This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Enveloping classes over commutative rings

Silvana Bazzoni Dipartimento di Matematica “Tullio Levi-Civita”
Università di Padova
Via Trieste 63, 35121 Padova (Italy)
bazzoni@math.unipd.it
 and  Giovanna Le Gros Dipartimento di Matematica “Tullio Levi-Civita”
Università di Padova
Via Trieste 63, 35121 Padova (Italy)
giovannagiulia.legros@math.unipd.it
Abstract.

Given a 11-tilting cotorsion pair over a commutative ring, we characterise the rings over which the 11-tilting class is an enveloping class. To do so, we consider the faithful finitely generated Gabriel topology 𝒢\mathcal{G} associated to the 11-tilting class 𝒯\mathcal{T} over a commutative ring as illustrated by Hrbek. We prove that a 11-tilting class 𝒯\mathcal{T} is enveloping if and only if 𝒢\mathcal{G} is a perfect Gabriel topology (that is, it arises from a perfect localisation) and R/JR/J is a perfect ring for each J𝒢J\in\mathcal{G}, or equivalently 𝒢\mathcal{G} is a perfect Gabriel topology and the discrete quotient rings of the topological ring =End(R𝒢/R)\mathfrak{R}=\operatorname{End}(R_{\mathcal{G}}/R) are perfect rings where R𝒢R_{\mathcal{G}} denotes the ring of quotients with respect to 𝒢\mathcal{G}. Moreover, if the above equivalent conditions hold it follows that p.dimR𝒢1\operatorname{p.dim}R_{\mathcal{G}}\leq 1 and 𝒯\mathcal{T} arises from a flat ring epimorphism.

Key words and phrases:
Envelopes, flat ring epimorphism, 11-tilting classes
2010 Mathematics Subject Classification:
13B30, 13C60, 13D07, 18E40
Research supported by grants BIRD163492 and DOR1690814 of Padova University

1. Introduction

The classification problem for classes of modules over arbitrary rings is in general very difficult, or even hopeless. Nonetheless, approximation theory was developed as a tool to approximate arbitrary modules by modules in classes where the classification is more manageable. Left and right approximations were first studied for finite dimensional modules by Auslander, Reiten, and Smalø and by Enochs and Xu for modules over arbitrary rings using the terminology of preenvelopes and precovers.

An important problem in approximation theory is when minimal approximations, that is covers or envelopes, over certain classes exist. In other words, for a certain class 𝒞\mathcal{C}, the aim is to characterise the rings over which every module has a minimal approximation in 𝒞\mathcal{C} and furthermore to characterise the class 𝒞\mathcal{C} itself. The most famous positive result of when minimal approximations exist is the construction of an injective envelope for every module. Instead, Bass proved in [Bas60] that projective covers rarely exist. In his paper, Bass introduced and characterised the class of perfect rings which are exactly the rings over which every module admits a projective cover. Among the many characterisations of perfect rings, the most important from the homological point of view is the closure under direct limits of the class of projective modules.

A class 𝒞\mathcal{C} of modules is called covering, respectively enveloping, if every module admits a 𝒞\mathcal{C}-cover, respectively a 𝒞\mathcal{C}-envelope.

A cotorsion pair (𝒜,)(\mathcal{A},\mathcal{B}) admits (special) 𝒜\mathcal{A}-precovers if and only if it admits (special) \mathcal{B}-preenvelopes. This observation lead to the notion of complete cotorsion pairs, that is cotorsion pairs admitting approximations.

Results by Enochs and Xu ([Xu96, Theorem 2.2.6 and 2.2.8]) show that a complete cotorsion pair (𝒜,)(\mathcal{A},\mathcal{B}) such that 𝒜\mathcal{A} is closed under direct limits admits both 𝒜\mathcal{A}-covers and \mathcal{B}-envelopes. Note that in the case of the cotorsion pair (𝒫0,Mod-R)(\mathcal{P}_{0},\mathrm{Mod}\textrm{-}{R}), where 𝒫0\mathcal{P}_{0} is the class of projective modules, Bass’s results state that 𝒫0\mathcal{P}_{0} is a covering class if and only if 𝒫0\mathcal{P}_{0} is closed under direct limits.

In this paper we are interested in the conditions under which a class 𝒞\mathcal{C} is enveloping. We will deal with classes of modules over commutative rings and in particular with 11-tilting classes.

An important starting point is the bijective correspondence between faithful finitely generated Gabriel topologies 𝒢\mathcal{G} and 11-tilting classes over commutative rings established by Hrbek in [Hrb16]. The tilting class can then be characterised as the class 𝒟𝒢\mathcal{D}_{\mathcal{G}} of 𝒢\mathcal{G}-divisible modules, that is, the modules MM such that JM=MJM=M for every J𝒢J\in\mathcal{G}.

We prove in Section 5 that if a 11-tilting class is enveloping, then R𝒢R_{\mathcal{G}}, the ring of quotients with respect to the Gabriel topology 𝒢\mathcal{G}, is 𝒢\mathcal{G}-divisible, so that RR𝒢R\to R_{\mathcal{G}} is a flat injective ring epimorphism.

It is well known that every flat ring epimorphism gives rise to a finitely generated Gabriel topology. We will consider the case of a flat injective ring epimorphism u:RUu\colon R\to U between commutative rings and show that if the module RR has a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope, then UU has projective dimension at most one.

From results by Angeleri Hügel and Sánchez [AHS11] and also [Hrb16, Proposition 5.4], we infer that the module UKU\oplus K, where KK is the cokernel of uu, is a 11-tilting module with 𝒟𝒢\mathcal{D}_{\mathcal{G}} the associated tilting class. In other words, 𝒟𝒢\mathcal{D}_{\mathcal{G}} arises from the perfect localisation uu, so it coincides with the class of modules generated by UU, that is epimorphic images of direct sums of copies of UU or also with KK^{\perp}, the right Ext-orthogonal of KK. Assuming furthermore that the class 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping, we prove that all the quotient rings R/JR/J, for J𝒢J\in\mathcal{G} are perfect rings and so are all the discrete quotient rings of the topological ring =End(K)\mathfrak{R}=\operatorname{End}(K) (Theorems  7.13 and  7.14). In the terminology of Positselski and Bazzoni-Positselski (for example [BP18]) this means that \mathfrak{R} is a pro-perfect topological ring. Moreover, the converse holds, that is if =End(K)\mathfrak{R}=\operatorname{End}(K) is a pro-perfect topological ring then the class of 𝒢\mathcal{G}-divisible modules is enveloping (Theorem 8.5).

In conclusion, we obtain that a 11-tilting class over a commutative ring is enveloping if and only if it arises from a flat injective ring epimorphism with associated Gabriel topology 𝒢\mathcal{G} such that the factor rings R/JR/J are perfect rings for every J𝒢J\in\mathcal{G} (Theorem 8.7). This provides a partial answer to Problem 1 of [GT12, Section 13.5] and generalises the result proved in [Baz10] for the case of commutative domains and divisible modules.

Applying results from [BP18, Section 19] or [BP19a, Section 13], we obtain that Add(K)\mathrm{Add}(K), the class of direct summands of direct sums of copies of KK, is closed under direct limits. Since 𝒟𝒢\mathcal{D}_{\mathcal{G}} coincides with the right Ext-orthogonal of Add(K)\mathrm{Add}(K), we have an instance of the necessity of the closure under direct limits of a class whose right Ext-orthogonal admits envelopes.

Therefore in our situation we prove a converse of the result by Enochs and Xu ([Xu96, Theorem 2.2.6]) which states that if a class 𝒜\mathcal{A} of modules is closed under direct limits and extensions and whose right Ext-orthogonal 𝒜\mathcal{A}^{\perp} admits special preenvelopes with cokernel in 𝒜\mathcal{A}, then 𝒜\mathcal{A}^{\perp} is enveloping.

The case of a non-injective flat ring epimorphism u:RUu\colon R\to U is easily reduced to the injective case, since the class of 𝒢\mathcal{G}-divisible modules is annihilated by the kernel II of uu, so all the results proved for RR apply to the ring R/IR/I and to the cokernel KK of uu.

The paper is organised as follows. After the necessary preliminaries, in Section 3 we state some general results concerning properties of envelopes with respect to classes of modules.

In Section 4 we recall the notion of a Gabriel topology and outline the properties of the related ring of quotients. In Subsection 4.1 we provide some of our own results for general Gabriel topologies which we will use in the later sections. Next in Subsection 4.2 we review the relationship between Gabriel topologies and 11-tilting classes as well as silting classes as done by Hrbek. Finally in Subsection 4.3 we recall the classical notion of a Gabriel topology arising from a perfect localisation, as well as a lemma.

In Section 5, we consider a 11-tilting class over a commutative ring and its associated Gabriel topology via Hrbek’s results  [Hrb16]. We prove that if the 11-tilting class is enveloping, then the ring of quotients with respect to the Gabriel topology 𝒢\mathcal{G}, R𝒢R_{\mathcal{G}}, is 𝒢\mathcal{G}-divisible, hence 𝒢\mathcal{G} arises from a flat injective ring epimorphism ψR:RR𝒢\psi_{R}\colon R\to R_{\mathcal{G}}.

In Section 6 we introduce the completion of a ring with respect to a Gabriel topology and the endomorphism ring of a module as a topological ring. Considering the particular case of a perfect localisation corresponding to a flat injective ring epimorphism u:RUu\colon R\to U between commutative rings, we show the isomorphism between the completion of RR with respect to the associated Gabriel topology and the topological ring =End(K)\mathfrak{R}=\operatorname{End}(K).

In the main Sections 7 and  8, we prove a ring theoretic and topological characterisation of commutative rings for which the class of 𝒢\mathcal{G}-divisible modules is enveloping where 𝒢\mathcal{G} is the Gabriel topology associated to a flat injective ring epimorphism. Namely, the characterisation in terms of perfectness of the factor rings R/JR/J, for every J𝒢J\in\mathcal{G} and the pro-perfectness of the topological ring =End(K)\mathfrak{R}=\operatorname{End}(K).

In Section 9 we extend the results proved in Sections 7 and  8 to the case of a non-injective flat ring epimorphism

2. Preliminaries

The ring RR will always be associative with a unit and Mod-R\mathrm{Mod}\textrm{-}{R} the category of right RR-modules.

Let 𝒞\mathcal{C} be a class of right RR-modules. The right ExtR1\operatorname{Ext}^{1}_{R}-orthogonal and right ExtR\operatorname{Ext}^{\infty}_{R}-orthogonal classes of 𝒞\mathcal{C} are defined as follows.

𝒞1={MMod-R|ExtR1(C,M)=0forallC𝒞}\mathcal{C}^{\perp_{1}}=\{M\in\mathrm{Mod}\textrm{-}{R}\ |\ \operatorname{Ext}_{R}^{1}(C,M)=0\ {\rm for\ all\ }C\in\mathcal{C}\}
𝒞={MMod-R|ExtRi(C,M)=0forallC𝒞,foralli1}\mathcal{C}^{\perp}=\{M\in\mathrm{Mod}\textrm{-}{R}\ |\ \operatorname{Ext}_{R}^{i}(C,M)=0\ {\rm for\ all\ }C\in\mathcal{C},\ {\rm for\ all\ }i\geq 1\}

The left Ext-orthogonal classes 𝒞1{}^{\perp_{1}}\mathcal{C} and 𝒞{}^{\perp}\mathcal{C} are defined symmetrically.

If the class 𝒞\mathcal{C} has only one element, say 𝒞={X}\mathcal{C}=\{X\}, we write X1X^{\perp_{1}} instead of {X}1\{X\}^{\perp_{1}}, and similarly for the other Ext\operatorname{Ext}-orthogonal classes.

We will now recall the notions of 𝒞\mathcal{C}-preenvelope, special 𝒞\mathcal{C}-preenvelope and 𝒞\mathcal{C}-envelope for a class 𝒞\mathcal{C} of RR-modules.

Definition 2.1.

Let 𝒞\mathcal{C} be a class of modules, NN a right RR-module and C𝒞C\in\mathcal{C}. A homomorphism μHomR(N,C)\mu\in\operatorname{Hom}_{R}(N,C) is called a 𝒞\mathcal{C}-preenvelope (or left approximation) of NN if for every homomorphism fHomR(N,C)f^{\prime}\in\operatorname{Hom}_{R}(N,C^{\prime}) with C𝒞C^{\prime}\in\mathcal{C} there exists a homomorphism f:CCf\colon C\to C^{\prime} such that f=fμf^{\prime}=f\mu.

A 𝒞\mathcal{C}-preenvelope μHomR(N,C)\mu\in\operatorname{Hom}_{R}(N,C) is called a 𝒞\mathcal{C}-envelope (or a minimal left approximation) of NN if for every endomorphism ff of CC such that fμ=μf\mu=\mu, ff is an automorphism of CC.

A 𝒞\mathcal{C}-preenvelope μ\mu of NN is said to be special if it is a monomorphism and Cokerμ𝒞1\operatorname{Coker}\mu\in{}^{\perp_{1}}\mathcal{C}.

The notions of 𝒞\mathcal{C}-precover (right approximation), special 𝒞\mathcal{C}-precover and of 𝒞\mathcal{C}-cover (minimal right approximation) (see [Xu96]) are defined dually.

A class 𝒞\mathcal{C} of RR-modules is called enveloping (covering) if every module admits a 𝒞\mathcal{C}-envelope (𝒞\mathcal{C}-cover).

A pair of classes of modules (𝒜,)(\mathcal{A},\mathcal{B}) is a cotorsion pair provided that 𝒜=1\mbox{$\mathcal{A}$}={}^{\perp_{1}}\mbox{$\mathcal{B}$} and =𝒜1\mbox{$\mathcal{B}$}=\mbox{$\mathcal{A}$}^{\perp_{1}}.

We consider preenvelopes and envelopes for particular classes of modules, that is classes which form the right-hand class of a cotorsion pair.

A cotorsion pair (𝒜,)(\mathcal{A},\mathcal{B}) is complete provided that every RR-module MM admits a special \mathcal{B}-preenvelope or equivalently, every RR-module MM admits a special 𝒜\mathcal{A}-precover.

Results by Enochs and Xu ([Xu96, Theorem 2.2.6 and 2.2.8]) show that a complete cotorsion pair (𝒜,)(\mathcal{A},\mathcal{B}) such that 𝒜\mathcal{A} is closed under direct limits admits both \mathcal{B}-envelopes and 𝒜\mathcal{A}-covers.

A cotorsion pair (𝒜,)(\mathcal{A},\mathcal{B}) is hereditary if for every A𝒜A\in\mathcal{A} and BB\in\mathcal{B}, ExtRi(A,B)=0\operatorname{Ext}^{i}_{R}(A,B)=0 for all i1i\geq 1.
Given a class 𝒞\mathcal{C} of modules, the pair ((𝒞),𝒞)(^{\perp}(\mathcal{C}^{\perp}),\mathcal{C}^{\perp}) is a (hereditary) cotorsion pair called the cotorsion pair generated by 𝒞\mathcal{C}, while (𝒞,(𝒞))(^{\perp}\mathcal{C},(^{\perp}\mathcal{C})^{\perp}) is a (hereditary) cotorsion pair called the cotorsion pair cogenerated by 𝒞\mathcal{C}.

Examples of complete cotorsion pairs are abundant. In fact, by [ET01, Theorem 10] or [GT12, Theorem 6.11] a cotorsion pair generated by a set of modules is complete.

For an RR-module CC, we let Add(C)\mathrm{Add}(C) denote the class of RR-modules which are direct summands of direct sums of copies of CC, and Gen(C)\operatorname{Gen}(C) denote the class of RR-modules which are homomorphic images of direct sums of copies of CC.

We now define 11-tilting and silting modules.
A right RR-module TT is 11-tilting ([CT95]) if the following conditions hold.

  1. (T1)

    p.dimT1\operatorname{p.dim}T\leq 1.

  2. (T2)

    ExtRi(T,T(κ))=0\operatorname{Ext}_{R}^{i}(T,T^{(\kappa)})=0 for every cardinal κ\kappa and every i>0i>0.

  3. (T3)

    There exists an exact sequence of the following form where each TiT_{i} is in Add(T)\mathrm{Add}(T).

    0RT0T100\to R\to T_{0}\to T_{1}\to 0

Equivalently, TT is 11-tilting if and only if T1=Gen(T)T^{\perp_{1}}=\operatorname{Gen}(T) ([CT95, Proposition 1.3]). The cotorsion pair ((T),T)({}^{\perp}(T^{\perp}),T^{\perp}) is called a 11-tilting cotorsion pair and the torsion class TT^{\perp} is called a 11-tilting class. Two 11-tilting modules TT and TT^{\prime} are equivalent if they define the same 11-tilting class T=TT^{\perp}=T^{\prime\perp} (equivalently, if Add(T)=Add(T)\mathrm{Add}(T)=\mathrm{Add}(T^{\prime})).

A 11-tilting class can be generalised in the following way. For a homomorphism σ:P1P0\sigma:P_{-1}\to P_{0} between projective modules in Mod-R\mathrm{Mod}\textrm{-}R, consider the following class of modules.

Dσ:={XMod-R:HomR(σ,X) is surjective}D_{\sigma}:=\{X\in\mathrm{Mod}\textrm{-}R:\operatorname{Hom}_{R}(\sigma,X)\text{ is surjective}\}

An RR-module TT is said to be silting if it admits a projective presentation

P1𝜎P0T0P_{-1}\overset{\sigma}{\to}P_{0}\to T\to 0

such that Gen(T)=Dσ\operatorname{Gen}(T)=D_{\sigma}. In the case that σ\sigma is a monomorphism, Gen(T)\operatorname{Gen}(T) is a 11-tilting class.

A ring RR is left perfect if every module in R-ModR\textrm{-}\mathrm{Mod} has a projective cover. By [Bas60], RR is left perfect if and only if all flat modules in R-ModR\textrm{-}\mathrm{Mod} are projective.

An ideal II of RR is said to be left T-nilpotent if for every sequence of elements a1,a2,,ai,a_{1},a_{2},...,a_{i},... in II, there exists an n>0n>0 such that a1a2an=0a_{1}a_{2}\cdots a_{n}=0. The following proposition for the case of commutative perfect rings is well known.

Proposition 2.2.

Suppose RR is a commutative ring. The following statements are equivalent for RR.

  • (i)

    RR is perfect

  • (ii)

    The Jacobson radical J(R)J(R) of RR, is T-nilpotent and R/J(R)R/J(R) is semi-simple.

  • (iii)

    RR is a finite product of local rings, each one with a T-nilpotent maximal ideal.

The following fact will be useful. Let FR{}_{R}F be a left RR-module GRS{}_{S}G_{R} be an SS-RR-bimodule such that Tor1R(G,F)=0\operatorname{Tor}_{1}^{R}(G,F)=0. Then, for every left SS-module MM there is an injective map of abelian groups

ExtR1(F,HomS(G,M))ExtS1(GRF,M)).\operatorname{Ext}^{1}_{R}(F,\operatorname{Hom}_{S}(G,M))\hookrightarrow\operatorname{Ext}^{1}_{S}(G\otimes_{R}F,M)).

3. Envelopes

In this section we discuss some useful results in relation to envelopes.

The following result is crucial in connection with the existence of envelopes.

Proposition 3.1.

[Xu96, Proposition 1.2.2] Let 𝒞\mathcal{C} be a class of modules and assume that a module NN admits a 𝒞\mathcal{C}-envelope. If μ:NC\mu\colon N\to C is a 𝒞\mathcal{C}-preenvelope of NN, then C=CHC=C^{\prime}\oplus H for some submodules CC^{\prime} and HH such that the composition NCCN\to C\to C^{\prime} is a 𝒞\mathcal{C}-envelope of NN.

We will consider 𝒞\mathcal{C}-envelopes where 𝒞\mathcal{C} is a class closed under direct sums and therefore we will make use of the following result which is strongly connected with the notion of T-nilpotency of a ring.

Theorem 3.2.

[Xu96, Theorem 1.4.4 and 1.4.6]

  1. (i)

    Let 𝒞\mathcal{C} be a class closed under countable direct sums. Assume that for every n1n\geq 1, μn:MnCn\mu_{n}\colon M_{n}\to C_{n} are 𝒞\mathcal{C}-envelopes of MnM_{n} and that nMn\oplus_{n}M_{n} admits a 𝒞\mathcal{C}-envelope. Then μn:nMnnCn\oplus\mu_{n}\colon\oplus_{n}M_{n}\to\oplus_{n}C_{n} is a 𝒞\mathcal{C}-envelope of nMn\oplus_{n}M_{n}.

  2. (ii)

    Assume that μn:nMnnCn\oplus\mu_{n}\colon\oplus_{n}M_{n}\to\oplus_{n}C_{n} is a 𝒞\mathcal{C}-envelope of nMn\oplus_{n}M_{n} with MnCnM_{n}\leq C_{n} and let fn:CnCn+1f_{n}\colon C_{n}\to C_{n+1} be a family of homomorphisms such that fn(Mn)=0f_{n}(M_{n})=0. Then, for every xC1x\in C_{1} there is an integer mm such that fmfm1f1(x)=0f_{m}f_{m-1}\dots f_{1}(x)=0.

For a complete cotorsion pair (𝒜,)(\mathcal{A},\mathcal{B}), we investigate the properties of \mathcal{B}-envelopes of arbitrary RR-modules. First of all we state two straightforward lemmas.

Lemma 3.3.

Let 0N𝜇B𝜋A00\to N\overset{\mu}{\to}B\overset{\pi}{\to}A\to 0 be an exact sequence. Let ff be an endomorphism of BB such that μ=fμ\mu=f\mu. Then f(B)μ(N)f(B)\supseteq\mu(N) and Kerfμ(N)=0\operatorname{Ker}f\cap\mu(N)=0.

Lemma 3.4.

Let 0N𝜇B𝜋A00\to N\overset{\mu}{\rightarrow}B\overset{\pi}{\to}A\to 0 be an exact sequence. For every endomorphism ff of BB, the following are equivalent

  1. (i)

    μ=fμ\mu=f\mu.

  2. (ii)

    The restriction of ff to μ(N)\mu(N) is the identity of μ(N)\mu(N).

  3. (iii)

    There is a homomorphism gHomR(A,B)g\in\operatorname{Hom}_{R}(A,B) such that f=idBgπf=id_{B}-g\pi.

Proof.

(i) \Leftrightarrow (ii) This is clear.

(i) \Leftrightarrow (iii) μ=fμ\mu=f\mu if and only if (idBf)μ=0(id_{B}-f)\mu=0, that is if and only if μ(N)\mu(N) is contained in Ker(idBf)\operatorname{Ker}(id_{B}-f). Equivalently, there exists gHomR(A,B)g\in\operatorname{Hom}_{R}(A,B) such that idBf=gπid_{B}-f=g\pi. ∎

Proposition 3.5.

Let (𝒜,)(\mathcal{A},\mathcal{B}) be a complete cotorsion pair over a ring RR. Assume that 0N𝜇B0\to N\overset{\mu}{\to}B is a \mathcal{B}-envelope of the RR-module NN. Let α\alpha be an automorphism of NN and let β\beta be any endomorphism of BB such that βμ=μα\beta\mu=\mu\alpha. Then β\beta is an automorphism of BB.

Proof.

By Wakamatsu’s Lemma (see [Xu96, Lemma 2.1.2]), μ\mu induces an exact sequence

0N𝜇B𝜋A00\to N\overset{\mu}{\to}B\overset{\pi}{\to}A\to 0

with A𝒜A\in\mathcal{A}. Since α\alpha is an automorphism of NN, it is easy to show that

0NμαBA00\to N\overset{\mu\alpha}{\to}B\to A\to 0

is a \mathcal{B}-envelope of NN. Let β\beta be as assumed and consider an endomorphism gg of BB such that gμα=μg\mu\alpha=\mu. Then gβμ=μg\beta\mu=\mu and thus gβg\beta is an automorphism of BB, since μ\mu is a \mathcal{B}-envelope. This implies that β\beta is a monomorphism so that β(B)\beta(B)\in\mathcal{B}. Since μ(N)β(B)\mu(N)\subseteq\beta(B) there is an epimorphism τ:B/μ(N)B/β(B)\tau\colon B/\mu(N)\to B/\beta(B), where B/μ(N)B/\mu(N) can be identified with AA. Consider the diagram:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β(B)\textstyle{{\beta(B)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ\scriptstyle{\rho}B/β(B)\textstyle{B/\beta(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}τ\scriptstyle{\tau}

where ρ\rho is the canonical projection and τπ=ρ\tau\pi=\rho. It can be completed by hh, since ExtR1(A,β(B))=0\operatorname{Ext}_{R}^{1}(A,\beta(B))=0. Consider the homomorphism f=idBhπf=id_{B}-h\pi. ff is an endomorphism of BB satisfying fμ=μf\mu=\mu. By assumption ff is an isomorphism, hence, in particularf(B)=Bf(B)=B.

Now, ρf=ρρhπ=ρτπ=0\rho f=\rho-\rho h\pi=\rho-\tau\pi=0. Hence f(B)Kerρ=β(B)f(B)\subseteq\operatorname{Ker}\rho=\beta(B); so β(B)=B\beta(B)=B and β\beta is an isomorphism. ∎

4. Gabriel topologies

In this section we briefly introduce Gabriel topologies and discuss some advancements that relate Gabriel topologies to 11-tilting classes and silting classes over commutative rings as done in [Hrb16] and [AHH17]. Furthermore, we include some of our own results Subsection 4.1. For a more detailed discussion on torsion pairs and Gabriel topologies, refer to [Ste75, Chapters VI and IX].

We will start by giving definitions in the case of a general ring with unit (not necessarily commutative).

Recall that a torsion pair (,)(\mathcal{E},\mathcal{F}) in Mod-R\mathrm{Mod}\textrm{-}R is a pair of classes of modules in Mod-R\mathrm{Mod}\textrm{-}R which are mutually orthogonal with respect to the Hom\operatorname{Hom}-functor and maximal with respect to this property. The class \mathcal{E} is called a torsion class and \mathcal{F} a torsion-free class.

A class 𝒞\mathcal{C} of modules is a torsion class if and only if it is closed under extensions, direct sums, and epimorphic images. A torsion pair (,)(\mathcal{E},\mathcal{F}) is called hereditary if \mathcal{E} is also closed under submodules.

A torsion pair (,)(\mathcal{E},\mathcal{F}) is generated by a class 𝒞\mathcal{C} if \mathcal{F} consists of all the modules FF such that HomR(C,F)=0\operatorname{Hom}_{R}(C,F)=0 for every C𝒞C\in\mathcal{C}.

A (right) Gabriel topology on RR is a filter of right ideals of RR, denoted 𝒢\mathcal{G}, such that the following conditions hold. Recall that for a right ideal II in RR and an element tRt\in R, (I:t):={rR:trI}(I:t):=\{r\in R:tr\in I\}.

  • (i)

    If I𝒢I\in\mathcal{G} and rRr\in R then (I:r)𝒢(I:r)\in\mathcal{G}.

  • (ii)

    If JJ is a right ideal of RR and there exists a I𝒢I\in\mathcal{G} such that (J:t)𝒢(J:t)\in\mathcal{G} for every tIt\in I, then J𝒢J\in\mathcal{G}.

Right Gabriel topologies on RR are in bijective correspondence with hereditary torsion pairs in Mod-R\mathrm{Mod}\textrm{-}R. Indeed, to each right Gabriel topology 𝒢\mathcal{G}, one can associate the following hereditary torsion class.

𝒢={MAnnR(x)𝒢 for every xM}\mathcal{E}_{\mathcal{G}}=\{M\mid\mathrm{Ann}_{R}(x)\in\mathcal{G}\text{ for every }x\in M\}

Then, the corresponding torsion pair (𝒢,𝒢)(\mathcal{E}_{\mathcal{G}},\mathcal{F}_{\mathcal{G}}) is generated by the cyclic modules R/JR/J where J𝒢J\in\mathcal{G}. The classes 𝒢\mathcal{E}_{\mathcal{G}} and 𝒢\mathcal{F}_{\mathcal{G}} are referred to as the 𝒢\mathcal{G}-torsion and 𝒢\mathcal{G}-torsion-free classes, respectively.

Conversely, if (,)(\mathcal{E},\mathcal{F}) is a hereditary torsion pair in Mod-R\mathrm{Mod}\textrm{-}R, the set

{JRR/J}\{J\leq R\mid R/J\in\mathcal{E}\}

is a right Gabriel topology.

For a right RR-module MM let t𝒢(M)t_{\mathcal{G}}(M) denote the 𝒢\mathcal{G}-torsion submodule of MM, or sometimes t(M)t(M) when the Gabriel topology is clear from context.

The module of quotients of the Gabriel topology 𝒢\mathcal{G} of a right RR-module MM is the module

M𝒢:=limJ𝒢HomR(J,M/t𝒢(M)).M_{\mathcal{G}}:=\varinjlim_{\begin{subarray}{c}J\in\mathcal{G}\end{subarray}}\operatorname{Hom}_{R}(J,M/t_{\mathcal{G}}(M)).

Furthermore, there is a canonical homomorphism

ψM:MHomR(R,M)M𝒢.\psi_{M}:M\cong\operatorname{Hom}_{R}(R,M)\to M_{\mathcal{G}}.

By substituting M=RM=R, the assignment gives a ring homomorphism ψR:RR𝒢\psi_{R}:R\to R_{\mathcal{G}} and furthermore, for each RR-module MM the module M𝒢M_{\mathcal{G}} is both an RR-module and an R𝒢R_{\mathcal{G}}-module. Both the kernel and cokernel of the map ψM\psi_{M} are 𝒢\mathcal{G}-torsion RR-modules, and in fact Ker(ψM)=t𝒢(M)\operatorname{Ker}(\psi_{M})=t_{\mathcal{G}}(M).

Let q:Mod-RMod-R𝒢q:\mathrm{Mod}\textrm{-}R\to\mathrm{Mod}\textrm{-}R_{\mathcal{G}} denote the functor that maps each MM to its module of quotients. Let ψ\psi^{\ast} denote the right exact functor Mod-RMod-R𝒢\mathrm{Mod}\textrm{-}R\to\mathrm{Mod}\textrm{-}R_{\mathcal{G}} where ψ(M):=MR𝒢\psi^{\ast}(M):=M\otimes R_{\mathcal{G}}. In general, there is a natural transformation Θ:ψq\Theta:\psi^{\ast}\to q with ΘM:MR𝒢M𝒢\Theta_{M}:M\otimes R_{\mathcal{G}}\to M_{\mathcal{G}} which is defined as mηψM(m)ηm\otimes\eta\mapsto\psi_{M}(m)\cdot\eta. That is, for every MM the following triangle commutes.

()Mψ(M)ψMMRR𝒢ΘMM𝒢(\star)\qquad\qquad\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 8.39583pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-8.39583pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.81549pt\raise 6.54709pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.79709pt\hbox{$\scriptstyle{\psi^{\ast}(M)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 79.87502pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 4.53795pt\raise-25.27776pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\psi_{M}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.69925pt\raise-31.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 41.13542pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 79.87502pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{M\otimes_{R}R_{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 70.4291pt\raise-25.06111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{\Theta_{M}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.53642pt\raise-31.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-38.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 32.39583pt\raise-38.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{M_{\mathcal{G}}}$}}}}}}}{\hbox{\kern 100.7297pt\raise-38.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces

A right RR-module is 𝒢\mathcal{G}-closed if the following natural homomorphisms are all isomorphisms for every J𝒢J\in\mathcal{G}.

MHomR(R,M)HomR(J,M)M\cong\operatorname{Hom}_{R}(R,M)\to\operatorname{Hom}_{R}(J,M)

This amounts to saying that HomR(R/J,M)=0\operatorname{Hom}_{R}(R/J,M)=0 for every J𝒢J\in\mathcal{G} (i.e. MM is 𝒢\mathcal{G}-torsion-free) and ExtR1(R/J,M)=0\operatorname{Ext}^{1}_{R}(R/J,M)=0 for every J𝒢J\in\mathcal{G} (i.e. MM is 𝒢\mathcal{G}-injective). Thus if MM is 𝒢\mathcal{G}-closed then MM is isomorphic to its module of quotients M𝒢M_{\mathcal{G}}. Conversely, every RR-module of the form M𝒢M_{\mathcal{G}} is 𝒢\mathcal{G}-closed. The 𝒢\mathcal{G}-closed modules form a full subcategory of both Mod-R\mathrm{Mod}\textrm{-}R and Mod-R𝒢\mathrm{Mod}\textrm{-}R_{\mathcal{G}}.

A left RR-module NN is called 𝒢\mathcal{G}-divisible if JN=NJN=N for every J𝒢J\in\mathcal{G}. Equivalently, NN is 𝒢\mathcal{G}-divisible if and only if R/JRN=0R/J\otimes_{R}N=0 for each J𝒢J\in\mathcal{G}. We denote the class of 𝒢\mathcal{G}-divisible modules by 𝒟𝒢\mathcal{D}_{\mathcal{G}}. It is straightforward to see that 𝒟𝒢\mathcal{D}_{\mathcal{G}} is a torsion class in R-ModR\textrm{-}\mathrm{Mod}.

A right Gabriel topology is faithful if HomR(R/J,R)=0\operatorname{Hom}_{R}(R/J,R)=0 for every J𝒢J\in\mathcal{G}, or equivalently if RR is 𝒢\mathcal{G}-torsion-free, that is the natural map ψR:RR𝒢\psi_{R}\colon R\to R_{\mathcal{G}} is injective.

A right Gabriel topology is finitely generated if it has a basis consisting of finitely generated right ideals. Equivalently, 𝒢\mathcal{G} is finitely generated if the 𝒢\mathcal{G}-torsion radical preserves direct limits (that is there is a natural isomorphism t𝒢(limiMi)limi(t𝒢(Mi))t_{\mathcal{G}}(\varinjlim_{i}M_{i})\cong\varinjlim_{i}(t_{\mathcal{G}}(M_{i}))) if and only if the 𝒢\mathcal{G}-torsion-free modules are closed under direct limits (that is, the associated torsion pair is of finite type). The first of these two equivalences was shown in [Ste75, Proposition XIII.1.2], while the second was noted by Hrbek in the discussion before [Hrb16, Lemma 2.4].

4.1. More properties of Gabriel topologies

We note that in the following two lemmas, all statements hold in the non-commutative case except for Lemma 4.1 (iii). Otherwise, all the Gabriel topologies will be right Gabriel topologies, therefore the associated torsion pair (𝒢,𝒢)(\mathcal{E}_{\mathcal{G}},\mathcal{F}_{\mathcal{G}}) are classes of right RR-modules and the 𝒢\mathcal{G}-divisible modules are left RR-modules.

We will often refer to the following exact sequence where ψR\psi_{R} is the ring of quotients homomorphism in (1) as discussed in the previous subsection. We often will denote t𝒢(M)t_{\mathcal{G}}(M) simply by t(M)t(M) and when clear from the context, ψ\psi instead of ψR\psi_{R} and ψ¯:R/t(R)R𝒢\bar{\psi}:R/t(R)\to R_{\mathcal{G}} the induced monomorphism from ψR\psi_{R}.

0t𝒢(R)RψRR𝒢R𝒢/ψR(R)00\to t_{\mathcal{G}}(R)\to R\overset{\psi_{R}}{\to}R_{\mathcal{G}}\to R_{\mathcal{G}}/\psi_{R}(R)\to 0 (1)
Lemma 4.1.

Suppose 𝒢\mathcal{G} is a right Gabriel topology. Then the following statements hold.

  1. (i)

    If MM is a 𝒢\mathcal{G}-torsion (right) RR-module and DD is a 𝒢\mathcal{G}-divisible module then MRD=0M\otimes_{R}D=0.

  2. (ii)

    If NN is a 𝒢\mathcal{G}-torsion-free module then the natural map
    idNRψR:NNRR𝒢\operatorname{id}_{N}\otimes_{R}\psi_{R}\colon N\to N\otimes_{R}R_{\mathcal{G}} is a monomorphism and NNRR/t(R)N\to N\otimes_{R}R/t(R) is an isomorphism.

  3. (iii)

    Suppose RR is commutative. If DD is both 𝒢\mathcal{G}-divisible and 𝒢\mathcal{G}-torsion-free, then DD is a R𝒢R_{\mathcal{G}}-module and DDRR𝒢D\cong D\otimes_{R}R_{\mathcal{G}} via the natural map
    idDRψR:DRRDRR𝒢\operatorname{id}_{D}\otimes_{R}\psi_{R}\colon D\otimes_{R}R\to D\otimes_{R}R_{\mathcal{G}}.

  4. (iv)

    If XX is an RR-RR-bimodule and is 𝒢\mathcal{G}-torsion, then MRXM\otimes_{R}X is 𝒢\mathcal{G}-torsion for every MMod-RM\in\mathrm{Mod}\textrm{-}R.

Proof.

(i) This is from [Ste75, Proposition VI.9.1]. Suppose MM is a 𝒢\mathcal{G}-torsion module and DD is a 𝒢\mathcal{G}-divisible module. Then there is the following surjection.

αAJα𝒢R/JαM0\bigoplus_{\begin{subarray}{c}\alpha\in A\\ J_{\alpha}\in\mathcal{G}\end{subarray}}R/J_{\alpha}\to M\to 0

As R/JRD=0R/J\otimes_{R}D=0 for every J𝒢J\in\mathcal{G} by definition, the conclusion follows by applying (RD)(-\otimes_{R}D) to the above sequence.
(ii) Consider the following commuting triangle where NN is 𝒢\mathcal{G}-torsion-free in Mod-R\mathrm{Mod}\textrm{-}R.

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NNRR\textstyle{N\cong N\otimes_{R}R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}idNRψR\scriptstyle{\operatorname{id}_{N}\otimes_{R}\psi_{R}\hskip 10.0pt}ψN\scriptstyle{\psi_{N}}NRR𝒢\textstyle{N\otimes_{R}R_{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘN\scriptstyle{\Theta_{N}}N𝒢\textstyle{N_{\mathcal{G}}}

Then ψN\psi_{N} is a monomorphism and since ψN=ΘN(idNRψR)\psi_{N}=\Theta_{N}\circ(\operatorname{id}_{N}\otimes_{R}\psi_{R}), also idNRψR\operatorname{id}_{N}\otimes_{R}\psi_{R} is a monomorphism. Moreover, we know that idNRψR\operatorname{id}_{N}\otimes_{R}\psi_{R} factors as follows.

NNRR/t(R)NRR𝒢N\twoheadrightarrow N\otimes_{R}R/t(R)\to N\otimes_{R}R_{\mathcal{G}}

Thus also NNRR/t(R)N\twoheadrightarrow N\otimes_{R}R/t(R) is a monomorphism, and therefore is an isomorphism.
(iii) Consider the following commuting diagram where the horizontal sequence is exact by (i) as DD is 𝒢\mathcal{G}-torsion-free.

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}D\textstyle{D\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}idDRψR\scriptstyle{\operatorname{id}_{D}\otimes_{R}\psi_{R}\hskip 10.0pt}ψD\scriptstyle{\psi_{D}}DRR𝒢\textstyle{D\otimes_{R}R_{\mathcal{G}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘD\scriptstyle{\Theta_{D}}DRR𝒢/ψ(R)\textstyle{D\otimes_{R}R_{\mathcal{G}}/\psi(R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}D𝒢\textstyle{D_{\mathcal{G}}}

Additionally, DRR𝒢/ψ(R)=0D\otimes_{R}R_{\mathcal{G}}/\psi(R)=0, since R𝒢/ψ(R)R_{\mathcal{G}}/\psi(R) is 𝒢\mathcal{G}-torsion. Therefore the following map is an isomorphism.

idDRψR:DDRR𝒢\operatorname{id}_{D}\otimes_{R}\psi_{R}\colon D\to D\otimes_{R}R_{\mathcal{G}}

(iv) Fix XX a 𝒢\mathcal{G}-torsion RR-RR-bimodule and MMod-RM\in\mathrm{Mod}\textrm{-}R. Take a free presentation of MM, R(α)M0R^{(\alpha)}\to M\to 0. Apply (RX)(-\otimes_{R}X) to find the following exact sequence.

X(α)MRX0X^{(\alpha)}\to M\otimes_{R}X\to 0

As X(α)X^{(\alpha)} is 𝒢\mathcal{G}-torsion and the 𝒢\mathcal{G}-torsion modules are closed under quotients, also MRXM\otimes_{R}X is 𝒢\mathcal{G}-torsion. ∎

Lemma 4.2.

Suppose 𝒢\mathcal{G} is a Gabriel topology of right ideals. Then the following hold.

  1. (i)

    If p.dimMR1\operatorname{p.dim}M_{R}\leq 1, then Tor1R(M,R𝒢)=0\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})=0.

  2. (ii)

    If p.dimMR1\operatorname{p.dim}M_{R}\leq 1 and MM is 𝒢\mathcal{G}-torsion-free, then
    Tor1R(M,R𝒢)=0=Tor1R(M,R𝒢/ψ(R))\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})=0=\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}}/\psi(R)).

If moreover 𝒢\mathcal{G} is a right Gabriel topology with a basis of finitely generated ideals and p.dimMR1\operatorname{p.dim}M_{R}\leq 1, then MRRR𝒢M_{R}\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-torsion-free.

Proof.

(i) By assumption p.dimMR1\operatorname{p.dim}M_{R}\leq 1, so there is the following projective resolution of MM, where P0,P1P_{0},P_{1} are projective right RR-modules.

0P1𝛾P0M00\to P_{1}\overset{\gamma}{\to}P_{0}\to M\to 0 (2)

We will first show that Tor1R(M,R/t(R))=0\operatorname{Tor}^{R}_{1}(M,R/t(R))=0. We first note that from the following exact sequence (3), Tor1R(M,R/t(R))\operatorname{Tor}^{R}_{1}(M,R/t(R)) is 𝒢\mathcal{G}-torsion, as it is contained in the 𝒢\mathcal{G}-torsion module MRt(R)M\otimes_{R}t(R) (see Lemma 4.1(iv)) and is itself a right RR-module as R/t(R)R/t(R) is an RR-RR-bimodule.

0Tor1R(M,R/t(R))MRt(R)MMRR/t(R)00\to\operatorname{Tor}^{R}_{1}(M,R/t(R))\to M\otimes_{R}t(R)\to M\to M\otimes_{R}R/t(R)\to 0 (3)

Next, we note that from the following exact sequence (4), Tor1R(M,R𝒢)\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}}) is 𝒢\mathcal{G}-torsion-free as it is contained in the 𝒢\mathcal{G}-torsion-free module P1RR𝒢P_{1}\otimes_{R}R_{\mathcal{G}}.

0Tor1R(M,R𝒢)P1RR𝒢P0RR𝒢MRR𝒢00\to\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})\to P_{1}\otimes_{R}R_{\mathcal{G}}\to P_{0}\otimes_{R}R_{\mathcal{G}}\to M\otimes_{R}R_{\mathcal{G}}\to 0 (4)

Thus from the following exact sequence (5), Tor1R(M,R/t(R))\operatorname{Tor}^{R}_{1}(M,R/t(R)) is 𝒢\mathcal{G}-torsion-free as by assumption Tor2R(M,R𝒢/ψ(R))=0\operatorname{Tor}^{R}_{2}(M,R_{\mathcal{G}}/\psi(R))=0. Therefore we conclude that Tor1R(M,R/t(R))=0\operatorname{Tor}^{R}_{1}(M,R/t(R))=0 as it is both 𝒢\mathcal{G}-torsion and 𝒢\mathcal{G}-torsion-free.

0Tor1R(M,R/t(R))Tor1R(M,R𝒢)Tor1R(M,R𝒢/ψ(R))0\to\operatorname{Tor}^{R}_{1}(M,R/t(R))\to\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})\to\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}}/\psi(R)) (5)

Moreover, also Tor1R(M,R𝒢/ψ(R))\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}}/\psi(R)) is 𝒢\mathcal{G}-torsion by applying (RR𝒢/ψ(R))(-\otimes_{R}R_{\mathcal{G}}/\psi(R)) to the short exact sequence (2). Therefore Tor1R(M,R𝒢)=0\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})=0 as it is both 𝒢\mathcal{G}-torsion by (5) and 𝒢\mathcal{G}-torsion-free by (4).

(ii) By applying the functor (MR)(M\otimes_{R}-) to the exact sequence 0R/t(R)ψ¯R𝒢R𝒢/ψ(R𝒢)00\to R/t(R)\overset{\bar{\psi}}{\to}R_{\mathcal{G}}\to R_{\mathcal{G}}/\psi(R_{\mathcal{G}})\to 0, we have the following exact sequence.

0=Tor1R(M,R𝒢)\textstyle{0=\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tor1R(M,R𝒢/ψ(R))\textstyle{\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}}/\psi(R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}MMRR/t(R)\textstyle{M\cong M\otimes_{R}R/t(R)}

By Lemma 4.1(ii), idMRψR¯:MRR/t(R)MRR𝒢\operatorname{id}_{M}\otimes_{R}\bar{\psi_{R}}\colon M\otimes_{R}R/t(R)\to M\otimes_{R}R_{\mathcal{G}} is a monomorphism and by (i), Tor1R(M,R𝒢)=0\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})=0 hence Tor1R(M,R𝒢/ψ(R))=0\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}}/\psi(R))=0.

For the final statement, first note that for any projective right RR-module PRP_{R}, PRRR𝒢R𝒢(α)P_{R}\otimes_{R}R_{\mathcal{G}}\underset{\oplus}{\leq}R_{\mathcal{G}}^{(\alpha)}. By the assumption that 𝒢\mathcal{G} is finitely generated, by [Ste75, Proposition XIII.1.2], we have that arbitrary direct sums of copies of 𝒢\mathcal{G}-closed modules are 𝒢\mathcal{G}-closed, thus we conclude that PRRR𝒢P_{R}\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-closed. Now consider the presentation 0P1P0M00\to P_{1}\to P_{0}\to M\to 0 of MM with P0,P1P_{0},P_{1} projective. Then 0P1RR𝒢P0RR𝒢MRR𝒢00\to P_{1}\otimes_{R}R_{\mathcal{G}}\to P_{0}\otimes_{R}R_{\mathcal{G}}\to M\otimes_{R}R_{\mathcal{G}}\to 0 is exact as Tor1R(M,R𝒢)=0\operatorname{Tor}^{R}_{1}(M,R_{\mathcal{G}})=0 by (i) of this lemma. As the middle term P0RR𝒢P_{0}\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-torsion-free and P1RR𝒢P_{1}\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-closed, it follows that MRR𝒢M\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-torsion-free.

4.2. Gabriel topologies and 11-tilting classes

In this paper, we will only be concerned with Gabriel topologies over commutative rings. In this setting, much useful research has already done in this direction. Specifically, in [Hrb16], Hrbek showed that over commutative rings the faithful finitely generated Gabriel topologies are in bijective correspondence with 11-tilting classes, and that the latter are exactly the classes of 𝒢\mathcal{G}-divisible modules for some faithful finitely generated Gabriel topology 𝒢\mathcal{G}, as stated in the following theorem.

Theorem 4.3.

[Hrb16, Theorem 3.16] Let R be a commutative ring. There are bijections between the following collections.

  1. (i)

    1-tilting classes 𝒯\mathcal{T} in Mod-R\mathrm{Mod}\textrm{-}R.

  2. (ii)

    faithful finitely generated Gabriel topologies 𝒢\mathcal{G} on RR.

  3. (iii)

    faithful hereditary torsion pairs (,)(\mathcal{E},\mathcal{F}) of finite type in Mod-R\mathrm{Mod}\textrm{-}R.

Moreover, the tilting class 𝒯\mathcal{T} is the class of 𝒢\mathcal{G}-divisible modules with respect to the Gabriel topology 𝒢\mathcal{G}.

When we refer to the Gabriel topology associated to the 11-tilting class 𝒯\mathcal{T} we will always mean the Gabriel topology in the sense of the above theorem. In addition we will often denote 𝒜\mathcal{A} to be the right Ext\operatorname{Ext}-orthogonal class to 𝒟𝒢=𝒯\mathcal{D}_{\mathcal{G}}=\mathcal{T} in the situation just described, so (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) will denote the 11-tilting cotorsion pair.

In [AHH17] the correspondence between faithfully finitely generated Gabriel topologies and 11-tilting classes over commutative rings was extended to finitely generated Gabriel topologies which were shown to be in bijective correspondence with silting classes. Thus in this case the class 𝒟𝒢\mathcal{D}_{\mathcal{G}} of 𝒢\mathcal{G}-divisible modules coincides with the class GenT\operatorname{Gen}T for some silting module TT.

4.3. Homological ring epimorphisms

There is a special class of Gabriel topologies which behave particularly well and are related to ring epimorphisms. The majority of this paper will be restricted to looking at these Gabriel topologies. The standard examples of these Gabriel topologies over RR are localisations of a commutative ring RR with respect to a multiplicative subset SS, where the Gabriel topology has as a basis the principal ideals generated by elements of SS.

A ring epimorphism is a ring homomorphism R𝑢UR\overset{u}{\to}U such that uu is an epimorphism in the category of unital rings. This is equivalent to the natural map URUUU\otimes_{R}U\to U induced by the multiplication in UU being an isomorphism, or equivalently that UR(U/u(R))=0U\otimes_{R}(U/u(R))=0 (see [Ste75, Chapter XI.1].

Two ring epimorphisms R𝑢UR\overset{u}{\to}U and RuUR\overset{u^{\prime}}{\to}U^{\prime} are equivalent if there is a ring isomorphism σ:UU\sigma\colon U\to U^{\prime} such that σu=u\sigma u=u^{\prime}.

A ring epimorphism is homological if TornR(UR,UR)=0\operatorname{Tor}^{R}_{n}(U_{R},{}_{R}U)=0 for all n>0n>0. A ring epimorphism is called (left) flat if uu makes UU into a flat left RR-module. Clearly all flat ring epimorphisms are homological. We will denote the cokernel of uu by KK and sometimes by U/RU/R or U/u(R)U/u(R).

A left flat ring epimorphism R𝑢UR\overset{u}{\to}U is called a perfect right localisation of RR. In this case, by [Ste75, Chapter XI.2, Theorem 2.1] the family of right ideals

𝒢={JRJU=U}\mathcal{G}=\{J\leq R\mid JU=U\}

forms a right Gabriel topology. Moreover, there is a ring isomorphism σ:UR𝒢\sigma:U\to R_{\mathcal{G}} such that σu:RR𝒢\sigma u:R\to R_{\mathcal{G}} is the canonical isomorphism ψR:RR𝒢\psi_{R}:R\to R_{\mathcal{G}}, or, in other words, uu and ψR\psi_{R} are equivalent ring epimorphisms. Note also that a right ideal JJ of RR is in 𝒢\mathcal{G} if and only if R/JRU=0R/J\otimes_{R}U=0.

We will make use of the characterisations of perfect right localisations from Proposition 3.4 in Chapter XI.3 of Stenström’s book [Ste75].

In particular, Proposition 3.4 states that the right Gabriel topology 𝒢\mathcal{G} associated to a flat ring epimorphism R𝑢UR\overset{u}{\to}U is finitely generated and the 𝒢\mathcal{G}-torsion submodule t𝒢(M)t_{\mathcal{G}}(M) of a right RR-module MM is the kernel of the canonical homomorphism MMRUM\to M\otimes_{R}U. Thus, K=U/u(R)K=U/u(R) is 𝒢\mathcal{G}-torsion, hence HomR(K,U)=0\operatorname{Hom}_{R}(K,U)=0. If moreover the flat ring epimorphism R𝑢UR\overset{u}{\to}U is injective, then Tor1R(M,K)t𝒢(M)\operatorname{Tor}^{R}_{1}(M,K)\cong t_{\mathcal{G}}(M) and 𝒢\mathcal{G} is faithful.

Remark 4.4.

From the above observations and results in [Hrb16], when RR is commutative and R𝑢UR\overset{u}{\to}U is a flat injective epimorphism one can associate a 11-tilting class which is exactly the class of 𝒢\mathcal{G}-divisible modules. In the case that additionally p.dimRU1\operatorname{p.dim}_{R}U\leq 1, one can apply a result from [AHS11] which states that UKU\oplus K is a 11-tilting module, so there is a 11-tilting class denoted 𝒯:=(UK)=Gen(U)\mathcal{T}:=(U\oplus K)^{\perp}=\operatorname{Gen}(U). In fact, we claim that this is exactly the 11-tilting class of 𝒢\mathcal{G}-divisible modules. Explicitly, the Gabriel topology associated to 𝒯\mathcal{T} in the sense of Theorem 4.3 is exactly the collection of ideals {JJM=M for every M𝒯}\{J\mid JM=M\text{ for every }M\in\mathcal{T}\}. The Gabriel topology that arises from the perfect localisation is the collection {JJU=U}\{J\mid JU=U\} and since U𝒯=GenUU\in\mathcal{T}=\operatorname{Gen}U, the Gabriel topologies associated to these two 11-tilting classes are the same. We conclude that the two 11-tilting classes coincide: GenR(U)=𝒟𝒢\operatorname{Gen}_{R}(U)=\mathcal{D}_{\mathcal{G}}.
In [Hrb16, Proposition 5.4] the converse is proved: If one starts with a 11-tilting class 𝒯\mathcal{T} with associated Gabriel topology 𝒢\mathcal{G}, so that 𝒯=𝒟𝒢\mathcal{T}=\mathcal{D}_{\mathcal{G}}, then R𝒢R_{\mathcal{G}} is a perfect localisation and p.dimR𝒢1\operatorname{p.dim}R_{\mathcal{G}}\leq 1 if and only if GenR𝒢=𝒟𝒢\operatorname{Gen}R_{\mathcal{G}}=\mathcal{D}_{\mathcal{G}}.

The following lemma will be useful when working with a Gabriel topology over a commutative ring that arises from a perfect localisation.

Lemma 4.5.

Let RR be a commutative ring, u:RUu:R\to U a flat injective ring epimorphism, and 𝒢\mathcal{G} the associated Gabriel topology. Then the annihilators of the elements of U/RU/R form a sub-basis for the Gabriel topology 𝒢\mathcal{G}. That is, for every J𝒢J\in\mathcal{G} there exist z1,z2,,znUz_{1},z_{2},\dots,z_{n}\in U such that

0inAnnR(zi+R)J.\bigcap_{\begin{subarray}{c}0\leq i\leq n\end{subarray}}\mathrm{Ann}_{R}(z_{i}+R)\subseteq J.
Proof.

Every ideal of the form AnnR(z+R)\mathrm{Ann}_{R}(z+R) is an ideal in 𝒢\mathcal{G} since K=U/RK=U/R is 𝒢\mathcal{G}-torsion.

Fix an ideal J𝒢J\in\mathcal{G}. Then, U=JUU=JU, so 1U=0inaizi1_{U}=\sum_{0\leq i\leq n}a_{i}z_{i} where aiJa_{i}\in J and ziUz_{i}\in U. We claim that

0inAnnR(zi+R)J.\bigcap_{\begin{subarray}{c}0\leq i\leq n\end{subarray}}\mathrm{Ann}_{R}(z_{i}+R)\subseteq J.

Take b0inAnnR(zi+R)b\in\bigcap_{\begin{subarray}{c}0\leq i\leq n\end{subarray}}\mathrm{Ann}_{R}(z_{i}+R). Then

b=0inbaiziJb=\sum_{0\leq i\leq n}ba_{i}z_{i}\in J

since each bziRbz_{i}\in R, hence baiziJba_{i}z_{i}\in J, and it follows that bJb\in J. ∎

5. Enveloping 11-tilting classes over commutative rings

For this section, RR will always be a commutative ring and 𝒯\mathcal{T} a 11-tilting class.

By Theorem 4.3 there is a faithful finitely generated Gabriel topology 𝒢\mathcal{G} such that 𝒯\mathcal{T} is the class of 𝒢\mathcal{G}-divisible modules. We denote again by (𝒢,𝒢)(\mathcal{E}_{\mathcal{G}},\mathcal{F}_{\mathcal{G}}) the associated faithful hereditary torsion pair of finite type. We use 𝒟𝒢\mathcal{D}_{\mathcal{G}} and 𝒯=GenT=T\mathcal{T}=\operatorname{Gen}T=T^{\perp} interchangeably to denote the 11-tilting class, and 𝒜\mathcal{A} to denote the right orthogonal class 𝒟𝒢{}^{\perp}\mathcal{D}_{\mathcal{G}}.
The aim of this section is to show that if 𝒯\mathcal{T} is enveloping, then R𝒢R_{\mathcal{G}}, the ring of quotients with respect to 𝒢\mathcal{G}, is 𝒢\mathcal{G}-divisible and therefore ψR:RR𝒢\psi_{R}:R\to R_{\mathcal{G}} is a perfect localisation of RR.

Recall that if 𝒯\mathcal{T} is 11-tilting, 𝒯𝒯=Add(T)\mathcal{T}\cap{}^{\perp}\mathcal{T}=\mathrm{Add}(T) (see [GT12, Lemma 13.10]). By (T3) of the definition of a 11-tilting module we have the following short exact sequence

(T3) 0R𝜀T0T10\text{(T3) }\quad 0\to R\overset{\varepsilon}{\to}T_{0}\to T_{1}\to 0

where T0,T1Add(T)T_{0},T_{1}\in\mathrm{Add}(T). In fact, this short exact sequence is a special 𝒟𝒢\mathcal{D}_{\mathcal{G}}-preenvelope of RR, and T0T1T_{0}\oplus T_{1} is a 11-tilting module which generates 𝒯\mathcal{T} by [GT12, Theorem 13.18 and Remark 13.19].

Furthermore, assuming that RR has a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope, we can suppose without loss of generality that the sequence (T3) is the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of RR, since an envelope is extracted from a special preenvelope by passing to direct summands (Proposition 3.1). For the rest of the section we will denote the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of RR by ε\varepsilon.

Recall from Section 4 that for every MMod-RM\in\mathrm{Mod}\textrm{-}R there is the commuting diagram ()(\star). Since 𝒢\mathcal{G} is faithful we have the following short exact sequence where ψR\psi_{R} is a ring homomorphism and R𝒢/RR_{\mathcal{G}}/R is 𝒢\mathcal{G}-torsion.

()0RψRR𝒢R𝒢/R0({\dagger})\quad 0\to R\overset{\psi_{R}}{\to}R_{\mathcal{G}}\to R_{\mathcal{G}}/R\to 0

We now show two lemmas about the 11-tilting module T0T1T_{0}\oplus T_{1} and the class Add(T0T1)\mathrm{Add}(T_{0}\oplus T_{1}) assuming that RR has a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope.

Lemma 5.1.

Let the following short exact sequence be a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of RR.

0R𝜀T0T100\to R\overset{\varepsilon}{\to}T_{0}\to T_{1}\to 0

Then T0T_{0} is 𝒢\mathcal{G}-torsion-free and T0T0RR𝒢T_{0}\cong T_{0}\otimes_{R}R_{\mathcal{G}}.

Proof.

We will show that for every J𝒢J\in\mathcal{G}, T0[J]T_{0}[J], the set of elements of T0T_{0} annihilated by JJ is zero. Set w:=ε(1R)w:=\varepsilon(1_{R}) and fix a J𝒢J\in\mathcal{G}. As T0=JT0T_{0}=JT_{0}, w=1inaiziw=\sum_{1\leq i\leq n}a_{i}z_{i} where aiJa_{i}\in J and ziT0z_{i}\in T_{0}. This sum is finite, so we can define the following maps.

𝐳:R\textstyle{{\mathbf{z}}:R\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1inT0\textstyle{\bigoplus_{1\leq i\leq n}T_{0}}𝐚:1inT0\textstyle{{\mathbf{a}}:\bigoplus_{1\leq i\leq n}T_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T0\textstyle{T_{0}}1R\textstyle{\hskip 15.0pt1_{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(z1,,zn)\textstyle{(z_{1},...,z_{n})}(x1,,xn)\textstyle{\hskip 5.0pt(x_{1},...,x_{n})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}iaixi\textstyle{\sum_{i}a_{i}x_{i}}

As nT0\bigoplus_{n}T_{0} is also 𝒢\mathcal{G}-divisible, by the preenvelope property of ε\varepsilon there exists a map f:T0nT0f:T_{0}\to\bigoplus_{n}T_{0} such that fε=𝐳f\varepsilon={\mathbf{z}}. Also, 𝐚𝐳(1R)=1inaizi=w{\mathbf{a}}{\mathbf{z}}(1_{R})=\sum_{1\leq i\leq n}a_{i}z_{i}=w, so 𝐚𝐳=ε{\mathbf{a}}{\mathbf{z}}=\varepsilon and the following diagram commutes.

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R\textstyle{{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐳\scriptstyle{{\mathbf{z}}}ε\scriptstyle{\varepsilon}ε\scriptstyle{\varepsilon}T0\textstyle{T_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}f\scriptstyle{f}T1\textstyle{T_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}nT0\textstyle{\bigoplus_{n}T_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐚\scriptstyle{{\mathbf{a}}}T0\textstyle{T_{0}}

By the envelope property of ε\varepsilon, 𝐚f{\mathbf{a}}f is an automorphism of T0T_{0}. The restriction of the automorphism 𝐚f{\mathbf{a}}f to T0[J]T_{0}[J] is an automorphism of T0[J]T_{0}[J], and factors through the module nT0[J]\bigoplus_{n}T_{0}[J]. However 𝐚(nT0[J])=0\mathbf{a}(\bigoplus_{n}T_{0}[J])=0, so 𝐚f(T0[J])=0{\mathbf{a}}f(T_{0}[J])=0, but 𝐚f\mathbf{a}f restricted to T0[J]T_{0}[J] is an automorphism, thus T0[J]=0T_{0}[J]=0.
From (iii) of Lemma 4.1 it follows that T0T0RR𝒢T_{0}\cong T_{0}\otimes_{R}R_{\mathcal{G}} since T0T_{0} is 𝒢\mathcal{G}-divisible. ∎

We look at 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelopes of 𝒢\mathcal{G}-torsion modules in Mod-R\mathrm{Mod}\textrm{-}R, and find that they are also 𝒢\mathcal{G}-torsion.

Lemma 5.2.

Suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R and MM is a 𝒢\mathcal{G}-torsion RR-module. Then the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of MM is 𝒢\mathcal{G}-torsion.

Proof.

To begin with, fix a finitely generated J𝒢J\in\mathcal{G} with a set {a1,,at}\{a_{1},\dots,a_{t}\} of generators and consider a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope D(J)D(J) of the cyclic 𝒢\mathcal{G}-torsion module R/JR/J, denoted as follows.

0R/JD(J)A(J)00\to R/J\hookrightarrow D(J)\to A(J)\to 0

We will show that D(J)D(J) is 𝒢\mathcal{G}-torsion. Consider the following countable direct sum of envelopes of R/JR/J which is itself an envelope, by Theorem 3.2 (i).

0n(R/J)nnD(J)nnA(J)n0.0\to\bigoplus_{n}(R/J)_{n}\hookrightarrow\bigoplus_{n}D(J)_{n}\to\bigoplus_{n}A(J)_{n}\to 0.

Choose an element aJa\in J and for each nn set fn:D(J)nD(J)n+1f_{n}\colon D(J)_{n}\to D(J)_{n+1} to be the multiplication by aa.

Then clearly (R/J)n(R/J)_{n} vanishes under the action of fnf_{n}, hence we can apply Theorem 3.2 (ii). For every dD(J)d\in D(J), there exists an mm such that

fmf2f1(d)=0D(J)(m+1).f_{m}\circ\cdots\circ f_{2}\circ f_{1}(d)=0\in D(J)_{(m+1)}.

Hence for every dDd\in D there is an integer mm for which amd=0a^{m}d=0.
Fix dDd\in D and let mim_{i} be the minimal natural number for which (ai)mid=0(a_{i})^{m_{i}}d=0 and set m:=sup{mi:1it}m:=\sup\{m_{i}:1\leq i\leq t\}. Then for a large enough integer kk we have that Jkd=0J^{k}d=0 (for example set k=tmk=tm), and Jk𝒢J^{k}\in\mathcal{G}. Thus every element of D(J)D(J) is annihilated by an ideal contained in 𝒢\mathcal{G}, therefore D(J)D(J) is 𝒢\mathcal{G}-torsion.

Now consider an arbitrary 𝒢\mathcal{G}-torsion module MM. Then MM has a presentation αΛR/Jα𝑝M0\bigoplus_{\alpha\in\Lambda}R/J_{\alpha}\overset{p}{\to}M\to 0 for a family {Jα}αΛ\{J_{\alpha}\}_{\alpha\in\Lambda} of ideals of 𝒢\mathcal{G}. Since 𝒢\mathcal{G} is of finite type, we may assume that each JαJ_{\alpha} is finitely generated.

Take the push-out of this map with the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of αR/Jα\bigoplus_{\alpha}R/J_{\alpha}.

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αΛR/Jα\textstyle{\bigoplus_{\begin{subarray}{c}\alpha\in\Lambda\end{subarray}}R/J_{\alpha}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}αΛD(Jα)\textstyle{\bigoplus_{\begin{subarray}{c}\alpha\in\Lambda\end{subarray}}D(J_{\alpha})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αΛA(Jα)\textstyle{\bigoplus_{\begin{subarray}{c}\alpha\in\Lambda\end{subarray}}A(J_{\alpha})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αΛA(Jα)\textstyle{\bigoplus_{\begin{subarray}{c}\alpha\in\Lambda\end{subarray}}A(J_{\alpha})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0}0\textstyle{0}

The bottom short exact sequence forms a preenvelope of MM. We have shown above that for every α\alpha in AA, D(Jα)D(J_{\alpha}) is 𝒢\mathcal{G}-torsion, so also ZZ is 𝒢\mathcal{G}-torsion. Therefore, as the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of MM must be a direct summand of ZZ by Proposition 3.1, also the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of MM is 𝒢\mathcal{G}-torsion. ∎

The following is a corollary to the final statement of Lemma 4.2 and Lemma 5.2.

Corollary 5.3.

Suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R and suppose MM is a 𝒢\mathcal{G}-torsion RR-module. Then MRR𝒢M\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible.

Proof.

Let the following be a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of a 𝒢\mathcal{G}-torsion module MM, where both DD and AA are 𝒢\mathcal{G}-torsion by Lemma 5.2.

0MDA00\to M\to D\to A\to 0

The module AA is 𝒢\mathcal{G}-divisible and R𝒢/RR_{\mathcal{G}}/R is 𝒢\mathcal{G}-torsion so ARR𝒢/R=0A\otimes_{R}R_{\mathcal{G}}/R=0, hence AARR𝒢A\to A\otimes_{R}R_{\mathcal{G}} is surjective. In particular, ARR𝒢A\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-torsion. Also as AAdd(T0T1)A\in\mathrm{Add}(T_{0}\oplus T_{1}), ARR𝒢A\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-torsion-free by Lemma 4.2. It follows that ARR𝒢A\otimes_{R}R_{\mathcal{G}} is both 𝒢\mathcal{G}-torsion and 𝒢\mathcal{G}-torsion-free so ARR𝒢=0A\otimes_{R}R_{\mathcal{G}}=0. Additionally as p.dimA1\operatorname{p.dim}A\leq 1, Tor1R(A,R𝒢)=0\operatorname{Tor}^{R}_{1}(A,R_{\mathcal{G}})=0, so the functor (RR𝒢)(-\otimes_{R}R_{\mathcal{G}}) applied to the envelope of MM reduces to the following isomorphism.

0=Tor1R(A,R𝒢)MRR𝒢DRR𝒢ARR𝒢=00=\operatorname{Tor}^{R}_{1}(A,R_{\mathcal{G}})\to M\otimes_{R}R_{\mathcal{G}}\overset{\cong}{\to}D\otimes_{R}R_{\mathcal{G}}\to A\otimes_{R}R_{\mathcal{G}}=0

Hence as DRR𝒢D\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible, also MRR𝒢M\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible, as required. ∎

Proposition 5.4.

Suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R. Then R𝒢R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible.

Proof.

We will show that for each J𝒢J\in\mathcal{G}, R/JRR𝒢=0R/J\otimes_{R}R_{\mathcal{G}}=0. Fix a J𝒢J\in\mathcal{G}. By Corollary 5.3, R/JRR𝒢R/J\otimes_{R}R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible, Thus we have R/JR(R/JRR𝒢)=0R/J\otimes_{R}(R/J\otimes_{R}R_{\mathcal{G}})=0. However

0=R/JR(R/JRR𝒢)(R/JRR/J)RR𝒢R/JRR𝒢,0=R/J\otimes_{R}(R/J\otimes_{R}R_{\mathcal{G}})\cong(R/J\otimes_{R}R/J)\otimes_{R}R_{\mathcal{G}}\cong R/J\otimes_{R}R_{\mathcal{G}},

since RR/JR\to R/J is a ring epimorphism, thus R𝒢R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible. ∎

Using the characterisation of a perfect localisation of [Ste75, Chapter XI.3, Proposition 3.4], we can state the main result of this section.

Proposition 5.5.

Assume that 𝒯\mathcal{T} is a 11-tilting class over a commutative ring RR such that the class 𝒯\mathcal{T} is enveloping. Then the associated Gabriel topology 𝒢\mathcal{G} of 𝒯\mathcal{T} arises from a perfect localisation.

Proof.

By Proposition 5.4, R𝒢R_{\mathcal{G}} is 𝒢\mathcal{G}-divisible, hence by [Ste75, Proposition 3.4 (g)], ψ:RR𝒢\psi\colon R\to R_{\mathcal{G}} is flat ring epimorphism and moreover it is injective. ∎

6. The 𝒢\mathcal{G}-completion of RR and the endomorphism ring of KK

The aim of this section is to prove that if R𝑢UR\overset{u}{\to}U is a commutative flat injective ring epimorphism with associated Gabriel topology 𝒢\mathcal{G}, then there is a natural ring isomorphism between the following two rings.

Λ(R)=limJ𝒢R/JandEndR(K)=\Lambda(R)=\varprojlim_{\begin{subarray}{c}J\in\mathcal{G}\end{subarray}}R/J{\rm\ and\ }\operatorname{End}_{R}(K)=\mathfrak{R}

This was mentioned in [BP18, Remark 19.4], and a much stronger equivalence was shown in [Pos17]. Also, it follows from this ring isomorphism that \mathfrak{R} is a commutative ring.

For completeness, we will give an explicit description of the isomorphism between the two rings.

We will begin by briefly recalling some useful definitions about topological rings specifically referring to Gabriel topologies. Our reference is [Ste75, Chapter VI.4]. Next we will continue by introducing uu-contramodules in an analogous way to Positselski in [Pos18]. To finish, we show the ring isomorphism as well as a lemma and a proposition which relate the 𝒢\mathcal{G}-torsion RR-modules R/JR/J to the discrete quotient rings of \mathfrak{R}.

6.1. Topological rings

A ring RR is a topological ring if it has a topology such that the ring operations are continuous.

A topological ring RR is right linearly topological if it has a topology with a basis of neighbourhoods of zero consisting of right ideals of RR. The ring RR with a right Gabriel topology is an example of a right linearly topological ring.

If RR is a right linearly topological ring, then the set of right ideals JJ in a basis 𝔅\mathfrak{B} of the topology form a directed set, hence {R/JJ𝔅}\{R/J\mid J\in\mathfrak{B}\} is an inverse system. The completion of RR is the module

Λ𝔅(R):=limJ𝔅R/J.\Lambda_{\mathfrak{B}}(R):=\varprojlim_{\begin{subarray}{c}J\in\mathfrak{B}\end{subarray}}R/J.

There is a canonical map λ:RΛ𝔅(R)\lambda:R\to\Lambda_{\mathfrak{B}}(R) which sends the element rRr\in R to (r+J)J𝔅(r+J)_{J\in\mathfrak{B}}. If the homomorphism λR\lambda_{R} is injective, then RR is called separated, which is equivalent to J𝔅J=0\bigcap_{J\in\mathfrak{B}}J=0. If the map λ\lambda is surjective, RR is called complete.
The projective limit topology on Λ𝔅(R)\Lambda_{\mathfrak{B}}(R) is the topology where a sub-basis of neighbourhoods of zero is given by the the kernels of the projection maps Λ𝔅(R)R/J\Lambda_{\mathfrak{B}}(R)\to R/J. That is, it is the topology induced by the product of the discrete topology on J𝔅R/J\prod_{J\in\mathfrak{B}}R/J. If the ideals in 𝔅\mathfrak{B} are two-sided in RR, then the module Λ𝔅(R)\Lambda_{\mathfrak{B}}(R) is a ring. Furthermore, it is a linearly topological ring with respect to the projective limit topology. In this case, the ring Λ𝔅(R)\Lambda_{\mathfrak{B}}(R) is both separated and complete with this topology. Each element in Λ𝔅(R)\Lambda_{\mathfrak{B}}(R) is of the form (rJ+J)J𝔅(r_{J}+J)_{J\in\mathfrak{B}} with the relation that for JJJ\subseteq J^{\prime}, rJrJJr_{J}-r_{J^{\prime}}\in J^{\prime}. We will simply write Λ(R)\Lambda(R) when the basis 𝔅\mathfrak{B} is clear from the context.

Remark 6.1.

If W(J)W(J) is the kernel of the projection πJ:Λ𝔅(R)R/J\pi_{J}\colon\Lambda_{\mathfrak{B}}(R)\to R/J, then clearly W(J)Λ(R)JW(J)\supseteq\Lambda(R)J.

Let RR be a linearly topological ring. A right RR-module NN is discrete if for every xNx\in N, the annihilator ideal AnnR(x)={rR:xr=0}\mathrm{Ann}_{R}(x)=\{r\in R:xr=0\} is open in the topology of RR. In case the topology on RR is a Gabriel topology 𝒢\mathcal{G}, then NN is discrete if and only if it is 𝒢\mathcal{G}-torsion.

A linearly topological ring is left pro-perfect ([Pos19]) if it is separated, complete, and with a base of neighbourhoods of zero formed by two-sided ideals such that all of its discrete quotient rings are perfect.

For the rest of this subsection, we will be considering a flat injective ring epimorphism of commutative rings denoted 0R𝑢U0\to R\overset{u}{\to}U, and we will denote by KK the cokernel U/RU/R of uu.

Let \mathfrak{R} denote the endomorphism ring EndR(K)\operatorname{End}_{R}(K). Take a finitely generated submodule FF of KK, and consider the ideal formed by the elements of \mathfrak{R} which annihilate FF. The ideals of this form form a base of neighbourhoods of zero of \mathfrak{R}. Note that this is the same as considering EndR(K)\operatorname{End}_{R}(K) with the subspace topology of the product topology on KKK^{K} where the topology on KK is the discrete topology. We will consider \mathfrak{R} endowed with this topology, which is also called the finite topology.

We will now state the above in terms of a Gabriel topology that arises from a perfect localisation. Let 𝒢\mathcal{G} be the Gabriel topology associated to the flat ring epimorphism uu. As KRU=0K\otimes_{R}U=0, KK is 𝒢\mathcal{G}-torsion, or equivalently a discrete module. Thus there is a natural well-defined action of Λ(R)\Lambda(R) on KK. In other words, KK is a Λ(R)\Lambda(R)-module where for every element (rJ+J)J𝒢Λ(R)(r_{J}+J)_{J\in\mathcal{G}}\in\Lambda(R) and every element zUz\in U, the scalar multiplication is defined by (rJ+J)J𝒢(z+R):=rJzz+R(r_{J}+J)_{J\in\mathcal{G}}\cdot(z+R):=r_{J_{z}}z+R where Jz:=AnnR(z+R)J_{z}:=\mathrm{Ann}_{R}(z+R). As well as the natural map λ:RΛ(R)\lambda:R\to\Lambda(R), there is also a natural map ν:R\nu:R\to\mathfrak{R} where each element of RR is mapped to the endomorphism of KK which is multiplication by that element.

If R𝑢UR\overset{u}{\to}U is a flat injective ring epimorphism, then there is a homomorphism

α:Λ(R)=limJ𝒢R/J,\alpha:\Lambda(R)=\varprojlim_{\begin{subarray}{c}J\in\mathcal{G}\end{subarray}}R/J\to\mathfrak{R},

where α\alpha is induced by the action of Λ(R)\Lambda(R) on KK. It follows that the following triangle commutes.

()RνλΛ(R)α(\ast)\quad\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 10.00928pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-6.83507pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-10.00928pt\raise-19.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\nu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.08334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.14409pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\lambda}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 30.83507pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.83507pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Lambda(R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.69542pt\raise-23.71527pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\alpha}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 6.68056pt\raise-32.7147pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-6.68056pt\raise-38.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathfrak{R}}$}}}}}}}{\hbox{\kern 42.03127pt\raise-38.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces

The rest of this section is dedicated to showing that α\alpha is a ring isomorphism. We will first show that α\alpha is injective, but before that we have to recall some terminology.

A module MM is uu-h-divisible if MM is an epimorphic image of U(α)U^{(\alpha)} for some cardinal α\alpha. An RR-module MM has a unique uu-h-divisible submodule denoted hu(M)h_{u}(M), and it is the image of the map HomR(U,M)HomR(R,M)M\operatorname{Hom}_{R}(U,M)\to\operatorname{Hom}_{R}(R,M)\cong M. Hence for an RR-module MM, by applying the contravariant functor HomR(,M)\operatorname{Hom}_{R}(-,M) to the short exact sequence 0R𝑢UK00\to R\overset{u}{\to}U\to K\to 0 we have the following short exact sequences.

0HomR(K,M)HomR(U,M)hu(M)00\to\operatorname{Hom}_{R}(K,M)\to\operatorname{Hom}_{R}(U,M)\to h_{u}(M)\to 0 (6)
0M/hu(M)ExtR1(K,M)ExtR1(U,M)00\to M/h_{u}(M)\to\operatorname{Ext}^{1}_{R}(K,M)\to\operatorname{Ext}^{1}_{R}(U,M)\to 0 (7)

By applying the covariant functor HomR(K,)\operatorname{Hom}_{R}(K,-) to the same short exact sequence we have the following.

0=HomR(K,U)HomR(K,K)𝛿ExtR1(K,R)ExtR1(K,U)=0,0=\operatorname{Hom}_{R}(K,U)\to\operatorname{Hom}_{R}(K,K)\overset{\delta}{\to}\operatorname{Ext}^{1}_{R}(K,R)\to\operatorname{Ext}^{1}_{R}(K,U)=0,\ (8)

where the last term vanishes since by the flatness of the ring UU, there is an isomorphism ExtR1(K,U)ExtU1(KRU,U)=0\operatorname{Ext}^{1}_{R}(K,U)\cong\operatorname{Ext}^{1}_{U}(K\otimes_{R}U,U)=0. Thus note that HomR(K,K)\operatorname{Hom}_{R}(K,K) is isomorphic to ExtR1(K,R)\operatorname{Ext}^{1}_{R}(K,R) via δ\delta.

Recall from Lemma 4.5 that the ideals AnnR(z+R)\mathrm{Ann}_{R}(z+R) for z+RKz+R\in K form a sub-basis of the topology 𝒢\mathcal{G}. Let 𝒮𝒢\mathcal{S}\subset\mathcal{G} denote the ideals of 𝒢\mathcal{G} of the form AnnR(z+R)\mathrm{Ann}_{R}(z+R) for z+RKz+R\in K. Clearly, the following two intersections of ideals coincide.

J𝒢J=J𝒮J\bigcap_{\begin{subarray}{c}J\in\mathcal{G}\end{subarray}}J=\bigcap_{\begin{subarray}{c}J\in\mathcal{S}\end{subarray}}J

We begin with some facts about Λ(R)\Lambda(R) and \mathfrak{R}.

Lemma 6.2.

Let u:RUu:R\to U be a flat injective ring epimorphism. Then the following hold.

  1. (i)

    The kernel of ν:R\nu:R\to\mathfrak{R} is the intersection J𝒮J\bigcap_{J\in\mathcal{S}}J.

  2. (ii)

    The kernel of λ:RΛ(R)\lambda:R\to\Lambda(R) is the intersection J𝒢J\bigcap_{J\in\mathcal{G}}J.

  3. (iii)

    The ideal J𝒢J\bigcap_{J\in\mathcal{G}}J is the maximal uu-h-divisible submodule of RR.

  4. (iv)

    The homomorphism α:Λ(R)\alpha:\Lambda(R)\to\mathfrak{R} is injective.

Proof.

(i) For rRr\in R, ν(r)=0\nu(r)=0 if and only if rK=0rK=0.

(ii) By the definition of λ\lambda it is clear that λ(r)=0\lambda(r)=0 if and only if rJr\in J for every J𝒢J\in\mathcal{G}.

(iii) First we show that J𝒢Jhu(R)\bigcap_{J\in\mathcal{G}}J\subseteq h_{u}(R). Take aJ𝒢Ja\in\bigcap_{J\in\mathcal{G}}J. We want to see that multiplication by aa, a˙:RR\dot{a}:R\to R extends to a map f:URf:U\to R (that is a˙\dot{a} is in the image of the map u:HomR(U,R)HomR(R,R)u^{\ast}:\operatorname{Hom}_{R}(U,R)\to\operatorname{Hom}_{R}(R,R)). By part (i) and its proof, azRaz\in R for every zUz\in U, so we have a well-defined map a˙:UR\dot{a}:U\to R, which makes the following triangle commute as desired.

R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}a˙\scriptstyle{\dot{a}}u\scriptstyle{u}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}a˙\scriptstyle{\dot{a}}R\textstyle{R}

Now take ahu(R)a\in h_{u}(R). Since hu(R)h_{u}(R) is a 𝒢\mathcal{G}-divisible submodule of RR, aJ(hu(R))Ja\in J(h_{u}(R))\leq J for each J𝒢J\in\mathcal{G}, as required.

(iv) Take η=(rJ+J)J𝒢Λ(R)\eta=(r_{J}+J)_{J\in\mathcal{G}}\in\Lambda(R) such that α(η)=0\alpha(\eta)=0 or η(z+R)=0\eta(z+R)=0 for each zUz\in U. Then rIzRr_{I}z\in R where I=AnnR(z+R)I=\mathrm{Ann}_{R}(z+R). By Lemma 4.5, for each J𝒢J\in\mathcal{G} there exists z0,,znz_{0},\dots,z_{n} such that JnAnnR(zi+R)=:I0J\supseteq\bigcap_{n}\mathrm{Ann}_{R}(z_{i}+R)=:I_{0}. Thus rJrI0Jr_{J}-r_{I_{0}}\in J and rI0ziRr_{I_{0}}z_{i}\in R for each 0in0\leq i\leq n, so rI0Jr_{I_{0}}\in J. This implies rJJr_{J}\in J for each J𝒮J\in\mathcal{S}, so η=0\eta=0. ∎

6.2. uu-contramodules

We will begin by discussing a general commutative ring epimorphism uu before moving onto a flat injective ring epimorphisms.

Definition 6.3.

Let u:RUu\colon R\to U be a ring epimorphism. A uu-contramodule is an RR-module MM such that

HomR(U,M)=0=ExtR1(U,M).\operatorname{Hom}_{R}(U,M)=0=\operatorname{Ext}^{1}_{R}(U,M).
Lemma 6.4.

[GL91, Proposition 1.1] The category of uu-contramodules is closed under kernels of morphisms, extensions, infinite products and projective limits in R-ModR\textrm{-}\mathrm{Mod}.

The following two lemmas are proved in [Pos18] for the case of the localisation of RR at a multiplicative subset. The proofs follow analagously for the case of a commutative injective ring epimorphism u:RUu\colon R\to U.

Lemma 6.5.

[Pos18, Lemma 1.2] Let u:RUu\colon R\to U be a ring epimorphism and let MM be an RR-module.

  1. (i)

    If HomR(U,M)=0\operatorname{Hom}_{R}(U,M)=0, then HomR(Z,M)=0\operatorname{Hom}_{R}(Z,M)=0 for any uu-h-divisible module ZZ.

  2. (ii)

    If MM is a uu-contramodule, then ExtR1(Z,M)=0=HomR(Z,M)\operatorname{Ext}_{R}^{1}(Z,M)=0=\operatorname{Hom}_{R}(Z,M) for any UU-module ZZ.

Lemma 6.6.

[Pos18, Lemma 1.10] Let b:ABb:A\to B and c:ACc:A\to C be two RR-module homomorphisms such that CC is a uu-contramodule while Ker(b)\operatorname{Ker}(b) is a uu-h-divisible RR-module and Coker(b)\operatorname{Coker}(b) is a UU-module. Then there exists a unique homomorphism f:BCf:B\to C such that c=fbc=fb.

From now on, u:RUu:R\to U will always be a commutative flat injective ring epimorphism.

The following lemma is proved in two papers of Bazzoni-Positselski, although the proof without spectral sequences is proved in [BP18, Lemma 16.2].

Lemma 6.7.

[BP18, Lemma 16.2], [BP19b, Lemma 2.5(a),(b)] Let u:RUu:R\to U be a flat injective ring epimorphism. Then \mathfrak{R} is a uu-contramodule and is 𝒢\mathcal{G}-torsion-free.

The following lemma and corollary are a generalisation of [Pos18, Lemma 1.6(b)] and [Pos18, Lemma 2.1(a)].

Lemma 6.8.

Let u:RUu:R\to U be a flat injective ring epimorphism with associated Gabriel topology 𝒢\mathcal{G}. Then for every J𝒢J\in\mathcal{G}, every R/JR/J-module MM is a uu-contramodule.

Proof.

To see that HomR(U,M)=0\operatorname{Hom}_{R}(U,M)=0, take f:UMf:U\to M. Then f(U)=f(JU)=Jf(U)=0f(U)=f(JU)=Jf(U)=0 as JJ annihilates MM.

As ToriR(R/J,U)=0\operatorname{Tor}^{R}_{i}(R/J,U)=0 and RR/JR\to R/J is a ring epimorphism, one has that the following isomorphism.

ExtR1(U,M)ExtR/J1(R/JRU,M)=0\operatorname{Ext}_{R}^{1}(U,M)\cong\operatorname{Ext}_{R/J}^{1}(R/J\otimes_{R}U,M)=0

Corollary 6.9.

Let u:RUu:R\to U be a flat injective ring epimorphism. Then Λ(R)\Lambda(R) is a uu-contramodule.

Proof.

This follows immediately by Lemma 6.8 and by the closure properties of uu-contramodules in Lemma 6.4. ∎

Lemma 6.10.

Let u:RUu:R\to U be a flat injective ring epimorphism. Then the cokernel of ν:R\nu:R\to\mathfrak{R} is a UU-module.

Proof.

Recall that hu(R)h_{u}(R) is the uu-h-divisible submodule of RR and δ\delta is as in sequence (8). Consider the following commuting diagram.

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R/hu(R)\textstyle{R/h_{u}(R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν\scriptstyle{\nu}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}δ\scriptstyle{\delta}Coker(ν)\textstyle{\operatorname{Coker}(\nu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R/hu(R)\textstyle{R/h_{u}(R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ExtR1(K,R)\textstyle{\operatorname{Ext}^{1}_{R}(K,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ExtR1(U,R)\textstyle{\operatorname{Ext}^{1}_{R}(U,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

By the five-lemma, the last vertical arrow is an isomorphism, so Coker(ν)ExtR1(U,R)\operatorname{Coker}(\nu)\cong\operatorname{Ext}^{1}_{R}(U,R) which is a UU-module, as required.

6.3. The isomorphism between the 𝒢\mathcal{G}-completion of RR and End(K)\operatorname{End}(K)

We now prove the main result of this section.

Proposition 6.11.

Let u:RUu:R\to U be a flat injective ring epimorphism. Using the notation of Subsection 6.1 the homomorphism α:Λ(R)\alpha:\Lambda(R)\to\mathfrak{R} is a ring isomorphism.

Proof.

From ()(\ast) we have the following commuting triangle:

R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν\scriptstyle{\nu}λ\scriptstyle{\lambda}Λ(R)\textstyle{\Lambda(R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}\textstyle{\mathfrak{R}}

From sequences (ii) and (iii) we have the following exact sequence.

0hu(R)R𝜈Coker(ν)00\to h_{u}(R)\to R\overset{\nu}{\to}\mathfrak{R}\to\operatorname{Coker}(\nu)\to 0

where hu(R)h_{u}(R) is uu-h-divisible and Coker(ν)\operatorname{Coker}(\nu) is a UU-module by Lemma 6.10. Both Λ(R)\Lambda(R) and \mathfrak{R} are uu-contramodules so one can apply Lemma 6.6 to the two triangles below. That is, firstly, there exists a unique map β\beta such that βν=λ\beta\nu=\lambda, and secondly by uniqueness, the identity on \mathfrak{R} is the only homomorphism that makes the triangle on the right below commute.

R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}ν\scriptstyle{\nu}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν\scriptstyle{\nu}ν\scriptstyle{\nu}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id\scriptstyle{\text{id}_{\mathfrak{R}}}Λ(R)\textstyle{\Lambda(R)}\textstyle{\mathfrak{R}}

It follows that since αβν=αλ=ν\alpha\beta\nu=\alpha\lambda=\nu, by uniqueness αβ=id\alpha\beta=\text{id}_{\mathfrak{R}}. Therefore, α\alpha is surjective. It was shown in Lemma 6.2 that α\alpha is injective, hence α\alpha is an isomorphism.

It remains to see that α\alpha is a ring homomorphism. First note that if zUz\in U, sRs\in R and JzRJz\subseteq R, then also J(sz)RJ(sz)\subseteq R, that is JAnnR(sz+R)J\subseteq\mathrm{Ann}_{R}(sz+R). Let r~=(rJ+J)J𝒢\tilde{r}=(r_{J}+J)_{J\in\mathcal{G}} and s~=(sJ+J)J𝒢\tilde{s}=(s_{J}+J)_{J\in\mathcal{G}} denote elements of Λ(R)\Lambda(R). Let LL denote AnnR(z+R)\mathrm{Ann}_{R}(z+R) and LsL_{s} denote AnnR(sz+R)\mathrm{Ann}_{R}(sz+R) for a fixed z+Rz+R and note that LLsL\subseteq L_{s}.

α(r~s~):KK:z+RrLsLz+R\alpha(\tilde{r}\cdot\tilde{s}):K\to K:z+R\mapsto r_{L}s_{L}z+R
α(r~)α(s~)=(Kr~K)(Ks~K):z+RsLz+RrLssLz+R\alpha(\tilde{r})\alpha(\tilde{s})=(K\overset{\tilde{r}}{\to}K)(K\overset{\tilde{s}}{\to}K):z+R\mapsto s_{L}z+R\mapsto r_{L_{s}}s_{L}z+R

Then clearly rLsrLLsr_{L_{s}}-r_{L}\in L_{s}, so the endomorphisms α(r~s~)\alpha(\tilde{r}\cdot\tilde{s}) and α(r~)α(s~)\alpha(\tilde{r})\alpha(\tilde{s}) are equal. ∎

The following lemma will be useful when passing from the ring RR to the complete and separated topological ring \mathfrak{R}.

Lemma 6.12.

Let u:RUu:R\to U be a flat injective ring epimorphism with associated Gabriel topology 𝒢\mathcal{G}. The RR-module R/JR/J is isomorphic to /J\mathfrak{R}/J\mathfrak{R} and to Λ(R)/JΛ(R)\Lambda(R)/J\Lambda(R), for every J𝒢J\in\mathcal{G}.

Proof.

/J\mathfrak{R}/J\mathfrak{R} and Λ(R)/JΛ(R)\Lambda(R)/J\Lambda(R) are isomorphic by Proposition 6.11. Both R/JR/J and /J\mathfrak{R}/J\mathfrak{R} are R/JR/J-modules, hence are uu-contramodules by Lemma 6.8 and we can imply Lemma 6.6 to ν:R\nu\colon R\to\mathfrak{R} to find that there exists a unique ff such that the left triangle below commutes. The map ff induces f¯\bar{f} since JKerfJ\mathfrak{R}\subseteq\operatorname{Ker}f, so the right triangle below also commutes.

R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}ν\scriptstyle{\nu}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}π\scriptstyle{\pi\hskip 15.0pt}/J\textstyle{\mathfrak{R}/J\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯\scriptstyle{\bar{f}}R/J\textstyle{R/J}R/J\textstyle{R/J}

Let ν¯\bar{\nu} be the map induced by ν\nu as in the following commuting diagram. We will show that f¯\bar{f} and ν¯\bar{\nu} are mutually inverse.

R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν\scriptstyle{\nu}p\scriptstyle{p}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}R/J\textstyle{R/J\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν¯\scriptstyle{\bar{\nu}}/J\textstyle{\mathfrak{R}/J\mathfrak{R}}

We have that πν=ν¯p\pi\nu=\bar{\nu}p, and so using the above commuting triangles it follows that f¯ν¯p=f¯πν=fν=p\bar{f}\bar{\nu}p=\bar{f}\pi\nu=f\nu=p. As pp is surjective, f¯ν¯=idR/J\bar{f}\bar{\nu}=\text{id}_{R/J}. We now show that ν¯f¯=id/J\bar{\nu}\bar{f}=\text{id}_{{\mathfrak{R}}/J\mathfrak{R}}.

R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πν\scriptstyle{\pi\nu}ν\scriptstyle{\nu}\textstyle{\mathfrak{R}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}/J\textstyle{\mathfrak{R}/J\mathfrak{R}}

By uniqueness, π\pi is the unique map that fits into the triangle above, that is πν=hν\pi\nu=h\nu implies that h=πh=\pi. So,

πν=ν¯p=ν¯fν=ν¯f¯πν\pi\nu=\bar{\nu}p=\bar{\nu}f\nu=\bar{\nu}\bar{f}\pi\nu

Therefore π=ν¯f¯π\pi=\bar{\nu}\bar{f}\pi, and as π\pi is surjective, ν¯f¯=id/J\bar{\nu}\bar{f}=\text{id}_{{\mathfrak{R}}/J\mathfrak{R}} as required. ∎

Proposition 6.13.

If VV is an open ideal in the topology of =EndR(K)\mathfrak{R}=\operatorname{End}_{R}(K), then there is J𝒢J\in\mathcal{G} and a surjective ring homomorphism R/J/VR/J\to\mathfrak{R}/V.

Proof.

By the definition of the topology on \mathfrak{R}, if VV is an open ideal, then by Proposition 6.11, W=α1(V)W=\alpha^{-1}(V) is an open ideal in the projective limit topology of Λ(R)\Lambda(R). Hence by Remark 6.1, there is J𝒢J\in\mathcal{G} such that WΛ(R)JW\supseteq\Lambda(R)J. By Lemma 6.12 there is a surjective ring homomorphism R/J/V.R/J\to\mathfrak{R}/V.

7. When a 𝒢\mathcal{G}-divisible class is enveloping

For this section, RR will always be a commutative ring. Fix a flat injective ring epimorphism uu and an exact sequence

0R𝑢UK0.0\to R\overset{u}{\to}U\to K\to 0.

Denote by 𝒢\mathcal{G} the Gabriel topology arising from the flat ring epimorphisms uu. We let mSpecR\operatorname{mSpec}{R} denote the collection of maximal ideals of RR.

The aim of this section is to show that if 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping then for each J𝒢J\in\mathcal{G} the ring R/JR/J is perfect. It will follow from Section 8 that also \mathfrak{R} is pro-perfect.

We begin by showing that for a local ring RR the rings R/JR/J are perfect, before extending the result to all commutative rings by showing that all 𝒢\mathcal{G}-torsion modules (specifically the R/JR/J for J𝒢J\in\mathcal{G}) are isomorphic to the direct sum of their localisations.

In Lemma 5.1, it was shown that if ε:RD\varepsilon:R\to D is a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of RR in Mod-R\mathrm{Mod}\textrm{-}R, then DD must be 𝒢\mathcal{G}-torsion-free. Furthermore, if 𝒢\mathcal{G} arises from a perfect localisation u:RUu:R\to U and RR has a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope, then the following proposition allows us to work in the setting that 𝒟𝒢=GenU\mathcal{D}_{\mathcal{G}}=\operatorname{Gen}U, thus (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) is the 11-tilting cotorsion pair associated to the 11-tilting module UKU\oplus K (see Remark 4.4).

Combined with [Hrb16, Proposition 5.4], the following proposition provides a generalisation of [AHHT05, Theorem 1.1]. More precisely, the propositions show that conditions (1),(4), and (6) in [AHHT05, Theorem 1.1] hold also in our more general context. The equivalence of (1),(2), and (3) of [AHHT05, Theorem 1.1] was already shown in more generality in [AHS11].

Proposition 7.1.

Let u:RUu:R\to U be a (non-trivial) flat injective ring epimorphism and suppose RR has a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope. Then p.dimRU1\operatorname{p.dim}_{R}U\leq 1.

Proof.

Let

0R𝜀DD/R00\to R\overset{\varepsilon}{\to}D\to D/R\to 0 ()

denote the 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of RR. First we claim that DD is a UU-module by showing that DD is 𝒢\mathcal{G}-closed, or that DURDD\cong U\otimes_{R}D. Consider the following exact sequence.

0Tor1R(D,K)DDRUDRK00\to\operatorname{Tor}^{R}_{1}(D,K)\to D\to D\otimes_{R}U\to D\otimes_{R}K\to 0

Therefore we must show that Tor1R(D,K)=0=DRK\operatorname{Tor}^{R}_{1}(D,K)=0=D\otimes_{R}K. As DD is 𝒢\mathcal{G}-divisible and KK is 𝒢\mathcal{G}-torsion it follows that DRK=0D\otimes_{R}K=0. By Lemma 5.1 DD is 𝒢\mathcal{G}-torsion-free, hence DDRUD\cong D\otimes_{R}U and DD is a UU-module. The cotorsion pair (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) is complete, which implies that the RR-module D/RD/R is in 𝒜\mathcal{A}, so p.dimRD/R1\operatorname{p.dim}_{R}D/R\leq 1. From the short exact sequence ()(**) it follows that also p.dimRD1\operatorname{p.dim}_{R}D\leq 1. Consider the following short exact sequence of UU-modules

0UDRUDD/RRU00\to U\to D\otimes_{R}U\cong D\to D/R\otimes_{R}U\to 0

We now claim that D/RRUD/R\otimes_{R}U is UU-projective. Take any ZU-ModZ\in U\textrm{-}\mathrm{Mod} and note that Z𝒟𝒢Z\in\mathcal{D}_{\mathcal{G}}. Then 0=ExtR1(D/R,Z)ExtU1(D/RRU,Z)0=\operatorname{Ext}^{1}_{R}(D/R,Z)\cong\operatorname{Ext}^{1}_{U}(D/R\otimes_{R}U,Z). Therefore the short exact sequence above splits in Mod-U\mathrm{Mod}\textrm{-}U and so UU is a direct summand of DD also as an RR-module, and the conclusion follows. ∎

Corollary 7.2.

Let u:RUu:R\to U be a (non-trivial) flat injective ring epimorphism and suppose RR has a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope. Then

0R𝑢UK00\to R\overset{u}{\to}U\to K\to 0

is a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope of RR.

Proof.

By Proposition 7.1 p.dimU1\operatorname{p.dim}U\leq 1, so from the discussion in Section 4, UKU\oplus K is a 11-tilting module such that (UK)=𝒟𝒢(U\oplus K)^{\perp}=\mathcal{D}_{\mathcal{G}}. Thus K𝒜K\in\mathcal{A} and so uu is a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-preenvelope. To see that uu is an envelope, note that HomR(K,U)=0\operatorname{Hom}_{R}(K,U)=0, so by Lemma 3.4, if u=fuu=fu, then f=idUf=\text{id}_{U} is an automorphism of UU, thus uu is a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope as required. ∎

Later in Example 8.9 we give an example of a ring RR and 11-tilting cotorsion class 𝒯\mathcal{T} where RR has a 𝒯\mathcal{T}-envelope, but 𝒯\mathcal{T} is not enveloping. This result uses our characterisation of the rings over which a 11-tilting class 𝒯\mathcal{T} is enveloping in Theorem 8.5.

We now begin by showing that when RR is a commutative local ring, if 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R then for each J𝒢J\in\mathcal{G}, R/JR/J is a perfect ring. We will use the ring isomorphism α:Λ(R)\alpha:\Lambda(R)\cong\mathfrak{R} of Proposition 6.11.

Lemma 7.3.

Let RR be a commutative local ring and u:RUu:R\to U a flat injective ring epimorphism and let KK denote U/RU/R. Then KK is indecomposable.

Proof.

It is enough to show that every idempotent of EndR(K)\operatorname{End}_{R}(K) is either the zero homomorphism or the identity on KK. Let 𝔪\mathfrak{m} denote the maximal ideal of RR. Take a non-zero idempotent eEndR(K)e\in\operatorname{End}_{R}(K). Then there is an associated element α1(e)=r~:=(rJ+J)J𝒢Λ(R)\alpha^{-1}(e)=\tilde{r}:=(r_{J}+J)_{J\in\mathcal{G}}\in\Lambda(R) via the ring isomorphism α:Λ(R)\alpha:\Lambda(R)\cong\mathfrak{R} of Proposition 6.11. Clearly r~\tilde{r} is also non-zero and an idempotent in Λ(R)\Lambda(R). We will show this element is the identity in Λ(R)\Lambda(R).

As r~\tilde{r} is non-zero, there exists a J0𝒢J_{0}\in\mathcal{G} such that rJ0J0r_{J_{0}}\notin J_{0}. Also, r~r~r~=0\tilde{r}\cdot\tilde{r}-\tilde{r}=0, hence

rJ0rJ0rJ0=rJ0(rJ01R)J0.r_{J_{0}}r_{J_{0}}-r_{J_{0}}=r_{J_{0}}(r_{J_{0}}-1_{R})\in J_{0}.

We claim that rJ0r_{J_{0}} is a unit in RR. Suppose not, then rJ0𝔪r_{J_{0}}\in\mathfrak{m}, hence rJ01Rr_{J_{0}}-1_{R} is a unit, which implies that rJ0J0r_{J_{0}}\in J_{0}, a contradiction.

Consider some other J𝒢J\in\mathcal{G} such that JRJ\neq R. rJJ0rJ0J0r_{J\cap J_{0}}-r_{J_{0}}\in J_{0}, hence rJJ0J0r_{J\cap J_{0}}\notin J_{0}. Therefore, by a similar argument as above, rJJ0r_{J\cap J_{0}} is a unit in RR. As rJJ0rJJr_{J\cap J_{0}}-r_{J}\in J and rJJ0r_{J\cap J_{0}} is a unit, rJJr_{J}\notin J. Therefore by a similar argument as above rJr_{J} is a unit in RR for each J𝒢J\in\mathcal{G} and we conclude that r~\tilde{r} is a unit in Λ(R)\Lambda(R).

Finally, as rJ(rJ1R)Jr_{J}(r_{J}-1_{R})\in J for every JJ, and r~:=(rJ+J)J𝒢\tilde{r}:=(r_{J}+J)_{J\in\mathcal{G}} is a unit, it follows that rJ1RJr_{J}-1_{R}\in J for each JJ, implying that r~\tilde{r} is the identity in Λ(R)\Lambda(R). ∎

Proposition 7.4.

Let RR be a commutative local ring and consider the 11-tilting cotorsion pair (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) induced by the flat injective ring epimorphism u:RUu:R\to U. If 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in R-ModR\textrm{-}\mathrm{Mod}, then R/JR/J is a perfect ring for every J𝒢J\in\mathcal{G}.

Proof.

Let 𝔪\mathfrak{m} denote the maximal ideal of RR. As RR is local, to show that R/JR/J is perfect it is enough to show that for every sequence of elements {a1,a2,,ai,}\{a_{1},a_{2},\dots,a_{i},\dots\} with ai𝔪Ja_{i}\in\mathfrak{m}\setminus J, there exists an m>0m>0 such that the product a1a2amJa_{1}a_{2}\cdots a_{m}\in J (that is 𝔪/J\mathfrak{m}/J is T-nilpotent) by Proposition 2.2.

Fix a J𝒢J\in\mathcal{G} and take {a1,a2,,ai,}\{a_{1},a_{2},\dots,a_{i},\dots\} as above. Consider the following preenvelope of R/aiRR/a_{i}R.

0R/aiRU/aiRK00\to R/a_{i}R\hookrightarrow U/a_{i}R\to K\to 0

As RR is local, by Lemma 7.3, KK is indecomposable, and as R/aiRR/a_{i}R is not 𝒢\mathcal{G}-divisible this is an envelope of R/aiRR/a_{i}R.

We will use the T-nilpotency of direct sums of envelopes from Theorem 3.2. Consider the following countable direct sum of envelopes of R/aiRR/a_{i}R which is itself an envelope by Theorem 3.2 (i).

0i>0R/aiRi>0U/aiRi>0K00\to\bigoplus_{\begin{subarray}{c}i>0\end{subarray}}R/a_{i}R\hookrightarrow\bigoplus_{\begin{subarray}{c}i>0\end{subarray}}U/a_{i}R\to\bigoplus_{\begin{subarray}{c}i>0\end{subarray}}K\to 0

For each i>0i>0, we define a homomorphism fi:U/aiRU/ai+1Rf_{i}:U/a_{i}R\to U/a_{i+1}R between the direct summands to be the multiplication by the element ai+1a_{i+1}. Then clearly R/aiRU/aiRR/a_{i}R\subseteq U/a_{i}R vanishes under the action of fi=a˙i+1f_{i}=\dot{a}_{i+1}, hence we can apply Theorem 3.2 (ii) to the homomorphisms {fi}i>0\{f_{i}\}_{i>0}. So, for every z+a1RU/a1Rz+a_{1}R\in U/a_{1}R, there exists an n>0n>0 such that

fnf2f1(z+a1R)=0U/an+1R,f_{n}\cdots f_{2}f_{1}(z+a_{1}R)=0\in U/a_{n+1}R,

which can be rewritten as

an+1a3a2(z)an+1R.a_{n+1}\cdots a_{3}a_{2}(z)\in a_{n+1}R.

By Lemma 4.5, there exist z1,z2,,znUz_{1},z_{2},\dots,z_{n}\in U such that

0jnAnnR(zj+R)J.\bigcap_{\begin{subarray}{c}0\leq j\leq n\end{subarray}}\mathrm{Ann}_{R}(z_{j}+R)\subseteq J.

Let Ω={z1,z2,,zn}\Omega=\{z_{1},z_{2},\dots,z_{n}\}. For each zjz_{j}, there exists an njn_{j} such that anj+1a3a2a_{n_{j}+1}\cdots a_{3}a_{2} annihilates zjz_{j}. That is,

anj+1a3a2(zj)anj+1RR.a_{n_{j}+1}\cdots a_{3}a_{2}(z_{j})\in a_{n_{j}+1}R\subseteq R.

We now choose an integer mm such that ama3a2a_{m}\cdots a_{3}a_{2} annihilates all the zjz_{j} for ajna\leq j\leq n. Set m=max{njj=1,2,n}m=max\{n_{j}\mid j=1,2\dots,n\}. Then this mm satisfies the following, which finishes the proof.

amam1a3a20jnAnnR(zj+R)Ja_{m}a_{m-1}\cdots a_{3}a_{2}\in\bigcap_{\begin{subarray}{c}0\leq j\leq n\end{subarray}}\mathrm{Ann}_{R}(z_{j}+R)\subseteq J

Now we extend the result to general commutative rings. Our assumption is that the Gabriel topology 𝒢\mathcal{G} is arises from a perfect localisation u:RUu:R\to U and that the associated 11-tilting class 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in R-ModR\textrm{-}\mathrm{Mod}.

Notation 7.5.

There is a preenvelope of the following form induced by the map uu.

0R/𝔪U/𝔪K00\to R/\mathfrak{m}\to U/\mathfrak{m}\to K\to 0

Let the following sequence denote an envelope of R/𝔪R/\mathfrak{m}.

0R/𝔪D(𝔪)X(𝔪)00\to R/\mathfrak{m}\to D(\mathfrak{m})\to X(\mathfrak{m})\to 0

By Proposition 3.1, D(𝔪)D(\mathfrak{m}) and X(𝔪)X(\mathfrak{m}) are direct summands of U/𝔪U/\mathfrak{m} and K=U/RK=U/R respectively. For convenience we will consider R/𝔪R/\mathfrak{m} as a submodule of D(𝔪)D(\mathfrak{m}) and X(𝔪)X(\mathfrak{m}) as a submodule of KK.

Remark 7.6.

  1. (i)

    Note that for every maximal ideal 𝔪\mathfrak{m} of RR, R/𝔪R/\mathfrak{m} is 𝒢\mathcal{G}-divisible if and only if, for every J𝒢J\in\mathcal{G}, J+𝔪=RJ+\mathfrak{m}=R if and only if for every J𝒢J\in\mathcal{G}, J𝔪J\nsubseteq\mathfrak{m} if and only if 𝔪𝒢\mathfrak{m}\notin\mathcal{G}. Therefore, we will only consider the envelopes of R/𝔪R/\mathfrak{m} where 𝔪𝒢\mathfrak{m}\in\mathcal{G}. The modules D(𝔪)D(\mathfrak{m}) and X(𝔪)X(\mathfrak{m}) will always refer to the components of the envelope of some R/𝔪R/\mathfrak{m} where 𝔪𝒢\mathfrak{m}\in\mathcal{G}. Additionally, as R/𝔪R/\mathfrak{m} is also an R𝔪R_{\mathfrak{m}}-module, it follows by Proposition 3.5 that D(𝔪)D(\mathfrak{m}) and X(𝔪)X(\mathfrak{m}) are also R𝔪R_{\mathfrak{m}}-modules.

  2. (ii)

    For every J𝒢J\in\mathcal{G}, (R/J)𝔪=0(R/J)_{\mathfrak{m}}=0 if and only if J𝔪J\nsubseteq\mathfrak{m}.

  3. (iii)

    If MM is a 𝒢\mathcal{G}-torsion RR-module, then M𝔪=0M_{\mathfrak{m}}=0 for every 𝔪𝒢\mathfrak{m}\notin\mathcal{G} which follows by (ii).

The following lemma allows us to use Proposition 7.4 to show that if 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in RR, all localisations R𝔪/J𝔪R_{\mathfrak{m}}/J_{\mathfrak{m}} are perfect rings where 𝔪\mathfrak{m} is a maximal ideal in 𝒢\mathcal{G} and J𝒢J\in\mathcal{G}.

If RR is a commutative ring with a maximal ideal 𝔪\mathfrak{m} and 𝒞\mathcal{C} a class of RR-modules, we define 𝒞𝔪\mathcal{C}_{\mathfrak{m}} to be the class consisting of localisations of modules in 𝒞\mathcal{C}. That is, 𝒞𝔪={C𝔪C𝒞}\mathcal{C}_{\mathfrak{m}}=\{C_{\mathfrak{m}}\mid C\in\mathcal{C}\}.

Lemma 7.7.

Let RR be a commutative ring and consider the 11-tilting cotorsion pair (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) induced from the flat injective ring epimorphism u:RUu:R\to U. Fix a maximal ideal 𝔪\mathfrak{m} of RR and let u𝔪:R𝔪U𝔪u_{\mathfrak{m}}:R_{\mathfrak{m}}\to U_{\mathfrak{m}} be the corresponding flat injective ring epimorphism in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}. Then the following hold.

  1. (i)

    K𝔪=0K_{\mathfrak{m}}=0 if and only if 𝔪𝒢\mathfrak{m}\notin\mathcal{G}.

  2. (ii)

    The induced Gabriel topology of u𝔪u_{\mathfrak{m}} denoted

    𝒢(𝔪)={LR𝔪:LU𝔪=U𝔪}\mathcal{G}(\mathfrak{m})=\{L\leq R_{\mathfrak{m}}:LU_{\mathfrak{m}}=U_{\mathfrak{m}}\}

    contains the localisations 𝒢𝔪={J𝔪:J𝒢}\mathcal{G}_{\mathfrak{m}}=\{J_{\mathfrak{m}}:J\in\mathcal{G}\}.

  3. (iii)

    Suppose p.dimU1\operatorname{p.dim}U\leq 1. Then (𝒟𝒢)𝔪(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}} is the 11-tilting class associated to the flat injective ring epimorphism u𝔪:R𝔪U𝔪u_{\mathfrak{m}}:R_{\mathfrak{m}}\to U_{\mathfrak{m}}. That is, (𝒟𝒢)𝔪=𝒟𝒢(𝔪)(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}}=\mathcal{D}_{\mathcal{G}(\mathfrak{m})}.

  4. (iv)

    If 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R, then 𝒟𝒢(𝔪)\mathcal{D}_{\mathcal{G}(\mathfrak{m})} is enveloping in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}.

Proof.
  1. (i)

    Since KK is 𝒢\mathcal{G}-torsion, 𝔪𝒢\mathfrak{m}\notin\mathcal{G} implies K𝔪=0K_{\mathfrak{m}}=0 by Remark 7.6 (iii). For the converse, suppose K𝔪=0K_{\mathfrak{m}}=0. If 𝔪𝒢\mathfrak{m}\in\mathcal{G} then R𝔪U𝔪=𝔪𝔪U𝔪𝔪𝔪R𝔪R_{\mathfrak{m}}\cong U_{\mathfrak{m}}=\mathfrak{m}_{\mathfrak{m}}U_{\mathfrak{m}}\cong\mathfrak{m}_{\mathfrak{m}}R_{\mathfrak{m}}, a contradiction. Note that if 𝔪𝒢\mathfrak{m}\notin\mathcal{G} the rest of the lemma follows trivially.

  2. (ii)

    Take J𝔪𝒢𝔪J_{\mathfrak{m}}\in\mathcal{G}_{\mathfrak{m}}. Then R𝔪/J𝔪RU𝔪(R/JRU)RR𝔪=0R_{\mathfrak{m}}/J_{\mathfrak{m}}\otimes_{R}U_{\mathfrak{m}}\cong(R/J\otimes_{R}U)\otimes_{R}R_{\mathfrak{m}}=0, so J𝔪𝒢(𝔪)J_{\mathfrak{m}}\in\mathcal{G}(\mathfrak{m}).

  3. (iii)

    If p.dimU1\operatorname{p.dim}U\leq 1, UKU\oplus K is a 11-tilting module for 𝒟𝒢\mathcal{D}_{\mathcal{G}} by [Hrb16, Theorem 5.4]. That (𝒟𝒢)𝔪(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}} is the 11-tilting class associated to the 11-tilting module (UK)𝔪(U\oplus K)_{\mathfrak{m}} is [GT12, Proposition 13.50], therefore Gen(U𝔪)=(𝒟𝒢)𝔪\operatorname{Gen}(U_{\mathfrak{m}})=(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}} in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}. As u𝔪:R𝔪U𝔪u_{\mathfrak{m}}:R_{\mathfrak{m}}\to U_{\mathfrak{m}} is a flat injective ring epimorphism and p.dimR𝔪U𝔪1\operatorname{p.dim}_{R_{\mathfrak{m}}}U_{\mathfrak{m}}\leq 1 the 11-tilting classes Gen(U𝔪)\operatorname{Gen}(U_{\mathfrak{m}}) and 𝒟𝒢(𝔪)\mathcal{D}_{\mathcal{G}(\mathfrak{m})} coincide in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}} again by [Hrb16, Theorem 5.4]. Thus (𝒟𝒢)𝔪=𝒟𝒢(𝔪)(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}}=\mathcal{D}_{\mathcal{G}(\mathfrak{m})}.

  4. (iv)

    Assume that 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R and take some MMod-R𝔪M\in\mathrm{Mod}\textrm{-}R_{\mathfrak{m}} with the following 𝒟𝒢\mathcal{D}_{\mathcal{G}}-envelope.

    0MDX00\to M\to D\to X\to 0

    We claim that MM has a 𝒟𝒢(𝔪)\mathcal{D}_{\mathcal{G}(\mathfrak{m})}-envelope in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}. Since MMod-R𝔪M\in\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}, DD and XX are R𝔪R_{\mathfrak{m}}-modules by Proposition 3.5. By Proposition 7.1 p.dimU1\operatorname{p.dim}U\leq 1. By (iii), (𝒟𝒢)𝔪=𝒟𝒢(𝔪)(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}}=\mathcal{D}_{\mathcal{G}(\mathfrak{m})} so D𝒟𝒢(𝔪)D\in\mathcal{D}_{\mathcal{G}(\mathfrak{m})}. Moreover, X𝒟𝒢(𝔪)X\in{}^{\perp}\mathcal{D}_{\mathcal{G}(\mathfrak{m})} as XAdd(UK)Mod-R𝔪X\in\mathrm{Add}(U\oplus K)\cap\mathrm{Mod}\textrm{-}R_{\mathfrak{m}} so XAdd(U𝔪K𝔪)X\in\mathrm{Add}(U_{\mathfrak{m}}\oplus K_{\mathfrak{m}}). Since RR𝔪R\to R_{\mathfrak{m}} is a ring epimorphism, any direct summand of DD which contains MM in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}} would also be a direct summand in Mod-R\mathrm{Mod}\textrm{-}R. Thus we conclude that 0MDX00\to M\to D\to X\to 0 is a 𝒟𝒢(𝔪)\mathcal{D}_{\mathcal{G}(\mathfrak{m})}-envelope of MM in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}.

By the above lemma, if 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R, then 𝒟𝒢(𝔪)\mathcal{D}_{\mathcal{G}(\mathfrak{m})} is enveloping in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}}. Next we show that, under our enveloping assumption, all 𝒢\mathcal{G}-torsion modules are isomorphic to the direct sums of their localisations at maximal ideals.

The proof of the following lemma uses an almost identical argument to the proof of Lemma 5.2.

Lemma 7.8.

Let u:RUu:R\to U be a flat injective ring epimorphism, 𝒢\mathcal{G} the associated Gabriel topology and suppose that 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping. Let D(𝔪)D(\mathfrak{m}) and X(𝔪)X(\mathfrak{m}) be as in Notation 7.5 and fix a maximal ideal 𝔪𝒢\mathfrak{m}\in\mathcal{G}. For every element dD(𝔪)d\in D(\mathfrak{m}) and every element a𝔪a\in\mathfrak{m}, there is a natural number n>0n>0 such that and=0a^{n}d=0. Moreover, for every element xX(𝔪)x\in X(\mathfrak{m}) and every element a𝔪a\in\mathfrak{m}, there is a natural number n>0n>0 such that anx=0a^{n}x=0.

Proof.

We will use the T-nilpotency of direct sums of envelopes as in Theorem 3.2 (ii). Consider the following countable direct sum of envelopes of R/𝔪R/\mathfrak{m} which is itself an envelope by Theorem 3.2 (i).

0i>0(R/𝔪)ii>0D(𝔪)ii>0X(𝔪)i00\to\bigoplus_{\begin{subarray}{c}i>0\end{subarray}}(R/\mathfrak{m})_{i}\to\bigoplus_{\begin{subarray}{c}i>0\end{subarray}}D(\mathfrak{m})_{i}\to\bigoplus_{\begin{subarray}{c}i>0\end{subarray}}X(\mathfrak{m})_{i}\to 0

For a fixed element a𝔪a\in\mathfrak{m}, we choose the homomorphisms fi:D(𝔪)iD(𝔪)i+1f_{i}:D(\mathfrak{m})_{i}\to D(\mathfrak{m})_{i+1} between the direct summands to be multiplication by aa. Then clearly R/𝔪D(𝔪)R/\mathfrak{m}\subseteq D(\mathfrak{m}) vanishes under the action of fi=a˙f_{i}=\dot{a}, hence we can apply Xu’s Theorem: for every dD(𝔪)d\in D(\mathfrak{m}), there exists an nn such that

fnf2f1(d)=0D(𝔪)n+1.f_{n}\cdots f_{2}f_{1}(d)=0\in D(\mathfrak{m})_{n+1}.

Since each fif_{i} acts as multiplication by aa, for every dDd\in D there is an integer nn for which and=0a^{n}d=0, as required.

It is straightforward to see that X(𝔪)X(\mathfrak{m}) has the same property as X(𝔪)X(\mathfrak{m}) is an epimorphic image of D(𝔪)D(\mathfrak{m}). ∎

Lemma 7.9.

Let u:RUu:R\to U be a flat injective ring epimorphism and suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping. Let 𝔪𝒢\mathfrak{m}\in\mathcal{G} and let X(𝔪)X(\mathfrak{m}) be as in Notation 7.5. The support of X(𝔪)X(\mathfrak{m}) is exactly {𝔪}\{\mathfrak{m}\}, and each X(𝔪)X(𝔪)𝔪X(\mathfrak{m})\cong X(\mathfrak{m})_{\mathfrak{m}} is K𝔪K_{\mathfrak{m}}.

Proof.

We claim that X(𝔪)X(\mathfrak{m}) is non-zero. Otherwise, X(𝔪)=0X(\mathfrak{m})=0 would imply that R/𝔪R/\mathfrak{m} is 𝒢\mathcal{G}-divisible, so R/𝔪=𝔪(R/𝔪)=0R/\mathfrak{m}=\mathfrak{m}(R/\mathfrak{m})=0, a contradiction.

Consider a maximal ideal 𝔫𝔪\mathfrak{n}\neq\mathfrak{m}. Take an element a𝔪𝔫a\in\mathfrak{m}\setminus\mathfrak{n}. Then for any xX(𝔪)x\in X(\mathfrak{m}), anx=0a^{n}x=0 for some n>0n>0, by Lemma 7.8 and since aa is an invertible element in R𝔫R_{\mathfrak{n}}, xx is zero in the localisation with respect to 𝔫\mathfrak{n}. This holds for any element xX(𝔪)x\in X(\mathfrak{m}), hence X(𝔪)𝔫=0X(\mathfrak{m})_{\mathfrak{n}}=0.

It follows that since X(𝔪)X(\mathfrak{m}) is non-zero, X(𝔪)𝔪0X(\mathfrak{m})_{\mathfrak{m}}\neq 0. As mentioned in Remark 7.6, X(𝔪)X(\mathfrak{m}) is an R𝔪R_{\mathfrak{m}}-module and since X(𝔪)X(\mathfrak{m}) is a direct summand of KK, X(𝔪)X(\mathfrak{m}) is a direct summand of K𝔪K_{\mathfrak{m}} which is indecomposable, by Lemma 7.3. Therefore X(𝔪)X(\mathfrak{m}) is non-zero and is isomorphic to K𝔪K_{\mathfrak{m}}. ∎

Lemma 7.10.

Let u:RUu:R\to U be a flat injective ring epimorphism and suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping. Then the sum of the submodules X(𝔪)X(\mathfrak{m}) in KK is a direct sum.

𝔪𝒢X(𝔪)=𝔪𝒢X(𝔪)\sum_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}X(\mathfrak{m})=\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}X(\mathfrak{m})
Proof.

Recall that X(𝔪)X(\mathfrak{m}) is non-zero only for 𝔪𝒢\mathfrak{m}\in\mathcal{G} by Remark 7.6. Consider an element

xX(𝔪)𝔫𝔪𝔫𝒢X(𝔫).x\in X(\mathfrak{m})\cap\sum_{\begin{subarray}{c}\mathfrak{n}\neq\mathfrak{m}\\ \mathfrak{n}\in\mathcal{G}\end{subarray}}X(\mathfrak{n}).

We will show that this element must be zero. By Lemma 7.9, since xX(𝔪)x\in X(\mathfrak{m}), xx is zero in the localisation with respect to all maximal ideals 𝔫𝔪\mathfrak{n}\neq\mathfrak{m}. But xx can also be written as a finite sum of elements xiX(𝔫i)x_{i}\in X(\mathfrak{n}_{i}), each of which is zero in the localisation with respect to 𝔪\mathfrak{m}, by Lemma 7.9. Therefore, (x)𝔫=0(x)_{\mathfrak{n}}=0 for all maximal ideals 𝔫\mathfrak{n}, hence x=0x=0 . ∎

Proposition 7.11.

Let u:RUu:R\to U be a flat injective ring epimorphism and suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping. The module KK can be written as a direct sum of its localisations K𝔪K_{\mathfrak{m}}, as follows.

K𝔪𝒢K𝔪=𝔪mSpecRK𝔪K\cong\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}K_{\mathfrak{m}}=\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\operatorname{mSpec}{R}\end{subarray}}K_{\mathfrak{m}}
Proof.

From Lemma 7.10, we have the following inclusion.

𝔪𝒢X(𝔪)K\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}X(\mathfrak{m})\leq K

To see that this is an equality we show that these two modules have the same localisation with respect to every 𝔪\mathfrak{m} maximal in RR. Recall that by Lemma 7.7(i) if 𝔫\mathfrak{n} is maximal, then K𝔫=0K_{\mathfrak{n}}=0 if and only if 𝔫𝒢\mathfrak{n}\notin\mathcal{G} and by Lemma 7.9, Supp(X(𝔪))={𝔪}\text{Supp}(X(\mathfrak{m}))=\{\mathfrak{m}\}. Using these facts, it follows that for 𝔫𝒢\mathfrak{n}\notin\mathcal{G}, K𝔫=0=(𝔪𝒢X(𝔪))𝔫K_{\mathfrak{n}}=0=(\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}X(\mathfrak{m}))_{\mathfrak{n}}. Similarly, if 𝔪𝒢\mathfrak{m}\in\mathcal{G}, then K𝔪=X(𝔪)𝔪K_{\mathfrak{m}}=X(\mathfrak{m})_{\mathfrak{m}}. Hence,

𝔪𝒢X(𝔪)=K.\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}X(\mathfrak{m})=K.

Since K𝔪=X(𝔪)𝔪K_{\mathfrak{m}}=X(\mathfrak{m})_{\mathfrak{m}}, it only remains to see that X(𝔪)X(𝔪)𝔪X(\mathfrak{m})\cong X(\mathfrak{m})_{\mathfrak{m}}, which follows from Remark 7.6. ∎

Corollary 7.12.

Let u:RUu:R\to U be a flat injective ring epimorphism and suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping. Then for every 𝒢\mathcal{G}-torsion module MM, the following isomorphism holds.

M𝔪𝒢M𝔪=𝔪mSpecRM𝔪M\cong\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}M_{\mathfrak{m}}=\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\operatorname{mSpec}R\end{subarray}}M_{\mathfrak{m}}

Furthermore, it follows that for every J𝒢J\in\mathcal{G}, JJ is contained in only finitely many maximal ideals of RR.

Proof.

For the first isomorphism, recall that if an RR-module MM is 𝒢\mathcal{G}-torsion, then MTor1R(M,K)M\cong\operatorname{Tor}^{R}_{1}(M,K). Also, note that in this case, M𝔪Tor1R(M,K)𝔪Tor1R𝔪(M𝔪,K𝔪)Tor1R(M,K𝔪)M_{\mathfrak{m}}\cong\operatorname{Tor}^{R}_{1}(M,K)_{\mathfrak{m}}\cong\operatorname{Tor}^{R_{\mathfrak{m}}}_{1}(M_{\mathfrak{m}},K_{\mathfrak{m}})\cong\operatorname{Tor}^{R}_{1}(M,K_{\mathfrak{m}}). Hence we have the following isomorphisms.

MTor1R(M,K)Tor1R(M,𝔪𝒢K𝔪)𝔪𝒢Tor1R(M,K𝔪)𝔪𝒢M𝔪M\cong\operatorname{Tor}^{R}_{1}(M,K)\cong\operatorname{Tor}^{R}_{1}(M,\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}K_{\mathfrak{m}})\cong\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}\operatorname{Tor}^{R}_{1}(M,K_{\mathfrak{m}})\cong\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}M_{\mathfrak{m}}

The fact that

𝔪𝒢M𝔪=𝔪mSpecRM𝔪\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\mathcal{G}\end{subarray}}M_{\mathfrak{m}}=\bigoplus_{\begin{subarray}{c}\mathfrak{m}\in\operatorname{mSpec}R\end{subarray}}M_{\mathfrak{m}}

follows from Remark 7.6 (iii).
For the final statement of the proposition, one only has to replace MM with the 𝒢\mathcal{G}-torsion module R/JR/J where J𝒢J\in\mathcal{G}. Hence as R/JR/J is cyclic, it cannot be isomorphic to an infinite direct sum. Therefore, (R/J)𝔪(R/J)_{\mathfrak{m}} is non-zero only for finitely many maximal ideals and the conclusion follows. ∎

We are now in the position to show the main results of this section.

Theorem 7.13.

Let u:RUu:R\to U be a flat injective ring epimorphism and suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping. Then R/JR/J is a perfect ring for every J𝒢J\in\mathcal{G}.

Proof.

By Corollary 7.12, every R/JR/J is a finite product of local rings R𝔪/J𝔪R_{\mathfrak{m}}/J_{\mathfrak{m}}. Additionally as (𝒟𝒢)𝔪(\mathcal{D}_{\mathcal{G}})_{\mathfrak{m}} is enveloping in Mod-R𝔪\mathrm{Mod}\textrm{-}R_{\mathfrak{m}} by Lemma 7.7 each R𝔪/J𝔪R_{\mathfrak{m}}/J_{\mathfrak{m}} is a perfect ring by Proposition 7.4. Therefore, by Proposition 2.2, R/JR/J itself is perfect. ∎

Theorem 7.14.

Let u:RUu:R\to U be a flat injective ring epimorphism and suppose 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R. Then the topological ring =End(K)\mathfrak{R}=\operatorname{End}(K) is pro-perfect.

Proof.

Recall that the topology of \mathfrak{R} is given by the annihilators of finitely generated submodules of KK, so that =EndR(K)\mathfrak{R}=\operatorname{End}_{R}(K) is separated and complete in its topology. Let VV be an open ideal in the topology of \mathfrak{R}. By Proposition 6.13 there is J𝒢J\in\mathcal{G} and a surjective ring homomorphism R/J/VR/J\to\mathfrak{R}/V. By Theorem 7.13 R/JR/J is a perfect ring and thus so are the quotient rings /V\mathfrak{R}/V. ∎

8. 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping if and only if \mathfrak{R} is pro-perfect

Suppose that u:RUu:R\to U is a commutative flat injective ring epimorphism where p.dimRU1\operatorname{p.dim}_{R}U\leq 1 and denote K=U/RK=U/R. In this section we show that if the endomorphism ring =EndR(K)\mathfrak{R}=\operatorname{End}_{R}(K) is pro-perfect, then 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R. So combining with the results in the Section 7 we obtain that 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping if and only if p.dimU1\operatorname{p.dim}U\leq 1 and \mathfrak{R} is pro-perfect.

Recall that if p.dimU1\operatorname{p.dim}U\leq 1, (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) denotes the 11-tilting cotorsion pair associated to the 11-tilting module UKU\oplus K. The following theorem of Positselski is vital for this section.

Theorem 8.1.

([BP19a, Theorem 13.3]) Suppose RR is a commutative ring and u:RUu:R\to U a flat injective ring epimorphism with p.dimRU1\operatorname{p.dim}_{R}U\leq 1. Then the topological ring =End(K)\mathfrak{R}=\operatorname{End}(K) is pro-perfect if and only if limAdd(K)=Add(K)\varinjlim\mathrm{Add}(K)=\mathrm{Add}(K).

A second crucial result that we will use is the following.

Theorem 8.2.

([Xu96, Theorem 2.2.6]) Assume that 𝒞\mathcal{C} is a class of modules closed under direct limits and extensions. If a module MM admits a special 𝒞1\mathcal{C}^{\perp_{1}}-preenvelope with cokernel in 𝒞\mathcal{C}, then MM admits a 𝒞1\mathcal{C}^{\perp_{1}}-envelope.

We now show that if \mathfrak{R} is pro-perfect, then Add(K)\mathrm{Add}(K) does in fact satisfy the conditions of Theorem 8.2. From Theorem 8.1 Add(K)\mathrm{Add}(K) is closed under direct limits. Moreover, Add(K)\mathrm{Add}(K) is closed under extensions as any short exact sequence 0LMN00\to L\to M\to N\to 0 with L,NAdd(K)L,N\in\mathrm{Add}(K) splits.

As the cotorsion pair (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) is complete, every RR-module MM has an injective 𝒟𝒢\mathcal{D}_{\mathcal{G}}-preenvelope, and as 𝒟𝒢=K=(Add(K))\mathcal{D}_{\mathcal{G}}=K^{\perp}=(\mathrm{Add}(K))^{\perp}, MM has a (Add(K))(\mathrm{Add}(K))^{\perp}-preenvelope. It remains to be seen that every MM has a special preenvelope ν\nu such that CokerνAdd(K)\operatorname{Coker}\nu\in\mathrm{Add}(K), which we will now show.

Lemma 8.3.

Suppose u:RUu:R\to U is a flat injective ring epimorphism where p.dimRU1\operatorname{p.dim}_{R}U\leq 1. Let (𝒜,𝒟𝒢)(\mathcal{A},\mathcal{D}_{\mathcal{G}}) be the 11-tilting cotorsion pair associated to the 11-tilting module UKU\oplus K. Then every module has a special 𝒟𝒢\mathcal{D}_{\mathcal{G}}-preenvelope ν\nu such that CokerνAdd(K)\operatorname{Coker}\nu\in\mathrm{Add}(K).

Proof.

Take an RR-module MM and consider the canonical surjection R(α)𝑝M0R^{(\alpha)}\overset{p}{\to}M\to 0. For every cardinal α\alpha the short exact sequence 0R(α)U(α)K(α)00\to R^{(\alpha)}\to U^{(\alpha)}\to K^{(\alpha)}\to 0 is a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-preenvelope and is of the desired form. Consider the following pushout ZZ of MR(α)U(α)M\leftarrow R^{(\alpha)}\to U^{(\alpha)}.

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}kerp\textstyle{\ker p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}kerp\textstyle{\ker p\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R(α)\textstyle{R^{(\alpha)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}U(α)\textstyle{U^{(\alpha)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(α)\textstyle{K^{(\alpha)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(α)\textstyle{K^{(\alpha)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0}0\textstyle{0}

The module ZZ is in GenU=𝒟𝒢\operatorname{Gen}U=\mathcal{D}_{\mathcal{G}}, and so the bottom row of the above diagram is a 𝒟𝒢\mathcal{D}_{\mathcal{G}}-preenvelope of MM of the desired form.

The following theorem follows easily from the above discussion.

Theorem 8.4.

Suppose u:RUu:R\to U is a flat injective ring epimorphism with p.dimRU1\operatorname{p.dim}_{R}U\leq 1. If the topological ring \mathfrak{R} is pro-perfect, then 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping in R-ModR\textrm{-}\mathrm{Mod}.

Proof.

From Theorem 8.1 and Lemma 8.3, Add(K)\mathrm{Add}(K) does satisfy the conditions of Theorem 8.2. Thus the conclusion follows, since 𝒟𝒢=Add(K)\mathcal{D}_{\mathcal{G}}=\mathrm{Add}(K)^{\perp}.∎

Finally combining the above theorem with the results in Section 5 and Section 7 we obtain the two main results of this paper.

Theorem 8.5.

Suppose u:RUu:R\to U is a commutative flat injective ring epimorphism, 𝒢\mathcal{G} the associated Gabriel topology and \mathfrak{R} the topological ring EndR(K)\operatorname{End}_{R}(K). The following are equivalent.

  1. (i)

    𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping.

  2. (ii)

    R/JR/J is a perfect ring for every J𝒢J\in\mathcal{G}.

  3. (iii)

    \mathfrak{R} is pro-perfect.

It follows that p.dimU1\operatorname{p.dim}U\leq 1. If 𝒟𝒢\mathcal{D}_{\mathcal{G}} is enveloping then the class Add(K)\mathrm{Add}(K) is closed under direct limits.

Proof.

(i)\Rightarrow(ii) Follows by Proposition 7.1 and Theorem 7.13.

(ii)\Rightarrow(iii) Follows from Lemma 6.12 and Proposition 6.13.

(iii)\Rightarrow(i) Follows from Theorem 8.4.

That (i) implies p.dimU1\operatorname{p.dim}U\leq 1 is Proposition 7.1.

That (ii) implies p.dimU1\operatorname{p.dim}U\leq 1 is a result of Positselski via private communication. The proof is a generalisation of [BP19c, Theorem 6.13]. ∎

Remark 8.6.

In the original version of this paper, the assumption that p.dimR𝒢1\operatorname{p.dim}R_{\mathcal{G}}\leq 1 was included on the right hand side of the equivalence in Theorem 8.7. This has been removed as it was pointed out by Leonid Positselski (via private correspondence) that if the R/JR/J are perfect rings for J𝒢J\in\mathcal{G} and 𝒢\mathcal{G} is a perfect Gabriel topology, it follows that p.dimR𝒢1\operatorname{p.dim}R_{\mathcal{G}}\leq 1. His proof is a generalisation of [BP19c, Theorem 6.13].

Theorem 8.7.

Assume that TT is a 11-tilting module over a commutative ring RR such that the class TT^{\perp} is enveloping, and let 𝒢\mathcal{G} be the associated Gabriel topology of 𝒯\mathcal{T}. Then we have the following equivalence.

𝒯 is enveloping{R/J is a perfect ring for each J𝒢𝒢 is a perfect Gabriel topology\mathcal{T}\text{ is enveloping}\Leftrightarrow\begin{cases}R/J\text{ is a perfect ring for each }J\in\mathcal{G}\\ \mathcal{G}\text{ is a perfect Gabriel topology}\end{cases}

That is, there is a flat injective ring epimorphism u:RUu\colon R\to U such that p.dimU1\operatorname{p.dim}U\leq 1 and UU/RU\oplus U/R is equivalent to TT.

Proof.

(\Rightarrow) By Proposition 5.5, the Gabriel topology 𝒢\mathcal{G} associated to TT^{\perp} arises from a perfect localisation. Moreover, ψ:RR𝒢\psi\colon R\to R_{\mathcal{G}} is injective so by setting U=R𝒢U=R_{\mathcal{G}} we can apply Theorem 8.5 to conclude.
(\Leftarrow)One applies Theorem 8.5 to conclude that 𝒯\mathcal{T} is enveloping.
The last statement follows by Remark 8.6. ∎

The following is an application of Theorem 8.7, which allows us to characterise all the 11-tilting cotorsion pairs over a commutative semihereditary ring (for example, for the category of abelian groups).

Example 8.8.

Let RR be a semihereditary ring and (𝒜,𝒯)(\mathcal{A},\mathcal{T}) a 11-tilting cotorsion pair in Mod-R\mathrm{Mod}\textrm{-}R with associated Gabriel topology 𝒢\mathcal{G}. Then by [Hrb16, Theorem 5.2], 𝒢\mathcal{G} is a perfect Gabriel topology. Moreover, R/JR/J is a coherent ring for J𝒢J\in\mathcal{G}, so R/JR/J is a perfect ring if and only if it is artinian [Cha60, Theorem 3.3 and 3.4]. As R/JR/J is artinian, it has only finitely many (finitely generated) maximal ideals and the Jacobson radical of R/JR/J is a nilpotent ideal. Therefore in this case, 𝒢\mathcal{G} has a subbasis of ideals of the form {𝔪k𝔪mSpecR𝒢,k}\{\mathfrak{m}^{k}\mid\mathfrak{m}\in\operatorname{mSpec}R\cap\mathcal{G},k\in\mathbb{N}\} and moreover all the maximal ideals of RR contained in 𝒢\mathcal{G} are finitely generated.

In particular, in the case of R=R=\mathbb{Z}, every 11-tilting class 𝒯\mathcal{T} is enveloping as \mathbb{Z} is semihereditary and for any proper ideal aa\mathbb{Z} of \mathbb{Z}, /a\mathbb{Z}/a\mathbb{Z} is artinian.

The following is an example of a ring RR and 11-tilting class 𝒯\mathcal{T} such that RR has a 𝒯\mathcal{T}-envelope but 𝒯\mathcal{T} is not enveloping.

Example 8.9.

Let RR be a valuation domain with valuation vv and valuation group Γ(R)=\Gamma(R)=\mathbb{R}, and an idempotent maximal ideal 𝔪=<rnRv(rn)=1/n,n>0>\mathfrak{m}=<r_{n}\in R\mid v(r_{n})=1/n,n\in\mathbb{Z}^{>0}> (see [FS18, Section II.3] for details on valuation rings). Then as QQ is generated by an1a_{n}^{-1} with v(an)=nv(a_{n})=n, it follows that the field of quotients QQ of RR is countably generated and therefore of projective dimension at most one. Thus QQ/RQ\oplus Q/R is a 11-tilting module and the associated Gabriel topology is made up of the principal ideals generated by the non-zero elements of RR. Moreover, the following is a 𝒯\mathcal{T}-envelope of RR.

0RQQ/R00\to R\to Q\to Q/R\to 0

However, we claim that 𝒯\mathcal{T} is not enveloping. If 𝒯\mathcal{T} is enveloping, then by Theorem 8.5 R/sRR/sR is a perfect ring for each regular element ss in RR. By [BS02, Theorem 4.4 and Proposition 4.5], RR must be a discrete valuation domain. However, by assumption RR is not noetherian as 𝔪\mathfrak{m} is countably generated, a contradiction.

9. The case of a non-injective flat ring epimorphism

Now we extend the results of the previous section to the case of a non-injective flat ring epimorphism u:RUu\colon R\to U with K=CokeruK=\operatorname{Coker}u.

As before, the Gabriel topology 𝒢u={JRJU=U}\mathcal{G}_{u}=\{J\leq R\mid JU=U\} associated to uu is finitely generated and the class

𝒟𝒢u={MMod-RJM=M for every J𝒢u}\mathcal{D}_{\mathcal{G}_{u}}=\{M\in\mathrm{Mod}\textrm{-}R\mid JM=M\text{ for every }J\in\mathcal{G}_{u}\}

of 𝒢u\mathcal{G}_{u}-divisible modules is a torsion class. Moreover, by [AHH17] it is a silting class, that is there is a silting module TT such that Gen(T)=𝒟𝒢u\operatorname{Gen}(T)=\mathcal{D}_{\mathcal{G}_{u}}.

The ideal II will denote the kernel of uu and R¯\overline{R} the ring R/IR/I so that there is a flat injective ring epimorphism u¯:R¯U\overline{u}\colon\overline{R}\to U.

To u¯\overline{u}, one can associate the Gabriel topology 𝒢u¯={L/IR¯LU=U,IL}\mathcal{G}_{\overline{u}}=\{L/I\leq\overline{R}\mid LU=U,I\subseteq L\} on R¯\overline{R} and the following class of R¯\overline{R}-modules.

𝒟𝒢u¯={MMod-R¯(L/I)M=M, for every L/I𝒢u¯}\mathcal{D}_{\mathcal{G}_{\overline{u}}}=\{M\in\mathrm{Mod}\textrm{-}{\overline{R}}\mid(L/I)M=M,\text{ for every }L/I\in\mathcal{G}_{\overline{u}}\}

That is, we have that if J𝒢uJ\in\mathcal{G}_{u}, then J+I/I𝒢u¯J+I/I\in\mathcal{G}_{\overline{u}}, and conversely if L/I𝒢u¯L/I\in\mathcal{G}_{\overline{u}}, L𝒢uL\in\mathcal{G}_{u}.

We first note the following.

Lemma 9.1.

Every module in 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}} is annihilated by II, thus 𝒟𝒢u=𝒟𝒢u¯\mathcal{D}_{\mathcal{G}_{u}}=\mathcal{D}_{\mathcal{G}_{\overline{u}}}.

Proof.

Note that Keru=I\operatorname{Ker}u=I is the 𝒢u\mathcal{G}_{u}-torsion submodule of RR. Hence for every bIb\in I there is J𝒢uJ\in\mathcal{G}_{u} such that bJ=0bJ=0. Let M𝒟𝒢uM\in\mathcal{D}_{\mathcal{G}_{u}}, then bM=bJM=0bM=bJM=0, thus IM=0IM=0. We conclude that 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}} can be considered a class in Mod-R¯\mathrm{Mod}\textrm{-}{\overline{R}} and coincides with 𝒟𝒢u¯\mathcal{D}_{\mathcal{G}_{\overline{u}}}. ∎

Proposition 9.2.

The class 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R if and only if 𝒟𝒢u¯\mathcal{D}_{\mathcal{G}_{\overline{u}}} is enveloping in Mod-R¯\mathrm{Mod}\textrm{-}{\overline{R}}.

Proof.

Assume that 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R and let M¯Mod-R¯\overline{M}\in\mathrm{Mod}\textrm{-}{\overline{R}}. Consider a 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}}-envelope μ¯:M¯D\overline{\mu}\colon\overline{M}\to D in Mod-R\mathrm{Mod}\textrm{-}R. Since RR/IR\to R/I is a ring epimorphism and DD is annihilated by II by Lemma 9.1, it is immediate to conclude that μ¯\overline{\mu} is also a 𝒟𝒢u¯\mathcal{D}_{\mathcal{G}_{\overline{u}}}-envelope of M¯\overline{M}.

Conversely, assume that 𝒟𝒢u¯\mathcal{D}_{\mathcal{G}_{\overline{u}}} is enveloping in Mod-R¯\mathrm{Mod}\textrm{-}{\overline{R}}. Take MMod-RM\in\mathrm{Mod}\textrm{-}R and let μ¯:M/IMD\overline{\mu}\colon M/IM\to D be a 𝒟𝒢u¯\mathcal{D}_{\mathcal{G}_{\overline{u}}}-envelope of M/IMM/IM in Mod-R¯\mathrm{Mod}\textrm{-}{\overline{R}}. Let π:MM/IM\pi\colon M\to M/IM be the canonical projection. We claim that μ=μ¯π\mu=\overline{\mu}\pi is a 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}}-envelope of MM in Mod-R\mathrm{Mod}\textrm{-}R. Indeed, if f:DDf\colon D\to D satisfies fμ=μf\mu=\mu, then fμ¯π=μ¯πf\overline{\mu}\pi=\overline{\mu}\pi. As π\pi is a surjection, fμ¯=μ¯f\overline{\mu}=\overline{\mu} and so ff is an automorphism of DD. ∎

Note that EndR(K)\operatorname{End}_{R}(K) coincides with EndR¯(K)\operatorname{End}_{\overline{R}}(K) both as a ring and as a topological ring. It will be still denoted by \mathfrak{R}. Thus if 𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}} is enveloping in Mod-R\mathrm{Mod}\textrm{-}R we can apply the results of the previous sections to the ring R¯\overline{R}, in particular Theorem 8.5.

Theorem 9.3.

Let u:RUu\colon R\to U be a commutative flat ring epimorphism with kernel II. Let 𝒢u\mathcal{G}_{u} be the associated Gabriel topology and \mathfrak{R} the topological ring EndR(K)\operatorname{End}_{R}(K). The following are equivalent.

  1. (i)

    𝒟𝒢u\mathcal{D}_{\mathcal{G}_{u}} is enveloping.

  2. (ii)

    R/LR/L is a perfect ring for every L𝒢L\in\mathcal{G} such that LIL\supseteq I.

  3. (iii)

    \mathfrak{R} is pro-perfect.

In particular, p.dimR¯U1\operatorname{p.dim}_{\overline{R}}U\leq 1 and UKU\oplus K is a 11-tilting module over the ring R¯\overline{R} and since Gen(U)\operatorname{Gen}(U) is contained in Mod-R¯\mathrm{Mod}\textrm{-}{\overline{R}}, 𝒟𝒢u=Gen(U)\mathcal{D}_{\mathcal{G}_{u}}=\operatorname{Gen}(U).

As already noted, results from [AHH17] imply that Gen(U)\operatorname{Gen}(U) is a silting class in Mod-R\mathrm{Mod}\textrm{-}R. Since we have that UKU\oplus K is a 11-tilting module in Mod-R¯\mathrm{Mod}\textrm{-}{\overline{R}} inducing the silting class Gen(U)\operatorname{Gen}(U), it is natural to ask the following question.

Question 9.4.

Is UKU\oplus K a silting module in Mod-R\mathrm{Mod}\textrm{-}R?

References

  • [AHH17] Lidia Angeleri Hügel and Michal Hrbek. Silting modules over commutative rings. International Mathematics Research Notices, 2017(13):4131–4151, 2017.
  • [AHHT05] Lidia Angeleri Hügel, Dolors Herbera, and Jan Trlifaj. Divisible modules and localization. J. Algebra, 294(2):519–551, 2005.
  • [AHS11] Lidia Angeleri Hügel and Javier Sánchez. Tilting modules arising from ring epimorphisms. Algebr. Represent. Theory, 14(2):217–246, 2011.
  • [Bas60] Hyman Bass. Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc., 95:466–488, 1960.
  • [Baz10] Silvana Bazzoni. Divisible envelopes, p-1 covers and weak-injective modules. J. Algebra Appl., 9(4):531–542, 2010.
  • [BP18] Silvana Bazzoni and Leonid Positselski. Contramodules over pro-perfect topological rings, the covering property in categorical tilting theory, and homological ring epimorphisms. Preprint, arXiv:1807.10671v1, 2018.
  • [BP19a] Silvana Bazzoni and Leonid Positselski. Covers and direct limits: A contramodule-based approach. Preprint, arXiv:1907.05537, 2019.
  • [BP19b] Silvana Bazzoni and Leonid Positselski. Matlis category equivalences for a ring epimorphism. Preprint, arXiv:1907.04973, 2019.
  • [BP19c] Silvana Bazzoni and Leonid Positselski. SS-almost perfect commutative rings. J. Algebra, 532:323–356, 2019.
  • [BS02] S. Bazzoni and L. Salce. Strongly flat covers. J. London Math. Soc. (2), 66(2):276–294, 2002.
  • [Cha60] Stephen U. Chase. Direct products of modules. Trans. Amer. Math. Soc., 97:457–473, 1960.
  • [CT95] Riccardo Colpi and Jan Trlifaj. Tilting modules and tilting torsion theories. J. Algebra, 178(2):614–634, 1995.
  • [ET01] Paul C. Eklof and Jan Trlifaj. How to make Ext vanish. Bull. London Math. Soc., 33(1):41–51, 2001.
  • [FS18] László Fuchs and Luigi Salce. Almost perfect commutative rings. J. Pure Appl. Algebra, 222(12):4223–4238, 2018.
  • [GL91] Werner Geigle and Helmut Lenzing. Perpendicular categories with applications to representations and sheaves. J. Algebra, 144(2):273–343, 1991.
  • [GT12] Rüdiger Göbel and Jan Trlifaj. Approximations and endomorphism algebras of modules. Volume 1, volume 41 of de Gruyter Expositions in Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin, extended edition, 2012. Approximations.
  • [Hrb16] Michal Hrbek. One-tilting classes and modules over commutative rings. J. Algebra, 462:1–22, 2016.
  • [Pos17] Leonid Positselski. Abelian right perpendicular subcategories in module categories. Preprint, arXiv:1705.04960, 2017.
  • [Pos18] Leonid Positselski. Triangulated Matlis equivalence. J. Algebra Appl., 17(4):1850067, 44, 2018.
  • [Pos19] Leonid Positselski. Contramodules over pro-perfect topological rings. Preprint, arXiv:1807.10671v2, 2019.
  • [Ste75] Bo Stenström. Rings of quotients. Springer-Verlag, New York, 1975. Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory.
  • [Xu96] Jinzhong Xu. Flat covers of modules, volume 1634 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.