This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France 22institutetext: Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, CNRS, UPS, CNES, 14 Av. Edouard Belin, 31400 Toulouse, France 33institutetext: Dipartimento di Fisica, Università degli Studi di Torino, Via P. Giuria 1, 10125 Torino, Italy 44institutetext: INFN-Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy 55institutetext: INAF-Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy 66institutetext: Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 77institutetext: Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain 88institutetext: Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Campus UPC, 08860 Castelldefels, Barcelona, Spain 99institutetext: Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, 91405, Orsay, France 1010institutetext: School of Mathematics and Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK 1111institutetext: Institut für Theoretische Physik, University of Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany 1212institutetext: INAF-Osservatorio Astronomico di Brera, Via Brera 28, 20122 Milano, Italy 1313institutetext: INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy 1414institutetext: IFPU, Institute for Fundamental Physics of the Universe, via Beirut 2, 34151 Trieste, Italy 1515institutetext: INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34143 Trieste, Italy 1616institutetext: INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste TS, Italy 1717institutetext: SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste TS, Italy 1818institutetext: Dipartimento di Fisica e Astronomia, Università di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy 1919institutetext: INFN-Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy 2020institutetext: Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy 2121institutetext: INFN-Sezione di Genova, Via Dodecaneso 33, 16146, Genova, Italy 2222institutetext: Department of Physics ”E. Pancini”, University Federico II, Via Cinthia 6, 80126, Napoli, Italy 2323institutetext: INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy 2424institutetext: INFN section of Naples, Via Cinthia 6, 80126, Napoli, Italy 2525institutetext: Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal 2626institutetext: Faculdade de Ciências da Universidade do Porto, Rua do Campo de Alegre, 4150-007 Porto, Portugal 2727institutetext: Aix-Marseille Université, CNRS, CNES, LAM, Marseille, France 2828institutetext: European Space Agency/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 2929institutetext: Institute Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 3030institutetext: INAF-IASF Milano, Via Alfonso Corti 12, 20133 Milano, Italy 3131institutetext: INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monteporzio Catone, Italy 3232institutetext: INFN-Sezione di Roma, Piazzale Aldo Moro, 2 - c/o Dipartimento di Fisica, Edificio G. Marconi, 00185 Roma, Italy 3333institutetext: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain 3434institutetext: Port d’Informació Científica, Campus UAB, C. Albareda s/n, 08193 Bellaterra (Barcelona), Spain 3535institutetext: Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, 52056 Aachen, Germany 3636institutetext: Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK 3737institutetext: Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3838institutetext: Dipartimento di Fisica e Astronomia ”Augusto Righi” - Alma Mater Studiorum Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy 3939institutetext: Instituto de Astrofísica de Canarias, Vía Láctea, 38205 La Laguna, Tenerife, Spain 4040institutetext: Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 4141institutetext: Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 4242institutetext: European Space Agency/ESRIN, Largo Galileo Galilei 1, 00044 Frascati, Roma, Italy 4343institutetext: ESAC/ESA, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spain 4444institutetext: Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, F-69100, France 4545institutetext: Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain 4646institutetext: Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain 4747institutetext: UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne, France 4848institutetext: Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK 4949institutetext: Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, PT1749-016 Lisboa, Portugal 5050institutetext: Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 5151institutetext: Department of Astronomy, University of Geneva, ch. d’Ecogia 16, 1290 Versoix, Switzerland 5252institutetext: INAF-Istituto di Astrofisica e Planetologia Spaziali, via del Fosso del Cavaliere, 100, 00100 Roma, Italy 5353institutetext: INFN-Padova, Via Marzolo 8, 35131 Padova, Italy 5454institutetext: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191, Gif-sur-Yvette, France 5555institutetext: Space Science Data Center, Italian Space Agency, via del Politecnico snc, 00133 Roma, Italy 5656institutetext: INFN-Bologna, Via Irnerio 46, 40126 Bologna, Italy 5757institutetext: School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK 5858institutetext: Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching, Germany 5959institutetext: INAF-Osservatorio Astronomico di Padova, Via dell’Osservatorio 5, 35122 Padova, Italy 6060institutetext: Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, 81679 München, Germany 6161institutetext: Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, 0315 Oslo, Norway 6262institutetext: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA 6363institutetext: Felix Hormuth Engineering, Goethestr. 17, 69181 Leimen, Germany 6464institutetext: Technical University of Denmark, Elektrovej 327, 2800 Kgs. Lyngby, Denmark 6565institutetext: Cosmic Dawn Center (DAWN), Denmark 6666institutetext: Institut d’Astrophysique de Paris, UMR 7095, CNRS, and Sorbonne Université, 98 bis boulevard Arago, 75014 Paris, France 6767institutetext: Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 6868institutetext: NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6969institutetext: Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, 00014 University of Helsinki, Finland 7070institutetext: Université de Genève, Département de Physique Théorique and Centre for Astroparticle Physics, 24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland 7171institutetext: Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland 7272institutetext: Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland 7373institutetext: Laboratoire Univers et Théorie, Observatoire de Paris, Université PSL, Université Paris Cité, CNRS, 92190 Meudon, France 7474institutetext: SKA Observatory, Jodrell Bank, Lower Withington, Macclesfield, Cheshire SK11 9FT, UK 7575institutetext: Centre de Calcul de l’IN2P3/CNRS, 21 avenue Pierre de Coubertin 69627 Villeurbanne Cedex, France 7676institutetext: Dipartimento di Fisica ”Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy 7777institutetext: INFN-Sezione di Milano, Via Celoria 16, 20133 Milano, Italy 7878institutetext: University of Applied Sciences and Arts of Northwestern Switzerland, School of Engineering, 5210 Windisch, Switzerland 7979institutetext: Universität Bonn, Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany 8080institutetext: Dipartimento di Fisica e Astronomia ”Augusto Righi” - Alma Mater Studiorum Università di Bologna, via Piero Gobetti 93/2, 40129 Bologna, Italy 8181institutetext: Department of Physics, Institute for Computational Cosmology, Durham University, South Road, Durham, DH1 3LE, UK 8282institutetext: Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France 8383institutetext: Université Paris Cité, CNRS, Astroparticule et Cosmologie, 75013 Paris, France 8484institutetext: CNRS-UCB International Research Laboratory, Centre Pierre Binetruy, IRL2007, CPB-IN2P3, Berkeley, USA 8585institutetext: Institut d’Astrophysique de Paris, 98bis Boulevard Arago, 75014, Paris, France 8686institutetext: Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland 8787institutetext: Aurora Technology for European Space Agency (ESA), Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain 8888institutetext: Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain 8989institutetext: DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 155, 2200 Copenhagen, Denmark 9090institutetext: Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 9191institutetext: Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 9292institutetext: Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada 9393institutetext: Centre National d’Etudes Spatiales – Centre spatial de Toulouse, 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, France 9494institutetext: Institute of Space Science, Str. Atomistilor, nr. 409 Măgurele, Ilfov, 077125, Romania 9595institutetext: Consejo Superior de Investigaciones Cientificas, Calle Serrano 117, 28006 Madrid, Spain 9696institutetext: Universidad de La Laguna, Departamento de Astrofísica, 38206 La Laguna, Tenerife, Spain 9797institutetext: Université St Joseph; Faculty of Sciences, Beirut, Lebanon 9898institutetext: Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago, Chile 9999institutetext: Universität Innsbruck, Institut für Astro- und Teilchenphysik, Technikerstr. 25/8, 6020 Innsbruck, Austria 100100institutetext: Satlantis, University Science Park, Sede Bld 48940, Leioa-Bilbao, Spain 101101institutetext: Dipartimento di Fisica e Astronomia ”G. Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova, Italy 102102institutetext: Department of Physics, Royal Holloway, University of London, TW20 0EX, UK 103103institutetext: Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal 104104institutetext: Cosmic Dawn Center (DAWN) 105105institutetext: Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark 106106institutetext: Universidad Politécnica de Cartagena, Departamento de Electrónica y Tecnología de Computadoras, Plaza del Hospital 1, 30202 Cartagena, Spain 107107institutetext: Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands 108108institutetext: Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA 109109institutetext: INAF, Istituto di Radioastronomia, Via Piero Gobetti 101, 40129 Bologna, Italy 110110institutetext: Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA), Loc. Lignan 39, I-11020, Nus (Aosta Valley), Italy 111111institutetext: Department of Physics, Oxford University, Keble Road, Oxford OX1 3RH, UK 112112institutetext: ICL, Junia, Université Catholique de Lille, LITL, 59000 Lille, France 113113institutetext: ICSC - Centro Nazionale di Ricerca in High Performance Computing, Big Data e Quantum Computing, Via Magnanelli 2, Bologna, Italy 114114institutetext: Instituto de Física Teórica UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain 115115institutetext: CERCA/ISO, Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 116116institutetext: Technical University of Munich, TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, 85748 Garching, Germany 117117institutetext: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany 118118institutetext: Departamento de Física Fundamental. Universidad de Salamanca. Plaza de la Merced s/n. 37008 Salamanca, Spain 119119institutetext: Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Giuseppe Saragat 1, 44122 Ferrara, Italy 120120institutetext: Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Via Giuseppe Saragat 1, 44122 Ferrara, Italy 121121institutetext: Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, 67000 Strasbourg, France 122122institutetext: Center for Data-Driven Discovery, Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan 123123institutetext: Ludwig-Maximilians-University, Schellingstrasse 4, 80799 Munich, Germany 124124institutetext: Max-Planck-Institut für Physik, Boltzmannstr. 8, 85748 Garching, Germany 125125institutetext: Dipartimento di Fisica - Sezione di Astronomia, Università di Trieste, Via Tiepolo 11, 34131 Trieste, Italy 126126institutetext: California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA 127127institutetext: Department of Physics & Astronomy, University of California Irvine, Irvine CA 92697, USA 128128institutetext: Department of Mathematics and Physics E. De Giorgi, University of Salento, Via per Arnesano, CP-I93, 73100, Lecce, Italy 129129institutetext: INFN, Sezione di Lecce, Via per Arnesano, CP-193, 73100, Lecce, Italy 130130institutetext: INAF-Sezione di Lecce, c/o Dipartimento Matematica e Fisica, Via per Arnesano, 73100, Lecce, Italy 131131institutetext: Departamento Física Aplicada, Universidad Politécnica de Cartagena, Campus Muralla del Mar, 30202 Cartagena, Murcia, Spain 132132institutetext: Instituto de Física de Cantabria, Edificio Juan Jordá, Avenida de los Castros, 39005 Santander, Spain 133133institutetext: Department of Computer Science, Aalto University, PO Box 15400, Espoo, FI-00 076, Finland 134134institutetext: Instituto de Astrofísica de Canarias, c/ Via Lactea s/n, La Laguna 38200, Spain. Departamento de Astrofísica de la Universidad de La Laguna, Avda. Francisco Sanchez, La Laguna, 38200, Spain 135135institutetext: Caltech/IPAC, 1200 E. California Blvd., Pasadena, CA 91125, USA 136136institutetext: Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute (AIRUB), German Centre for Cosmological Lensing (GCCL), 44780 Bochum, Germany 137137institutetext: Department of Physics and Astronomy, Vesilinnantie 5, 20014 University of Turku, Finland 138138institutetext: Serco for European Space Agency (ESA), Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain 139139institutetext: ARC Centre of Excellence for Dark Matter Particle Physics, Melbourne, Australia 140140institutetext: Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 141141institutetext: Department of Physics and Astronomy, University of the Western Cape, Bellville, Cape Town, 7535, South Africa 142142institutetext: Department of Physics, Centre for Extragalactic Astronomy, Durham University, South Road, Durham, DH1 3LE, UK 143143institutetext: IRFU, CEA, Université Paris-Saclay 91191 Gif-sur-Yvette Cedex, France 144144institutetext: Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, Stockholm, SE-106 91, Sweden 145145institutetext: Astrophysics Group, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK 146146institutetext: INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy 147147institutetext: Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy 148148institutetext: Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 149149institutetext: HE Space for European Space Agency (ESA), Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain 150150institutetext: Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA 151151institutetext: Department of Astrophysics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 152152institutetext: INAF-Osservatorio Astronomico di Brera, Via Brera 28, 20122 Milano, Italy, and INFN-Sezione di Genova, Via Dodecaneso 33, 16146, Genova, Italy 153153institutetext: Theoretical astrophysics, Department of Physics and Astronomy, Uppsala University, Box 515, 751 20 Uppsala, Sweden 154154institutetext: Mathematical Institute, University of Leiden, Einsteinweg 55, 2333 CA Leiden, The Netherlands 155155institutetext: Leiden Observatory, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands 156156institutetext: Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 157157institutetext: Space physics and astronomy research unit, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland 158158institutetext: Institut de Physique Théorique, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette Cedex, France 159159institutetext: Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, 10010, New York, NY, USA

Euclid preparation.

BAO analysis of photometric galaxy clustering in configuration space
Euclid Collaboration: V. Duret vincent.duret@etu.univ-amu.fr Euclid preparation.Euclid preparation.    S. Escoffier Euclid preparation.Euclid preparation.    W. Gillard Euclid preparation.Euclid preparation.    I. Tutusaus Euclid preparation.Euclid preparation.    S. Camera Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    N. Tessore Euclid preparation.Euclid preparation.    F. J. Castander Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    N. Aghanim Euclid preparation.Euclid preparation.    A. Amara Euclid preparation.Euclid preparation.    L. Amendola Euclid preparation.Euclid preparation.    S. Andreon Euclid preparation.Euclid preparation.    N. Auricchio Euclid preparation.Euclid preparation.    C. Baccigalupi Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Baldi Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Bardelli Euclid preparation.Euclid preparation.    P. Battaglia Euclid preparation.Euclid preparation.    A. Biviano Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Bonino Euclid preparation.Euclid preparation.    E. Branchini Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Brescia Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Brinchmann Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Caillat Euclid preparation.Euclid preparation.    G. Cañas-Herrera Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    V. Capobianco Euclid preparation.Euclid preparation.    C. Carbone Euclid preparation.Euclid preparation.    V. F. Cardone Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Carretero Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Casas Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Castellano Euclid preparation.Euclid preparation.    G. Castignani Euclid preparation.Euclid preparation.    S. Cavuoti Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    K. C. Chambers Euclid preparation.Euclid preparation.    A. Cimatti Euclid preparation.Euclid preparation.    C. Colodro-Conde Euclid preparation.Euclid preparation.    G. Congedo Euclid preparation.Euclid preparation.    C. J. Conselice Euclid preparation.Euclid preparation.    L. Conversi Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    Y. Copin Euclid preparation.Euclid preparation.    F. Courbin Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    H. M. Courtois Euclid preparation.Euclid preparation.    M. Cropper Euclid preparation.Euclid preparation.    A. Da Silva Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    H. Degaudenzi Euclid preparation.Euclid preparation.    S. de la Torre Euclid preparation.Euclid preparation.    G. De Lucia Euclid preparation.Euclid preparation.    A. M. Di Giorgio Euclid preparation.Euclid preparation.    H. Dole Euclid preparation.Euclid preparation.    F. Dubath Euclid preparation.Euclid preparation.    X. Dupac Euclid preparation.Euclid preparation.    S. Dusini Euclid preparation.Euclid preparation.    A. Ealet Euclid preparation.Euclid preparation.    M. Farina Euclid preparation.Euclid preparation.    R. Farinelli Euclid preparation.Euclid preparation.    S. Farrens Euclid preparation.Euclid preparation.    F. Faustini Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Ferriol Euclid preparation.Euclid preparation.    F. Finelli Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Fotopoulou Euclid preparation.Euclid preparation.    N. Fourmanoit Euclid preparation.Euclid preparation.    M. Frailis Euclid preparation.Euclid preparation.    E. Franceschi Euclid preparation.Euclid preparation.    M. Fumana Euclid preparation.Euclid preparation.    S. Galeotta Euclid preparation.Euclid preparation.    B. Gillis Euclid preparation.Euclid preparation.    C. Giocoli Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Gracia-Carpio Euclid preparation.Euclid preparation.    A. Grazian Euclid preparation.Euclid preparation.    F. Grupp Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. V. H. Haugan Euclid preparation.Euclid preparation.    W. Holmes Euclid preparation.Euclid preparation.    F. Hormuth Euclid preparation.Euclid preparation.    A. Hornstrup Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    P. Hudelot Euclid preparation.Euclid preparation.    K. Jahnke Euclid preparation.Euclid preparation.    M. Jhabvala Euclid preparation.Euclid preparation.    B. Joachimi Euclid preparation.Euclid preparation.    E. Keihänen Euclid preparation.Euclid preparation.    S. Kermiche Euclid preparation.Euclid preparation.    A. Kiessling Euclid preparation.Euclid preparation.    M. Kilbinger Euclid preparation.Euclid preparation.    B. Kubik Euclid preparation.Euclid preparation.    M. Kunz Euclid preparation.Euclid preparation.    H. Kurki-Suonio Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    O. Lahav Euclid preparation.Euclid preparation.    A. M. C. Le Brun Euclid preparation.Euclid preparation.    S. Ligori Euclid preparation.Euclid preparation.    P. B. Lilje Euclid preparation.Euclid preparation.    V. Lindholm Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    I. Lloro Euclid preparation.Euclid preparation.    G. Mainetti Euclid preparation.Euclid preparation.    D. Maino Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    E. Maiorano Euclid preparation.Euclid preparation.    O. Mansutti Euclid preparation.Euclid preparation.    S. Marcin Euclid preparation.Euclid preparation.    O. Marggraf Euclid preparation.Euclid preparation.    K. Markovic Euclid preparation.Euclid preparation.    M. Martinelli Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    N. Martinet Euclid preparation.Euclid preparation.    F. Marulli Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    R. Massey Euclid preparation.Euclid preparation.    S. Maurogordato Euclid preparation.Euclid preparation.    E. Medinaceli Euclid preparation.Euclid preparation.    S. Mei Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Melchior Euclid preparation.Euclid preparation.    Y. Mellier Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Meneghetti Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    E. Merlin Euclid preparation.Euclid preparation.    G. Meylan Euclid preparation.Euclid preparation.    A. Mora Euclid preparation.Euclid preparation.    M. Moresco Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    B. Morin Euclid preparation.Euclid preparation.    L. Moscardini Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    E. Munari Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    R. Nakajima Euclid preparation.Euclid preparation.    C. Neissner Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    R. C. Nichol Euclid preparation.Euclid preparation.    S.-M. Niemi Euclid preparation.Euclid preparation.    C. Padilla Euclid preparation.Euclid preparation.    S. Paltani Euclid preparation.Euclid preparation.    F. Pasian Euclid preparation.Euclid preparation.    K. Pedersen Euclid preparation.Euclid preparation.    W. J. Percival Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    V. Pettorino Euclid preparation.Euclid preparation.    S. Pires Euclid preparation.Euclid preparation.    G. Polenta Euclid preparation.Euclid preparation.    M. Poncet Euclid preparation.Euclid preparation.    L. A. Popa Euclid preparation.Euclid preparation.    L. Pozzetti Euclid preparation.Euclid preparation.    F. Raison Euclid preparation.Euclid preparation.    R. Rebolo Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Rhodes Euclid preparation.Euclid preparation.    G. Riccio Euclid preparation.Euclid preparation.    E. Romelli Euclid preparation.Euclid preparation.    M. Roncarelli Euclid preparation.Euclid preparation.    R. Saglia Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    Z. Sakr Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Sapone Euclid preparation.Euclid preparation.    B. Sartoris Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. A. Schewtschenko Euclid preparation.Euclid preparation.    P. Schneider Euclid preparation.Euclid preparation.    T. Schrabback Euclid preparation.Euclid preparation.    A. Secroun Euclid preparation.Euclid preparation.    E. Sefusatti Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Seidel Euclid preparation.Euclid preparation.    S. Serrano Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    P. Simon Euclid preparation.Euclid preparation.    C. Sirignano Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Sirri Euclid preparation.Euclid preparation.    A. Spurio Mancini Euclid preparation.Euclid preparation.    L. Stanco Euclid preparation.Euclid preparation.    J.-L. Starck Euclid preparation.Euclid preparation.    J. Steinwagner Euclid preparation.Euclid preparation.    P. Tallada-Crespí Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Tavagnacco Euclid preparation.Euclid preparation.    A. N. Taylor Euclid preparation.Euclid preparation.    I. Tereno Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Toft Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    R. Toledo-Moreo Euclid preparation.Euclid preparation.    F. Torradeflot Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Valiviita Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    T. Vassallo Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Verdoes Kleijn Euclid preparation.Euclid preparation.    A. Veropalumbo Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    Y. Wang Euclid preparation.Euclid preparation.    J. Weller Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Zamorani Euclid preparation.Euclid preparation.    F. M. Zerbi Euclid preparation.Euclid preparation.    E. Zucca Euclid preparation.Euclid preparation.    M. Bolzonella Euclid preparation.Euclid preparation.    C. Burigana Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Calabrese Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Di Ferdinando Euclid preparation.Euclid preparation.    J. A. Escartin Vigo Euclid preparation.Euclid preparation.    L. Gabarra Euclid preparation.Euclid preparation.    S. Matthew Euclid preparation.Euclid preparation.    N. Mauri Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Pezzotta Euclid preparation.Euclid preparation.    M. Pöntinen Euclid preparation.Euclid preparation.    C. Porciani Euclid preparation.Euclid preparation.    V. Scottez Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Tenti Euclid preparation.Euclid preparation.    M. Viel Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Wiesmann Euclid preparation.Euclid preparation.    Y. Akrami Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    V. Allevato Euclid preparation.Euclid preparation.    I. T. Andika Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Archidiacono Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    F. Atrio-Barandela Euclid preparation.Euclid preparation.    A. Balaguera-Antolinez Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Ballardini Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Bertacca Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Bethermin Euclid preparation.Euclid preparation.    A. Blanchard Euclid preparation.Euclid preparation.    L. Blot Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    H. Böhringer Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Borgani Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. L. Brown Euclid preparation.Euclid preparation.    S. Bruton Euclid preparation.Euclid preparation.    R. Cabanac Euclid preparation.Euclid preparation.    A. Calabro Euclid preparation.Euclid preparation.    B. Camacho Quevedo Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Cappi Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    F. Caro Euclid preparation.Euclid preparation.    C. S. Carvalho Euclid preparation.Euclid preparation.    T. Castro Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    F. Cogato Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    S. Contarini Euclid preparation.Euclid preparation.    T. Contini Euclid preparation.Euclid preparation.    A. R. Cooray Euclid preparation.Euclid preparation.    S. Davini Euclid preparation.Euclid preparation.    F. De Paolis Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Desprez Euclid preparation.Euclid preparation.    A. Díaz-Sánchez Euclid preparation.Euclid preparation.    S. Di Domizio Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. M. Diego Euclid preparation.Euclid preparation.    A. G. Ferrari Euclid preparation.Euclid preparation.    P. G. Ferreira Euclid preparation.Euclid preparation.    A. Finoguenov Euclid preparation.Euclid preparation.    K. Ganga Euclid preparation.Euclid preparation.    J. García-Bellido Euclid preparation.Euclid preparation.    T. Gasparetto Euclid preparation.Euclid preparation.    E. Gaztanaga Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    F. Giacomini Euclid preparation.Euclid preparation.    F. Gianotti Euclid preparation.Euclid preparation.    G. Gozaliasl Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Gregorio Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Guidi Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    C. M. Gutierrez Euclid preparation.Euclid preparation.    A. Hall Euclid preparation.Euclid preparation.    S. Hemmati Euclid preparation.Euclid preparation.    H. Hildebrandt Euclid preparation.Euclid preparation.    J. Hjorth Euclid preparation.Euclid preparation.    J. J. E. Kajava Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    Y. Kang Euclid preparation.Euclid preparation.    V. Kansal Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Karagiannis Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    C. C. Kirkpatrick Euclid preparation.Euclid preparation.    S. Kruk Euclid preparation.Euclid preparation.    M. Lattanzi Euclid preparation.Euclid preparation.    M. Lembo Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Leroy Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Lesgourgues Euclid preparation.Euclid preparation.    T. I. Liaudat Euclid preparation.Euclid preparation.    S. J. Liu Euclid preparation.Euclid preparation.    A. Loureiro Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    G. Maggio Euclid preparation.Euclid preparation.    M. Magliocchetti Euclid preparation.Euclid preparation.    F. Mannucci Euclid preparation.Euclid preparation.    R. Maoli Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    J. Martín-Fleitas Euclid preparation.Euclid preparation.    C. J. A. P. Martins Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    L. Maurin Euclid preparation.Euclid preparation.    R. B. Metcalf Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Miluzio Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    P. Monaco Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    C. Moretti Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    C. Murray Euclid preparation.Euclid preparation.    S. Nadathur Euclid preparation.Euclid preparation.    K. Naidoo Euclid preparation.Euclid preparation.    A. Navarro-Alsina Euclid preparation.Euclid preparation.    S. Nesseris Euclid preparation.Euclid preparation.    K. Paterson Euclid preparation.Euclid preparation.    A. Pisani Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    D. Potter Euclid preparation.Euclid preparation.    I. Risso Euclid preparation.Euclid preparation.    P.-F. Rocci Euclid preparation.Euclid preparation.    M. Sahlén Euclid preparation.Euclid preparation.    E. Sarpa Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Schneider Euclid preparation.Euclid preparation.    D. Sciotti Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    E. Sellentin Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Sereno Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Silvestri Euclid preparation.Euclid preparation.    L. C. Smith Euclid preparation.Euclid preparation.    K. Tanidis Euclid preparation.Euclid preparation.    C. Tao Euclid preparation.Euclid preparation.    G. Testera Euclid preparation.Euclid preparation.    R. Teyssier Euclid preparation.Euclid preparation.    S. Tosi Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    A. Troja Euclid preparation.Euclid preparation.Euclid preparation.Euclid preparation.    M. Tucci Euclid preparation.Euclid preparation.    C. Valieri Euclid preparation.Euclid preparation.    A. Venhola Euclid preparation.Euclid preparation.    D. Vergani Euclid preparation.Euclid preparation.    F. Vernizzi Euclid preparation.Euclid preparation.    G. Verza Euclid preparation.Euclid preparation.    P. Vielzeuf Euclid preparation.Euclid preparation.    N. A. Walton Euclid preparation.Euclid preparation.

With about 1.5 billion galaxies expected to be observed, the very large number of objects in the Euclid photometric survey will allow for precise studies of galaxy clustering from a single survey, over a large range of redshifts 0.2<z<2.50.2<z<2.5. In this work, we use photometric redshifts (zphz_{\rm ph}) to extract the baryon acoustic oscillation signal (BAO) from the Flagship galaxy mock catalogue with a tomographic approach to constrain the evolution of the Universe and infer its cosmological parameters. We measure the two-point angular correlation function in 13 redshift bins. A template-fitting approach is applied to the measurement to extract the shift of the BAO peak through the transverse Alcock–Paczynski parameter α\alpha. A joint analysis of all redshift bins is performed to constrain α\alpha at the effective redshift zeff=0.77z_{\mathrm{eff}}=0.77 with Markov Chain Monte-Carlo and profile likelihood techniques. We also extract one αi\alpha_{i} parameter per redshift bin to quantify its evolution as a function of time. From these 13 αi\alpha_{i}, which are directly proportional to the ratio DA/rs,dragD_{\mathrm{A}}/\,r_{\mathrm{s,\,drag}}, we constrain the reduced Hubble constant hh, the baryon density parameter Ωb\Omega_{\rm b}, and the cold dark matter density parameter Ωcdm\Omega_{\rm cdm}. From the joint analysis, we constrain α(zeff=0.77)=1.00110.0079+0.0078\alpha(z_{\mathrm{eff}}=0.77)=1.0011^{+0.0078}_{-0.0079} at the 68% confidence level, which represents a three-fold improvement over current constraints from the Dark Energy Survey (uncertainty of ± 0.023\pm\,0.023 at zeff=0.85z_{\mathrm{eff}}=0.85 with the same observable). As expected, the constraining power in the analysis of each redshift bin is lower, with an uncertainty ranging from ± 0.13\pm\,0.13 to ± 0.024\pm\,0.024. From these results, we constrain hh at 0.45%, Ωb\Omega_{\rm b} at 0.91%, and Ωcdm\Omega_{\rm cdm} at 7.7%. We quantify the influence of analysis choices like the template, scale cuts, redshift bins, and systematic effects like redshift-space distortions over our constraints both at the level of the extracted αi\alpha_{i} parameters and at the level of cosmological inference.

Key Words.:
Cosmology: theory – large-scale structure of the Universe – cosmological parameters

1 Introduction

As a stage-IV survey, Euclid (Euclid Collaboration: Mellier et al. 2024) was primarily designed to constrain dark energy with two main probes: weak lensing and spectroscopic galaxy clustering. The former will make use of galaxy shapes observed with the Visible Camera (VIS, Euclid Collaboration: Cropper et al. 2024) and their photometric redshifts obtained with the photometer of the Near-Infrared Spectrometer and Photometer (NISP, Euclid Collaboration: Jahnke et al. 2024) together with ground-based observations. The latter will use the precise measurements of galaxy redshifts obtained with the spectrometer of the NISP. Euclid will provide a photometric sample of about 1.5 billion galaxies which can be used not only for weak lensing, but also for many other probes like photometric galaxy clustering. The combination of weak gravitational lensing with photometric galaxy clustering will provide strong cosmological constraints (Euclid Collaboration: Blanchard et al. 2020; Tutusaus et al. 2020), which motivates considering this probe in addition to the standard spectroscopic galaxy clustering.

The clustering of galaxies puts constraints on the expansion history of the Universe. One of its most constraining features is the size of the baryon acoustic oscillations (BAO). The BAO scale is a characteristic scale of the Universe which corresponds to the imprint left in the distribution of galaxies by primordial oscillations of the baryons when they were still coupled to photons. These oscillations were created by the interplay between the radiation pressure force supported by photons and the gravitational pull of dark matter overdensities. When baryons and photons decoupled at the drag epoch, oscillations stopped and froze at a scale known as the BAO scale, fixed in comoving coordinates. It can be observed as a peak in the correlation function of the galaxy density field or a succession of peaks in its power spectrum. While it is fixed in comoving coordinates, the apparent size of the BAO scale increases as the Universe expands so that constraining this scale at different redshifts provides information on the expansion rate of the Universe.

The BAO signal is traditionally constrained in 3D with spectroscopic redshifts but given the current accuracy and precision of photometric redshifts, useful information from the BAO signal can also be extracted using photometric samples. The first observations of the BAO signal in galaxy surveys were performed with the Sloan Digital Sky Survey (Eisenstein et al. 2005) and the 2-degree Field Galaxy Redshift Survey (Percival et al. 2001; Cole et al. 2005) and recently reached new levels of precision with the 0.52% constraints on BAO obtained by the Dark Energy Spectroscopic Instrument first year of observations (DESI Collaboration: Adame et al. 2024). While spectroscopic redshifts measurements provide a very good accuracy, their measurements are too slow to obtain the redshift of all galaxies detected in the photometric sample. Euclid uses slitless spectroscopy, allowing the measurement of multiple spectra in a single exposure which mitigates the speed issue. However, the mission optimisation resulted in Euclid being capable of reliably detecting emission lines down to a flux limit of 2×1016ergs1cm22\times 10^{-16}\;\mathrm{erg}\,\mathrm{s}^{-1}\,\mathrm{cm}^{-2} in its wide survey (Euclid Collaboration: Mellier et al. 2024). On the contrary, photometric redshifts are obtained from multi-band wide filters instead of spectra so they can be measured for all the galaxies of the photometric sample. Despite their lower accuracy, they are now available for such a large number of galaxies that they can be used to put significant constraints on cosmology. One recent example is the latest results from the Dark Energy Survey (DES) which constrain the BAO shift parameter α\alpha with an uncertainty of 2.1% at zeff=0.85z_{\mathrm{eff}}=0.85  (Abbott et al. 2024, DES Y6 from now on) with a sample of almost 16 million galaxies selected among over 300 million observed. To do so, a tomographic approach is typically used, dividing the full galaxy sample into redshift bins and measuring the angular correlation function or angular power spectrum in each bin. In DES Y6, six bins were defined between 0.6<zph<1.20.6<z_{\rm ph}<1.2. In this context, the Euclid photometric survey can increase its constraining power by including its photometric sample for galaxy clustering studies in addition to weak lensing analyses. One advantage of Euclid is that it will provide numerous photometric redshifts (about 1.5×1091.5\times 10^{9}) in a much larger redshift range than previously available, covering 0.2<zph<2.50.2<z_{\rm ph}<2.5.

In this work, we study how well the Euclid photometric sample will be able to constrain the BAO scale, using the Flagship simulation (Euclid Collaboration: Castander et al. 2024). We consider two analyses, one in which we extract the BAO scale in each of the 13 redshift bins (Euclid Collaboration: Mellier et al. 2024), yielding 13 values of α\alpha and thus the evolution of the parameter as a function of redshift, and the second in which we conduct a joint analysis of all the redshift bins to constrain a single value of α\alpha. Here, we focus on the two-point angular correlation function in configuration space w(θ)w(\theta) as an observable to detect the BAO signal in the Flagship galaxy mock catalogue. While Euclid is expected to cover an area of about 14 00014\,000 deg2 (Euclid Collaboration: Mellier et al. 2024), the Flagship simulation covers 37% of this area. This means that the area used in this work is intermediate between Data Release 1 and 2 for Euclid, which are expected to cover approximately 2500 and 7500 deg2, respectively. We want to quantify our ability to constrain this signal as well as estimate the weight of different choices in the setup of the analysis.

The paper is organized as follows. We describe the theoretical framework of the analysis in Sect. 2 with the computation of the two-point angular correlation function model, its estimator, and its covariance. The method used to extract the BAO scale and to infer cosmological parameters is detailed in Sect. 3. In Sect. 4, we present the data from the Flagship simulation used throughout this work. Results are reported and discussed in Sect. 5, including our joint analysis, the individual redshift bin analysis, and cosmological constraints along with their robustness to choices of fitting templates, scale cuts, redshift-space distortions (RSD), and redshift binning scheme. We present our main conclusions in Sect. 6.

2 Two-point angular correlation function

In this section we describe the observable relevant to galaxy clustering with the photometric survey that has been considered in this analysis: the galaxy two-point angular correlation function. We also present its estimator and its covariance.

2.1 Theory

As we process information projected into bins of redshift, we consider the galaxy two-point angular correlation function w(θ)w(\theta), defined as (e.g., Crocce et al. 2011)

w(θ)=02+14πC()P(cosθ),w(\theta)=\sum\limits_{\ell\geq 0}\frac{2\ell+1}{4\pi}\,C(\ell)\,P_{\ell}(\cos\,\theta)\,, (1)

with PP_{\ell} being the Legendre polynomial and C()C(\ell) the angular power spectrum defined as

C()=4π0dkk𝒫Φ(k)Δ2(k).C(\ell)=4\pi\int_{0}^{\infty}\frac{{\rm d}k}{k}\,\mathcal{P}_{\Phi}(k)\;\Delta^{2}_{\ell}(k)\,. (2)

In Eq. (2), kk is the wavenumber and 𝒫Φ\mathcal{P}_{\Phi} stands for the dimensionless power spectrum of the primordial curvature perturbations Φ(k)\Phi({k}) that we model with HMCode (Mead et al. 2021) as implemented in the Boltzmann code CAMB (Challinor & Lewis 2011). The term Δ\Delta_{\ell} is the sum of the transfer function of number counts for the galaxy density field ΔD\Delta^{\rm D}_{\ell} and the linear RSD contribution ΔRSD\Delta^{\rm RSD}_{\ell} (Chisari et al. 2019)

Δ(k)=ΔD(k)+ΔRSD(k),\Delta_{\ell}(k)=\Delta^{\rm D}_{\ell}(k)+\Delta^{\rm RSD}_{\ell}(k)\,, (3)

where the two terms are respectively defined as

ΔD(k):=0zmaxdzp(z)b(z)Tδ(k,z)j(kr)\Delta^{\rm D}_{\ell}(k):=\int_{0}^{z_{\rm max}}{\rm d}z\;p(z)\;b(z)\;T_{\delta}(k,z)\;j_{\ell}\left(kr\right) (4)

and

ΔRSD(k):=0zmaxdz(1+z)p(z)H(z)Tθ(k,z)j′′(kr),\Delta^{\rm RSD}_{\ell}(k):=\int_{0}^{z_{\rm max}}{\rm d}z\;\frac{(1+z)\,p(z)}{H(z)}T_{\theta}(k,z)\;j^{\prime\prime}_{\ell}\left(kr\right)\,, (5)

where p(z)p(z) is the normalized galaxy redshift distribution, b(z)b(z) is the linear galaxy bias, zmaxz_{\rm max} is the maximum redshift of the survey that we fix to 3 for practical purposes, jj_{\ell} is the spherical Bessel function of order \ell, j′′j_{\ell}^{\prime\prime} its second derivative, and r(z)r(z) is the comoving radial distance. In Eqs. (4) and (5), the transfer function TX(k,z)T_{\mathrm{X}}(k,z) of a quantity XX is defined as the ratio X(k,z)/Φ(k)X(k,z)/\Phi(k) so that TδT_{\delta} is the transfer function of the matter overdensity δ(k,z)\delta(k,z) and TθT_{\theta} is the transfer function of the divergence of the comoving velocity field. Discussed in Lepori et al. (2022) regarding full-shape analyses of photometric galaxy clustering, we checked that the effect of magnification bias over α\alpha is smaller than 0.2σ0.2\,\sigma in most redshift bins, which is why no ΔM(k)\Delta^{\rm M}_{\ell}(k) term as defined in Eq. (26) of Chisari et al. (2019) is included in the model. Other relativistic effects are completely sub-dominant and not included either (Alonso et al. 2015).

To accurately model large scales at <220\ell<220 needed for BAO analysis, non-Limber integrals are computed using the Fang–Krause–Eifler–MacCrann (FKEM) method described in Fang et al. (2020a), while the faster Limber approximation (Kaiser 1992) is used at [220,10000]\ell\in[220,10000]. We checked that the effect of the Limber approximation over C()C(\ell) is smaller than 1% in this range of \ell. Throughout this work, the theoretical w(θ)w(\theta) is computed using the Core Cosmology Library (Chisari et al. 2019). We refer to wfid(θ)w_{\mathrm{fid}}(\theta) when the theoretical w(θ)w(\theta) is computed with the fiducial cosmological parameters defined in Sect. 4.1.

2.2 Estimator

The two-point angular correlation function is computed from the Flagship Mock Galaxy Catalogue (see Sect. 4) with the Landy–Szalay estimator (Landy & Szalay 1993)

w(θ)=NDD2NDR+NRRNRR,w(\theta)=\frac{N_{\scriptscriptstyle\rm DD}-2N_{\scriptscriptstyle\rm DR}+N_{\scriptscriptstyle\rm RR}}{N_{\scriptscriptstyle\rm RR}}\,, (6)

where NDDN_{\scriptscriptstyle\rm DD}, NDRN_{\scriptscriptstyle\rm DR}, and NRRN_{\scriptscriptstyle\rm RR}  are the pair counts where D stands for data and R for a random point. The random catalogues are created by sampling the footprint of the Flagship simulation defined by a HEALPix mask of Nside=4096N_{\mathrm{side}}=4096, which is equivalent to an angular resolution of 0.°014. We use 30 times as many random points as galaxies, yielding 1.04×1091.04\times 10^{9} points per redshift bin. The angular binning has a resolution of 0.°1 and spans between θmin=0.°12\theta_{\rm min}=$$ and θmax=θBAO+2.°5\theta_{\rm max}=\theta_{\scriptscriptstyle\rm BAO}+$$ where θBAO\theta_{\scriptscriptstyle\rm BAO} is

θBAO=rs,drag,fid(1+zeff)DA,fid(zeff),\theta_{\scriptscriptstyle\rm BAO}=\frac{r_{\mathrm{s,\,drag,\,fid}}}{(1+z_{\mathrm{eff}})\;D_{\mathrm{A,\,fid}}(z_{\mathrm{eff}})}\,, (7)

evaluated at the mean redshift of the bin zeffz_{\mathrm{eff}} for the cosmology of the simulation given in Sect. 4.1. The measurement of w(θ)w(\theta) is performed with the code TreeCorr (Jarvis et al. 2004) and errors are estimated by a jackknife resampling of Npatch=500N_{\mathrm{patch}}=500 patches of about 10deg210\,\mathrm{deg}^{2} each.

2.3 Covariance

Two approaches are considered to compute the covariance of the two-point angular correlation function. For individual bin analyses, in which one value of the α\alpha parameter is fitted for each redshift bin, we use the jackknife covariance matrix built from the data vector measured with TreeCorr while joint analyses use an analytical covariance computed with CosmoCov (Krause & Eifler 2017). The use of an analytical covariance is made necessary by the noise in the covariance of the 13 redshift bins, even with 500 jackknife patches. Increasing to larger number of patches yields very little improvement in that regard.

The jackknife covariance matrix is computed with

CovJK(wij(θ),wkl(θ))=Npatch1Npatchn=1Npatch(wij(n)(θ)w¯ij(θ))T(wkl(n)(θ)w¯kl(θ)),\mathrm{Cov}^{\mathrm{JK}}(w_{ij}\,(\theta),w_{kl}\,(\theta^{\prime}))\\ =\frac{N_{\mathrm{patch}}-1}{N_{\mathrm{patch}}}\sum_{n=1}^{N_{\mathrm{patch}}}\left(w_{ij}^{(n)}\,(\theta)-\overline{w}_{ij}\,(\theta)\right)^{\mathrm{T}}\left(w_{kl}^{(n)}\,(\theta^{\prime})-\overline{w}_{kl}\,(\theta^{\prime})\right)\,, (8)

where nn is the index of the jackknife realization, wij(θ)w_{ij}\,(\theta) is the correlation of redshift bins ii and jj at angular separation θ\theta, and w¯ij\overline{w}_{ij} stands for the mean over all jackknife realizations for each angular separation w¯ij(θ)=1Npatchn=1Npatchwij(n)(θ)\overline{w}_{ij}\,(\theta)=\frac{1}{N_{\mathrm{patch}}}\sum_{n=1}^{N_{\mathrm{patch}}}\,w_{ij}^{(n)}\,(\theta).

We checked that the jackknife covariance matrix of each individual redshift bin is numerically stable with conditioning numbers ranging from 2.3×1042.3\times 10^{4} for the covariance of the last redshift bin to 2.2×1052.2\times 10^{5} for the first bin. Multiplying each of the jackknife covariances by its inverse yields the identity matrix, as expected from a numerically stable matrix, with a ratio between the diagonal and off-diagonal terms larger than 101310^{13}. In the MCMC analyses of Sect. 5, the inverse of the covariance is corrected by the Hartlap multiplicative factor defined in Hartlap et al. (2007)

Ψ=NpatchNb2Npatch1,\Psi=\frac{N_{\mathrm{patch}}-N_{\mathrm{b}}-2}{N_{\mathrm{patch}}-1}\,, (9)

where NbN_{\mathrm{b}} is the number of angular bins in the data vector.

The analytical covariance used in Sect. 5.1 is the sum of the Gaussian and super-sample contributions, leaving aside the connected non-Gaussian term from modes within the footprint. The Gaussian term is computed using CosmoCov as in Krause & Eifler (2017) and Fang et al. (2020b), with a correction for the survey footprint like in Troxel et al. (2018) and without considering the Limber approximation (Fang et al. 2020a)

CovG(Cij(),Ckl())=4πδKΩs(2+1)[(Cik()+δikKn¯i)×(Cjl()+δjlKn¯j)+(Cil()+δilKn¯i)(Cjk()+δjkKn¯j)],\mathrm{Cov}^{\rm G}\left(C_{ij}(\ell),C_{kl}(\ell^{\prime})\right)=\frac{4\,\pi\,\delta^{\rm K}_{\ell\ell^{\prime}}}{\Omega_{\mathrm{\,s}}\,(2\ell+1)}\left[\left(C_{ik}(\ell)+\frac{\delta^{\rm K}_{ik}}{\bar{n}_{i}}\right)\right.\\ \left.\times\left(C_{jl}(\ell^{\prime})+\frac{\delta^{\rm K}_{jl}}{\bar{n}_{j}}\right)+\left(C_{il}(\ell)+\frac{\delta^{\rm K}_{il}}{\bar{n}_{i}}\right)\left(C_{jk}(\ell^{\prime})+\frac{\delta^{\rm K}_{jk}}{\bar{n}_{j}}\right)\right]\,, (10)

with CijC_{ij} the angular power spectrum of redshift bins ii and jj, Ωs\Omega_{\mathrm{\,s}} the survey area, n¯\bar{n} the effective number density of galaxies and ii, jj, kk, and ll are the indices of the redshift bins. The two-point angular correlation function is then computed from angular power spectra with (Abbott et al. 2024)

CovG(wij(θ),wkl(θ))=,(2+1)(2+1)(4π)2P¯(θ)P¯(θ)CovG(Cij(),Ckl()),\mathrm{Cov}^{\mathrm{G}}\left(w_{ij}\,(\theta),w_{kl}\,(\theta^{\prime})\right)\\ =\sum_{\ell,\ell^{\prime}}\frac{(2\ell+1)\,(2\ell^{\prime}+1)}{(4\,\pi)^{2}}\,\overline{\mathrm{P_{\ell}}}(\theta)\,\overline{\mathrm{P_{\ell^{\prime}}}}(\theta^{\prime})\,\mathrm{Cov}^{\mathrm{G}}\left(C_{ij}\,(\ell),C_{kl}\,(\ell^{\prime})\right)\,, (11)

with P¯\overline{\mathrm{P_{\ell}}} the Legendre polynomial averaged over angular bins

P¯:=xminxmaxdxP(x)xmaxxmin=[P+1(x)P1(x)]xminxmax(2+1)(xmaxxmin)\overline{\mathrm{P_{\ell}}}:=\frac{\int_{x_{\mathrm{min}}}^{x_{\mathrm{max}}}{\rm d}x\,P_{\ell}(x)}{x_{\mathrm{max}}-x_{\mathrm{min}}}=\frac{\left[P_{\ell+1}(x)-P_{\ell-1}(x)\right]_{x_{\mathrm{min}}}^{x_{\mathrm{max}}}}{(2\ell+1)(x_{\mathrm{max}}-x_{\mathrm{min}})} (12)

in which x=cos(θ)x=\cos(\theta) with θmin,θmax\theta_{\rm min},\theta_{\rm max} the lower and upper limits of each angular bin.

As for the super-sample covariance (SSC) contribution to the covariance, it was computed following the fast approximation from Lacasa & Grain (2019) extended to partial-sky in Gouyou Beauchamps et al. (2022) to go beyond the full-sky approximation by taking into account the footprint of the survey

CovSSC(wij(θ),wkl(θ))w~ij(θ)w~kl(θ)Sijkl,\mathrm{Cov}^{\mathrm{SSC}}\left(w_{ij}\,(\theta),w_{kl}\,(\theta^{\prime})\right)\approx\tilde{w}_{ij}\,(\theta)\ \tilde{w}_{kl}\,(\theta^{\prime})\,S_{ijkl}\,, (13)

where w~ij(θ)\tilde{w}_{ij}\,(\theta) is computed as

w~ij(θ)=2+14πRCij()P(cosθ)=:(Rwij)(θ),\tilde{w}_{ij}\,(\theta)=\sum_{\ell}\frac{2\ell+1}{4\pi}\ R_{\ell}\ C_{ij}(\ell)\ P_{\ell}(\cos\theta)=:(R*w_{ij})(\theta)\,, (14)

with RR_{\ell} the response of the galaxy power spectrum to variations of the background density Pgal(k,z)δb\frac{\partial P_{\mathrm{gal}}(k,z)}{\partial\delta_{\mathrm{b}}}. The SijklS_{ijkl} matrix element is computed using the implementation from PySSC111https://github.com/fabienlacasa/PySSC as

Sijkl=dV1dV2Wi(z1)Wj(z1)Wk(z2)Wl(z2)σ2(z1,z2)dV1Wi(z1)Wj(z1)dV2Wk(z2)Wl(z2),S_{ijkl}=\int{\rm d}V_{1}\,{\rm d}V_{2}\,\frac{W_{i}(z_{1})\,W_{j}(z_{1})\,W_{k}(z_{2})\,W_{l}(z_{2})\,\sigma^{2}(z_{1},z_{2})}{\int{\rm d}V_{1}\ W_{i}(z_{1})\ W_{j}(z_{1})\,\int{\rm d}V_{2}\ W_{k}(z_{2})\ W_{l}(z_{2})}\,, (15)

where WiW_{i} is the kernel of the observable in redshift bin ii, the kernel being the normalized redshift distribution pi(z)p_{i}(z) in the case of photometric galaxy clustering. The comoving volume element dV=r2(z)(dr/dz)dz{\rm d}V=r^{2}(z)\,({\rm d}r/{\rm d}z)\,{\rm d}z is integrated between z=0z=0 and z=zmax=3z=z_{\mathrm{max}}=3. The variance of the background density σ2\sigma^{2} is, for a survey with a window function 𝒲\mathcal{W} of angular power spectrum C𝒲C^{\mathcal{W}}

σ2(z1,z2)=1Ωs2(2+1)C𝒲()C(,z1,z2),\sigma^{2}(z_{1},z_{2})=\frac{1}{\Omega_{\mathrm{\,s}}^{2}}\sum_{\ell}(2\ell+1)\,C^{\mathcal{W}}(\ell)\,C(\ell,z_{1},z_{2})\,, (16)

where the angular matter power spectrum between redshifts z1z_{1} and z2z_{2} is obtained from the 3D matter cross-spectrum Pm(k|z12)=D(z1)D(z2)Pm(k,z=0)P_{\mathrm{m}}(k\,|\,z_{12})=D\left(z_{1}\right)\,D\left(z_{2}\right)\,P_{\mathrm{m}}(k,z=0) with

C(,z1,z2)=2πkminkmaxk2dkPm(k|z12)j(kr1)j(kr2),C(\ell,z_{1},z_{2})=\frac{2}{\pi}\,\int_{k_{\mathrm{min}}}^{k_{\mathrm{max}}}\,k^{2}\,{\rm d}k\,P_{\mathrm{m}}(k\,|\,z_{12})\,j_{\ell}\left(kr_{1}\right)\,j_{\ell}\left(kr_{2}\right)\,, (17)

where D(z)D(z) is the linear growth factor, ri=r(zi)r_{i}=r(z_{i}) is the comoving radial distance, kmin=0.1/r(zmax)k_{\mathrm{min}}=0.1/r(z_{\mathrm{max}}), and kmax=10/r(zmin)k_{\mathrm{max}}=10/r(z_{\mathrm{min}}).

We use the anafast routine from the HEALPix222http://healpix.sf.net library (Zonca et al. 2019; Górski et al. 2005) to compute C𝒲C^{\mathcal{W}}. We make the approximation of a constant R=5R_{\ell}=5, which reduces the convolution product to a multiplication. A detailed discussion on the response of the SSC can be found in Euclid Collaboration : Sciotti et al. (2024). The approximation on RR_{\ell} used in this work has an impact which does not exceed 0.5% on α\alpha and 3% on its uncertainty in all redshift bins, which is expected given the angular scales and redshifts considered.

3 Methodology

3.1 Galaxy bias

A fit of the linear galaxy bias b(z)b(z) is performed in each redshift bin using the jackknife covariance and the residuals w(θ)b2wfid,b=1(θ)w(\theta)-b^{2}w_{\mathrm{fid,}b=1}(\theta), where wfid,b=1w_{\mathrm{fid,}b=1} denotes the theoretical angular correlation function defined in Eq. (1) computed with the Flagship cosmology and a galaxy bias b=1b=1. We use scales between 0.°5 and 4° in this full shape fit. A third order polynomial is then fitted to the result

b(z)=b3z3+b2z2+b1z+b0,b(z)=b_{3}z^{3}+b_{2}z^{2}+b_{1}z+b_{0}\,, (18)

which is then used in Eq. (4) to compute the theoretical model of the two-point angular correlation function.

3.2 BAO template-fitting

To extract the BAO feature from the photometric sample, we perform the fitting between the measured w(θ)w(\theta) and a template derived from the theoretical two-point angular correlation function wfid(θ)w_{\mathrm{fid}}(\theta) computed for the fiducial cosmology described in Sect. 4.1. The template is defined as

T(α,θ):=Bwfid(αθ)+A0+A1θ+A2θ2,T\left(\alpha,\theta\right):=B\,w_{\rm fid}\left(\alpha\theta\right)+A_{0}+\frac{A_{1}}{\theta}+\frac{A_{2}}{\theta^{2}}\,, (19)

where α\alpha is the transverse Alcock–Paczynski parameter quantifying an eventual shift of the BAO peak between the measured w(θ)w(\theta) and the fiducial wfid(θ)w_{\mathrm{fid}}(\theta). The nuisance parameters BB, A0A_{0}, A1A_{1}, and A2A_{2} are needed to absorb residual effects like non-linear galaxy bias. Different template parametrisations can be used and we will verify in Sect. 5.5 that the choice of polynomial has minimal impact on the α\alpha parameter. The parameter of interest in this work is α\alpha and, since the fiducial cosmology used to compute wfid(θ)w_{\mathrm{fid}}(\theta) is the same as the simulation, we expect to recover α=1\alpha=1. On the contrary, using a different fiducial cosmology to compute wfid(θ)w_{\mathrm{fid}}(\theta) should result in α1\alpha\neq 1.

We will consider one set of nuisance parameters per redshift bin, since these parameters can in principle vary with redshift. This represents a total of 53 parameters for the joint analysis and 5 parameters for the analysis of each of the 13 bins. The Markov Chain Monte-Carlo (MCMC) technique is used to quantify the uncertainty on α\alpha marginalised over the nuisance parameters. The emcee sampler introduced in Foreman-Mackey et al. (2013) is used with the Gelman–Rubin convergence stopping criterion described in Gelman & Rubin (1992) with a threshold RGR1=0.005R_{\mathrm{GR}}-1=0.005 for analyses on individual redshift bins and RGR1=0.02R_{\mathrm{GR}}-1=0.02 for joint analyses. These thresholds were chosen to stop chains when parameter values and uncertainties reached a plateau. Uniform priors applied to the template parameters are presented in Table 1.

Table 1: Priors used for the template-fitting parameters. With the first template, defined in Eq. (19), the AiA_{i} parameters have a unit of degi\mathrm{deg}^{i}. For the other templates, defined in Sect. 5.5, the units should be adapted to have a template T(α,θ)T(\alpha,\theta) of unit consistent with w(θ)w(\theta).
α\alpha 103A010^{3}\,A_{0} 103Ai10^{3}\,A_{i} (i0i\neq 0) BB
[0.80.8,1.21.2] [1-1,11] [5-5,55] [0.20.2,66]

As a comparison to MCMC, we also consider the frequentist approach of profile likelihood to provide constraints in the joint analysis. We obtain the profile likelihood Δχ2(α)=χ2(α)χ2(α)|min\Delta\chi^{2}(\alpha)=\chi^{2}(\alpha)-\left.\chi^{2}(\alpha)\right|_{\mathrm{min}} by computing the best fit χ2\chi^{2} for each value of α\alpha between 0.8 and 1.2 in steps of 0.001. We then fit an 8th-order polynomial to this profile to compute Δχ2\Delta\chi^{2}. The 1σ1\,\sigma uncertainty on α\alpha is then given by Δχ2=1\Delta\chi^{2}=1. In the joint analysis, the resolution of the grid of α\alpha on which this polynomial is evaluated is increased to use steps of 0.0001 to match the increased constraining power. We also use this frequentist approach to quantify the significance of the BAO detection as described in Sect. 5.1. The code iminuit based on the MINUIT algorithm is used at this effect (Dembinski et al. 2020; James & Roos 1975).

3.3 Cosmological parameters

Extracting the transverse Alcock–Paczynski α\alpha parameter in successive tomographic bins of redshift allows us to constrain the evolution of the expansion of the Universe. Indeed, the α\alpha parameter can be expressed as

α=DArs,dragrs,drag,fidDA,fid,\alpha=\frac{D_{\mathrm{A}}}{r_{\mathrm{s,\,drag}}}\;\frac{r_{\mathrm{s,\,drag,\,fid}}}{D_{\mathrm{A,\,fid}}}\,, (20)

where DAD_{\mathrm{A}} is the angular diameter distance, rs,dragr_{\mathrm{s,\,drag}} corresponds to the sound horizon at the drag epoch, and the fid label stands for the values in the fiducial cosmology. The detail of the computation of rs,dragr_{\mathrm{s,\,drag}} can be found in Appendix A. Since α\alpha depends on H0H_{0}, ωb=Ωbh2\omega_{\mathrm{b}}=\Omega_{\rm b}\,h^{2}, and ωcdm=(ΩmΩb)h2\omega_{\mathrm{cdm}}=(\Omega_{\rm m}-\Omega_{\rm b})h^{2}, these cosmological parameters can be constrained with MCMC by comparing the αi\alpha_{i} value for each redshift bin to the theoretical expected value for the fiducial cosmology of the simulation. We note that we neglect the mass of neutrinos and consider that all the matter is given by the sum of cold dark matter and baryonic matter, for simplicity. In Eq. (20), the respective quantities are all evaluated at the effective redshift. The effective redshift of bin ii is defined as

zeff,i:=0zmaxdzzpi(z),z_{\mathrm{eff,}i}:=\int_{0}^{z_{\mathrm{max}}}\,{\rm d}z\,z\,p_{i}(z)\,, (21)

where pi(z)p_{i}(z) is the normalized distribution of photometric redshifts shown in Fig. 1. We checked that using the median redshift of each redshift bin did not affect the constraints on H0H_{0}, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} (shift smaller than 0.03σ0.03\,\sigma).

We use Gaussian priors from Planck (Ade et al. 2016) adapted to match the Flagship simulation cosmological parameters so that the ratios between the uncertainties and fiducial values stay the same, yielding ωb=0.02200±0.00036\omega_{\mathrm{b}}=0.02200\pm 0.00036 and DA(1+z𝑃𝑙𝑎𝑛𝑐𝑘)/rs,drag=83.197±0.065D_{\mathrm{A}}\,(1+z_{\mathrm{\it Planck}})/r_{\mathrm{s,\,drag}}=83.197\pm 0.065 with z𝑃𝑙𝑎𝑛𝑐𝑘=1090z_{\mathrm{\it Planck}}=1090.

Refer to caption
Figure 1: True redshift distribution of the galaxies from Flagship 2.1.10 selected in 13 equipopulated photometric redshift bins.
Refer to caption
Figure 2: Two-point angular correlation function measured on the Flagship simulation in 13 redshift bins. The errors come from the analytical covariance presented in Sect. 2.3. The orange curve is the correlation function computed using the template from Eq.(19) evaluated with the parameters inferred from MCMC in each redshift bin. Scale cuts are shown as grey bands and are defined as θmin=0.°6\theta_{\rm min}=$$, θmax=θBAO+2.°5\theta_{\rm max}=\theta_{\scriptscriptstyle\rm BAO}+$$ where θBAO\theta_{\scriptscriptstyle\rm BAO} is the expected position of the BAO peak in the fiducial cosmology.

4 Data

4.1 Euclid Flagship simulation

We use the Flagship v.2.1.10 galaxy mock sample (Euclid Collaboration: Castander et al. 2024) available to the Euclid Consortium on CosmoHub 333https://cosmohub.pic.es/ (Tallada et al. 2020; Carretero et al. 2017) created from the Flagship N-body dark matter simulation (Potter et al. 2017). This simulation assumes the following flat Λ\LambdaCDM cosmology: matter density parameter Ωm=0.319\Omega_{\rm m}=0.319, baryon density parameter Ωb=0.049\Omega_{\rm b}=0.049, dark energy density parameter ΩΛ=0.681ΩrΩν\Omega_{\Lambda}=0.681-\Omega_{\mathrm{r}}-\Omega_{\nu}, with a radiation density parameter Ωr=0.00005509\Omega_{\mathrm{r}}=0.00005509 and Ων=0.00140343\Omega_{\nu}=0.00140343 for massive neutrinos, dark energy equation of state parameter wde=1.0w_{\mathrm{de}}=-1.0, reduced Hubble constant h=0.67h=0.67, spectral index of the primordial power spectrum ns=0.96n_{\mathrm{s}}=0.96, and its amplitude As=2.1×109A_{\mathrm{s}}=2.1\times 10^{-9} at k=0.05Mpc1k=0.05\,\rm Mpc^{-1}. This simulation considers a 3.6h1Gpc3.6\,h^{-1}\,\rm Gpc-side box with 4×10124\times 10^{12} particles of mass 109h1M10^{9}\,h^{-1}M_{\odot}. The main output of the simulation is a lightcone that spans redshifts between 0 and 33. Dark matter haloes are identified down to 1010h1M10^{10}\,h^{-1}\,M_{\odot} with ROCKSTAR(Behroozi et al. 2013). These haloes are then populated with galaxies with halo abundance matching and halo occupation distribution techniques following Carretero et al. (2015). Galaxy luminosities have been calibrated with a combination of the luminosity functions from Blanton et al. (2003), Blanton et al. (2005a), and Dahlen et al. (2005). Galaxy clustering measurements have been calibrated as a function of colour and luminosity following Zehavi et al. (2011) and the colour-magnitude diagram from Blanton et al. (2005b) has been used as a reference.

We apply a magnitude cut at IE24.5I_{\scriptscriptstyle\rm E}\leq 24.5 in the VIS IEI_{\scriptscriptstyle\rm E} band with the additional constraint that only objects with properly determined photometric redshifts are considered (phz_flags = 0). This sample covers one octant of the sky between right ascension 145°RA<235°$$\leq\mathrm{RA}<$$ and declination 0°<Dec<90°$$<\mathrm{Dec}<$$ for a total area of 5157deg25157\,\mathrm{deg}^{2}. Following Euclid Collaboration: Mellier et al. (2024), we divide the sample into 13 equipopulated redshift bins of zphz_{\rm ph}. The normalized redshift distributions pi(z)p_{i}(z) of the 13 bins are shown in Fig. 1. This division yields a large statistic sample, with about 34.834.8 million galaxies per redshift bin. Photometric redshifts are defined as the first mode of the probability density functions (PDF) obtained with the k-nearest neighbours algorithm NNPZ (Tanaka et al. 2018) by matching galaxy magnitude and colours to a reference sample of 2 million galaxies simulated up to the depth of the Euclid calibration field IE=29.4I_{\scriptscriptstyle\rm E}=29.4 and whose PDF are obtained using the template-fitting code Phosphoros (Tucci et al., in prep). The photometric redshift PDF of each galaxy is computed as a weighted average of the PDF of the neighbours found by NNPZ, the weight being the inverse of the χ2\chi^{2} distance between the galaxy and the neighbour in the magnitude and colour space. The constraint phz_flags = 0 ensures that the galaxy had enough neighbours found to properly derive the photometric redshift when NNPZ was applied. The photometry used to infer these redshifts has the quality expected from the ground-based observations of the Legacy Survey of Space and Time (LSST, Ivezić et al. 2019) for all galaxies which is optimistic.

The fiducial cosmology used in this paper is a flat Λ\LambdaCDM cosmology, defined by a set of parameters which match the fiducial cosmology of the Flagship simulation.

5 Results

5.1 Joint BAO measurement

In this section, we present the constraints on α\alpha obtained with a joint analysis of the 13 redshift bins. We used the template as defined in Sect. 3.2 extended to have bin-specific nuisance parameters BiB_{i}, A0,iA_{0,i}, A1,iA_{1,i}, and A2,iA_{2,i} with i[1,13]i\in[1,13]. Scale cuts are θmin=0.°6\theta_{\rm min}=$$, θmax=θBAO+2.°5\theta_{\rm max}=\theta_{\scriptscriptstyle\rm BAO}+$$, visible as grey bands in Fig. 2 and discussed in detail in Sect. 5.6. We clearly see that the position of the BAO peak is found at lower angles as redshift increases, varying from 7° in the first redshift bin to 1.°6 in the last one. We will study the impact of a different choice of scale cuts in Sect. 5.6. We use the analytical covariance (Gaussian and SSC) for this joint analysis.

We first report the estimate of the linear galaxy bias, shown in Fig. 3 with the best fit obtained for b3=0.2681b_{3}=0.2681, b2=0.4090b_{2}=-0.4090, b1=0.6944b_{1}=0.6944, and b0=0.9493b_{0}=0.9493 as the coefficients of Eq. (18). These values of the bias coefficients are then used to compute the fiducial wfid(θ)w_{\rm fid}(\theta) that will be injected in the template of Eq. (19). Eventual non-linearities of the galaxy bias at small scales or systematic effects are absorbed by the template nuisance parameters without affecting α\alpha, our parameter of interest.

Refer to caption
Figure 3: Galaxy bias measured on Flagship 2.1 between 0.°5 and 4.°0 and its polynomial fit.
Refer to caption
Figure 4: Comparison of α\alpha from a joint analysis in which redshift bins are successively removed. Bin 11 with effective redshift zeff=1.245z_{\mathrm{eff}}=1.245 has a larger effect over the joint constraints compared to other bins, as one can see from the shift and increase of the uncertainty when it is not included. Selecting high- or low-redshift bins respectively induces a 1.3 or 2.8σallbins2.8\,\sigma_{\mathrm{all\;bins}} shift towards higher or lower values for α\alpha.

For this joint analysis with all redshift bins, we report a constraint of α=1.00110.0079+0.0078\alpha=1.0011^{+0.0078}_{-0.0079}, obtained with a profile likelihood approach (Ade et al. 2014). This approach consists in minimizing the χ2\chi^{2} while fixing a parameter at various values to obtain a profile of χ2\chi^{2} as a function of this parameter. Repeating this with another model of w(θ)w(\theta), we can then obtain the difference of the profiles Δχ2\Delta\chi^{2}. This result might seem optimistic given that it represents an improvement by a factor of 3 with respect to the latest results from the DES Y6 analysis which yield a constraint of α\alpha at the 2.4% level with the angular two-point correlation function. However, several factors need to be taken into account in this comparison. The first one is that this work uses data from a simulation and so it is inherently optimistic since it is free from systematic effects while DES Y6 uses real observations and has to correct them. In DES Y6, 5 redshift bins between 0.7<z<1.20.7<z<1.2 are used whereas the Flagship sample is here divided into 13 redshift bins between 0.2<z<2.50.2<z<2.5, which increases significantly the constraining power of the joint analysis. We define the significance of the BAO detection to be

Δdet:=|χw2(αmin)χnowiggle2(αmin)|1/2,\Delta_{\mathrm{det}}:=\left|\chi^{2}_{\mathrm{w}}(\alpha_{\mathrm{min}})-\chi^{2}_{\mathrm{no\,wiggle}}(\alpha_{\mathrm{min}})\right|^{1/2}\,, (22)

evaluated at the αmin\alpha_{\mathrm{min}} value minimizing χw2(α)\chi^{2}_{\mathrm{w}}(\alpha). The χnowiggle2\chi^{2}_{\mathrm{no\,wiggle}} is computed using the transfer function from Eisenstein & Hu (1998) in which the BAO wiggles have been removed, unlike the transfer function from CAMB (Lewis et al. 2000) used to obtain χw2\chi^{2}_{\mathrm{w}}. We quantified Δdet=10.3σ\Delta_{\mathrm{det}}=10.3\,\sigma with a profile likelihood approach with our data compared to 3.5σ3.5\,\sigma in DES Y6. We also find significantly tighter constraints in each individual redshift bin, contributing to this result.

For this joint analysis, we find that the results obtained with profile likelihood and MCMC differ significantly because of the combined effect of the strong constraining power and the disagreement between the preferred values of α\alpha in different redshift bins. This leads to a poor exploration of a multi-modal posterior. In more detail, the analytical covariance yields α=0.99970.0002+0.0003\alpha=0.9997^{+0.0003}_{-0.0002} with the MCMC analysis, while considering only the diagonal of the analytical covariance results in α=1.00960.0087+0.0085\alpha=1.0096^{+0.0085}_{-0.0087}. As a comparison, when we only consider the diagonal of the jackknife covariance, we find α=1.00950.0108+0.0108\alpha=1.0095^{+0.0108}_{-0.0108}, which corresponds to a 27% increase of the uncertainty explained by the larger amplitude of the jackknife errors. The results that we obtain from a profile likelihood approach with or without the off-diagonal terms of the analytical covariance are instead similar, with a 1σ1\,\sigma uncertainty of ± 0.0079\pm\,0.0079 and ± 0.0097\pm\,0.0097, respectively.

We further investigate this result by using a similar approach to DES Y6 by excluding redshift bins in which the BAO signal is not detected with sufficient strength. In this case, Δdet\Delta_{det} is computed for each individual redshift bin and a non-detection is then defined as a detection level Δdet<1\Delta_{\mathrm{det}}<1. A non-detection in the first bin (0.6<z<0.70.6<z<0.7) is why 5 bins were used in the analysis of DES Y6 instead of 6. After excluding the redshift bins with no significant detection (bins 1, 4, and 6), we report a value α=1.00230.0084+0.0080\alpha=1.0023^{+0.0080}_{-0.0084}, almost identical to the result obtained when including all the redshift bins. The fact that the increase of the uncertainty is as small as 4.5% despite removing three out of 13 bins can be understood by the fact that if redshift bins have no significant detection of the BAO signal then they provide very little constraining power on α\alpha. We check the robustness of our result with respect to all the redshift bins included in the joint analysis in Sect. 5.2.

An important caveat to fitting a unique α\alpha to all redshift bins is that it assumes a perfect match between the fiducial cosmology and the true cosmology of the Universe which is unknown. Any mismatch will lead to a variation of α\alpha which depends on redshift. This effect can be quantified thanks to the definition of α\alpha in Eq. (20) in which DAD_{\mathrm{A}} and rs,dragr_{\mathrm{s,\,drag}} are computed for different cosmologies while DA,fidD_{\mathrm{A,\,fid}} and rs,drag,fidr_{\mathrm{s,\,drag,\,fid}} are constant at the fiducial cosmology of the Flagship simulation. We check that varying Ωcdm\Omega_{\rm cdm}, Ωb\Omega_{\rm b}, and hh by 5% leads to a maximum expected variation of α\alpha of 1% between the first and last redshift bin. This maximum variation of α\alpha scales linearly as α(zeff=1.922)/α(zeff=0.290)0.2Δ(Ωcdm,Ωb,h)\alpha(z_{\mathrm{eff}}=1.922)/\alpha(z_{\mathrm{eff}}=0.290)\propto 0.2\,\Delta(\Omega_{\rm cdm},\Omega_{\rm b},h). Given the constraint obtained on α\alpha, this effect is non-negligible and is a limit to this joint analysis. For this reason, the analysis is also performed in individual redshift bins in Sect. 5.3.

Refer to caption
Figure 5: Effect of the fiducial cosmology on α\alpha in all redshift bins for three variations replacing h=0.67h=0.67 by h=0.73h=0.73 and Ωcdm=0.270\Omega_{\rm cdm}=0.270 by Ωcdm=0.281\Omega_{\rm cdm}=0.281 or Ωcdm=0.259\Omega_{\rm cdm}=0.259. The dashed line shows a relative difference of 1%. The effect of the fiducial cosmology is negligible with respect to the uncertainties varying between ± 0.13\pm\,0.13 and ± 0.024\pm\,0.024.

5.2 Robustness validation

In this section, the impact of the different redshift bins in the joint analysis is evaluated by removing each of the 13 redshift bins, one at a time. The constraints on α\alpha for all these cases are shown in Fig. 4. While most bins have very little effect over the constraints, removing the redshift bin 11 at zeff=1.245z_{\mathrm{eff}}=1.245 from the joint analysis decreases α\alpha by 1σallbins1\,\sigma_{\mathrm{all\;bins}}. It also increases uncertainties by 11%, which is expected given that we remove one of the redshift bin with the most constraining power. This constraining power can be understood by studying the properties of the photometric redshifts computed for the Flagship galaxy mock catalogue. Indeed, comparing them to the true redshifts of the simulation using the same binning, we find that with a measure of the scatter σNMAD\sigma_{\mathrm{NMAD}} robust to outliers and defined as

σNMAD=1.4826median(Δzmedian(Δz)1+ztrue)\sigma_{\mathrm{NMAD}}=1.4826\,\mathrm{median}\left(\frac{\Delta z-\mathrm{median}(\Delta z)}{1+z_{\mathrm{true}}}\right) (23)

where Δz=zphztrue\Delta z=z_{\rm ph}-z_{\mathrm{true}}, bin 11 has a scatter which is about 25% smaller than bins 12 and 13. The combination of good photometric redshifts and high redshift explains the importance of this bin.

If we compare constraints from bins with redshift zeff<0.9z_{\mathrm{eff}}<0.9 to the baseline with all bins, we find that α\alpha is shifted by 2.8σallbins2.8\,\sigma_{\mathrm{all\;bins}} towards smaller values and its uncertainty is increased by a factor of two. On the contrary, including high-redshift bins zeff>0.9z_{\mathrm{eff}}>0.9 and removing low-redshift bins, the shift towards a larger value of α\alpha is limited to 1.3σallbins1.3\,\sigma_{\mathrm{all\;bins}}. The uncertainty is only increased by 14.6%, in this case. These results can be understood in light of the constraints from individual bins detailed in Table 2. Bins at zeff<0.9z_{\mathrm{eff}}<0.9 with the largest level of significance of BAO detection are biased towards low values of αi\alpha_{i}, which explains why the joint value of α\alpha increases when they are removed. On the other hand, bins at zeff>0.9z_{\mathrm{eff}}>0.9 are overall biased towards larger values of αi\alpha_{i}, which explains why removing them decreases the value of the joint α\alpha. The large difference in the uncertainty values for these last two cases (1.31.3 against 2.8σallbins2.8\,\sigma_{\mathrm{all\;bins}}), can be explained by the much tighter constraints obtained at high redshift, where the BAO peak is not smeared.

5.3 Individual bins BAO measurement

The template fit is now applied to one redshift bin at a time, yielding 13 values of the α\alpha parameter. This reduces the constraining power over each α\alpha but gives information about the redshift evolution which can be used to constrain cosmological parameters as explained in Sect. 3.3. It is also a more relevant analysis in our setup given the caveat of fitting a unique α\alpha explained at the end of Sect. 5.1.

Table 2 groups the results for α\alpha in all 13 redshift bins, along with the associated sigma level of BAO detection. We first notice that the 1σ1\,\sigma uncertainty is larger at low redshift. This is due to the smearing of the BAO signal by the non-linear evolution of the large-scale structures under the effect of gravitation. This is clearly visible in Fig. 2 where the BAO is much more peaked at higher redshift. The parameter α\alpha is compatible with α=1\alpha=1 within 1σ1\,\sigma in all redshift bins with the exception of bin 11 at zeff=1.245z_{\mathrm{eff}}=1.245 for which we find a 1.3σ1.3\,\sigma shift. This bin is also the one with the strongest constraining power, explained by the high redshift and small scatter of photometric redshifts σNMAD=0.024\sigma_{\mathrm{NMAD}}=0.024. As for the level of detection of the BAO signal, we find three redshift bins with no significant detection, bins 1, 4, and 6. Otherwise, the significance of the detections ranges between 1.1 and 4.0σ4.0\,\sigma detections, with a maximum at zeff=1.245z_{\mathrm{eff}}=1.245 and the 1σ1\,\sigma uncertainty on α\alpha decreases as the detection level increases, as expected.

Table 2: Values of α\alpha extracted from the MCMC analysis in each of the 13 redshift bins. The detection level is defined in Eq. (22). When the significance is smaller than 1σ1\,\sigma, the result is considered as a non-detection.
Bin zeffz_{\mathrm{eff}} α\alpha Δdet\Delta_{\mathrm{det}} (σ\sigma)
1 0.290 1.0260.140+0.1221.026^{+0.122}_{-0.140} no detection
2 0.374 1.0440.107+0.0971.044^{+0.097}_{-0.107} 1.2
3 0.436 0.9570.093+0.1120.957^{+0.112}_{-0.093} 1.1
4 0.527 1.0030.123+0.1461.003^{+0.146}_{-0.123} no detection
5 0.613 1.0020.095+0.0791.002^{+0.079}_{-0.095} 1.1
6 0.705 0.9850.096+0.0870.985^{+0.087}_{-0.096} no detection
7 0.802 0.9320.054+0.0720.932^{+0.072}_{-0.054} 1.5
8 0.858 1.0520.067+0.0671.052^{+0.067}_{-0.067} 1.7
9 0.972 1.0370.048+0.0571.037^{+0.057}_{-0.048} 1.5
10 1.090 1.0150.028+0.0291.015^{+0.029}_{-0.028} 2.7
11 1.245 1.0310.024+0.0241.031^{+0.024}_{-0.024} 4.0
12 1.488 0.9960.038+0.0400.996^{+0.040}_{-0.038} 2.4
13 1.922 0.9910.037+0.0360.991^{+0.036}_{-0.037} 2.9

When averaged over all redshift bins, the shift between the results obtained with the jackknife and with the analytical covariances is smaller than 0.3σ0.3\,\sigma with the measured data vector and 0.08σ0.08\,\sigma with a noise-free synthetic data vector computed like the theoretical model.

The impact of the choice of fiducial cosmology is investigated by varying hh from 0.67 to 0.73. Galaxy bias is fitted again before repeating the MCMC analysis bin by bin. We expect a shift of α\alpha by a factor

DA(h=0.73,Ωb,Ωcdm)rs,drag(h=0.73,Ωb,Ωcdm)rs,drag(h=0.67,Ωb,Ωcdm)DA(h=0.67,Ωb,Ωcdm)=0.982.\frac{D_{\mathrm{A}}(h=0.73,\Omega_{\rm b},\Omega_{\rm cdm})}{r_{\mathrm{s,\,drag}}(h=0.73,\Omega_{\rm b},\Omega_{\rm cdm})}\;\frac{r_{\mathrm{s,\,drag}}(h=0.67,\Omega_{\rm b},\Omega_{\rm cdm})}{D_{\mathrm{A}}(h=0.67,\Omega_{\rm b},\Omega_{\rm cdm})}=0.982\,. (24)

After correction by this shift, we measure a remaining maximum relative difference |Δα|/α|\Delta\alpha|/\alpha of 0.01, the average over all redshift bins being 0.0012. This is illustrated in Fig. 5. As an additional test, we vary Ωcdm\Omega_{\rm cdm} by ± 5σPlanck\pm\,5\,\sigma_{Planck}, keeping h=0.67h=0.67 and Ωb=0.049\Omega_{\rm b}=0.049. With Ωcdm=0.281\Omega_{\rm cdm}=0.281 and Ωcdm=0.259\Omega_{\rm cdm}=0.259, we respectively find a remaining maximum relative difference |Δα|/α|\Delta\alpha|/\alpha of 0.9% and 0.4%, the average over all redshift bins being 0.31% and 0.13%. These variations are negligible compared to the uncertainties on α\alpha, which shows that the analysis is robust against the choice of fiducial cosmology.

We also provide constraints in a DR1-like setting with a sample divided into 6 redshift bins, a selection cut at IE23.5I_{\scriptscriptstyle\rm E}\leq 23.5, and covering 2500 deg2. The measurement of w(θ)w(\theta) and BAO analysis were done following the same procedure. In this case, we find that the constraints on α\alpha in bins 1 to 6 are listed in Table 3.

Table 3: Values of α\alpha extracted from the MCMC analysis in a DR1-like setting in each equidistant redshift bin. The detection level Δdet\Delta_{\mathrm{det}} is defined in Eq. (22).
Bin zminz_{\mathrm{min}} zeffz_{\mathrm{eff}} zmaxz_{\mathrm{max}} α\alpha Δdet(σ)\Delta_{\mathrm{det}}\,(\sigma)
1 0.200 0.307 0.396 1.0550.148+0.1021.055^{+0.102}_{-0.148} no detection
2 0.396 0.432 0.507 1.0210.131+0.1181.021^{+0.118}_{-0.131} no detection
3 0.507 0.578 0.657 1.0860.106+0.0681.086^{+0.068}_{-0.106} 1.2
4 0.657 0.727 0.840 0.9090.070+0.1130.909^{+0.113}_{-0.070} 1.2
5 0.840 0.893 1.040 1.0160.155+0.1201.016^{+0.120}_{-0.155} no detection
6 1.040 1.325 2.500 1.0450.089+0.0791.045^{+0.079}_{-0.089} 1.1

These constraints are in agreement with α=1\alpha=1 within 1σ1\,\sigma. If we compare bins of similar effective redshifts, the constraints are about 20% weaker than with 13 bins in the first bins and significantly worse in the last two bins. The detection of the BAO signal is overall weaker than with 13 redshift bins, with no significant detection in bins 1, 2, and 5 and with Δdet1.2\Delta_{\mathrm{det}}\leq 1.2 in the other bins. These results are expected from the larger uncertainties on w(θ)w(\theta) and the larger bins : intra-bin variations of the BAO scale dilute the signal. Note that the LSST-like photometry assumed to infer photometric redshifts is even more optimistic for this setting than for the previous one, since this photometry will not be available at the time of this data release. Instead, photometry from the Dark Energy Survey will be used (Abbott et al. 2018). For this reason, the fact that the redshift distribution p(z)p(z) is well known is only true with the Flagship simulation. With data, calibrating the p(z)p(z) bias and stretch prior to the analysis will be mandatory, as in Abbott et al. (2024). Ideally, these nuisance parameters for the bias and stretch of p(z)p(z) will be marginalized over in the MCMC analysis of DR1 data as in Bertmann et al., in prep. These constraints could probably be improved with analysis choices tailored to this sample, for example with different scale cuts.

5.4 Cosmological constraints from BAO

One can constrain the hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} parameters by sampling them in their dependence with respect to the values of αi\alpha_{i}, i[1,13]i\in[1,13] (Eq. (20) and Appendix A) obtained by template fitting in each individual bin. We list in Table 2 the values of αi\alpha_{i} and the associated uncertainties obtained by MCMC analysis. In Fig. 6, we show the constraints on hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm}. We obtain h=0.669± 0.003h=0.669\,\pm\,0.003, 100Ωb=4.9210.046+0.044100\,\Omega_{\rm b}=4.921^{+0.044}_{-0.046}, and Ωcdm=0.2930.022+0.023\Omega_{\rm cdm}=0.293^{+0.023}_{-0.022}, which is in agreement with the simulation cosmology. Using the synthetic data vector instead of the measured two-point angular correlation function to extract the αi\alpha_{i} and then obtain cosmological constraints with the same analysis, we check that the bias on Ωcdm\Omega_{\rm cdm} decreases from 1σ1\,\sigma to 0.3σ0.3\,\sigma.

Refer to caption
Figure 6: Constraints on hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} from BAO with Planck priors. The use of αi\alpha_{i} derived from a synthetic two-point angular correlation function allows us to check that the biases observed with the measured data vector and shown in blue are decreased, by a factor of 3 for the largest one, on Ωcdm\Omega_{\rm cdm}.

We check how excluding one or some redshift bins from this analysis affects the cosmological constraints. Figure 7 groups all results for hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} with Planck priors. We consider the αi\alpha_{i}, i[1,13]i\in[1,13] obtained by template fitting on w(θ)w(\theta) measured on Flagship in blue, or a noise-free synthetic w(θ)w(\theta) computed like the theoretical model in orange. We first remove one redshift bin at a time. With the measured w(θ)w(\theta), redshift bin 11 seems to have a large weight in shifting hh towards smaller values: when it is excluded, we recover a less biased estimate of hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} with a shift of 0.3, 0.2, and 0.4σ0.4\,\sigma respectively. Removing the other bins has a much smaller effect. Results are also shown when removing redshift bins with no BAO detection (bins 1, 4, and 6), low-redshift bins (1 to 8), and high-redshift bins (9 to 13). Apart from the effect seen from removing bin 11, we find that high-redshift bins tend to bias hh towards lower values while Ωb\Omega_{\rm b} and Ωcdm\Omega_{\rm cdm} are biased towards larger values. However, high-redshift bins also provide the tightest constraints, with an increase of the uncertainty of hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} by 23%, 30%, and 87% respectively when they are removed. Replacing αi\alpha_{i} obtained from the measured w(θ)w(\theta) by the ones from a synthetic w(θ)w(\theta), we find that shifts of hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} (shown in orange in Fig. 7) with respect to their fiducial values are on average decreasing from 0.4, 0.4, and 0.9σ0.9\,\sigma to 0.1, 0.1, and 0.3σ0.3\,\sigma. The constraining power is also robust with respect to the choice of bins when excluded one by one, with an average variation smaller than 2% for hh and Ωb\Omega_{\rm b}, and 7% for Ωcdm\Omega_{\rm cdm}. With the synthetic data vector, the increase of the uncertainties when removing high redshifts is smaller with 16%, 17%, and 63% against 23%, 30%, and 87% with the measured w(θ)w(\theta).

Refer to caption
Figure 7: Comparison of cosmological parameters obtained when one or several redshift bins are removed from the analysis. The fiducial values of the simulation are highlighted as a vertical dashed line. The baseline including all bins is shown at the top as a reference. The results in blue and orange are respectively obtained from the αi\alpha_{i} extracted by template fitting of the w(θ)w(\theta) measured on Flagship and a noise-free synthetic w(θ)w(\theta).
Refer to caption
Figure 8: Comparison of templates for BAO fitting as a function of redshift bin. The first panel represents the shift of α\alpha with respect to the reference (template 1). We highlight by transparency templates 2, 4, 5, and 6 which do not include a term in θ2\theta^{-2} to showcase the fact that they all have larger shifts at low redshift. The 1% dashed blue lines are a reference to guide the eye rather than a goal, given that the uncertainty on α\alpha is much larger in the first bins. In the second panel, we see that the highlighted templates underestimate the uncertainty while the last panel represents the agreement of the various measurements computed in sigmas as |ααref|(σ2+σref2)1/2\left|\alpha-\alpha_{\mathrm{ref}}\right|\left(\sigma^{2}+\sigma_{\mathrm{ref}}^{2}\right)^{-1/2}.

5.5 Comparison of fitting templates

The polynomial correction applied in the template is defined arbitrarily and different choices can be found in the literature. It is important to check whether the polynomial includes enough orders to absorb eventual non-linearities of the galaxy bias. In this context, we explore ten different combinations of orders leading to ten templates using the same scale cuts and fiducial cosmology as for the analysis of the individual bins. The templates considered in this analysis are

  • template 1: Bwfid(αθ)+A0+A1θ1+A2θ2B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1}+A_{2}\,\theta^{-2} ,

  • template 2: Bwfid(αθ)+A0+A1θ+A2θ1B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\theta+A_{2}\,\theta^{-1} ,

  • template 3: Bwfid(αθ)+A0+A1θ+A2θ2B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\theta+A_{2}\,\theta^{-2} ,

  • template 4: Bwfid(αθ)+A0+A1θ+A2θ2B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\theta+A_{2}\theta^{2} ,

  • template 5: Bwfid(αθ)+A0+A1θ1+A2θ2B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1}+A_{2}\theta^{2} ,

  • template 6: Bwfid(αθ)+A0+A1θ1B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1} ,

  • template 7: Bwfid(αθ)+A0+A1θ1+A2θ2+A3θ3B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1}+A_{2}\,\theta^{-2}+A_{3}\,\theta^{-3} ,

  • template 8: Bwfid(αθ)+A0+A1θ1+A2θ2+A3θ3+A4θ4B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1}+A_{2}\,\theta^{-2}+A_{3}\,\theta^{-3}+A_{4}\,\theta^{-4} ,

  • template 9: Bwfid(αθ)+A0+A1θ1+A2θ2+A3θB\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1}+A_{2}\,\theta^{-2}+A_{3}\theta ,

  • template 10: Bwfid(αθ)+A0+A1θ1+A2θ2+A3θ+A4θ2B\,w_{\mathrm{fid}}(\alpha\theta)+A_{0}+A_{1}\,\theta^{-1}+A_{2}\,\theta^{-2}+A_{3}\theta+A_{4}\theta^{2} .

The comparison of the resulting α\alpha for each template with respect to the fiducial template 1 is shown in Fig. 8. Constraints from templates 2, 4, 5, and 6 are highlighted because they are consistent with each other and quite different from the reference at low redshift. These templates do not have a term in 1/θ21/\theta^{2}. From this observation, it seems that this order is needed. We find that the 1σ1\,\sigma uncertainty on α\alpha is systematically underestimated by 10% with templates 2, 4, 5, and 6. This result is still observed when a noise-free synthetic data vector is used instead of the measured two-point correlation function. On the contrary, we see almost no variation of the results between the other templates with additional orders θ3,θ4,θ,θ2\theta^{-3},\theta^{-4},\theta,\theta^{2}. The agreement of the various measurements of α\alpha with these templates defined as |ααref|(σ2+σref2)1/2\left|\alpha-\alpha_{\mathrm{ref}}\right|\left(\sigma^{2}+\sigma_{\mathrm{ref}}^{2}\right)^{-1/2} remains within 0.15σ0.15\,\sigma. This trend is also observed when cosmological constraints are inferred, with a small but very clear shift in the posterior distributions of Ωcdm\Omega_{\rm cdm} for templates 2, 4, 5, and 6, as shown in Fig. 9. Given the similar constraints between the other templates, template 1 was chosen for the main analysis.

Refer to caption
Figure 9: Comparison of templates 1 and 6 for BAO fitting at the level of cosmological parameters. Templates 3, 7, 8, 9, and 10 show contours that are similar to the ones obtained with the reference template 1. Templates 2, 4, and 5 have similarly-biased contours like in the case of template 6. The shift that can be seen most clearly on the posterior distribution of Ωcdm\Omega_{\rm cdm} is the effect of omitting the polynomial term in θ2\theta^{-2}.
Refer to caption
Figure 10: Bias 100(α1)100\,(\alpha-1) as a function of θmin\theta_{\rm min} and θmax\theta_{\rm max} (colour) in the 13 redshift bins of the analysis. The dashed line corresponds to α1=0\alpha-1=0. In this analysis, α\alpha is obtained by best fit rather than MCMC. In almost all redshift bins, including small scales helps in recovering an unbiased estimate of α\alpha.
Refer to caption
Figure 11: Theoretical two-point correlation function computed with and without RSD using the redshift distributions of four redshift bins from the Flagship simulation shown in Fig. 1.

Another important aspect of the robustness of the template is to be able to handle shifts of the fiducial cosmology with respect to the true cosmology. As such, the previous comparison has been repeated in a setup where the fiducial cosmology was altered to differ from the cosmology from the Flagship simulation, using h=0.73h=0.73 instead of h=0.67h=0.67. In this case, we find that the absolute shift of α\alpha with respect to the expected value of 1 averaged over all redshift bins |1α|\langle|1-\alpha|\rangle for templates 1, 3, 7, 8, 9, 10 (we exclude templates without order θ2\theta^{-2}) is respectively 0.030, 0.033, 0.030, 0.030, 0.031, and 0.032. Table 4 presents the results of this test, showing no preference for including higher orders in the template polynomial when it comes to robustness with respect to the choice of fiducial cosmology.

Table 4: Values of α\alpha obtained with the reference template 1 and templates including higher polynomial orders using a fiducial cosmology which differs from the simulation cosmology (h=0.73h=0.73 against h=0.67h=0.67). The columns |1α|\langle|1-\alpha|\rangle and σ68\langle\sigma_{68}\rangle are respectively the bias and the uncertainty of α\alpha averaged over all redshift bins. We find that template 1 has the smallest σ68\langle\sigma_{68}\rangle among templates of minimum bias |1α|=0.03\langle|1-\alpha|\rangle=0.03.
Template Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10 Bin 11 Bin 12 Bin 13 |1α|\langle|1-\alpha|\rangle σ68\langle\sigma_{68}\rangle
1 1.013 1.046 0.969 1.011 1.012 0.996 0.949 1.069 1.047 1.032 1.049 1.011 1.010 0.030 0.068
3 1.038 1.057 0.956 1.014 1.003 0.979 0.949 1.066 1.038 1.033 1.048 1.012 1.009 0.033 0.064
7 1.010 1.042 0.970 1.027 1.010 0.996 0.952 1.068 1.056 1.032 1.047 1.013 1.007 0.030 0.070
8 0.992 1.052 0.969 1.017 1.015 1.000 0.956 1.070 1.059 1.032 1.045 1.015 1.005 0.030 0.070
9 1.034 1.052 0.970 1.016 1.005 0.994 0.949 1.067 1.049 1.032 1.048 1.012 1.009 0.031 0.067
10 1.026 1.052 0.967 1.016 1.012 0.993 0.947 1.063 1.048 1.032 1.048 1.012 1.010 0.032 0.062

5.6 Effect of the scale cuts

The large redshift range 0.2z2.50.2\leq z\leq 2.5 included in this configuration space analysis entails that θBAO\theta_{\scriptscriptstyle\rm BAO} varies between 1.°6 and 7.°0. In this situation, using a single scale cut for all bins or a redshift-dependent one is not obvious. We performed a first study of how α\alpha varies as a function of θmin\theta_{\rm min} and θmax\theta_{\rm max} with a fitting approach on a grid defined by θmin[0.°2,θBAO1.°0]\theta_{\rm min}\in[$$,\theta_{\scriptscriptstyle\rm BAO}-$$] and θmax[θBAO+1.°0,θBAO+3.°0]\theta_{\rm max}\in[\theta_{\scriptscriptstyle\rm BAO}+$$,\theta_{\scriptscriptstyle\rm BAO}+$$] by steps of 0.°1. The smallest data vector considered is θBAO±1.°0\theta_{\scriptscriptstyle\rm BAO}\pm$$ with 20 points.

The results of this study are shown in Fig. 10. The bias α1\alpha-1 varies with θmin\theta_{\rm min}, with a clear cut-off at θ=1.°0\theta=$$. Increasing θmin\theta_{\rm min} beyond this cut-off tends to bias α\alpha, especially at low redshift, where the BAO signal is smeared by the non-linear evolution of large-scale structures. While a pronounced evolution of α\alpha with θmaxθBAO\theta_{\rm max}-\theta_{\scriptscriptstyle\rm BAO} is visible at low redshift when θmin1.°0\theta_{\rm min}\geq$$, no clear trend can be found when θmin1.°0\theta_{\rm min}\leq$$, where the bias is the smallest.

Following these observations, we then carried out an MCMC study on a smaller grid defined as θmin[0.°5,0.°7]\theta_{\rm min}\in[$$,$$] with the same 0.°1 resolution and θmax[θBAO+1.°0,θBAO+2.°5]\theta_{\rm max}\in[\theta_{\scriptscriptstyle\rm BAO}+$$,\theta_{\scriptscriptstyle\rm BAO}+$$] with steps of 0.°5. On this grid, no significant variation of α\alpha was observed with both θmin\theta_{\rm min} and θmaxθBAO\theta_{\rm max}-\theta_{\scriptscriptstyle\rm BAO}. The same observations were made when the analytical Gaussian covariance was used instead of the jackknife covariance. The final scale cut chosen was then θmin=0.°6,θmax=θBAO+2.°5\theta_{\rm min}=$$,\theta_{\rm max}=\theta_{\scriptscriptstyle\rm BAO}+$$ as it yielded the most robust results across all redshift bins. In the θmin,θmax\theta_{\rm min},\theta_{\rm max} grid used for the MCMC, the αi\alpha_{i} extracted in all bins are in agreement within 0.06σ0.06\,\sigma on average and at most 0.25σ0.25\,\sigma. The effect on hh, Ωb\Omega_{\rm b}, and Ωcdm\Omega_{\rm cdm} inferred from the αi\alpha_{i} is on average 0.05σ0.05\,\sigma and never exceeds 0.14σ0.14\,\sigma.

5.7 Impact of RSD

In this section, we check whether including RSD in the theoretical model described in Sect. 2.1 affects the constraints on α\alpha. The effect of RSD over the two-point angular correlation function is illustrated in Fig. 11. The correlation function amplitude is increased at large scales and low redshift. This is the Kaiser effect, explained by the inflow of galaxies towards overdensities, which is stronger at low redshift (Kaiser 1987).

However, the actual position of the BAO scale remains unchanged and we see in Fig. 12 that this is reflected in the constraints obtained from MCMC analysis. When RSD are included, in blue in the figure, the template nuisance parameters compensate for the effect of RSD with a significant decrease of A1A_{1}, while A0A_{0} and A2A_{2} are slightly increased. This trend holds in all redshift bins except the last one where the amplitude of the shifts becomes negligible. The relative difference |Δα|/α|\Delta\alpha|/\alpha averaged over all redshift bins is 0.25%, the maximum being 0.5%. As for the uncertainty of α\alpha, its variations do not exceed 3.7% and are on average 1.4%. Thanks to the template-fitting approach, the analysis is robust with respect to RSD. In any case, as explained in Sect. 2.1, RSD are included in the analysis.

Refer to caption
Figure 12: Comparison of the constraints on α\alpha with and without RSD in the theoretical model for the redshift bin 1.048 ¡ z ¡ 1.190. The posterior distribution of α\alpha is visually identical, the effect of RSD is completely absorbed by nuisance parameters.

5.8 Effect of the redshift binning scheme

In this section, we show the effect of the choice of using equidistant redshift bins compared to the constraints obtained with equipopulated bins while keeping the same fiducial choice of template and scale cuts. This choice results in bins of width Δz=0.177\Delta z=0.177. For this analysis, the two-point correlation function and galaxy bias are measured in the same way as described in Sect. 2.2 for the equipopulated binning scheme. The rest of the analysis is carried out in an identical way. Using this binning scheme, we get equivalent constraints for redshift bins of similar zeffz_{\mathrm{eff}}, as reported in Table 5. Note that the equidistant binning does not entail regularly spaced zeffz_{\mathrm{eff}}. The effective redshifts are still computed with Eq. (21). By construction, we have more bins with high zeffz_{\mathrm{eff}} where the BAO signal is not smeared by the non-linear evolution of structures due to gravitation. Simultaneously, thinner redshift bins present a BAO signal which is less diluted by intra-bin variations of the BAO scale. However, the decrease in number density entails that the error bars of the two-point correlation function are larger at high redshift. In our case, this compromise yields more bins with high detection levels and tight constraints on α\alpha. We also find several bins with low values of α\alpha, two of them being more than 1σ1\,\sigma away from α=1\alpha=1, at zeff=1.993z_{\mathrm{eff}}=1.993 and 2.174.

Table 5: Values of α\alpha extracted from MCMC in each equidistant redshift bin. The detection level is defined in Eq. (22). As there are more redshift bins at higher redshifts, the detection of the BAO signal is stronger than with equipopulated bins, increasing the constraining power over cosmological parameters.
Bin zeffz_{\mathrm{eff}} α\alpha Δdet\Delta_{\mathrm{det}} (σ\sigma)
1 0.311 1.0760.145+0.0901.076^{+0.090}_{-0.145} no detection
2 0.442 0.9740.114+0.1450.974^{+0.145}_{-0.114} 1.0
3 0.63 0.9710.089+0.0860.971^{+0.086}_{-0.089} no detection
4 0.806 0.9460.063+0.0760.946^{+0.076}_{-0.063} 1.2
5 0.961 1.0330.060+0.0561.033^{+0.056}_{-0.060} 1.3
6 1.126 1.0070.049+0.0521.007^{+0.052}_{-0.049} 2.0
7 1.286 1.0220.022+0.0221.022^{+0.022}_{-0.022} 4.1
8 1.474 1.0050.032+0.0351.005^{+0.035}_{-0.032} 2.5
9 1.641 0.9550.042+0.0500.955^{+0.050}_{-0.042} 2.2
10 1.82 0.9960.028+0.0280.996^{+0.028}_{-0.028} 3.4
11 1.993 0.9620.025+0.0280.962^{+0.028}_{-0.025} 3.3
12 2.174 0.9370.045+0.0570.937^{+0.057}_{-0.045} 2.0
13 2.365 1.0010.018+0.0181.001^{+0.018}_{-0.018} 4.6

Propagating these results to the cosmological parameters, we find h=0.6700.003+0.003h=0.670^{+0.003}_{-0.003}, 100Ωb=4.8950.045+0.044100\,\Omega_{\rm b}=4.895^{+0.044}_{-0.045}, and Ωcdm=0.2660.016+0.017\Omega_{\rm cdm}=0.266^{+0.017}_{-0.016}, which represents shifts of +0.1%, -0.5%, and +9.2% respectively, and a 36.4% improvement in the constraining power for Ωcdm\Omega_{\rm cdm} with respect to the equipopulated binning results. The variations in the parameter values are driven by the low α\alpha value and tight constraints of bin 11 in the equidistant binning. Bin 12 has an even lower value α=0.937\alpha=0.937 and participates to these variations but in a weaker way due to its uncertainty, larger than in bin 11 by a factor 2.1. Given these results, it seems that the equidistant scheme may be more suitable for the BAO analysis than the equipopulated scheme initially chosen to match the choice that maximizes the dark energy figure of merit of the 3×\times2-point analysis for Euclid. In future Euclid BAO photometric analyses, an optimization of the photometric sample selection will by necessary.

6 Conclusions

In this work, we have estimated our ability to constrain cosmological parameters with the photometric sample of Euclid through a BAO analysis of the Flagship mock galaxy catalogue, whose area is intermediate to the expected observed survey area at Data Release 1 and 2. We have measured the two-point correlation function in 13 redshift bins. We have extracted constraints on the BAO signal through the α\alpha parameter in each redshift bin but also using all bins jointly. The significance of the BAO detection has been quantified to reach Δdet=10.3σ\Delta_{\mathrm{det}}=10.3\,\sigma with the joint analysis, a three-fold improvement with respect to the latest results in photometric surveys (DES Y6), with similar or better constraints in all redshift bins, covering also a large range of redshifts 0.2z2.50.2\leq z\leq 2.5. This result shows how powerful photometric galaxy clustering can be with Euclid. From these BAO constraints and considering Planck priors, we have derived constraints on different cosmological parameters: h=0.669±0.003h=0.669\pm 0.003, 100Ωb=4.9210.046+0.044100\,\Omega_{\rm b}=4.921^{+0.044}_{-0.046}, and Ωcdm=0.2930.022+0.023\Omega_{\rm cdm}=0.293^{+0.023}_{-0.022} in a flat Λ\LambdaCDM cosmology.

We have also studied different analysis choices, showing that scale cuts can have a non-negligible effect over the value of the α\alpha parameter. Indeed, if θmin>1°\theta_{\rm min}>$$, then we observe a bias, even for low-redshift bins where the BAO peak is at large scales. On the contrary, while omitting the order θ2\theta^{-2} in the template biases the resulting cosmological constraints, there is no need to include higher orders in the template functional form used to fit the BAO feature. The template is robust to the choice of fiducial cosmology, with variations |Δα|/α|\Delta\alpha|/\alpha not exceeding 0.0031 when averaged over all redshifts, well below the uncertainties of α\alpha given in Table 2. The template is efficient when it comes to absorbing effects that affect the amplitude of the two-point angular correlation function like RSD: including or removing them from the model, the constraints over α\alpha remain unchanged at all redshifts. An important point which has been seen in both joint and individual redshift bin analyses is the robustness with respect to the redshift bins included in the analysis. We have also checked that there is no significant bias when a synthetic data vector is used. However, when we consider the data vector measured on the Flagship simulation, we have observed a shift of the α\alpha parameter and an increase of its uncertainty when redshift bin 11 is excluded. This effect is seen in both the joint analysis and the cosmological parameters inferred from αi\alpha_{i}, i[1,13]i\in[1,13]. This is explained by the fact that this bin has the largest BAO detection significance. This detailed study of the effect of each redshift bin will be mandatory in future works, given that the strength of the BAO signal and its effect over cosmological constraints change with redshift.

Results from Sect. 5.8 suggest that there is margin for improvement in the constraints obtained from a BAO analysis by optimising the redshift binning scheme. A galaxy sample selection taking into account both redshift and colour could be another possible point of improvement for these results. However, it is very promising to see that with a simulated area of 37% of what is expected at Data Release 3 of Euclid, the constraints on α\alpha are already improved by a factor three with respect to the current best constraints from a single photometric survey.

Acknowledgements.
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft- und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (www.euclid-ec.org). This work has made use of CosmoHub, developed by PIC (maintained by IFAE and CIEMAT) in collaboration with ICE-CSIC. It received funding from the Spanish government (MCIN/AEI/10.13039/501100011033), the EU NextGeneration/PRTR (PRTR-C17.I1), and the Generalitat de Catalunya. Some of the results in this paper have been derived using the healpy and HEALPix packages. SC acknowledges support from the Italian Ministry of University and Research (mur), PRIN 2022 ‘EXSKALIBUR – Euclid-Cross-SKA: Likelihood Inference Building for Universe’s Research’, Grant No. 20222BBYB9, CUP C53D2300131 0006, and from the European Union – Next Generation EU.

References

  • Abbott et al. (2018) Abbott, T. M. C., Abdalla, F. B., Allam, S., et al. 2018, ApJS, 239, 18
  • Abbott et al. (2024) Abbott, T. M. C., Adamow, M., Aguena, M., et al. 2024, Phys. Rev. D, 110, 063515
  • Ade et al. (2016) Ade, P. A. R., Aghanim, N., Arnaud, M., et al. 2016, A&A, 594, A13
  • Ade et al. (2014) Ade, P. A. R., Aghanim, N., Arnaud, M., et al. 2014, A&A, 566, A54
  • Alonso et al. (2015) Alonso, D., Bull, P., Ferreira, P. G., Maartens, R., & Santos, M. G. 2015, ApJ, 814, 145
  • Behroozi et al. (2013) Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109
  • Blanton et al. (2003) Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. 2003, ApJ, 592, 819
  • Blanton et al. (2005a) Blanton, M. R., Lupton, R. H., Schlegel, D. J., et al. 2005a, ApJ, 631, 208
  • Blanton et al. (2005b) Blanton, M. R., Schlegel, D. J., Strauss, M. A., et al. 2005b, AJ, 129, 2562
  • Blas et al. (2011) Blas, D., Lesgourgues, J., & Tram, T. 2011, JCAP, 07, 034
  • Carretero et al. (2015) Carretero, J., Castander, F. J., Gaztañaga, E., Crocce, M., & Fosalba, P. 2015, MNRAS, 447, 646
  • Carretero et al. (2017) Carretero, J., Tallada, P., Casals, J., et al. 2017, in Proceedings of the European Physical Society Conference on High Energy Physics. 5-12 July, 488
  • Challinor & Lewis (2011) Challinor, A. & Lewis, A. 2011, Phys. Rev. D, 84, 043516
  • Chisari et al. (2019) Chisari, N. E., Alonso, D., Krause, E., et al. 2019, ApJS, 242, 2
  • Cole et al. (2005) Cole, S., Percival, W. J., Peacock, J. A., et al. 2005, MNRAS, 362, 505
  • Crocce et al. (2011) Crocce, M., Cabré, A., & Gaztañaga, E. 2011, MNRAS, 414, 329
  • Dahlen et al. (2005) Dahlen, T., Mobasher, B., Somerville, R. S., et al. 2005, ApJ, 631, 126
  • Dembinski et al. (2020) Dembinski, H., Ongmongkolkul, P., Deil, C., et al. 2020, Zenodo, 10.5281/zenodo.3949207
  • DESI Collaboration: Adame et al. (2024) DESI Collaboration: Adame, A., Aguilar, J., Ahlen, S., et al. 2024, arXiv e-prints, arXiv:2404.03000
  • Eisenstein & Hu (1998) Eisenstein, D. J. & Hu, W. 1998, ApJ, 496, 605
  • Eisenstein et al. (2005) Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560
  • Euclid Collaboration : Sciotti et al. (2024) Euclid Collaboration : Sciotti, D., Gouyou Beauchamps, S., Cardone, V. F., et al. 2024, A&A, 691, A318
  • Euclid Collaboration: Blanchard et al. (2020) Euclid Collaboration: Blanchard, A., Camera, S., Carbone, C., et al. 2020, A&A, 642, A191
  • Euclid Collaboration: Castander et al. (2024) Euclid Collaboration: Castander, F. J., Fosalba, P., Stadel, J., et al. 2024, A&A, accepted, arXiv:2405.13495
  • Euclid Collaboration: Cropper et al. (2024) Euclid Collaboration: Cropper, M., Al-Bahlawan, A., Amiaux, J., et al. 2024, A&A, accepted, arXiv:2405.13492
  • Euclid Collaboration: Jahnke et al. (2024) Euclid Collaboration: Jahnke, K., Gillard, W., Schirmer, M., et al. 2024, A&A, accepted, arXiv:2405.13493
  • Euclid Collaboration: Mellier et al. (2024) Euclid Collaboration: Mellier, Y., Abdurro’uf, Acevedo Barroso, J. A., et al. 2024, A&A, accepted, arXiv:2405.13491
  • Fang et al. (2020b) Fang, X., Eifler, T., & Krause, E. 2020b, MNRAS, 497, 2699
  • Fang et al. (2020a) Fang, X., Krause, E., Eifler, T., & MacCrann, N. 2020a, JCAP, 05, 010
  • Foreman-Mackey et al. (2013) Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
  • Gelman & Rubin (1992) Gelman, A. & Rubin, D. B. 1992, Statistical Science, 7, 457
  • Górski et al. (2005) Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
  • Gouyou Beauchamps et al. (2022) Gouyou Beauchamps, S., Lacasa, F., Tutusaus, I., et al. 2022, A&A, 659, A128
  • Hartlap et al. (2007) Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399
  • Hu & Sugiyama (1996) Hu, W. & Sugiyama, N. 1996, ApJ, 471, 542
  • Ivezić et al. (2019) Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
  • James & Roos (1975) James, F. & Roos, M. 1975, Comput. Phys. Commun., 10, 343
  • Jarvis et al. (2004) Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
  • Kaiser (1987) Kaiser, N. 1987, MNRAS, 227, 1
  • Kaiser (1992) Kaiser, N. 1992, ApJ, 388, 272
  • Krause & Eifler (2017) Krause, E. & Eifler, T. 2017, MNRAS, 470, 2100
  • Lacasa & Grain (2019) Lacasa, F. & Grain, J. 2019, A&A, 624, A61
  • Landy & Szalay (1993) Landy, S. D. & Szalay, A. S. 1993, ApJ, 412, 64
  • Lepori et al. (2022) Lepori, F., Tutusaus, I., Viglione, C., et al. 2022, A&A, 662, A93
  • Lewis et al. (2000) Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
  • Mather et al. (1999) Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., & Wilkinson, D. T. 1999, ApJ, 512, 511
  • Mead et al. (2021) Mead, A. J., Brieden, S., Tröster, T., & Heymans, C. 2021, MNRAS, 502, 1401
  • Percival et al. (2001) Percival, W. J., Baugh, C. M., Bland-Hawthorn, J., et al. 2001, MNRAS, 327, 1297
  • Potter et al. (2017) Potter, D., Stadel, J., & Teyssier, R. 2017, CompAC, 4, 2
  • Tallada et al. (2020) Tallada, P., Carretero, J., Casals, J., et al. 2020, Astronomy and Computing, 32, 100391
  • Tanaka et al. (2018) Tanaka, M., Coupon, J., Hsieh, B.-C., et al. 2018, PASJ, 70, S9
  • Troxel et al. (2018) Troxel, M. A., Krause, E., Chang, C., et al. 2018, MNRAS, 479, 4998
  • Tutusaus et al. (2020) Tutusaus, I., Martinelli, M., Cardone, V. F., et al. 2020, A&A, 643, A70
  • Zehavi et al. (2011) Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2011, ApJ, 736, 59
  • Zonca et al. (2019) Zonca, A., Singer, L., Lenz, D., et al. 2019, Journal of Open Source Software, 4, 1298

Appendix A Computation of rs,dragr_{\mathrm{s,\,drag}}

In our analysis, we compute rs,dragr_{\mathrm{s,\,drag}} following the fast approximations described by Eqs. (2) to (6) in Eisenstein & Hu (1998). In these equations, we updated the CMB temperature to its value TCMB=2.725KT_{\mathrm{CMB}}=2.725\,\mathrm{K} reported in the final FIRAS CMB results (Mather et al. 1999). We report here the expressions used for the redshift zeqz_{\rm eq} and wavenumber of the particle horizon keqk_{\mathrm{eq}} at the matter-radiation equality, in which Θ2.7=TCMB2.7\Theta_{2.7}=\frac{T_{\mathrm{CMB}}}{2.7}, as well as the expression used for zdragz_{\mathrm{drag}}

zeq=2.5×104ΩmΘ2.741;\displaystyle z_{\rm eq}=2.5\times 10^{4}\,\Omega_{\rm m}\Theta_{2.7}^{-4}-1\,; (25)
keq=0.0746ΩmΘ2.72;\displaystyle k_{\mathrm{eq}}=0.0746\,\Omega_{\rm m}\Theta_{2.7}^{-2}\,; (26)
zdrag,b1=0.313Ωm0.419(1+0.607Ωm0.674);\displaystyle z_{\mathrm{drag,\,b1}}=0.313\,\Omega_{\rm m}^{-0.419}\left(1+0.607\,\Omega_{\rm m}^{0.674}\right)\,; (27)
zdrag,b2=0.238Ωm0.223;\displaystyle z_{\mathrm{drag,\,b2}}=0.238\,\Omega_{\rm m}^{0.223}\,; (28)
zdrag=1345Ωm0.2511+0.659Ωm0.828(1+zdrag,b1Ωbzdrag,b2).\displaystyle z_{\mathrm{drag}}=1345\,\frac{\Omega_{\rm m}^{0.251}}{1+0.659\,\Omega_{\rm m}^{0.828}}\left(1+z_{\mathrm{drag,\,b1}}\Omega_{\rm b}^{z_{\mathrm{drag,b2}}}\right)\,. (29)

Then we compute the distance rdragr_{\mathrm{drag}} as

Rdrag3ρb(zdrag)4ργ(zdrag)=31.5ΩbΘCMB410001+zdrag;\displaystyle R_{\mathrm{drag}}\equiv\frac{3\rho_{\mathrm{b}}(z_{\mathrm{drag}})}{4\rho_{\mathrm{\gamma}}(z_{\mathrm{drag}})}=31.5\,\Omega_{\rm b}\Theta_{\mathrm{CMB}}^{-4}\frac{1000}{1+z_{\mathrm{drag}}}\,; (31)
Req3ρb(zeq)4ργ(zeq)=31.5ΩbΘCMB410001+zeq;\displaystyle R_{\mathrm{eq}}\equiv\frac{3\rho_{\mathrm{b}}(z_{\rm eq})}{4\rho_{\mathrm{\gamma}}(z_{\rm eq})}=31.5\,\Omega_{\rm b}\Theta_{\mathrm{CMB}}^{-4}\frac{1000}{1+z_{\rm eq}}\,; (32)
rdrag=23keq6Reqln(1+Rdrag+Rdrag+Req1+Req).\displaystyle r_{\mathrm{drag}}=\frac{2}{3k_{\mathrm{eq}}}\sqrt{\frac{6}{R_{\mathrm{eq}}}}\ln{\left(\frac{\sqrt{1+R_{\mathrm{drag}}}+\sqrt{R_{\mathrm{drag}}+R_{\mathrm{eq}}}}{1+\sqrt{R_{\mathrm{eq}}}}\right)}\,. (33)

The prefactor 1345 in Eq. (LABEL:eq:z_drag_eisenstein) was taken from Eq. (E-2) in Hu & Sugiyama (1996) rather than the 1291 prefactor used in Eisenstein & Hu (1998) because we find a significantly better agreement with the results from the Boltzmann codes CAMB and CLASS (Blas et al. 2011). Varying hh, Ωb\Omega_{\rm b}, or Ωm\Omega_{\rm m} in [0.6,0.8], [0.039,0.059], and [0.17,0.37] respectively while fixing the other parameters to the fiducial values of Flagship, we find an average relative difference rs,drag,HSrs,drag,CAMB1\frac{r_{\mathrm{s,\,drag,\,HS}}}{r_{\mathrm{s,\,drag,\,CAMB}}}-1 of 0.04%-0.04\%, 0.01%, and 0.03% using 1345 as a prefactor against rs,drag,EHrs,drag,CAMB1\frac{r_{\mathrm{s,\,drag,\,EH}}}{r_{\mathrm{s,\,drag,\,CAMB}}}-1 of 2.7%, 2.7%, and 2.6% using 1291.