This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Essential model parameters for nonreciprocal magnons in multisublattice systems

Satoru Hayami and Takuya Matsumoto Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan
Abstract

We theoretically investigate the microscopic conditions for emergent nonreciprocal magnons toward unified understanding on the basis of a microscopic model analysis. We show that the products of the Bogoliubov Hamiltonian obtained within the linear spin wave approximation is enough to obtain the momentum-space functional form and the key ingredients in the nonreciprocal magnon dispersions in an analytical way even without solving the eigenvalue problems. We find that the odd order of an effective antisymmetric Dzyaloshinskii-Moriya interaction and/or the even order of an effective symmetric anisotropic interaction in the spin rotated frame can be a source of the antisymmetric dispersions. We present possible kinetic paths of magnons contributing to the antisymmetric dispersions in the one- to four-sublattice systems with the general exchange interactions. We also test the formula for both ferromagnetic and antiferromagnetic orderings in the absence of spatial inversion symmetry.

I Introduction

Conductive phenomena in solids have long been studied in various fields of condensed matter physics, such as the giant magnetoresistance [1, 2, 3, 4, 5] and the anomalous Hall effect [6, 7, 8, 9, 10, 11, 12, 13, 14]. For these physical phenomena, the electronic band structures play an important role. The flat band structures give rise to magnetism, superconductivity, and the fractional quantum Hall effect [15, 16, 17, 18, 19, 20], while the linear band dispersions around the Dirac/Weyl points lead to unconventional topological properties [21, 22, 23, 24, 25]. Besides, the spin splittings in the band structure bring about fascinating physical phenomena, such as the Edelstein effect in noncentrosymmetric systems [26, 27, 28, 29], spin current generation in antiferromagnetic systems without the relativistic spin-orbit coupling [30, 31, 32, 33], and the spin-orbit-momentum locking in magnetic quadrupole systems [34].

Under space-time inversion symmetry, the electronic band structures are categorized into four groups: the 𝒌\bm{k}-symmetric band dispersion with the spin degeneracy in the presence of both spatial inversion (𝒫\mathcal{P}) and time-reversal (𝒯\mathcal{T}) symmetries, the 𝒌\bm{k}-(anti)symmetric spin-split band dispersion without 𝒯\mathcal{T} (𝒫\mathcal{P}) while keeping 𝒫\mathcal{P} (𝒯\mathcal{T}), and the 𝒌\bm{k}-antisymmetric band dispersion without both 𝒫\mathcal{P} and 𝒯\mathcal{T}, where 𝒌\bm{k} is the wave vector of electrons. In particular, the 𝒌\bm{k}-antisymmetric band dispersion has been extensively studied in recent years, since it becomes a source of nonreciprocal conductive phenomena owing to the inequivalence between 𝒌\bm{k} and 𝒌-\bm{k} [35]. The nonreciprocal nonlinear optical effect is a typical example [36, 37, 38, 39]. The microscopic origin of the 𝒌\bm{k}-antisymmetric band dispersion is accounted for by the active magnetic toroidal moment, which corresponds to a polar tensor with time-reversal odd [40, 41, 42, 43, 44, 45, 46, 47].

The nonreciprocal phenomena have also been discussed in magnetic insulators [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 35, 62, 63, 64, 65, 66, 67, 68, 69]. In spite of the absence of carriers, the collective excitaions of magnons lead to directional-dependent dynamical properties, where we refer it to the nonreciprocal (asymmetric) magnons [35, 62]. Similar to the electron band dispersion, an appearance of nonreciprocal magnons is attributed to the active magnetic toroidal moment [70]. Although they were mainly studied for ferromagnetic slabs [48, 49] and for magnetic orderings in the noncentrosymmetric crystals [50, 51, 59, 71, 72], where the magnetic dipolar interaction and/or the Dzyaloshinskii-Moriya (DM) interaction are important [73, 74], it was shown that they occur even via other mechanisms, such as frustrated exchange interactions [75, 76] and bond-dependent symmetric exchange interactions [77, 78]. The nonreciprocal magnons have a potential to exhibit further intriguing nonreciprocal phenomena, such as the magneto-optical effect [79, 80, 81] and spin Seebeck effect [82], which avoid Joule heating.

Engineering asymmetric band deformations in the systems without 𝒫\mathcal{P} and 𝒯\mathcal{T} symmetries is important for nonreciprocal conductive phenomena irrespective of electrons and magnons. Meanwhile, the microscopic conditions have not been fully clarified yet, although active magnetic toroidal multipoles are necessary from the symmetry aspect [83, 47, 84, 85]. Recently, a useful framework to extract essential model parameters for the asymmetric band structure in the electron systems has been proposed on the basis of augmented multipoles [86]. Similar approach has also been performed in the magnon systems by introducing the bond-type magnetic toroidal dipole degree of freedom, which is only applied to the mechanism induced by the DM interaction [72]. It is desired to have a simple formula to investigate which model parameters contribute to the asymmetric band deformations in magnon systems with arbitrary spin interactions.

In the present study, we investigate the microscopic conditions for emergent nonreciprocal magnons in multisublattice systems in an analytical way. We show that the product of the Bogoliubov Hamiltonian after the linear spin wave approximation provides two important information for nonreciprocal magnons without the cumbersome Bogoliubov transformation. One is the momentum-space functional form and the other is the essential model parameters to cause the antisymmetric band deformations. We demonstrate that our scheme ubiquitously accounts for the microscopic key ingredients irrespective of the mechanisms by analyzing a spin Hamiltonian with the general exchange interactions in the one- to four-sublattice systems. We discuss the important magnon-hopping processes that arise from the exchange interactions in real space. We also test our scheme for both ferromagnetic and antiferromagnetic orderings with the DM interaction and the symmetric anisotropic interaction. Our results will be useful to extract the significant model parameters in inducing the nonreciprocal magnons under complicated noncollinear magnetic orderings.

The remaining of the paper is organized as follows. In Sec. II, we present a general method of extracting the essential model parameters from the Bogoliubov Hamiltonian. We present a general expression contributing to nonreciprocal magnons on the basis of the spin Hamiltonian with both symmetric and antisymmetric exchange interactions in the one- to four-sublattice systems in Sec. III. We apply the method for the ferromagnetic ordering in the breathing kagome lattice structure and the collinear/noncollinear antiferromagnetic orderings in the honeycomb and breathing kagome lattice structures in Sec. IV. Section V is devoted to a summary of the present paper. Appendix A provides lengthy expressions in terms of momentum-space functions in the three- and four-sublattice cases.

II Approach

Let us start a general spin Hamiltonian, which is given by

H=llαβSlα𝒥llαβSlβ,\displaystyle H=\sum_{ll^{\prime}}\sum_{\alpha\beta}S^{\alpha}_{l}\mathcal{J}^{\alpha\beta}_{ll^{\prime}}S^{\beta}_{l^{\prime}}, (1)

with

𝒥ll=(Jll+JllvJllxy+DllzJllzxDllyJllxyDllzJllJllvJllyz+DllxJllzx+DllyJllyzDllxJllz),\displaystyle\mathcal{J}_{ll^{\prime}}=\left(\begin{array}[]{ccc}J_{ll^{\prime}}^{\perp}+J_{ll^{\prime}}^{v}&J_{ll^{\prime}}^{xy}+D_{ll^{\prime}}^{z}&J_{ll^{\prime}}^{zx}-D_{ll^{\prime}}^{y}\\ J_{ll^{\prime}}^{xy}-D_{ll^{\prime}}^{z}&J_{ll^{\prime}}^{\perp}-J_{ll^{\prime}}^{v}&J_{ll^{\prime}}^{yz}+D_{ll^{\prime}}^{x}\\ J_{ll^{\prime}}^{zx}+D_{ll^{\prime}}^{y}&J_{ll^{\prime}}^{yz}-D_{ll^{\prime}}^{x}&J_{ll^{\prime}}^{z}\\ \end{array}\right), (5)

where SlαS^{\alpha}_{l} is an α\alpha (=x=x, yy, and zz) component of classical spin at site ll. JllJ^{\perp}_{ll^{\prime}}, JllzJ^{z}_{ll^{\prime}}, JllvJ^{v}_{ll^{\prime}}, JllxyJ^{xy}_{ll^{\prime}}, JllyzJ^{yz}_{ll^{\prime}}, and JllzxJ^{zx}_{ll^{\prime}} are the symmetric exchange interactions, while DllxD^{x}_{ll^{\prime}}, DllyD^{y}_{ll^{\prime}}, and DllzD^{z}_{ll^{\prime}} are the antisymmetric exchange interactions. The latter corresponds to the DM interaction. The nonzero components of 𝒥ll\mathcal{J}_{ll^{\prime}} are determined by point group symmetry of the bond. For later convenience, the spin is rotated so as to align the local axis along the zz direction:

(Slx,Sly,Slz)T=Rz(ϕl)Ry(θl)(S~lx,S~ly,S~lz)T,\displaystyle(S_{l}^{x},S_{l}^{y},S_{l}^{z})^{\rm T}=R_{z}(\phi_{l})R_{y}(\theta_{l})(\tilde{S}_{l}^{x},\tilde{S}_{l}^{y},\tilde{S}_{l}^{z})^{\rm T}, (6)

where Rz(ϕl)R_{z}(\phi_{l}) and Ry(θl)R_{y}(\theta_{l}) are the rotation matrices around the zz and yy axes, respectively, and T is the transpose of the vector. Then, the Hamiltonian in Eq. (1) is rewritten as

H\displaystyle H =llαβS~lα𝒥~llαβS~lβ\displaystyle=\sum_{ll^{\prime}}\sum_{\alpha\beta}\tilde{S}^{\alpha}_{l}\mathcal{\tilde{J}}_{ll^{\prime}}^{\alpha\beta}\tilde{S}^{\beta}_{l^{\prime}}
=ll(Hll+HllDM+Hllv+Hllxy+Hllz+Hllyz/zx),\displaystyle=\sum_{ll^{\prime}}\left(H^{\perp}_{ll^{\prime}}+H^{\rm{DM}}_{ll^{\prime}}+H^{v}_{ll^{\prime}}+H^{xy}_{ll^{\prime}}+H^{z}_{ll^{\prime}}+H^{yz/zx}_{ll^{\prime}}\right), (7)

where

Hll\displaystyle H^{\perp}_{ll^{\prime}} =J~ll2(S~l+S~l+S~lS~l+),\displaystyle=\frac{\tilde{J}_{ll^{\prime}}^{\perp}}{2}(\tilde{S}^{+}_{l}\tilde{S}^{-}_{l^{\prime}}+\tilde{S}^{-}_{l}\tilde{S}^{+}_{l^{\prime}}), (8)
HllDM\displaystyle H^{\rm{DM}}_{ll^{\prime}} =iD~ll2(S~l+S~lS~lS~l+),\displaystyle=\frac{i\tilde{D}_{ll^{\prime}}}{2}(\tilde{S}^{+}_{l}\tilde{S}^{-}_{l^{\prime}}-\tilde{S}^{-}_{l}\tilde{S}^{+}_{l^{\prime}}), (9)
Hllv\displaystyle H^{v}_{ll^{\prime}} =J~llv2(S~l+S~l++S~lS~l),\displaystyle=\frac{\tilde{J}_{ll^{\prime}}^{v}}{2}(\tilde{S}^{+}_{l}\tilde{S}^{+}_{l^{\prime}}+\tilde{S}^{-}_{l}\tilde{S}^{-}_{l^{\prime}}), (10)
Hllxy\displaystyle H^{xy}_{ll^{\prime}} =iJ~llxy2(S~l+S~l+S~lS~l),\displaystyle=-\frac{i\tilde{J}_{ll^{\prime}}^{xy}}{2}(\tilde{S}^{+}_{l}\tilde{S}^{+}_{l^{\prime}}-\tilde{S}^{-}_{l}\tilde{S}^{-}_{l^{\prime}}), (11)
Hllz\displaystyle H^{z}_{ll^{\prime}} =J~llzS~lzS~lz.\displaystyle=\tilde{J}^{z}_{ll^{\prime}}\tilde{S}^{z}_{l}\tilde{S}^{z}_{l^{\prime}}. (12)

HllzxH^{zx}_{ll^{\prime}} and HllyzH^{yz}_{ll^{\prime}} consist of the product of S~xS~z\tilde{S}^{x}\tilde{S}^{z} and S~yS~z\tilde{S}^{y}\tilde{S}^{z}, respectively. The interaction tensor 𝒥~ll\mathcal{\tilde{J}}_{ll^{\prime}} is represented by rotating 𝒥ll\mathcal{J}_{ll^{\prime}}.

We investigate magnon spectra within a linear spin wave approximation. By applying the Holstein-Primakov transformation, which is given by S~iη+=2Saiη\tilde{S}^{+}_{i\eta}=\sqrt{2S}a_{i\eta}, S~iη=2Saiη\tilde{S}^{-}_{i\eta}=\sqrt{2S}a_{i\eta}^{\dagger}, and S~iηz=Saiηaiη\tilde{S}^{z}_{i\eta}=S-a_{i\eta}^{\dagger}a_{i\eta} (the subscripts ii and η\eta denote the indices for a unit cell and a sublattice, respectively, and aiηa_{i\eta} is the boson operator for sublattice η\eta), to the spin Hamiltonian in Eq. (II), the Bogoliubov Hamiltonian is derived. By performing the Fourier transformation as aiηa𝒒ηa_{i\eta}\to a_{\bm{q}\eta}, the resultant Bogoliubov Hamiltonian in the nn-sublattice system is given by

HB\displaystyle H^{\rm B} =S2𝒒Ψ𝒒H𝒒BΨ𝒒,\displaystyle=\frac{S}{2}\sum_{\bm{q}}\Psi^{\dagger}_{\bm{q}}H^{\rm B}_{\bm{q}}\Psi_{\bm{q}}, (13)
H𝒒B\displaystyle H^{\rm B}_{\bm{q}} =(𝒳𝒒𝒴𝒒𝒴𝒒𝒳𝒒),\displaystyle=\left(\begin{array}[]{cc}\mathcal{X}_{\bm{q}}&\mathcal{Y}_{\bm{q}}\\ \mathcal{Y}^{\dagger}_{\bm{q}}&\mathcal{X}^{*}_{-\bm{q}}\end{array}\right), (16)

where Ψ𝒒=(a𝒒1,a𝒒2,,a𝒒n,a𝒒1,a𝒒2,,a𝒒n)\Psi^{\dagger}_{\bm{q}}=(a^{\dagger}_{\bm{q}1},a^{\dagger}_{\bm{q}2},\cdots,a^{\dagger}_{\bm{q}n},a_{-\bm{q}1},a_{-\bm{q}2},\cdots,a_{-\bm{q}n}) and 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} are the n×nn\times n matrices.

In Eq. (II), HllzH^{z}_{ll^{\prime}} corresponds to the diagonal elements of 𝒳𝒒\mathcal{X}_{\bm{q}}, while HllH^{\perp}_{ll^{\prime}}, HllDMH^{\rm{DM}}_{ll^{\prime}}, HllvH^{v}_{ll^{\prime}}, and HllxyH^{xy}_{ll^{\prime}} correspond to the off-diagonal elements 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}}. In other words, only the spin components perpendicular to S~lz\tilde{S}^{z}_{l} contribute to a magnon hopping process. Meanwhile, Hllyz/zxH^{yz/zx}_{ll^{\prime}} does not appear in Eq. (13), since it consists of the odd number of boson operators.

When H𝒒BH^{\rm B}_{\bm{q}} is a positive-definite matrix, the Cholesky decomposition is possible as H𝒒B=K𝒒K𝒒H^{\rm B}_{\bm{q}}=K^{\dagger}_{\bm{q}}K_{\bm{q}}, where K𝒒K_{\bm{q}} is the upper triangular matrix. Then, H𝒒BH^{\rm B}_{\bm{q}} is transformed into the Hermitian matrix H𝒒H_{\bm{q}} as

H𝒒=K𝒒gK𝒒,\displaystyle H_{\bm{q}}=K_{\bm{q}}gK^{\dagger}_{\bm{q}}, (17)

where the 2n×2n2n\times 2n matrix gg satisfies (g)ηη=[Ψ𝒒η,Ψ𝒒η](g)_{\eta\eta^{\prime}}=[\Psi_{\bm{q}\eta},\Psi^{\dagger}_{\bm{q}\eta^{\prime}}]. The eigenvalues ω𝒒m\omega_{\bm{q}m} (mm is the band index) in Eq. (16) are obtained by diagonalizing H𝒒H_{\bm{q}}.

Nonreciprocal magnon excitations mean that the eigenvalues have an antisymmetric component with respect to 𝒒\bm{q}, i.e., ω𝒒mω𝒒m\omega_{\bm{q}m}\neq\omega_{-\bm{q}m}. To investigate important model parameters for the nonreciprocal magnons in a systematic way, we introduce a following quantity as

E𝒒(s)\displaystyle E^{(s)}_{\bm{q}} =Tr[H𝒒H𝒒H𝒒s],\displaystyle={\rm Tr}[\underbrace{H_{\bm{q}}H_{\bm{q}}\cdots H_{\bm{q}}}_{s}], (18)
=Tr[(H𝒒Bg)(H𝒒Bg)(H𝒒Bgs)],\displaystyle={\rm Tr}[\underbrace{(H^{\rm B}_{\bm{q}}g)(H^{\rm B}_{\bm{q}}g)\cdots(H^{\rm B}_{\bm{q}}g}_{s})], (19)

which is related to the eigenenergy. A similar quantity has been discussed in the antisymmetric band modulation and spin splittings in the electron system [87, 86, 88]. The antisymmetric component is extracted by

F𝒒(s)\displaystyle F^{(s)}_{\bm{q}} =12(E𝒒(s)E𝒒(s)).\displaystyle=\frac{1}{2}(E^{(s)}_{\bm{q}}-E^{(s)}_{-\bm{q}}). (20)

Thus nonzero F𝒒(s)F^{(s)}_{\bm{q}} signals the appearance of nonreciprocal magnons.

From the expression of Eq. (19), one can deduce the essential model parameters inducing nonreciprocal magnons, as detailed in Sec. III. In Eqs. (8)-(12), there are four types of magnon hoppings and one onsite potential in the real space Bogoliubov Hamiltonian, which are expressed as

Hll\displaystyle H^{\perp}_{ll^{\prime}} =SJ~ll(alal+alal),\displaystyle=S\tilde{J}_{ll^{\prime}}^{\perp}(a_{l}a^{\dagger}_{l^{\prime}}+a_{l}^{\dagger}a_{l^{\prime}}), (21)
HllDM\displaystyle H^{\rm{DM}}_{ll^{\prime}} =iSD~ll(alalalal),\displaystyle=iS\tilde{D}_{ll^{\prime}}(a_{l}a^{\dagger}_{l^{\prime}}-a_{l}^{\dagger}a_{l^{\prime}}), (22)
Hllv\displaystyle H^{v}_{ll^{\prime}} =SJ~llv(alal+alal),\displaystyle=S\tilde{J}_{ll^{\prime}}^{v}(a_{l}a_{l^{\prime}}+a_{l}^{\dagger}a_{l^{\prime}}^{\dagger}), (23)
Hllxy\displaystyle H^{xy}_{ll^{\prime}} =iSJ~llxy(alalalal),\displaystyle=-iS\tilde{J}_{ll^{\prime}}^{xy}(a_{l}a_{l^{\prime}}-a^{\dagger}_{l}a^{\dagger}_{l^{\prime}}), (24)
Hllz\displaystyle H^{z}_{ll^{\prime}} =SJ~llz(Salalalal).\displaystyle=S\tilde{J}^{z}_{ll^{\prime}}(S-a_{l}^{\dagger}a_{l}-a_{l^{\prime}}^{\dagger}a_{l^{\prime}}). (25)

From theses expressions, one finds that the real (imaginary) part of the standard hopping aiηajηa^{\dagger}_{i\eta}a_{j\eta^{\prime}} is related to HllH^{\perp}_{ll^{\prime}} (HllDMH^{\rm{DM}}_{ll^{\prime}}), which corresponds to the off-diagonal part of 𝒳𝒒\mathcal{X}_{\bm{q}}, while the real (imaginary) part of the anomalous hopping aiηajηa_{i\eta}^{\dagger}a^{\dagger}_{j\eta^{\prime}} is related to HllvH^{v}_{ll^{\prime}} (HllxyH^{xy}_{ll^{\prime}}), which corresponds to the off-diagonal part of 𝒴𝒒\mathcal{Y}_{\bm{q}}. As only the hopping processes to satisfy the magnon-number conservation are important, one can find that an even order of J~llv\tilde{J}^{v}_{ll^{\prime}} and J~llxy\tilde{J}^{xy}_{ll^{\prime}} can contribute to nonreciprocal magnon excitations. In addition, when taking into account the fact that an odd order of imaginary hopping can also contribute to nonreciprocal magnon excitations, we expect that the antisymmetric magnon band structure is related to the odd order of an effective antisymmetric DM interaction or the even order of an effective symmetric anisotropic interaction. This indicates that the antisymmetric magnon band structure can be reversed regarding 𝒒\bm{q} by the sign of D~ll\tilde{D}_{ll^{\prime}}, while that is not by the sign of J~llv\tilde{J}^{v}_{ll^{\prime}} and J~llxy\tilde{J}^{xy}_{ll^{\prime}}. As we will show the general feature of F𝒒(s)F^{(s)}_{\bm{q}} in Sec. III and the specific examples in Sec. IV, the quantity F𝒒(s)F^{(s)}_{\bm{q}} gives a microscopic condition of nonreciprocal magnons irrespective of ferromagnets and antiferromagnets.

III General feature of F𝒒(s)F^{(s)}_{\bm{q}}

In this section, we discuss a general behavior of F𝒒(s)F^{(s)}_{\bm{q}} independent of the lattice structures and the exchange interactions. We show the microscopic processes contributing to nonreciprocal magnons in the multisublattice systems with n=1n=1-4: one-sublattice case in Sec. III.1, two-sublattice case in Sec. III.2, three-sublattice case in Sec. III.3, and four-sublattice case in Sec. III.4. It is noted that the present scheme can be also applied to the systems with the sublattice n>4n>4 in a straightforward way.

III.1 One-sublattice case

Refer to caption
Figure 1: Schematic picture of the magnon-hopping process contributing to nonreciprocal magnons (F𝒒(1)0F^{(1)}_{\bm{q}}\neq 0) in real space in the one-sublattice case.

We consider the one-sublattice system with η=\eta= A, which describes only the ferromagnetic state without the sublattice degree of freedom. In the one-sublattice system, 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} are the 1×11\times 1 matrices. By using Eqs. (21)-(25), the expressions of 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} are given by

𝒳𝒒\displaystyle\mathcal{X}_{\bm{q}} =J~zh𝒒z(s)+J~h𝒒(s)D~zh𝒒D(as),\displaystyle=\tilde{J}^{z}h^{z{\rm(s)}}_{\bm{q}}+\tilde{J}^{\perp}h^{\perp{\rm(s)}}_{\bm{q}}-\tilde{D}^{z}h^{D{\rm(as)}}_{\bm{q}}, (26)
𝒴𝒒\displaystyle\mathcal{Y}_{\bm{q}} =J~vh𝒒v(s)+iJ~xyh𝒒xy(s),\displaystyle=\tilde{J}^{v}h^{v{\rm(s)}}_{\bm{q}}+i\tilde{J}^{xy}h^{xy{\rm(s)}}_{\bm{q}}, (27)

where h𝒒ζ(s)h^{\zeta{\rm(s)}}_{\bm{q}} and h𝒒ζ(as)h^{\zeta{\rm(as)}}_{\bm{q}} for ζ=z,,D,v,xy\zeta=z,\perp,D,v,xy are arbitrary symmetric and antisymmetric functions with respect to 𝒒\bm{q}: h𝒒ζ(s)=h𝒒ζ(s)h^{\zeta{\rm(s)}}_{\bm{q}}=h^{\zeta{\rm(s)}}_{-\bm{q}} and h𝒒ζ(as)=h𝒒ζ(as)h^{\zeta{\rm(as)}}_{\bm{q}}=-h^{\zeta{\rm(as)}}_{-\bm{q}}. Owing to the one-sublattice degree of freedom, h𝒒(as)=h𝒒D(s)=h𝒒v(as)=h𝒒xy(as)=0h^{\perp{\rm(as)}}_{\bm{q}}=h^{D{\rm(s)}}_{\bm{q}}=h^{v{\rm(as)}}_{\bm{q}}=h^{xy{\rm(as)}}_{\bm{q}}=0 and h𝒒z(s)h^{z{\rm(s)}}_{\bm{q}} has a 𝒒\bm{q} dependence, which are different from the multisublattice cases, as will be discussed in Secs. III.2-III.4.

Although the magnon dispersions in the one-sublattice case with the 2×22\times 2 matrix H𝒒BH^{\rm B}_{\bm{q}} are analytically obtained by performing the Bogoliubov transformation, we test the expressions in Eqs. (19) and (20) for later complicated multisublattice systems. The lowest contribution of F𝒒(s)F^{(s)}_{\bm{q}} is given by

F𝒒(1)\displaystyle F^{(1)}_{\bm{q}} =2D~zh𝒒D(as).\displaystyle=-2\tilde{D}^{z}h^{D{\rm(as)}}_{\bm{q}}. (28)

The expression in Eq. (28) indicates that only the effective DM interaction D~z\tilde{D}^{z} contributes to nonreciprocal magnon dispersions. When calculating the higher order of F𝒒(s)F^{(s)}_{\bm{q}}, one finds that the (2m+1)(2m+1)th-order terms of F𝒒(s)F^{(s)}_{\bm{q}} are proportional to D~zh𝒒D(as)\tilde{D}^{z}h^{D{\rm(as)}}_{\bm{q}}, while the 2m2mth-order ones vanish for an integer mm. This means that the nonreciprocal magnon in the one-sublattice system is induced when D~z0\tilde{D}^{z}\neq 0 irrespective of other interactions. This result is consistent with that obtained by the direct diagonalization.

The above result is intuitively understood from the magnon-hopping process in the real-space picture, as shown in the case of F𝒒(1)F^{(1)}_{\bm{q}} in Fig. 1. The process in Fig. 1 gives rise to effective imaginary magnon hopping that is a source of nonreciprocal magnons along the hopping direction. Furthermore, the functional form of nonreciprocal magnons are obtained in an analytic form from Eq. (28). In the crystal system, the 𝒒\bm{q} dependence of F𝒒(s)F^{(s)}_{\bm{q}} is derived to satisfy the magnetic point group symmetry in the system, as shown in Sec. IV.

III.2 Two-sublattice case

Refer to caption
Figure 2: Schematics of two magnon-hopping processes giving F𝒒(3)0F^{(3)}_{\bm{q}}\neq 0 in real space in the two-sublattice case. The left panel corresponds to the first term in Eq. (III.2) and the right panel corresponds to the second term in Eq. (III.2).

Hereafter, we examine F𝒒(s)F^{(s)}_{\bm{q}} in the multisublattice case. In this section, we show F𝒒(s)F^{(s)}_{\bm{q}} in the two-sublattice case with η=\eta= A and B, where 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} are the 2×22\times 2 matrices. By considering the general exchange interactions between A and B sublattices, 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} are represented by

𝒳𝒒=\displaystyle\mathcal{X}_{\bm{q}}= (ZAFAB𝒒FAB𝒒ZB),\displaystyle\begin{pmatrix}Z_{{\rm A}}&F_{{\rm AB}\bm{q}}\\ F^{*}_{{\rm AB}\bm{q}}&Z_{{\rm B}}\end{pmatrix}, (29)
𝒴𝒒=\displaystyle\mathcal{Y}_{\bm{q}}= (0GAB𝒒GAB𝒒0),\displaystyle\begin{pmatrix}0&G_{{\rm AB}\bm{q}}\\ G_{{\rm AB}-\bm{q}}&0\end{pmatrix}, (30)

where

FAB𝒒\displaystyle F_{{\rm AB}\bm{q}} =J~(hAB𝒒(s)+ihAB𝒒(as))+iD~z(hAB𝒒D(s)+ihAB𝒒D(as)),\displaystyle=\tilde{J}^{\perp}(h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}+ih^{\perp{\rm(as)}}_{{\rm AB}\bm{q}})+i\tilde{D}^{z}(h^{D{\rm(s)}}_{{\rm AB}\bm{q}}+ih^{D{\rm(as)}}_{{\rm AB}\bm{q}}), (31)
GAB𝒒\displaystyle G_{{\rm AB}\bm{q}} =J~v(hAB𝒒v(s)+ihAB𝒒v(as))+iJ~xy(hAB𝒒xy(s)+ihAB𝒒xy(as)),\displaystyle=\tilde{J}^{v}(h^{v{\rm(s)}}_{{\rm AB}\bm{q}}+ih^{v{\rm(as)}}_{{\rm AB}\bm{q}})+i\tilde{J}^{xy}(h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}+ih^{xy{\rm(as)}}_{{\rm AB}\bm{q}}), (32)
Zη\displaystyle Z_{{\eta}} =Jzzη,\displaystyle=J^{z}z_{\eta}, (33)

and η=\eta= A and B. In contrast to the one-sublattice case, h𝒒(as)0h^{\perp{\rm(as)}}_{\bm{q}}\neq 0, h𝒒D(s)0h^{D{\rm(s)}}_{\bm{q}}\neq 0, h𝒒v(as)0h^{v{\rm(as)}}_{\bm{q}}\neq 0, and h𝒒xy(as)0h^{xy{\rm(as)}}_{\bm{q}}\neq 0 and there is no 𝒒\bm{q} dependence in ZηZ_{\eta}; h𝒒z(s)h^{z{\rm(s)}}_{\bm{q}} corresponds to zηz_{\eta} and h𝒒z(as)=0h^{z{\rm(as)}}_{\bm{q}}=0.

The lowest contribution of F𝒒(s)F^{(s)}_{\bm{q}} is given by s=3s=3, whose expression is represented as

F𝒒(3)\displaystyle F^{(3)}_{\bm{q}} =12J~zD~zJ~(zA+zB)(hAB𝒒D(s)hAB𝒒(as)hAB𝒒(s)hAB𝒒D(as))\displaystyle=12\tilde{J}^{z}\tilde{D}^{z}\tilde{J}^{\perp}(z_{\rm A}+z_{\rm B})(h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}})
12J~zJ~vJ~xy(zAzB)(hAB𝒒xy(s)hAB𝒒v(as)hAB𝒒v(s)hAB𝒒xy(as)).\displaystyle-12\tilde{J}^{z}\tilde{J}^{v}\tilde{J}^{xy}(z_{\rm A}-z_{\rm B})(h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}). (34)

The first term in Eq. (III.2) represents the contribution from the effective DM interaction proportional to D~z\tilde{D}^{z}, which is similar to the result in the one-sublattice case in Sec. III.1. Meanwhile, the second term in Eq. (III.2) represents the contribution from the effective symmetric anisotropic exchange interaction including J~v\tilde{J}^{v} and J~xy\tilde{J}^{xy}, which does not appear in the one-sublattice case. In other words, the symmetric anisotropic exchange interaction can become a source of nonreciprocal magnons in the multisublattice system [see also the results in Eq. (III.3) in the three-sublattice case (Sec. III.3) and in Eq. (III.4) in the four-sublattice case (Sec. III.4)]. The real-space pictures in terms of the magnon-hopping processes for each term are shown in Fig. 2. It is noted that the effective symmetric anisotropic interaction contributes to the nonreciprocal magnons in the form of J~vJ~xy\tilde{J}^{v}\tilde{J}^{xy} in order to satisfy the magnon-number conservation and the space-time inversion symmetry. We also note that the 𝒒\bm{q} dependence of nonreciprocal magnons can be different for different mechanisms, as found in the first and second terms in Eq. (III.2).

In addition, there are three differences from the one-sublattice case in Eq. (28). The one is the appearance of J~z\tilde{J}^{z} in Eq. (III.2), which means that J~z\tilde{J}^{z} is also important to induce the nonreciprocal magnons. The second is the sublattice-dependent factor zA+zBz_{\rm A}+z_{\rm B} and zAzBz_{\rm A}-z_{\rm B}; the nonreciprocal magnons by D~z\tilde{D}^{z} (J~vJ~xy\tilde{J}^{v}\tilde{J}^{xy}) vanish when zA=zBz_{\rm A}=-z_{\rm B} (zA=zBz_{\rm A}=z_{\rm B}). The third is the 𝒒\bm{q} dependence in the first term in Eq. (III.2) owing to nonzero h𝒒(as)h^{\perp{\rm(as)}}_{\bm{q}} and h𝒒D(s)h^{D{\rm(s)}}_{\bm{q}}.

We note that the expression in Eq. (III.2) does not directly reduce to that in Eq. (28) when regarding A and B sublattices as the same sublattice, i.e., zA=zBz_{\rm A}=z_{\rm B}: The essential model parameter in Eq. (III.2) is J~zD~zJ~\tilde{J}^{z}\tilde{D}^{z}\tilde{J}^{\perp}, while that in Eq. (28) is D~z\tilde{D}^{z}. At first glance this result appears to contradict with each other, but it is due to the fact that the factor J~zJ~\tilde{J}^{z}\tilde{J}^{\perp} is canceled out with the denominators when evaluating the energy spectrum [72]. Hence, from the viewpoint of obtaining the essential model parameters, it is useful to calculate F𝒒(s)F^{(s)}_{\bm{q}} in the minimal unit cell.

By using the expression in Eq. (III.2), one obtains the essential model parameters for the emergence of nonreciprocal magnons in the two-sublattice antiferromagnetic orderings and the ferromagnetic ordering in the two-sublattice noncentrosymmetric structures. We show the example of the staggered antiferromagnetic ordering in the honeycomb lattice structure in Sec. IV.2.

III.3 Three-sublattice case

Refer to caption
Figure 3: Schematics of seven magnon-hopping processes giving F𝒒(3)0F^{(3)}_{\bm{q}}\neq 0 in real space in the three-sublattice case. Each panel corresponds to Hμ𝒒H_{\mu\bm{q}} (μ=1\mu=1-7) in Eq. (III.3).

We consider a behavior of F𝒒(s)F^{(s)}_{\bm{q}} in the three-sublattice case with η=\eta= A, B, and C. For the general exchange interactions between different sublattices, the 3×33\times 3 matrices, 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}}, are represented by

𝒳𝒒=\displaystyle\mathcal{X}_{\bm{q}}= (ZAFAB𝒒FAC𝒒FAB𝒒ZBFBC𝒒FAC𝒒FBC𝒒ZC),\displaystyle\begin{pmatrix}Z_{{\rm A}}&F_{{\rm AB}\bm{q}}&F_{{\rm AC}\bm{q}}\\ F^{*}_{{\rm AB}\bm{q}}&Z_{{\rm B}}&F_{{\rm BC}\bm{q}}\\ F^{*}_{{\rm AC}\bm{q}}&F^{*}_{{\rm BC}\bm{q}}&Z_{{\rm C}}\end{pmatrix}, (35)
𝒴𝒒=\displaystyle\mathcal{Y}_{\bm{q}}= (0GAB𝒒GAC𝒒GAB𝒒0GBC𝒒GAC𝒒GBC𝒒0),\displaystyle\begin{pmatrix}0&G_{{\rm AB}\bm{q}}&G_{{\rm AC}\bm{q}}\\ G_{{\rm AB}-\bm{q}}&0&G_{{\rm BC}\bm{q}}\\ G_{{\rm AC}-\bm{q}}&G_{{\rm BC}-\bm{q}}&0\end{pmatrix}, (36)

where

Fηη𝒒\displaystyle F_{\eta\eta^{\prime}\bm{q}} =J~(hηη𝒒(s)+ihηη𝒒(as))+iD~z(hηη𝒒D(s)+ihηη𝒒D(as)),\displaystyle=\tilde{J}^{\perp}(h^{\perp{\rm(s)}}_{\eta\eta^{\prime}\bm{q}}+ih^{\perp{\rm(as)}}_{\eta\eta^{\prime}\bm{q}})+i\tilde{D}^{z}(h^{D{\rm(s)}}_{\eta\eta^{\prime}\bm{q}}+ih^{D{\rm(as)}}_{\eta\eta^{\prime}\bm{q}}), (37)
Gηη𝒒\displaystyle G_{\eta\eta^{\prime}\bm{q}} =J~v(hηη𝒒v(s)+ihηη𝒒v(as))+iJ~xy(hηη𝒒xy(s)+ihηη𝒒xy(as)),\displaystyle=\tilde{J}^{v}(h^{v{\rm(s)}}_{\eta\eta^{\prime}\bm{q}}+ih^{v{\rm(as)}}_{\eta\eta^{\prime}\bm{q}})+i\tilde{J}^{xy}(h^{xy{\rm(s)}}_{\eta\eta^{\prime}\bm{q}}+ih^{xy{\rm(as)}}_{\eta\eta^{\prime}\bm{q}}), (38)
Zη\displaystyle Z_{{\eta}} =Jzzη,\displaystyle=J^{z}z_{\eta}, (39)

and η,η=\eta,\eta^{\prime}= A, B, and C.

The lowest contribution of F𝒒(s)F^{(s)}_{\bm{q}} corresponds to the s=3s=3 term similar to the two-sublattice case, which is given by

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= D~z[J~J~zH1𝒒+(J~)2H2𝒒+(J~v)2H3𝒒\displaystyle\tilde{D}^{z}\Big{[}\tilde{J}^{\perp}\tilde{J}^{z}H_{1\bm{q}}+(\tilde{J}^{\perp})^{2}H_{2\bm{q}}+(\tilde{J}^{v})^{2}H_{3\bm{q}}
+(J~xy)2H4𝒒]+(D~z)3H5𝒒\displaystyle+(\tilde{J}^{xy})^{2}H_{4\bm{q}}\Big{]}+(\tilde{D}^{z})^{3}H_{5\bm{q}}
+J~vJ~xy(J~zH6𝒒+J~H7𝒒),\displaystyle+\tilde{J}^{v}\tilde{J}^{xy}(\tilde{J}^{z}H_{6\bm{q}}+\tilde{J}^{\perp}H_{7\bm{q}}), (40)

where Hμ𝒒H_{\mu\bm{q}} (μ=1\mu=1-7) is the antisymmetric function consisting of odd number of h𝒒ζ(as)h^{\zeta{\rm(as)}}_{\bm{q}} and even number of h𝒒ζ(s)h^{\zeta{\rm(s)}}_{\bm{q}}: Hμ𝒒=Hμ𝒒H_{\mu\bm{q}}=-H_{\mu-\bm{q}}. For example, H2𝒒H_{2\bm{q}} includes hηη𝒒D(s)hηη′′𝒒(s)hη′′η𝒒(as)h^{D{\rm(s)}}_{{\rm\eta\eta^{\prime}}\bm{q}}h^{\perp{\rm(s)}}_{{\rm\eta^{\prime}\eta^{\prime\prime}}\bm{q}}h^{\perp{\rm(as)}}_{{\rm\eta^{\prime\prime}\eta}\bm{q}} for ηηη′′\eta\neq\eta^{\prime}\neq\eta^{\prime\prime}. The specific expressions of Hμ𝒒H_{\mu\bm{q}} are shown in Appendix A owing to the lengthy expressions.

There are mainly three contributions in the nonreciprocal magnon dispersions in Eq. (III.3), which are proportional to D~z\tilde{D}^{z} including H1𝒒H_{1\bm{q}}-H4𝒒H_{4\bm{q}}, (D~z)3(\tilde{D}^{z})^{3} including H5𝒒H_{5\bm{q}}, and J~vJ~xy\tilde{J}^{v}\tilde{J}^{xy} including H6𝒒H_{6\bm{q}} and H7𝒒H_{7\bm{q}}. We schematically show the magnon-hopping processes corresponding to Hμ𝒒H_{\mu\bm{q}} (μ=1\mu=1-7) in Fig. 3. Among Hμ𝒒H_{\mu\bm{q}}, H2𝒒H_{2\bm{q}}, H3𝒒H_{3\bm{q}}, H4𝒒H_{4\bm{q}}, H5𝒒H_{5\bm{q}}, and H7𝒒H_{7\bm{q}} consist of three magnon hoppings between three sublattices, while H1𝒒H_{1\bm{q}} and H6𝒒H_{6\bm{q}} consist of two magnon hoppings between two sublattices. Indeed, H1𝒒H_{1\bm{q}} and H6𝒒H_{6\bm{q}} correspond to the left and right panels of Fig. 2, respectively, while other Hμ𝒒H_{\mu\bm{q}} have no correspondence to the two-sublattice case. In other words, this indicates that contributions from H2𝒒H_{2\bm{q}}, H3𝒒H_{3\bm{q}}, H4𝒒H_{4\bm{q}}, H5𝒒H_{5\bm{q}}, and H7𝒒H_{7\bm{q}} can appear when the exchange interaction path includes the triangle geometry, such as the triangular and kagome lattices, while those from H1𝒒H_{1\bm{q}} and H6𝒒H_{6\bm{q}} do not need the triangle geometry. Thus, only the latter processes can contribute to the nonreciprocal magnons in the case of the one-dimensional three-sublattice chain in the absence of FAC𝒒F_{{\rm AC}\bm{q}} and GAC𝒒G_{{\rm AC}\bm{q}}.

The general expression in Eq. (III.3) describes the model parameter conditions for the nonreciprocal magnons in the three-sublattice antiferromagnetic orderings, such as the 120120^{\circ} antiferromagnetic ordering on the triangular and breathing kagome lattices. We show three examples in the breathing kagome system in Secs. IV.1, IV.3, and IV.4.

III.4 Four-sublattice case

Refer to caption
Figure 4: Four-sublattice clusters in the shapes of (a) a tetrahedron and (b) a square.

Finally, we consider the four-sublattice case, where 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} are represented by

𝒳𝒒=\displaystyle\mathcal{X}_{\bm{q}}= (ZAFAB𝒒FAC𝒒FAD𝒒FAB𝒒ZBFBC𝒒FBD𝒒FAC𝒒FBC𝒒ZCFCD𝒒FAD𝒒FBD𝒒FCD𝒒ZD),\displaystyle\begin{pmatrix}Z_{{\rm A}}&F_{{\rm AB}\bm{q}}&F_{{\rm AC}\bm{q}}&F_{{\rm AD}\bm{q}}\\ F^{*}_{{\rm AB}\bm{q}}&Z_{{\rm B}}&F_{{\rm BC}\bm{q}}&F_{{\rm BD}\bm{q}}\\ F^{*}_{{\rm AC}\bm{q}}&F^{*}_{{\rm BC}\bm{q}}&Z_{{\rm C}}&F_{{\rm CD}\bm{q}}\\ F^{*}_{{\rm AD}\bm{q}}&F^{*}_{{\rm BD}\bm{q}}&F^{*}_{{\rm CD}\bm{q}}&Z_{{\rm D}}\end{pmatrix}, (41)
𝒴𝒒=\displaystyle\mathcal{Y}_{\bm{q}}= (0GAB𝒒GAC𝒒GAD𝒒GAB𝒒0GBC𝒒GBD𝒒GAC𝒒GBC𝒒0GCD𝒒GAD𝒒GBD𝒒GCD𝒒0),\displaystyle\begin{pmatrix}0&G_{{\rm AB}\bm{q}}&G_{{\rm AC}\bm{q}}&G_{{\rm AD}\bm{q}}\\ G_{{\rm AB}-\bm{q}}&0&G_{{\rm BC}\bm{q}}&G_{{\rm BD}\bm{q}}\\ G_{{\rm AC}-\bm{q}}&G_{{\rm BC}-\bm{q}}&0&G_{{\rm CD}\bm{q}}\\ G_{{\rm AD}-\bm{q}}&G_{{\rm BD}-\bm{q}}&G_{{\rm CD}-\bm{q}}&0\end{pmatrix}, (42)

where Fηη𝒒F_{\eta\eta^{\prime}\bm{q}}, Gηη𝒒G_{\eta\eta^{\prime}\bm{q}}, and ZηZ_{{\eta}} are the same as Eqs. (37), (38), and (39), respectively.

Similar to the two- and three-sublattice cases, the lowest contribution of F𝒒(s)F^{(s)}_{\bm{q}} in the four-sublattice case is F𝒒(3)F^{(3)}_{\bm{q}}, which is given by

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= D~z[J~J~zH1𝒒+(J~)2H2𝒒+(J~v)2H3𝒒\displaystyle\tilde{D}^{z}\Big{[}\tilde{J}^{\perp}\tilde{J}^{z}H^{\prime}_{1\bm{q}}+(\tilde{J}^{\perp})^{2}H^{\prime}_{2\bm{q}}+(\tilde{J}^{v})^{2}H^{\prime}_{3\bm{q}}
+(J~xy)2H4𝒒]+(D~z)3H5𝒒\displaystyle+(\tilde{J}^{xy})^{2}H^{\prime}_{4\bm{q}}\Big{]}+(\tilde{D}^{z})^{3}H^{\prime}_{5\bm{q}}
+J~vJ~xy(J~zH6𝒒+J~H7𝒒),\displaystyle+\tilde{J}^{v}\tilde{J}^{xy}(\tilde{J}^{z}H^{\prime}_{6\bm{q}}+\tilde{J}^{\perp}H^{\prime}_{7\bm{q}}), (43)

where Hμ𝒒H^{\prime}_{\mu\bm{q}} (μ=1\mu=1-7) is similar to Hμ𝒒H_{\mu\bm{q}} in the three-sublattice case, and the only difference is found in the number of hopping paths due to the different number of the sublattice, as found in Appendix A. Similar to the three-sublattice case, H2𝒒H^{\prime}_{2\bm{q}}, H3𝒒H^{\prime}_{3\bm{q}}, H4𝒒H^{\prime}_{4\bm{q}}, H5𝒒H^{\prime}_{5\bm{q}}, and H7𝒒H^{\prime}_{7\bm{q}} can appear when exchange interaction path includes the triangle geometry, while H1𝒒H^{\prime}_{1\bm{q}} and H6𝒒H^{\prime}_{6\bm{q}} do not depend on such a geometry. For example, in the tetrahedron cluster structure shown in Fig. 4(a), all Hμ𝒒H^{\prime}_{\mu\bm{q}} can contribute to the nonreciprocal magnons, whereas in the square cluster structure with the nearest-neighbor exchange interactions in Fig. 4(b), only H1𝒒H^{\prime}_{1\bm{q}} and H6𝒒H^{\prime}_{6\bm{q}} can contribute as

F𝒒(3)\displaystyle F^{(3)}_{\bm{q}} =D~zJ~J~zH1𝒒+J~vJ~xyJ~zH6𝒒.\displaystyle=\tilde{D}^{z}\tilde{J}^{\perp}\tilde{J}^{z}H^{\prime}_{1\bm{q}}+\tilde{J}^{v}\tilde{J}^{xy}\tilde{J}^{z}H^{\prime}_{6\bm{q}}. (44)

In this way, the expressions in Eqs. (III.4) and (44) describe the microscopic process contributing to nonreciprocal magnons under the four-sublattice antiferromagnetic orderings, such as the pyrochlore antiferromagnets and the four-sublattice tetragonal antiferromagnets.

IV Application to noncentrosymmetric magnets

In this section, we apply the expression in Eq. (20) to noncentrosymmetric ferromagnets and antiferromagnets to host nonreciprocal magnons. As the ferromagnets, we consider the ferromagnetic ordering in the breathing kagome lattice structure in Sec. IV.1. As the antiferromagnets, we consider three types of antiferromagnetic orderings: the staggered collinear antiferromagnetic state in the honeycomb lattice structure in Sec. IV.2, the up-up-down ferrimagnetic state in the breathing kagome lattice structure in Sec. IV.3, and the noncollinear 120 antiferromagnetic state in the breathing kagome lattice structure in Sec. IV.4. In each section, we first show the Bogoliubov Hamiltonian and then we discuss magnon spectra and essential model parameters.

IV.1 Breathing kagome ferromagnets

IV.1.1 Model

Refer to caption
Figure 5: (a) Breathing kagome lattice structure under the point group D3hD_{\rm 3h}. The red spheres represent the magnetic moments along the zz direction. The different colors for bonds stand for the different magnitudes of the exchange coupling. (b) The first Brillouin zone in (a). The color plot represents angle dependence of nonreciprocal magnons characterized by qx(qx23qy2)q_{x}(q_{x}^{2}-3q_{y}^{2}). (c, d) The magnon band structures under the ferromagnetic ordering for D=0.2D=0.2 and Ja=0J^{a}=0 (c) and D=0D=0 and Ja=0.5J^{a}=0.5 (d). The other parameters are set as J=0.9J^{\perp}=-0.9, Jz=1J^{z}=-1, and γ=0.5\gamma=0.5.

We consider a breathing kagome lattice structure as an example of noncentrosymmetric crystal structures [72]. The breathing kagome lattice structure consists of upward and downward triangles with the different sizes, as shown in Fig. 5(a).

The interaction matrix corresponding to Eq. (5) is given by

𝒥ηη\displaystyle\mathcal{J}^{\triangle}_{\eta\eta^{\prime}} =(J+JacosχηηDJasinχηη0DJasinχηηJJacosχηη000Jz),\displaystyle=\begin{pmatrix}J^{\perp}+J^{a}\cos\chi_{\eta\eta^{\prime}}&D-J^{a}\sin\chi_{\eta\eta^{\prime}}&0\\ -D-J^{a}\sin\chi_{\eta\eta^{\prime}}&J^{\perp}-J^{a}\cos\chi_{\eta\eta^{\prime}}&0\\ 0&0&J^{z}\end{pmatrix}, (45)
𝒥ηη\displaystyle\mathcal{J}^{\bigtriangledown}_{\eta\eta^{\prime}} =γ𝒥ηη,\displaystyle=\gamma\mathcal{J}^{\triangle}_{\eta\eta^{\prime}}, (46)

where the superscript \triangle (\bigtriangledown) denotes the interaction for the upward (downward) triangles where γ\gamma is the breathing parameter, and χAB=0\chi_{{\rm AB}}=0, χBC=2π/3\chi_{{\rm BC}}=2\pi/3 and χCA=4π/3\chi_{{\rm CA}}=4\pi/3. We here consider four independent interactions from the symmetry analysis: the isotropic inplane interaction JJ^{\perp}, the DM interaction DD, the bond-dependent anisotropic interaction JaJ^{a}, and the zz spin interaction JzJ^{z}. The direction of the DM vector is taken along the +z+z (z-z) direction for the upward (downward) triangle. The anisotropic interactions, DD, JaJ^{a}, and JzJJ^{z}-J^{\perp} originates from the relativistic spin-orbit coupling and/or dipole-diople interactions. Compared to Eq. (5), one finds the correspondence of (Jηηv,Jηηxy)(J^{v}_{\eta\eta^{\prime}},J^{xy}_{\eta\eta^{\prime}}) and (Jacosχηη,Jasinχηη)(J^{a}\cos\chi_{\eta\eta^{\prime}},-J^{a}\sin\chi_{\eta\eta^{\prime}}).

In the ferromagnetic state with magnetic moments along the zz direction, we do not need the rotation of the spin frame, i.e., J~ηη=J\tilde{J}^{\perp}_{\eta\eta^{\prime}}=J^{\perp}, D~ηη=D\tilde{D}_{\eta\eta^{\prime}}=D, J~ηηv=Jacosχηη\tilde{J}^{v}_{\eta\eta^{\prime}}=J^{a}\cos\chi_{\eta\eta^{\prime}}, J~ηηxy=Jasinχηη\tilde{J}^{xy}_{\eta\eta^{\prime}}=-J^{a}\sin\chi_{\eta\eta^{\prime}}, and J~ηηz=Jz\tilde{J}_{\eta\eta^{\prime}}^{z}=J^{z} in Eqs. (8)-(12). By performing the Holstein-Primakov transformation and then the Fourier transformation, the 3×33\times 3 matrices 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} in the Bogoliubov Hamiltonian matrix H𝒒BH^{\rm B}_{\bm{q}} are given by [72]

𝒳𝒒=\displaystyle\mathcal{X}_{\bm{q}}= (ZFAB𝒒FCA𝒒FAB𝒒ZFBC𝒒FCA𝒒FBC𝒒Z),\displaystyle\begin{pmatrix}Z&F_{{\rm AB}{\bm{q}}}&F^{*}_{{\rm CA}{\bm{q}}}\\ F^{*}_{{\rm AB}{\bm{q}}}&Z&F_{{\rm BC}{\bm{q}}}\\ F_{{\rm CA}{\bm{q}}}&F^{*}_{{\rm BC}{\bm{q}}}&Z\end{pmatrix}, (47)
𝒴𝒒=\displaystyle\mathcal{Y}_{\bm{q}}= (0GAB𝒒GCA𝒒GAB𝒒0GBC𝒒GCA𝒒GBC𝒒0),\displaystyle\begin{pmatrix}0&G_{{\rm AB}{\bm{q}}}&G_{{\rm CA}{-\bm{q}}}\\ G_{{\rm AB}-{\bm{q}}}&0&G_{{\rm BC}{\bm{q}}}\\ G_{{\rm CA}{\bm{q}}}&G_{{\rm BC}{-\bm{q}}}&0\end{pmatrix}, (48)

where

Fηη𝒒=\displaystyle F_{\eta\eta^{\prime}{\bm{q}}}= (JiD)(ei𝒒𝝆ηη+γei𝒒𝝆ηη),\displaystyle\left(J^{\perp}-iD\right)\left(e^{i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}\right), (49)
Gηη𝒒=\displaystyle G_{\eta\eta^{\prime}{\bm{q}}}= Jaeiχηη(ei𝒒𝝆ηη+γei𝒒𝝆ηη),\displaystyle J^{a}e^{-i\chi_{\eta\eta^{\prime}}}\left(e^{i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}\right), (50)
Z=\displaystyle Z= 2(1+γ)Jz,\displaystyle-2(1+\gamma)J^{z}, (51)

where 𝝆ηη\bm{\rho}_{\eta\eta^{\prime}} is the displacement vector between η\eta and η\eta^{\prime} sublattices in the breathing kagome lattice structure. It is noted that the length of a side of both the upward and downward triangles is taken as one for notational simplicity.

IV.1.2 Result

The ferromagnetic spin configuration becomes stable when JzJ^{z} is dominant and ferromagnetic. We show the magnon dispersions along high symmetry lines in the Brillouin zone [Fig. 5(b)] in the ferromagnetic state after the numerical Bogoliubov transformation. Figure 5(c) shows the magnon spectra ω𝒒\omega_{\bm{q}} for D=0.2D=0.2 without JaJ^{a}, while Fig. 5(d) shows ones for Ja=0.5J^{a}=0.5 without DD. Both cases clearly exhibit that the magnon bands are modulated antisymmetrically in the functional form of qx(qx23qy2)q_{x}(q_{x}^{2}-3q_{y}^{2}) [72]. The angle dependence in the limit of |𝒒|0|\bm{q}|\to 0 is given by cos3ϕ\cos 3\phi when setting (qx,qy)=q(cosϕ,sinϕ)(q_{x},q_{y})=q(\cos\phi,\sin\phi), as shown in Fig. 5; the antisymmetric modulation appears along the K’-Γ\Gamma-K line, while it does not along the M(Σ\Sigma)-Γ\Gamma-M(Σ\Sigma^{\prime}) line.

The above result means that both DD and JaJ^{a} become the origin of the nonreciprocal magnons. Such model parameter conditions are easily obtained by evaluating F𝒒(s)F^{(s)}_{\bm{q}} in Eq. (20) without solving the eigenvalue problems. For a general case at D0D\neq 0 and Ja0J^{a}\neq 0, the lowest-order contribution from F𝒒(s)F^{(s)}_{\bm{q}} is of third order as shown in Sec. III.3, which is given by

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= 12γ(1γ)(3J+D)\displaystyle-12\gamma(1-\gamma)(\sqrt{3}J^{\perp}+D)
×[2D(3JD)+3(Ja)2]f𝒒3ϕ,\displaystyle\times[2D(\sqrt{3}J^{\perp}-D)+3(J^{a})^{2}]f^{3\phi}_{\bm{q}}, (52)

where

f𝒒3ϕ=(cosqxcos3qy)sinqx.\displaystyle f^{3\phi}_{\bm{q}}=\left(\cos q_{x}-\cos\sqrt{3}q_{y}\right)\sin q_{x}. (53)

Thus, one finds that the antisymmetric functional form of f𝒒3ϕ=(cosqxcos3qy)sinqxf^{3\phi}_{\bm{q}}=(\cos q_{x}-\cos\sqrt{3}q_{y})\sin q_{x} in F𝒒(3)F^{(3)}_{\bm{q}} is consistent with that in the magnon dispersions in Figs. 5(c) and 5(d). Furthermore, the expression in Eq. (IV.1.2) clearly presents the essential parameters in nonreciprocal magnons: γ\gamma, DD, and JaJ^{a}. The condition of γ1\gamma\neq 1 represents the importance of the breathing structure, which is reasonable in terms of spatial inversion symmetry; it is recovered for γ=1\gamma=1. In a similar way, F𝒒(3)F^{(3)}_{\bm{q}} shows that no antisymmetric magnon dispersions appear when D=3JD=-\sqrt{3}J^{\perp}. This is rather surprising, as such a condition is not obtained by the symmetry argument. Indeed, we confirmed that the magnon dispersions become symmetric at D=3JD=-\sqrt{3}J^{\perp}.

The other essential parameters are DD and JaJ^{a}, as inferred from the results in Figs. 5(c) and 5(d). In the case of Fig. 5(c) for nonzero DD and Ja=0J^{a}=0, Eq. (IV.1.2) reduces to

F𝒒(3)=24γ(1γ)D(3J2D2)f𝒒3ϕ.\displaystyle F^{(3)}_{\bm{q}}=-24\gamma(1-\gamma)D(3J^{\perp 2}-D^{2})f^{3\phi}_{\bm{q}}. (54)

The result indicates that asymmetric feature vanishes for D=0D=0 and D=3JD=\sqrt{3}J^{\perp} in addition to γ0,1\gamma\neq 0,1 and D=3JD=-\sqrt{3}J^{\perp} in Eq. (IV.1.2). Thus, DD is one of the essential parameters, and its odd order contributes to the asymmetric dispersions. On the other hand, for nonzero JaJ^{a} and D=0D=0, Eq. (IV.1.2) turns into

F𝒒(3)=363γ(1γ)J(Ja)2f𝒒3ϕ.\displaystyle F^{(3)}_{\bm{q}}=-36\sqrt{3}\gamma(1-\gamma)J^{\perp}(J^{a})^{2}f^{3\phi}_{\bm{q}}. (55)

We find that the even order of JaJ^{a} becomes the essential parameters in the case of D=0D=0. These results are consistent with those obtained from the general expression in Sec. III.3.

IV.2 Honeycomb antiferromagnets

IV.2.1 Model

Refer to caption
Figure 6: Honeycomb lattice structure under the point group D6hD_{\rm 6h}. The red (blue) spheres represent the up (down) spins along the zz direction. The three bond vectors, 𝒅0\bm{d}_{0}, 𝒅1\bm{d}_{1}, and 𝒅2\bm{d}_{2}, are also shown. (b) The first Brillouin zone in (a). The color plot represents angle dependence of nonreciprocal magnons characterized by qy(qy23qx2)q_{y}(q_{y}^{2}-3q_{x}^{2}). (c, d) The magnon band structures under the staggered antiferromagnetic ordering for D=0.05D=0.05 and Ja=0J^{a}=0 (c) and D=0D=0 and Ja=0.1J^{a}=0.1 (d). The other parameters are set as J=0.99J^{\perp}=0.99 and Jz=1J^{z}=1.

The honeycomb lattice structure consists of two sublattices A and B, as shown in Fig. 6(a). From the presence of threefold rotational symmetry around the zz axis and mirror symmetry perpendicular to the xyxy plane along the bond direction at each local site, the interaction tensor for the nearest-neighbor spins is given by

𝒥ABν\displaystyle\mathcal{J}_{\rm AB}^{\nu} =(J+JacosχνJasinχν0JasinχνJJacosχν000Jz),\displaystyle=\begin{pmatrix}J^{\perp}+J^{a}\cos\chi_{\nu}&-J^{a}\sin\chi_{\nu}&0\\ -J^{a}\sin\chi_{\nu}&J^{\perp}-J^{a}\cos\chi_{\nu}&0\\ 0&0&J^{z}\end{pmatrix}, (56)

where ν=0\nu=0-22 is the bond index for the nearest-neighbor spins and χν=0,2π/3,4π/3\chi_{\nu}=0,2\pi/3,4\pi/3 for ν=0\nu=0-22. The three bond vectors are 𝒅0=(1,0)\bm{d}_{0}=(1,0), 𝒅1=(1/2,3/2)\bm{d}_{1}=(-1/2,\sqrt{3}/2), and 𝒅2=(1/2,3/2)\bm{d}_{2}=(-1/2,-\sqrt{3}/2). The DM interaction vanishes owing to inversion symmetry on the A-B bond center. The contribution of the DM interaction arises in the interaction tensor for the next-nearest-neighbor spins belonging to the same sublattice, which is given by

𝒥AAν\displaystyle\mathcal{J}^{\nu^{\prime}}_{\rm AA} =𝒥BBν=(0D0D00000),\displaystyle=-\mathcal{J}^{\nu^{\prime}}_{\rm BB}=\begin{pmatrix}0&D&0\\ -D&0&0\\ 0&0&0\end{pmatrix}, (57)

where ν=0\nu^{\prime}=0-55 is the bond index for the next-nearest-neighbor spins. We ignore the other symmetric exchange interactions in 𝒥AA\mathcal{J}_{\rm AA} and 𝒥BB\mathcal{J}_{\rm BB}. The opposite sign of the DM interaction for the A and B sublattices is owing to inversion symmetry in the system.

We consider the staggered antiferromagnetic state with SAz=1S^{z}_{\rm A}=1 and SBz=1S^{z}_{\rm B}=-1, as schematically shown in Fig. 6(a). In contrast to the ferromagnetic ordering in Sec. IV.1, the spin frame is required to be locally rotated according to Eq. (6) in order to use Eq. (20). After rotating the spin frame, the effective interactions corresponding to Eqs. (8)-(12) are given by

J~AB(ν)\displaystyle\tilde{J}_{\rm AB}^{\perp(\nu)} =Jacosχν,\displaystyle=-J^{a}\cos\chi_{\nu}, (58)
J~ABv\displaystyle\tilde{J}_{\rm AB}^{v} =J,\displaystyle=-J^{\perp}, (59)
J~ABz\displaystyle\tilde{J}_{\rm AB}^{z} =Jz,\displaystyle=-J^{z}, (60)
D~AB(ν)\displaystyle\tilde{D}^{(\nu)}_{\rm AB} =Jasinχν,\displaystyle=-J^{a}\sin\chi_{\nu}, (61)
D~AA\displaystyle\tilde{D}_{\rm AA} =D~BB=D,\displaystyle=\tilde{D}_{\rm BB}=D, (62)

for the ν\nuth bond (J~ABv\tilde{J}_{\rm AB}^{v} and J~ABz\tilde{J}_{\rm AB}^{z} do not depend on ν\nu). Owing to the π\pi rotation of the spin frame for the sublattice B, the bond-dependent interaction JaJ^{a} is transformed into J~AB\tilde{J}_{\rm AB}^{\perp} and D~AB\tilde{D}_{\rm AB} in Eqs. (58) and (61), and the sublattice-dependent DM interaction turns into the uniform DM interaction in Eq. (62). By performing the Holstein-Primakov transformation and then the Fourier transformation, the 2×22\times 2 matrices 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} in Eq. (16) are given by [70, 78]

𝒳𝒒=\displaystyle\mathcal{X}_{\bm{q}}= (Z𝒒F𝒒F𝒒Z𝒒),\displaystyle\begin{pmatrix}Z_{\bm{q}}&F_{\bm{q}}\\ F^{*}_{\bm{q}}&Z_{\bm{q}}\end{pmatrix}, (63)
𝒴𝒒=\displaystyle\mathcal{Y}_{\bm{q}}= (0G𝒒G𝒒0),\displaystyle\begin{pmatrix}0&G_{\bm{q}}\\ G_{-\bm{q}}&0\end{pmatrix}, (64)

where

F𝒒\displaystyle F_{\bm{q}} =Jaνei(𝒒𝒅νχν),\displaystyle=-J^{a}\sum_{\nu}e^{i(\bm{q}\cdot\bm{d}_{\nu}-\chi_{\nu})}, (65)
G𝒒\displaystyle G_{\bm{q}} =Jνei𝒒𝒅ν,\displaystyle=-J^{\perp}\sum_{\nu}e^{i\bm{q}\cdot\bm{d}_{\nu}}, (66)
Z𝒒\displaystyle Z_{\bm{q}} =3Jz+4D(cos3qx2cos3qy2)sin3qy2.\displaystyle=3J^{z}+4D\left(\cos\frac{3q_{x}}{2}-\cos\frac{\sqrt{3}q_{y}}{2}\right)\sin\frac{\sqrt{3}q_{y}}{2}. (67)

IV.2.2 Result

The staggered antiferromagnetic spin configuration is stabilized by supposing that JzJ^{z} is the dominant antiferromagnetic interaction. We take Jz=1J^{z}=1 and J=0.99J^{\perp}=0.99, respectively. The magnon dispersions in the antiferromagnetic state are shown in Figs. 6(c) and 6(d), where the Brillouin zone is shown in Fig. 6(b). The magnon spectra ω𝒒\omega_{\bm{q}} in Fig. 6(c) are calculated for D=0.05D=0.05 and Ja=0J^{a}=0 and those in Fig. 6(d) are for D=0D=0 and Ja=0.1J^{a}=0.1. Similar to the result in Sec. IV.1, the asymmetric modulations occur in both situations. The antisymmetric functional form is given by qy(3qx2qy2)q_{y}(3q_{x}^{2}-q_{y}^{2}), as shown by the color plot in Fig. 6(b), which means that the angle dependence is expressed as sin3ϕ\sin 3\phi in the limit of |𝒒|0|\bm{q}|\to 0.

From Eq. (20), the essential model parameters are straightforwardly computed. The lowest-order contribution in terms of DD is given by

F𝒒(1)=\displaystyle F^{(1)}_{\bm{q}}= 8(D~AA+D~BB)(cos3qx2cos3qy2)sin3qy2\displaystyle 8(\tilde{D}_{\rm AA}+\tilde{D}_{\rm BB})\left(\cos\frac{3q_{x}}{2}-\cos\frac{\sqrt{3}q_{y}}{2}\right)\sin\frac{\sqrt{3}q_{y}}{2} (68)
=\displaystyle= 16D(cos3qx2cos3qy2)sin3qy2.\displaystyle 16D\left(\cos\frac{3q_{x}}{2}-\cos\frac{\sqrt{3}q_{y}}{2}\right)\sin\frac{\sqrt{3}q_{y}}{2}. (69)

Meanwhile, the lowest-order contribution in terms of JaJ^{a} is of third-order, which is given by

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= 72J~ABz[sin3qy(D~AB(2)J~AB(1)D~AB(1)J~AB(2))\displaystyle 72\tilde{J}^{z}_{\rm AB}\bigg{[}\sin\sqrt{3}q_{y}(\tilde{D}^{(2)}_{\rm AB}\tilde{J}_{\rm AB}^{\perp(1)}-\tilde{D}^{(1)}_{\rm AB}\tilde{J}_{\rm AB}^{\perp(2)})
J~AB(0){D~AB(1)sin(3qx+3qy2)\displaystyle-\tilde{J}_{\rm AB}^{\perp(0)}\bigg{\{}\tilde{D}^{(1)}_{\rm AB}\sin\left(\frac{3q_{x}+\sqrt{3}q_{y}}{2}\right)
+D~AB(2)sin(3qx3qy2)}]\displaystyle+\tilde{D}^{(2)}_{\rm AB}\sin\left(\frac{3q_{x}-\sqrt{3}q_{y}}{2}\right)\bigg{\}}\bigg{]} (70)
=\displaystyle= 723Jz(Ja)2(cos3qx2cos3qy2)sin3qy2,\displaystyle 72\sqrt{3}J^{z}(J^{a})^{2}\left(\cos\frac{3q_{x}}{2}-\cos\frac{\sqrt{3}q_{y}}{2}\right)\sin\frac{\sqrt{3}q_{y}}{2}, (71)

where we set D=0D=0. These results are consistent with those in Eqs. (28) and (III.2) in Sec. III. Similar to the ferromagnetic ordering in Sec. IV.1, the result obtained from Eq. (20) gives the same functional form as that in the magnon dispersions in Figs. 6(c) and 6(d). Furthermore, the expressions in Eqs. (68) and (IV.2.2) indicate the odd order of the effective DM interaction causes the asymmetric magnon dispersions as obtained in Sec. III.

IV.3 Breathing kagome ferrimangets

IV.3.1 Model

Refer to caption
Figure 7: Breathing kagome lattice structure under the point group D3hD_{\rm 3h}. The red (blue) spheres represent the up (down) spins along the zz direction. (b) The first Brillouin zone in (a). The color plot represents angle dependence of nonreciprocal magnons characterized by a linear combination of qx(qx23qy2)q_{x}(q_{x}^{2}-3q_{y}^{2}) and qx(qx2qy2)(qx23qy2)q_{x}(q_{x}^{2}-q_{y}^{2})(q_{x}^{2}-3q_{y}^{2}). (c, d) The magnon band structures under the up-up-down magnetic ordering for D=0.2D=0.2, Ja=0J^{a}=0, and J=2J^{\parallel}=-2 (c) and D=0D=0, Ja=0.5J^{a}=0.5, and J=2.4J^{\parallel}=-2.4 (d). The other parameters are set as J=0.9J^{\perp}=0.9, Jz=1J^{z}=1, and γ=0.5\gamma=0.5.

We discuss the other example of the nonreciprocal magnons in the ferrimagnetic state. We consider the up-up-down magnetic ordering in the breathing kagome lattice structure as a fundamental example. The up-up-down spin configuration is shown in Fig. 7(a).

The spin Hamiltonian is common to Eqs. (45) and (93) in Sec. IV.1. The effective interaction tensors corresponding to Eqs. (8)-(12) are modified from those in Sec. IV.1 for the antiparallel spin pairs, i.e., A-C and B-C spins. The interactions are given by

J~CA=\displaystyle\tilde{J^{\prime}}_{\rm CA}^{\perp}= JacosχCA,\displaystyle-J^{a}\cos{\chi_{\rm CA}}, (72)
J~BC=\displaystyle\tilde{J^{\prime}}_{\rm BC}^{\perp}= JacosχBC,\displaystyle-J^{a}\cos{\chi_{\rm BC}}, (73)
J~CAv=\displaystyle\tilde{J^{\prime}}_{\rm CA}^{v}= J~BCv=J,\displaystyle\tilde{J^{\prime}}_{\rm BC}^{v}=-J^{\perp}, (74)
J~CAz=\displaystyle\tilde{J^{\prime}}_{\rm CA}^{z}= J~BCz=Jz,\displaystyle\tilde{J^{\prime}}_{\rm BC}^{z}=-J^{z}, (75)
J~CAxy=\displaystyle\tilde{J^{\prime}}_{\rm CA}^{xy}= D,\displaystyle-D, (76)
J~BCxy=\displaystyle\tilde{J^{\prime}}_{\rm BC}^{xy}= D,\displaystyle D, (77)
D~CA=\displaystyle\tilde{D^{\prime}}_{\rm CA}= JasinχCA,\displaystyle J^{a}\sin\chi_{\rm CA}, (78)
D~BC=\displaystyle\tilde{D^{\prime}}_{\rm BC}= JasinχBC.\displaystyle-J^{a}\sin\chi_{\rm BC}. (79)

The π\pi rotation of the spin frame around the yy axis for the C sublattice leads to the correspondence between (J~ηη,D~ηηJηηv,Jηηxy\tilde{J}^{\prime\perp}_{\eta\eta^{\prime}},\tilde{D}^{\prime}_{\eta\eta^{\prime}}\leftrightarrow J^{\prime v}_{\eta\eta^{\prime}},J^{\prime xy}_{\eta\eta^{\prime}}) and (J~ηηv,J~ηηxyJηη,Dηη\tilde{J}^{\prime v}_{\eta\eta^{\prime}},\tilde{J}^{\prime xy}_{\eta\eta^{\prime}}\leftrightarrow J^{\prime\perp}_{\eta\eta^{\prime}},D^{\prime}_{\eta\eta^{\prime}}).

Then, the 3×33\times 3 matrices 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} in the Bogoliubov Hamiltonian in momentum space are obtained as [72]

𝒳𝒒=\displaystyle\mathcal{X}_{\bm{q}}= (0FAB𝒒FCA𝒒FAB𝒒0FBC𝒒FCA𝒒FBC𝒒Z),\displaystyle\begin{pmatrix}0&F_{{\rm AB}{\bm{q}}}&F^{\prime*}_{{\rm CA}{\bm{q}}}\\ F^{*}_{{\rm AB}{\bm{q}}}&0&F^{\prime}_{{\rm BC}{\bm{q}}}\\ F^{\prime}_{{\rm CA}{\bm{q}}}&F^{\prime*}_{{\rm BC}{\bm{q}}}&Z\end{pmatrix}, (80)
𝒴𝒒=\displaystyle\mathcal{Y}_{\bm{q}}= (0GAB𝒒GCA𝒒GAB𝒒0GBC𝒒GCA𝒒GBC𝒒0),\displaystyle\begin{pmatrix}0&G_{{\rm AB}{\bm{q}}}&G^{\prime}_{{\rm CA}{-\bm{q}}}\\ G_{{\rm AB}-{\bm{q}}}&0&G^{\prime}_{{\rm BC}{\bm{q}}}\\ G^{\prime}_{{\rm CA}{\bm{q}}}&G^{\prime}_{{\rm BC}{-\bm{q}}}&0\end{pmatrix}, (81)

where

FBC𝒒=\displaystyle F^{\prime}_{{\rm BC}{\bm{q}}}= JaeiχBC(ei𝒒𝝆BC+γei𝒒𝝆BC),\displaystyle-J^{a}e^{-i\chi_{{\rm BC}}}\left(e^{i\bm{q}\cdot\bm{\rho}_{{\rm BC}}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{{\rm BC}}}\right), (82)
FCA𝒒=\displaystyle F^{\prime}_{{\rm CA}{\bm{q}}}= JaeiχCA(ei𝒒𝝆CA+γei𝒒𝝆CA),\displaystyle-J^{a}e^{i\chi_{\rm CA}}\left(e^{i\bm{q}\cdot\bm{\rho}_{\rm CA}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{\rm CA}}\right), (83)
GBC𝒒=\displaystyle G^{\prime}_{{\rm BC}{\bm{q}}}= (J+iD)(ei𝒒𝝆BC+γei𝒒𝝆BC),\displaystyle\left(-J^{\perp}+iD\right)\left(e^{i\bm{q}\cdot\bm{\rho}_{{\rm BC}}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{{\rm BC}}}\right), (84)
GCA𝒒=\displaystyle G^{\prime}_{{\rm CA}{\bm{q}}}= (JiD)(ei𝒒𝝆CA+γei𝒒𝝆CA),\displaystyle\left(-J^{\perp}-iD\right)\left(e^{i\bm{q}\cdot\bm{\rho}_{\rm CA}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{\rm CA}}\right), (85)
Z=\displaystyle Z= 2(1+γ)Jz.\displaystyle 2(1+\gamma)J^{z}. (86)

FAB𝒒F_{{\rm AB}{\bm{q}}} and GAB𝒒G_{{\rm AB}{\bm{q}}} are common to Eqs. (49) and (50), respectively.

IV.3.2 Result

The up-up-down spin configuration is not simply stabilized by the spin Hamiltonian owing to the degeneracy arising from the kagome lattice structure. We here introduce the interlayer ferromagnetic exchange coupling with the coupling constant JJ^{\parallel} by supposing the quasi-two-dimensional structure [72]. Then, the diagonal matrix element (𝒳𝒒)ii=(0,0,Z)(\mathcal{X}_{\bm{q}})_{ii}=(0,0,Z) in Eq. (80) turns into (𝒳𝒒)ii=(J,J,Z+J)(\mathcal{X}_{\bm{q}})_{ii}=(J^{\parallel},J^{\parallel},Z+J^{\parallel}), which opens the gap in the magnon spectra. In the following, we fix J=0.9J^{\perp}=0.9, Jz=1J^{z}=1, and γ=0.5\gamma=0.5.

Figures 7(c) and 7(d) show the magnon dispersions under the up-up-down magnetic ordering along high symmetry lines in the Brillouin zone in Fig. 7(b). The data in Fig. 7(c) is obtained at D=0.2D=0.2, Ja=0J^{a}=0, and J=2J^{\parallel}=-2 and that in Fig. 7(d) is D=0D=0, Ja=0.5J^{a}=0.5, and J=2.4J^{\parallel}=-2.4. In contrast to the magnon dispersions in the ferromagnetic state in Sec. IV.1, threefold rotational symmetry in the dispersions does not hold, which is consistent with the symmetry of the magnetic orderings. This result indicates that there is an additional angle dependence of cosϕ\cos\phi to cos3ϕ\cos 3\phi, whose behavior is schematically shown as the color plot in Fig. 7(b). We also confirm that the magnon dispersions in Figs. 7(c) and 7(d) are characterized by the above angle dependence.

By evaluating F𝒒(s)F^{(s)}_{\bm{q}} in Eq. (20), the essential model parameters are extracted. The lowest-order contribution is given as the same form of Eq. (IV.1.2) except for the sign. In other words, the lowest-order contribution gives the angle dependence of cos3ϕ\cos 3\phi. The other cosϕ\cos\phi dependence is obtained by the second lowest-order contribution F𝒒(5)F^{(5)}_{\bm{q}}. For Ja=0J^{a}=0, F𝒒(5)F^{(5)}_{\bm{q}} is given by

F𝒒(5)=\displaystyle F^{(5)}_{\bm{q}}= 10γ2(1γ)h1[D~AB(J~BCvJ~CAv+J~BCxyJ~CAxy)\displaystyle 10\gamma^{2}(1-\gamma)h_{1}\Big{[}\tilde{D}_{\rm AB}(\tilde{J^{\prime}}_{\rm BC}^{v}\tilde{J^{\prime}}_{\rm CA}^{v}+\tilde{J^{\prime}}_{\rm BC}^{xy}\tilde{J^{\prime}}_{\rm CA}^{xy})
+J~AB(J~BCvJ~CAxyJ~CAvJ~BCxy)]q5cos(a)\displaystyle+\tilde{J}_{\rm AB}(\tilde{J^{\prime}}_{\rm BC}^{v}\tilde{J^{\prime}}_{\rm CA}^{xy}-\tilde{J^{\prime}}_{\rm CA}^{v}\tilde{J^{\prime}}_{\rm BC}^{xy})\Big{]}q^{5}\cos(a) (87)
=\displaystyle= 40γ2(1γ)D(3J2D2)(J2+D2)q5cosϕ,\displaystyle 40\gamma^{2}(1-\gamma)D(3J^{\perp 2}-D^{2})(J^{\perp 2}+D^{2})q^{5}\cos\phi, (88)

where h1=2D~AB2+2J~AB2+(J~BCv)2+(J~CAv)2+(J~BCxy)2+(J~CAxy)2h_{1}=2\tilde{D}_{\rm AB}^{2}+2\tilde{J}_{\rm AB}^{2}+(\tilde{J^{\prime}}_{\rm BC}^{v})^{2}+(\tilde{J^{\prime}}_{\rm CA}^{v})^{2}+(\tilde{J^{\prime}}_{\rm BC}^{xy})^{2}+(\tilde{J^{\prime}}_{\rm CA}^{xy})^{2}. On the other hand, for D=0D=0, F𝒒(5)F^{(5)}_{\bm{q}} is represented by

F𝒒(5)=\displaystyle F^{(5)}_{\bm{q}}= 10γ2(1γ)h2[D~BC(J~ABJ~CAJ~ABvJ~CAv)\displaystyle 10\gamma^{2}(1-\gamma)h_{2}\Big{[}\tilde{D^{\prime}}_{\rm BC}(\tilde{J}_{\rm AB}^{\perp}\tilde{J^{\prime}}_{\rm CA}^{\perp}-\tilde{J}_{\rm AB}^{v}\tilde{J^{\prime}}_{\rm CA}^{v})
+D~CA(J~ABJ~BCJ~ABvJ~BCv)]q5cosϕ\displaystyle+\tilde{D^{\prime}}_{\rm CA}(\tilde{J}_{\rm AB}^{\perp}\tilde{J^{\prime}}_{\rm BC}^{\perp}-\tilde{J}_{\rm AB}^{v}\tilde{J^{\prime}}_{\rm BC}^{v})\Big{]}q^{5}\cos\phi (89)
=\displaystyle= 603γ2(1γ)J(Ja)2[J2(Ja)2]q5cosϕ,\displaystyle 60\sqrt{3}\gamma^{2}(1-\gamma)J^{\perp}(J^{a})^{2}[J^{\perp 2}-(J^{a})^{2}]q^{5}\cos\phi, (90)

where we omit the irrelevant contributions and h2=D~BC2+D~CA22(J~AB)2+(J~BC)2+(J~CA)2+2(J~ABv)2(J~BCv)2(J~CAv)2h_{2}=\tilde{D^{\prime}}_{\rm BC}^{2}+\tilde{D^{\prime}}_{\rm CA}^{2}-2(\tilde{J}_{\rm AB}^{\perp})^{2}+(\tilde{J^{\prime}}_{\rm BC}^{\perp})^{2}+(\tilde{J^{\prime}}_{\rm CA}^{\perp})^{2}+2(\tilde{J}_{\rm AB}^{v})^{2}-(\tilde{J^{\prime}}_{\rm BC}^{v})^{2}-(\tilde{J^{\prime}}_{\rm CA}^{v})^{2}. Thus, the additional antisymmetric modulation in the up-up-down state is given by q5cosϕq^{5}\cos\phi, indicating that the modulation of cosϕ\cos\phi affects the large 𝒒\bm{q} region in the Brillouin zone. Also in these cases in Eqs. (IV.3.2) and (IV.3.2), the odd order of the effective DM interaction and the even order of the effective symmetric anisotropic interaction can be a source of the antisymmetric dispersions.

Such qnq^{n} dependence in cosϕ\cos\phi depends on the model parameters. For example, we consider the situation where the breathing parameter for the DM interaction γDM\gamma_{\rm DM} is different from γ\gamma, γDMγ\gamma_{\rm DM}\neq\gamma [72]. In this case, the cosϕ\cos\phi dependence appears in F𝒒(3)F^{(3)}_{\bm{q}} as

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= Dg1(cosqxcos3qy)sinqx\displaystyle Dg_{1}(\cos q_{x}-\cos\sqrt{3}q_{y})\sin q_{x}
+Dg2cos3qysinqx,\displaystyle+Dg_{2}\cos\sqrt{3}q_{y}\sin q_{x}, (91)

where g1=24γDM(1γDM)D2+(γ22γ+2γγDMγDM)J2g_{1}=-24\gamma_{\rm DM}(1-\gamma_{\rm DM})D^{2}+(\gamma^{2}-2\gamma+2\gamma\gamma_{\rm DM}-\gamma_{\rm DM})J^{\perp 2} and g2=48(1+γ)(γγDM)JJzg_{2}=-48(1+\gamma)(\gamma-\gamma_{\rm DM})J^{\perp}J_{z}. The expression in the form of the effective interaction is omitted due to its length. Owing to nonzero g2g_{2}, i.e., γDMγ\gamma_{\rm DM}\neq\gamma, F𝒒(3)F^{(3)}_{\bm{q}} has the contribution of qcosϕq\cos\phi in the limit of |𝒒|0|\bm{q}|\to 0, which means the linear band modulation is found in the small 𝒒\bm{q} region [72].

Refer to caption
Figure 8: (a) Breathing kagome lattice structure in the absence of the horizontal mirror plane under the polar point group C3vC_{3v}. The arrows represent the magnetic moments to form the 120 antiferromagnetic ordering. (b) The first Brillouin zone in (a). The color plot represents angle dependence of nonreciprocal magnons characterized by qx(qx23qy2)q_{x}(q_{x}^{2}-3q_{y}^{2}), which is the same as that in Fig. 5(b). (c, d) The magnon band structures under the 120 antiferromagnetic ordering for D=0.2D^{\prime}=0.2 and Ja=0J^{\prime a}=0 (c) and D=0D^{\prime}=0 and Ja=0.2J^{\prime a}=0.2 (d). The other parameters are set as J=1J^{\perp}=1, Jz=0.8J^{z}=0.8, D=0.2D=-0.2, Ja=0.5J^{a}=0.5, and γ=0.5\gamma=0.5.

IV.4 Breathing kagome noncollinear 120 antiferromagnets

IV.4.1 Model

Finally, we discuss the nonreciprocal magnons in the noncollinear antiferromagnetic state. We consider the 120120^{\circ} antiferromagnetic ordering in the breathing kagome lattice structure in Fig. 8(a). Here, we consider the situation where the horizontal mirror symmetry in the kagome plane is broken owing to the presence of polar field along the zz direction, which means that the point group symmetry is lowered to C3vC_{3v}. Then, the spin Hamiltonian is given by

𝒥ηη\displaystyle\mathcal{J}^{\triangle}_{\eta\eta^{\prime}} =(J+JacosχηηDJasinχηηDcosχηηJasinχηηDJasinχηηJJacosχηηDsinχηη+JacosχηηDcosχηηJasinχηηDsinχηη+JacosχηηJz),\displaystyle=\begin{pmatrix}J^{\perp}+J^{a}\cos\chi_{\eta\eta^{\prime}}&D-J^{a}\sin\chi_{\eta\eta^{\prime}}&-D^{\prime}\cos\chi_{\eta\eta^{\prime}}-J^{\prime a}\sin\chi_{\eta\eta^{\prime}}\\ -D-J^{a}\sin\chi_{\eta\eta^{\prime}}&J^{\perp}-J^{a}\cos\chi_{\eta\eta^{\prime}}&-D^{\prime}\sin\chi_{\eta\eta^{\prime}}+J^{\prime a}\cos\chi_{\eta\eta^{\prime}}\\ D^{\prime}\cos\chi_{\eta\eta^{\prime}}-J^{\prime a}\sin\chi_{\eta\eta^{\prime}}&D^{\prime}\sin\chi_{\eta\eta^{\prime}}+J^{\prime a}\cos\chi_{\eta\eta^{\prime}}&J^{z}\end{pmatrix}, (92)
𝒥ηη\displaystyle\mathcal{J}^{\bigtriangledown}_{\eta\eta^{\prime}} =γ𝒥ηη,\displaystyle=\gamma\mathcal{J}^{\triangle}_{\eta\eta^{\prime}}, (93)

where DD^{\prime} and JaJ^{\prime a} are additional exchange interactions that arise from the horizontal mirror symmetry breaking under the polar field.

The effective interactions in the rotated spin frame are given by

J~ηη=\displaystyle\tilde{J}_{\rm\eta\eta^{\prime}}^{\perp}= 14(J2Ja+2Jz3D),\displaystyle-\frac{1}{4}\left(J^{\perp}-2J^{a}+2J^{z}-\sqrt{3}D\right), (94)
J~ηηv=\displaystyle\tilde{J}_{\rm\eta\eta^{\prime}}^{v}= 14(J2Ja+2Jz3D),\displaystyle\frac{1}{4}\left(J^{\perp}-2J^{a}+2J^{z}-\sqrt{3}D\right), (95)
J~ηηxy=\displaystyle\tilde{J}_{\rm\eta\eta^{\prime}}^{xy}= 0,\displaystyle 0, (96)
J~ηηz=\displaystyle\tilde{J}_{\rm\eta\eta^{\prime}}^{z}= 12(J+2Ja3D),\displaystyle-\frac{1}{2}\left(J^{\perp}+2J^{a}-\sqrt{3}D\right), (97)
D~ηηz=\displaystyle\tilde{D}_{\rm\eta\eta^{\prime}}^{z}= 12(3Ja+D),\displaystyle-\frac{1}{2}\left(\sqrt{3}J^{\prime a}+D^{\prime}\right), (98)

where η,η=\eta,\eta^{\prime}= A, B, and C, and we neglect J~ηηzx\tilde{J}_{\rm\eta\eta^{\prime}}^{zx} and D~ηηx\tilde{D}_{\rm\eta\eta^{\prime}}^{x} owing to the linear spin wave approximation. The expressions are the same for the different bonds (A-B, B-C, and C-A) owing to the symmetry.

The 3×33\times 3 matrices 𝒳𝒒\mathcal{X}_{\bm{q}} and 𝒴𝒒\mathcal{Y}_{\bm{q}} in the Bogoliubov Hamiltonian in momentum space are the same as those in Eqs. (47) and (48), respectively. Meanwhile, Fηη𝒒F_{\eta\eta^{\prime}{\bm{q}}}, Gηη𝒒G_{\eta\eta^{\prime}{\bm{q}}}, and ZZ have different forms as

Fηη𝒒=\displaystyle F_{\eta\eta^{\prime}{\bm{q}}}= [J2Ja+2Jz3D4+i(3Ja+D)2]\displaystyle\left[-\frac{J^{\perp}-2J^{a}+2J^{z}-\sqrt{3}D}{4}+\frac{i(\sqrt{3}J^{\prime a}+D^{\prime})}{2}\right]
×\displaystyle\times (ei𝒒𝝆ηη+γei𝒒𝝆ηη),\displaystyle\left(e^{i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}\right), (99)
Gηη𝒒=\displaystyle G_{\eta\eta^{\prime}{\bm{q}}}= J2Ja+2Jz3D4(ei𝒒𝝆ηη+γei𝒒𝝆ηη),\displaystyle\frac{J^{\perp}-2J^{a}+2J^{z}-\sqrt{3}D}{4}\left(e^{i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}+\gamma e^{-i\bm{q}\cdot\bm{\rho}_{\eta\eta^{\prime}}}\right), (100)
Z=\displaystyle Z= (1+γ)(J+2Ja3D).\displaystyle(1+\gamma)\left(J^{\perp}+2J^{a}-\sqrt{3}D\right). (101)

IV.4.2 Result

The 120 spin configuration is obtained as a metastable state by taking the exchange model parameters as J=1J^{\perp}=1, Jz=0.8J^{z}=0.8, D=0.2D=-0.2, Ja=0.5J^{a}=0.5, and γ=0.5\gamma=0.5. Figures 8(c) and 8(d) show the magnon dispersions under the 120 antiferromagnetic ordering along high symmetry lines in the Brillouin zone in Fig. 8(b). The data in Fig. 8(c) is obtained at D=0.2D^{\prime}=0.2 and Ja=0J^{\prime a}=0 and that in Fig. 8(d) is at D=0D^{\prime}=0 and Ja=0.2J^{\prime a}=0.2. Although the interaction tensor under the 120 antiferromagnetic ordering is different from that in the ferromagnetic ordering in Eq. (45), the functional form of the antisymmetric dispersions is the same with each other, which is characterized by qx(qx23qy2)q_{x}(q_{x}^{2}-3q_{y}^{2}) satisfying threefold rotational symmetry in both cases in Figs. 8(c) and 8(d).

The lowest-order contribution of F𝒒(s)F^{(s)}_{\bm{q}} is of third order. In the case at D0D^{\prime}\neq 0 and Ja=0J^{\prime a}=0, F𝒒(3)F^{(3)}_{\bm{q}} is given by

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= 3γ(1γ)Df𝒒3ϕ\displaystyle-3\gamma(1-\gamma)D^{\prime}f^{3\phi}_{\bm{q}}
×[6Jz(J3D2Ja)+D2],\displaystyle\times\left[6J^{z}\left(J^{\perp}-\sqrt{3}D-2J^{a}\right)+D^{\prime 2}\right], (102)

and in the case at D=0D^{\prime}=0 and Ja0J^{\prime a}\neq 0, F𝒒(3)F^{(3)}_{\bm{q}} is given by

F𝒒(3)=\displaystyle F^{(3)}_{\bm{q}}= 9γ(1γ)Jaf𝒒3ϕ\displaystyle-9\gamma(1-\gamma)J^{\prime a}f^{3\phi}_{\bm{q}}
×{3[2Jz(J2Ja)+(Ja)2]6DJz}.\displaystyle\times\left\{\sqrt{3}\left[2J^{z}(J^{\perp}-2J^{a})+(J^{\prime a})^{2}\right]-6DJ^{z}\right\}. (103)

where we omit the expressions for the effective exchange interactions. The above results indicates that we obtain the different conditions in terms of the essential model parameters from the ferromagnetic state in Eqs. (54) and (55): The former are DD^{\prime} and JaJ^{\prime a}, while the latter are DD and JaJ^{a}. In this way, our scheme can be applied to noncollinear antiferromagnetic orderings straightforwardly.

V Summary

To summarize, we have investigated the microscopic conditions for emergent nonreciprocal magnons on the basis of the model calculations. We presented the useful expression in Eqs. (19) and (20) to provide essential model parameters for nonreciprocal magnon excitations in an analytical way. The method does not require the diagonalization of the bosonic Hamiltonian. After presenting the generic results in the one- to four-sublattice cases, we tested the method to four magnetic systems: the ferromagnetic state on the breathing kagome lattice system, the staggered collinear antiferromagnetic state on the honeycomb lattice system, the up-up-down ferrimagnetic state on the breathing kagome lattice system, and the noncollinear 120 antiferromagnetic state on the breathing kagome lattice system. We found that our scheme extracts the key model parameters, which are well consistent with the result by the direct diagonalization.

The present expression can be applied to any magnetic structures including noncollinear one in the magnetic systems with any symmetric and antisymmetric bilinear exchange interactions. In particular, this method has an advantage of obtaining the analytical expressions for the essential model parameters in multisublattice systems with long-period magnetic structures that are difficult to obtain the analytical expressions of the magnon band dispersions. Moreover, the systematic analysis provides an insight to construct an effective spin model so as to include essential model parameters in real materials, where targeting materials are easily found by using magnetic structure database, MAGNDATA [89], and cluster multipole analyses [90, 85], from the symmetry viewpoint. In this way, our result will not only give a deep understanding of nonreciprocal magnon excitations in noncentrosymmetric magnets, such as α\alpha-Cu2V2O7 [91, 92, 93, 94], but also be a good indicator to examine the microscopic origin under complicated magnetic orderings.

Appendix A Expressions of F𝒒(s)F^{(s)}_{\bm{q}} in three- and four-sublattice cases

In this Appendix, we show the lengthy expressions of Hμ𝒒H_{\mu\bm{q}} (μ=1\mu=1-7) in the three-sublattice case in Sec. III.3 and those of Hμ𝒒H^{\prime}_{\mu\bm{q}} (μ=1\mu=1-7) in the four-sublattice case in Sec. III.4. For the three-sublattice case, Hμ𝒒H_{\mu\bm{q}} (μ=1\mu=1-7) are given by

H1𝒒=\displaystyle H_{1\bm{q}}= 12{zA(hAB𝒒D(s)hAB𝒒(as)+hAC𝒒D(s)hAC𝒒(as)hAB𝒒(s)hAB𝒒D(as)hAC𝒒(s)hAC𝒒D(as))\displaystyle 12\{z_{\rm A}(h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}})
+zB(hAB𝒒D(s)hAB𝒒(as)+hBC𝒒D(s)hBC𝒒(as)hAB𝒒(s)hAB𝒒D(as)hBC𝒒(s)hBC𝒒D(as))\displaystyle+z_{\rm B}(h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}})
+zC(hAC𝒒D(s)hAC𝒒(as)+hBC𝒒D(s)hBC𝒒(as)hAC𝒒(s)hAC𝒒D(as)hBC𝒒(s)hBC𝒒D(as))}\displaystyle+z_{\rm C}(h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}})\} (104)
H2𝒒=\displaystyle H_{2\bm{q}}= 12(hAB𝒒D(s)hAC𝒒(s)hBC𝒒(as)+hAB𝒒D(s)hBC𝒒(s)hAC𝒒(as)+hAC𝒒D(s)hAB𝒒(s)hBC𝒒(as)+hAC𝒒D(s)hBC𝒒(s)hAB𝒒(as)+hBC𝒒D(s)hAB𝒒(s)hAC𝒒(as)\displaystyle 12(-h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}
hBC𝒒D(s)hAC𝒒(s)hAB𝒒(as)hAB𝒒(s)hAC𝒒(s)hBC𝒒D(as)hAB𝒒(s)hBC𝒒(s)hAC𝒒D(as)hAC𝒒(s)hBC𝒒(s)hAB𝒒D(as)hAB𝒒D(as)hAC𝒒(as)hBC𝒒(as)\displaystyle-h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{D{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}
+hAC𝒒D(as)hAB𝒒(as)hBC𝒒(as)hBC𝒒D(as)hAB𝒒(as)hAC𝒒(as))\displaystyle+h^{D{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(as)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}) (105)
H5𝒒=\displaystyle H_{5\bm{q}}= 12(hAB𝒒D(s)hAC𝒒D(s)hBC𝒒D(as)+hAB𝒒D(s)hBC𝒒D(s)hAC𝒒D(as)hAC𝒒D(s)hBC𝒒D(s)hAB𝒒D(as)hAB𝒒D(as)hAC𝒒D(as)hBC𝒒D(as))\displaystyle 12(-h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{D{\rm(as)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}) (106)
H6𝒒=\displaystyle H_{6\bm{q}}= 12{zA(hAB𝒒v(s)hAB𝒒xy(as)+hAC𝒒v(s)hAC𝒒xy(as)hAB𝒒xy(s)hAB𝒒v(as)hAC𝒒xy(s)hAC𝒒v(as))\displaystyle 12\{z_{\rm A}(h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}-h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}})
+zB(hAB𝒒v(s)hAB𝒒xy(as)+hBC𝒒v(s)hBC𝒒xy(as)+hAB𝒒xy(s)hAB𝒒v(as)hBC𝒒xy(s)hBC𝒒v(as))\displaystyle+z_{\rm B}(-h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}})
+zC(hAC𝒒v(s)hAC𝒒xy(as)hBC𝒒v(s)hBC𝒒xy(as)+hAC𝒒xy(s)hAC𝒒v(as)+hBC𝒒xy(s)hBC𝒒v(as))}\displaystyle+z_{\rm C}(-h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}-h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}+h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}})\} (107)
H7𝒒=\displaystyle H_{7\bm{q}}= 12(hAB𝒒(s)hBC𝒒v(s)hAC𝒒xy(as)+hAC𝒒(s)hBC𝒒v(s)hAB𝒒xy(as)hBC𝒒v(s)hAB𝒒xy(s)hAC𝒒(as)hBC𝒒v(s)hAC𝒒xy(s)hAB𝒒(as)+hAB𝒒(s)hAC𝒒v(s)hBC𝒒xy(as)\displaystyle 12(h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}-h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}-h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}
hBC𝒒(s)hAC𝒒v(s)hAB𝒒xy(as)hAC𝒒v(s)hAB𝒒xy(s)hBC𝒒(as)+hAC𝒒v(s)hBC𝒒xy(s)hAB𝒒(as)hAB𝒒(s)hAC𝒒xy(s)hBC𝒒v(as)hAB𝒒(s)hBC𝒒xy(s)hAC𝒒v(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}-h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}
hAC𝒒(s)hAB𝒒v(s)hBC𝒒xy(as)+hAC𝒒(s)hAB𝒒xy(s)hBC𝒒v(as)hAC𝒒(s)hBC𝒒xy(s)hAB𝒒v(as)hBC𝒒(s)hAB𝒒v(s)hAC𝒒xy(as)+hBC𝒒(s)hAB𝒒xy(s)hAC𝒒v(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}
+hBC𝒒(s)hAC𝒒xy(s)hAB𝒒v(as)+hAB𝒒v(s)hAC𝒒xy(s)hBC𝒒(as)+hAB𝒒v(s)hBC𝒒xy(s)hAC𝒒(as)+hAB𝒒(as)hAC𝒒v(as)hBC𝒒xy(as)hAB𝒒(as)hBC𝒒v(as)hAC𝒒xy(as)\displaystyle+h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}
hAC𝒒(as)hAB𝒒v(as)hBC𝒒xy(as)+hAC𝒒(as)hBC𝒒v(as)hAB𝒒xy(as)+hBC𝒒(as)hAB𝒒v(as)hAC𝒒xy(as)hBC𝒒(as)hAC𝒒v(as)hAB𝒒xy(as)),\displaystyle-h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}), (108)

where H3𝒒H_{3\bm{q}} and H4𝒒H_{4\bm{q}} are obtained by replacing the superscript \perp in H2𝒒H_{2\bm{q}} with vv and xyxy, respectively, and multiplying 1-1.

For the four-sublattice case, Hμ𝒒H^{\prime}_{\mu\bm{q}} (μ=1\mu=1-7) are given by

H1𝒒=\displaystyle H^{\prime}_{1\bm{q}}= 12{zA(hAB𝒒D(s)hAB𝒒(as)+hAC𝒒D(s)hAC𝒒(as)+hAD𝒒D(s)hAD𝒒(as)hAB𝒒(s)hAB𝒒D(as)hAC𝒒(s)hAC𝒒D(as)hAD𝒒(s)hAD𝒒D(as))\displaystyle 12\{z_{\rm A}(h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}})
+zB(hAB𝒒D(s)hAB𝒒(as)+hBC𝒒D(s)hBC𝒒(as)+hBD𝒒D(s)hBD𝒒(as)hAB𝒒(s)hAB𝒒D(as)hBC𝒒(s)hBC𝒒D(as)hBD𝒒(s)hBD𝒒D(as))\displaystyle+z_{\rm B}(h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}})
+zC(hAC𝒒D(s)hAC𝒒(as)+hBC𝒒D(s)hBC𝒒(as)+hCD𝒒D(s)hCD𝒒(as)hAC𝒒(s)hAC𝒒D(as)hBC𝒒(s)hBC𝒒D(as)hCD𝒒(s)hCD𝒒D(as))\displaystyle+z_{\rm C}(h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}})
+zD(hAD𝒒D(s)hAD𝒒(as)+hBD𝒒D(s)hBD𝒒(as)+hCD𝒒D(s)hCD𝒒(as)hAD𝒒(s)hAD𝒒D(as)hBD𝒒(s)hBD𝒒D(as)hCD𝒒(s)hCD𝒒D(as))}\displaystyle+z_{\rm D}(h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}+h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}})\} (109)
H2𝒒=\displaystyle H^{\prime}_{2\bm{q}}= 12(hAB𝒒D(s)hAC𝒒(s)hBC𝒒(as)hAB𝒒D(s)hAD𝒒(s)hBD𝒒(as)+hAB𝒒D(s)hBC𝒒(s)hAC𝒒(as)+hAB𝒒D(s)hBD𝒒(s)hAD𝒒(as)+hAC𝒒D(s)hAB𝒒(s)hBC𝒒(as)\displaystyle 12(-h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}
hAC𝒒D(s)hAD𝒒(s)hCD𝒒(as)+hAC𝒒D(s)hBC𝒒(s)hAB𝒒(as)+hAC𝒒D(s)hCD𝒒(s)hAD𝒒(as)+hAD𝒒D(s)hAB𝒒(s)hBD𝒒(as)+hAD𝒒D(s)hAC𝒒(s)hCD𝒒(as)\displaystyle-h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}+h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}
+hAD𝒒D(s)hBD𝒒(s)hAB𝒒(as)+hAD𝒒D(s)hCD𝒒(s)hAC𝒒(as)+hBC𝒒D(s)hAB𝒒(s)hAC𝒒(as)hBC𝒒D(s)hAC𝒒(s)hAB𝒒(as)hBC𝒒D(s)hBD𝒒(s)hCD𝒒(as)\displaystyle+h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}-h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}-h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}
+hBC𝒒D(s)hCD𝒒(s)hBD𝒒(as)+hBD𝒒D(s)hAB𝒒(s)hAD𝒒(as)hBD𝒒D(s)hAD𝒒(s)hAB𝒒(as)+hBD𝒒D(s)hBC𝒒(s)hCD𝒒(as)+hBD𝒒D(s)hCD𝒒(s)hBC𝒒(as)\displaystyle+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}+h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}
+hCD𝒒D(s)hAC𝒒(s)hAD𝒒(as)hCD𝒒D(s)hAD𝒒(s)hAC𝒒(as)+hCD𝒒D(s)hBC𝒒(s)hBD𝒒(as)hCD𝒒D(s)hBD𝒒(s)hBC𝒒(as)hAB𝒒(s)hAC𝒒(s)hBC𝒒D(as)\displaystyle+h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}-h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}
hAB𝒒(s)hAD𝒒(s)hBD𝒒D(as)hAB𝒒(s)hBC𝒒(s)hAC𝒒D(as)hAB𝒒(s)hBD𝒒(s)hAD𝒒D(as)hAC𝒒(s)hAD𝒒(s)hCD𝒒D(as)hAC𝒒(s)hBC𝒒(s)hAB𝒒D(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}
hAC𝒒(s)hCD𝒒(s)hAD𝒒D(as)hAD𝒒(s)hBD𝒒(s)hAB𝒒D(as)hAD𝒒(s)hCD𝒒(s)hAC𝒒D(as)hBC𝒒(s)hBD𝒒(s)hCD𝒒D(as)hBC𝒒(s)hCD𝒒(s)hBD𝒒D(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}
hBD𝒒(s)hCD𝒒(s)hBC𝒒D(as)hAB𝒒D(as)hAC𝒒(as)hBC𝒒(as)hAB𝒒D(as)hAD𝒒(as)hBD𝒒(as)+hAC𝒒D(as)hAB𝒒(as)hBC𝒒(as)hAC𝒒D(as)hAD𝒒(as)hCD𝒒(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}
+hAD𝒒D(as)hAB𝒒(as)hBD𝒒(as)+hAD𝒒D(as)hAC𝒒(as)hCD𝒒(as)hBC𝒒D(as)hAB𝒒(as)hAC𝒒(as)hBC𝒒D(as)hBD𝒒(as)hCD𝒒(as)hBD𝒒D(as)hAB𝒒(as)hAD𝒒(as)\displaystyle+h^{D{\rm(as)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(as)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}-h^{D{\rm(as)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}-h^{D{\rm(as)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}-h^{D{\rm(as)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}
+hBD𝒒D(as)hBC𝒒(as)hCD𝒒(as)hCD𝒒D(as)hAC𝒒(as)hAD𝒒(as)hCD𝒒D(as)hBC𝒒(as)hBD𝒒(as))\displaystyle+h^{D{\rm(as)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}-h^{D{\rm(as)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{D{\rm(as)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}) (110)
H5𝒒=\displaystyle H^{\prime}_{5\bm{q}}= 12(hAB𝒒D(s)hAC𝒒D(s)hBC𝒒D(as)hAB𝒒D(s)hAD𝒒D(s)hBD𝒒D(as)+hAB𝒒D(s)hBC𝒒D(s)hAC𝒒D(as)+hAB𝒒D(s)hBD𝒒D(s)hAD𝒒D(as)hAC𝒒D(s)hAD𝒒D(s)hCD𝒒D(as)\displaystyle 12(-h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}+h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}+h^{D{\rm(s)}}_{{\rm AB}\bm{q}}h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}-h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}}
hAC𝒒D(s)hBC𝒒D(s)hAB𝒒D(as)+hAC𝒒D(s)hCD𝒒D(s)hAD𝒒D(as)hAD𝒒D(s)hBD𝒒D(s)hAB𝒒D(as)hAD𝒒D(s)hCD𝒒D(s)hAC𝒒D(as)hBC𝒒D(s)hBD𝒒D(s)hCD𝒒D(as)\displaystyle-h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}+h^{D{\rm(s)}}_{{\rm AC}\bm{q}}h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}-h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm AB}\bm{q}}-h^{D{\rm(s)}}_{{\rm AD}\bm{q}}h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}-h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}}
+hBC𝒒D(s)hCD𝒒D(s)hBD𝒒D(as)hBD𝒒D(s)hCD𝒒D(s)hBC𝒒D(as)hAB𝒒D(as)hAC𝒒D(as)hBC𝒒D(as)hAB𝒒D(as)hAD𝒒D(as)hBD𝒒D(as)hAC𝒒D(as)hAD𝒒D(as)hCD𝒒D(as)\displaystyle+h^{D{\rm(s)}}_{{\rm BC}\bm{q}}h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}-h^{D{\rm(s)}}_{{\rm BD}\bm{q}}h^{D{\rm(s)}}_{{\rm CD}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(as)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm BC}\bm{q}}-h^{D{\rm(as)}}_{{\rm AB}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}-h^{D{\rm(as)}}_{{\rm AC}\bm{q}}h^{D{\rm(as)}}_{{\rm AD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}}
hBC𝒒D(as)hBD𝒒D(as)hCD𝒒D(as))\displaystyle-h^{D{\rm(as)}}_{{\rm BC}\bm{q}}h^{D{\rm(as)}}_{{\rm BD}\bm{q}}h^{D{\rm(as)}}_{{\rm CD}\bm{q}}) (111)
H6𝒒=\displaystyle H^{\prime}_{6\bm{q}}= 12{zA(hAB𝒒v(s)hAB𝒒xy(as)+hAC𝒒v(s)hAC𝒒xy(as)+hAD𝒒v(s)hAD𝒒xy(as)hAB𝒒xy(s)hAB𝒒v(as)hAC𝒒xy(s)hAC𝒒v(as)hAD𝒒xy(s)hAD𝒒v(as))\displaystyle 12\{z_{\rm A}(h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}-h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}})
+zB(hAB𝒒v(s)hAB𝒒xy(as)+hBC𝒒v(s)hBC𝒒xy(as)+hBD𝒒v(s)hBD𝒒xy(as)+hAB𝒒xy(s)hAB𝒒v(as)hBC𝒒xy(s)hBC𝒒v(as)hBD𝒒xy(s)hBD𝒒v(as))\displaystyle+z_{\rm B}(-h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}+h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}-h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}})
+zC(hAC𝒒v(s)hAC𝒒xy(as)hBC𝒒v(s)hBC𝒒xy(as)+hCD𝒒v(s)hCD𝒒xy(as)+hAC𝒒xy(s)hAC𝒒v(as)+hBC𝒒xy(s)hBC𝒒v(as)hCD𝒒xy(s)hCD𝒒v(as))\displaystyle+z_{\rm C}(-h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}-h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}+h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}-h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}})
+zD(hAD𝒒v(s)hAD𝒒xy(as)hBD𝒒v(s)hBD𝒒xy(as)hCD𝒒v(s)hCD𝒒xy(as)+hAD𝒒xy(s)hAD𝒒v(as)+hBD𝒒xy(s)hBD𝒒v(as)+hCD𝒒xy(s)hCD𝒒v(as))}\displaystyle+z_{\rm D}(-h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}-h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}+h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}+h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}})\} (112)
H7𝒒=\displaystyle H^{\prime}_{7\bm{q}}= 12(hAB𝒒(s)hAC𝒒v(s)hBC𝒒xy(as)+hAB𝒒(s)hAD𝒒v(s)hBD𝒒xy(as)+hAB𝒒(s)hBC𝒒v(s)hAC𝒒xy(as)+hAB𝒒(s)hBD𝒒v(s)hAD𝒒xy(as)hAB𝒒(s)hAC𝒒xy(s)hBC𝒒v(as)\displaystyle 12(h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}
hAB𝒒(s)hAD𝒒xy(s)hBD𝒒v(as)hAB𝒒(s)hBC𝒒xy(s)hAC𝒒v(as)hAB𝒒(s)hBD𝒒xy(s)hAD𝒒v(as)hAC𝒒(s)hAB𝒒v(s)hBC𝒒xy(as)+hAC𝒒(s)hAD𝒒v(s)hCD𝒒xy(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}
+hAC𝒒(s)hBC𝒒v(s)hAB𝒒xy(as)+hAC𝒒(s)hCD𝒒v(s)hAD𝒒xy(as)+hAC𝒒(s)hAB𝒒xy(s)hBC𝒒v(as)hAC𝒒(s)hAD𝒒xy(s)hCD𝒒v(as)hAC𝒒(s)hBC𝒒xy(s)hAB𝒒v(as)\displaystyle+h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}
hAC𝒒(s)hCD𝒒xy(s)hAD𝒒v(as)hAD𝒒(s)hAB𝒒v(s)hBD𝒒xy(as)hAD𝒒(s)hAC𝒒v(s)hCD𝒒xy(as)+hAD𝒒(s)hBD𝒒v(s)hAB𝒒xy(as)+hAD𝒒(s)hCD𝒒v(s)hAC𝒒xy(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}
+hAD𝒒(s)hAB𝒒xy(s)hBD𝒒v(as)+hAD𝒒(s)hAC𝒒xy(s)hCD𝒒v(as)hAD𝒒(s)hBD𝒒xy(s)hAB𝒒v(as)hAD𝒒(s)hCD𝒒xy(s)hAC𝒒v(as)hBC𝒒(s)hAB𝒒v(s)hAC𝒒xy(as)\displaystyle+h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}
hBC𝒒(s)hAC𝒒v(s)hAB𝒒xy(as)+hBC𝒒(s)hBD𝒒v(s)hCD𝒒xy(as)+hBC𝒒(s)hCD𝒒v(s)hBD𝒒xy(as)+hBC𝒒(s)hAB𝒒xy(s)hAC𝒒v(as)+hBC𝒒(s)hAC𝒒xy(s)hAB𝒒v(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}
hBC𝒒(s)hBD𝒒xy(s)hCD𝒒v(as)hBC𝒒(s)hCD𝒒xy(s)hBD𝒒v(as)hBD𝒒(s)hAB𝒒v(s)hAD𝒒xy(as)hBD𝒒(s)hAD𝒒v(s)hAB𝒒xy(as)hBD𝒒(s)hBC𝒒v(s)hCD𝒒xy(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}
+hBD𝒒(s)hCD𝒒v(s)hBC𝒒xy(as)+hBD𝒒(s)hAB𝒒xy(s)hAD𝒒v(as)+hBD𝒒(s)hAD𝒒xy(s)hAB𝒒v(as)+hBD𝒒(s)hBC𝒒xy(s)hCD𝒒v(as)hBD𝒒(s)hCD𝒒xy(s)hBC𝒒v(as)\displaystyle+h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}
hCD𝒒(s)hAC𝒒v(s)hAD𝒒xy(as)hCD𝒒(s)hAD𝒒v(s)hAC𝒒xy(as)hCD𝒒(s)hBC𝒒v(s)hBD𝒒xy(as)hCD𝒒(s)hBD𝒒v(s)hBC𝒒xy(as)+hCD𝒒(s)hAC𝒒xy(s)hAD𝒒v(as)\displaystyle-h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}
+hCD𝒒(s)hAD𝒒xy(s)hAC𝒒v(as)+hCD𝒒(s)hBC𝒒xy(s)hBD𝒒v(as)+hCD𝒒(s)hBD𝒒xy(s)hBC𝒒v(as)+hAB𝒒v(s)hAC𝒒xy(s)hBC𝒒(as)+hAB𝒒v(s)hAD𝒒xy(s)hBD𝒒(as)\displaystyle+h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}+h^{\perp{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}
+hAB𝒒v(s)hBC𝒒xy(s)hAC𝒒(as)+hAB𝒒v(s)hBD𝒒xy(s)hAD𝒒(as)hAC𝒒v(s)hAB𝒒xy(s)hBC𝒒(as)+hAC𝒒v(s)hAD𝒒xy(s)hCD𝒒(as)+hAC𝒒v(s)hBC𝒒xy(s)hAB𝒒(as)\displaystyle+h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AB}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}+h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}
+hAC𝒒v(s)hCD𝒒xy(s)hAD𝒒(as)hAD𝒒v(s)hAB𝒒xy(s)hBD𝒒(as)hAD𝒒v(s)hAC𝒒xy(s)hCD𝒒(as)+hAD𝒒v(s)hBD𝒒xy(s)hAB𝒒(as)+hAD𝒒v(s)hCD𝒒xy(s)hAC𝒒(as)\displaystyle+h^{v{\rm(s)}}_{{\rm AC}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}-h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}+h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm AD}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}
hBC𝒒v(s)hAB𝒒xy(s)hAC𝒒(as)hBC𝒒v(s)hAC𝒒xy(s)hAB𝒒(as)+hBC𝒒v(s)hBD𝒒xy(s)hCD𝒒(as)+hBC𝒒v(s)hCD𝒒xy(s)hBD𝒒(as)hBD𝒒v(s)hAB𝒒xy(s)hAD𝒒(as)\displaystyle-h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}-h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}+h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}+h^{v{\rm(s)}}_{{\rm BC}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}-h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AB}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}
hBD𝒒v(s)hAD𝒒xy(s)hAB𝒒(as)hBD𝒒v(s)hBC𝒒xy(s)hCD𝒒(as)+hBD𝒒v(s)hCD𝒒xy(s)hBC𝒒(as)hCD𝒒v(s)hAC𝒒xy(s)hAD𝒒(as)hCD𝒒v(s)hAD𝒒xy(s)hAC𝒒(as)\displaystyle-h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}-h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}+h^{v{\rm(s)}}_{{\rm BD}\bm{q}}h^{xy{\rm(s)}}_{{\rm CD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}-h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}-h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm AD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}
hCD𝒒v(s)hBC𝒒xy(s)hBD𝒒(as)hCD𝒒v(s)hBD𝒒xy(s)hBC𝒒(as)+hAB𝒒(as)hAC𝒒v(as)hBC𝒒xy(as)+hAB𝒒(as)hAD𝒒v(as)hBD𝒒xy(as)hAB𝒒(as)hBC𝒒v(as)hAC𝒒xy(as)\displaystyle-h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BC}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}-h^{v{\rm(s)}}_{{\rm CD}\bm{q}}h^{xy{\rm(s)}}_{{\rm BD}\bm{q}}h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}
hAB𝒒(as)hBD𝒒v(as)hAD𝒒xy(as)hAC𝒒(as)hAB𝒒v(as)hBC𝒒xy(as)+hAC𝒒(as)hAD𝒒v(as)hCD𝒒xy(as)+hAC𝒒(as)hBC𝒒v(as)hAB𝒒xy(as)hAC𝒒(as)hCD𝒒v(as)hAD𝒒xy(as)\displaystyle-h^{\perp{\rm(as)}}_{{\rm AB}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm AC}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}
hAD𝒒(as)hAB𝒒v(as)hBD𝒒xy(as)hAD𝒒(as)hAC𝒒v(as)hCD𝒒xy(as)+hAD𝒒(as)hBD𝒒v(as)hAB𝒒xy(as)+hAD𝒒(as)hCD𝒒v(as)hAC𝒒xy(as)+hBC𝒒(as)hAB𝒒v(as)hAC𝒒xy(as)\displaystyle-h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm AD}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}
hBC𝒒(as)hAC𝒒v(as)hAB𝒒xy(as)+hBC𝒒(as)hBD𝒒v(as)hCD𝒒xy(as)hBC𝒒(as)hCD𝒒v(as)hBD𝒒xy(as)+hBD𝒒(as)hAB𝒒v(as)hAD𝒒xy(as)hBD𝒒(as)hAD𝒒v(as)hAB𝒒xy(as)\displaystyle-h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm BC}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm AB}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AB}\bm{q}}
hBD𝒒(as)hBC𝒒v(as)hCD𝒒xy(as)+hBD𝒒(as)hCD𝒒v(as)hBC𝒒xy(as)+hCD𝒒(as)hAC𝒒v(as)hAD𝒒xy(as)hCD𝒒(as)hAD𝒒v(as)hAC𝒒xy(as)+hCD𝒒(as)hBC𝒒v(as)hBD𝒒xy(as)\displaystyle-h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm CD}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm BD}\bm{q}}h^{v{\rm(as)}}_{{\rm CD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm AC}\bm{q}}h^{xy{\rm(as)}}_{{\rm AD}\bm{q}}-h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm AD}\bm{q}}h^{xy{\rm(as)}}_{{\rm AC}\bm{q}}+h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm BC}\bm{q}}h^{xy{\rm(as)}}_{{\rm BD}\bm{q}}
hCD𝒒(as)hBD𝒒v(as)hBC𝒒xy(as))\displaystyle-h^{\perp{\rm(as)}}_{{\rm CD}\bm{q}}h^{v{\rm(as)}}_{{\rm BD}\bm{q}}h^{xy{\rm(as)}}_{{\rm BC}\bm{q}}) (113)

where H3𝒒H^{\prime}_{3\bm{q}} and H4𝒒H^{\prime}_{4\bm{q}} are obtained by replacing the superscript \perp in H2𝒒H^{\prime}_{2\bm{q}} with vv and xyxy, respectively, and multiplying 1-1.

Acknowledgements.
This research was supported by JSPS KAKENHI Grants Numbers JP19K03752, JP19H01834, JP21H01037, and by JST PRESTO (JPMJPR20L8). Parts of the numerical calculations were performed in the supercomputing systems in ISSP, the University of Tokyo.

References

  • Baibich et al. [1988] M. N. Baibich, J. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  • Ramirez [1997] A. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
  • Tokura and Tomioka [1999] Y. Tokura and Y. Tomioka, J. Magn. Magn. Mat. 200, 1 (1999).
  • Tokura [1999] Y. Tokura, ed., Colossal Magnetoresistive Oxides (Gordon & Breach Science Pub., 1999), ISBN 9789056992316.
  • Dagotto et al. [2001] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
  • Ye et al. [1999] J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tešanović, Phys. Rev. Lett. 83, 3737 (1999).
  • Ohgushi et al. [2000] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62, R6065 (2000).
  • Tatara and Kawamura [2002] G. Tatara and H. Kawamura, J. Phys. Soc. Jpn. 71, 2613 (2002).
  • Nagaosa et al. [2010] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  • Nagaosa and Tokura [2013] N. Nagaosa and Y. Tokura, Nat. Nanotech. 8, 899 (2013).
  • Lee et al. [2009] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. Lett. 102, 186601 (2009).
  • Nakatsuji et al. [2015] S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).
  • Naka et al. [2020] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome, and H. Seo, Phys. Rev. B 102, 075112 (2020).
  • Hayami and Kusunose [2021a] S. Hayami and H. Kusunose, Phys. Rev. B 103, L180407 (2021a).
  • Tsui et al. [1982] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
  • Lieb [1989] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
  • Kopnin et al. [2011] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B 83, 220503(R) (2011).
  • Leykam et al. [2018] D. Leykam, A. Andreanov, and S. Flach, Adv. Phys. X 3, 1473052 (2018).
  • Kuno et al. [2020] Y. Kuno, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. B 102, 241115(R) (2020).
  • Balents et al. [2020] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Nat. Phys. 16, 725 (2020).
  • Murakami [2007] S. Murakami, New J. Phys. 9, 356 (2007).
  • Wan et al. [2011] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
  • Burkov and Balents [2011] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
  • Young et al. [2012] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
  • Armitage et al. [2018] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
  • Ivchenko and Pikus [1978] E. Ivchenko and G. Pikus, JETP Lett 27, 604 (1978).
  • Edelstein [1990] V. M. Edelstein, Solid State Commun. 73, 233 (1990).
  • Furukawa et al. [2017] T. Furukawa, Y. Shimokawa, K. Kobayashi, and T. Itou, Nat. Commun. 8, 954 (2017).
  • Yoda et al. [2018] T. Yoda, T. Yokoyama, and S. Murakami, Nano letters 18, 916 (2018).
  • Ahn et al. [2019] K.-H. Ahn, A. Hariki, K.-W. Lee, and J. Kuneš, Phys. Rev. B 99, 184432 (2019).
  • Naka et al. [2019] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome, and H. Seo, Nat. Commun. 10, 4305 (2019).
  • Hayami et al. [2019] S. Hayami, Y. Yanagi, and H. Kusunose, J. Phys. Soc. Jpn. 88, 123702 (2019).
  • Yuan et al. [2021] L.-D. Yuan, Z. Wang, J.-W. Luo, and A. Zunger, Phys. Rev. Materials 5, 014409 (2021).
  • Hayami and Kusunose [2021b] S. Hayami and H. Kusunose, Phys. Rev. B 104, 045117 (2021b).
  • Tokura and Nagaosa [2018] Y. Tokura and N. Nagaosa, Nat. Commun. 9, 3740 (2018).
  • Sawada and Nagaosa [2005] K. Sawada and N. Nagaosa, Phys. Rev. Lett. 95, 237402 (2005).
  • Toyoda et al. [2016] S. Toyoda, N. Abe, and T. Arima, Phys. Rev. B 93, 201109(R) (2016).
  • Cheong et al. [2018] S.-W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena, npj Quantum Mater. 3, 1 (2018).
  • Foggetti et al. [2019] F. Foggetti, S.-W. Cheong, and S. Artyukhin, Phys. Rev. B 100, 180408(R) (2019).
  • Volkov et al. [1981] B. Volkov, A. Gorbatsevich, Y. V. Kopaev, and V. Tugushev, Zh. Eksp. Teor. Fiz 81, 742 (1981).
  • Kopaev [2009] Y. V. Kopaev, Physics-Uspekhi 52, 1111 (2009).
  • Spaldin et al. [2008] N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.: Condens. Matter 20, 434203 (2008).
  • Yanase [2014] Y. Yanase, J. Phys. Soc. Jpn. 83, 014703 (2014).
  • Hayami et al. [2014] S. Hayami, H. Kusunose, and Y. Motome, Phys. Rev. B 90, 024432 (2014).
  • Hayami et al. [2015] S. Hayami, H. Kusunose, and Y. Motome, J. Phys. Soc. Jpn. 84, 064717 (2015).
  • Watanabe and Yanase [2018] H. Watanabe and Y. Yanase, Phys. Rev. B 98, 220412(R) (2018).
  • Hayami et al. [2018] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose, Phys. Rev. B 98, 165110 (2018).
  • Damon and Eshbach [1960] R. Damon and J. Eshbach, J. Appl. Phys. 31, S104 (1960).
  • Damon and Eshbach [1961] R. W. Damon and J. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).
  • Melcher [1973] R. L. Melcher, Phys. Rev. Lett. 30, 125 (1973).
  • Kataoka [1987] M. Kataoka, J. Phys. Soc. Jpn. 56, 3635 (1987).
  • Grünberg et al. [1986] P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).
  • Zhang and Zinn [1987] P. X. Zhang and W. Zinn, Phys. Rev. B 35, 5219 (1987).
  • Di et al. [2015] K. Di, S. Feng, S. Piramanayagam, V. Zhang, H. S. Lim, S. C. Ng, and M. H. Kuok, Sci. Rep. 5, 1 (2015).
  • Nembach et al. [2015] H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J. Silva, Nat. Phys. 11, 825 (2015).
  • Seki et al. [2016] S. Seki, Y. Okamura, K. Kondou, K. Shibata, M. Kubota, R. Takagi, F. Kagawa, M. Kawasaki, G. Tatara, Y. Otani, et al., Phys. Rev. B 93, 235131 (2016).
  • Otálora et al. [2017] J. A. Otálora, M. Yan, H. Schultheiss, R. Hertel, and A. Kákay, Phys. Rev. B 95, 184415 (2017).
  • Sasaki et al. [2017] R. Sasaki, Y. Nii, Y. Iguchi, and Y. Onose, Phys. Rev. B 95, 020407 (2017).
  • Garst et al. [2017] M. Garst, J. Waizner, and D. Grundler, J. Phys. D 50, 293002 (2017).
  • Weber et al. [2018] T. Weber, J. Waizner, G. S. Tucker, R. Georgii, M. Kugler, A. Bauer, C. Pfleiderer, M. Garst, and P. Böni, Phys. Rev. B 97, 224403 (2018).
  • Cheon et al. [2018] S. Cheon, H.-W. Lee, and S.-W. Cheong, Phys. Rev. B 98, 184405 (2018).
  • Sato and Matan [2019] T. J. Sato and K. Matan, J. Phys. Soc. Jpn. 88, 081007 (2019).
  • Nomura et al. [2019] T. Nomura, X.-X. Zhang, S. Zherlitsyn, J. Wosnitza, Y. Tokura, N. Nagaosa, and S. Seki, Phys. Rev. Lett. 122, 145901 (2019).
  • Lucassen et al. [2020] J. Lucassen, C. F. Schippers, M. A. Verheijen, P. Fritsch, E. J. Geluk, B. Barcones, R. A. Duine, S. Wurmehl, H. J. M. Swagten, B. Koopmans, et al., Phys. Rev. B 101, 064432 (2020).
  • dos Santos et al. [2020] F. J. dos Santos, M. dos Santos Dias, and S. Lounis, Phys. Rev. B 102, 104401 (2020).
  • Gallardo et al. [2019] R. Gallardo, T. Schneider, A. Chaurasiya, A. Oelschlägel, S. Arekapudi, A. Roldán-Molina, R. Hübner, K. Lenz, A. Barman, J. Fassbender, et al., Physical Review Applied 12, 034012 (2019).
  • Song et al. [2021] W. Song, X. Wang, C. Jia, X. Wang, C. Jiang, D. Xue, and G. Chai, Phys. Rev. B 104, 014402 (2021).
  • Zhang et al. [2015] V. L. Zhang, K. Di, H. S. Lim, S. C. Ng, M. H. Kuok, J. Yu, J. Yoon, X. Qiu, and H. Yang, Applied Physics Letters 107, 022402 (2015).
  • Mruczkiewicz et al. [2017] M. Mruczkiewicz, P. Graczyk, P. Lupo, A. Adeyeye, G. Gubbiotti, and M. Krawczyk, Physical Review B 96, 104411 (2017).
  • Hayami et al. [2016] S. Hayami, H. Kusunose, and Y. Motome, J. Phys. Soc. Jpn. 85, 053705 (2016).
  • Kawano et al. [2019] M. Kawano, Y. Onose, and C. Hotta, Commun. Phys. 2, 27 (2019).
  • Matsumoto and Hayami [2021] T. Matsumoto and S. Hayami, Phys. Rev. B 104, 134420 (2021).
  • Dzyaloshinsky [1958] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
  • Moriya [1960] T. Moriya, Phys. Rev. 120, 91 (1960).
  • Miyahara and Furukawa [2012] S. Miyahara and N. Furukawa, J. Phys. Soc. Jpn. 81, 023712 (2012).
  • Miyahara and Furukawa [2014] S. Miyahara and N. Furukawa, Phys. Rev. B 89, 195145 (2014).
  • Maksimov et al. [2019] P. A. Maksimov, Z. Zhu, S. R. White, and A. L. Chernyshev, Phys. Rev. X 9, 021017 (2019).
  • Matsumoto and Hayami [2020] T. Matsumoto and S. Hayami, Phys. Rev. B 101, 224419 (2020).
  • Mochizuki [2015] M. Mochizuki, Phys. Rev. Lett. 114, 197203 (2015).
  • Proskurin et al. [2018] I. Proskurin, A. S. Ovchinnikov, J.-i. Kishine, and R. L. Stamps, Phys. Rev. B 98, 134422 (2018).
  • Okuma [2019] N. Okuma, Phys. Rev. B 99, 094401 (2019).
  • Takashima et al. [2018] R. Takashima, Y. Shiomi, and Y. Motome, Phys. Rev. B 98, 020401(R) (2018).
  • Hayami and Kusunose [2018] S. Hayami and H. Kusunose, J. Phys. Soc. Jpn. 87, 033709 (2018).
  • Kusunose et al. [2020] H. Kusunose, R. Oiwa, and S. Hayami, J. Phys. Soc. Jpn. 89, 104704 (2020).
  • Yatsushiro et al. [2021] M. Yatsushiro, H. Kusunose, and S. Hayami, Phys. Rev. B 104, 054412 (2021).
  • Hayami et al. [2020a] S. Hayami, Y. Yanagi, and H. Kusunose, Phys. Rev. B 102, 144441 (2020a).
  • Hayami et al. [2020b] S. Hayami, Y. Yanagi, and H. Kusunose, Phys. Rev. B 101, 220403(R) (2020b).
  • Oiwa and Kusunose [2021] R. Oiwa and H. Kusunose, arXiv:2106.15795 (2021).
  • Gallego et al. [2016] S. V. Gallego, J. M. Perez-Mato, L. Elcoro, E. S. Tasci, R. M. Hanson, K. Momma, M. I. Aroyo, and G. Madariaga, J. Appl. Crystallogr. 49, 1750 (2016).
  • Suzuki et al. [2019] M.-T. Suzuki, T. Nomoto, R. Arita, Y. Yanagi, S. Hayami, and H. Kusunose, Phys. Rev. B 99, 174407 (2019).
  • Gitgeatpong et al. [2015] G. Gitgeatpong, Y. Zhao, M. Avdeev, R. O. Piltz, T. J. Sato, and K. Matan, Phys. Rev. B 92, 024423 (2015).
  • Gitgeatpong et al. [2017a] G. Gitgeatpong, Y. Zhao, P. Piyawongwatthana, Y. Qiu, L. W. Harriger, N. P. Butch, T. J. Sato, and K. Matan, Phys. Rev. Lett. 119, 047201 (2017a).
  • Gitgeatpong et al. [2017b] G. Gitgeatpong, M. Suewattana, S. Zhang, A. Miyake, M. Tokunaga, P. Chanlert, N. Kurita, H. Tanaka, T. J. Sato, Y. Zhao, et al., Phys. Rev. B 95, 245119 (2017b).
  • Piyawongwatthana et al. [2021] P. Piyawongwatthana, D. Okuyama, K. Nawa, K. Matan, and T. J. Sato, J. Phys. Soc. Jpn. 90, 025003 (2021).