This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Equations for the overlaps of a SIC

Len Bos and Shayne Waldron

Department of Computer Science, University of Verona, Italy Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
Abstract

We give a holomorphic quartic polynomial in the overlap variables whose zeros on the torus are precisely the Weyl-Heisenberg SICs (symmetric informationally complete positive operator valued measures). By way of comparison, all the other known systems of equations that determine a Weyl-Heisenberg SIC involve variables and their complex conjugates. We also give a related interesting result about the powers of the projective Fourier transform of the group G=d×dG=\mathbb{Z}_{d}\times\mathbb{Z}_{d}.


Key Words: finite tight frames, SIC (symmetric informationally complete positive operator valued measure), Heisenberg group, Clifford group, complex equiangular lines,


AMS (MOS) Subject Classifications: primary 20F70, 81P15, 81Q10, 81R05,

secondary 05B30, 42C15, 51F25.


 

1 Introduction

Throughout fix the integer d2d\geq 2, and let ω\omega be the primitive dd-th root of unity ω:=e2πdi\omega^{:}=e^{{2\pi\over d}i}. We think of vectors in d\mathbb{C}^{d} as periodic signals on the group d\mathbb{Z}_{d}, and hence index vectors and matrices by elements of d\mathbb{Z}_{d}. A set of d2d^{2} unit vectors (vj)(v_{j}) in d\mathbb{C}^{d} (or the lines that they determine) is said to be equiangular if

|vj,vk|2=1d+1,jk.|\langle v_{j},v_{k}\rangle|^{2}={1\over d+1},\qquad j\neq k. (1.1)

In quantum information theory, the corresponding rank one orthogonal projections (vjvj)(v_{j}v_{j}^{*}) are said to be a symmetric informationally complete positive operator valued measure, or a SIC for short. The existence of a SIC for every dimension dd is known as Zauner’s conjecture (from his 1999 thesis, see [Zau10]), or as the SIC problem.

There are high precision numerical constructions of SICs [RBKSC04], [SG10], [Sco17], and exact SICs in various dimensions [ACFW18], [GS17]. In all of these constructions, the SIC is a Weyl-Heisenberg SIC, i.e., is the orbit (ρ(g)v)gG(\rho(g)v)_{g\in G} of a fiducial vector vv under the unitary irreducible projective representation ρ:G𝒰(d)\rho:G\to{\cal U}(\mathbb{C}^{\mathbb{Z}_{d}}) of G=d×dG=\mathbb{Z}_{d}\times\mathbb{Z}_{d} with Schur multiplier α\alpha given by

ρjk=ρ((j,k))=SjΩk,α((j1,j2),(k1,k2))=ωj2k1,\rho_{jk}=\rho((j,k))=S^{j}\Omega^{k},\qquad\alpha((j_{1},j_{2}),(k_{1},k_{2}))=\omega^{j_{2}k_{1}}, (1.2)

where SS is the cyclic shift matrix Sjk:=δj,k+1S_{jk}:=\delta_{j,k+1} and Ω\Omega is the diagonal (modulation) matrix Ωjk:=ωjδjk\Omega_{jk}:=\omega^{j}\delta_{jk}. In this case, the equiangularity condition (1.1) becomes

|SjΩkv,v|2=1d+1,(j,k)(0,0).|\langle S^{j}\Omega^{k}v,v\rangle|^{2}={1\over{d+1}},\qquad(j,k)\neq(0,0). (1.3)

In this paper, we consider equations in the variables

cjk=SjΩkv,v=trace(vvSjΩk),(j,k)d×d,c_{jk}=\langle S^{j}\Omega^{k}v,v\rangle=\mathop{\rm trace}\nolimits(vv^{*}S^{j}\Omega^{k}),\qquad(j,k)\in\mathbb{Z}_{d}\times\mathbb{Z}_{d}, (1.4)

which determine a (Weyl-Heisenberg) SIC. These variables (or scalar multiples of them) are called the overlaps of the SIC. They depend only on the fiducial projector P=vvP=vv^{*}. The original attempts to find numerical and exact SIC fiducials (using Groebner basis methods) involved polynomial equations in the variables v0,,vd1v_{0},\ldots,v_{d-1} and v0¯,,vd1¯\overline{v_{0}},\ldots,\overline{v_{d-1}}, such as the equiangularity condition (1.3), the equations (see [BW07], [Kha08], [ADF14])

rdvrv¯r+sv¯r+tvr+s+t={0,s,t0;1d+1,s0,t=0,s=0,t0;2d+1,(s,t)=(0,0),\displaystyle\sum_{r\in\mathbb{Z}_{d}}v_{r}\overline{v}_{r+s}\overline{v}_{r+t}v_{r+s+t}=\begin{cases}0,&s,t\neq 0;\cr{1\over d+1},&s\neq 0,t=0,\quad s=0,t\neq 0;\cr{2\over d+1},&(s,t)=(0,0),\end{cases} (1.5)

and the variational characterisation (used for finding numerical SICs)

1d2(j,k)d2|SjΩkv,v|4=2d(d+1)v4,v2=1.{1\over d^{2}}\sum_{(j,k)\in\mathbb{Z}_{d}^{2}}|\langle S^{j}\Omega^{k}v,v\rangle|^{4}={2\over d(d+1)}\|v\|^{4},\qquad\|v\|^{2}=1. (1.6)

More recent exact constructions of SICs [ACFW18] have been in the overlap variables cjkc_{jk} (utilising a natural Galois action on them). Clearly the cjkc_{jk} giving a SIC fiducial projector vvvv^{*} via (1.4) must satisfy

c00=v2=1,|cjk|2=|SjΩkv,v|2=1d+1,(j,k)(0,0),c_{00}=\|v\|^{2}=1,\qquad|c_{jk}|^{2}=|\langle S^{j}\Omega^{k}v,v\rangle|^{2}={1\over d+1},\quad(j,k)\neq(0,0), (1.7)

and also, by the rule ΩkSj=ωjkSjΩk\Omega^{k}S^{j}=\omega^{jk}S^{j}\Omega^{k},

cjk=v,SjΩkv¯=ΩkSjv,v¯=ωjkSjΩkv,v¯=ωjkcj,k¯.c_{jk}=\overline{\langle v,S^{j}\Omega^{k}v\rangle}=\overline{\langle\Omega^{-k}S^{-j}v,v\rangle}=\overline{\langle\omega^{jk}S^{-j}\Omega^{-k}v,v\rangle}=\omega^{-jk}\overline{c_{-j,-k}}. (1.8)

These conditions on the overlap variables cjkc_{jk} are not enough to guarantee that they come from a fiducial projector vvvv^{*} (and hence prove Zauner’s conjecture).

In Section 2, we define a linear operator TT, which is an example of the projective Fourier transform, which allows us to reconstruct the fiducial projector as vv=Tcvv^{*}=Tc from a suitable c=(cjk)c=(c_{jk}). We prove that in addition to (1.7) and (1.8), the simple condition

trace((Tc)4)=1\mathop{\rm trace}\nolimits((Tc)^{4})=1

ensures that a cc gives a SIC fiducial (Theorem 2.1). We then give some examples, and describe the action of the Clifford group on the SIC fiducials give by overlaps cc.

In Section 3, we give some interesting properties of TT, i.e., the projective Fourier transform of G=d×dG=\mathbb{Z}_{d}\times\mathbb{Z}_{d}. In particular, we show that (dT)6d=(1)12d(d1)I(\sqrt{d}T)^{6d}=(-1)^{{1\over 2}d(d-1)}I, and a variant has order 4d4d. To our knowledge, this is only the second example of a Fourier transform of finite order, after the (discrete) Fourier transform for a finite abelian group G=dG=\mathbb{Z}_{d} (which satisfies F4=IF^{4}=I).

In Section 4, we give another system of equations in the overlaps cc that determine a SIC. These involve the symbol (zz–transform) of the rows of cc. The symbols for cc giving a SIC turn out to have interesting Riesz-type factorisation properties. We use these to describe the (sporadic) SICs for d=3d=3, which are parametrised by a hypocycloid.

2 The reconstruction operator

Since the ρ\rho of (1.2) is a unitary irreducible projective representation of dimension dd, it follows that (ρ(g))gG(\rho(g))_{g\in G} is a tight frame (called a nice error frame with index group GG [CW17]) for the d×dd\times d matrices with the Frobenius inner product

A,B:=trace(AB)=j,kajkbjk¯,\langle A,B\rangle:=\mathop{\rm trace}\nolimits(AB^{*})=\sum_{j,k}a_{jk}\overline{b_{jk}},

i.e.,

A=d|G|gGA,ρ(g)ρ(g),Ad×d.A={d\over|G|}\sum_{g\in G}\langle A,\rho(g)\rangle\rho(g),\qquad\forall A\in\mathbb{C}^{d\times d}. (2.9)

In this particular case, (ρ(g))gG=(SjΩk)(\rho(g))_{g\in G}=(S^{j}\Omega^{k}) is an orthogonal basis. Taking A=vvA=vv^{*} above gives the following formula for reconstruction from the overlaps cjk=SjΩkv,vc_{jk}=\langle S^{j}\Omega^{k}v,v\rangle

vv=dd2j,kvv,SjΩkSjΩk=1dj,kωjkcjkSjΩk=1dj,kcjk(SjΩk),vv^{*}={d\over d^{2}}\sum_{j,k}\langle vv^{*},S^{-j}\Omega^{-k}\rangle S^{-j}\Omega^{-k}={1\over d}\sum_{j,k}\omega^{jk}c_{jk}S^{-j}\Omega^{-k}={1\over d}\sum_{j,k}c_{jk}(S^{j}\Omega^{k})^{*},

since ωjkSjΩk=(SjΩk)\omega^{jk}S^{-j}\Omega^{-k}=(S^{j}\Omega^{k})^{*}, and (SjΩk)=ωjkSjΩk(S^{-j}\Omega^{-k})^{*}=\omega^{jk}S^{j}\Omega^{k} gives

vv,SjΩk=trace(vv(SjΩk))=trace(vωjkSjΩkv)=ωjkSjΩkv,v=ωjkcjk.\langle vv^{*},S^{-j}\Omega^{-k}\rangle=\mathop{\rm trace}\nolimits(vv^{*}(S^{-j}\Omega^{-k})^{*})=\mathop{\rm trace}\nolimits(v^{*}\omega^{jk}S^{j}\Omega^{k}v)=\omega^{jk}\langle S^{j}\Omega^{k}v,v\rangle=\omega^{jk}c_{jk}.

Motivated by this, we define a linear map T:d×dd×dT:\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}}\to\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}} by

Tc:=1dj,kcjk(SjΩk)=1dj,kωjkcjkSjΩk.Tc:={1\over d}\sum_{j,k}c_{jk}(S^{j}\Omega^{k})^{*}={1\over d}\sum_{j,k}\omega^{jk}c_{jk}S^{-j}\Omega^{-k}. (2.10)

This can be viewed as the α\alpha-Fourier transform of [Wal20] (for a Schur multiplier α\alpha) which is a map Fα:Gρdρ×dρF_{\alpha}:\mathbb{C}^{G}\to\oplus_{\rho}\mathbb{C}^{d_{\rho}\times d_{\rho}}, where ρ\rho counts over the irreducible projective representations of GG with multiplier α\alpha (and dimension dρd_{\rho}). Here G=d×dG=\mathbb{Z}_{d}\times\mathbb{Z}_{d} has just one such representation, the ρ\rho of (1.2), and FαF_{\alpha} of ν=cG=d×d\nu=c\in\mathbb{C}^{G}=\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}} at the unitary representation ρ\rho is

(Fαν)ρ=gGν(g)ρ(g)=j,kcjk(SjΩk)=d(Tc).(F_{\alpha}\nu)_{\rho}=\sum_{g\in G}\nu(g)\rho(g)^{*}=\sum_{j,k}c_{jk}(S^{j}\Omega^{k})^{*}=d(Tc).

Thus TT is the projective Fourier transform for the group G=d×dG=\mathbb{Z}_{d}\times\mathbb{Z}_{d}. For this particular group, we can view the image of a vector in G\mathbb{C}^{G} as being in G=d×d\mathbb{C}^{G}=\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}}, and as a result it is natural to consider powers of the Fourier transform. The only other case that we know of where this can be done is for the ordinary representations of a finite abelian group (where the representations give the character group G^\hat{G}, which can be identified with GG). In this case the (discrete) Fourier transform has order 44.

We now use TT to characterise those vectors (matrices) cG=d×dc\in\mathbb{C}^{G}=\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}} which give a fiducial projector vv=Tcvv^{*}=Tc.

Lemma 2.1

Let TT be given by (2.10). Suppose that c=(cjk)d×dc=(c_{jk})\in\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}} satisfies

  1. (i)

    cjk=ωjkcj,k¯c_{jk}=\omega^{-jk}\overline{c_{-j,-k}}

  2. (ii)

    c00=1c_{00}=1

  3. (iii)

    |cjk|2=1d+1|c_{jk}|^{2}={1\over d+1}, (j,k)(0,0)(j,k)\neq(0,0).

Then TcTc is Hermitian, and its eigenvalues λ1,,λd\lambda_{1},\ldots,\lambda_{d} satisfy

jλj=1,jλj2=1,jkλjλk=0,\sum_{j}\lambda_{j}=1,\qquad\sum_{j}\lambda_{j}^{2}=1,\qquad\sum_{j\neq k}\lambda_{j}\lambda_{k}=0,

i.e., its characteristic polynomial has the form

pTc(λ)=λdλd1+0λd2+ad3λd3++a1λ+a0.p_{Tc}(\lambda)=\lambda^{d}-\lambda^{d-1}+0\lambda^{d-2}+a_{d-3}\lambda^{d-3}+\cdots+a_{1}\lambda+a_{0}.

Proof: Firstly, observe (i) implies that TcTc is Hermitian, since

(Tc)=1dj,kωjkcj,kSjΩk=1dj,kω(j)(k)cj,kSjΩk=Tc.(Tc)^{*}={1\over d}\sum_{j,k}\omega^{jk}c_{-j,-k}S^{j}\Omega^{k}={1\over d}\sum_{j,k}\omega^{(-j)(-k)}c_{j,k}S^{-j}\Omega^{-k}=Tc.

Since trace(SjΩk)=0\mathop{\rm trace}\nolimits(S^{j}\Omega^{k})=0, (j,k)(0,0)(j,k)\neq(0,0), we calculate using (ii) that

jλj=trace(Tc)=1dj,kωjkcj,ktrace(SjΩk)=1dω0c00trace(I)=c00=1.\sum_{j}\lambda_{j}=\mathop{\rm trace}\nolimits(Tc)={1\over d}\sum_{j,k}\omega^{jk}c_{j,k}\mathop{\rm trace}\nolimits(S^{-j}\Omega^{-k})={1\over d}\omega^{0}c_{00}\mathop{\rm trace}\nolimits(I)=c_{00}=1.

The so called 22–trace jkλjλk\sum_{j\neq k}\lambda_{j}\lambda_{k} of TcTc is equal to {(trace(Tc))2trace((Tc)2)}/2\{(\mathop{\rm trace}\nolimits(Tc))^{2}-\mathop{\rm trace}\nolimits((Tc)^{2})\}/2. Since TcTc is Hermitian, trace((Tc)2)=Tc,(Tc)=Tc,Tc\mathop{\rm trace}\nolimits((Tc)^{2})=\langle Tc,(Tc)^{*}\rangle=\langle Tc,Tc\rangle, and by the orthogonality of the ρjk=SjΩk\rho_{jk}=S^{j}\Omega^{k}, we calculate

Tc,Tc=1d2j,k|cj,k|2ρjk,ρjk=1dj,k|cjk|2.\langle Tc,Tc\rangle={1\over d^{2}}\sum_{j,k}|c_{j,k}|^{2}\langle\rho_{jk}^{*},\rho_{jk}^{*}\rangle={1\over d}\sum_{j,k}|c_{jk}|^{2}.

Now by (ii) and (iii),

trace((Tc)2)=Tc,Tc=1dj,k|cjk|2=1d(1+(d21)1d+1)=1,\mathop{\rm trace}\nolimits((Tc)^{2})=\langle Tc,Tc\rangle={1\over d}\sum_{j,k}|c_{jk}|^{2}={1\over d}\Bigl{(}1+(d^{2}-1){1\over d+1}\Bigr{)}=1,

and so jkλjλk={(trace(Tc))2trace((Tc)2)}/2=(11)/2=0\sum_{j\neq k}\lambda_{j}\lambda_{k}=\{(\mathop{\rm trace}\nolimits(Tc))^{2}-\mathop{\rm trace}\nolimits((Tc)^{2})\}/2=(1-1)/2=0.       

Theorem 2.1

Let TT be given by (2.10). Then a matrix c=(cjk)d×dc=(c_{jk})\in\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}} determines a fiducial projector for a Weyl-Heisenberg SIC by vv=Tcvv^{*}=Tc if and only if

  1. (i)

    cjk=ωjkcj,k¯\displaystyle{c_{jk}=\omega^{-jk}\overline{c_{-j,-k}}}

  2. (ii)

    c00=1\displaystyle{c_{00}=1}

  3. (iii)

    |cjk|2=1d+1\displaystyle{|c_{jk}|^{2}={1\over d+1}}, (j,k)(0,0)(j,k)\neq(0,0)

  4. (iv)

    trace((Tc)4)=1\mathop{\rm trace}\nolimits((Tc)^{4})=1

Moreover this fiducial satisfies SjΩkv,v=cjk,\langle S^{j}\Omega^{k}v,v\rangle=c_{jk}, and if v00,v_{0}\neq 0, then vv is given by

v=1dv0¯c¯(111).v={1\over d\overline{v_{0}}}\overline{c}\begin{pmatrix}1\cr 1\cr\vdots\cr 1\end{pmatrix}.

Proof: By Lemma 2.1, the eigenvalues of the Hermitian matrix TcTc satisfy

jλj=1,jλj2=1,jkλjλk=0,\sum_{j}\lambda_{j}=1,\qquad\sum_{j}\lambda_{j}^{2}=1,\qquad\sum_{j\neq k}\lambda_{j}\lambda_{k}=0,

so that 0λj210\leq\lambda_{j}^{2}\leq 1. Thus λj4λj2\lambda_{j}^{4}\leq\lambda_{j}^{2}, with equality if and only if λj2{0,1}\lambda_{j}^{2}\in\{0,1\}. But

jλj4=trace((Tc)4)=1=trace((Tc)2)=jλj2,\sum_{j}\lambda_{j}^{4}=\mathop{\rm trace}\nolimits((Tc)^{4})=1=\mathop{\rm trace}\nolimits((Tc)^{2})=\sum_{j}\lambda_{j}^{2},

so that λj2{0,1}\lambda_{j}^{2}\in\{0,1\}, j\forall j, and we must have λj=1\lambda_{j}=1 for some jj, and λj=0\lambda_{j}=0 for all others, i.e., TcTc is rank one, say

Tc=1dj,kcjkρjk=vv,vd.Tc={1\over d}\sum_{j,k}c_{jk}\rho_{jk}^{*}=vv^{*},\qquad v\in\mathbb{C}^{\mathbb{Z}_{d}}.

Since {ρjk}\{\rho_{jk}\} is orthogonal, taking the inner product of the above with ρjk=SjΩk\rho_{jk}=S^{j}\Omega^{k} gives

cjk=1dcjkρjk,ρjk=vv,ρjk=trace(vvSjΩ)=trace(vSjΩkv)=SjΩkv,v.c_{jk}={1\over d}c_{jk}\langle\rho_{jk}^{*},\rho_{jk}^{*}\rangle=\langle vv^{*},\rho_{jk}^{*}\rangle=\mathop{\rm trace}\nolimits(vv^{*}S^{j}\Omega^{)}=\mathop{\rm trace}\nolimits(v^{*}S^{j}\Omega^{k}v)=\langle S^{j}\Omega^{k}v,v\rangle.

Finally, with eje_{j} the standard basis vectors, we calculate

j–th entry of c¯(111)\displaystyle\hbox{$j$--th entry of }\ \overline{c}\begin{pmatrix}1\cr 1\cr\vdots\cr 1\end{pmatrix} =kcjk¯=kv,SjΩkv=v,Sj(kΩk)v\displaystyle=\sum_{k}\overline{c_{jk}}=\sum_{k}\langle v,S^{j}\Omega^{k}v\rangle=\langle v,S^{j}\Bigl{(}\sum_{k}\Omega^{k}\Bigr{)}v\rangle
=v,Sj(d00000000)v=v,Sjdv0e0=dv0¯v,ej=dv0¯vj.\displaystyle=\langle v,S^{j}\begin{pmatrix}d&0&\cdots&0\cr 0&0&\cdots&0\cr\vdots&\vdots&&\vdots\cr 0&0&\cdots&0\end{pmatrix}v\rangle=\langle v,S^{j}dv_{0}e_{0}\rangle=d\overline{v_{0}}\langle v,e_{j}\rangle=d\overline{v_{0}}v_{j}.

      

From the proof, we see that (iv) can be replaced by various equivalent conditions, e.g.,

(iv) The characteristic polynomial of TcTc has the form PTc(λ)=λdλd1P_{Tc}(\lambda)=\lambda^{d}-\lambda^{d-1}

(iv)′′ trace((Tc)j)=1\mathop{\rm trace}\nolimits((Tc)^{j})=1, j=1,2,j=1,2,\ldots

since given (i), (ii), (ii),

(iv)′′ \Longrightarrow (iv) \Longrightarrow TcTc has eigenvalues 1,0,,01,0,\ldots,0 \iff (iv) \Longrightarrow (iv)′′.

By condition (ii), we may set c00=1c_{00}=1, to obtain the following characterisation.

Corollary 2.1

The overlaps of a Weyl-Heisenberg SIC are precisely the zeros of the polynomial trace((Tc)4)=1\mathop{\rm trace}\nolimits((Tc)^{4})=1 on the torus

|cjk|=1d+1,(j,k)(0,0).|c_{jk}|={1\over\sqrt{d+1}},\qquad(j,k)\neq(0,0).

The condition (i) allows further variables cjkc_{jk} to be eliminated. When dd is odd, half of the (d21)(d^{2}-1) variables cjkc_{jk}, (j,k)(0,0)(j,k)\neq(0,0), can be eliminated. For dd even, half of the d24d^{2}-4 variables cjkc_{jk}, (j,k){0,d2}2(j,k)\not\in\{0,{d\over 2}\}^{2}, can be eliminated, and

cd2,0=cd2,0¯,c0,d2=c0,d2¯,cd2,d2=(1)d2cd2,d2¯,c_{{d\over 2},0}=\overline{c_{{d\over 2},0}},\qquad c_{0,{d\over 2}}=\overline{c_{0,{d\over 2}}},\qquad c_{{d\over 2},{d\over 2}}=(-1)^{d\over 2}\overline{c_{{d\over 2},{d\over 2}}}, (2.11)

so that c0,d2,c0,d2c_{0,{d\over 2}},c_{0,{d\over 2}}\in\mathbb{R}, and cd2,d2c_{{d\over 2},{d\over 2}} is in \mathbb{R} for d2{d\over 2} even, and is in ii\mathbb{R} for d2{d\over 2} odd.

Example 2.1

For d=2d=2, the conditions (2.11) of (i) give c01c_{01}\in\mathbb{R}, c10c_{10}\in\mathbb{R}, c11ic_{11}\in i\mathbb{R}. Hence imposing the conditions (ii) and (iii), we have eight possibilities

c00=1,c01=±13,c10=±13,c11=±i13.c_{00}=1,\qquad c_{01}=\pm{1\over\sqrt{3}},\qquad c_{10}=\pm{1\over\sqrt{3}},\qquad c_{11}=\pm i{1\over\sqrt{3}}. (2.12)

Taking the ‘++’ choice above gives

Tc=T(1131313i)=12(I+13(S+Ω)+i3SΩ)=123(3+11i1+i31),Tc=T\begin{pmatrix}1&{1\over\sqrt{3}}\cr{1\over\sqrt{3}}&{1\over\sqrt{3}}i\end{pmatrix}={1\over 2}\bigl{(}I+{1\over\sqrt{3}}(S+\Omega)+{i\over\sqrt{3}}S\Omega\bigr{)}={1\over 2\sqrt{3}}\begin{pmatrix}\sqrt{3}+1&1-i\cr 1+i&\sqrt{3}-1\cr\end{pmatrix},

which satisfies trace((Tc)4)=trace(Tc)=1\mathop{\rm trace}\nolimits((Tc)^{4})=\mathop{\rm trace}\nolimits(Tc)=1, and so gives a Weyl-Heisenberg SIC

v=123+3(3+11+i).v={1\over\sqrt{2}\sqrt{3+\sqrt{3}}}\begin{pmatrix}\sqrt{3}+1\cr 1+i\end{pmatrix}.

In fact all eight choices give SICs which are equivalent, as we now explain.

The group generated by SS and Ω\Omega is called the Heisenberg group, and its normaliser in the unitary matrices is the Clifford group. Indeed, if a aC(d)a\in{\operatorname{C}}(d), then

aρjka1=za(j,k)ρψa(j,k),(j,k)d2,a\rho_{jk}a^{-1}=z_{a}(j,k)\rho_{\psi_{a}(j,k)},\qquad\forall(j,k)\in\mathbb{Z}_{d}^{2},

where ψa\psi_{a} is matrix multiplication by an element of 𝑆𝐿2(d)\mathop{\it SL}\nolimits_{2}(\mathbb{Z}_{d}). The Clifford group C(d){\operatorname{C}}(d) maps SIC fiducials to SIC fiducials, via the action

a(vv):=(av)(av)=a(vv)a1,aC(d).a\cdot(vv^{*}):=(av)(av)^{*}=a(vv^{*})a^{-1},\qquad a\in{\operatorname{C}}(d).

The induced action on the overlaps of the fiducial is given by

(ac)jk\displaystyle(a\cdot c)_{jk} =trace(a(vv)a1SjΩk)=a1SjΩkav,v=za1(j,k)ρψa1(j,k)v,v\displaystyle=\mathop{\rm trace}\nolimits(a(vv^{*})a^{-1}S^{j}\Omega^{k})=\langle a^{-1}S^{j}\Omega^{k}av,v\rangle=\langle z_{a^{-1}}(j,k)\rho_{\psi_{a^{-1}}(j,k)}v,v\rangle
=za1(j,k)cψa1(j,k).\displaystyle=z_{a^{-1}}(j,k)c_{\psi_{a^{-1}}(j,k)}.

In [BW19], it is shown that the Clifford group is generated by the scalar matrices, SS, Ω\Omega, the Fourier transform FF and the Zauner matrix ZZ, where

Fjk:=1dωjk,Zjk:=ζd1μj(j+d),μ:=e2π2di,ζ:=e2π24i.F_{jk}:={1\over\sqrt{d}}\omega^{jk},\qquad Z_{jk}:=\zeta^{d-1}\mu^{j(j+d)},\quad\mu:=e^{{2\pi\over 2d}i},\ \zeta:=e^{{2\pi\over 24}i}.

For these (see [Wal18])

(SaΩbc)jk=ωakbjcjk,(Fc)jk=ωjkck,j,(Zc)jk=μj(j+d2k)ckj,j.(S^{a}\Omega^{b}\cdot c)_{jk}=\omega^{ak-bj}c_{jk},\qquad(F\cdot c)_{jk}=\omega^{-jk}c_{k,-j},\qquad(Z\cdot c)_{jk}=\mu^{j(j+d-2k)}c_{k-j,-j}.

When a (Weyl-Heisenberg) SIC fiducial vvvv^{*} is known, there is always appears to be one which is given by an eigenvector vv of ZZ (indeed these are often searched for directly). Correspondingly, the overlaps satisfy Zc=cZ\cdot c=c, i.e., the equations

μj(j+d2k)ckj,j=cjk,\mu^{j(j+d-2k)}c_{k-j,-j}=c_{jk},

which allows a further reduction of the variables cjkc_{jk}.

3 Properties of the projective Fourier transform

Here we consider some properties of T:d×dd×dT:\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}}\to\mathbb{C}^{\mathbb{Z}_{d}\times\mathbb{Z}_{d}} given by (2.10), i.e., the projective Fourier transform of G=d×dG=\mathbb{Z}_{d}\times\mathbb{Z}_{d}. It follows from the Plancherel formula for projective representations [Wal20], or (2.9) that dT\sqrt{d}T is unitary. Indeed, (2.9) can be written as I=TΛI=T\Lambda, where Λ:GG:A(A,ρ(g))gG\Lambda:\mathbb{C}^{G}\to\mathbb{C}^{G}:A\mapsto(\langle A,\rho(g)\rangle)_{g\in G} satisfies

A,A=1dgG|A,ρ(g)|2=1dΛA,ΛA,\langle A,A\rangle={1\over d}\sum_{g\in G}|\langle A,\rho(g)\rangle|^{2}={1\over d}\langle\Lambda A,\Lambda A\rangle,

so that 1dΛ{1\over\sqrt{d}}\Lambda is unitary, and hence dT\sqrt{d}T is unitary.

We now show that dT\sqrt{d}T has finite order (6d6d or 12d12d), i.e., the projective Fourier transform for ρ\rho of (1.2) has finite order (Theorem 3.1). To do this, we need a technical lemma (Lemma 3.1), based on the Zauner matrix ZZ (of order 33), which can be factored

Z=ζd1RF,ζ:=e2πi24,(R)jk=μj(j+d)δjk,μ:=e2πi2d,Z=\zeta^{d-1}RF,\quad\zeta:=e^{2\pi i\over 24},\qquad(R)_{jk}=\mu^{j(j+d)}\delta_{jk},\quad\mu:=e^{2\pi i\over 2d},

where FF is the Fourier matrix, and RR is diagonal. The strong form of Zauner’s conjecture is that there is a SIC fiducial which is an eigenvector of ZZ, for every dimension dd.

Lemma 3.1

For any dd, we have that

(R2F)2=ζ6(d1)(RF)R2(RF)1,ζ=e2πi24,(R^{2}F)^{2}=\zeta^{-6(d-1)}(RF)R^{-2}(RF)^{-1},\qquad\zeta=e^{2\pi i\over 24},

and, in particular

(R2F)2d=(1)12d(d1)I.(R^{2}F)^{2d}=(-1)^{{1\over 2}d(d-1)}I.

Proof: Write Z=cRFZ=cRF, c=ζd1c=\zeta^{d-1}. Since Z3=IZ^{3}=I and F4=IF^{4}=I, we have

R2F\displaystyle R^{2}F =R(RF)2(RF)1=R(c¯Z)2(RF)1=c¯2RZ1(RF)1=c¯3RF1R1(RF)1\displaystyle=R(RF)^{2}(RF)^{-1}=R(\overline{c}Z)^{2}(RF)^{-1}=\overline{c}^{2}RZ^{-1}(RF)^{-1}=\overline{c}^{3}RF^{-1}R^{-1}(RF)^{-1}
=c¯3(RF)(F2R1)(RF)1.\displaystyle=\overline{c}^{3}(RF)(F^{2}R^{-1})(RF)^{-1}.

Since the permutation matrix F2F^{2} commutes with RR (or any power of RR), we have

(R2F)2=c¯6(RF)(F2R1)2(RF)1=c¯6(RF)R2(RF)1,(R^{2}F)^{2}=\overline{c}^{6}(RF)(F^{2}R^{-1})^{2}(RF)^{-1}=\overline{c}^{6}(RF)R^{-2}(RF)^{-1},

where c¯6=ζ6(d1)\overline{c}^{6}=\zeta^{-6(d-1)}. Since R2d=IR^{2d}=I, we obtain

(R2F)2d=c¯6d(RF)R2d(RF)1=c¯6dI,c¯6d=ζ6d(d1)=(1)12d(d1),(R^{2}F)^{2d}=\overline{c}^{6d}(RF)R^{-2d}(RF)^{-1}=\overline{c}^{6d}I,\qquad\overline{c}^{6d}=\zeta^{-6d(d-1)}=(-1)^{{1\over 2}d(d-1)},

which completes the proof.       

Theorem 3.1

The reconstruction operator TT of (2.10) has finite order, i.e.,

(dT)6d=(1)12d(d1)I.(\sqrt{d}T)^{6d}=(-1)^{{1\over 2}d(d-1)}I.

Proof: We consider TT with respect to the standard basis Ejk=ejekE_{jk}=e_{j}e_{k}^{*} for matrices, ordered so that the coordinates of cc have the block structure [c]=(c0,,cd1)T[c]=(c_{0},\ldots,c_{d-1})^{T}, where cjc_{j} is the jj-th column of the matrix cc (this is the order of matlab’s reshape(c,d^2,1)).

The (j,k)(j,k)-block AjkA_{jk} of the (block) matrix representation [dT][\sqrt{d}T] of dT\sqrt{d}T is given by

Ajkv\displaystyle A_{jk}v =j-th column of dT([00,v,00]) (v is the k-th column)\displaystyle=\hbox{$j$-th column of $\sqrt{d}T([0\ldots 0,v,0\ldots 0])$ \quad($v$ is the $k$-th column)}
=1da,b[00,v,00]ab(SaΩb)ej=1davaΩkSaej\displaystyle={1\over\sqrt{d}}\sum_{a,b}[0\ldots 0,v,0\ldots 0]_{ab}(S^{a}\Omega^{b})^{*}e_{j}={1\over\sqrt{d}}\sum_{a}v_{a}\Omega^{-k}S^{-a}e_{j}
=1da(ΩkP1Sjea)va=1d(ΩkP1Sj)v,\displaystyle={1\over\sqrt{d}}\sum_{a}(\Omega^{-k}P_{-1}S^{-j}e_{a})v_{a}={1\over\sqrt{d}}(\Omega^{-k}P_{-1}S^{-j})v,

so that

Ajk=1dΩkP1Sj,(Ajk)ab=1dωakδa,jb.A_{jk}={1\over\sqrt{d}}\Omega^{-k}P_{-1}S^{-j},\qquad(A_{jk})_{ab}={1\over\sqrt{d}}\omega^{-ak}\delta_{a,j-b}.

The (j,k)(j,k)-block BjkB_{jk} of [dT]2[\sqrt{d}T]^{2} is given by

(Bjk)ab\displaystyle(B_{jk})_{ab} =(rAjrArk)ab=rt(Ajr)at(Ark)tb=1drtωarδa,jtωtkδt,rb\displaystyle=\bigl{(}\sum_{r}A_{jr}A_{rk}\bigl{)}_{ab}=\sum_{r}\sum_{t}(A_{jr})_{at}(A_{rk})_{tb}={1\over d}\sum_{r}\sum_{t}\omega^{-ar}\delta_{a,j-t}\omega^{-tk}\delta_{t,r-b}
=1dωa(ja+b)ω(ja)k=1dωa2aj+akjkab.\displaystyle={1\over d}\omega^{-a(j-a+b)}\omega^{-(j-a)k}={1\over d}\omega^{a^{2}-aj+ak-jk-ab}.

The (j,k)(j,k)-block CjkC_{jk} of [dT]3[\sqrt{d}T]^{3} is given by

(Cjk)ab\displaystyle(C_{jk})_{ab} =(rBjrArk)ab=rt(Bjr)at(Ark)tb=rt(Bjr)at(Ark)tb\displaystyle=\bigl{(}\sum_{r}B_{jr}A_{rk}\bigl{)}_{ab}=\sum_{r}\sum_{t}(B_{jr})_{at}(A_{rk})_{tb}=\sum_{r}\sum_{t}(B_{jr})_{at}(A_{rk})_{tb}
=1ddrtωa2aj+arjratωtkδt,rb=1ddrωa2aj+arjra(rb)ω(rb)k\displaystyle={1\over d\sqrt{d}}\sum_{r}\sum_{t}\omega^{a^{2}-aj+ar-jr-at}\omega^{-tk}\delta_{t,r-b}={1\over d\sqrt{d}}\sum_{r}\omega^{a^{2}-aj+ar-jr-a(r-b)}\omega^{-(r-b)k}
=1ddωa2aj+ab+bkrωr(j+k)=1dωa2aj+ab+bkδj,k=(R2ΩjFΩk)abδj,k,\displaystyle={1\over d\sqrt{d}}\omega^{a^{2}-aj+ab+bk}\sum_{r}\omega^{-r(j+k)}={1\over\sqrt{d}}\omega^{a^{2}-aj+ab+bk}\delta_{j,-k}=(R^{2}\Omega^{-j}F\Omega^{k})_{ab}\delta_{j,-k},

so that

Cjk={0,kj;R2ΩjFΩj,k=j.C_{jk}=\begin{cases}0,&k\neq-j;\cr R^{2}\Omega^{-j}F\Omega^{-j},&k=-j.\end{cases}

It therefore follows, that [dT]6[\sqrt{d}T]^{6} is block diagonal, with diagonal blocks

Qjj=Cj,jCj,j=(R2ΩjFΩj)(R2ΩjFΩj)=Ωj(R2F)2Ωj.Q_{jj}=C_{j,-j}C_{-j,j}=(R^{2}\Omega^{-j}F\Omega^{-j})(R^{2}\Omega^{j}F\Omega^{j})=\Omega^{-j}(R^{2}F)^{2}\Omega^{j}.

Thus [dT]6d[\sqrt{d}T]^{6d} is block diagonal, and, by Lemma 3.1, its diagonal blocks simplify to

Ωj(R2F)2dΩj=Ωj(1)12d(d1)IΩj=(1)12d(d1)I,\Omega^{-j}(R^{2}F)^{2d}\Omega^{j}=\Omega^{-j}(-1)^{{1\over 2}d(d-1)}I\Omega^{j}=(-1)^{{1\over 2}d(d-1)}I,

i.e., [(dT)6d]=[(1)12d(d1)I][(\sqrt{d}T)^{6d}]=[(-1)^{{1\over 2}d(d-1)}I].       

Since the projective representation (1.2) of d×d\mathbb{Z}_{d}\times\mathbb{Z}_{d} is not an ordinary representation, there is no canonical presentation of the projective Fourier transform at ρ\rho, as with the Fourier transform for d\mathbb{Z}_{d}, which gives FF (of order 44), by taking α=1\alpha=1. Indeed, one could take ρ~((j,k))=bjkSjΩk\tilde{\rho}((j,k))=b_{jk}S^{j}\Omega^{k}, for any unit scalars bjkb_{jk}, with a corresponding α~\tilde{\alpha}-transform (reconstruction operator)

T~c:=1dj,kcjk(bjkSjΩk)=1dj,kcjkbjk¯ωjkSjΩk.\tilde{T}c:={1\over d}\sum_{j,k}c_{jk}(b_{jk}S^{j}\Omega^{k})^{*}={1\over d}\sum_{j,k}c_{jk}\overline{b_{jk}}\omega^{jk}S^{-j}\Omega^{-k}.

For a general choice for bjkb_{jk}, dT~\sqrt{d}\tilde{T} is again unitary, but not of finite order. During our investigation, we came across various choices giving operators of finite order, in particular

Lc:=1dj,kcjk(ωjkSjΩk)=1dj,kcjkSjΩk.Lc:={1\over d}\sum_{j,k}c_{jk}(\omega^{jk}S^{j}\Omega^{k})^{*}={1\over d}\sum_{j,k}c_{jk}S^{-j}\Omega^{-k}. (3.13)

It can be shown that LL has the compact form

Lc=F(F(FcF)),Lc=F^{*}(F\circ(F^{*}cF^{*})), (3.14)

where \circ is the Hadamard product. From this, we obtain the following.

Theorem 3.2

The operator LL of (3.13) satisfies

(dL)4c=(FR2F)c(matrix multiplication),(\sqrt{d}L)^{4}c=(F^{*}R^{-2}F)c\qquad\hbox{(matrix multiplication)},

and hence, since R2d=IR^{2d}=I, we have

(dL)4d=I.(\sqrt{d}L)^{4d}=I.

Proof: We first verify the compact form (3.14),

(Lc)ab=1dj,kcjk(SjΩk)ab=1dj,kcjkωkbδa,bj=1dkcba,kωkb,(Lc)_{ab}={1\over d}\sum_{j,k}c_{jk}(S^{-j}\Omega^{-k})_{ab}={1\over d}\sum_{j,k}c_{jk}\omega^{-kb}\delta_{a,b-j}={1\over d}\sum_{k}c_{b-a,k}\omega^{-kb},
(F(\displaystyle\bigl{(}F^{*}( F(FcF)))ab=r,t,k(F)ar(F)rb(F)rtctk(F)kb\displaystyle F\circ(F^{*}cF^{*}))\bigr{)}_{ab}=\sum_{r,t,k}(F^{*})_{ar}(F)_{rb}(F^{*})_{rt}c_{tk}(F^{*})_{kb}
=1d2r,t,kωar+rbrtctkωkb=1dt,kδt,bactkωkb=1dkcba,kωkb.\displaystyle={1\over d^{2}}\sum_{r,t,k}\omega^{-ar+rb-rt}c_{tk}\omega^{-kb}={1\over d}\sum_{t,k}\delta_{t,b-a}c_{tk}\omega^{-kb}={1\over d}\sum_{k}c_{b-a,k}\omega^{-kb}.

Define the operation A~=P1AP1\tilde{A}=P_{1-}AP_{-1} of conjugation by the permutation matrix P1=F2P_{-1}=F^{2} of order 22. This distributes over matrix multiplication, the Hadamard product, leaving FF (and its powers) unchanged, so that Lc=F(F(Fc~F))Lc=F^{*}(F\circ(F\tilde{c}F)), and

L2c\displaystyle L^{2}c =F(F(F[F(F(Fc~F))]~F))=F(F(F[F(F(FcF))]F))\displaystyle=F^{*}(F\circ(F[F^{*}(F\circ(F\tilde{c}F))]\,\tilde{}F))=F^{*}(F\circ(F[F^{*}(F\circ(FcF))]F))
=F([F([F(FcF)]F)]F)F=FM2(FcF)F,\displaystyle=F^{*}([F\circ([F\circ(FcF)]F)]F)F^{*}=F^{*}M^{2}(FcF)F^{*},

where

Mc:=(Fc)F,(Mc)jk=t(Fc)jtFtk=1dtωjtcjtωtk=1dtω(j+k)tcjt,Mc:=(F\circ c)F,\qquad(Mc)_{jk}=\sum_{t}(F\circ c)_{jt}F_{tk}={1\over d}\sum_{t}\omega^{jt}c_{jt}\omega^{tk}={1\over d}\sum_{t}\omega^{(j+k)t}c_{jt},
(M2c)jk\displaystyle(M^{2}c)_{jk} =1dtω(j+k)t(Mc)jt=1dtω(j+k)t1drω(j+t)rcjr=1dωj(j+k)cj,(j+k),\displaystyle={1\over d}\sum_{t}\omega^{(j+k)t}(Mc)_{jt}={1\over d}\sum_{t}\omega^{(j+k)t}{1\over d}\sum_{r}\omega^{(j+t)r}c_{jr}={1\over d}\omega^{-j(j+k)}c_{j,-(j+k)},
(M4c)jk\displaystyle(M^{4}c)_{jk} =1d2ωj(j+k)ωj(k)cjk=1d2μ2j(j+d)cjk=(1d2R2c)jk.\displaystyle={1\over d^{2}}\omega^{-j(j+k)}\omega^{-j(-k)}c_{jk}={1\over d^{2}}\mu^{-2j(j+d)}c_{jk}=({1\over d^{2}}R^{-2}c)_{jk}.

Thus, M4c=1d2R2cM^{4}c={1\over d^{2}}R^{-2}c, which gives

(dL)4c\displaystyle(\sqrt{d}L)^{4}c =d2FM2(F[FM2(FcF)F]F)F=d2FM4(FcF)F\displaystyle=d^{2}F^{*}M^{2}(F[F^{*}M^{2}(FcF)F^{*}]F)F^{*}=d^{2}F^{*}M^{4}(FcF)F^{*}
=F(R2FcF)F=FR2Fc,\displaystyle=F^{*}(R^{-2}FcF)F^{*}=F^{*}R^{-2}Fc,

and (dL)4dc=(FR2F)dc=FR2dFc=c(\sqrt{d}L)^{4d}c=(F^{*}R^{-2}F)^{d}c=F^{*}R^{-2d}Fc=c.       

4 Equivalent equations for Heisenberg frames

In this section, we give another condition that ensures TcTc has rank one, which leads to a set of equations for cc which express in terms of polynomials pj(z)p_{j}(z) which are zz–transforms of the rows of cc. These polynomials pj(z)p_{j}(z) have interesting Riesz–type factorisation properties, which we use to find a solution for d=4d=4.

We use the following condition which ensures that a matrix Ad×dA\in\mathbb{C}^{d\times d} has rank one.

Lemma 4.1

A=vvA=vv^{*} for some vdv\in\mathbb{C}^{d} with vm0v_{m}\neq 0 if and only if amm>0a_{mm}>0 and

A=1amm[a0ma1ma2m][a0ma1ma2m].A={1\over a_{mm}}\begin{bmatrix}a_{0m}\cr a_{1m}\cr a_{2m}\cr\vdots\cr\end{bmatrix}\begin{bmatrix}a_{0m}\cr a_{1m}\cr a_{2m}\cr\vdots\cr\end{bmatrix}^{*}. (4.15)

Proof: First suppose that A=vvA=vv^{*} for such a vv. Then

vm¯v=Aem=[a0ma1ma2m],|vm|2=(vm¯v)m=amm,\overline{v_{m}}v=Ae_{m}=\begin{bmatrix}a_{0m}\cr a_{1m}\cr a_{2m}\cr\vdots\cr\end{bmatrix},\qquad|v_{m}|^{2}=(\overline{v_{m}}v)_{m}=a_{mm},

so that amm>0a_{mm}>0, and (4.15) holds since (vm¯v)(vm¯v)=|vm|2(vv)(\overline{v_{m}}v)(\overline{v_{m}}v)^{*}=|v_{m}|^{2}(vv^{*}).

Conversely, suppose that (4.15) holds with amm>0a_{mm}>0, then clearly A=vvA=vv^{*} for

v:=1amm[a0ma1ma2m],vm=amm.v:={1\over\sqrt{a_{mm}}}\begin{bmatrix}a_{0m}\cr a_{1m}\cr a_{2m}\cr\vdots\cr\end{bmatrix},\qquad v_{m}=\sqrt{a_{mm}}.

      

In particular, Tc=vvTc=vv^{*} for some vdv\in\mathbb{C}^{d} with vm0v_{m}\neq 0 if and only if (Tc)mm>0(Tc)_{mm}>0 and

(Tc)jk=(Tc)jm(Tc)km¯(Tc)mm.(Tc)_{jk}={(Tc)_{jm}\overline{(Tc)_{km}}\over(Tc)_{mm}}. (4.16)

We now express (4.16) in terms of the following zz–transform.

Definition 4.1

For j=0,1,,d1j=0,1,\ldots,d-1, the jj–th symbol of cc is defined to be the polynomial

pj(z):=rcj,r(ωjz)r.p_{j}(z):=\sum_{r}c_{-j,r}(\omega^{j}z)^{-r}.

This is the zz–transform of the jj–th row of the matrix (ωjkcj,k)(\omega^{jk}c_{-j,-k}), since

kωjkcj,kzk=rωjrcj,rzr=rcj,r(ωjz)r.\sum_{k}\omega^{jk}c_{-j,-k}z^{k}=\sum_{r}\omega^{-jr}c_{-j,r}z^{-r}=\sum_{r}c_{-j,r}(\omega^{j}z)^{-r}.

We think of pj(z)p_{j}(z) as being defined only on zd=1z^{d}=1, since each polynomial of degree dd is uniquely determined by its values at the dd–th roots of unity. Clearly, we can recover cc from the d2d^{2} values pj(ωk)p_{j}(\omega^{k}), j,k=0,,d1j,k=0,\ldots,d-1. Using (LABEL:Tcjk), we calculate

pjk(ωk)=rckj,r(ωjkωk)r=rckj,r(ωj)r=d(Tc)jk.p_{j-k}(\omega^{k})=\sum_{r}c_{k-j,r}(\omega^{j-k}\omega^{k})^{-r}=\sum_{r}c_{k-j,r}(\omega^{j})^{-r}=d(Tc)_{jk}.

Hence (4.16) can be expressed as follows.

Theorem 4.1

Tc=vvTc=vv^{*} for vdv\in\mathbb{C}^{d} with vm0v_{m}\neq 0 if and only if the symbols of cc satisfy

p0(ωm)>0,pjk(ωk)=pjm(ωm)pkm(ωm)¯p0(ωm),j,k=0,,d1.p_{0}(\omega^{m})>0,\qquad p_{j-k}(\omega^{k})={p_{j-m}(\omega^{m})\overline{p_{k-m}(\omega^{m})}\over p_{0}(\omega^{m})},\quad j,k=0,\ldots,d-1. (4.17)

The symbols corresponding to a solution have interesting Riesz–type factorisation properties, which, for simplicity, we illustrate when m=0m=0.

Corollary 4.1

Tc=vvTc=vv^{*} for vdv\in\mathbb{C}^{d} with v00v_{0}\neq 0 if and only if the symbols of cc satisfy

p0(1)>0,pjk(ωk)=pj(1)pk(1)¯p0(1),j,k=0,,d1.p_{0}(1)>0,\qquad p_{j-k}(\omega^{k})={p_{j}(1)\overline{p_{k}(1)}\over p_{0}(1)},\quad j,k=0,\ldots,d-1. (4.18)

Moreover, these have the factorisations

|pj(z)|2=p0(z)p0(ωjz),j=0,,d1,|p_{j}(z)|^{2}=p_{0}(z)p_{0}(\omega^{j}z),\qquad j=0,\ldots,d-1, (4.19)

and the following invariant

kpj(ωk)=kp0(ωk),j=0,,d1.\prod_{k}p_{j}(\omega^{k})=\prod_{k}p_{0}(\omega^{k}),\qquad j=0,\ldots,d-1. (4.20)

Proof: For (4.18) take m=0m=0 in Theorem 4.1. Now re-index to get

pj(ωk)=pj+k(1)pk(1)¯p0(1),p_{j}(\omega^{k})={p_{j+k}(1)\overline{p_{k}(1)}\over p_{0}(1)},

and take the modulus squared of both sides

|pj(ωk)|2=|pk(1)|2p0(1)|pj+k(1)|2p0(1).|p_{j}(\omega^{k})|^{2}={|p_{k}(1)|^{2}\over p_{0}(1)}{|p_{j+k}(1)|^{2}\over p_{0}(1)}.

But, from j=0j=0 in the first equation,

p0(ωk)=|pk(1)|2p0(1),p_{0}(\omega^{k})={|p_{k}(1)|^{2}\over p_{0}(1)},

so that

|pj(ωk)|2=p0(ωk)p0(ωj+k)=p0(ωk)p0(ωjωk),|p_{j}(\omega^{k})|^{2}=p_{0}(\omega^{k})p_{0}(\omega^{j+k})=p_{0}(\omega^{k})p_{0}(\omega^{j}\omega^{k}),

i.e., setting z=ωk,z=\omega^{k},

|pj(z)|2=p0(z)p0(ωjz).|p_{j}(z)|^{2}=p_{0}(z)p_{0}(\omega^{j}z).

Take the product over kk of the re-indexed equation

kpj(ωk)=1(p0(1))dkpj+k(1)pk(1)¯=1(p0(1))dk|pk(1)|2,\prod_{k}p_{j}(\omega^{k})={1\over(p_{0}(1))^{d}}\prod_{k}p_{j+k}(1)\overline{p_{k}(1)}={1\over(p_{0}(1))^{d}}\prod_{k}|p_{k}(1)|^{2},

(since each pk(1)p_{k}(1) and its conjugate appears exactly once in the product). Thus, by (4.19)

kpj(ωk)=1(p0(1))dk=0d1p0(1)p0(ωk)=k=0d1p0(ωk).\prod_{k}p_{j}(\omega^{k})={1\over(p_{0}(1))^{d}}\prod_{k=0}^{d-1}p_{0}(1)p_{0}(\omega^{k})=\prod_{k=0}^{d-1}p_{0}(\omega^{k}).

      

For completeness, we note that the Hermitian condition of Lemma 2.1 can also be succinctly expressed in terms of row symbols.

Lemma 4.2

TcTc is Hermitian if and only if the symbols of cc satisfy

pj(z)¯=pj(ωjz),j=0,,d1.\overline{p_{j}(z)}=p_{-j}(\omega^{j}z),\qquad j=0,\ldots,d-1.

Proof: From the definition, we calculate

pj(z)¯=rcj,r(ωjz)r¯=rcj,r¯(ωjz)r=kcj,k¯ωjkzk,\overline{p_{j}(z)}=\overline{\sum_{r}c_{-j,r}(\omega^{j}z)^{-r}}=\sum_{r}\overline{c_{-j,r}}(\omega^{j}z)^{r}=\sum_{k}\overline{c_{-j,-k}}\omega^{-jk}z^{-k},
pj(ωjz)=rcj,r(ωj(ωjz))r=kcjkzk,p_{-j}(\omega^{j}z)=\sum_{r}c_{j,r}(\omega^{-j}(\omega^{j}z))^{-r}=\sum_{k}c_{jk}z^{-k},

and so, by equating the coefficients of zkz^{-k}, the Hermitian condition cjk=ωjkcj,k¯c_{jk}=\omega^{-jk}\overline{c_{-j,-k}} is equivalent to equality of the above symbols.       

5 The Special Case of d=3d=3

This case already has some interesting geometric features.

Solving the basic equations for the cjk,c_{jk}, is also geometrically interesting.

Proposition 5.1

For d=3d=3, cc generates a Heisenberg frame with v00v_{0}\neq 0 if and only if

(a) p0(z)=1+c01¯z+c01z2\displaystyle{p_{0}(z)=1+\overline{c_{01}}z+c_{01}z^{2}} and p2(z)=p1(ω2z)¯\displaystyle{p_{2}(z)=\overline{p_{1}(\omega^{2}z)}}  (Hermitian conditions)

(b) |p1(z)|2=p0(z)p0(ωz)\displaystyle{|p_{1}(z)|^{2}=p_{0}(z)p_{0}(\omega z)}  (Riesz factorization)

(c) k=02p1(ωk)=k=02p0(ωk)\displaystyle{\prod_{k=0}^{2}p_{1}(\omega^{k})=\prod_{k=0}^{2}p_{0}(\omega^{k})}  (invariant condition)

(d) |c01|=|c1k|=12,k=0,1,2.\displaystyle{|c_{01}|=|c_{1k}|={1\over{2}},\quad k=0,1,2.}

Proof: By Lemma 4.2, the conditions for TcTc to be Hermitian are

p0(z)¯=p0(z),p1(z)¯=p2(ωz),p2(z)¯=p1(ω2z).\overline{p_{0}(z)}=p_{0}(z),\qquad\overline{p_{1}(z)}=p_{2}(\omega z),\qquad\overline{p_{2}(z)}=p_{1}(\omega^{2}z).

Since p0(z)=c00+c01z2+c02zp_{0}(z)=c_{00}+c_{01}z^{2}+c_{02}z, the first equation is satisfied provided

c00¯+c01¯z+c02¯z2=c00+c02z+c01z2c00,c02=c01¯.\overline{c_{00}}+\overline{c_{01}}z+\overline{c_{02}}z^{2}=c_{00}+c_{02}z+c_{01}z^{2}\hskip 10.00002pt\Longleftrightarrow\hskip 10.00002ptc_{00}\in\mathbb{R},\quad c_{02}=\overline{c_{01}}.

The second and third are equivalent, since substituting ωz\omega z for zz in the third gives

p2(ωz)¯=p1(ω2(ωz))=p1(z).\overline{p_{2}(\omega z)}=p_{1}(\omega^{2}(\omega z))=p_{1}(z).

Hence (a) is equivalent to TcTc being Hermitian with c00=1c_{00}=1, and implies c02=c01¯c_{02}=\overline{c_{01}}.

By Corollary 4.1, (a),(b),(c), (d) hold for a Heisenberg frame with v00v_{0}\neq 0. For the converse, suppose that (a),(b),(c), (d) hold. Then by (a), TcTc is Hermitian with c00=1c_{00}=1, and c02=c01¯c_{02}=\overline{c_{01}}, so that (d) gives |cjk|=12|c_{jk}|={1\over 2}, (j,k)(0,0)(j,k)\neq(0,0). Hence Lemma 2.1, gives

PTc(λ)=λ3λ2+0λ+a0,a0=det(Tc).P_{Tc}(\lambda)=\lambda^{3}-\lambda^{2}+0\lambda+a_{0},\qquad a_{0}=-\det(Tc).

In view of Theorem 2.1, with condition (iv), we need only show that det(Tc)=0\det(Tc)=0.

Since d(Tc)jk=pjk(ωk)d(Tc)_{jk}=p_{j-k}(\omega^{k}), condition (a) gives

3(Tc)=[p0(1)p2(ω)p1(ω2)p1(1)p0(ω)p2(ω2)p2(1)p1(ω)p0(ω2)]=[p0(1)p1(1)¯p1(ω2)p1(1)p0(ω)p1(ω)¯p1(ω2)¯p1(ω)p0(ω2)].3(Tc)=\begin{bmatrix}p_{0}(1)&p_{2}(\omega)&p_{1}(\omega^{2})\cr p_{1}(1)&p_{0}(\omega)&p_{2}(\omega^{2})\cr p_{2}(1)&p_{1}(\omega)&p_{0}(\omega^{2})\end{bmatrix}=\begin{bmatrix}p_{0}(1)&\overline{p_{1}(1)}&p_{1}(\omega^{2})\cr p_{1}(1)&p_{0}(\omega)&\overline{p_{1}(\omega)}\cr\overline{p_{1}(\omega^{2})}&p_{1}(\omega)&p_{0}(\omega^{2})\end{bmatrix}.

Since p0(z)¯=p0(z)\overline{p_{0}(z)}=p_{0}(z), the invariant condition gives kp1(ωk)=kp1(ωk)¯=kp0(ωk)¯\prod_{k}p_{1}(\omega^{k})=\prod_{k}\overline{p_{1}(\omega^{k})}=\prod_{k}\overline{p_{0}(\omega^{k})}, and we calculate and so

3det(Tc)\displaystyle 3\det(Tc) =p0(1){p0(ω)p0(ω2)|p1(ω)|2}p1(1)¯{p1(1)p0(ω2)p1(ω2)¯p1(ω)¯}\displaystyle=p_{0}(1)\{p_{0}(\omega)p_{0}(\omega^{2})-|p_{1}(\omega)|^{2}\}-\overline{p_{1}(1)}\{p_{1}(1)p_{0}(\omega^{2})-\overline{p_{1}(\omega^{2})}\overline{p_{1}(\omega)}\}
+p1(ω2){p1(1)p1(ω)p1(ω2)¯p0(ω)}\displaystyle\qquad+p_{1}(\omega^{2})\{p_{1}(1)p_{1}(\omega)-\overline{p_{1}(\omega^{2})}p_{0}(\omega)\}
=3kp0(ωk)p0(1)|p1(ω)|2p0(ω2)|p1(1)|2p0(ω)|p1(ω2)|2.\displaystyle=3\prod_{k}p_{0}(\omega^{k})-p_{0}(1)|p_{1}(\omega)|^{2}-p_{0}(\omega^{2})|p_{1}(1)|^{2}-p_{0}(\omega)|p_{1}(\omega^{2})|^{2}.

Applying the Riesz factorisation to the last three terms we then obtain

3det(Tc)=3kp0(ωk)p0(1)p0(ω)p0(ω2)p0(ω2)p0(1)p0(ω)p0(ω)p0(ω2)p0(1)=0.3\det(Tc)=3\prod_{k}p_{0}(\omega^{k})-p_{0}(1)p_{0}(\omega)p_{0}(\omega^{2})-p_{0}(\omega^{2})p_{0}(1)p_{0}(\omega)-p_{0}(\omega)p_{0}(\omega^{2})p_{0}(1)=0.

(need to check v00v_{0}\neq 0!)       

We now use Proposition 5.1 to find the solutions for d=3d=3. First we consider the Riesz–type factorisation |p1(z)|2=p0(z)p0(ωz)|p_{1}(z)|^{2}=p_{0}(z)p_{0}(\omega z). Note that 1+ω+ω2=01+\omega+\omega^{2}=0, and the variable zz of our symbols satisfies z3=1z^{3}=1, z¯=z2\overline{z}=z^{2}. Hence multiplying out gives

|p1(z)|2\displaystyle|p_{1}(z)|^{2} =p1(z)p1(z)¯=(c20+c21ω2z2+c22ωz)(c20¯+c21¯ωz+c22¯ω2z2)\displaystyle=p_{1}(z)\overline{p_{1}(z)}=(c_{20}+c_{21}\omega^{2}z^{2}+c_{22}\omega z)(\overline{c_{20}}+\overline{c_{21}}\omega z+\overline{c_{22}}\omega^{2}z^{2})
=(k|c2k|2)+(c20c21¯+c21c22¯+c22c20¯)ωz+(c20c22¯+c21c20¯+c22c21¯)ω2z2,\displaystyle=(\hbox{$\sum_{k}$}|c_{2k}|^{2})+(c_{20}\overline{c_{21}}+c_{21}\overline{c_{22}}+c_{22}\overline{c_{20}})\omega z+(c_{20}\overline{c_{22}}+c_{21}\overline{c_{20}}+c_{22}\overline{c_{21}})\omega^{2}z^{2},

and

p0(z)p0(ωz)\displaystyle p_{0}(z)p_{0}(\omega z) =(1+c01¯z+c01z2)(1+c01¯ωz+c01ω2z2)\displaystyle=(1+\overline{c_{01}}z+c_{01}z^{2})(1+\overline{c_{01}}\omega z+c_{01}\omega^{2}z^{2})
=1|c01|2+ω2(c012c01¯)z+ω(c01¯2c01)z2.\displaystyle=1-|c_{01}|^{2}+\omega^{2}(c_{01}^{2}-\overline{c_{01}})z+\omega(\overline{c_{01}}^{2}-c_{01})z^{2}.

Hence, equating the coefficients of 1,z,z21,z,z^{2}, gives

|c20|2+|c21|2+|c22|2\displaystyle|c_{20}|^{2}+|c_{21}|^{2}+|c_{22}|^{2} =1|c01|2,\displaystyle=1-|c_{01}|^{2},
c20c21¯+c21c22¯+c22c20¯\displaystyle c_{20}\overline{c_{21}}+c_{21}\overline{c_{22}}+c_{22}\overline{c_{20}} =(c012c01¯)ω,\displaystyle=(c_{01}^{2}-\overline{c_{01}})\omega,
c20c22¯+c21c20¯+c22c21¯\displaystyle c_{20}\overline{c_{22}}+c_{21}\overline{c_{20}}+c_{22}\overline{c_{21}} =(c01¯2c01)ω2.\displaystyle=(\overline{c_{01}}^{2}-c_{01})\omega^{2}.

Since |c01|2=|c1k|2=14|c_{01}|^{2}=|c_{1k}|^{2}={1\over 4}, the first equation is automatically satisfied. Further, the second and third are conjugates of each other, and so we have only one equation (for the Riesz–type factorisations)

c20c22¯+c21c20¯+c22c21¯=(c01¯2c01)ω2.c_{20}\overline{c_{22}}+c_{21}\overline{c_{20}}+c_{22}\overline{c_{21}}=(\overline{c_{01}}^{2}-c_{01})\omega^{2}.

Setting zjk:=cjk/|cjk|=2cjkz_{jk}:=c_{jk}/|c_{jk}|=2c_{jk}, this becomes

14(z20z22¯+z21z20¯+z22z21¯)=(14z01¯212z01)ω2.{1\over 4}(z_{20}\overline{z_{22}}+z_{21}\overline{z_{20}}+z_{22}\overline{z_{21}})=({1\over 4}\overline{z_{01}}^{2}-{1\over 2}z_{01})\omega^{2}.

Since z01¯2=z012\overline{z_{01}}^{2}=z_{01}^{-2}, this can be rewritten as

z20z22¯+z21z20¯+z22z21¯=(1z0122z01)ω2=12z013z012ω2=12(z01/ω)3(z01/ω)2.z_{20}\overline{z_{22}}+z_{21}\overline{z_{20}}+z_{22}\overline{z_{21}}=\bigl{(}{1\over z_{01}^{2}}-2z_{01}\bigr{)}\omega^{2}={1-2z_{01}^{3}\over z_{01}^{2}}\omega^{2}={1-2(z_{01}/\omega)^{3}\over(z_{01}/\omega)^{2}}.

Now we set z:=z01/ωz:=z_{01}/\omega, so that our equation becomes

z20z22¯+z21z20¯+z22z21¯=12z3z2.z_{20}\overline{z_{22}}+z_{21}\overline{z_{20}}+z_{22}\overline{z_{21}}={1-2z^{3}\over z^{2}}. (5.21)

We proceed to analyze both sides of this equation.

Lemma 5.1

The curve

θ12z3z2,z=eiθ\theta\mapsto{1-2z^{3}\over z^{2}},\quad z=-e^{i\theta}

is a 33–cusped hypocycloid (or deltoid).

Proof: Recall that the standard parametric equations for a hypocycloid with radii aa and bb with a>b>0a>b>0 are (see, e.g. [Wik23])

x(θ)\displaystyle x(\theta) =(ab)cos(θ)+bcos(abbθ),\displaystyle=(a-b)\cos(\theta)+b\cos({a-b\over b}\theta),
y(θ)\displaystyle y(\theta) =(ab)sin(θ)bsin(abbθ),\displaystyle=(a-b)\sin(\theta)-b\sin({a-b\over b}\theta),

and if n=a/bn=a/b is an integer, it is nn–cusped. Now

w:=12z3z2=2z+z2=2eiθ+e2iθ,w:={1-2z^{3}\over z^{2}}=-2z+z^{-2}=2e^{i\theta}+e^{-2i\theta},

which has Cartesian coordinates

(w)=2cos(θ)+cos(2θ),Im(w)=2sin(θ)sin(2θ),\Re(w)=2\cos(\theta)+\cos(2\theta),\qquad\mathop{\rm Im}\nolimits(w)=2\sin(\theta)-\sin(2\theta),

and so w(θ)w(\theta) is a 33–cusped hypocycloid with radii a=3a=3 and b=1b=1.       

Refer to caption
Figure 1: The Hypocycloid

For the left side, note that the product of the three terms

z20z22¯z21z20¯z22z21¯=1.z_{20}\overline{z_{22}}\cdot z_{21}\overline{z_{20}}\cdot z_{22}\overline{z_{21}}=1.
Lemma 5.2

The set of complex numbers

{z1+z2+z3:z1z2z3=1,|zj|=1}\{z_{1}+z_{2}+z_{3}\,:\,z_{1}z_{2}z_{3}=1,\,|z_{j}|=1\}

is the interior and boundary of the 33–cusped hypocycloid given by the right side, i.e.,

θ12z3z2,z=eiθ.\theta\mapsto{1-2z^{3}\over z^{2}},\quad z=-e^{i\theta}.

In particular, points on the boundary have the form

z1=z3=eiϕ2,z2=eiϕ(θ=ϕ2),z_{1}=z_{3}=e^{-i{\phi\over 2}},\quad z_{2}=e^{i\phi}\qquad\hbox{($\theta=-{\phi\over 2}$)},
z1=z2=eiϕ2,z3=eiϕ,z_{1}=z_{2}=e^{-i{\phi\over 2}},\quad z_{3}=e^{i\phi},

or

z2=z3=eiϕ2,z1=eiϕ.z_{2}=z_{3}=e^{-i{\phi\over 2}},\quad z_{1}=e^{i\phi}.

Proof: Since z1z2z3=1z_{1}z_{2}z_{3}=1, we can write a point ww in the set as

w=z1+z2+z3,z1:=eit,z2:=eiϕ,z3:=ei(t+ϕ).w=z_{1}+z_{2}+z_{3},\qquad z_{1}:=e^{it},\quad z_{2}:=e^{i\phi},\quad z_{3}:=e^{-i(t+\phi)}.

Now fix ϕ\phi, and let tt vary. Let AA and BB be the points on the hypocycloid for θ=ϕ2\theta=-{\phi\over 2} and θ=πϕ2\theta=\pi-{\phi\over 2}, i.e.,

A=2eiϕ2+eiϕ,B=2eiϕ2+eiϕ.A=2e^{-i{\phi\over 2}}+e^{i\phi},\qquad B=-2e^{-i{\phi\over 2}}+e^{i\phi}.

We claim (cf. Figure 2) that as tt varies ww traces out the line segment connecting AA and BB, precisely

w=eit+eiϕ+ei(t+ϕ)=λA+(1λ)B,λ=cos(t+ϕ2)+12[0,1],w=e^{it}+e^{i\phi}+e^{-i(t+\phi)}=\lambda A+(1-\lambda)B,\qquad\lambda={\cos(t+{\phi\over 2})+1\over 2}\in[0,1],

which we verify by multiplying out

λA+(1λ)B\displaystyle\lambda A+(1-\lambda)B =λ(AB)+B=ei(t+ϕ2)+ei(t+ϕ2)+244eiϕ22eiϕ2+eiϕ\displaystyle=\lambda(A-B)+B={e^{i(t+{\phi\over 2})}+e^{-i(t+{\phi\over 2})}+2\over 4}4e^{-i{\phi\over 2}}-2e^{-i{\phi\over 2}}+e^{i\phi}
=(eit+ei(t+ϕ)+2eiϕ2)2eiϕ2+eiϕ=eit+eiϕ+ei(t+ϕ).\displaystyle=(e^{it}+e^{-i(t+\phi)}+2e^{-i{\phi\over 2}})-2e^{-i{\phi\over 2}}+e^{i\phi}=e^{it}+e^{i\phi}+e^{-i(t+\phi)}.

Further we note that this line segment is tangent to the point where θ=ϕ\theta=\phi, i.e.,

C=2eiϕ+e2iϕ.C=2e^{i\phi}+e^{-2i\phi}.

Indeed the tangent to the hypocyloid at this point is

ddθ(2eiθ+e2iθ)|θ=ϕ=2eiϕ2e2iϕ=isin(32ϕ)(AB),{d\over d\theta}\bigl{(}2e^{i\theta}+e^{-2i\theta}\bigr{)}\bigl{|}_{\theta=\phi}=2e^{i\phi}-2e^{-2i\phi}=i\sin(\hbox{${3\over 2}$}\phi)(A-B),

which is collinear with the line segment, except when ϕ=0,±23π\phi=0,\pm{2\over 3}\pi, the three cusps of the hypocycloid.

At the cusp corresponding to ϕ=0\phi=0, A=3A=3 and B=1B=-1, and thus the line segment connecting AA and BB is also “tangent” at that cusp. The other cusps are handled similarly.       

Refer to caption
Figure 2: Points A and B on the Hypocycloid

Thus, from equation (5.21), it follows that z20z22¯,z_{20}\overline{z_{22}}, z21z20¯z_{21}\overline{z_{20}} and z22z21¯z_{22}\overline{z_{21}} are boundary points of the hypocyloid. Solutions may be obtained as follows. Pick one of the boundary solutions, e.g., where z1=z3,z_{1}=z_{3}, so that

z20z22¯=eiϕ2,z21z20¯=eiϕ,z22z21¯=eiϕ2,z=eiϕ2.z_{20}\overline{z_{22}}=e^{-i{\phi\over 2}},\qquad z_{21}\overline{z_{20}}=e^{i\phi},\qquad z_{22}\overline{z_{21}}=e^{-i{\phi\over 2}},\qquad z=-e^{-i{\phi\over 2}}.

These can be solved using one of them as a free parameter, i.e.,

z22=eiϕ2z20andz21=eiϕz20,|z20|=1.z_{22}=e^{i{\phi\over 2}}z_{20}\,\,\hbox{and}\,\,z_{21}=e^{i\phi}z_{20},\quad|z_{20}|=1.

In this way we arrive at a continuum of parameterized solutions for the overlaps of a SIC in dimension d=3.d=3.

6 Closing Comment

It has sometimes been remarked that the overlaps are zeros of a self-reciprocal polynomial (znp(1/z)=p(z)z^{n}p(1/z)=p(z)) with integer coefficients. The fact that the coefficients are integers is notable and perhaps important. However being self-reciprocal is not. Indeed if they are roots of a polynomial p(z)p(z) of degree n,n, then they are also automatically roots of q(z):=p(z)×znp(1/z)q(z):=p(z)\times z^{n}p(1/z) and this latter polynomial is self-reciprocal.

7 Acknowledgement

We would like to thank Marcus Appleby for many helpful discussions related to SICs.

References

  • [ACFW18] Marcus Appleby, Tuan-Yow Chien, Steven Flammia, and Shayne Waldron. Constructing exact symmetric informationally complete measurements from numerical solutions. J. Phys. A, 51(16):165302, 40, 2018.
  • [ADF14] D. Marcus Appleby, Hoan Bui Dang, and Christopher A. Fuchs. Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states. Entropy, 16(3):1484–1492, 2014.
  • [BW07] Len Bos and Shayne Waldron. Some remarks on Heisenberg frames and sets of equiangular lines. New Zealand J. Math., 36:113–137, 2007.
  • [BW19] Len Bos and Shayne Waldron. SICs and the elements of order three in the Clifford group. J. Phys. A, 52(10):105301, 31, 2019.
  • [CW17] Tuan-Yow Chien and Shayne Waldron. Nice error frames, canonical abstract error groups and the construction of SICs. Linear Algebra Appl., 516:93–117, 2017.
  • [GS17] M. Grassl and A. J. Scott. Fibonacci-Lucas SIC-POVMs. ArXiv e-prints, July 2017.
  • [Kha08] Mahdad Khatirinejad. On Weyl-Heisenberg orbits of equiangular lines. J. Algebraic Combin., 28(3):333–349, 2008.
  • [RBKSC04] Joseph M. Renes, Robin Blume-Kohout, A. J. Scott, and Carlton M. Caves. Symmetric informationally complete quantum measurements. J. Math. Phys., 45(6):2171–2180, 2004.
  • [Sco17] A. J. Scott. SICs: Extending the list of solutions. ArXiv e-prints, March 2017.
  • [SG10] A. J. Scott and M. Grassl. Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys., 51(4):042203, 16, 2010.
  • [Wal18] Shayne F. D. Waldron. An introduction to finite tight frames. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2018.
  • [Wal20] Shayne Waldron. The Fourier transform of a projective group frame. Appl. Comput. Harmon. Anal., 49(1):74–98, 2020.
  • [Wik23] Wikipedia. Hypocycloid. https://en.wikipedia.org/wiki/Hypocycloid, 2023.
  • [Zau10] Gerhard Zauner. Quantum Designs: Foundations of a non-commutative Design Theory. PhD thesis, University of Vienna, 1 2010. English translation of 1999 Doctoral thesis including a new preface.