For m3m\geqslant 3, to maximise the function fn(r):=ra(n/r)cr+bf_{n}(r):=r^{a}(n/r)^{-cr+b} over rr, we observe that its derivative

fn(r)=rcr+ab1nbcr(cr(lognlogr1)+ba)f^{\prime}_{n}(r)=-r^{cr+a-b-1}n^{b-cr}\bigl{(}cr(\log n-\log r-1)+b-a\bigr{)}

is negative for r>abc(log31)r>\frac{a-b}{c(\log 3-1)} since lognlogr=logmlog3\log n-\log r=\log m\geqslant\log 3 by assumption. Thus, the maximum occurs for r=O(1)r=O(1), where the implicit constant in O(1)O(1) depends only on a,b,ca,b,c. The result follows as for every rr0r\geqslant r_{0} satisfying r=O(1)r=O(1) we have ramcr+b=O(nbcr0)r^{a}m^{-cr+b}=O(n^{b-cr_{0}}). ∎

Proof of Theorem 1.1.

First note that the statement holds trivially when m=1m=1. For the remainder of the proof assume that m2m\geqslant 2.

For r=3r=3 the result holds by Lemma 2.1 for the regime d=o(m)d=o(m), and when m2d=o(m)m^{2}-d=o(m), by taking the complement hypergraph. On the other hand Lemma 2.3 proves the result for min{d,m2d}=Ω(m)\min\{d,m^{2}-d\}=\Omega(m), covering the remaining possible degrees.

For r4r\geqslant 4, Lemma 2.2 applied to the hypergraph or its complement, proves the result for the regimes d=o(m(r2)/2r1/2)d=o(m^{(r-2)/2}r^{-1/2}) and mr1d=o(m(r2)/2r1/2)m^{r-1}{-}d=o(m^{(r-2)/2}r^{-1/2}). Furthermore Lemma 2.3 proves the result for min{d,mr1d}=Ω(r16m)\min\{d,m^{r-1}-d\}=\Omega(r^{16}m). Observe that all possible degrees are covered if m(r2)/2r1/2=Ω(r16m)m^{(r-2)/2}r^{-1/2}=\Omega(r^{16}m) or equivalently

r33m4r=O(1),r^{33}m^{4-r}=O(1),

which follows from Lemma 2.4, by taking a=33a=33, b=r0=4b=r_{0}=4, and c=1c=1. ∎

3 Sparse regimes

In this section we prove Lemma 2.1 and Lemma 2.2. First, we introduce the configuration model. Take rr classes V1,,VrV_{1},\ldots,V_{r} of mm vertices each, and attach dd spines to each vertex. A spine set is a set of rr spines, one from each class. A configuration is an unordered partition of the rmdrmd spines into mdmd spine sets. Thus, there are ((md)!)r1((md)!)^{r-1} possible configurations. Each configuration provides a dd-regular multi-hypergraph where each edge consists of the vertices to which the spines in a spine set of the configuration are attached.

If GG is a simple dd-regular (r,r)(r,r)-graph, the number of configurations which provide GG is (d!)mr(d!)^{mr}. Therefore,

Hr(d,m)=((md)!)r1(d!)mrPr(d,m),H_{r}(d,m)=\frac{((md)!)^{r-1}}{(d!)^{mr}}P_{r}(d,m), (3.1)

where Pr(d,m)P_{r}(d,m) is the probability that a uniform random configuration provides a simple hypergraph, that is, no two spine sets give the same hyperedge.

3.1 Proof of Lemma 2.2

Observe that

H^r(d,m)=(mr1d)rm(mrmd)r1=((mr1)d)rm((mr)md)r1((md)!)r1(d!)rm=eO(rd2m2r)((md)!)r1(d!)rm.\hat{H}_{r}(d,m)=\frac{\binom{m^{r-1}}{d}^{rm}}{\binom{m^{r}}{md}^{r-1}}=\frac{\mathopen{}\mathclose{{}\left((m^{r-1})_{d}}\right)^{rm}}{\mathopen{}\mathclose{{}\left((m^{r})_{md}}\right)^{r-1}}\cdot\frac{((md)!)^{r-1}}{(d!)^{rm}}=e^{O(rd^{2}m^{2-r})}\cdot\frac{((md)!)^{r-1}}{(d!)^{rm}}.

For the last equality in the above, we used the bounds

(mr1)d=md(r1)eO(d2m1r)and(mr)md=mrmdeO(d2m2r).(m^{r-1})_{d}=m^{d(r-1)}e^{O(d^{2}m^{1-r})}\quad\text{and}\quad(m^{r})_{md}=m^{rmd}e^{O(d^{2}m^{2-r})}.

Therefore, by assumptions and (3.1), it is sufficient to show that Pr(d,m)=1o(1)P_{r}(d,m)=1-o(1). This is obvious for d=0,1d=0,1 so we can assume d2d\geqslant 2.

Consider any two spines s1s_{1} and s2s_{2} attached to the same vertex from V1V_{1}. The probability that two spine sets of a random configuration that contain s1s_{1} and s2s_{2} coincide is

(md)r1(d1)r1((md2)!)r1((md)!)r1=(d1md1)r1m1r.\raise 0.21529pt\hbox{\small$\displaystyle\frac{(md)^{r-1}(d-1)^{r-1}((md-2)!)^{r-1}}{((md)!)^{r-1}}$}=\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{d-1}{md-1}$}}\right)^{r-1}\leqslant m^{1-r}.

Indeed, (md)r1(md)^{r-1} represents the number of choices for the spine set containing s1s_{1}. Then, we have (d1)r1(d-1)^{r-1} ways to form the spine set containing s2s_{2} which corresponds to the same edge. Finally, (md2)!)r1(md-2)!)^{r-1} is the number of ways to complete the configuration. By the union bound over all possible choices for s1s_{1} and s2s_{2}, we obtain

1Pr(d,m)m(d2)m1r=o(1),1-P_{r}(d,m)\leqslant m\binom{d}{2}m^{1-r}=o(1),

completing the proof.

3.2 The case r=3r=3

For r=3r=3 we need to cover the range d=o(m)d=o(m), in order to complement the range given by the complex-analytic approach detailed in the next section. To do this, we use a switching argument to estimate the probability that a uniform random configuration provides a simple (r,r)(r,r)-graph. Throughout this section, we can also assume that d2d\geqslant 2 since Lemma 2.2 already covers d=O(1)d=O(1) and even much more.

Define

M:=8d2m1+logm.M:=\lfloor 8d^{2}m^{-1}+\log m\rfloor.
Lemma 3.1.

Suppose r=3r=3 and 2d=o(m)2\leqslant d=o(m). Then, with probability 1o(1)1-o(1), a uniform random configuration:

  • (a)

    provides no sets of 3 equal edges; and

  • (b)

    provides at most MM sets of 2 equal edges.

Proof.

Similarly to Lemma 2.2, we consider any three spines s1s_{1}, s2s_{2}, s3s_{3} attached to the same vertex from V1V_{1}. The probability that the corresponding three edges of a random configuration coincide is

(md)2(d1)2(d2)2((md3)!)2((md)!)2=((d1)(d2)(md1)(md2))2m4.\raise 0.21529pt\hbox{\small$\displaystyle\frac{(md)^{2}(d-1)^{2}(d-2)^{2}((md-3)!)^{2}}{((md)!)^{2}}$}=\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{(d-1)(d-2)}{(md-1)(md-2)}$}}\right)^{2}\leqslant m^{-4}.

Taking the union bound over all choices of the spines s1,s2,s3s_{1},s_{2},s_{3}, we get that the probability of having 33 equal edges is at most m(d3)m4=o(1)m\binom{d}{3}\cdot m^{-4}=o(1), which proves part (a).

For i=1,,M+1i=1,\ldots,M+1, let {s1i,s2i}\{s_{1}^{i},s_{2}^{i}\} be distinct pairs of spines, such that each spine in a pair is attached to the same vertex of V1V_{1}. The probability that the edges corresponding to the spine sets containing s1is_{1}^{i} and s2is_{2}^{i} of a random configuration coincide for all ii is at most

(md)2(M+1)d2(M+1)((md2(M+1))!)2((md)!)2m2(M+1)eO(M2/md)=(1+o(1))m2(M+1),\frac{(md)^{2(M+1)}d^{2(M+1)}((md-2(M+1))!)^{2}}{((md)!)^{2}}\leqslant m^{-2(M+1)}e^{O(M^{2}/md)}=(1+o(1))m^{-2(M+1)},

where we used the assumption that d=o(m)d=o(m) and the definition of MM. The number of ways to choose all pairs {s1i,s2i}i[M+1]\{s_{1}^{i},s_{2}^{i}\}_{i\in[M+1]} is at most (dmM+1)dM+1(d2m)M+1/(M+1)!\binom{dm}{M+1}d^{M+1}\leqslant(d^{2}m)^{M+1}/(M+1)!. Applying the union bound implies that the probability of having M+1M+1 pairs of 2 equal edges is at most

((1+o(1))m1d2)M+1(M+1)!(e(1+o(1))d2m1M+1)M+1((1+o(1))e/8)logm=o(m1),\frac{\bigl{(}(1+o(1))m^{-1}d^{2}\bigr{)}^{M+1}}{(M+1)!}\leqslant\biggl{(}\frac{e(1+o(1))d^{2}m^{-1}}{M+1}\biggr{)}^{\!M+1}\leqslant((1+o(1))e/8)^{\log m}=o(m^{-1}),

proving part (b). ∎

From now on, we only consider configurations satisfying Lemma 3.1 (a) and (b). Our task is to estimate the probability that the configuration provides no double edges.

For a given configuration, with a slight abuse of notation, we will call a spine set in the configuration an edge. It is a simple edge if no other edge uses the same vertices, and half of a double edge if it is an edge and there is a different edge with the same vertices. Two spine sets are parallel if they use the same vertices.

Refer to captionforwardreversea6a_{6}b6b_{6}c6c_{6}c4c_{4}a4a_{4}b4b_{4}b2b_{2}c2c_{2}a2a_{2}aabbccc1c_{1}a1a_{1}b1b_{1}b3b_{3}c3c_{3}a3a_{3}a5a_{5}b5b_{5}c5c_{5}a6a_{6}b6b_{6}c6c_{6}c4c_{4}a4a_{4}b4b_{4}b2b_{2}c2c_{2}a2a_{2}aabbccc1c_{1}a1a_{1}b1b_{1}b3b_{3}c3c_{3}a3a_{3}a5a_{5}b5b_{5}c5c_{5}
Figure 1: Switching operations for r=3r=3.

We define forward and backward switchings involving 21 distinct spines as follows

{a,b,c}{aj,bj,cj:1j6}.\{a,b,c\}\cup\{a_{j},b_{j},c_{j}\mathrel{:}1\leqslant j\leqslant 6\}.

In all cases, the letter in a spine name (and the colour) indicates which class ViV_{i} it belongs to. All of these spines must be attached to distinct vertices, except that there may be coincidences within the sets

{v(a),v(a1),v(a2)},{v(b),v(b1),v(b2)},and{v(c),v(c1),v(c2)},\{v(a),v(a_{1}),v(a_{2})\},\quad\{v(b),v(b_{1}),v(b_{2})\},\quad and\quad\{v(c),v(c_{1}),v(c_{2})\}, (3.2)

where v(x)v(x) is the vertex to which spine xx is attached. To describe our switching operations, we define two families of labelled spine sets (see Figure 1).

1\displaystyle\mathcal{F}_{1} ={{a,b,c},{a1,b5,c3},{a2,b4,c6},{a3,b1,c5},{a4,b6,c2},{a5,b3,c1},{a6,b2,c4}}\displaystyle=\bigl{\{}\{a,b,c\},\{a_{1},b_{5},c_{3}\},\{a_{2},b_{4},c_{6}\},\{a_{3},b_{1},c_{5}\},\{a_{4},b_{6},c_{2}\},\{a_{5},b_{3},c_{1}\},\{a_{6},b_{2},c_{4}\}\bigr{\}}
2\displaystyle\mathcal{F}_{2} ={{a,b2,c1},{a1,b,c2},{a2,b1,c}}{{aj,bj,cj}:3j6}.\displaystyle=\bigl{\{}\{a,b_{2},c_{1}\},\{a_{1},b,c_{2}\},\{a_{2},b_{1},c\}\bigr{\}}\cup\bigl{\{}\{a_{j},b_{j},c_{j}\}\mathrel{:}3\leqslant j\leqslant 6\bigr{\}}.

Informally, a forward switching takes a configuration C1C_{1} whose edges include 1\mathcal{F}_{1}, with {a,b,c}\{a,b,c\} being half of a double edge, and replaces the edges in 1\mathcal{F}_{1} by the edges in 2\mathcal{F}_{2}, thereby creating a new configuration C2C_{2} without that double edge. A reverse switching is the inverse operation that changes C2C_{2} into C1C_{1}. We will restrict C1C_{1} and C2C_{2} so that neither the forward nor reverse switchings create or destroy any double edge other than {a,b,c}\{a,b,c\} and its parallel spine set.

In detail, the requirements for C1C_{1} are as follows.

  • (F1)

    {a,b,c}\{a,b,c\} is half of a double edge, while all the other spine sets in 1\mathcal{F}_{1} are simple edges;

  • (F2)

    none of the spine sets of 2\mathcal{F}_{2} are parallel to edges of C1C_{1};

  • (F3)

    no two of the spine sets {a,b2,c1},{a1,b,c2},{a2,b1,c}\{a,b_{2},c_{1}\},\{a_{1},b,c_{2}\},\{a_{2},b_{1},c\} are parallel.

The requirements for C2C_{2} are as follows.

  • (R1)

    {a,b,c}\{a,b,c\} is parallel to a simple edge of C2C2, while all the other spine sets in 2\mathcal{F}_{2} are simple edges;

  • (R2)

    none of the spine sets in 1\mathcal{F}_{1} are parallel to edges of C2C_{2}.

We will need the following summation result from [4, Cor. 4.5].

Lemma 3.2 (Greenhill, McKay, Wang [4]).

Let M2M\geqslant 2 be an integer and, for 1iM1\leqslant i\leqslant M, let real numbers A(i)A(i), B(i)B(i) be given such that A(i)0A(i)\geqslant 0 and 1(i1)B(i)01-(i-1)B(i)\geqslant 0. Define

A1:=mini[M]A(i),A2:=maxi[M]A(i),C1:=mini[M]A(i)B(i),C2:=maxi[M]A(i)B(i).A_{1}:=\min_{i\in[M]}A(i),\quad A_{2}:=\max_{i\in[M]}A(i),\quad C_{1}:=\min_{i\in[M]}A(i)B(i),\quad C_{2}:=\max_{i\in[M]}A(i)B(i).

Suppose that there exists c^\hat{c} with 0<c^<130<\hat{c}<\frac{1}{3} such that max{A/M,|C|}c^\max\{A/M,|C|\}\leqslant\hat{c} for all A[A1,A2]A\in[A_{1},A_{2}], C[C1,C2]C\in[C_{1},C_{2}]. Define n0,,nMn_{0},\ldots,n_{M} recursively by n0=1n_{0}=1 and

ni:=ni1iA(i)(1(i1)B(i)),for i[M].n_{i}:=\frac{n_{i-1}}{i}A(i)(1-(i-1)B(i)),\qquad\text{for $i\in[M]$.}

Then, the following bounds hold:

exp(A112A1C2)(2ec^)Mi=0Mniexp(A212A2C1+12A2C12)+(2ec^)M.\exp\bigl{(}A_{1}-\lower 0.6458pt\hbox{\large$\frac{1}{2}$}A_{1}C_{2}\bigr{)}-(2e\hat{c}\bigr{)}^{M}\leqslant\sum_{i=0}^{M}n_{i}\leqslant\exp\bigl{(}A_{2}-\lower 0.6458pt\hbox{\large$\frac{1}{2}$}A_{2}C_{1}+\lower 0.6458pt\hbox{\large$\frac{1}{2}$}A_{2}C_{1}^{2}\bigr{)}+(2e\hat{c})^{M}.

Now we use Lemma 3.2 to estimate the probability P3(d,m)P_{3}(d,m) that the configuration model gives a simple hypergraph.

Lemma 3.3.

If 2d=o(m)2\leqslant d=o(m), then P3(d,m)=(1+o(1))exp(d22m).P_{3}(d,m)=(1+o(1))\exp\Bigl{(}-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m}$}\Bigr{)}.

Proof.

For 0M0\leqslant\ell\leqslant M, let 𝒯()\mathcal{T}(\ell) be the set of configurations that have no edges of multiplicity greater than 2 and exactly \ell double edges. By Lemma 3.1, a random configuration belongs to =0M𝒯()\bigcup_{\ell=0}^{M}\mathcal{T}(\ell) with probability 1o(1)1-o(1). Note that our assumption d=o(m)d=o(m) implies that

ε:=+dmdM+dmd=o(1).\varepsilon_{\ell}:=\frac{\ell+d}{md}\leqslant\frac{M+d}{md}=o(1). (3.3)

Consider a configuration C1C_{1} in 𝒯()\mathcal{T}(\ell) for 1M1\leqslant\ell\leqslant M. We claim that

the number of available forward switchings is (1+O(ε)) 2m6d6(1+O(\varepsilon_{\ell}))\,2\ell m^{6}d^{6}. (3.4)

Indeed, half of a double edge, {a,b,c}\{a,b,c\}, can be chosen in 22\ell ways. Then we can choose 6 labelled simple edges, vertex-disjoint apart from the allowed coincidences described in (3.2), in (md2O(d))6(md-2\ell-O(d))^{6} ways.

The possibility forbidden by (F2) that an edge ee in C1C_{1} is parallel to {aj,bj,cj}\{a_{j},b_{j},c_{j}\} for some 3j63\leqslant j\leqslant 6 eliminates O(m4d7)O(m^{4}d^{7}) cases, since we have O(md)O(md) choices for the edge ee, then there are O(d3)O(d^{3}) ways to select the three spines aj,bja_{j},b_{j} and cjc_{j} (and thus also the edges in 1\mathcal{F}_{1} containing these spines), such that {aj,bj,cj}\{a_{j},b_{j},c_{j}\} is parallel to ee, while the choice of the remaining edges in 1\mathcal{F}_{1} is at most (md)3(md)^{3}. Similarly, the possibility that one of {a,b2,c1}\{a,b_{2},c_{1}\}, {a1,b,c2}\{a_{1},b,c_{2}\}, or {a2,b1,c}\{a_{2},b_{1},c\} violates (F2) because it is parallel to an edge eliminates O(m4d7)O(m^{4}d^{7}) cases: there are O(d)O(d) ways to pick an edge ee in C1C_{1} sharing a vertex with a,ba,b or cc, at most d2d^{2} ways to choose two edges of 1\mathcal{F}_{1} sharing a vertex with ee, and at most (md)4(md)^{4} ways to pick the remaining edges for 1\mathcal{F}_{1}. Finally, the number of ways to violate (F3) is bounded by O(m3d6)O(m^{3}d^{6}): for example, for {a,b2,c1}\{a,b_{2},c_{1}\} and {a1,b,c2}\{a_{1},b,c_{2}\} to be parallel we can pick the three edges of 1\mathcal{F}_{1} containing c2c_{2}, a2a_{2} and b1b_{1} in at most m3d3m^{3}d^{3} ways, and then the number of ways to pick the remaining edges of 1\mathcal{F}_{1} is at most d3d^{3} (as each of these edges has to share a vertex with a,ba,b and c2c_{2} respectively). Using (3.3), we find that the number of available forward switchings is

2(md2O(d))6O(m4d7)O(m3d6)=(1+O(ε)) 2m6d6,2\ell(md-2\ell-O(d))^{6}-O(m^{4}d^{7})-O(m^{3}d^{6})=(1+O(\varepsilon_{\ell}))\,2\ell m^{6}d^{6},

which proves claim (3.4).

Next, consider a configuration C2C_{2} in 𝒯(1)\mathcal{T}(\ell-1) for 1M1\leqslant\ell\leqslant M. We claim that

the number of available reverse switchings is (1+O(ε))m5d5(d1)3(1+O(\varepsilon_{\ell}))\,m^{5}d^{5}(d-1)^{3}. (3.5)

Indeed, we can choose a simple edge {a,b,c}\{a^{\prime},b^{\prime},c^{\prime}\} in md2+2md-2\ell+2 ways, and then choose one additional spine a,b,ca,b,c on v(a),v(b),v(c)v(a^{\prime}),v(b^{\prime}),v(c^{\prime}) respectively in (d1)3(d-1)^{3} ways. This leads to three edges, all of which are allowed, even if they coincide in a vertex, unless they are halves of double edges. The latter happens in at most O((d1)3)O(\ell(d-1)^{3}) cases. So we have (mdO())(d1)3(md-O(\ell))(d-1)^{3} choices for {a,b2,c1},{a1,b,c2},{a2,b1,c}\{a,b_{2},c_{1}\},\{a_{1},b,c_{2}\},\{a_{2},b_{1},c\}. For each such choice, we have (md2+2O(d))4(md-2\ell+2-O(d))^{4} ways to choose the 4 simple edges {aj,bj,cj}\{a_{j},b_{j},c_{j}\} for 3j63\leqslant j\leqslant 6. Of those choices, O(m2d5)O(m^{2}d^{5}) violate condition (R2): for example, for {a1,b5,c3}\{a_{1},b_{5},c_{3}\} to be parallel to an edge ee, the number of choices of ee and the edges containing c3c_{3} and b5b_{5} in 2\mathcal{F}_{2} is at most d3d^{3} while the number of ways to pick the remaining two edges is at most (md)2(md)^{2}. Using (3.3), we find that the number of reverse switchings is

(mdO())(d1)3((md2+2O(d))4O(m2d5))=(1+O(ε))m5d5(d1)3,(md-O(\ell))(d-1)^{3}\bigl{(}(md-2\ell+2-O(d))^{4}-O(m^{2}d^{5})\bigr{)}=(1+O(\varepsilon_{\ell}))\,m^{5}d^{5}(d-1)^{3},

which proves claim (3.5).

Consequently, by a simple double counting argument for the number of forward/reverse switchings between 𝒯()\mathcal{T}(\ell) and 𝒯(1)\mathcal{T}(\ell-1), we deduce that

|𝒯()||𝒯(1)|=(1+O(ε))(d1)32dm=(1+O(m1+(1)(md)1))(d1)32dm.\frac{\mathopen{|}\mathcal{T}(\ell)\mathclose{|}}{\mathopen{|}\mathcal{T}(\ell-1)\mathclose{|}}=(1+O(\varepsilon_{\ell}))\raise 0.21529pt\hbox{\small$\displaystyle\frac{(d-1)^{3}}{2\ell dm}$}=\bigl{(}1+O(m^{-1}+(\ell-1)(md)^{-1})\bigr{)}\raise 0.21529pt\hbox{\small$\displaystyle\frac{(d-1)^{3}}{2\ell dm}$}.

Since d=o(m)d=o(m), to apply Lemma 3.2 for n:=|𝒯()||𝒯(1)|n_{\ell}:=\lower 0.6458pt\hbox{\large$\frac{\mathopen{|}\mathcal{T}(\ell)\mathclose{|}}{\mathopen{|}\mathcal{T}(\ell-1)\mathclose{|}}$}, we can take

A()=(1+O(m1))(d1)32dm(1+o(1))d22mandB()=O((md)1).A(\ell)=(1+O(m^{-1}))\raise 0.21529pt\hbox{\small$\displaystyle\frac{(d-1)^{3}}{2dm}$}\leqslant(1+o(1))\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m}$}\quad\text{and}\quad B(\ell)=O((md)^{-1}).

Recalling that M=8d2m1+logm8d2m1M=\lfloor 8d^{2}m^{-1}+\log m\rfloor\geqslant 8d^{2}m^{-1}, we obtain

A()/M18andC1,C2=O(dm2)=o(1)18.A(\ell)/M\leqslant\lower 0.6458pt\hbox{\large$\frac{1}{8}$}\qquad\text{and}\qquad C_{1},C_{2}=O\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{d}{m^{2}}$}}\right)=o(1)\leqslant\lower 0.6458pt\hbox{\large$\frac{1}{8}$}.

Therefore, we can take c^=18\hat{c}=\lower 0.6458pt\hbox{\large$\frac{1}{8}$}. Applying Lemma  3.2, we obtain

|𝒯(0)|=0M|𝒯()|=(=0Mn)1\displaystyle\raise 0.21529pt\hbox{\small$\displaystyle\frac{\mathopen{|}\mathcal{T}(0)\mathclose{|}}{\sum_{\ell=0}^{M}\,\mathopen{|}\mathcal{T}(\ell)\mathclose{|}}$}=\biggl{(}\sum_{\ell=0}^{M}n_{\ell}\biggr{)}^{\!-1} =exp((d1)32dm+o(1))+O((e/4)M)\displaystyle=\exp\Bigl{(}-\raise 0.21529pt\hbox{\small$\displaystyle\frac{(d-1)^{3}}{2dm}$}+o(1)\Bigr{)}+O((e/4)^{M})
=exp((d1)32dm+o(1)),\displaystyle=\exp\Bigl{(}-\frac{(d-1)^{3}}{2dm}+o(1)\Bigr{)},

where we used

Mlog(4/e)3d2m1+Θ(logm),M\log(4/e)\geqslant 3d^{2}m^{-1}+\Theta(\log m)\rightarrow\infty,

to derive the last equality. ∎

Now we can compare H3(d,m)H_{3}(d,m) with the estimate H^3(d,m)\hat{H}_{3}(d,m) given in (1.1).

Proof of Lemma 2.1.

Combining (3.1) and Lemma 3.3, we have

H3(d,m)=((md)!)2(d!)3mexp(d22m+o(1)).H_{3}(d,m)=\raise 0.21529pt\hbox{\small$\displaystyle\frac{((md)!)^{2}}{(d!)^{3m}}$}\exp\mathopen{}\mathclose{{}\left(-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m}$}+o(1)}\right).

To estimate H^3(d,m)\hat{H}_{3}(d,m) we argue similarly to Lemma 2.2. First, using d=o(m)d=o(m), observe that

(m2)d=m2dexp(d(d1)2m2+O(d3m4))=m2dexp(d22m2+o(m1))\displaystyle(m^{2})_{d}=m^{2d}\exp\mathopen{}\mathclose{{}\left(-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d(d-1)}{2m^{2}}$}+O\mathopen{}\mathclose{{}\left(d^{3}m^{-4}}\right)}\right)=m^{2d}\exp\mathopen{}\mathclose{{}\left(-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m^{2}}$}+o(m^{-1})}\right)
(m3)md=m3mdexp(d22m+O(dm2+d3m3))=m3mdexp(d22m+o(1)).\displaystyle(m^{3})_{md}=m^{3md}\exp\mathopen{}\mathclose{{}\left(-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m}$}+O(dm^{-2}+d^{3}m^{-3})}\right)=m^{3md}\exp\mathopen{}\mathclose{{}\left(-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m}$}+o(1)}\right).

We obtain

H^3(d,m)=(m2d)3m(m3md)2=((m2)d)3m((m3)md)2((md)!)2(d!)3m=((md)!)2(d!)3mexp(d22m+o(1)),\hat{H}_{3}(d,m)=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\binom{m^{2}}{d}^{3m}}{\binom{m^{3}}{md}^{2}}$}=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\mathopen{}\mathclose{{}\left((m^{2})_{d}}\right)^{3m}}{\mathopen{}\mathclose{{}\left((m^{3})_{md}}\right)^{2}}$}\cdot\raise 0.21529pt\hbox{\small$\displaystyle\frac{((md)!)^{2}}{(d!)^{3m}}$}=\frac{((md)!)^{2}}{(d!)^{3m}}\exp\mathopen{}\mathclose{{}\left(-\raise 0.21529pt\hbox{\small$\displaystyle\frac{d^{2}}{2m}$}+o(1)}\right),

as required. ∎

4 Dense range

Throughout this section we always assume that the partition classes of the vertex set [n][n] are

Vt:={(t1)m+1,,tm},for t[r].V_{t}:=\{(t-1)m+1,\ldots,tm\},\qquad\text{for $t\in[r]$.}

Let 𝒮r(m){\mathcal{S}_{r}(m)} denote the set of all possible edges of (r,r)(r,r)-graphs. Clearly, we have

n=mrand|𝒮r(m)|=mr.n=mr\qquad\text{and}\qquad|{\mathcal{S}_{r}(m)}|=m^{r}.

Let

λ=dmr1 and Λ=λ(1λ).\lambda=\raise 0.21529pt\hbox{\small$\displaystyle\frac{d}{m^{r-1}}$}\qquad\text{ and }\qquad\varLambda=\lambda(1-\lambda).

In this section we consider the dense range defined by Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), which is equivalent to min{d,mr1d}=Ω(r16m)\min\{d,m^{r-1}{-}d\}=\Omega(r^{16}m), using the complex-analytic approach. We establish a generating function for (r,r)(r,r)-graphs by degrees, then extract the required coefficient via Fourier inversion and perform asymptotic analysis on the resulting multidimensional integrals.

We will use p\mathopen{\|}\cdot\mathclose{\|}_{p} for the vector pp-norm and its induced matrix norm for p=1,2,p=1,2,\infty.

4.1 An integral for the number of (r,r)(r,r)-graphs

The generating function for (r,r)(r,r)-graphs by degree sequence is

e𝒮r(m)(1+jexj).\prod_{e\in{\mathcal{S}_{r}(m)}}\Bigl{(}1+\prod_{j\in e}x_{j}\Bigr{)}.

Using Cauchy’s coefficient formula, the number of dd-regular (r,r)(r,r)-graphs is

Hr(d,m)\displaystyle H_{r}(d,m) =[x1dxnd]e𝒮r(m)(1+jexj)\displaystyle=[x_{1}^{d}\cdots x_{n}^{d}]\prod_{e\in{\mathcal{S}_{r}(m)}}\Bigl{(}1+\prod_{j\in e}x_{j}\Bigr{)}
=1(2πi)rme𝒮r(m)(1+jexj)j[rm]xjd+1𝑑𝒙.\displaystyle=\frac{1}{(2\pi i)^{rm}}\,\oint\cdots\oint\,\raise 0.21529pt\hbox{\small$\displaystyle\frac{\prod_{e\in{\mathcal{S}_{r}(m)}}\bigl{(}1+\prod_{j\in e}x_{j}\bigr{)}}{\prod_{j\in[rm]}x_{j}^{d+1}}$}\,d{\boldsymbol{x}}.

Considering the contours xj=(λ1λ)1/reiθjx_{j}=\mathopen{}\mathclose{{}\left(\lower 0.6458pt\hbox{\large$\frac{\lambda}{1-\lambda}$}}\right)^{1/r}e^{i\theta_{j}} for j[n]j\in[n], we obtain

Hr(d,m)\displaystyle H_{r}(d,m) =(2π)n(λ1λ)dmππππe𝒮r(m)(1+λ1λjeeiθj)exp(ij[rm]dθj)𝑑𝜽\displaystyle=(2\pi)^{-n}\,\mathopen{}\mathclose{{}\left(\lower 0.6458pt\hbox{\large$\frac{\lambda}{1-\lambda}$}}\right)^{-dm}\ \int_{-\pi}^{\pi}\!\cdots\!\int_{-\pi}^{\pi}\raise 0.21529pt\hbox{\small$\displaystyle\frac{\prod_{e\in{\mathcal{S}_{r}(m)}}\bigl{(}1+\frac{\lambda}{1-\lambda}\prod_{j\in e}e^{i\theta_{j}}\bigr{)}}{\exp\bigl{(}i\sum_{j\in[rm]}d\theta_{j}\bigr{)}}$}\,d\boldsymbol{\theta}
=(2π)n(λλ(1λ)1λ)mrUn(π)e𝒮r(m)(1+λ(eijeθj1))exp(idj[rm]θj)𝑑𝜽,\displaystyle=\raise 0.21529pt\hbox{\small$\displaystyle\frac{(2\pi)^{-n}}{\mathopen{}\mathclose{{}\left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}}\right)^{m^{r}}}$}\int_{U_{n}(\pi)}\raise 0.21529pt\hbox{\small$\displaystyle\frac{\prod_{e\in{\mathcal{S}_{r}(m)}}\bigl{(}1+\lambda\bigl{(}e^{i\sum_{j\in e}\theta_{j}}-1\bigr{)}\bigr{)}}{\exp\bigl{(}id\sum_{j\in[rm]}\theta_{j}\bigr{)}}$}\,d\boldsymbol{\theta}, (4.1)

where

Un(ρ)={𝒙n:𝒙ρ}.U_{n}(\rho)=\{{\boldsymbol{x}}\in{\mathbb{R}}^{n}\mathrel{:}\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}\leqslant\rho\}.

Denote the integrand of (4.1) by F(𝜽)F(\boldsymbol{\theta}), that is,

F(𝜽):=e𝒮r(m)(1+λ(eijeθj1))exp(idj[n]θj)d𝜽.F(\boldsymbol{\theta}):=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\prod_{e\in{\mathcal{S}_{r}(m)}}\bigl{(}1+\lambda\bigl{(}e^{i\sum_{j\in e}\theta_{j}}-1\bigr{)}\bigr{)}}{\exp\bigl{(}id\sum_{j\in[n]}\theta_{j}\bigr{)}}$}\,d\boldsymbol{\theta}.

The absolute value of F(𝜽)F(\boldsymbol{\theta}) is

e𝒮r(m)1+2Λ(cos(jeθj)1).\prod_{e\in{\mathcal{S}_{r}(m)}}\sqrt{1+2\varLambda\Bigl{(}\cos\Bigl{(}\textstyle\sum_{j\in e}\theta_{j}\Bigr{)}-1\Bigr{)}}\;.

From this we can see that |F(𝜽)|1\mathopen{|}F(\boldsymbol{\theta})\mathclose{|}\leqslant 1, with equality if and only if jeθj=0(mod2π)\sum_{j\in e}\theta_{j}=0\pmod{2\pi} for each e𝒮r(m)e\in{\mathcal{S}_{r}(m)}. This is equivalent to the existence of some constants c1,,crc_{1},\ldots,c_{r} whose sum is 0 modulo 2π2\pi such that θj=ct\theta_{j}=c_{t} for all t[r]t\in[r] and jVrj\in V_{r}. Consider the transformation Φ𝒄(𝜽)=(φ1,,φn)t(π,π]n\Phi_{{\boldsymbol{c}}}(\boldsymbol{\theta})=(\varphi_{1},\ldots,\varphi_{n})^{\mathrm{t}}\in(-\pi,\pi]^{n}, where 𝒄=(c1,,cr)tr{\boldsymbol{c}}=(c_{1},\ldots,c_{r})^{\mathrm{t}}\in{\mathbb{R}}^{r} defined by

φj=θj+ct(mod2π) for all t[r],jVt.\varphi_{j}=\theta_{j}+c_{t}\pmod{2\pi}\qquad\text{ for all }t\in[r],\ j\in V_{t}.

Note that if c1++cr=0c_{1}+\cdots+c_{r}=0 modulo 2π2\pi then

F(Φ𝒄(𝜽))=F(𝜽).F(\Phi_{{\boldsymbol{c}}}(\boldsymbol{\theta}))=F(\boldsymbol{\theta}). (4.2)

Using this symmetry we can reduce the integral in (4.1) to an integral over a subset \mathcal{B} of dimension nr+1n-r+1, where

={𝜽Un(π):θ2m=θ3m==θrm=0}.\mathcal{B}=\{\boldsymbol{\theta}\in U_{n}(\pi)\mathrel{:}\theta_{2m}=\theta_{3m}=\cdots=\theta_{rm}=0\}.
Lemma 4.1.

We have

Hr(d,m)=(2π)rn1(λλ(1λ)1λ)mrF(𝜽)𝑑𝜽.H_{r}(d,m)=\frac{(2\pi)^{r-n-1}}{\mathopen{}\mathclose{{}\left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}}\right)^{m^{r}}}\int_{\mathcal{B}}F(\boldsymbol{\theta})\,d\boldsymbol{\theta}.
Proof.

Define 𝒄=𝒄(θ2m,,θrm){\boldsymbol{c}}={\boldsymbol{c}}(\theta_{2m},\ldots,\theta_{rm}) by

c1=j=2rθjm and cj=θjmfor all j2.c_{1}=\sum_{j=2}^{r}\theta_{jm}\quad\text{ and }\quad c_{j}=-\theta_{jm}\quad\text{for all $j\geqslant 2$}.

Then Φ𝒄(𝜽)\Phi_{{\boldsymbol{c}}}(\boldsymbol{\theta})\in\mathcal{B}. Using (4.2), we get F(Φ𝒄(𝜽))=F(𝜽)F(\Phi_{{\boldsymbol{c}}}(\boldsymbol{\theta}))=F(\boldsymbol{\theta}). Integrating over θ2m,,θrm\theta_{2m},\ldots,\theta_{rm} and then over the remaining coordinates separately, we get

Un(π)F(𝜽)𝑑𝜽=(2π)r1F(𝜽)𝑑𝜽.\int_{U_{n}(\pi)}F(\boldsymbol{\theta})\,d\boldsymbol{\theta}=(2\pi)^{r-1}\int_{\mathcal{B}}F(\boldsymbol{\theta})\,d\boldsymbol{\theta}.

The result follows from (4.1). ∎

The advantage of considering the integral over a set \mathcal{B} of smaller dimension is that there is only one point for which |F(𝜽)|=1|F(\boldsymbol{\theta})|=1, namely the nullvector. Let

ρ0:=ρ0(λ)=r5/2logn(Λmr1)1/2.\rho_{0}:=\rho_{0}(\lambda)=\frac{r^{5/2}\log{n}}{(\varLambda m^{r-1})^{1/2}}. (4.3)

In Section 4.2, we show that the contribution of the region Un(ρ0)\mathcal{B}\setminus U_{n}(\rho_{0}) to the integral F(𝜽)𝑑𝜽\int_{\cal B}F(\boldsymbol{\theta})\,d\boldsymbol{\theta} is asymptotically negligible.

A theoretical framework for asymptotically estimating integrals over truncated multivariate Gaussian distributions, including cases where the covariance matrix is not of full rank, was developed by Isaev and McKay in [5, Section 4]. Using the tools from [5], we estimate the integral of F(𝜽)F(\boldsymbol{\theta}) over Un(ρ0)\mathcal{B}\cap U_{n}(\rho_{0}) in Section 4.3.

4.2 Outside the main region

In this section, we estimate the contribution of |F(𝜽)||F(\boldsymbol{\theta})| over Un(ρ0)\mathcal{B}\setminus U_{n}(\rho_{0}), where ρ0\rho_{0} is defined in (4.3). Recall also that Λ=λ(1λ)\varLambda=\lambda(1-\lambda). Let

|x|2π=mink|x2πk|.|x|_{2\pi}=\min_{k\in{\mathbb{Z}}}|x-2\pi k|.

Note that |xy|2π|x-y|_{2\pi} is the circular distance between x,y[π,π]x,y\in[-\pi,\pi]. In particular, it never exceeds π\pi and satisfies the triangle inequality. Our arguments rely on the next two lemmas.

Lemma 4.2.

For any xx\in{\mathbb{R}} and λ[0,1]\lambda\in[0,1], we have

|1+λ(eix1)|=12Λ(1cosx)exp(Λ2(1|x|2π212)|x|2π2).\mathopen{|}1+\lambda(e^{ix}-1)\mathclose{|}=\sqrt{1-2\varLambda(1-\cos x)}\leqslant\exp\mathopen{}\mathclose{{}\left(-\lower 0.6458pt\hbox{\large$\frac{\varLambda}{2}$}\mathopen{}\mathclose{{}\left(1-\lower 0.6458pt\hbox{\large$\frac{|x|^{2}_{2\pi}}{12}$}}\right)|x|^{2}_{2\pi}}\right).
Lemma 4.3.

For Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), we have

Un(ρ0)|F(𝜽)|𝑑𝜽m(r1)/2(2πΛmr1)(nr+1)/2exp(O(r2Λmr2)+O(n2/5)).\int_{\mathcal{B}\cap U_{n}(\rho_{0})}|F(\boldsymbol{\theta})|d\boldsymbol{\theta}\leqslant m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{2\pi}{\varLambda m^{r-1}}$}}\right)^{(n-r+1)/2}\exp\mathopen{}\mathclose{{}\left(O\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{r^{2}}{\varLambda m^{r-2}}$}}\right)+O(n^{-2/5})}\right).

Lemma 4.2 follows from Taylor’s theorem with remainder. We will prove Lemma 4.3 in Section 4.3 along with estimating Un(ρ)F(𝜽)𝑑𝜽\int_{\mathcal{B}\cap U_{n}(\rho)}F(\boldsymbol{\theta})d\boldsymbol{\theta}.

First, we consider the region 1\mathcal{B}_{1}, where the components θj\theta_{j}’s are widely spread apart within at least one class VtV_{t}. Define

1:={𝜽:there is t[r] that |{θj}jVt[θk±ρ04r]2π|>m/r for all kVt},\mathcal{B}_{1}:=\Bigl{\{}\boldsymbol{\theta}\in\mathcal{B}\mathrel{:}\text{there is $t\in[r]$ that }\Bigl{|}\{\theta_{j}\}_{j\in V_{t}}\setminus\bigl{[}\theta_{k}\pm\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}\bigr{]}_{2\pi}\Bigr{|}>m/r\text{ for all $k\in V_{t}$}\Bigr{\}},

where [x±ρ]2π[x\pm\rho]_{2\pi} is the set of points at circular distance at most ρ\rho from xx on [π,π][-\pi,\pi]:

[x±ρ]2π={y[π,π]:|xy|2πρ}.[x\pm\rho]_{2\pi}=\{y\in[-\pi,\pi]\mathrel{:}|x-y|_{2\pi}\leqslant\rho\}.
Lemma 4.4.

If Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), we have

1|F(𝜽)|𝑑𝜽eω(rnlogn)m(r1)/2(2πΛmr1)(nr+1)/2.\int_{\mathcal{B}_{1}}|F(\boldsymbol{\theta})|\,d\boldsymbol{\theta}\leqslant e^{-\omega(rn\log n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}.
Proof.

Using Lemma 4.2 for each factor in F(𝜽)F(\boldsymbol{\theta}), we get

|F(𝜽)|exp(Ω(Λe𝒮r(m)|jeθj|2π2)).|F(\boldsymbol{\theta})|\leqslant\exp\biggl{(}-\Omega\biggl{(}\varLambda\sum_{e\in{\mathcal{S}_{r}(m)}}\Bigl{|}\sum_{j\in e}\theta_{j}\Bigr{|}_{2\pi}^{2}\biggr{)}\biggr{)}. (4.4)

Let VtV_{t} be a class such that |{θj}jVt[θk±ρ04r]2π|>m/r\Bigl{|}\{\theta_{j}\}_{j\in V_{t}}\setminus\bigl{[}\theta_{k}\pm\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}\bigr{]}_{2\pi}\Bigr{|}>m/r for all kVtk\in V_{t}. Let a,bVta,b\in V_{t}. For any e1,e2𝒮r(m)e_{1},e_{2}\in{\mathcal{S}_{r}(m)} such that e1e2={a,b}e_{1}\mathbin{\triangle}e_{2}=\{a,b\}, we have

|je1θjje2θj|2π=|θaθb|2π.\biggl{|}\,\sum_{j\in e_{1}}\theta_{j}-\sum_{j\in e_{2}}\theta_{j}\biggr{|}_{2\pi}\!\!=|\theta_{a}-\theta_{b}|_{2\pi}.

This implies that

|je1θj|2π2+|je2θj|2π212(|je1θj|2π|je2θj|2π)2|θaθb|2π22.\biggl{|}\sum_{j\in e_{1}}\theta_{j}\biggr{|}_{2\pi}^{2}+\biggl{|}\sum_{j\in e_{2}}\theta_{j}\biggr{|}_{2\pi}^{2}\geqslant\frac{1}{2}\mathopen{}\mathclose{{}\left(\biggl{|}\sum_{j\in e_{1}}\theta_{j}\biggr{|}_{2\pi}-\biggl{|}\sum_{j\in e_{2}}\theta_{j}\biggr{|}_{2\pi}}\right)^{2}\geqslant\frac{|\theta_{a}-\theta_{b}|_{2\pi}^{2}}{2}. (4.5)

Summing (4.5) over all choices of such pairs of edges e1,e2e_{1},e_{2} and a,bVta,b\in V_{t}, we get

me𝒮r(m)|jeθj|2π2mr12a,bVt|θaθb|2π2.m\sum_{e\in{\mathcal{S}_{r}(m)}}\Bigl{|}\sum_{j\in e}\theta_{j}\Bigr{|}_{2\pi}^{2}\geqslant\frac{m^{r-1}}{2}\sum_{a,b\in V_{t}}|\theta_{a}-\theta_{b}|_{2\pi}^{2}.

By the choice of VtV_{t}, for any aVta\in V_{t}, there are at least m/rm/r components bVtb\in V_{t} such that |θaθb|2πρ04r|\theta_{a}-\theta_{b}|_{2\pi}\geqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}, implying

a,bVt|θaθb|2π2mminaVtbVt|θaθb|2π2m2r(ρ04r)2.\sum_{a,b\in V_{t}}|\theta_{a}-\theta_{b}|_{2\pi}^{2}\geqslant m\cdot\min_{a\in V_{t}}\sum_{b\in V_{t}}|\theta_{a}-\theta_{b}|_{2\pi}^{2}\geqslant\raise 0.21529pt\hbox{\small$\displaystyle\frac{m^{2}}{r}$}\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}}{4r}$}}\right)^{2}.

Using the above bounds in (4.4), we find that

|F(𝜽)|exp(Ω(Λmrρ02/r3)).|F(\boldsymbol{\theta})|\leqslant\exp\mathopen{}\mathclose{{}\left(-\Omega\mathopen{}\mathclose{{}\left(\varLambda m^{r}\rho_{0}^{2}/r^{3}}\right)}\right).

Note that the volume of 1\mathcal{B}_{1} can not exceed the volume of \mathcal{B}, which is (2π)nr1(2\pi)^{n-r-1}. Then, recalling from (4.3) the definition of ρ0\rho_{0} and that n=mrn=mr, we get

1|F(𝜽)|d𝜽(2π)nr1exp(Ω(Λmrρ02/r3))eω(rnlogn).\int_{\mathcal{B}_{1}}\mathopen{|}F(\boldsymbol{\theta})\mathclose{|}\,d\boldsymbol{\theta}\leqslant(2\pi)^{n-r-1}\exp\mathopen{}\mathclose{{}\left(-\Omega\mathopen{}\mathclose{{}\left(\varLambda m^{r}\rho_{0}^{2}/r^{3}}\right)}\right)\leqslant e^{-\omega(rn\log n)}.

Observing also that

m(r1)/2(2πΛmr1)(nr+1)/2=eO(rnlogn),m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}=e^{O(rn\log n)},

the claimed bound follows. ∎

The next region 2\mathcal{B}_{2} consists of all 𝜽\boldsymbol{\theta}\in\mathcal{B} such that there is (k1,,kr)V1××Vr(k_{1},\ldots,k_{r})\in V_{1}\times\cdots\times V_{r} satisfying the following two conditions:

|θk1++θkr|2πρ03 and |{θj}jVt[θkt±ρ04r]2π|mm/r for all t[r].|\theta_{k_{1}}+\cdots+\theta_{k_{r}}|_{2\pi}\geqslant\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}}{3}$}\quad\text{ and }\quad\Bigl{|}\{\theta_{j}\}_{j\in V_{t}}\cap\bigl{[}\theta_{k_{t}}\pm\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}\bigr{]}_{2\pi}\Bigr{|}\geqslant m-m/r\text{ for all $t\in[r]$.}
Lemma 4.5.

If Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), we have

2|F(𝜽)|d𝜽eω(rnlogn)m(r1)/2(2πΛmr1)(nr+1)/2.\int_{\mathcal{B}_{2}}\mathopen{|}F(\boldsymbol{\theta})\mathclose{|}\,d\boldsymbol{\theta}\leqslant e^{-\omega(rn\log n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{2\pi}{\varLambda m^{r-1}}$}}\right)^{(n-r+1)/2}.
Proof.

Let 𝜽2\boldsymbol{\theta}\in\mathcal{B}_{2}. Consider any edge e𝒮r(m)e\in{\mathcal{S}_{r}(m)} such that, for all t[r]t\in[r], and jeVtj\in e\cap V_{t} we have |θjθkt|2πρ04r|\theta_{j}-\theta_{k_{t}}|_{2\pi}\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}. Then, by the defintion of 2\mathcal{B}_{2}, we have

|jeθj|2π|t[r]θkt|2πρ04ρ012.\biggl{|}\sum_{j\in e}\theta_{j}\biggr{|}_{2\pi}\geqslant\biggl{|}\sum_{t\in[r]}\theta_{k_{t}}\biggr{|}_{2\pi}-\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}}{4}$}\geqslant\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}}{12}$}.

The number of such edges is at least (mm/r)rmr/4(m-m/r)^{r}\geqslant m^{r}/4. Using Lemma 4.2 for each corresponding factor, we obtain

|F(𝜽)|exp(Ω(Λmrρ02)).|F(\boldsymbol{\theta})|\leqslant\exp\mathopen{}\mathclose{{}\left(-\Omega\mathopen{}\mathclose{{}\left(\varLambda m^{r}\rho_{0}^{2}}\right)}\right).

We complete the proof by repeating the arguments of Lemma 4.4. ∎

Next, for 𝒌=(k1,,kr)V1××Vr{\boldsymbol{k}}=(k_{1},\ldots,k_{r})\in V_{1}\times\cdots\times V_{r} and S[n]{k1,,kr}S\subseteq[n]\setminus\{k_{1},\ldots,k_{r}\} with |SV1|==|SVr||S\cap V_{1}|=\ldots=|S\cap V_{r}| consider the regions 𝒌,S\mathcal{B}_{{\boldsymbol{k}},S} of 𝜽\boldsymbol{\theta}\in\mathcal{B} such that the following hold:

  • |θk1++θkr|2πρ0/3|\theta_{k_{1}}+\cdots+\theta_{k_{r}}|_{2\pi}\leqslant\rho_{0}/3;

  • |{θj}jVt[θkt±ρ0/(4r)]2π|mm/r|\{\theta_{j}\}_{j\in V_{t}}\cap[\theta_{k_{t}}\pm\rho_{0}/(4r)]_{2\pi}|\geqslant m-m/r for all t[r]t\in[r];

  • SS contains t[r]{jVt:|θjθkt|2π>ρ0/(2r)}\bigcup_{t\in[r]}\{j\in V_{t}:|\theta_{j}-\theta_{k_{t}}|_{2\pi}>\rho_{0}/(2r)\};

  • there is t[r]t\in[r] such that {jVt:|θjθkt|2π>ρ0/(2r)}=SVt\{j\in V_{t}:|\theta_{j}-\theta_{k_{t}}|_{2\pi}>\rho_{0}/(2r)\}=S\cap V_{t}.

The second and the last property imply that if 𝒌,S\mathcal{B}_{{\boldsymbol{k}},S}\neq\emptyset then |SVt|m/r|S\cap V_{t}|\leqslant m/r for some t[r]t\in[r], and therefore |S|m|S|\leqslant m.

Lemma 4.6.

If Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), we have uniformly for every 𝐤V1××Vr{\boldsymbol{k}}\in V_{1}\times\cdots\times V_{r} and S[n]{k1,,kr}S\subseteq[n]\setminus\{k_{1},\ldots,k_{r}\} with |S|m|S|\leqslant m that

𝒌,S|F(𝜽)|d𝜽eω(|S|logn)m(r1)/2(2πΛmr1)(nr+1)/2.\int_{\mathcal{B}_{{\boldsymbol{k}},S}}\mathopen{|}F(\boldsymbol{\theta})\mathclose{|}\,d\boldsymbol{\theta}\leqslant e^{-\omega(|S|\log n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}.
Proof.

Due to the symmetry (4.2) and relabeling vertices, we can assume that k1=mk_{1}=m, k2=2mk_{2}=2m, \ldots, kr=rmk_{r}=rm.

The bounds indicated in this proof by the asymptotic notations O()O(\,), Ω()\Omega(\,) and ω()\omega(\,) can be chosen independently of SS.

By definition, for 𝜽𝒌,S\boldsymbol{\theta}\in\mathcal{B}_{{\boldsymbol{k}},S}\subset\mathcal{B}, we have

θk2==θkr=0 and |θk1|2πρ03.\theta_{k_{2}}=\cdots=\theta_{k_{r}}=0\quad\text{ and }\quad|\theta_{k_{1}}|_{2\pi}\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{3}$}. (4.6)

By definition there exists a t[r]t\in[r] such that |VtS|=|S|/r|V_{t}\cap S|=|S|/r.

Consider any e1,e2𝒮r(m)e_{1},e_{2}\in{\mathcal{S}_{r}(m)} such that e1e2={a,b}e_{1}\mathbin{\triangle}e_{2}=\{a,b\}, where aSVta\in S\cap V_{t} and bVtb\in V_{t} satisfies |θbθkt|2πρ04r|\theta_{b}-\theta_{k_{t}}|_{2\pi}\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}. Let

Σ1:=e𝒮r(m)eS=|jeθj|2π2andΣ2:=e𝒮r(m)eS|jeθj|2π2.\Sigma_{1}:=\sum_{\begin{subarray}{c}e\in{\mathcal{S}_{r}(m)}\\ e\cap S=\emptyset\end{subarray}}\biggl{|}\sum_{j\in e}\theta_{j}\biggr{|}_{2\pi}^{2}\qquad\text{and}\qquad\Sigma_{2}:=\sum_{\begin{subarray}{c}e\in{\mathcal{S}_{r}(m)}\\ e\cap S\neq\emptyset\end{subarray}}\biggl{|}\sum_{j\in e}\theta_{j}\biggr{|}_{2\pi}^{2}.

Arguing similarly to Lemma 4.4 and using (4.5), we get that

|SVt|Σ1+mΣ2mr1aSVtbVt|θaθb|2π22mr1|SVt|(mm/r)ρ0232r2.\displaystyle|S\cap V_{t}|\cdot\Sigma_{1}+m\cdot\Sigma_{2}\geqslant m^{r-1}\sum_{a\in S\cap V_{t}}\sum_{b\in V_{t}}\raise 0.21529pt\hbox{\small$\displaystyle\frac{|\theta_{a}-\theta_{b}|_{2\pi}^{2}}{2}$}\geqslant m^{r-1}|S\cap V_{t}|(m-m/r)\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}^{2}}{32r^{2}}$}. (4.7)

If |SVt|Σ1mΣ2|S\cap V_{t}|\cdot\Sigma_{1}\geqslant m\cdot\Sigma_{2} then from (4.7) we get Σ1=Ω(mrρ02/r2)\Sigma_{1}=\Omega\mathopen{}\mathclose{{}\left(m^{r}\rho_{0}^{2}/r^{2}}\right). Using (4.4), we find that

|F(𝜽)|exp(Ω(Λmrρ02/r2)).|F(\boldsymbol{\theta})|\leqslant\exp\mathopen{}\mathclose{{}\left(-\Omega\mathopen{}\mathclose{{}\left(\varLambda m^{r}\rho_{0}^{2}/r^{2}}\right)}\right).

By reasoning as in Lemma 4.4, we show that the contribution of such 𝜽\boldsymbol{\theta} is negligible.

Next, we consider the case when |SVt|Σ1<mΣ2|S\cap V_{t}|\cdot\Sigma_{1}<m\cdot\Sigma_{2}. Using (4.7) and Lemma 4.2 for each factor in F(𝜽)F(\boldsymbol{\theta}) corresponding Σ2\Sigma_{2}, we get that

|F(𝜽)|exp(Ω(Λ|SVt|mr1ρ02/r2))|F^(𝜽^)|,|F(\boldsymbol{\theta})|\leqslant\exp\Bigl{(}-\Omega(\varLambda|S\cap V_{t}|m^{r-1}\rho_{0}^{2}/r^{2})\Bigr{)}|\hat{F}(\hat{\boldsymbol{\theta}})|,

where 𝜽^\hat{\boldsymbol{\theta}} consists of the components of θj\theta_{j} with j[n]Sj\in[n]\setminus S and

|F^(𝜽^)|=e𝒮r(m)eS=|1+λ(eijeθj1)|.|\hat{F}(\hat{\boldsymbol{\theta}})|=\prod_{\begin{subarray}{c}e\in{\mathcal{S}_{r}(m)}\\ e\cap S=\emptyset\end{subarray}}\bigl{|}1+\lambda(e^{i\sum_{j\in e}\theta_{j}}-1)\bigr{|}.

Recalling from (4.3) the definition of ρ0\rho_{0} and that |SVt|=|S|/r|S\cap V_{t}|=|S|/r, we find that

Λ|SVt|mr1ρ02/r2|S|r2log2n.\varLambda\,\mathopen{|}S\cap V_{t}\mathclose{|}\,m^{r-1}\rho_{0}^{2}/r^{2}\geqslant\mathopen{|}S\mathclose{|}r^{2}\log^{2}n.

Note also that the definition of 𝒌,S\mathcal{B}_{{\boldsymbol{k}},S} and (4.6) implies 𝜽^ρ0\mathopen{\|}\hat{\boldsymbol{\theta}}\mathclose{\|}_{\infty}\leqslant\rho_{0}. Integrating over the components corresponding to SS, together with (2π)|S|=eo(|S|r2log2n)(2\pi)^{|S|}=e^{o(|S|r^{2}\log^{2}n)} leads to

𝒌,S|F(𝜽)|d𝜽eΩ(|S|r2log2n)^Urm^(ρ0)|F^(𝜽^)|d𝜽^,\int_{\mathcal{B}_{{\boldsymbol{k}},S}}\mathopen{|}F(\boldsymbol{\theta})\mathclose{|}\,d\boldsymbol{\theta}\leqslant e^{-\Omega(|S|r^{2}\log^{2}n)}\int_{\hat{\mathcal{B}}\cap U_{r\hat{m}}(\rho_{0})}\mathopen{|}\hat{F}(\hat{\boldsymbol{\theta}})\mathclose{|}\,d\hat{\boldsymbol{\theta}}, (4.8)

where ^\hat{\mathcal{B}} is defined as \mathcal{B} for reduced parameter

m^:=m|S|/r2m/3.\hat{m}:=m-|S|/r\geqslant 2m/3. (4.9)

Finally, using Lemma 4.3 to estimate the integral in the RHS of (4.8), we obtain

𝒌,S|F(𝜽)|𝑑𝜽\displaystyle\int_{\mathcal{B}_{{\boldsymbol{k}}},S}|F(\boldsymbol{\theta})|d\boldsymbol{\theta} eΩ(|S|r2log2n)m^(r1)/2(2πΛm^r1)(n|S|r+1)/2exp(O(r2Λm^r2+(rm^)2/5))\displaystyle\leqslant e^{-\Omega(|S|r^{2}\log^{2}n)}{\hat{m}}^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda\hat{m}^{r-1}}}\right)^{(n-|S|-r+1)/2}\exp\mathopen{}\mathclose{{}\left(O\mathopen{}\mathclose{{}\left(\frac{r^{2}}{\varLambda\hat{m}^{r-2}}+(r\hat{m})^{-2/5}}\right)}\right)
eΩ(|S|r2log2n)m(r1)/2(2πΛmr1)(nr+1)/2.\displaystyle\leqslant e^{-\Omega(|S|r^{2}\log^{2}n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}.

To derive that last equality, we observe that

m^(r1)/2(2πΛm^r1)(n|S|r+1)/2=exp(O(|S|log(Λm^r1)+|S|r))m(r1)/2(2πΛmr1)(nr+1)/2\hat{m}^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda\hat{m}^{r-1}}}\right)^{(n-|S|-r+1)/2}=\exp\Bigl{(}O\mathopen{}\mathclose{{}\left(|S|\log(\varLambda\hat{m}^{r-1})+|S|r}\right)\Bigr{)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}

and

r2log2nr2Λm^r2+(rm^)2/5+log(Λm^r1)+r,r^{2}\log^{2}n\gg\frac{r^{2}}{\varLambda\hat{m}^{r-2}}+(r\hat{m})^{-2/5}+\log(\varLambda\hat{m}^{r-1})+r,

which is straightforward by (4.9) and the assumptions. ∎

Now we are ready to show that the region Un(ρ0)\mathcal{B}\setminus U_{n}(\rho_{0}) has a negligible contribution.

Lemma 4.7.

If Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), we have

Un(ρ0)|F(𝜽)|𝑑𝜽eω(rlogn)m(r1)/2(2πΛmr1)(nr+1)/2.\int_{\mathcal{B}\setminus U_{n}(\rho_{0})}|F(\boldsymbol{\theta})|d\boldsymbol{\theta}\leqslant e^{-\omega(r\log n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}.
Proof.

Combining Lemma 4.4 and Lemma 4.5, we get that

12|F(𝜽)|𝑑𝜽m(r1)/2(2πΛmr1)(nr+1)/2eω(rnlogn).\int_{\mathcal{B}_{1}\cup\mathcal{B}_{2}}|F(\boldsymbol{\theta})|d\boldsymbol{\theta}\leqslant m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2}e^{-\omega(rn\log n)}.

By the definitions of 1\mathcal{B}_{1} and 2\mathcal{B}_{2}, we find that that if 𝜽(12)\boldsymbol{\theta}\in\mathcal{B}\setminus(\mathcal{B}_{1}\cup\mathcal{B}_{2}) then there is 𝒌=(k1,,kr)V1××Vr{\boldsymbol{k}}=(k_{1},\ldots,k_{r})\in V_{1}\times\cdots\times V_{r} such that

|θk1++θkr|2πρ03 and |{θj}jVt[θkt±ρ04r]2π|mm/r for all t[r].|\theta_{k_{1}}+\cdots+\theta_{k_{r}}|_{2\pi}\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{3}$}\quad\text{ and }\quad\Bigl{|}\{\theta_{j}\}_{j\in V_{t}}\cap\bigl{[}\theta_{k_{t}}\pm\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{4r}$}\bigr{]}_{2\pi}\Bigr{|}\geqslant m-m/r\text{ for all $t\in[r]$.}

Next, if |θjθkt|2πρ02r|\theta_{j}-\theta_{k_{t}}|_{2\pi}\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{2r}$} for all t[r]t\in[r] and jVtj\in V_{t} then, recalling θ2m=θrm=0\theta_{2m}=\cdots\theta_{rm}=0, we have

|θkt|\displaystyle|\theta_{k_{t}}| =|θktθtm|ρ02r, for t=2,,r,and|θk1|ρ03+t=2r|θkt|(5r3)ρ06r.\displaystyle=|\theta_{k_{t}}-\theta_{tm}|\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{2r}$},\;\text{ for $t=2,\ldots,r$,}\quad\text{and}\quad|\theta_{k_{1}}|\leqslant\lower 0.6458pt\hbox{\large$\frac{\rho_{0}}{3}$}+\sum_{t=2}^{r}|\theta_{k_{t}}|\leqslant\lower 0.6458pt\hbox{\large$\frac{(5r-3)\rho_{0}}{6r}$}.

Together with the fact that ρ0/(2r)+ρ0/(2r)ρ0\rho_{0}/(2r)+\rho_{0}/(2r)\leqslant\rho_{0} and (5r3)ρ0/(6r)+ρ0/(2r)ρ0(5r-3)\rho_{0}/(6r)+\rho_{0}/(2r)\leqslant\rho_{0} this implies that all such 𝜽\boldsymbol{\theta} are in Un(ρ0)U_{n}(\rho_{0}). Therefore, (12Un(ρ0))\mathcal{B}\setminus(\mathcal{B}_{1}\cup\mathcal{B}_{2}\cup U_{n}(\rho_{0})) is covered by the sets 𝒌,S\mathcal{B}_{{\boldsymbol{k}},S} considered in Lemma 4.6, where SS\neq\emptyset and |S|m|S|\leqslant m. Summing over j=|S|/rj=|S|/r and allowing mrm^{r} for the choices of 𝒌{\boldsymbol{k}} and mrjm^{rj} for the choices of SS, we get

(12Un(ρ0))|F(𝜽)|𝑑𝜽j=1m/rm(j+1)reω(jrlogn)m(r1)/2(2πΛmr1)(nr+1)/2,\int_{\mathcal{B}\setminus(\mathcal{B}_{1}\cup\mathcal{B}_{2}\cup U_{n}(\rho_{0}))}|F(\boldsymbol{\theta})|d\boldsymbol{\theta}\leqslant\sum_{j=1}^{m/r}m^{(j+1)r}e^{-\omega(jr\log n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2},

where the ω(jrlogn)\omega(jr\log n) in the exponent are uniform in jj. Thus

(12Un(ρ0))|F(𝜽)|𝑑𝜽eω(rlogn)m(r1)/2(2πΛmr1)(nr+1)/2,\int_{\mathcal{B}\setminus(\mathcal{B}_{1}\cup\mathcal{B}_{2}\cup U_{n}(\rho_{0}))}|F(\boldsymbol{\theta})|d\boldsymbol{\theta}\leqslant e^{-\omega(r\log n)}m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\frac{2\pi}{\varLambda m^{r-1}}}\right)^{(n-r+1)/2},

as claimed. ∎

4.3 Inside the main region

Turning to the integral inside Un(ρ0)U_{n}(\rho_{0}), we see from the next lemma that the main term in the expansion of logF(𝜽)\log F(\boldsymbol{\theta}) around the origin is 𝜽tA𝜽-\boldsymbol{\theta}^{\mathrm{t}}\!A\boldsymbol{\theta}, where AA is n×nn\times n matrix defined by

A:=12Λmr1(IB/m+Jn/m).A:=\lower 0.6458pt\hbox{\large$\frac{1}{2}$}\varLambda m^{r-1}(I-B/m+J_{n}/m). (4.10)

Here JkJ_{k} is the k×kk\times k all one matrix, and BB is the block diagonal matrix consisting of rr blocks of JmJ_{m}. Let ai(λ)a_{i}(\lambda) denote the coefficients of Taylor’s expansion of log(1+λ(eix1))\log(1+\lambda(e^{ix}-1)) around the origin. In particular, we have

a1(λ)\displaystyle a_{1}(\lambda) =iλ,a2(λ)=12Λ,a3(λ)=i6Λ(12λ),\displaystyle=i\lambda,\qquad a_{2}(\lambda)=-\lower 0.6458pt\hbox{\large$\frac{1}{2}$}\varLambda,\qquad a_{3}(\lambda)=-\lower 0.6458pt\hbox{\large$\frac{i}{6}$}\varLambda(1-2\lambda),
a4(λ)\displaystyle a_{4}(\lambda) =124Λ(16Λ),a5(λ)=O(Λ).\displaystyle=\lower 0.6458pt\hbox{\large$\frac{1}{24}$}\varLambda(1-6\varLambda),\qquad a_{5}(\lambda)=O(\varLambda).
Lemma 4.8.

If r3r\geqslant 3 and Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), then for any 𝛉Un(O(ρ0))\boldsymbol{\theta}\in U_{n}(O(\rho_{0})), we have

logF(𝜽)=𝜽tA𝜽+p=34e𝒮r(m)ap(λ)(jeθj)p+O(n1/2log5n).\log F(\boldsymbol{\theta})=-\boldsymbol{\theta}^{\mathrm{t}}\!A\boldsymbol{\theta}+\sum_{p=3}^{4}\,\sum_{e\in{\mathcal{S}_{r}(m)}}\!\!a_{p}(\lambda)\,\biggl{(}\,\sum_{j\in e}\theta_{j}\biggr{)}^{\!p}+O(n^{-1/2}\log^{5}n).
Proof.

Observing that for all e𝒮r(m)e\in{\mathcal{S}_{r}(m)} we have |jeθj|=O(rρ0)|\sum_{j\in e}\theta_{j}|=O(r\rho_{0}) for 𝜽Un(O(ρ0))\boldsymbol{\theta}\in U_{n}(O(\rho_{0})) and using Taylor’s theorem, we get that

log(1+λ(eijeθj1))=p=14ap(λ)(jeθj)p+O(Λ(rρ0)5).\log\bigl{(}1+\lambda(e^{i\sum_{j\in e}\theta_{j}}-1)\bigr{)}=\sum_{p=1}^{4}\,a_{p}(\lambda)\biggl{(}\,\sum_{j\in e}\theta_{j}\biggr{)}^{\!p}+O\mathopen{}\mathclose{{}\left(\varLambda(r\rho_{0})^{5}}\right).

Summing over all e𝒮r(m)e\in{\mathcal{S}_{r}(m)}, we get that the linear term of logF(𝜽)\log F(\boldsymbol{\theta}) (which includes terms from the denominator of F(𝜽)F(\boldsymbol{\theta})), is

ij[n]θj(mr1λd),i\,\sum_{j\in[n]}\theta_{j}\,(\,m^{r-1}\lambda-d),

which is zero as d=λmr1d=\lambda m^{r-1}. Furthermore in 𝜽tA𝜽-\boldsymbol{\theta}^{\mathrm{t}}\!A\boldsymbol{\theta} the coefficient of θj2\theta_{j}^{2} is Λmr1/2-\varLambda m^{r-1}/2 for any jj, while the coefficient of θj,θk\theta_{j},\theta_{k} is Λmr2-\varLambda m^{r-2} if j,kj,k belong to different partition classes, and 0 if j,kj,k are within the same partition class, matching the quadratic term of logF(𝜽)\log F(\boldsymbol{\theta}). It remains to observe that the combined error term

O(Λmr(rρ0)5)=O(m3r/2+5/2r35/2log5nΛ3/2)=O(n1/2log5n),O(\varLambda m^{r}(r\rho_{0})^{5})=O\mathopen{}\mathclose{{}\left(\frac{m^{-3r/2+5/2}r^{35/2}\log^{5}n}{\varLambda^{3/2}}}\right)=O(n^{-1/2}\log^{5}n),

using Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}) and Lemma 2.4. ∎

Note that AA is singular of nullity r1r-1. We evaluate U(ρ0)F(𝜽)𝑑𝜽\int_{\mathcal{B}\cap U(\rho_{0})}F(\boldsymbol{\theta})\,d\boldsymbol{\theta} using the methods from [5] to first raise it to an integral over a domain of full dimension, and then to evaluate the resulting integral.

The following matrices will play a relevant role in our proof.

W:=(Λmr32r)1/2(rBJn) and T:=(2Λmr1)1/2(Ir1rmB).W:=\biggl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{\varLambda m^{r-3}}{2r}$}\biggr{)}^{\!1/2}(rB-J_{n})\quad\text{ and }\quad T:=\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{2}{\varLambda m^{r-1}}$}}\right)^{\!1/2}\mathopen{}\mathclose{{}\left(I-\raise 0.21529pt\hbox{\small$\displaystyle\frac{\sqrt{r}-1}{\sqrt{r}m}$}B}\right). (4.11)
Lemma 4.9.

The following identities and bounds hold.

  • (a)

    A+WtWA+W^{\mathrm{t}}W has rr eigenvalues equal to 12Λrmr1\frac{1}{2}\varLambda rm^{r-1} and nrn-r eigenvalues equal to 12Λmr1\frac{1}{2}\varLambda m^{r-1}.

  • (b)

    |A+WtW|=(Λmr12)nrr\mathopen{|}A+W^{\mathrm{t}}W\mathclose{|}=\mathopen{}\mathclose{{}\left(\lower 0.6458pt\hbox{\large$\frac{\varLambda m^{r-1}}{2}$}}\right)^{n}r^{r}.

  • (c)

    Tt(A+WtW)T=IT^{\mathrm{t}}(A+W^{\mathrm{t}}W)T=I.

  • (d)

    (A+WtW)1=2Λmr1(Ir1nB)(A+W^{\mathrm{t}}W)^{-1}=\lower 0.6458pt\hbox{\large$\frac{2}{\varLambda m^{r-1}}$}\mathopen{}\mathclose{{}\left(I-\lower 0.6458pt\hbox{\large$\frac{r-1}{n}$}B}\right),

  • (e)

    T=T13(Λmr1)1/2\mathopen{\|}T\mathclose{\|}_{\infty}=\mathopen{\|}T\mathclose{\|}_{1}\leqslant\lower 0.6458pt\hbox{\large$\frac{3}{\mathopen{}\mathclose{{}\left(\varLambda m^{r-1}}\right)^{1/2}}$}.

  • (f)

    T1=21/2(Λrmr1)1/2\mathopen{\|}T^{-1}\mathclose{\|}_{\infty}=2^{-1/2}\bigl{(}\varLambda rm^{r-1}\bigr{)}^{1/2}.

Proof.

Using B2=mBB^{2}=mB, JnB=BJn=mJnJ_{n}B=BJ_{n}=mJ_{n} and Jn2=rmJnJ_{n}^{2}=rmJ_{n}, it is routine to verify that

A+WtW\displaystyle A+W^{\mathrm{t}}W =12Λmr1(I+r1mB),and\displaystyle=\lower 0.6458pt\hbox{\large$\frac{1}{2}$}\varLambda m^{r-1}\Bigl{(}I+\raise 0.21529pt\hbox{\small$\displaystyle\frac{r-1}{m}$}B\Bigr{)},\quad\text{and}
T1\displaystyle T^{-1} =21/2Λ1/2m(r1)/2(I+r1mB).\displaystyle=2^{-1/2}\varLambda^{1/2}m^{(r-1)/2}\Bigl{(}I+\raise 0.21529pt\hbox{\small$\displaystyle\frac{\sqrt{r}-1}{m}$}B\Bigr{)}.

The eigenspaces of BB are those that are constant on each class (dimension rr) and those that sum to 0 on each class (dimension nr)n-r). This proves (a), and (b) immediately follows. Parts (c) and (d) are proved by direct multiplication, while (e) and (f) follow from the explicit forms of TT and T1T^{-1}. ∎

The kernel of matrix AA from (4.10) consists of the set of all vectors which sum to 0 and are constant within each class. Note that kerA\ker A is the subspace spanned by the vectors 𝒗2,,𝒗r{\boldsymbol{v}}_{2},\ldots,{\boldsymbol{v}}_{r} defined by

𝒗j=Vj𝒆V1𝒆,for 2jr,{\boldsymbol{v}}_{j}=\sum_{\ell\in V_{j}}{\boldsymbol{e}}_{\ell}-\sum_{\ell\in V_{1}}{\boldsymbol{e}}_{\ell},\qquad\text{for $2\leqslant j\leqslant r$,} (4.12)

where 𝒆n{\boldsymbol{e}}_{\ell}\in{\mathbb{R}}^{n} is the standard basis vector where the \ell-th element is 1 and all others 0. Let QQ denote a projection operator into the space {𝒙n:x2m==xrm=0}\{{\boldsymbol{x}}\in{\mathbb{R}}^{n}\mathrel{:}x_{2m}=\cdots=x_{rm}=0\} defined by

Q:=Ij=2r𝒗j𝒆jmt.Q:=I-\sum_{j=2}^{r}{\boldsymbol{v}}_{j}{\boldsymbol{e}}_{jm}^{\mathrm{t}}.

Note that Un(ρ0)U_{n}(\rho_{0})\cap\mathcal{B} = Un(ρ0)Q(n)U_{n}(\rho_{0})\cap Q({\mathbb{R}}^{n}).

We will need Lemma 4.6 from [5].

Lemma 4.10 (Isaev and McKay [5]).

Let Q,W:nnQ,W:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} be linear operators such that kerQkerW={𝟎}\ker Q\cap\ker W=\{\boldsymbol{0}\} and span(kerQ,kerW)=n\operatorname{span}(\ker Q,\ker W)={\mathbb{R}}^{n}. Let nn_{\scriptscriptstyle\perp} denote the dimension of kerQ\ker Q. Suppose Ωn\varOmega\subseteq{\mathbb{R}}^{n} and G:ΩQ(n)G:\varOmega\cap Q({\mathbb{R}}^{n})\to{\mathbb{C}}. For any τ>0\tau>0, define

Ω¯:={𝒙n:Q𝒙Ω and W𝒙Un(τ)}.\bar{\varOmega}:=\bigl{\{}{\boldsymbol{x}}\in{\mathbb{R}}^{n}\mathrel{:}Q{\boldsymbol{x}}\in\varOmega\text{~{}and~{}}W{\boldsymbol{x}}\in U_{n}(\tau)\bigr{\}}.

Then, if the integrals exist,

ΩQ(n)G(𝒚)𝑑𝒚=(1K)1πn/2|QtQ+WtW|1/2Ω¯G(Q𝒙)e𝒙tWtW𝒙𝑑𝒙,\int_{\varOmega\cap Q({\mathbb{R}}^{n})}G({\boldsymbol{y}})\,d{\boldsymbol{y}}=(1-K)^{-1}\,\pi^{-n_{\scriptscriptstyle\perp}/2}\,\bigl{|}Q^{\mathrm{t}}Q+W^{\mathrm{t}}W\bigr{|}^{1/2}\int_{\bar{\varOmega}}G(Q{\boldsymbol{x}})\,e^{-{\boldsymbol{x}}^{\mathrm{t}}W^{\mathrm{t}}W{\boldsymbol{x}}}\,d{\boldsymbol{x}},

where

0K<min(1,neτ2).0\leqslant K<\min(1,ne^{-\tau^{2}}).

Moreover, if Un(ρ1)ΩUn(ρ2)U_{n}(\rho_{1})\subseteq\varOmega\subseteq U_{n}(\rho_{2}) for some ρ2ρ1>0\rho_{2}\geqslant\rho_{1}>0 then

Un(min(ρ1Q,τW))Ω¯Un(Pρ2+Rτ)U_{n}\biggl{(}\min\biggl{(}\frac{\rho_{1}}{\mathopen{\|}Q\mathclose{\|}_{\infty}},\frac{\tau}{\mathopen{\|}W\mathclose{\|}_{\infty}}\biggr{)}\biggr{)}\subseteq\bar{\varOmega}\subseteq U_{n}\bigl{(}\mathopen{\|}P\mathclose{\|}_{\infty}\,\rho_{2}+\mathopen{\|}R\mathclose{\|}_{\infty}\,\tau\bigr{)}

for any linear operators P,R:nnP,R:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}^{n} such that PQ+RWPQ+RW is equal to the identity operator on n{\mathbb{R}}^{n}.

Applying this lemma for F(𝜽)F(\boldsymbol{\theta}) and |F(𝜽)||F(\boldsymbol{\theta})| gives the following results.

Lemma 4.11.

There is some region Ω¯\bar{\varOmega} with Un(2ρ03r)Ω¯Un(4ρ0)U_{n}\bigl{(}\lower 0.6458pt\hbox{\large$\frac{2\rho_{0}}{3r}$}\bigr{)}\subseteq\bar{\varOmega}\subseteq U_{n}(4\rho_{0}) such that for G(𝐱)=F(𝐱)G({\boldsymbol{x}})=F({\boldsymbol{x}}) and G(𝐱)=|F(𝐱)|G({\boldsymbol{x}})=|F({\boldsymbol{x}})| we have

Un(ρ0)Q(n)G(𝒙)𝑑𝒙=(1+eω(logn))π(r1)/2|QtQ+WtW|1/2Ω¯G(𝒙)e𝒙tWtW𝒙𝑑𝒙.\int_{U_{n}(\rho_{0})\cap Q({\mathbb{R}}^{n})}\!\!G({\boldsymbol{x}})\,d{\boldsymbol{x}}=(1+e^{-\omega(\log n)})\pi^{-(r-1)/2}\bigl{|}Q^{\mathrm{t}}Q+W^{\mathrm{t}}W\bigr{|}^{1/2}\int_{\bar{\varOmega}}G({\boldsymbol{x}})e^{-{\boldsymbol{x}}^{\mathrm{t}}W^{\mathrm{t}}W{\boldsymbol{x}}}\,d{\boldsymbol{x}}.
Proof.

We can apply Lemma 4.10 with Ω=Un(ρ0)\varOmega=U_{n}(\rho_{0}), ρ1=ρ2=ρ0\rho_{1}=\rho_{2}=\rho_{0}, τ=r2logn\tau=r^{2}\log n and the matrices Q,WQ,W we have defined. In addition, define the matrices

P:=I1r(2rΛmr1)1/2W and R:=1r(2rΛmr1)1/2I,P:=I-\raise 0.21529pt\hbox{\small$\displaystyle\frac{1}{r}$}\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{2r}{\varLambda m^{r-1}}$}}\right)^{\!1/2}W\quad\text{ and }\quad R:=\raise 0.21529pt\hbox{\small$\displaystyle\frac{1}{r}$}\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{2r}{\varLambda m^{r-1}}$}}\right)^{\!1/2}I,

Note that for 2jr2\leqslant j\leqslant r and the vectors vjv_{j} defined in (4.12) we have

Wvj=(Λmr12r)1/2rvj,Wv_{j}=\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{\varLambda m^{r-1}}{2r}$}}\right)^{1/2}rv_{j},

implying W(IQ)=(Λmr12r)1/2r(IQ)W(I-Q)=\mathopen{}\mathclose{{}\left(\lower 0.6458pt\hbox{\large$\frac{\varLambda m^{r-1}}{2r}$}}\right)^{1/2}r(I-Q). Therefore

PQ+RW=Q+1r(2rΛmr1)1/2W(IQ)=I.PQ+RW=Q+\frac{1}{r}\mathopen{}\mathclose{{}\left(\frac{2r}{\varLambda m^{r-1}}}\right)^{1/2}W(I-Q)=I.

We have n=r1n_{\scriptscriptstyle\perp}=r-1, and (4.2) implies G(Q𝒙)=G(𝒙)G(Q{\boldsymbol{x}})=G({\boldsymbol{x}}) for all 𝒙{\boldsymbol{x}}. From their explicit forms we have Q=r\mathopen{\|}Q\mathclose{\|}_{\infty}=r, R=21/2Λ1/2r1/2m(r1)/2\mathopen{\|}R\mathclose{\|}_{\infty}=2^{1/2}\varLambda^{-1/2}r^{-1/2}m^{-(r-1)/2}, W=(r1)r1/2(2Λmr1)1/2\mathopen{\|}W\mathclose{\|}_{\infty}=(r-1)r^{-1/2}(2\varLambda m^{r-1})^{1/2} and P3\mathopen{\|}P\mathclose{\|}_{\infty}\leqslant 3 follows from W\mathopen{\|}W\mathclose{\|}_{\infty}. Therefore

min(ρ1Q,τW)=min(ρ0r,ρ022r2)2ρ03r,\min\biggl{(}\frac{\rho_{1}}{\mathopen{\|}Q\mathclose{\|}_{\infty}},\frac{\tau}{\mathopen{\|}W\mathclose{\|}_{\infty}}\biggr{)}=\min\biggl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}}{r}$},\raise 0.21529pt\hbox{\small$\displaystyle\frac{\rho_{0}\sqrt{2}}{2r-2}$}\biggr{)}\geqslant\raise 0.21529pt\hbox{\small$\displaystyle\frac{2\rho_{0}}{3r}$},

and

Pρ2+Rτ3ρ0+2r1ρ04ρ0.\mathopen{\|}P\mathclose{\|}_{\infty}\,\rho_{2}+\mathopen{\|}R\mathclose{\|}_{\infty}\,\tau\leqslant 3\rho_{0}+\sqrt{2}\,r^{-1}\rho_{0}\leqslant 4\rho_{0}.\qed

Recall that for a complex random variable ZZ, the variance is defined by

VarZ=𝔼|Z𝔼Z|2=VarZ+VarZ,\operatorname{Var}Z=\operatorname{\mathbb{E}}|Z-\operatorname{\mathbb{E}}Z|^{2}=\operatorname{Var}\Re Z+\operatorname{Var}\Im Z,

while the pseudovariance is

𝕍Z=𝔼(Z𝔼Z)2=VarZVarZ+2iCov(Z,Z).\operatorname{\mathbb{V\!}}Z=\operatorname{\mathbb{E}}(Z-\operatorname{\mathbb{E}}Z)^{2}=\operatorname{Var}\Re Z-\operatorname{Var}\Im Z+2i\,\operatorname{Cov}(\Re Z,\Im Z).

In addition, for a domain Ωn\varOmega\subset{\mathbb{R}}^{n} and a twice continuously differentiable function g:Ωg:\varOmega\to{\mathbb{C}}, let

H(g,Ω):=(hjk)wherehjk=sup𝒙Ω|2gxjxk(𝒙)|.H(g,\varOmega):=(h_{jk})\quad\mbox{where}\quad h_{jk}=\sup_{{\boldsymbol{x}}\in\varOmega}\,\mathopen{}\mathclose{{}\left|\raise 0.21529pt\hbox{\small$\displaystyle\frac{\partial^{2}g}{\partial x_{j}\,\partial x_{k}}$}({\boldsymbol{x}})}\right|.

The following theorem is a simplified version of Theorem 4.4 in [5].

Theorem 4.12 (Isaev and McKay [5]).

Let c1,c2,ρ1,ρ2,ϕ1,ϕ2c_{1},c_{2},\rho_{1},\rho_{2},\phi_{1},\phi_{2} be nonnegative real constants. Let A\accentset{\sim}{A} be an n×nn\times n positive definite symmetric real matrix and let TT be a real matrix such that TtAT=IT^{\mathrm{t}}\!\accentset{\sim}{A}T=I. Let Ω\varOmega be a measurable set such that T(Un(ρ1))ΩT(Un(ρ2))T(U_{n}(\rho_{1}))\subseteq\varOmega\subseteq T(U_{n}(\rho_{2})), and let f:nf:{\mathbb{R}}^{n}\to{\mathbb{C}} and h:Ωh:\varOmega\to{\mathbb{C}} be measurable functions. Assume the following conditions:

  • (a)

    lognρ1ρ2\log n\leqslant\rho_{1}\leqslant\rho_{2}.

  • (b)

    For 𝒙T(Un(ρ1)){\boldsymbol{x}}\in T(U_{n}(\rho_{1})) and 1jn1\leqslant j\leqslant n,

    2ρ1T1|fxj(𝒙)|ϕ1n1/323,and\displaystyle 2\rho_{1}\,\mathopen{\|}T\mathclose{\|}_{1}\,\mathopen{}\mathclose{{}\left|\lower 0.6458pt\hbox{\large$\frac{\partial f}{\partial x_{j}}$}({\boldsymbol{x}})}\right|\leqslant\phi_{1}n^{-1/3}\leqslant\lower 0.6458pt\hbox{\large$\frac{2}{3}$},\qquad\text{and}
    4ρ12T1TH(f,T(Un(ρ1)))ϕ1n1/3.\displaystyle 4\rho_{1}^{2}\,\mathopen{\|}T\mathclose{\|}_{1}\,\mathopen{\|}T\mathclose{\|}_{\infty}\,\mathopen{\|}H(f,T(U_{n}(\rho_{1})))\mathclose{\|}_{\infty}\leqslant\phi_{1}n^{-1/3}.
  • (c)

    For 𝒙T(Un(ρ2)){\boldsymbol{x}}\in T(U_{n}(\rho_{2})) and 1jn1\leqslant j\leqslant n,

    2ρ2T1|fxj(𝒙)|(2ϕ2)3/2n1/2.2\rho_{2}\,\mathopen{\|}T\mathclose{\|}_{1}\,\mathopen{}\mathclose{{}\left|\lower 0.6458pt\hbox{\large$\frac{\partial\,\Re f}{\partial x_{j}}$}({\boldsymbol{x}})}\right|\leqslant(2\phi_{2})^{3/2}n^{-1/2}.
  • (d)

    |f(𝒙)|nc1ec2𝒙tA~𝒙/n\mathopen{|}f({\boldsymbol{x}})\mathclose{|}\leqslant n^{c_{1}}e^{c_{2}{\boldsymbol{x}}^{\mathrm{t}}\!\tilde{A}{\boldsymbol{x}}/n} for 𝒙n{\boldsymbol{x}}\in{\mathbb{R}}^{n}.

Let 𝐗\boldsymbol{X} be a random variable with the normal density πn/2|A|1/2e𝐱tA𝐱\pi^{-n/2}\mathopen{|}\accentset{\sim}{A}\mathclose{|}^{1/2}e^{-{\boldsymbol{x}}^{\mathrm{t}}\!\accentset{\sim}{A}{\boldsymbol{x}}}. Then, provided 𝕍f(𝐗)\operatorname{\mathbb{V\!}}f(\boldsymbol{X}) and 𝕍f(𝐗)\operatorname{\mathbb{V\!}}\,\Re f(\boldsymbol{X}) are finite and hh is bounded in Ω\varOmega,

Ωe𝒙tA~𝒙+f(𝒙)+h(𝒙)𝑑𝒙=(1+K)πn/2|A|1/2e𝔼f(𝑿)+12𝕍f(𝑿),\int_{\varOmega}e^{-{\boldsymbol{x}}^{\mathrm{t}}\!\tilde{A}{\boldsymbol{x}}+f({\boldsymbol{x}})+h({\boldsymbol{x}})}\,d{\boldsymbol{x}}=(1+K)\,\pi^{n/2}\mathopen{|}\accentset{\sim}{A}\mathclose{|}^{-1/2}e^{\operatorname{\mathbb{E}}f(\boldsymbol{X})+\frac{1}{2}\operatorname{\mathbb{V\!}}f(\boldsymbol{X})},

where, for large enough nn, K=K(n)K=K(n) satisfies

|K|e12Varf(𝑿)(eϕ13+eρ12/2+2eϕ23+eρ12/23+sup𝒙Ω|eh(𝒙)1|).\mathopen{|}K\mathclose{|}\leqslant e^{\frac{1}{2}\operatorname{Var}\Im f(\boldsymbol{X})}\,\bigl{(}e^{\phi_{1}^{3}+e^{-\rho_{1}^{2}/2}}+2e^{\phi_{2}^{3}+e^{-\rho_{1}^{2}/2}}-3+\sup_{{\boldsymbol{x}}\in\varOmega}\,\mathopen{|}e^{h({\boldsymbol{x}})}-1\mathclose{|}\bigr{)}.
Lemma 4.13.

If Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}) and Ω¯\bar{\varOmega} is the domain provided by Lemma 4.11,

Ω¯F(𝜽)e𝜽WtW𝜽𝑑𝜽=πn/2|A+WtW|1/2exp(r12Λmr2+O(n2/5)).\int_{\bar{\varOmega}}F(\boldsymbol{\theta})e^{-\boldsymbol{\theta}W^{\mathrm{t}}W\boldsymbol{\theta}}\,d\boldsymbol{\theta}=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\pi^{n/2}}{|A+W^{\mathrm{t}}W|^{1/2}}$}\,\exp\Bigl{(}-\raise 0.21529pt\hbox{\small$\displaystyle\frac{r}{12\varLambda m^{r-2}}$}+O(n^{-2/5})\Bigr{)}.
Proof.

We will apply Theorem 4.12 with A=A+WtW\accentset{\sim}{A}=A+W^{\mathrm{t}}W, ρ1=logn\rho_{1}=\log n, ρ2=3r3logn\rho_{2}=3r^{3}\log n, Ω=Ω¯\varOmega=\bar{\varOmega} and TT as in (4.11).

We first verify the condition T(Un(ρ1))Ω¯T(Un(ρ2))T(U_{n}(\rho_{1}))\subseteq\bar{\varOmega}\subseteq T(U_{n}(\rho_{2})). Using the bounds for T\mathopen{\|}T\mathclose{\|}_{\infty} and T1\mathopen{\|}T^{-1}\mathclose{\|}_{\infty} established in Lemma 4.9 gives

T(Un(ρ1))\displaystyle T(U_{n}(\rho_{1})) Un(Tlogn)Un(3Λ1/2m(r1)/2logn)Un(2ρ03r),\displaystyle\subseteq U_{n}(\mathopen{\|}T\mathclose{\|}_{\infty}\log n)\subseteq U_{n}(3\varLambda^{-1/2}m^{-(r-1)/2}\log n)\subseteq U_{n}\Bigl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{2\rho_{0}}{3r}$}\Bigr{)}, (4.13)
Un(4ρ0)\displaystyle U_{n}(4\rho_{0}) T(Un(4T1ρ0))=T(Un(23/2r3logn))T(Un(ρ2)).\displaystyle\subseteq T(U_{n}(4\mathopen{\|}T^{-1}\mathclose{\|}_{\infty}\rho_{0}))=T(U_{n}(2^{3/2}r^{3}\log n))\subseteq T(U_{n}(\rho_{2})).

By Lemma 4.8, we can take f(𝒙)=if3(𝒙)+f4(𝒙)f({\boldsymbol{x}})=if_{3}({\boldsymbol{x}})+f_{4}({\boldsymbol{x}}), where

f3(𝒙)=16Λ(12λ)e𝒮r(m)(jexj)3,f4(𝒙)=124Λ(16Λ)e𝒮r(m)(jexj)4,f_{3}({\boldsymbol{x}})=-\lower 0.6458pt\hbox{\large$\frac{1}{6}$}\,\varLambda(1-2\lambda)\sum_{e\in{\mathcal{S}_{r}(m)}}\biggl{(}\sum_{j\in e}x_{j}\biggr{)}^{\!3},\quad f_{4}({\boldsymbol{x}})=\lower 0.6458pt\hbox{\large$\frac{1}{24}$}\,\varLambda(1-6\varLambda)\sum_{e\in{\mathcal{S}_{r}(m)}}\biggl{(}\sum_{j\in e}x_{j}\biggr{)}^{\!4},

and h(𝒙)=O(n1/2log5n)h({\boldsymbol{x}})=O(n^{-1/2}\log^{5}n).

By (4.13), 𝒙T(Un(ρ1)){\boldsymbol{x}}\in T(U_{n}(\rho_{1})) implies 𝒙3Λ1/2m(r1)/2logn\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}\leqslant 3\varLambda^{-1/2}m^{-(r-1)/2}\log n. Consequently, for any jj, since mr1m^{r-1} elements of 𝒮r(m){\mathcal{S}_{r}(m)} are incident with vertex jj

2ρ1T1|fxj(𝒙)|\displaystyle 2\rho_{1}\mathopen{\|}T\mathclose{\|}_{1}\Bigl{|}\lower 0.6458pt\hbox{\large$\frac{\partial f}{\partial x_{j}}$}({\boldsymbol{x}})\Bigr{|} =O(1)lognT1Λmr1((r𝒙)2+(r𝒙)3)\displaystyle=O(1)\log n\,\mathopen{\|}T\mathclose{\|}_{1}\varLambda m^{r-1}\bigl{(}(r\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty})^{2}+(r\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty})^{3}\bigr{)}
=O(Λ1/2r2m(r1)/2log3n)=O(n1/2log3n),\displaystyle=O(\varLambda^{-1/2}r^{2}m^{-(r-1)/2}\log^{3}n)=O(n^{-1/2}\log^{3}n),

where in the final step we used Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}) and Lemma 2.4. Similarly,
H(f,T(Un(ρ1))=O(Λ1/2r2m(r1)/2logn)\mathopen{\|}H(f,T(U_{n}(\rho_{1}))\mathclose{\|}_{\infty}=O(\varLambda^{1/2}r^{2}m^{(r-1)/2}\log n), which implies

4ρ12T1TH(f,T(Un(ρ1))=O(Λ1/2r2m(r1)/2log3n)=O(n1/2log3n),4\rho_{1}^{2}\mathopen{\|}T\mathclose{\|}_{1}\mathopen{\|}T\mathclose{\|}_{\infty}\mathopen{\|}H(f,T(U_{n}(\rho_{1}))\mathclose{\|}_{\infty}=O(\varLambda^{-1/2}r^{2}m^{-(r-1)/2}\log^{3}n)=O(n^{-1/2}\log^{3}n),

using Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}). Consequently, part (b) of Theorem 4.12 is satisfied with ϕ1=n1/7\phi_{1}=n^{-1/7} if nn is sufficiently large.

If 𝒙T(Un(ρ2)){\boldsymbol{x}}\in T(U_{n}(\rho_{2})) then 𝒙Tρ29Λ1/2r3m(r1)/2logn\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}\leqslant\mathopen{\|}T\mathclose{\|}_{\infty}\rho_{2}\leqslant 9\varLambda^{-1/2}r^{3}m^{-(r-1)/2}\log n. Noting that f(𝒙)=f4(𝒙)\Re f({\boldsymbol{x}})=f_{4}({\boldsymbol{x}}), we calculate

2ρ2T1|f4xj(𝒙)|\displaystyle 2\rho_{2}\mathopen{\|}T\mathclose{\|}_{1}\Bigl{|}\lower 0.6458pt\hbox{\large$\frac{\partial f_{4}}{\partial x_{j}}$}({\boldsymbol{x}})\Bigr{|} =O(1)r3lognT1Λmr1(r𝒙)3\displaystyle=O(1)r^{3}\log n\mathopen{\|}T\mathclose{\|}_{1}\varLambda m^{r-1}(r\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty})^{3}
=O(Λ1r15m1rlog4n)=O(n1log4n),\displaystyle=O(\varLambda^{-1}r^{15}m^{1-r}\log^{4}n)=O(n^{-1}\log^{4}n),

using Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), so part (c) of Theorem 4.12 is satisfied with ϕ2=n1/4\phi_{2}=n^{-1/4} if nn is sufficiently large.

We next check condition (d) of Theorem 4.12. Define (𝒙):=1n𝒙t(A+WtW)𝒙\ell({\boldsymbol{x}}):=\lower 0.6458pt\hbox{\large$\frac{1}{n}$}\,{\boldsymbol{x}}^{\mathrm{t}}(A+W^{\mathrm{t}}W){\boldsymbol{x}}. Since the least eigenvalue of A+WtWA+W^{\mathrm{t}}W is 12Λmr1\frac{1}{2}\varLambda m^{r-1}, we have

𝒙2𝒙22=O(Λ1rm2r(𝒙)).\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}^{2}\leqslant\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{2}^{2}=O(\varLambda^{-1}rm^{2-r}\ell({\boldsymbol{x}})).

Consequently,

f(𝒙)\displaystyle f({\boldsymbol{x}}) =O(Λr3mr𝒙3+Λr4mr𝒙4)\displaystyle=O(\varLambda r^{3}m^{r}\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}^{3}+\varLambda r^{4}m^{r}\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}^{4})
=O(Λr2mr𝒙2+Λr4mr𝒙4)\displaystyle=O(\varLambda r^{2}m^{r}\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}^{2}+\varLambda r^{4}m^{r}\mathopen{\|}{\boldsymbol{x}}\mathclose{\|}_{\infty}^{4})
=O(r3m2)((𝒙)+Λ1r3m2r(𝒙)2),\displaystyle=O(r^{3}m^{2})\bigl{(}\ell({\boldsymbol{x}})+\varLambda^{-1}r^{3}m^{2-r}\ell({\boldsymbol{x}})^{2}\bigr{)},

where the second line is because x3x2+x4x^{3}\leqslant x^{2}+x^{4} for all xx. By Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), Λ1r3m2r=O(1)\varLambda^{-1}r^{3}m^{2-r}=O(1). Therefore,

f(𝒙)=O(r3m2)((𝒙)+(𝒙)2)=O(n5)e(𝒙),f({\boldsymbol{x}})=O(r^{3}m^{2})\bigl{(}\ell({\boldsymbol{x}})+\ell({\boldsymbol{x}})^{2}\bigr{)}=O(n^{5})e^{\ell({\boldsymbol{x}})},

as required.

Now let 𝑿=(X1,,Xn)\boldsymbol{X}=(X_{1},\ldots,X_{n}) be a Gaussian random variable with density proportional to e𝒙t(A+WtW)𝒙e^{-{\boldsymbol{x}}^{\mathrm{t}}(A+W^{\mathrm{t}}W){\boldsymbol{x}}}. To complete our calculation, we need the expectation and pseudovariance of f(𝑿)f(\boldsymbol{X}) and the variance of f3(𝑿)f_{3}(\boldsymbol{X}). The covariance matrix of 𝑿\boldsymbol{X} is 12(A+WtW)1\frac{1}{2}(A+W^{\mathrm{t}}W)^{-1}, and so by Lemma 4.9,

Cov[Xj,Xk]={1Λmr1(1r1rm),if j=k;r1Λrmr,if jk in the same class;0,otherwise.\operatorname{Cov}\mathopen{}\mathclose{{}\left[X_{j},X_{k}}\right]=\begin{cases}\lower 0.6458pt\hbox{\large$\frac{1}{\varLambda m^{r-1}}$}\Bigl{(}1-\lower 0.6458pt\hbox{\large$\frac{r-1}{rm}$}\Bigr{)},&\mbox{if }j=k;\\[1.29167pt] -\lower 0.6458pt\hbox{\large$\frac{r-1}{\varLambda rm^{r}}$},&\mbox{if $j\neq k$ in the same class;}\\[1.29167pt] 0,&\mbox{otherwise.}\end{cases}

For e𝒮r(m)e\in{\mathcal{S}_{r}(m)} define Xe=jeXjX_{e}=\sum_{j\in e}X_{j} and, for e,e𝒮r(m)e,e^{\prime}\in{\mathcal{S}_{r}(m)} define

σ(e,e):=Cov[Xe,Xe].\sigma(e,e^{\prime}):=\operatorname{Cov}[X_{e},X_{e^{\prime}}].

Since covariance is additive and ee and ee^{\prime} contain one vertex from each class, we have

σ(e,e)=ς(|ee|), where ς(k):=1Λmr1(kr1m).\sigma(e,e^{\prime})=\varsigma(\mathopen{|}e\cap e^{\prime}\mathclose{|}),\text{~{}~{}where~{}~{}}\varsigma(k):=\frac{1}{\varLambda m^{r-1}}\Bigl{(}k-\raise 0.21529pt\hbox{\small$\displaystyle\frac{r-1}{m}$}\Bigr{)}.

Since f3f_{3} is an odd function, we have 𝔼f3(𝑿)=0\operatorname{\mathbb{E}}f_{3}(\boldsymbol{X})=0. Isserlis’ theorem (also known as Wick’s formula), see for example [8, Theorem 1.1] implies 𝔼Xe4=3σ(e,e)2\operatorname{\mathbb{E}}X_{e}^{4}=3\sigma(e,e)^{2}, so

𝔼f(𝑿)=(16Λ)(mrr+1)28Λmr=r28Λmr2+O(n1),\operatorname{\mathbb{E}}f(\boldsymbol{X})=\raise 0.21529pt\hbox{\small$\displaystyle\frac{(1-6\varLambda)(mr-r+1)^{2}}{8\varLambda m^{r}}$}=\raise 0.21529pt\hbox{\small$\displaystyle\frac{r^{2}}{8\varLambda m^{r-2}}$}+O(n^{-1}),

using Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}) and Lemma 2.4.

By Isserlis’ theorem, for any pair e,e𝒮r(m)e,e^{\prime}\in{\mathcal{S}_{r}(m)},

𝔼[Xe3Xe3]=9σ(e,e)σ(e,e)σ(e,e)+6σ(e,e)3.\operatorname{\mathbb{E}}[X_{e}^{3}X_{e^{\prime}}^{3}]=9\,\sigma(e,e)\,\sigma(e^{\prime},e^{\prime})\,\sigma(e,e^{\prime})+6\,\sigma(e,e^{\prime})^{3}.

The number of pairs with |ee|=k\mathopen{|}e\cap e^{\prime}\mathclose{|}=k is mr(rk)(m1)rkm^{r}\binom{r}{k}(m-1)^{r-k}. Summing over e,e𝒮r(m)e,e^{\prime}\in{\mathcal{S}_{r}(m)}, and applying Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}), we obtain

Varf3(𝑿)\displaystyle\operatorname{Var}f_{3}(\boldsymbol{X}) =Λ2(12λ)2mr(m1)r36k=0r(rk)(m1)k(9ς(r)2ς(k)+6ς(k)3)\displaystyle=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\varLambda^{2}(1-2\lambda)^{2}m^{r}(m-1)^{r}}{36}$}\sum_{k=0}^{r}\binom{r}{k}(m-1)^{-k}\bigl{(}9\varsigma(r)^{2}\varsigma(k)+6\varsigma(k)^{3}\bigr{)}
=(14Λ)r(3r+2)m12Λmr1(16(r1)(3r+2)m+(r1)(3r5)r(3r+2)m2)\displaystyle=\raise 0.21529pt\hbox{\small$\displaystyle\frac{(1-4\varLambda)r(3r+2)m}{12\varLambda m^{r-1}}$}\Bigl{(}1-\raise 0.21529pt\hbox{\small$\displaystyle\frac{6(r-1)}{(3r+2)m}$}+\raise 0.21529pt\hbox{\small$\displaystyle\frac{(r-1)(3r-5)}{r(3r+2)m^{2}}$}\Bigr{)}
=r(3r+2)12Λmr2+O(n1)\displaystyle=\raise 0.21529pt\hbox{\small$\displaystyle\frac{r(3r+2)}{12\varLambda m^{r-2}}$}+O(n^{-1}) (4.14)
=O(1).\displaystyle=O(1). (4.15)

Similarly,

Var[Xe4,Xe4]\displaystyle\operatorname{Var}[X_{e}^{4},X_{e^{\prime}}^{4}] =𝔼(Xe4Xe4)(𝔼Xe4)(𝔼Xe4)\displaystyle=\operatorname{\mathbb{E}}(X_{e}^{4}X_{e^{\prime}}^{4})-(\operatorname{\mathbb{E}}X_{e}^{4})(\operatorname{\mathbb{E}}X_{e^{\prime}}^{4})
=72σ(e,e)σ(e,e)σ(e,e)2+24σ(e,e)4.\displaystyle=72\sigma(e,e)\sigma(e^{\prime},e^{\prime})\sigma(e,e^{\prime})^{2}+24\sigma(e,e^{\prime})^{4}.

Summing over e,e𝒮r(m)e,e^{\prime}\in{\mathcal{S}_{r}(m)} with Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}) gives

Var(f4(𝑿))=O(n1).\operatorname{Var}(f_{4}(\boldsymbol{X}))=O(n^{-1}). (4.16)

Finally, since Cov(f3(𝑿),f4(𝑿))=0\operatorname{Cov}(f_{3}(\boldsymbol{X}),f_{4}(\boldsymbol{X}))=0 by Isserlis’ theorem, (4.14) and (4.16) together imply that

𝕍f(𝑿)=r(3r+2)12Λmr2+O(n1)\operatorname{\mathbb{V\!}}f(\boldsymbol{X})=-\frac{r(3r+2)}{12\varLambda m^{r-2}}+O(n^{-1})

and so

𝔼f(𝑿)+12𝕍f(𝑿)=r12Λmr2+O(n1).\operatorname{\mathbb{E}}f(\boldsymbol{X})+\lower 0.6458pt\hbox{\large$\frac{1}{2}$}\operatorname{\mathbb{V\!}}f(\boldsymbol{X})=-\raise 0.21529pt\hbox{\small$\displaystyle\frac{r}{12\varLambda m^{r-2}}$}+O(n^{-1}). (4.17)

The lemma now follows from Theorem 4.12 and equations (4.15) and (4.17). ∎

The above precise result relies on d=λmr1d=\lambda m^{r-1} since otherwise the linear term doesn’t vanish. However, if we are concerned with the integral of |F(𝜽)|\mathopen{|}F(\boldsymbol{\theta})\mathclose{|} we can ignore both the linear and cubic terms. So, with identical proof, the following is true whenever Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}).

Corollary 4.14.

For Ω¯\bar{\varOmega} as in Lemma 4.11 we have

Ω¯e𝒙tWtW𝒙|F(𝜽)|d𝜽=πn/2|A+WtW|1/2exp(r28Λmr2+O(n2/5)).\int_{\bar{\varOmega}}e^{-{\boldsymbol{x}}^{\mathrm{t}}W^{\mathrm{t}}W{\boldsymbol{x}}}\,\mathopen{|}F(\boldsymbol{\theta})\mathclose{|}\,d\boldsymbol{\theta}=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\pi^{n/2}}{|A+W^{\mathrm{t}}W|^{1/2}}$}\,\exp\Bigl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{r^{2}}{8\varLambda m^{r-2}}$}+O(n^{-2/5})\Bigr{)}.

Our final task is to evaluate the determinant |QtQ+WtW|\mathopen{|}Q^{\mathrm{t}}Q+W^{\mathrm{t}}W\mathclose{|}. Let 𝒋{\boldsymbol{j}} be the column vector of all 1s, and recall that 𝒆j{\boldsymbol{e}}_{j} is the jj-th elementary column vector.

Lemma 4.15.

|QtQ+WtW|=rr(Λmr2)r1\mathopen{|}Q^{\mathrm{t}}Q+W^{\mathrm{t}}W\mathclose{|}=r^{r}\Bigl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{\varLambda m^{r}}{2}$}\Bigr{)}^{r-1}.

Proof.

We proceed in three stages.

Claim 1. Consider the block matrix

M=(M1,1M1,2M2,1M2,2),M=\begin{pmatrix}M_{1,1}&\!M_{1,2}\\ M_{2,1}&\!M_{2,2}\end{pmatrix},

where each block has size m×mm\times m and have the following form

M1,1\displaystyle M_{1,1} =I+(r1)yJm\displaystyle=I+(r-1)yJ_{m} M1,2\displaystyle M_{1,2} =(r1)𝒋𝒆mt(r1)yJm\displaystyle=(r-1){\boldsymbol{j}}{\boldsymbol{e}}_{m}^{\mathrm{t}}-(r-1)yJ_{m}
M2,1\displaystyle M_{2,1} =𝒆m𝒋tyJm\displaystyle={\boldsymbol{e}}_{m}{\boldsymbol{j}}^{\mathrm{t}}-yJ_{m} M2,2\displaystyle M_{2,2} =I𝒋𝒆mt𝒆m𝒋t+mr𝒆m𝒆mt+yJm.\displaystyle=I-{\boldsymbol{j}}{\boldsymbol{e}}_{m}^{\mathrm{t}}-{\boldsymbol{e}}_{m}{\boldsymbol{j}}^{\mathrm{t}}+mr{\boldsymbol{e}}_{m}{\boldsymbol{e}}_{m}^{\mathrm{t}}+yJ_{m}.

Then, we have |M|=r2m2y|M|=r^{2}m^{2}y.

Proof of Claim 1. Subtract from the last row the first mm rows and add to it the consequent m1m-1 rows. Then the last row has the form

(rmy,,rmy,rmy,rmy).(-rmy,\ldots,-rmy,rmy,\ldots rmy).

After dividing this row by rmyrmy it can be used to eliminate the terms of the form yJmyJ_{m}.

Finally add to the last row the first mm rows and subtract from it the consequent m1m-1 rows from it to create an upper triangular matrix and the result follows.

Claim 2. Let the matrix MM have size m×mm\times m with the form

M=I𝒋𝒆mt𝒆m𝒋t+m𝒆m𝒆mt+yJm.\displaystyle M=I-{\boldsymbol{j}}{\boldsymbol{e}}_{m}^{\mathrm{t}}-{\boldsymbol{e}}_{m}{\boldsymbol{j}}^{\mathrm{t}}+m{\boldsymbol{e}}_{m}{\boldsymbol{e}}_{m}^{\mathrm{t}}+yJ_{m}.

Then, we have |M|=m2y|M|=m^{2}y.

Proof of Claim 2. Add the first m1m-1 rows to the last row, which will subsequently have the form

(my,,my).(my,\ldots,my).

After dividing this row by mymy it can be used to eliminate the terms of the form yJmyJ_{m}. Subsequently subtract the first m1m-1 rows from the last row to create an upper triangular matrix.

Proof of the lemma. Break down the matrix into blocks of size m×mm\times m and we will consider “block” operations. Starting with the last row and finishing with the third row subtract from each row the one above it. Then starting from the penultimate column and finishing with the second column add the column on the right to it. These operations lead to an upper triangular block matrix, where the diagonal consists of r1r-1 blocks. The first block has size 2m×2m2m\times 2m and form as in Claim 1 with y=Λmr1/(2m)y=\varLambda m^{r-1}/(2m). The remaining r2r-2 blocks have size m×mm\times m and has the form as in Claim 2 when y=rΛmr1/(2m)y=r\varLambda m^{r-1}/(2m). ∎

Now we can prove Lemmas 2.3 and 4.3.

Proof of Lemma 4.3.

Lemma 4.11 and Corollary 4.14 implies

Un(ρ0)|F(𝜽)|𝑑𝜽=|QtQ+WtW|1/2π(nr+1)/2|A+WtW|1/2exp(r28Λmr2+O(n2/5)).\int_{\mathcal{B}\cap U_{n}(\rho_{0})}\!\!|F(\boldsymbol{\theta})|\,d\boldsymbol{\theta}=\bigl{|}Q^{\mathrm{t}}Q+W^{\mathrm{t}}W\bigr{|}^{1/2}\raise 0.21529pt\hbox{\small$\displaystyle\frac{\pi^{(n-r+1)/2}}{|A+W^{\mathrm{t}}W|^{1/2}}$}\,\exp\Bigl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{r^{2}}{8\varLambda m^{r-2}}$}+O(n^{-2/5})\Bigr{)}.

Using Lemmas 4.9 (b) and 4.15 for the values of the determinants gives the required outcome

Un(ρ0)|F(𝜽)|𝑑𝜽=m(r1)/2(2πΛmr1)(nr+1)/2exp(r28Λmr2+O(n2/5)).\int_{\mathcal{B}\cap U_{n}(\rho_{0})}\!\!|F(\boldsymbol{\theta})|\,d\boldsymbol{\theta}=m^{(r-1)/2}\mathopen{}\mathclose{{}\left(\raise 0.21529pt\hbox{\small$\displaystyle\frac{2\pi}{\varLambda m^{r-1}}$}}\right)^{(n-r+1)/2}\exp\Bigl{(}\raise 0.21529pt\hbox{\small$\displaystyle\frac{r^{2}}{8\varLambda m^{r-2}}$}+O(n^{-2/5})\Bigr{)}.\qed
Proof of Lemma 2.3.

Lemmas 4.1, 4.7, 4.9(b), 4.11, 4.13 and 4.15 imply

Hr(d,m)=(λλ(1λ)1λ)mr(2πΛ)(rn1)/2mr(r1)(m1)/2exp(r12Λmr2+O(n2/5)).H_{r}(d,m)=\mathopen{}\mathclose{{}\left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}}\right)^{-m^{r}}\!(2\pi\varLambda)^{(r-n-1)/2}m^{-r(r-1)(m-1)/2}\exp\Bigl{(}-\raise 0.21529pt\hbox{\small$\displaystyle\frac{r}{12\varLambda m^{r-2}}$}+O(n^{-2/5})\Bigr{)}.

So our remaining task is to verify that Hr(d,m)H_{r}(d,m) matches H^r(d,m)\hat{H}_{r}(d,m) from (1.1). For integer NN and λ(0,1)\lambda\in(0,1), Stirling’s expansion gives

(NλN)=(λλ(1λ)1λ)N2πNΛexp(1Λ12ΛN+O(Λ3N3)).\binom{N}{\lambda N}=\raise 0.21529pt\hbox{\small$\displaystyle\frac{\bigl{(}\lambda^{\lambda}(1-\lambda)^{1-\lambda}\bigr{)}^{-N}}{\sqrt{2\pi N\varLambda}}$}\exp\Bigl{(}-\raise 0.21529pt\hbox{\small$\displaystyle\frac{1-\varLambda}{12\varLambda N}$}+O(\varLambda^{-3}N^{-3})\Bigr{)}.

Applying this expansion for N=mrN=m^{r} and N=mr1N=m^{r-1} in (1.1), with the assumption Λ=Ω(r16m2r)\varLambda=\Omega(r^{16}m^{2-r}) and Lemma 2.4 gives the same expression as we have shown for Hr(d,m)H_{r}(d,m) with error term O(n1)O(n^{-1}). This completes the proof. ∎

References

  • [1] A. Békéssy, P. Békéssy and J. Komlós, Asymptotic enumeration of regular matrices, Studia Sci. Math. Hungar., 7 (1972) 343–353.
  • [2] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, Europ. J. Combin., 1 (1980) 311–316.
  • [3] E. R. Canfield and B. D. McKay, Asymptotic enumeration of dense 0-1 matrices with equal row sums and equal column sums, Electronic J. Combin., 12 (2005) #R29.
  • [4] C. Greenhill, B. D. McKay and X. Wang, Asymptotic enumeration of sparse 0-1 matrices with irregular row and column sums, J. Combin. Th., Ser. A, 113 (2006) 291–324.
  • [5] M. Isaev and B. D. McKay, Complex martingales and asymptotic enumeration, Random Structures Algorithms, 52 (2018) 617–661.
  • [6] A. Liebenau and N. Wormald, Asymptotic enumeration of digraphs and bipartite graphs by degree sequence, Random Structures Algorithms, 62 (2023) 259–286.
  • [7] B. D. McKay, Asymptotics for 0-1 matrices with prescribed line sums, in Enumeration and Design, (Academic Press, 1984) 225–238.
  • [8] J. V. Michalowicz, J. M. Nichols, F. Bucholtz and C. C. Olson, An Isserlis’ theorem for mixed Gaussian variables: application to the auto-bispectral density, J. Stat. Phys. 136 (2009), 89–102.
  • [9] N. C. Wormald, Models of random regular graphs, in Surveys in Combinatorics, 1999 (eds. J. D. Lamb and D. A. Preece), London Mathematical Society Lecture Note Series, vol. 267, Cambridge University Press, Cambridge (1999), 239–298.