This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\reserveinserts

28 \stackMath

Exchangeable Laws in Borel Data Structures

Julian Gero Gerstenberg Institute for Mathematics, Goethe University Frankfurt am Main, Germany gerstenb@math.uni-frankfurt.de
Abstract.

Motivated by statistical practice, category theory terminology is used to introduce Borel data structures and study exchangeability in an abstract framework. A generalization of de Finetti’s theorem is shown and natural transformations are used to present functional representation theorems (FRTs). Proofs of the latter are based on a classical result by D.N.Hoover providing a functional representation for exchangeable arrays indexed by finite tuples of integers, together with an universality result for Borel data structures. A special class of Borel data structures are array-type data structures, which are introduced using the novel concept of an indexing system. Studying natural transformations mapping into arrays gives explicit versions of FRTs, which in examples coincide with well-known Aldous-Hoover-Kallenberg-type FRTs for (jointly) exchangeable arrays. The abstract "index arithmetic" presented unifies and generalizes technical arguments commonly encountered in the literature on exchangeability theory. Finally, the category theory approach is used to outline how an abstract notion of seperate exchangeability can be derived, again motivated from statistical practice.

Key words and phrases:
exchangeability, functional represetation theorems, data structures, natural transformations, arrays, Borel spaces, foundations of statistics
2010 Mathematics Subject Classification:
Primary 60G09, 68P05; secondary 62A01

1. Introduction

Let 𝒮\mathcal{S} be a Borel space111a measurable space 𝒮\mathcal{S} is a Borel space if there exists a measurable subset B[0,1]B\subseteq[0,1] and a bi-measurable bijection f:𝒮Bf:\mathcal{S}\rightarrow B, see Appendix 9.1 for basic properties of such spaces., 𝕊\mathbb{S}_{\mathbb{N}} the discrete group of bijections π:\pi:\mathbb{N}\rightarrow\mathbb{N} and

𝕊×𝒮𝒮,(π,x)πx\mathbb{S}_{\mathbb{N}}\times\mathcal{S}\rightarrow\mathcal{S},(\pi,x)\mapsto\pi x (1.1)

a measurable group action. (The law of) A 𝒮\mathcal{S}-valued random variable XX is called exchangeable if πX=𝑑X\pi X\overset{d}{=}X for every π\pi, with =𝑑\overset{d}{=} being equality in distribution. In many examples motivated from statistics, XX is exchangeable iff πX=𝑑X\pi X\overset{d}{=}X holds for all π𝕊𝕊\pi\in\mathbb{S}_{\infty}\subseteq\mathbb{S}_{\mathbb{N}}, with 𝕊\mathbb{S}_{\infty} the countable group of bijections π\pi with π(i)=i\pi(i)=i for all but finitely many ii.

This work studies exchangeability when 𝕊×𝒮𝒮\mathbb{S}_{\mathbb{N}}\times\mathcal{S}\rightarrow\mathcal{S} is derived from a Borel data structure (BDS), which is defined to be a functor

D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻,D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL},

where 𝙸𝙽𝙹\mathtt{INJ} is the category of injections between finite sets, 𝙸𝙽𝙹op\mathtt{INJ}^{\text{op}} its opposite and 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL} the category of measurable maps between Borel spaces. The main definitions and results are presented in Section 2, which starts with an explicit definition of Borel data structure in Definition 1. No knowledge of category theory is assumed to read this paper, references for the used terminology are [Mac78] and [Mil19], the latter providing a "programmers" view to category theory which fits the philosophy of how it is used in this work very well.
This paper is addressed to readers interested in exchangeability and data structures, the emphasize is on decomposition, functional representation and foundations of statistical applications. Many surveys on exchangeability theory covering such topics exist, see [Ald85], [Aus08], [Ald09], [Ald10] or [OR14].

Acknowledgements.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Exchangeability theory of ID-based data structures with applications in statistics, 502386356.

1.1. Overview of the results

The main achievement of this work may be the provided abstract framework, which allows to talk about many reoccurring phenomena and constructions in exchangeability theory literature in a general setting. The main results are:

  • Theorem 1: a generalization of de Finetti’s theorem, which shows that exchangeable laws in BDS coincide precisely with mixtures of exchangeable laws satisfying an independence property, also see Theorem 8,

  • Theorem 2: Hoover’s FRT for exchangeable arrays, Theorem A below, has an equivalent formulation in the provided framework using the concept of natural transformations. Theorem A is the most important ingredient to our approach,

  • Theorems 3 and 4: a weak FRT for exchangeable laws in arbitrary BDS using the concept of almost sure natural transformations,

  • Definitions 8 and 9 providing the concepts of indexing system and array-type data structures,

  • Theorems 6 and 12 providing an explicit characterization of all (true) natural transformations mapping from any BDS into an array-type data structure via kernel functions. One application of this is in characterizing all local modification rules on array-type data structures, Example 16, a concept which has been introduced in [AT10],

  • Theorem 5: a strong FRT for exchangeable laws in array-type data structures via true natural transformations. For a given array-type data structure and using the classification of natural transformations via kernels, it is seen that the derived FRT is often equivalent to some classical version of an Aldous-Hoover-Kallenberg-type FRT for (jointly) exchangeable arrays, see Corollary 4,

  • Theorem 7: it exists a Borel data structure that is universal with respect to natural embedding,

  • Theorem 9: by considering combinatorial Borel data structures, a correspondence principle between exchangeable laws and limits of combinatorial structures is shown. This generalizes many well-known of such correspondences, the most famous being between graph limits and exchangeable random graphs, see [DJ07], [Grü15] or [Aus08] for a more general exposition. Another is between exchangeable posets and poset limits, see [Jan11], in which further examples are listed in the introduction. A very elementary instance of this correspondence can be formulated for exchangeable {0,1}\{0,1\}-sequences, see [GGH16].

  • Section 7 in which a notion of seperate exchangeability is presented for a wide range of Borel data structures. A special case is the classical notion of seperate exchangeability in arrays. The abstract construction of seperate exchangeability is motivated from its statistical philosophy and makes heavy use of the category theory approach to exchangeability via functors.

Experts in the field may jump to read Section 1.7 (notations), followed by Section 2 (definitions and main results), and come back to read the rest of the introduction later; at this point further motivations and connections to existing literature are presented.

1.2. Similar use of category theory terminology in related work

The categorical approach to exchangeability via Borel data structures can be motivated from a statistical perspective, see Section 1.5, which is, in spirit, very close to the use of category theory in [McC02] where the more general question "What is a statistical model?" is discussed, see Remark 4.
There is close connection to the notion of combinatorial species, see [Ber+98], used in analytical combinatorics; (combinatorial) Borel data structures can be interpreted as combinatorial species equipped with a restriction mechanism compatible with the relabeling mechanism; this approach was used in [Ger18]. Like the case with combinatorial species, a great benefit of using category theory terminology with Borel data structures is that it becomes easy to build new examples of Borel data structures by composition, which provides infinite examples by iterative constructions, see Example 12. Also, the category theory approach is the basis for introducing an abstract concept of seperate exchangeability in Section 7.
Several definitions in this work are close to the content presented in Section 3.1 of [AT10], where contravariant functors, natural transformations and also exchangeable laws were introduced in a similar abstract setting, some aspects of that work were presented already in [Aus08] in an "explicit" form. More connections are explained throughout the work, also see Remark 24 discussing the different basic assumptions.

Remark 1 (Other connections).

The approach to exchangeability via functors modeling data structures is complemented by the approach using model theory, we refer to Section 3.8 in [Aus08] and the references therein. Also, de Finetti’s theorem for exchangeable sequences has been approached from a more pure category theory perspective recently, see [FGP21], [JS20] or [SS22]. To explain all these connections goes beyond the scope of this paper.

1.3. Exchangeability in arrays

FRTs are often presented for different notions of exchangeability in arrays, many of which fit in the framework (1.1) as follows: given is a Borel space 𝒳\mathcal{X}, a countable set of indices II_{\mathbb{N}} and a group action

𝕊×II,(π,i)πi\mathbb{S}_{\mathbb{N}}\times I_{\mathbb{N}}\rightarrow I_{\mathbb{N}},(\pi,\textbf{i})\mapsto\pi\textbf{i} (1.2)

on indices. This gives a (left-)group action on 𝒮=𝒳I\mathcal{S}=\mathcal{X}^{I_{\mathbb{N}}} by defining for x=(xi)iI𝒮x=(x_{\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}}\in\mathcal{S} the action as πx=(xπ1i)iI\pi x=(x_{\pi^{-1}\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}}. In this situation, 𝒮\mathcal{S}-valued exchangeable random variables are arrays of 𝒳\mathcal{X}-valued random variables indexed by II_{\mathbb{N}}, that is X=(Xi)iIX=(X_{\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}}, such that

X=(Xi)iI=𝑑(Xπi)iI=πXfor allπ𝕊.X=(X_{\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}}\leavevmode\nobreak\ \overset{d}{=}\leavevmode\nobreak\ (X_{\pi\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}}=\pi X\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{for all}\leavevmode\nobreak\ \pi\in\mathbb{S}_{\mathbb{N}}. (1.3)

Many basic examples of exchangeability in arrays are instances of (1.3), some examples together with their FRTs are presented next. Let Ua,a(<)U_{a},a\in\binom{\mathbb{N}}{<\infty} be iid unif[0,1]\operatorname*{\mathbin{unif}}[0,1]-random variables indexed by finite subsets of \mathbb{N}. The following results are organized in Chapter 7 of [Kal06].

  • (E1)

    Sequences: I=I_{\mathbb{N}}=\mathbb{N}, that is i=i\textbf{i}=i\in\mathbb{N}, and πi=π(i)\pi\textbf{i}=\pi(i). The de Finetti/Hewitt-Savage theorem states that laws of exchangeable sequences X=(Xi)iX=(X_{i})_{i\in\mathbb{N}} are precisely the mixtures of laws of iid processes, which directly translates into a FRT: for every exchangeable sequence XX there exists a measurable function f:[0,1]2𝒳f:[0,1]^{2}\rightarrow\mathcal{X} such that

    X=𝑑(f(U,U{i}))i=i,X\overset{d}{=}(f(U_{\emptyset},U_{\{i\}}))_{\textbf{i}=i\in\mathbb{N}},

    with UU_{\emptyset} being responsible for the mixture over iid laws.

  • (E2)

    Arrays indexed by size-2 sets: I=(2)I_{\mathbb{N}}=\binom{\mathbb{N}}{2}, that is i={i1,i2},i1i2\textbf{i}=\{i_{1},i_{2}\}\subset\mathbb{N},i_{1}\neq i_{2}, and πi={π(i1),π(i2)}\pi\textbf{i}=\{\pi(i_{1}),\pi(i_{2})\}. A FRT (Aldous, Hoover) reads as follows: for every exchangeable X=(Xi)i(2)X=(X_{\textbf{i}})_{\textbf{i}\in\binom{\mathbb{N}}{2}} there is a measurable function f:[0,1]4𝒳f:[0,1]^{4}\rightarrow\mathcal{X}, symmetric in the second and third argument, such that

    X=𝑑(f(U,U{i1},U{i2},U{i1,i2}))i={i1,i2}(2).X\overset{d}{=}\Big{(}f\big{(}U_{\emptyset},U_{\{i_{1}\}},U_{\{i_{2}\}},U_{\{i_{1},i_{2}\}}\big{)}\Big{)}_{\textbf{i}=\{i_{1},i_{2}\}\in\binom{\mathbb{N}}{2}}.

    An elementary proof of this is presented in [Aus12]. Note that, by symmetry of ff, the value f(U,U{i1},U{i2},U{i1,i2})f(U_{\emptyset},U_{\{i_{1}\}},U_{\{i_{2}\}},U_{\{i_{1},i_{2}\}}) does not depend on an enumeration of the set i={i1,i2}\textbf{i}=\{i_{1},i_{2}\}. In case 𝒳={0,1}\mathcal{X}=\{0,1\} exchangeable arrays indexed by (2)\binom{\mathbb{N}}{2} correspond to exchangeable random graphs on nodes \mathbb{N}, the variables X{i1,i2}{0,1}X_{\{i_{1},i_{2}\}}\in\{0,1\} indicating edges.

  • (E3)

    Arrays indexed by length-2 tuples with different entries: I=2I_{\mathbb{N}}=\mathbb{N}^{2}_{\neq}, that is i=(i1,i2)2\textbf{i}=(i_{1},i_{2})\in\mathbb{N}^{2} with i1i2i_{1}\neq i_{2}, and πi=(π(i1),π(i2))\pi\textbf{i}=(\pi(i_{1}),\pi(i_{2})). For every exchangeable X=(Xi)i2X=(X_{\textbf{i}})_{\textbf{i}\in\mathbb{N}^{2}_{\neq}} there exists a measurable function f:[0,1]4𝒳f:[0,1]^{4}\rightarrow\mathcal{X}, that does not have to be symmetric, such that

    X=𝑑(f(U,U{i1},U{i2},U{i1,i2}))i=(i1,i2)2.X\overset{d}{=}\Big{(}f\big{(}U_{\emptyset},U_{\{i_{1}\}},U_{\{i_{2}\}},U_{\{i_{1},i_{2}\}}\big{)}\Big{)}_{\textbf{i}=(i_{1},i_{2})\in\mathbb{N}^{2}_{\neq}}.

    In case 𝒳={0,1}\mathcal{X}=\{0,1\} arrays indexed by 2\mathbb{N}^{2}_{\neq} are exchangeable directed graphs on nodes \mathbb{N} (without self-loops), X(i1,i2){0,1}X_{(i_{1},i_{2})}\in\{0,1\} indicates the presence of a directed edge i1i2i_{1}\rightarrow i_{2}.

The examples (E2) and (E3) have straightforward generalizations to indices being kk-size subsets I=(k)I_{\mathbb{N}}=\binom{\mathbb{N}}{k} or kk-length tuples with different entries I=kI_{\mathbb{N}}=\mathbb{N}^{k}_{\neq}; of course one could also consider I=(k),kI_{\mathbb{N}}=\binom{\mathbb{N}}{\leq k},\mathbb{N}^{\leq k}_{\neq} or k\mathbb{N}^{k}. In all these cases FRTs use randomization up to size kk, that is involve variables Ua,a(k)U_{a},a\in\binom{\mathbb{N}}{\leq k}. FRTs for indices of unbounded size such as I=(<)I_{\mathbb{N}}=\binom{\mathbb{N}}{<\infty} (all finite subsets) or \mathbb{N}^{*}_{\neq} (all finite length tuples with different entries), use full randomization Ua,a(<)U_{a},a\in\binom{\mathbb{N}}{<\infty}. The FRT in the latter case is due to Hoover, see Theorem A in Section 1.6.

The Definitions 8 and 9 introduce indexing systems and the derived notion of array-type data structure, the latter being special types of BDS. This provides an abstract framework to capture examples of the previous types and Theorem 5 gives a unified formulation of FRTs in such cases, which is later translated into an explicit low-level form in Corollary 4.

Remark 2 (Graphons and Digraphons).

Representations for exchangeable graphs, (E2) with 𝒳={0,1}\mathcal{X}=\{0,1\}, are often presented using graphons, which are symmetric measurable functions W:[0,1]2[0,1]W:[0,1]^{2}\rightarrow[0,1]. Given a graphon one can define an exchangeable random graph as follows: given U{i},iU_{\{i\}},i\in\mathbb{N} let X{i1,i2},{i1,i2}(2)X_{\{i_{1},i_{2}\}},\{i_{1},i_{2}\}\in\binom{\mathbb{N}}{2} be independent with X{i1,i2}Ber(W(Ui1,Ui2))X_{\{i_{1},i_{2}\}}\sim\operatorname*{\mathbin{Ber}}(W(U_{i_{1}},U_{i_{2}})) (Bernoulli). The FRT in (E2) shows that, loosely speaking, every exchangeable random graph appears in this way if one allows the graphon to be picked at random in a first step experiment: define Wu(x,y)=[f(u,x,y,U)=1]W_{u}(x,y)=\mathbb{P}[f(u,x,y,U)=1] with Uunif[0,1]U\sim\operatorname*{\mathbin{unif}}[0,1] and set W=WUW=W_{U_{\emptyset}} (ignoring measureability details).
Representations for exchangeable directed graphs, (E3) with 𝒳={0,1}\mathcal{X}=\{0,1\}, are often presented using digraphons; how the FRT in (E3) translates into a digraphon representation is explained in [DJ07], Proof of Theorem 9.1.
Applications of such derived representations are, for example, in the context of Bayesian statistics, see [CAF16] or [OR14].

Remark 3 (Other notions of exchangeability in arrays).

This work mainly studies exchangeability in the sense of 𝕊\mathbb{S}_{\infty}-invariance, motivated by the statistical philosophy in Section 1.5. In the context of arrays, 𝒮=𝒳I\mathcal{S}=\mathcal{X}^{I_{\mathbb{N}}}, the term "exchangeability" is often also used for a probabilistic symmetry induced by a group action G×IIG\times I_{\mathbb{N}}\rightarrow I_{\mathbb{N}} on indices in which GG is not necessarily 𝕊\mathbb{S}_{\mathbb{N}}. Examples are separately exchangeable arrays, for instance I=2I_{\mathbb{N}}=\mathbb{N}^{2} and G=𝕊×𝕊G=\mathbb{S}_{\mathbb{N}}\times\mathbb{S}_{\mathbb{N}} acting on 2\mathbb{N}^{2} as (π1,π2)(i1,i2)=(π1(i1),π2(i2))(\pi_{1},\pi_{2})(i_{1},i_{2})=(\pi_{1}(i_{1}),\pi_{2}(i_{2})). Considering only the diagonal action every separately exchangeable array is seen to be also (jointly) exchangeable in the sense of 𝕊\mathbb{S}_{\mathbb{N}}-invariance; the converse fails in general. The statistical philosophy of "basic" notions of seperate exchangeability can be exploited to derive a notion of seperate exchangeability in the abstract setting of BDS discussed in this work, this is outlined in Section 7. Functional representations for classical notions of seperatly exchangeable arrays are presented in Chapter 7 of [Kal06].
Other types of actions on indices, giving generalizations of classical notions of exchangeability, are studied in [AP14] (hierarchical exchangeability), [Jun+21] and [Lee22] (DAG-exchangeability). Also see [Llo+13] in which "exchangeability in databases" is discussed.

1.4. Other exchangeable random objects

Exchangeability has long been studied in random structures different from, but not unrelated to, arrays. Many of such examples can be discussed within the BDS framework, to mention only a few:
Relation-type examples are given by partitions (interpreted as equivalence relations, Kingman’s Paintbox, see [Kal06], Section 7.8), posets [Jan11], strict weak orders [Gne97] or total orders (folklore, see e.g. [Ger20a] Section 3.2). Examples of this type fit into the frameworks (1.1) and (1.2) as follows: given is a action on indices 𝕊×II\mathbb{S}_{\mathbb{N}}\times I_{\mathbb{N}}\rightarrow I_{\mathbb{N}} and the space 𝒮\mathcal{S} of interest (partitions, orders,\dots) can be encoded as a subspace 𝒮𝒳I\mathcal{S}\subseteq\mathcal{X}^{I_{\mathbb{N}}} such that π𝕊,x𝒮πx𝒮\pi\in\mathbb{S}_{\mathbb{N}},x\in\mathcal{S}\Rightarrow\pi x\in\mathcal{S} and such that the notion of exchangeability on 𝒮\mathcal{S} is inherited from the array-setting. The exchangeable random structures can thus be seen as exchangeable arrays for which FRTs are often known – but mostly lead to unsatisfactory functional representations, as the additional structure given by 𝒮\mathcal{S} is ignored. However, this approach can serve as an intermediate step to a satisfactory representation, for an example see [EGW17] (exchangeable didendritic systems). The essence of these examples – structures of interest being "embedded" in more general ones – is later introduced within the BDS framework by considering natural embeddings and sub-data structures. In (hyper)graphs sub-data structures correspond to so-called hereditary (hyper)graph properties, see the introduction in [AT10].
Another source of examples for exchangeability in random structures does not (directly) fit the array-framework: structures of set system-type. Examples are total partitions (hierarchies) [FHP18] or interval hypergraphs [Ger20]. It is not (directly) obvious how these structures could be encoded as an exchangeable array in a useful way. Later the (combinatorial) BDS of set systems is introduced and these examples are seen to be sub-data structures therein.

1.5. Statistical motivation

Studying exchangeability in context (1.1) can be motivated by thinking about how data is collected by a statistician: picking a small group of individuals from a large population and measuring information on that group, the type of information could very well be about interactions between individuals, that is relational. For storing the measured information as data (on a piece of paper, on a computer,…) it is required to give unique identifiers (IDs) to the individuals of the picked group, which are used to represent the individuals within stored data - a common choice of IDs for storing information of a finite group of nn individuals is [n]={1,2,,n}[n]=\{1,2,\dots,n\}, at least in mathematical papers. When studying exchangeability theory it is assumed that the finite groups can be of arbitrary finite size - which pays to the idea that the underlying population is ’large’. Based on the idea of sampling consistency one passes to model measurements on countable infinite group of individuals, usually identifying individuals using IDs ={1,2,}\mathbb{N}=\{1,2,\dots\}. Having this in mind, a group action 𝕊×𝒮𝒮\mathbb{S}_{\mathbb{N}}\times\mathcal{S}\rightarrow\mathcal{S} can be interpreted as follows: x𝒮x\in\mathcal{S} represent data measured on a countable infinite group of individuals represented via IDs ii\in\mathbb{N} and πx𝒮\pi x\in\mathcal{S} represents the measurement on the same group, but with IDs of individuals redistributed according to iπ(i)i\mapsto\pi(i). Now suppose randomness is involved: first, a population is picked at random and second, conditioned on the population being picked, the statistician "randomly" picks a countable infinite group of individuals and gives them IDs ii\in\mathbb{N}, also "randomly". Given that group of individuals represented by IDs ii\in\mathbb{N}, the statistician measures data on that group, which gives X𝒮X\in\mathcal{S}. The precise meaning of "randomly" is not specified (for good reasons), but it seems reasonable to model the final measurement a 𝒮\mathcal{S}-valued exchangeable random variable, that is X=𝑑πXX\overset{d}{=}\pi X for all π𝕊\pi\in\mathbb{S}_{\mathbb{N}}.
Two thoughts about this:

  • (T1)

    all a statistician will ever see in practice are measurements on finite groups of individuals; Borel data structures model the treatment of finite measurements only and countable infinite measurements, which are of theoretical interest, are constructed using sampling consistency,

  • (T2)

    there is no reason to restrict IDs ii being elements ii\in\mathbb{N}, that is natural numbers – IDs only serve to identify individuals within stored data, no information of interest should be encoded in IDs. Using category theory terminology provides a suitable language to handle arbitrary sets (of IDs).

In search for a mathematical framework replacing 𝕊×𝒮𝒮\mathbb{S}_{\mathbb{N}}\times\mathcal{S}\rightarrow\mathcal{S} by something that fits both the statisticians philosophy and also pays to (T1) and (T2) directly leads to the Definition of a Borel data structure and a notion of exchangeability therein, Section 2.

Remark 4.

The philosophy behind IDs and exchangeability are closely related to the ideas presented in [McC02], where the way more general question of what constitutes a statistical model is discussed. In that approach, the concept of an ID is replaced by statistical unit, which can encode more structure but just to serve as an identifier.

1.6. The main ingredients of the proofs

The notion of exchangeability studied in Borel data structures turns out to be equivalent to 𝕊\mathbb{S}_{\infty}-invariance. 𝕊\mathbb{S}_{\infty} is a countable amenable group, thus ergodic theory provides important theorems: relevant for this work are ergodic decomposition (Theorem A1.4 in [Kal06]) and pointwise convergence (Theorem 1.2 in [Lin01]). Interesting for statistical applications: the convergence in the pointwise convergence theorem is known to be asymptotically normal under mild regularity assumptions, see [AO18]. An application of this is, for example, in the analysis of cross validations protocols, see Section 4.5 of [Aus19]. Also, an application to "generalized UU-statistics" is given later, see Remark 16.

The most important ingredient to the proofs of FRTs in this work is a functional representation of exchangeable arrays fitting the framework (1.3) as follows: let 𝒳\mathcal{X} be a Borel space and I=I_{\mathbb{N}}=\mathbb{N}^{*}_{\neq} be the set of all finite-length tuples i=(i1,,ik)\textbf{i}=(i_{1},\dots,i_{k}) with k0,ijk\geq 0,i_{j}\in\mathbb{N} and ijiji_{j}\neq i_{j^{\prime}} for all jjj\neq j^{\prime}. The group 𝕊\mathbb{S}_{\mathbb{N}} acts on I=I_{\mathbb{N}}=\mathbb{N}^{*}_{\neq} as πi=(π(i1),,π(ik))\pi\textbf{i}=(\pi(i_{1}),\dots,\pi(i_{k})). The following theorem follows the exposition of Theorem 7.21 in [Kal06] where the result is attributed to D.N. Hoover [Hoo79].

Theorem A (FRT for exchangeable arrays indexed by \mathbb{N}^{*}_{\neq}, Hoover, Kallenberg).

For every 𝒳\mathcal{X}-valued exchangeable array X=(Xi)iX=(X_{\textbf{i}})_{\textbf{i}\in\mathbb{N}^{*}_{\neq}} there exists a measurable function

f:k0[0,1]2[k]𝒳,f:\bigcup_{k\geq 0}[0,1]^{2^{[k]}}\rightarrow\mathcal{X},

such that

X=𝑑(f((Uπi(e))e2[k]))i=(i1,,ik),X\leavevmode\nobreak\ \overset{d}{=}\leavevmode\nobreak\ \Big{(}f\big{(}(U_{\pi_{\textbf{i}}(e)})_{e\in 2^{[k]}}\big{)}\Big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in\mathbb{N}^{*}_{\neq}},

where for i=(i1,,ik)\textbf{i}=(i_{1},\dots,i_{k})\in\mathbb{N}^{*}_{\neq} it is πi:{1,,k}{i1,,ik},jij\pi_{\textbf{i}}:\{1,\dots,k\}\rightarrow\{i_{1},\dots,i_{k}\},j\mapsto i_{j}.

1.7. Notations

Let MM be a set, |M||M| its cardinality and 2M2^{M} its power set. For k0k\geq 0 define subsets of 2M2^{M}

(Mk)\displaystyle\binom{M}{k} ={M2M:|M|=k},\displaystyle=\{M^{\prime}\in 2^{M}\leavevmode\nobreak\ :\leavevmode\nobreak\ |M^{\prime}|=k\},
(Mk)\displaystyle\binom{M}{\leq k} ={M2M:|M|k},\displaystyle=\{M^{\prime}\in 2^{M}\leavevmode\nobreak\ :\leavevmode\nobreak\ |M^{\prime}|\leq k\},
(M<)\displaystyle\binom{M}{<\infty} ={M2M:|M|<}.\displaystyle=\{M^{\prime}\in 2^{M}\leavevmode\nobreak\ :\leavevmode\nobreak\ |M^{\prime}|<\infty\}.

Let M=k0MkM^{*}=\cup_{k\geq 0}M^{k} be the set of all finite-length tuples (m1,,mk),k0(m_{1},\dots,m_{k}),k\geq 0 over MM. Let MkM^{k}_{\neq} be the set of all length-kk tuples (m1,,mk)Mk(m_{1},\dots,m_{k})\in M^{k} with mjmjm_{j}\neq m_{j^{\prime}} for jjj\neq j^{\prime}. Let M=k0MkMM^{*}_{\neq}=\cup_{k\geq 0}M^{k}_{\neq}\subset M^{*} be the set of all finite-length tuples over MM with different entries.
Let N,MN,M be two non-empty sets and NMN^{M} the set of functions f:MNf:M\rightarrow N. Note that NN^{\emptyset} is also defined, even if NN is empty: there exists exactly one function f:Nf:\emptyset\rightarrow N, which is always injective and bijective iff N=N=\emptyset. In particular, |N|=||=1|N^{\emptyset}|=|\emptyset^{\emptyset}|=1.
For any function f:MNf:M\rightarrow N define functions:

  • im(f):2M2N\operatorname*{\mathbin{im}}(f):2^{M}\rightarrow 2^{N} sends MMM^{\prime}\subseteq M to the image f(M)Nf(M^{\prime})\subseteq N,

  • f:MN\vec{f}:M^{*}\rightarrow N^{*} sends (m1,,mk)Mk(m_{1},\dots,m_{k})\in M^{k} to (f(m1),,f(mk))Nk(f(m_{1}),\dots,f(m_{k}))\in N^{k},

  • f^:Mf(M),mf(m)\hat{f}:M\rightarrow f(M),m\mapsto f(m), that is f^\hat{f} is obtained from ff by restricting its range to its image. f^\hat{f} is surjective.

For every MMM^{\prime}\subseteq M let

ιM,M:MM,mm\iota_{M^{\prime},M}:M^{\prime}\rightarrow M,m\mapsto m

be the inclusion map and

idM:MM,mm\operatorname*{\mathbin{id}}\nolimits_{M}:M\rightarrow M,m\mapsto m

for the identity on MM. It is ιM,M\iota_{M^{\prime},M} always injective and it is bijective iff ιM,M=idM\iota_{M^{\prime},M}=\operatorname*{\mathbin{id}}_{M}, that is M=MM^{\prime}=M.
Every function f:MNf:M\rightarrow N has the representation

f=ιf(M),Nf^,f=\iota_{f(M),N}\circ\hat{f},

that is as a composition of a surjective map followed by an inclusion map. ff is injective iff f^\hat{f} is bijective. ff is surjective iff ιf(M),N\iota_{f(M),N} is bijective, which implies f(M)=Nf(M)=N and f^=f\hat{f}=f.

For a measurable space 𝒳\mathcal{X} it is 𝒫(𝒳)\mathscr{P}(\mathcal{X}) the set of probability measures on 𝒳\mathcal{X}. The law of 𝒳\mathcal{X}-valued random variable XX is (X)=[X]𝒫(𝒳)\mathcal{L}(X)=\mathbb{P}[X\in\cdot]\in\mathscr{P}(\mathcal{X}). For random variables =𝑑\overset{d}{=} denotes equality in distribution and =a.s.\overset{a.s.}{=} almost sure equality. For a set MM it is 𝒳M\mathcal{X}^{M} a measurable space equipped with the product σ\sigma-field. For M=M=\emptyset it is 𝒳\mathcal{X}^{\emptyset} the discrete measurable space consisting of one point being the function x:𝒳x:\emptyset\rightarrow\mathcal{X}, similar \emptyset^{\emptyset} has the single element x:x:\emptyset\rightarrow\emptyset.

2. Main definitions and results

Arbitrary finite sets are denoted by a,b,ca,b,c. They represent finite sets of IDs used by a statistician to identify individuals from a finite group. An injection τ:ba\tau:b\rightarrow a corresponds to picking a subgroup from a group represented by IDs aa using IDs bb. In the subgroup obtained via τ\tau individuals are assigned IDs bb, individual ibi^{\prime}\in b corresponds to τ(i)a\tau(i^{\prime})\in a in the larger group. Each injection τ:ba\tau:b\rightarrow a can be written as

τ=ιτ(b),aτ^,\tau=\iota_{\tau(b),a}\circ\hat{\tau},

with

  • ιτ(b),a:τ(b)a,ii\iota_{\tau(b),a}:\tau(b)\rightarrow a,i\mapsto i the inclusion map of τ(b)a\tau(b)\subseteq a,

  • τ^:bτ(b),iτ(i)\hat{\tau}:b\rightarrow\tau(b),i\mapsto\tau(i) the bijection obtained by restricting the range.

Injection ιτ(b),a\iota_{\tau(b),a} corresponds to restricting group aa to subgroup τ(b)a\tau(b)\subseteq a and τ^:bτ(b)\hat{\tau}:b\rightarrow\tau(b) to a redistribution of IDs on subgroup τ(b)\tau(b) via τ(i)τ(b)ib\tau(i)\in\tau(b)\mapsto i\in b.

The following is an explicit definition of a contravariant functor 𝙸𝙽𝙹𝙱𝙾𝚁𝙴𝙻\mathtt{INJ}\rightarrow\mathtt{BOREL}, which is the same as a (covariant) functor 𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL}.

Definition 1 (Borel data structure).

A Borel data structure (BDS) is a rule DD that maps

  • every finite set aa to a Borel space DaD_{a},

  • every injection τ:ba\tau:b\rightarrow a between finite sets to a measurable map D[τ]:DaDbD[\tau]:D_{a}\rightarrow D_{b},

such that

  1. (i)

    D[ida]=idDaD[\operatorname*{\mathbin{id}}_{a}]=\operatorname*{\mathbin{id}}_{D_{a}} for every finite set aa,

  2. (ii)

    D[στ]=D[τ]D[σ]D[\sigma\circ\tau]=D[\tau]\circ D[\sigma] for all composable injections σ,τ\sigma,\tau between finite sets.

In case every DaD_{a} is a non-empty finite discrete space DD is called combinatorial data structure. Combinatorial data structures coincide with functors D:𝙸𝙽𝙹op𝙵𝙸𝙽+D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{FIN}_{+}, where 𝙵𝙸𝙽+\mathtt{FIN}_{+} is the category of maps between non-empty finite sets.

One can interpret DaD_{a} as the space of data a statistician can collect on a group of n=|a|n=|a| individuals using IDs aa to represent individuals. For every injection τ:ba\tau:b\rightarrow a the contravariance of DD gives

D[τ]=D[τ^]D[ιτ(b),a],D[\tau]=D[\hat{\tau}]\circ D[\iota_{\tau(b),a}],

one can think of

  • D[ιτ(b),a]:DaDτ(b)D[\iota_{\tau(b),a}]:D_{a}\rightarrow D_{\tau(b)} as restricting measurements to subgroups,

  • D[τ^]:Dτ(b)DbD[\hat{\tau}]:D_{\tau(b)}\rightarrow D_{b} as transforming IDs within stored data as τ(i)τ(b)ib\tau(i)\in\tau(b)\mapsto i\in b,

thus D[τ]D[\tau] combines both these operations.

Now image a statistician picks a finite group of nn individuals from a large population and gives them IDs iai\in a with |a|=n|a|=n both at random, then measures DaD_{a}-valued data on that group, modeled as a DaD_{a}-valued random variable XaX_{a}. What "at random" means here is not specified, but is seems obvious that for every injection τ:ba\tau:b\rightarrow a it should hold that

Xb=𝑑D[τ](Xa).X_{b}\overset{d}{=}D[\tau](X_{a}).

Let μa=(Xa)𝒫(Da)\mu_{a}=\mathcal{L}(X_{a})\in\mathscr{P}(D_{a}) the law of XaX_{a}. In terms of laws the previous is equivalent to

μb=μaD[τ]1,\mu_{b}=\mu_{a}\circ D[\tau]^{-1},

which leads to the following definition:

Definition 2 (Exchangeable law).

An exchangeable law on DD is a rule μ\mu that sends every finite set aa to a probability measure μa𝒫(Da)\mu_{a}\in\mathscr{P}(D_{a}) such that for every injection τ:ba\tau:b\rightarrow a it holds that μaD[τ]1=μb\mu_{a}\circ D[\tau]^{-1}=\mu_{b}. Let 𝚂𝚈𝙼(D)\mathtt{SYM}(D) be the class of all exchangeable laws on DD.

Remark 5.

In DD_{\emptyset} the statistician records information that is not about any individual, hence that information is about the population itself or more general about the environment the measurement takes place in.

Example 1.

Let 𝒳\mathcal{X} be a Borel space and define D=𝚂𝚎𝚚(𝒳)D=\mathtt{Seq}(\mathcal{X}) (sequential data over 𝒳\mathcal{X}) by Da=𝒳aD_{a}=\mathcal{X}^{a} and D[τ](x)=xτD[\tau](x)=x\circ\tau. Let X=(Xi)iX=(X_{i})_{i\in\mathbb{N}} be a 𝒳\mathcal{X}-valued exchangeable sequence. By exchangeability, for every finite set aa and any two injections τ~,τ:a\tilde{\tau},\tau:a\rightarrow\mathbb{N} it holds Xτ=𝑑Xτ~X\circ\tau\overset{d}{=}X\circ\tilde{\tau}, which allows to define

μa=(Xτ)𝒫(Da)\mu_{a}=\mathcal{L}(X\circ\tau)\in\mathscr{P}(D_{a})

not depending on the choice of τ\tau. It is easily seen that this defines an exchangeable law μ=[aμa]𝚂𝚈𝙼(𝚂𝚎𝚚(𝒳))\mu=[a\mapsto\mu_{a}]\in\mathtt{SYM}(\mathtt{Seq}(\mathcal{X})) and that the construction (X)μ\mathcal{L}(X)\mapsto\mu is a one-to-one correspondence between laws of exchangeable 𝒳\mathcal{X}-valued sequences and 𝚂𝚈𝙼(𝚂𝚎𝚚(𝒳))\mathtt{SYM}(\mathtt{Seq}(\mathcal{X})); the inverse construction involves Kolmogorov consistency arguments.

The discussion in Section 4 shows that the previous example generalizes to any Borel data structure DD, that is: 𝚂𝚈𝙼(D)\mathtt{SYM}(D) can be naturally identified with the space of invariant probability measures for some measurable group action 𝕊×𝒮𝒮\mathbb{S}_{\infty}\times\mathcal{S}\rightarrow\mathcal{S} on a Borel space 𝒮\mathcal{S}. In particular, 𝚂𝚈𝙼(D)\mathtt{SYM}(D) is a set that comes equipped with a natural Borel space (and convexity) structure such that for every finite set aa and measurable MDaM\subseteq D_{a} the evaluation map μ𝚂𝚈𝙼(D)μa(M)[0,1]\mu\in\mathtt{SYM}(D)\mapsto\mu_{a}(M)\in[0,1] is measurable.

Remark 6 (Exchangeable laws via category theory terminology).

See [Mac78] for category theory vocabulary used here, in particular Section 4. There are at least two equivalent ways to obtain 𝚂𝚈𝙼(D)\mathtt{SYM}(D) using category theory constructions. Both involve the endofunctor 𝒫:𝙱𝙾𝚁𝙴𝙻𝙱𝙾𝚁𝙴𝙻\mathscr{P}:\mathtt{BOREL}\rightarrow\mathtt{BOREL} which sends a Borel space 𝒳\mathcal{X} to the Borel space 𝒫(X)\mathscr{P}(X) and a measurable map f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} to the push-forward 𝒫[f]:𝒫(𝒳)𝒫(𝒴),ννf1\mathscr{P}[f]:\mathscr{P}(\mathcal{X})\rightarrow\mathscr{P}(\mathcal{Y}),\nu\mapsto\nu\circ f^{-1}. For every BDS D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} it is 𝒫D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻\mathscr{P}\circ D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} defined by (𝒫D)a=𝒫(Da)(\mathscr{P}\circ D)_{a}=\mathscr{P}(D_{a}) and (𝒫D)[τ]=𝒫[D[τ]](\mathscr{P}\circ D)[\tau]=\mathscr{P}[D[\tau]] a new BDS. Having this, 𝚂𝚈𝙼(D)\mathtt{SYM}(D) can be identified with either

  • the limit of the functor 𝒫D\mathscr{P}\circ D: cones over 𝒫D\mathscr{P}\circ D correspond to measurable parametrizations Θ𝚂𝚈𝙼(D),θμθ\Theta\rightarrow\mathtt{SYM}(D),\theta\mapsto\mu^{\theta} (not necessarily injective or surjective) with the parameter space Θ\Theta being Borel. The limit 𝚂𝚈𝙼(D)\mathtt{SYM}(D) corresponds to the parametrization of 𝚂𝚈𝙼(D)\mathtt{SYM}(D) by itself. An example of a cone over 𝒫𝚂𝚎𝚚()\mathscr{P}\circ\mathtt{Seq}(\mathbb{R}) is Θ=×(0,)μθ\Theta=\mathbb{R}\times(0,\infty)\mapsto\mu^{\theta} with μaθ=Normal(θ1,θ2)a\mu^{\theta}_{a}=\operatorname*{\mathbin{Normal}}(\theta_{1},\theta_{2})^{\otimes a} (the iid-normal-distribution model).

  • the set of all natural transformations η:pt𝒫D\eta:\operatorname*{\mathbin{pt}}\rightarrow\mathscr{P}\circ D, where pt:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻\operatorname*{\mathbin{pt}}:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} is the trivial data structure pta={1}\operatorname*{\mathbin{pt}}_{a}=\{1\} and pt[τ]=id{1}\operatorname*{\mathbin{pt}}[\tau]=\operatorname*{\mathbin{id}}_{\{1\}}, compare to Equation (29) in [AT10].

Remark 7 (Combinatorial species, see [Ber+98]).

A combinatorial species is a (covariant) functor C:𝙱𝙸𝙹+𝙱𝙸𝙹+C:\mathtt{BIJ}_{+}\rightarrow\mathtt{BIJ}_{+}, where 𝙱𝙸𝙹+\mathtt{BIJ}_{+} is the category of bijections between non-empty finite sets. Every combinatorial data structure D:𝙸𝙽𝙹op𝙵𝙸𝙽+D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{FIN}_{+} defines a species of structures CC by Ca=DaC_{a}=D_{a} and C[π]=D[π1]C[\pi]=D[\pi^{-1}]. In this sense, combinatorial data structures can be seen as combinatorial species enriched with restrictions compatible with the relabeling mechanism. The restriction mechanism is of crucial importance to develop exchangeability theory.

2.1. Generalization of de Finetti’s theorem

Let μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). If μ\mu corresponds to the law of data obtained by picking individuals from a fixed large population, it seems obvious that the measurements on disjoint subgroups should be independent, that is: if a,ba,b are disjoint, ab=a\cap b=\emptyset, and Xa+bμa+bX_{a+b}\sim\mu_{a+b} then D[ιa,a+b](Xa+b)D[\iota_{a,a+b}](X_{a+b}) and D[ιb,a+b](Xa+b)D[\iota_{b,a+b}](X_{a+b}) should be independent. The following defines this property on the level of laws.

Definition 3 (Independence property).

μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) has the independence property if for all finite sets a,ba,b with ab=a\cap b=\emptyset

μa+b(D[ιa,a+b],D[ιb,a+b])1=μaμb.\mu_{a+b}\circ(D[\iota_{a,a+b}],D[\iota_{b,a+b}])^{-1}=\mu_{a}\otimes\mu_{b}.

Let 𝚂𝚈𝙼erg(D)𝚂𝚈𝙼(D)\mathtt{SYM}^{\text{erg}}(D)\subseteq\mathtt{SYM}(D) be the subset of exchangeable laws having this property.

It is seen later that the laws having the independence property coincide with ergodic invariant laws, thus the notion 𝚂𝚈𝙼erg\mathtt{SYM}^{\text{erg}}. Exchangeable laws are precisely the mixtures of exchangeable laws having the independence property:

Theorem 1.

If 𝚂𝚈𝙼(D)\mathtt{SYM}(D)\neq\emptyset, then 𝚂𝚈𝙼erg(D)\mathtt{SYM}^{\text{erg}}(D) a non-empty measurable subset of 𝚂𝚈𝙼(D)\mathtt{SYM}(D) and the following map is a bijection:

𝒫(𝚂𝚈𝙼erg(D))𝚂𝚈𝙼(D),ΞE[Ξ],\mathscr{P}(\mathtt{SYM}^{\text{erg}}(D))\leavevmode\nobreak\ \longrightarrow\leavevmode\nobreak\ \mathtt{SYM}(D),\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \Xi\leavevmode\nobreak\ \longmapsto\leavevmode\nobreak\ E[\Xi],

where E[Ξ]E[\Xi] is the rule aE[Ξ]a𝒫(Da)a\mapsto E[\Xi]_{a}\in\mathscr{P}(D_{a}) defined by

E[Ξ]a()=𝚂𝚈𝙼erg(D)μa()𝑑Ξ(μ).E[\Xi]_{a}(\cdot)=\int_{\mathtt{SYM}^{\text{erg}}(D)}\mu_{a}(\cdot)d\Xi(\mu).
Example 2 (Exchangeable sequences are mixed iid).

Let D=𝚂𝚎𝚚(𝒳),μ𝚂𝚈𝙼(D)D=\mathtt{Seq}(\mathcal{X}),\mu\in\mathtt{SYM}(D). Let ab=a\cap b=\emptyset and (Xi)ia+bμa+b(X_{i})_{i\in a+b}\sim\mu_{a+b}. In terms of random variables it is

μa+b(D[ιa,a+b],D[ιb,a+b])1=((Xi)ia,(Xi)ib),\mu_{a+b}\circ(D[\iota_{a,a+b}],D[\iota_{b,a+b}])^{-1}=\mathcal{L}\big{(}(X_{i})_{i\in a},(X_{i})_{i\in b}\big{)},

a joint distribution of two disjoint sub-collections of RVs. If μ\mu has the independence property it thus holds that

((Xi)ia,(Xi)ib)=μaμb=((Xi)ia)((Xi)ib).\mathcal{L}\big{(}(X_{i})_{i\in a},(X_{i})_{i\in b}\big{)}=\mu_{a}\otimes\mu_{b}=\mathcal{L}\big{(}(X_{i})_{i\in a}\big{)}\otimes\mathcal{L}\big{(}(X_{i})_{i\in b}\big{)}.

Applying this inductively down to singletons and using exchangeability shows every μ𝚂𝚈𝙼erg(D)\mu\in\mathtt{SYM}^{\text{erg}}(D) is of the form μa=νa\mu_{a}=\nu^{\otimes a} for some ν𝒫(𝒳)\nu\in\mathscr{P}(\mathcal{X}); one can identify 𝒫(𝒳)\mathscr{P}(\mathcal{X}) with 𝚂𝚈𝙼erg(D)\mathtt{SYM}^{\text{erg}}(D) and Theorem 1 gives: exchangeable laws in 𝚂𝚎𝚚(𝒳)\mathtt{Seq}(\mathcal{X}) are precisely given by the rules aνa()𝑑Ξ(ν)a\mapsto\int\nu^{\otimes a}(\cdot)d\Xi(\nu), bijectivity parameterized through Ξ𝒫(𝒫(𝒳))\Xi\in\mathscr{P}(\mathscr{P}(\mathcal{X})).

In case D=𝚂𝚎𝚚(𝒳)D=\mathtt{Seq}(\mathcal{X}) it was easily possible to use the independence property to give a perfect parametrization of 𝚂𝚈𝙼erg(D)\mathtt{SYM}^{\text{erg}}(D). From a data structure point of view the reason for this is that for every disjoint sets ab=a\cap b=\emptyset the map 𝒳a+b𝒳a×𝒳b,x(x|a,x|b)\mathcal{X}^{a+b}\rightarrow\mathcal{X}^{a}\times\mathcal{X}^{b},x\mapsto(x_{|a},x_{|b}) is a bijection. This is a very special property of sequential data D=𝚂𝚎𝚚(𝒳)D=\mathtt{Seq}(\mathcal{X}) and fails in general. As a consequence, it is in general far from obvious how exchangeable laws having the independence property look like – functional representations offer a different approach to understand the structure of exchangeable laws.

2.2. A weak FRT for arbitrary Borel data structures

Borel data structures have been introduced as functors and a good notion for "functions between functors" is that of a natural transformation. Also an almost sure version is introduced:

Definition 4 ((Almost sure) Natural transformations).

Let D,E:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D,E:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} be two Borel data structures and η:DE\eta:D\rightarrow E be a rule that sends every aa to a measurable map ηa:DaEa\eta_{a}:D_{a}\rightarrow E_{a}.
The rule η\eta is called

  • natural transformation if for all τ:ba\tau:b\rightarrow a

    ηbD[τ]=E[τ]ηa,\eta_{b}\circ D[\tau]=E[\tau]\circ\eta_{a},
  • μ\mu-a.s. natural transformation, with μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D), if for all τ:ba\tau:b\rightarrow a

    ηbD[τ]=E[τ]ηaμa-almost surely.\eta_{b}\circ D[\tau]=E[\tau]\circ\eta_{a}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{$\mu_{a}$-almost surely}.

Of course, a natural transformation η:DE\eta:D\rightarrow E is also a μ\mu-a.s. natural transformation for every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D).

Example 3.

Every measurable f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} gives a natural transformation ηf:𝚂𝚎𝚚(𝒳)𝚂𝚎𝚚(𝒴)\eta^{f}:\mathtt{Seq}(\mathcal{X})\rightarrow\mathtt{Seq}(\mathcal{Y}) having components ηaf(x)=fx\eta^{f}_{a}(x)=f\circ x and this is a one-to-one correspondence between measurable maps and natural transformations. This is generalized by Theorem 12 later.

A central observation is the following:

Proposition 1.

For every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) and μ\mu-a.s. natural transformation η:DE\eta:D\rightarrow E it is μη1𝚂𝚈𝙼(E)\mu\circ\eta^{-1}\in\mathtt{SYM}(E), where μη1\mu\circ\eta^{-1} is the rule that sends aa to the push-forward of μa\mu_{a} under ηa\eta_{a}, that is to the probability measure μaηa1𝒫(Ea)\mu_{a}\circ\eta^{-1}_{a}\in\mathscr{P}(E_{a}).

Proof.

Let τ:ba\tau:b\rightarrow a be injective, XaμaX_{a}\sim\mu_{a} and Ya=ηa(Xa)μaηa1Y_{a}=\eta_{a}(X_{a})\sim\mu_{a}\circ\eta_{a}^{-1}. It is E[τ](Ya)=E[τ]ηa(Xa)=a.s.ηbD[τ](Xa)=𝑑ηb(Xb)E[\tau](Y_{a})=E[\tau]\circ\eta_{a}(X_{a})\overset{a.s.}{=}\eta_{b}\circ D[\tau](X_{a})\overset{d}{=}\eta_{b}(X_{b}). ∎

Four (parameterized) examples of Borel data structures are introduced to state the main results. All of these are array-type data structures, the general concept is in Definitions 8 and 9. In Section 3 many more examples of Borel data structures and ways of composing new ones from given ones are presented.

Definition 5 (First examples of BDS).

Let 𝒳\mathcal{X} be a Borel space and k0k\geq 0.

  • D=𝚂𝚎𝚚(𝒳)=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Seq}(\mathcal{X})=\mathtt{Array}(\mathcal{X},\square) with Da=𝒳aD_{a}=\mathcal{X}^{a} and D[τ](x)=xτD[\tau](x)=x\circ\tau.

  • D=𝙰𝚛𝚛𝚊𝚢(𝒳,2)D=\mathtt{Array}(\mathcal{X},2^{\square}) with Da=𝒳2aD_{a}=\mathcal{X}^{2^{a}} and D[τ](x)=xim(τ)D[\tau](x)=x\circ\operatorname*{\mathbin{im}}(\tau).

  • D=𝙰𝚛𝚛𝚊𝚢(𝒳,(k)),k0D=\mathtt{Array}(\mathcal{X},\binom{\square}{\leq k}),k\geq 0 with Da=𝒳(ak)D_{a}=\mathcal{X}^{\binom{a}{\leq k}} and D[τ](x)=xim(τ)D[\tau](x)=x\circ\operatorname*{\mathbin{im}}(\tau).

  • D=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}) with Da=𝒳aD_{a}=\mathcal{X}^{a^{*}_{\neq}} and D[τ](x)=xτD[\tau](x)=x\circ\vec{\tau}.

Iid uniform random variables Ua,a(<)U_{a},a\in\binom{\mathbb{N}}{<\infty}, frequently used in FRTs, are mirrored in this framework by the following:

Definition 6 (Uniform randomizer).

The following notations are used:

R=𝙰𝚛𝚛𝚊𝚢([0,1],2)andRk=𝙰𝚛𝚛𝚊𝚢([0,1],(k)).R=\mathtt{Array}\big{(}[0,1],2^{\square}\big{)}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ R^{k}=\mathtt{Array}\Big{(}[0,1],\binom{\square}{\leq k}\Big{)}.

The exchangeable laws unif(R)𝚂𝚈𝙼(R)\operatorname*{\mathbin{unif}}(R)\in\mathtt{SYM}(R) and unif(Rk)𝚂𝚈𝙼(Rk)\operatorname*{\mathbin{unif}}(R^{k})\in\mathtt{SYM}(R^{k}) are defined by

unif(R)a=unif[0,1]2aandunif(Rk)a=unif[0,1](ak).\operatorname*{\mathbin{unif}}(R)_{a}=\operatorname*{\mathbin{unif}}[0,1]^{\otimes 2^{a}}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \operatorname*{\mathbin{unif}}(R^{k})_{a}=\operatorname*{\mathbin{unif}}[0,1]^{\otimes\binom{a}{\leq k}}.

The letter "RR" is used for "Randomization".

A key result to our approach is:

Theorem 2 (Theorem A via natural transformations).

The following are equivalent:

  • (i)

    Theorem A (representation of 𝒳\mathcal{X}-valued exchangeable arrays indexed by \mathbb{N}^{*}_{\neq}),

  • (ii)

    for every μ𝚂𝚈𝙼(𝙰𝚛𝚛𝚊𝚢(𝒳,))\mu\in\mathtt{SYM}(\mathtt{Array}(\mathcal{X},\square^{*}_{\neq})) exist a natural transformation η:R𝙰𝚛𝚛𝚊𝚢(𝒳,)\eta:R\rightarrow\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}) such that μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}.

The latter allows to translate Theorem A into the language of natural transformations, which is used to prove the following:

Theorem 3 (Weak FRT).

For every Borel data structure DD and exchangeable law μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) exists a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:RD\eta:R\rightarrow D such that μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}.

In Corollary 1 the result is presented using random variables. There are examples of BDS DD for which no exchangeable laws exists, that is 𝚂𝚈𝙼(D)=\mathtt{SYM}(D)=\emptyset, see Example 11 later. A direct consequence of Theorem 3 is

𝚂𝚈𝙼(D)there exists a unif(R)-a.s. natural transformation η:RD.\mathtt{SYM}(D)\neq\emptyset\leavevmode\nobreak\ \leavevmode\nobreak\ \Longleftrightarrow\leavevmode\nobreak\ \leavevmode\nobreak\ \text{there exists a $\operatorname*{\mathbin{unif}}(R)$-a.s. natural transformation $\eta:R\rightarrow D$.}

As seen in (E1)-(E3), known FRTs may not need randomization of arbitrary high level. This can be involved in the Theorem by defining the depth of a BDS:

Definition 7 (Depth).

A BDS DD is kk-determined, k0k\geq 0, if for every finite set aa and x,yDax,y\in D_{a} the following implication holds

D[ιa,a](x)=D[ιa,a](y)for all aa with |a|kx=y.D[\iota_{a^{\prime},a}](x)=D[\iota_{a^{\prime},a}](y)\leavevmode\nobreak\ \text{for all $a^{\prime}\subseteq a$ with $|a^{\prime}|\leq k$}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \Longrightarrow\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ x=y.

Let depth(D):=min{k|D is k-determined}\operatorname*{\mathbin{depth}}(D):=\min\{k|\leavevmode\nobreak\ \text{$D$ is $k$-determined}\} with min=\min\emptyset=\infty.

Theorem 4 (Weak FRT for finite depth).

Let DD be a Borel data structure with k=depth(D)<k=\operatorname*{\mathbin{depth}}(D)<\infty. For every exchangeable law μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) there exists a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation η:RkD\eta:R^{k}\rightarrow D such that μ=unif(Rk)η1\mu=\operatorname*{\mathbin{unif}}(R^{k})\circ\eta^{-1}.

Remark 8 (Weak FRT for ergodic laws).

Another refinement of the weak FRTs can be made for ergodic exchangeable laws: define the BDS RR^{\circ} by Ra=[0,1]2a{}R^{\circ}_{a}=[0,1]^{2^{a}\setminus\{\emptyset\}}, R[τ](x)=xim(τ)R^{\circ}[\tau](x)=x\circ\operatorname*{\mathbin{im}}(\tau) and the exchangeable law aunif(R)a=unif[0,1]2a{}a\mapsto\operatorname*{\mathbin{unif}}(R^{\circ})_{a}=\operatorname*{\mathbin{unif}}[0,1]^{\otimes 2^{a}\setminus\{\emptyset\}}. It can be shown that for every Borel data structure DD and every ergodic μ𝚂𝚈𝙼erg(D)\mu\in\mathtt{SYM}^{\text{erg}}(D) there exists a unif(R)\operatorname*{\mathbin{unif}}(R^{\circ})-a.s. transformation η:RD\eta:R^{\circ}\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R^{\circ})\circ\eta^{-1}. The same can be stated for finite depth by introducing Rk,R^{k,\circ} and unif(Rk,)\operatorname*{\mathbin{unif}}(R^{k,\circ}) in an obvious analogue way.

Remark 9 (Global axiom of choice).

The weak FRT is about the existence of a unif(R)\operatorname*{\mathbin{unif}}(R)-almost sure natural transformation. Such objects are "rules" that map any finite set to a measurable map; from an axiomatic point of view, such rules are functions between proper classes. A suitable axiomatization of mathematics to work with proper classes are, for example, given by the NBG-axioms (Neumann-Bernays-Gödel). Often included in the NBG-axioms is the global axiom of choice, which states that there exists a rule that simultaneously picks an element from any non-empty set. This axiom will be used several times in our proofs, which makes many results NBG-theorems. However, this is not problematic if one wishes to not leave the ZFC-world: all our NBG-theorems involving a quantifier "for all finite sets" (maybe within involved definitions) give an evenly interesting theorem by restricting the quantifier to "for all finite subsets of some fixed infinite set". Our NBG-Theorems obtained by this restriction talk about sets only. Now NBG is a conservative extension of ZFC: every NBG-theorem talking about sets only also is a ZFC-theorem, that is could have been proved within ZFC alone, see [Fel71]. An alternative approach to handle these foundational aspects is to postulate the existence of sufficiently rich Grothendieck universes and call "sets" only elements of these, see Section I.6 in [Mac78]. The global axiom of choice is used also in the index arithmetic being developed in Section 6, see the discussion in Example 14 there.

2.3. A strong FRT for array-type data structures

The weak FRT is weak in the sense that it only guarantees the existence of an unif(R)\operatorname*{\mathbin{unif}}(R)-almost sure natural transformation η:RD\eta:R\rightarrow D to represent μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) via μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}. The question arises in what circumstances this can be strengthened to a "strong" form in which a true natural transformation can be used for a functional representation. The following shows that this can not always be the case, in fact there may exists no true natural transformations RDR\rightarrow D at all:

Example 4.

The existence of a true natural transformation η:RD\eta:R\rightarrow D implies that for every aa there exists xDax\in D_{a} with x=D[π](x)x=D[\pi](x) for every bijection π:aa\pi:a\rightarrow a; choose x=ηa(u)x=\eta_{a}(u) with u[0,1]2au\in[0,1]^{2^{a}} having a constant value u(a)w[0,1]u(a^{\prime})\equiv w\in[0,1]. One example of DD in which there exists no true natural transformation η:RD\eta:R\rightarrow D but exchangeable laws exist is given by the combinatorial data structure of total orders, see Example 8.

A class of data structures where the weak FRT can be strengthened to a strong version are array-type data structures. Also, it is possible to give an explicit "low-level" description of the "high-level" concept natural transformations mapping into arrays, which allows to give low-level descriptions of the strong FRT in the usual style of such representation results.

Indexing systems are defined as functors I:𝙸𝙽𝙹𝙸𝙽𝙹I:\mathtt{INJ}\rightarrow\mathtt{INJ} satisfying additional axioms, in an explicit form:

Definition 8 (Indexing system).

An indexing system II is a rule that maps

  • every finite set bb to a finite set IbI_{b}

  • every injection τ:ba\tau:b\rightarrow a to an injection I[τ]:IbIaI[\tau]:I_{b}\rightarrow I_{a}

such that the following hold

  1. (1)

    I[στ]=I[σ]I[τ]I[\sigma\circ\tau]=I[\sigma]\circ I[\tau] for all composable injections σ,τ\sigma,\tau,

  2. (2)

    IbIa=IbaI_{b}\cap I_{a}=I_{b\cap a} for all finite sets b,ab,a,

  3. (3)

    I[ιb,b]=ιIb,IbI[\iota_{b^{\prime},b}]=\iota_{I_{b^{\prime}},I_{b}} for all finite sets bbb^{\prime}\subseteq b.

Indexing systems are introduced to define array-type data structures:

Definition 9 (Array-type data structure).

Let 𝒳\mathcal{X} be a Borel space (data type) and II an indexing system. The Borel data structure D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D=\mathtt{Array}(\mathcal{X},I) is defined by

Da=𝒳IaandD[τ](x)=xI[τ].D_{a}=\mathcal{X}^{I_{a}}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ D[\tau](x)=x\circ I[\tau].

The previous examples of array-type data structures used the indexing systems

  • I=I=\square with Ib=bI_{b}=b and I[τ]=τI[\tau]=\tau,

  • I=2I=2^{\square} with Ib=2bI_{b}=2^{b} and I[τ]=im(τ)I[\tau]=\operatorname*{\mathbin{im}}(\tau),

  • I=(k)I=\binom{\square}{\leq k} with Ib=(bk)I_{b}=\binom{b}{\leq k} and I[τ]=im(τ)I[\tau]=\operatorname*{\mathbin{im}}(\tau),

  • I=I=\square^{*}_{\neq} with Ib=bI_{b}=b^{*}_{\neq} and I[τ]=τI[\tau]=\vec{\tau}.

Example 5.

The indexing system axioms give that any index i from an indexing system II, that is iIa\textbf{i}\in I_{a} for some aa, has a unique minimal set of IDs used to build i: there exists a unique finite set bb with iIb\textbf{i}\in I_{b} and iIaba\textbf{i}\in I_{a}\Rightarrow b\subseteq a. Later we write b=dom(i)b=\operatorname*{\mathbin{dom}}(\textbf{i}) (the domain of i). Not every functor I:𝙸𝙽𝙹𝙸𝙽𝙹I:\mathtt{INJ}\rightarrow\mathtt{INJ} is an indexing system, an example: let k2k\geq 2 and Ib=bI_{b}=b in case |b|k|b|\geq k and Ib=I_{b}=\emptyset in case |b|<k|b|<k. For an injection τ:ba\tau:b\rightarrow a let I[τ]=τI[\tau]=\tau in case |b|k|b|\geq k and I[τ]:IaI[\tau]:\emptyset\rightarrow I_{a} the unique function on domain \emptyset in case |b|<k|b|<k. For two sets a,ba,b with |a|,|b|k|a|,|b|\geq k and 1|ab|<k1\leq|a\cap b|<k it is IaIb=ab=IabI_{a}\cap I_{b}=a\cap b\neq\emptyset=I_{a\cap b}. In this case no domains can be defined.

Every array-type data structure 𝙰𝚛𝚛𝚊𝚢(𝒳,I)\mathtt{Array}(\mathcal{X},I) has exchangeable laws: ν𝒫(𝒳)\nu\in\mathscr{P}(\mathcal{X}) gives an exchangeable law aμa=νIaa\mapsto\mu_{a}=\nu^{\otimes I_{a}}. In case I=2,𝒳=[0,1]I=2^{\square},\mathcal{X}=[0,1] and ν=unif[0,1]\nu=\operatorname*{\mathbin{unif}}[0,1] it is 𝙰𝚛𝚛𝚊𝚢(𝒳,I)=R\mathtt{Array}(\mathcal{X},I)=R and the latter rule equals unif(R)𝚂𝚈𝙼(R)\operatorname*{\mathbin{unif}}(R)\in\mathtt{SYM}(R) used in the weak FRT, Theorem 3.

Definition 10 (Products of BDS).

For every countable family of Borel data structures D(l),lLD^{(l)},l\in L it is D=lLD(l)D=\prod_{l\in L}D^{(l)} defined by

Da=lLDa(l)andD[τ]((x(l))lL)=(D(l)[τ](x(l)))lLD_{a}=\prod_{l\in L}D^{(l)}_{a}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ D[\tau]\big{(}(x^{(l)})_{l\in L}\big{)}=\big{(}D^{(l)}[\tau](x^{(l)})\big{)}_{l\in L}

a new Borel data structure.

More constructions such as coproducts, composition or sub-data structures are presented later.

Theorem 5 (Strong FRT for products of array-type data structures).

For every countable product of array-type data structures D=lL𝙰𝚛𝚛𝚊𝚢(𝒳(l),I(l))D=\prod_{l\in L}\mathtt{Array}(\mathcal{X}^{(l)},I^{(l)}) and every exchangeable law μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) there exists a (true) natural transformation η:RD\eta:R\rightarrow D such that μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}.
In case k=depth(D)<k=\operatorname*{\mathbin{depth}}(D)<\infty one can replace (R,unif(R))(R,\operatorname*{\mathbin{unif}}(R)) by (Rk,unif(Rk))(R^{k},\operatorname*{\mathbin{unif}}(R^{k})).

Theorem 5 can be reformulated using category theory vocabulary: it shows the existence of a weak universal arrow for the 𝚂𝚈𝙼\mathtt{SYM}-functor defined on array-type data structures, see Remark 26 for details. The strong FRT becomes particularly important combined with the following, which gives an explicit description of natural transformations mapping into countable products of array-type data structures:

Theorem 6 (Characterization of natural transformations mapping into arrays).

For every Borel data structure EE there exists an explicit one-to-one correspondence between natural transformations η:ElL𝙰𝚛𝚛𝚊𝚢(𝒳(l),I(l))\eta:E\rightarrow\prod_{l\in L}\mathtt{Array}(\mathcal{X}^{(l)},I^{(l)}) and certain countable families of kernel functions \mathcal{F} in which for each ff\in\mathcal{F} there is some mMm\in M, k0k\geq 0 and sub-group G𝕊kG\subseteq\mathbb{S}_{k} such that f:E{1,,k}𝒳(m)f:E_{\{1,\dots,k\}}\rightarrow\mathcal{X}^{(m)} is measurable with fE[π]=ff\circ E[\pi]=f for all πG\pi\in G.

Some prior work is needed to explicitly state the correspondence and how the set \mathcal{F} is constructed, the case L={1}L=\{1\} is stated in Theorem 12. In this case, the theorem characterizes natural transformations η:E𝙰𝚛𝚛𝚊𝚢(𝒳,I)\eta:E\rightarrow\mathtt{Array}(\mathcal{X},I). The groups GG imposing symmetry restrictions on kernel functions depend on the indexing system II and in this regard the indexing systems I=2,I=2^{\square},\square^{*}_{\neq} represent the two extreme cases: the former leads to full subgroups G=𝕊kG=\mathbb{S}_{k}, the latter to trivial subgroups G={id[k]}𝕊kG=\{\operatorname*{\mathbin{id}}_{[k]}\}\subsetneq\mathbb{S}_{k}. It is seen in Theorem 11 that, up to group-isomorphism, for every finite group GG there exists an indexing system II such that GG can appear as a symmetry restriction on a kernel function.

Remark 10 (Skew-products).

In [Aus15] the notions of skew-product tuples and skew-product type functions were introduced; in our terminology these concept are about natural transformations η:j=0k𝙰𝚛𝚛𝚊𝚢(𝒳(j),(j))j=0k𝙰𝚛𝚛𝚊𝚢(𝒴(j),(j))\eta:\prod_{j=0}^{k}\mathtt{Array}(\mathcal{X}^{(j)},\binom{\square}{j})\rightarrow\prod_{j=0}^{k}\mathtt{Array}(\mathcal{Y}^{(j)},\binom{\square}{j}); loosely speaking, skew-product tuples correspond to kernel functions in the sense of Theorem 6 and the associated skew-product type function to the obtained natural transformation.

2.4. Universality of \square^{*}_{\neq}

The key importance of the indexing system \square^{*}_{\neq}, and hence Theorem A, is that indices can be identified with injections mapping [k]={1,,k}[k]=\{1,\dots,k\} into finite sets: every index i=(i1,,ik)a\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq} gives the injection τi,a:[k]a,jij\tau_{\textbf{i},a}:[k]\rightarrow a,j\mapsto i_{j}. The whole concept of Borel data structures is based on the Borel space assumption and on handling injective maps; and in fact, 𝙰𝚛𝚛𝚊𝚢([0,1],)\mathtt{Array}([0,1],\square^{*}_{\neq}) plays a crucial role in the theory.

Definition 11 (Embedding and isomorphism).

Let D,ED,E be Borel data structures and η:DE\eta:D\rightarrow E be a natural transformation. η\eta is called

  • embedding if all components ηa:DaEa\eta_{a}:D_{a}\rightarrow E_{a} are injective,

  • isomorphism if all components ηa:DaEa\eta_{a}:D_{a}\rightarrow E_{a} are bijective.

DD and EE are called isomorphic of there exists an isomorphism between them.

It is easy to check that if η:DE\eta:D\rightarrow E is an isomorphism then the rule η1\eta^{-1} having as components the inverse functions ηa1\eta_{a}^{-1} of ηa\eta_{a} is a natural transformation η1:ED\eta^{-1}:E\rightarrow D with ηη1=idE\eta\circ\eta^{-1}=\operatorname*{\mathbin{id}}_{E} and η1η=idD\eta^{-1}\circ\eta=\operatorname*{\mathbin{id}}_{D}, measureability is given by the Borel space assumption.

Definition 12 (Sub-data structures).

Let D,DD^{\prime},D be Borel data structures. DD^{\prime} is a sub-data structure of DD, denoted with DDD^{\prime}\subseteq D, if for every aa and injection τ:ba\tau:b\rightarrow a

  • DaDaD^{\prime}_{a}\subseteq D_{a} is a measurable subspace,

  • D[τ](x)=D[τ](x)D^{\prime}[\tau](x)=D[\tau](x) for all xDax\in D^{\prime}_{a}.

Remark 11.

In the context of D=𝙶𝚛𝚊𝚙𝚑=𝙰𝚛𝚛𝚊𝚢({0,1},(2))D=\mathtt{Graph}=\mathtt{Array}(\{0,1\},\binom{\square}{2}) sub-data structures DDD^{\prime}\subseteq D correspond to hereditary graph properties: if 𝒫\mathcal{P} is a hereditary graph property, Da={xDa|x satisfies 𝒫}D^{\prime}_{a}=\{x\in D_{a}|\leavevmode\nobreak\ \text{$x$ satisfies $\mathcal{P}$}\} gives a sub-data structure D𝙶𝚛𝚊𝚙𝚑D^{\prime}\subseteq\mathtt{Graph}, see the introduction in [AT10] and the later Section 3.

Proposition 2.

If η:DE\eta:D\rightarrow E is an embedding then E=ηDE^{\prime}=\eta D defined by Ea=ηa(Da)E^{\prime}_{a}=\eta_{a}(D_{a}) and E[τ](x)=E[τ](x),xEaE^{\prime}[\tau](x)=E[\tau](x),x\in E^{\prime}_{a} is a sub-data structure of EE isomorphic to DD, an isomorphism is given by η^\hat{\eta} with components η^a:DaEa,xηa(x)\hat{\eta}_{a}:D_{a}\rightarrow E^{\prime}_{a},x\mapsto\eta_{a}(x).

Proof.

ηa:DaEa\eta_{a}:D_{a}\rightarrow E_{a} is a measurable injection between Borel spaces, thus the image Ea=ηa(Da)EaE^{\prime}_{a}=\eta_{a}(D_{a})\subseteq E_{a} is a measurable subspace and hence a Borel space. For every xEax\in E^{\prime}_{a} there is a unique yDay\in D_{a} with x=ηa(y)x=\eta_{a}(y) and for τ:ba\tau:b\rightarrow a it is E[τ](x)=E[τ](x)=E[τ]ηa(y)=ηbD[τ](y)EbE^{\prime}[\tau](x)=E[\tau](x)=E[\tau]\circ\eta_{a}(y)=\eta_{b}\circ D[\tau](y)\in E^{\prime}_{b}, which shows that E=ηDE^{\prime}=\eta D is a sub-data structure of EE. The natural inverse of η^\hat{\eta} has components η^a1\hat{\eta}_{a}^{-1}, which are measurable by Borel space assumptions, the naturality of η^\hat{\eta} and η^1\hat{\eta}^{-1} is straightforward. ∎

Note that the inverse of η^\hat{\eta} is a natural transformation η^1:ED\hat{\eta}^{-1}:E^{\prime}\rightarrow D with E=ηDEE^{\prime}=\eta D\subseteq E and can in general not be extended to natural transformation defined on the whole BDS EE. This is different from embeddings between Borel spaces: if f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} is a measurable injection between Borel spaces, then there exists a measurable left-inverse g:𝒴𝒳g:\mathcal{Y}\rightarrow\mathcal{X} of ff, that is gf=id𝒳g\circ f=\operatorname*{\mathbin{id}}_{\mathcal{X}}. In category theory terminology: in 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL} every monomorphism is a section, which is not the case in the functor category [𝙸𝙽𝙹op,𝙱𝙾𝚁𝙴𝙻][\mathtt{INJ}^{\text{op}},\mathtt{BOREL}].

In Theorem 10 it is shown that every Borel data structure can be naturally embedded in 𝙰𝚛𝚛𝚊𝚢([0,1],)\mathtt{Array}([0,1],\square^{*}_{\neq}), the embedding being more or less explicit, but of little practical interest. However, together with Proposition 2 this yields:

Theorem 7 (Universality).

Every Borel data structure is naturally isomorphic to a sub-data structure of 𝙰𝚛𝚛𝚊𝚢([0,1],)\mathtt{Array}([0,1],\square^{*}_{\neq}).

3. Examples and Constructions

Example 6 (Array-type data structures).

Examples of array-type data structures D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D=\mathtt{Array}(\mathcal{X},I) are obtained by giving examples of indexing systems II, that is specifying the finite set IbI_{b} and for every iIb\textbf{i}\in I_{b} and τ:ba\tau:b\rightarrow a the value I[τ](i)IaI[\tau](\textbf{i})\in I_{a}. Note that in case 𝒳\mathcal{X} is a finite set 𝙰𝚛𝚛𝚊𝚢(𝒳,I)\mathtt{Array}(\mathcal{X},I) is a combinatorial data structure.
Let k0k\geq 0.

  • I=I=\square with Ib=bI_{b}=b and I[τ]=τI[\tau]=\tau is the indexing system in which IDs equal indices.

  • Set-type indexing systems are of the form Ib2bI_{b}\subseteq 2^{b} and I[τ]=im(τ)I[\tau]=\operatorname*{\mathbin{im}}(\tau). Examples are the indexing systems I=2,(k),(k)I=2^{\square},\binom{\square}{k},\binom{\square}{\leq k} having sets of indices Ib=2b,(bk),(bk)I_{b}=2^{b},\binom{b}{k},\binom{b}{\leq k}. Note that injectivity of τ\tau gives I[τ](Ib)IaI[\tau](I_{b})\subseteq I_{a} in all these cases.

  • Tuple-type indexing systems are of the form Ibb=k0bkI_{b}\subseteq b^{*}=\cup_{k\geq 0}b^{k} and I[τ]=τI[\tau]=\vec{\tau}. Examples are the indexing systems I=,k,kI=\square^{*}_{\neq},\square^{k}_{\neq},\square^{k} having sets of indices Ib=b,bk,bkI_{b}=b^{*}_{\neq},b^{k}_{\neq},b^{k}, where the sup-script \neq indicates that only tuples with distinct entries are considered.

  • Let I,JI,J be two indexing systems. New indexing systems are defined by

    • Products: I×JI\times J with (I×J)a=Ia×Ja(I\times J)_{a}=I_{a}\times J_{a} and (I×J)[τ](i,j)=(I[τ]i,I[τ]j)(I\times J)[\tau](\textbf{i},\textbf{j})=(I[\tau]\textbf{i},I[\tau]\textbf{j}),

    • Coproducts: IJI\sqcup J are defined analogously,

    • Composition: IJI\circ J with (IJ)a=IJa(I\circ J)_{a}=I_{J_{a}} and (IJ)[τ]=I[J[τ]](I\circ J)[\tau]=I[J[\tau]].

  • Every species of structures C:𝙱𝙸𝙹+𝙱𝙸𝙹+C:\mathtt{BIJ}_{+}\rightarrow\mathtt{BIJ}_{+} can be turned into an indexing system I=I(C)I=I(C): let Ib=bbCbI_{b}=\sqcup_{b^{\prime}\subseteq b}C_{b^{\prime}} and for bb,xCbb^{\prime}\subseteq b,x\in C_{b^{\prime}}, that is i=(b,x)Ib\textbf{i}=(b,x)\in I_{b}, let I[τ](i)=(τ(b),C[π](x))I[\tau](\textbf{i})=(\tau(b^{\prime}),C[\pi](x)) with π:bτ(b),iτ(i)\pi:b^{\prime}\rightarrow\tau(b^{\prime}),i\mapsto\tau(i).

Definition 13 (Set systems).

The combinatorial data structure D=𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖D=\mathtt{Setsystem} is defined by Da=22aD_{a}=2^{2^{a}}, that is elements xDax\in D_{a} are subsets x2ax\subseteq 2^{a}, and for injective map τ:ba\tau:b\rightarrow a and xDax\in D_{a} it is D[τ](x)={τ1(a)|ax}D[\tau](x)=\{\tau^{-1}(a^{\prime})|a^{\prime}\in x\}.

There is a canonical bijection between the set of set systems 22a2^{2^{a}} and the set of functions {0,1}2a\{0,1\}^{2^{a}} by mapping x2ax\subseteq 2^{a} to the indicator function aa1(ax)a^{\prime}\subseteq a\mapsto 1(a^{\prime}\in x). This is not a natural isomorphism between 𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖\mathtt{Setsystem} and 𝙰𝚛𝚛𝚊𝚢({0,1},2)\mathtt{Array}(\{0,1\},2^{\square}):

Proposition 3.

𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖\mathtt{Setsystem} and 𝙰𝚛𝚛𝚊𝚢({0,1},2)\mathtt{Array}(\{0,1\},2^{\square}) are not naturally isomorphic.

Proof.

Let D=𝙰𝚛𝚛𝚊𝚢({0,1},2)D=\mathtt{Array}(\{0,1\},2^{\square}), E=𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖E=\mathtt{Setsystem} and bab\subseteq a with k=|b||a|=nk=|b|\leq|a|=n.
Let xDb={0,1}2bx\in D_{b}=\{0,1\}^{2^{b}} and consider the set

{yDa={0,1}2a|D[ιb,a](y)=yι2b,2a=x}.\Big{\{}\leavevmode\nobreak\ y\in D_{a}=\{0,1\}^{2^{a}}\leavevmode\nobreak\ \leavevmode\nobreak\ \Big{|}\leavevmode\nobreak\ \leavevmode\nobreak\ D[\iota_{b,a}](y)=y\circ\iota_{2^{b},2^{a}}=x\leavevmode\nobreak\ \Big{\}}.

This set has cardinality 22n2k2^{2^{n}-2^{k}}, not depending on the concrete choice of xx.
Now let xEbx\in E_{b}, that is x2bx\subseteq 2^{b}, and consider the set

{yEa=22a|E[ιb,a](y)={ba|ay}=x}.\Big{\{}\leavevmode\nobreak\ y\in E_{a}=2^{2^{a}}\leavevmode\nobreak\ \leavevmode\nobreak\ \Big{|}\leavevmode\nobreak\ \leavevmode\nobreak\ E[\iota_{b,a}](y)=\{b\cap a^{\prime}|a^{\prime}\in y\}=x\leavevmode\nobreak\ \Big{\}}.

If DD and EE would be naturally isomorphic, this set would have the same cardinality 22n2k2^{2^{n}-2^{k}} independent on the concrete choice of xx. But this does not hold: let x={b}Ebx=\{b\}\in E_{b}. It is {ba|ay}={b}\{b\cap a^{\prime}|a^{\prime}\in y\}=\{b\} if and only if for all aya^{\prime}\in y it holds that aba^{\prime}\supseteq b. In particular, for this specific xx there are precisely 22nk12^{2^{n-k}}-1 such yy. Clearly, 22nk122n2k2^{2^{n-k}}-1\neq 2^{2^{n}-2^{k}} for n>kn>k. ∎

Example 7 (Three implementations of graphs).

An undirected loop-free graph can be defined as either (1) a pair of vertices and edges, (2) an edge indicator function or (3) as an adjacency matrix. These "implementations" of graphs can be formalized using the BDS framework and are seen to be naturally isomorphic:

  1. (1)

    Pairs of vertices and edges: D=𝙶𝚛𝚊𝚙𝚑(1)D=\mathtt{Graph}^{(1)} is defined by Da={(a,E)|E(a2)}D_{a}=\{(a,E)|E\subseteq\binom{a}{2}\} and D[τ](x)=D[τ]((a,E))=(b,{e(b2)|τ(e)E})D[\tau](x)=D[\tau]((a,E))=(b,\{e\in\binom{b}{2}|\tau(e)\in E\}),

  2. (2)

    Edge indicator functions: D=𝙶𝚛𝚊𝚙𝚑(2)D=\mathtt{Graph}^{(2)} is defined by D=𝙰𝚛𝚛𝚊𝚢({0,1},(2))D=\mathtt{Array}(\{0,1\},\binom{\square}{2}),

  3. (3)

    Adjacency matrices: D=𝙶𝚛𝚊𝚙𝚑(3)D=\mathtt{Graph}^{(3)} is defined as a sub-data structure D𝙰𝚛𝚛𝚊𝚢({0,1},2)D\subseteq\mathtt{Array}(\{0,1\},\square^{2}) with

    Da={x{0,1}a2|x(i,i)=0andx(i,i)=x(i,i)for alli,ia}.D_{a}=\{x\in\{0,1\}^{a^{2}}|x(i,i)=0\leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ x(i,i^{\prime})=x(i^{\prime},i)\leavevmode\nobreak\ \text{for all}\leavevmode\nobreak\ i,i^{\prime}\in a\}.

Natural isomorphisms between these implementations are

  • η:𝙶𝚛𝚊𝚙𝚑(1)𝙶𝚛𝚊𝚙𝚑(2)\eta:\mathtt{Graph}^{(1)}\rightarrow\mathtt{Graph}^{(2)} with ηa((a,E))=[e(a2)1(eE)]\eta_{a}((a,E))=\big{[}e\in\binom{a}{2}\mapsto 1(e\in E)\big{]}.

  • η:𝙶𝚛𝚊𝚙𝚑(2)𝙶𝚛𝚊𝚙𝚑(3)\eta:\mathtt{Graph}^{(2)}\rightarrow\mathtt{Graph}^{(3)} with ηa(x)=[(i,i)a21(ii)x({i,i})]\eta_{a}(x)=\big{[}(i,i^{\prime})\in a^{2}\mapsto 1(i\neq i^{\prime})x(\{i,i^{\prime}\})\big{]}.

  • η:𝙶𝚛𝚊𝚙𝚑(3)𝙶𝚛𝚊𝚙𝚑(1)\eta:\mathtt{Graph}^{(3)}\rightarrow\mathtt{Graph}^{(1)} with ηa(x)(a,{{i,i}(a2)|x(i,i)=x(i,i)=1})\eta_{a}(x)\mapsto(a,\{\{i,i^{\prime}\}\in\binom{a}{2}|x(i,i^{\prime})=x(i^{\prime},i)=1\}).

Definition 14 (Products, coproducts, composition).

Let D,ED,E be Borel data structures and let T:𝙱𝙾𝚁𝙴𝙻𝙱𝙾𝚁𝙴𝙻T:\mathtt{BOREL}\rightarrow\mathtt{BOREL} and I:𝙸𝙽𝙹𝙸𝙽𝙹I:\mathtt{INJ}\rightarrow\mathtt{INJ} be endofunctors.

  • D×ED\times E is defined by (D×E)a=Da×Ea(D\times E)_{a}=D_{a}\times E_{a} and (D×E)[τ](x,y)=(D[τ]x,E[τ]y)(D\times E)[\tau](x,y)=(D[\tau]x,E[\tau]y),

  • DED\sqcup E is defined analogously,

  • TDT\circ D is defined by (TD)a=TDa(T\circ D)_{a}=T_{D_{a}} and (TD)[τ]=T[D[τ]](T\circ D)[\tau]=T[D[\tau]]. One important example is T=𝒫T=\mathscr{P}, the probability measure endofunctor, see Remark 6. In case D=l=0k𝙰𝚛𝚛𝚊𝚢(𝒳(l),(l))D=\prod_{l=0}^{k}\mathtt{Array}(\mathcal{X}^{(l)},\binom{\square}{l}) exchangeable laws in 𝒫D\mathscr{P}\circ D have been studied in [Aus15]. Note that exchangeable laws in 𝒫D\mathscr{P}\circ D correspond to the limit of the functor 𝒫𝒫D\mathscr{P}\circ\mathscr{P}\circ D. The results in [Aus15] lead to a conjecture later, see Remark 22,

  • DID\circ I is defined by (DI)a=DIa(D\circ I)_{a}=D_{I_{a}} and (DI)[τ]=D[I[τ]](D\circ I)[\tau]=D[I[\tau]]. In case II is an indexing system it holds that 𝙰𝚛𝚛𝚊𝚢(𝒳,I)=𝚂𝚎𝚚(𝒳)I\mathtt{Array}(\mathcal{X},I)=\mathtt{Seq}(\mathcal{X})\circ I.

Example 8 (Binary relations and hereditary properties therein).

A binary relation on a set aa can be seen a subset xa×a=a2x\subseteq a\times a=a^{2}. If τ:ba\tau:b\rightarrow a is an injection then {(i,i)b×b|(τ(i),τ(i))x}b×b\{(i,i^{\prime})\in b\times b|(\tau(i),\tau(i^{\prime}))\in x\}\subseteq b\times b defines a new binary relation on bb and this gives the combinatorial data structure D=𝙱𝙸𝙽𝚁𝙴𝙻D=\mathtt{BINREL} of binary relations, which is naturally isomorphic to 𝙰𝚛𝚛𝚊𝚢({0,1},2)\mathtt{Array}(\{0,1\},\square^{2}) by mapping xa×ax\subseteq a\times a to the indicator (i,i)a×a1((i,i)x)(i,i^{\prime})\in a\times a\mapsto 1((i,i^{\prime})\in x).
Many standard properties of binary relations are hereditary, that is stable under D[τ]D[\tau], such as: symmetry, transitivity, reflexivity, connectedness, anti-symmetry,\dots and thus yield sub-data structure of 𝙱𝙸𝙽𝚁𝙴𝙻𝙰𝚛𝚛𝚊𝚢({0,1},2)\mathtt{BINREL}\simeq\mathtt{Array}(\{0,1\},\square^{2}).
One example important for illustrative purposes: a binary relation xx on aa, implemented as an array x{0,1}a×ax\in\{0,1\}^{a\times a}, is a strict total order iff for all i1,i2,i3ai_{1},i_{2},i_{3}\in a

x(i1,i1)=0,x(i1,i2)=1x(i2,i1)andx(i1,i2)x(i2,i3)[1x(i1,i3)]=0.x(i_{1},i_{1})=0,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ x(i_{1},i_{2})=1-x(i_{2},i_{1})\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ x(i_{1},i_{2})x(i_{2},i_{3})[1-x(i_{1},i_{3})]=0.

Being a strict total order is hereditary and gives the data structure 𝚃𝚘𝚝𝙾𝚛𝚍𝙰𝚛𝚛𝚊𝚢({0,1},2)\mathtt{TotOrd}\subset\mathtt{Array}(\{0,1\},\square^{2}) with 𝚃𝚘𝚝𝙾𝚛𝚍a\mathtt{TotOrd}_{a} the subset of strict total orders on aa.

Example 9 (Exchangeable total order).

The exchangeability theory of 𝚃𝚘𝚝𝙾𝚛𝚍\mathtt{TotOrd} is folklore, see for example [Ger20a] or [Ger20]: there exists exactly one exchangeable law on 𝚃𝚘𝚝𝙾𝚛𝚍\mathtt{TotOrd} given by aμa=unif(𝚃𝚘𝚝𝙾𝚛𝚍a)a\mapsto\mu_{a}=\operatorname*{\mathbin{unif}}(\mathtt{TotOrd}_{a}), which is ergodic by uniqueness. It is depth(𝚃𝚘𝚝𝙾𝚛𝚍)=2\operatorname*{\mathbin{depth}}(\mathtt{TotOrd})=2, but a weak representation in the style of Theorem 4 only needs level 11 randomization. For a finite set aa and Ui,iaU_{i},i\in a iid unif[0,1]\sim\operatorname*{\mathbin{unif}}[0,1] define a random strict total order <a<_{a} on aa as i1<ai2:Ui1<Ui2i_{1}<_{a}i_{2}:\Leftrightarrow U_{i_{1}}<U_{i_{2}}. Note that this gives a strict total order with probability one and is equivalent to a weak representation μa=ηa1unif()a\mu_{a}=\eta_{a}^{-1}\circ\operatorname*{\mathbin{unif}}(\square)_{a} with unif()𝚂𝚈𝙼(𝚂𝚎𝚚([0,1]))\operatorname*{\mathbin{unif}}(\square)\in\mathtt{SYM}(\mathtt{Seq}([0,1])) being unif()a=((Ui)ia)=unif[0,1]a\operatorname*{\mathbin{unif}}(\square)_{a}=\mathcal{L}((U_{i})_{i\in a})=\operatorname*{\mathbin{unif}}[0,1]^{\otimes a} and μ\mu the a.s. natural transformation η:𝚂𝚎𝚚([0,1])𝚃𝚘𝚝𝙾𝚛𝚍\eta:\mathtt{Seq}([0,1])\rightarrow\mathtt{TotOrd} defined as μa((Ui)ia):=<a\mu_{a}((U_{i})_{i\in a}):=<_{a} (and arbitrary on a set with unif()a\operatorname*{\mathbin{unif}}(\square)_{a}-probability zero).

Example 10 (Sub-data structures of 𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖\mathtt{Setsystem}).

Sub-data structures of D=𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖D=\mathtt{Setsystem} correspond to hereditary set system properties, that is properties 𝒫\mathcal{P} such that if a set system x2ax\subseteq 2^{a} fulfills 𝒫\mathcal{P} and τ:ba\tau:b\rightarrow a is an injection, then D[τ](x)={τ1(a)|ax}2bD[\tau](x)=\{\tau^{-1}(a^{\prime})|a^{\prime}\in x\}\subseteq 2^{b} also satisfies 𝒫\mathcal{P}, for every such property Da={x2a|x satisfies 𝒫}D^{\prime}_{a}=\{x\subseteq 2^{a}|\leavevmode\nobreak\ \text{$x$ satisfies $\mathcal{P}$}\} gives a sub-data structure D𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖D^{\prime}\subseteq\mathtt{Setsystem}. Examples of such properties are

  • x2ax\subseteq 2^{a} being a partition: x,a1,a2xa1a2=\emptyset\in x,a_{1},a_{2}\in x\Rightarrow a_{1}\cap a_{2}=\emptyset and a=axaa=\cup_{a^{\prime}\in x}a^{\prime} (including the empty set in this case is a question of implementation and does not affect the essence of what makes a partition).

  • x2ax\subseteq 2^{a} being a total partition, also called hierarchy: ,ax,{i}x\emptyset,a\in x,\{i\}\in x for all iai\in a, a1,a2xa1a2{a1,a2,}a_{1},a_{2}\in x\Rightarrow a_{1}\cap a_{2}\in\{a_{1},a_{2},\emptyset\}.

  • x2ax\subseteq 2^{a} being an interval hypergraph: x,{i}x\emptyset\in x,\{i\}\in x for all iai\in a and there exists a strict total order y𝚃𝚘𝚝𝙾𝚛𝚍ay\in\mathtt{TotOrd}_{a} such that every axa^{\prime}\in x is an interval with respect to yy, that is: i1,i2ai_{1},i_{2}\in a^{\prime} and i3ai_{3}\in a with y(i1,i3)=y(i3,i2)=1y(i_{1},i_{3})=y(i_{3},i_{2})=1 then i3ai_{3}\in a^{\prime}.

Exchangeability in partitions has a representation by Kingmans’s paintbox construction, representations for exchangeable total partitions are by [FHP18] and [Ger20] and for interval hypergraphs by [Ger20]. The functional representation in [Ger20] can be translated into the style of FRTs: for every exchangeable law μ\mu over interval hypergraphs there exists a random compact subset KK of the triangle {(x,y)[0,1]2|xy}\{(x,y)\in[0,1]^{2}|x\leq y\} such that μa{{ia|x<U{i}<y}|(x,y)K}\mu_{a}\sim\{\{i\in a|x<U_{\{i\}}<y\}|(x,y)\in K\} for every finite set aa, where K,U{i},iaK,U_{\{i\}},i\in a are independent. Letting K=𝑑g(U)K\overset{d}{=}g(U_{\emptyset}) and defining ηa((ue)e(a1))={{ia|x<u{i}<y}|(x,y)g(u)}\eta_{a}((u_{e})_{e\subseteq\binom{a}{\leq 1}})=\{\{i\in a|x<u_{\{i\}}<y\}|(x,y)\in g(u_{\emptyset})\} defines a unif(R1)\operatorname*{\mathbin{unif}}(R^{1})-almost sure natural transformation mapping into interval hypergraphs such that μ=unif(R1)η1\mu=\operatorname*{\mathbin{unif}}(R^{1})\circ\eta^{-1}.

Example 11 (Examples with 𝚂𝚈𝙼(D)=\mathtt{SYM}(D)=\emptyset).

Exchangeable laws always exist in array-type data structures (product measures) and in combinatorial data structures (by a compactness argument). Two examples of a BDS DD without exchangeable laws are:

  • Da=(0,1)D_{a}=(0,1) for every aa (the open unit interval) and D[τ]:(0,1)(0,1),xx/2|a||b|D[\tau]:(0,1)\rightarrow(0,1),x\mapsto x/{2^{|a|-|b|}} for injection τ:ba\tau:b\rightarrow a. Suppose μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) exists, write XaμaX_{a}\sim\mu_{a}. Applying exchangeability via τ=ι,[n],n0\tau=\iota_{\emptyset,[n]},n\geq 0 gives X=𝑑X[n]/2nX_{\emptyset}\overset{d}{=}X_{[n]}/2^{n}, which converges to 0 in probability as nn\rightarrow\infty, thus Xδ0X_{\emptyset}\sim\delta_{0}, which is a contradiction to XX_{\emptyset} taking values in (0,1)(0,1).

  • let 𝒳\mathcal{X} be countable infinite and D𝚂𝚎𝚚(𝒳)D\subset\mathtt{Seq}(\mathcal{X}) the sub-data structure with Da=𝒳aD_{a}=\mathcal{X}^{a}_{\neq} the set of all injective functions x:a𝒳x:a\rightarrow\mathcal{X}. If there were μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) it would also be μ𝚂𝚈𝙼(𝚂𝚎𝚚(𝒳))\mu\in\mathtt{SYM}(\mathtt{Seq}(\mathcal{X})) such that μa(𝒳a)=1\mu_{a}(\mathcal{X}^{a}_{\neq})=1 for all aa. By de Finetti μ\mu has to be a mixture over iid-laws, μa=νa𝑑Ξ(ν)\mu_{a}=\int\nu^{\otimes a}d\Xi(\nu), which implies for |a|2|a|\geq 2 that μa(𝒳a)<1\mu_{a}(\mathcal{X}^{a}_{\neq})<1 because 𝒳\mathcal{X} is countable.

Example 12.

Let 𝙶𝚛𝚊𝚙𝚑:𝙱𝙸𝙹+𝙱𝙸𝙹+\mathtt{Graph}:\mathtt{BIJ}_{+}\rightarrow\mathtt{BIJ}_{+} be species of structures defining graphs. The previous discussion allows to consider the Borel data structure

D=[𝒫{[(𝙰𝚛𝚛𝚊𝚢(3,28)×𝚃𝚘𝚝𝙾𝚛𝚍)(𝒫𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖)]I(𝙶𝚛𝚊𝚙𝚑)}](10).D=\bigg{[}\mathscr{P}\circ\Big{\{}\Big{[}\big{(}\mathtt{Array}(\mathbb{R}^{3},2^{\square}\circ\square^{8}_{\neq})\times\mathtt{TotOrd}\big{)}\sqcup\big{(}\mathscr{P}\circ\mathtt{Setsystem}\big{)}\Big{]}\circ I(\mathtt{Graph})\Big{\}}\bigg{]}\circ\binom{\square}{\leq 10}.

4. Extension, pointwise convergence and decomposition

For this Section let D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} be a fixed BDS.
Let AA be countable infinite, e.g. A=A=\mathbb{N}. Imagine a statistician picks a countable infinite group of individuals from a large population, uses IDs iAi\in A to represent the individuals and then measures information xaDax_{a}\in D_{a} on each finite subgroup a(A<)a\in\binom{A}{<\infty}. The obtained measurements (xa)a(A<)(x_{a})_{a\in\binom{A}{<\infty}} should satisfy sampling consistency

xa=D[ιa,a](xa)for allaa(A<).x_{a^{\prime}}=D[\iota_{a^{\prime},a}](x_{a})\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{for all}\leavevmode\nobreak\ a^{\prime}\subseteq a\in\binom{A}{<\infty}.

If individuals are picked and IDs iAi\in A distributed at random, the obtained measurement X=(Xa)a(A<)X=(X_{a})_{a\in\binom{A}{<\infty}} should be an exchangeable random object in the following sense:

Definition 15 (Exchangeable DD-measurement).

Let AA be countable infinite. An exchangeable DD-measurement using IDs AA is a collection of random variables

X=(Xa)a(A<)X=(X_{a})_{a\in\binom{A}{<\infty}}

such that for every a(A<)a\in\binom{A}{<\infty}

  • XaX_{a} takes values in DaD_{a},

  • D[ιa,a](Xa)=a.s.XaD[\iota_{a^{\prime},a}](X_{a})\overset{a.s.}{=}X_{a^{\prime}} for every aaa^{\prime}\subseteq a (sampling consistency),

  • D[π](Xa)=𝑑XaD[\pi](X_{a})\overset{d}{=}X_{a} for every bijection π:aa\pi:a\rightarrow a (exchangeability).

If only the first two hold XX is called random DD-measurement using IDs AA. Let

𝚂𝚈𝙼(D;A)={(X)|X is an exchangeable D-measurement using IDs A},\mathtt{SYM}(D;A)=\Big{\{}\mathcal{L}(X)\leavevmode\nobreak\ |\leavevmode\nobreak\ \text{$X$ is an exchangeable $D$-measurement using IDs $A$}\Big{\}},

that is

𝚂𝚈𝙼(D;A)𝒫(a(A<)Da).\mathtt{SYM}(D;A)\subseteq\mathscr{P}\Big{(}\prod\nolimits_{a\in\binom{A}{<\infty}}D_{a}\Big{)}.
Proposition 4.

Let CC be countable infinite and (X)𝚂𝚈𝙼(D;C)\mathcal{L}(X)\in\mathtt{SYM}(D;C). Let aa be a finite set. Choose c(C<)c\in\binom{C}{<\infty} with |c|=|a||c|=|a| and a bijection π:ac\pi:a\rightarrow c. Then (D[π](Xc))𝒫(Da)\mathcal{L}(D[\pi](X_{c}))\in\mathscr{P}(D_{a}) does not depend on the concrete choice of cc and π\pi which allows to define μa:=(D[π](Xc))𝒫(Da)\mu_{a}:=\mathcal{L}(D[\pi](X_{c}))\in\mathscr{P}(D_{a}). The rule μ=[aμa]\mu=[a\mapsto\mu_{a}] is element of 𝚂𝚈𝙼(D)\mathtt{SYM}(D) and the map (X)μ\mathcal{L}(X)\mapsto\mu is a one-to-one correspondence between 𝚂𝚈𝙼(D;C)\mathtt{SYM}(D;C) and 𝚂𝚈𝙼(D)\mathtt{SYM}(D). In particular, 𝚂𝚈𝙼(D)\mathtt{SYM}(D) is a set.

The proof is based on Kolmogorov consistency arguments and placed in the Appendix.

Definition 16 (Canonical extension to countable infinite sets of IDs).

For AA countable infinite let

DA={x=(xa)a(A<)a(A<)Da|D[ιa,a](xa)=xafor allaa(A<)}.D_{A}=\bigg{\{}x=(x_{a})_{a\in\binom{A}{<\infty}}\in\prod\nolimits_{a\in\binom{A}{<\infty}}D_{a}\leavevmode\nobreak\ \Big{|}\leavevmode\nobreak\ D[\iota_{a^{\prime},a}](x_{a})=x_{a^{\prime}}\leavevmode\nobreak\ \text{for all}\leavevmode\nobreak\ a^{\prime}\subseteq a\in\binom{A}{<\infty}\bigg{\}}.

For any countable set BB (finite or infinite), injection τ:BA\tau:B\rightarrow A and x=(xa)a(A<)DAx=(x_{a})_{a\in\binom{A}{<\infty}}\in D_{A} let

D[τ](x)={D[τ^](xτ(b)),if B=b is finite(D[τιb,B^](xτ(b)))b(B<),if B is infinite.D[\tau](x)=\begin{cases}D\big{[}\hat{\tau}\big{]}(x_{\tau(b)}),&\leavevmode\nobreak\ \text{if $B=b$ is finite}\\ \Big{(}D\big{[}\widehat{\tau\circ\iota_{b,B}}\big{]}(x_{\tau(b)})\Big{)}_{b\in\binom{B}{<\infty}},&\leavevmode\nobreak\ \text{if $B$ is infinite}.\end{cases}

It is easily seen that if τ:BA\tau:B\rightarrow A is an injection between two countable infinite sets then xDAx\in D_{A} implies D[τ](x)DBD[\tau](x)\in D_{B}. In particular: DAD_{A}\neq\emptyset for some countable infinite AA implies DBD_{B}\neq\emptyset for every countable infinite BB. The proof of the following is placed in the Appendix.

Proposition 5.

Assume 𝚂𝚈𝙼(D)\mathtt{SYM}(D)\neq\emptyset. Then

  • (1)

    For every countable infinite AA it is DAD_{A} a non-empty measurable subset of a(A<)Da\prod_{a\in\binom{A}{<\infty}}D_{a} and hence a Borel space. In particular, random infinite DD-measurements using IDs AA can be considered DAD_{A}-valued random variables. For two DAD_{A}-valued random variables X,XX,X^{\prime} it holds X=𝑑XX\overset{d}{=}X^{\prime} iff Xa=𝑑XaX_{a}\overset{d}{=}X^{\prime}_{a} for all a(A<)a\in\binom{A}{<\infty},

  • (2)

    The construction in Definition 16 extends D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} to a functor D:𝙲𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{CINJ}^{\text{op}}\rightarrow\mathtt{BOREL}, where 𝙲𝙸𝙽𝙹\mathtt{CINJ} is the category of injections between countable sets,

  • (3)

    Let X=(Xa)a(A<)X=(X_{a})_{a\in\binom{A}{<\infty}} be a random DD-measurement using IDs AA, that is a DAD_{A}-valued random variable. The following are equivalent:

    • (i)

      Xa=𝑑D[π](Xa)X_{a}\overset{d}{=}D[\pi](X_{a}) for every a(A<)a\in\binom{A}{<\infty} and bijection π:aa\pi:a\rightarrow a, that is: XX is an exchangeable DD-measurement in the sense of Definition 15,

    • (ii)

      D[π](X)=𝑑XD[\pi](X)\overset{d}{=}X for every bijection π:AA\pi:A\rightarrow A with π(i)=i\pi(i)=i for all but finitely many iAi\in A,

    • (iii)

      D[π](X)=𝑑XD[\pi](X)\overset{d}{=}X for every bijection π:AA\pi:A\rightarrow A,

    • (iv)

      D[τ](X)=𝑑XD[\tau](X)\overset{d}{=}X for every injection τ:AA\tau:A\rightarrow A.

  • (4)

    For every injection τ:BA\tau:B\rightarrow A between countable infinite sets the map (X)(D[τ](X))\mathcal{L}(X)\mapsto\mathcal{L}(D[\tau](X)) is a bijection 𝚂𝚈𝙼(D;A)𝚂𝚈𝙼(D;B)\mathtt{SYM}(D;A)\rightarrow\mathtt{SYM}(D;B).

Remark 12.

Let XX be an exchangeable DD-measurement using IDs BB whose law is represented by μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). Let ABA\supseteq B. Applying (4) to τ=ιB,A\tau=\iota_{B,A} allows to represent XX as X=D[ιB,A](X~)X=D[\iota_{B,A}](\tilde{X}) with X~\tilde{X} being an exchangeable DD-measurement using IDs AA, whose law is necessarily also represented by μ\mu. In case \mathbb{Z}\supseteq\mathbb{N} such constructions are a basic approach to prove functional representation theorems for arrays, see [Ald82], [Ald85] and [Aus12].

Combining the previous propositions with Theorems 3 and 4 gives the following reformulation of the FRTs:

Corollary 1 (Weak FRT for exchangeable random measurements).

For every exchangeable DD-measurement X=(Xa)a(A<)X=(X_{a})_{a\in\binom{A}{<\infty}} there exists a unif(R)\operatorname*{\mathbin{unif}}(R)-almost sure natural transformation η:RD\eta:R\rightarrow D such that

(Xa)a(A<)=𝑑(ηa((Ue)ea))a(A<),\big{(}X_{a}\big{)}_{a\in\binom{A}{<\infty}}\leavevmode\nobreak\ \overset{d}{=}\leavevmode\nobreak\ \Big{(}\eta_{a}\big{(}(U_{e})_{e\subseteq a}\big{)}\Big{)}_{a\in\binom{A}{<\infty}},

where Ue,e(A<)U_{e},e\in\binom{A}{<\infty} are iid unif[0,1]\sim\operatorname*{\mathbin{unif}}[0,1]. If depth(D)=k<\operatorname*{\mathbin{depth}}(D)=k<\infty there is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation η:RkD\eta:R^{k}\rightarrow D such that

(Xa)a(A<)=𝑑(ηa((Ue)ea,|e|k))a(A<).\big{(}X_{a}\big{)}_{a\in\binom{A}{<\infty}}\leavevmode\nobreak\ \overset{d}{=}\leavevmode\nobreak\ \Big{(}\eta_{a}\big{(}(U_{e})_{e\subseteq a,|e|\leq k}\big{)}\Big{)}_{a\in\binom{A}{<\infty}}.
Proof.

By Proposition 4 there is a unique μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) with μaXa\mu_{a}\sim X_{a} for every aa. By Theorem 3 there is a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:RD\eta:R\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}. This gives Xa=𝑑ηa((Ue)ea)X_{a}\overset{d}{=}\eta_{a}\big{(}(U_{e})_{e\subseteq a}\big{)} for every a(A<)a\in\binom{A}{<\infty}. Since η\eta is μ\mu-a.s. natural transformation (ηa((Ue)ea))a(A<)(\eta_{a}\big{(}(U_{e})_{e\subseteq a}\big{)})_{a\in\binom{A}{<\infty}} takes values in DAD_{A} almost surely and the same is true for (Xa)a(A<)(X_{a})_{a\in\binom{A}{<\infty}}. The equality in distribution at each a(A<)a\in\binom{A}{<\infty} implies equality in distribution of the whole (A<)\binom{A}{<\infty}-indexed processes by (1) of Proposition 5. The finite-depth case follows the same way by applying Theorem 4. ∎

4.1. Natural extensions of array-type data structures

Let D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D=\mathtt{Array}(\mathcal{X},I). Since 𝚂𝚈𝙼(D)\mathtt{SYM}(D)\neq\emptyset the functor D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} can be extended to a functor D:𝙲𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{CINJ}^{\text{op}}\rightarrow\mathtt{BOREL} by the construction of Definition 16. A more natural extension is possible for array-type data structures. The special case D=𝚂𝚎𝚚(𝒳)=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Seq}(\mathcal{X})=\mathtt{Array}(\mathcal{X},\square) is very instructive: let AA be countable infinite, an element xDAx\in D_{A} in the canonical extension is of the form

x=(xa)a(A<)withxa=(xa(i))ia𝒳a.x=(x_{a})_{a\in\binom{A}{<\infty}}\leavevmode\nobreak\ \leavevmode\nobreak\ \text{with}\leavevmode\nobreak\ \leavevmode\nobreak\ x_{a}=(x_{a}(i))_{i\in a}\in\mathcal{X}^{a}.

Let xi:=x{i}(i),iAx_{i}:=x_{\{i\}}(i),i\in A. The defining property of DAD_{A} (sampling consistency) gives

(xa)a(A<)=((xi)ia)a(A<),(x_{a})_{a\in\binom{A}{<\infty}}=((x_{i})_{i\in a})_{a\in\binom{A}{<\infty}},

which obviously can be represented more naturally as (xi)iA𝒳A(x_{i})_{i\in A}\in\mathcal{X}^{A}. This works for every D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D=\mathtt{Array}(\mathcal{X},I): a natural extension is based on extending the indexing system, which is a functor I:𝙸𝙽𝙹𝙸𝙽𝙹I:\mathtt{INJ}\rightarrow\mathtt{INJ} with additional properties, to a functor I:𝙲𝙸𝙽𝙹𝙲𝙸𝙽𝙹I:\mathtt{CINJ}\rightarrow\mathtt{CINJ} and defining the natural extension of DD as DA=𝒳IAD_{A}=\mathcal{X}^{I_{A}} and D[τ](x)=xI[τ]D[\tau](x)=x\circ I[\tau]. The extension of II is as follows:
Let AA be countable infinite. Define IA=a(A<)IaI_{A}=\cup_{a\in\binom{A}{<\infty}}I_{a} and for an injection τ:BA\tau:B\rightarrow A, with BB finite or infinite, define

I[τ]:IBIA,I[τ](i)={I[τ^](i),if B=b is finite,I[\savestack\tmpbox\stretchto\scaleto\scalerel[width("τιdom(i),B")]^2.4ex\stackon[6.9pt]τιdom(i),B\tmpbox](i),if B is infinite.I[\tau]:I_{B}\rightarrow I_{A},I[\tau](\textbf{i})=\begin{cases}I[\hat{\tau}](\textbf{i}),&\leavevmode\nobreak\ \text{if $B=b$ is finite},\\ I\big{[}\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[width("\tau\circ\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),B}")]{\kern 0.1pt\mathchar 866\relax\kern 0.1pt}{\rule{0.0pt}{505.89pt}}}{}}{2.4ex}}\stackon[-6.9pt]{\tau\circ\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),B}}{\tmpbox}\big{]}(\textbf{i}),&\leavevmode\nobreak\ \text{if $B$ is infinite}.\end{cases}

Lemma 2 later provides the main technical details to see that this extends II to countable infinite sets, satisfying functor properties and also satisfying the indexing system axioms for countable infinite sets. Some examples: let B,AB,A be arbitrary countable and τ:BA\tau:B\rightarrow A be an injection:

  • D=𝚂𝚎𝚚(𝒳)=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Seq}(\mathcal{X})=\mathtt{Array}(\mathcal{X},\square) has natural extension DA=𝒳AD_{A}=\mathcal{X}^{A} and D[τ](x)=xτD[\tau](x)=x\circ\tau,

  • D=𝙰𝚛𝚛𝚊𝚢(𝒳,(k))D=\mathtt{Array}(\mathcal{X},\binom{\square}{k}) has natural extension DA=𝒳(Ak)D_{A}=\mathcal{X}^{\binom{A}{k}} and D[τ](x)=xim(τ)D[\tau](x)=x\circ\operatorname*{\mathbin{im}}(\tau),

  • D=𝙰𝚛𝚛𝚊𝚢(𝒳,2)D=\mathtt{Array}(\mathcal{X},2^{\square}) has natural extension DA=𝒳(A<)D_{A}=\mathcal{X}^{\binom{A}{<\infty}} and D[τ](x)=xim(τ)D[\tau](x)=x\circ\operatorname*{\mathbin{im}}(\tau),

  • D=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}) has natural extension DA=𝒳AD_{A}=\mathcal{X}^{A^{*}_{\neq}} and D[τ](x)=xτD[\tau](x)=x\circ\vec{\tau}.

In particular, exchangeable random measurements using IDs \mathbb{N} now fit the framework (1.3) presented in the introduction: the group action on indices is 𝕊×II,(π,i)I[π](i)\mathbb{S}_{\infty}\times I_{\mathbb{N}}\rightarrow I_{\mathbb{N}},(\pi,\textbf{i})\mapsto I[\pi](\textbf{i}) and following Proposition 4 shows that laws of exchangeable processes (Xi)iI(X_{\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}} can be identified with 𝚂𝚈𝙼(𝙰𝚛𝚛𝚊𝚢(𝒳,I))\mathtt{SYM}(\mathtt{Array}(\mathcal{X},I)) (by passing from canonical to natural extension). An exchangeable array in natural extension (Xi)iI(X_{\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}} corresponds to ((Xi)iIa)a(<)\big{(}(X_{\textbf{i}})_{\textbf{i}\in I_{a}}\big{)}_{a\in\binom{\mathbb{N}}{<\infty}} in canonical extension.

Remark 13.

With D=𝚂𝚎𝚝𝚜𝚢𝚜𝚝𝚎𝚖D=\mathtt{Setsystem} it is not obvious if there is an extension that is any more "natural" than the canonical one from Definition 16. Note that both in [FHP18] and [Ger20] exchangeable random objects of set system-type (hierarchies/interval hypergraphs) have been introduced as random sequences of finite growing exchangeable structures satisfying sampling consistency, that is in canonical extension.

4.2. Pointwise convergence, UU-statistics and the independence property

Let DD be a BDS with 𝚂𝚈𝙼(D)\mathtt{SYM}(D)\neq\emptyset and D:𝙲𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{CINJ}^{\text{op}}\rightarrow\mathtt{BOREL} be the canonical extension of DD. Propositions 4 and 5 show that studying 𝚂𝚈𝙼(D)\mathtt{SYM}(D) falls into the framework (1.1) presented in the introduction: a measurable group action 𝕊×𝒮𝒮,(π,x)πx\mathbb{S}_{\mathbb{N}}\times\mathcal{S}\rightarrow\mathcal{S},(\pi,x)\mapsto\pi x is derived by defining

𝒮=Dandπx=D[π1](x),\mathcal{S}=D_{\mathbb{N}}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \pi x=D[\pi^{-1}](x),

and 𝚂𝚈𝙼(D)\mathtt{SYM}(D) can be identified with 𝚂𝚈𝙼(D;)\mathtt{SYM}(D;\mathbb{N}), that is with laws of 𝒮=D\mathcal{S}=D_{\mathbb{N}}-valued random variables XX with πX=𝑑X\pi X\overset{d}{=}X for all π𝕊\pi\in\mathbb{S}_{\mathbb{N}}. Further, XX is exchangeable already iff πX=𝑑X\pi X\overset{d}{=}X for all π𝕊𝕊\pi\in\mathbb{S}_{\infty}\subseteq\mathbb{S}_{\mathbb{N}}.
Ergodic theory results become directly applicable: let \mathcal{I} be the σ\sigma-field of measurable subsets M𝒮=DM\subseteq\mathcal{S}=D_{\mathbb{N}} with D[π](M)=MD[\pi](M)=M for all π𝕊\pi\in\mathbb{S}_{\infty}. An exchangeable DD_{\mathbb{N}}-valued XX is called ergodic iff [XM]{0,1}\mathbb{P}[X\in M]\in\{0,1\} for all MM\in\mathcal{I}. Let 𝚂𝚈𝙼erg(D;)𝚂𝚈𝙼(D;)\mathtt{SYM}^{\text{erg}}(D;\mathbb{N})\subseteq\mathtt{SYM}(D;\mathbb{N}) be the set ergodic exchangeable laws, which is non-empty measurable. Ergodic decomposition, Theorem A1.4 in [Kal97], gives that the following two maps are bijections inverse to each other:

𝒫(𝚂𝚈𝙼erg(D;))𝚂𝚈𝙼(D;)\displaystyle\mathscr{P}\big{(}\mathtt{SYM}^{\text{erg}}(D;\mathbb{N})\big{)}\longrightarrow\mathtt{SYM}(D;\mathbb{N}) ,Ξ𝚂𝚈𝙼erg(D;)μ()dΞ(μ)\displaystyle,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \Xi\mapsto\int_{\mathtt{SYM}^{\text{erg}}(D;\mathbb{N})}\mu(\cdot)d\Xi(\mu)
𝚂𝚈𝙼(D;)𝒫(𝚂𝚈𝙼erg(D;))\displaystyle\mathtt{SYM}(D;\mathbb{N})\longrightarrow\mathscr{P}\big{(}\mathtt{SYM}^{\text{erg}}(D;\mathbb{N})\big{)} ,(X)([X|X1()]).\displaystyle,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mathcal{L}(X)\leavevmode\nobreak\ \mapsto\leavevmode\nobreak\ \mathcal{L}\big{(}\leavevmode\nobreak\ \mathbb{P}[X\in\cdot|X^{-1}(\mathcal{I})]\leavevmode\nobreak\ \big{)}.

The abstract de Finetti theorem, Theorem 1, follows from this by identifying 𝚂𝚈𝙼erg(D;)\mathtt{SYM}^{\text{erg}}(D;\mathbb{N}) with exchangeable laws having the independence property, that is with 𝚂𝚈𝙼erg(D)\mathtt{SYM}^{\text{erg}}(D). This is shown in Theorem 8 below.

Remark 14 (Convex decomposition).

Let AA be countable infinite and consider collections (μa)a(A<)(\mu_{a})_{a\in\binom{A}{<\infty}} with μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). A strict partial order on (A<)\binom{A}{<\infty} is given by comparing sets by cardinality, that is b<ab<a iff |b|<|a||b|<|a|. This strict partial order is directed to the right and countable at infinity. For b<ab<a let Tba:baT_{ba}:b\rightarrow a be a uniform random injection and define the probability kernel pba:Da𝒫(Db),x(D[Tba](x))p_{ba}:D_{a}\rightarrow\mathscr{P}(D_{b}),x\mapsto\mathcal{L}(D[T_{ba}](x)). By combinatorial arguments, a collection (μa)a(A<)(\mu_{a})_{a\in\binom{A}{<\infty}} comes from some μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) iff μb=pbaμa\mu_{b}=p_{ba}\mu_{a} for all b<ab<a. Modulo topological assumptions: Proposition 1.1 in Chapter IV of [Lau88] gives a simplex decomposition for such collections (μa)a(A<)(\mu_{a})_{a\in\binom{A}{<\infty}}.

The proof for characterizing ergodicity via independence heavily relies on the following, for π𝕊\pi\in\mathbb{S}_{\infty} write |π|n|\pi|\leq n iff π(i)=i\pi(i)=i for all i>ni>n:

Theorem B (Pointwise convergence, Theorem 1.2 in [Lin01] applied to 𝕊\mathbb{S}_{\infty}).

For every (X)𝚂𝚈𝙼(D;)\mathcal{L}(X)\in\mathtt{SYM}(D;\mathbb{N}) and measurable f:Df:D_{\mathbb{N}}\rightarrow\mathbb{R} with 𝔼[|f(X)|]<\mathbb{E}[|f(X)|]<\infty it holds that

1n!π𝕊,|π|nfD[π](X)n𝔼[f(X)|X1()]almost surely.\frac{1}{n!}\sum_{\pi\in\mathbb{S}_{\infty},|\pi|\leq n}f\circ D[\pi](X)\leavevmode\nobreak\ \leavevmode\nobreak\ \overset{n\rightarrow\infty}{\longrightarrow}\leavevmode\nobreak\ \leavevmode\nobreak\ \mathbb{E}[f(X)|X^{-1}(\mathcal{I})]\leavevmode\nobreak\ \leavevmode\nobreak\ \text{almost surely.}

Theorem B is applied to functions ff obtained from kernel functions g:D[k],k0g:D_{[k]}\rightarrow\mathbb{R},k\geq 0 via f=gD[ι[k],]f=g\circ D[\iota_{[k],\mathbb{N}}]. For nkn\geq k let

avg(g,n):D[n],avg(g,n)=(nk)!n!τ:[k][n]injectivegD[τ].\operatorname*{\mathbin{avg}}(g,n):D_{[n]}\rightarrow\mathbb{R},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \operatorname*{\mathbin{avg}}(g,n)=\frac{(n-k)!}{n!}\sum_{\tau:[k]\rightarrow[n]\leavevmode\nobreak\ \text{injective}}g\circ D[\tau].

For a uniform random injection Tk,n:[k][n]T_{k,n}:[k]\rightarrow[n] it is

avg(g,n)(xn)=𝔼[gD[Tk,n](xn)]for everyxnD[n]\operatorname*{\mathbin{avg}}(g,n)(x_{n})=\mathbb{E}\big{[}g\circ D[T_{k,n}](x_{n})\big{]}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{for every}\leavevmode\nobreak\ x_{n}\in D_{[n]}

and basic combinatorial arguments together with functorality of DD gives for every random DD-measurement X=(Xa)a(<)X=(X_{a})_{a\in\binom{\mathbb{N}}{<\infty}} and nkn\geq k

avg(g,n)(X[n])=1n!π𝕊,|π|nfD[π](X).\operatorname*{\mathbin{avg}}(g,n)(X_{[n]})=\frac{1}{n!}\sum_{\pi\in\mathbb{S}_{\infty},|\pi|\leq n}f\circ D[\pi](X).

Theorem B directly yields the following

Corollary 2.

For an exchangeable DD-measurement X=(Xa)a(<)X=(X_{a})_{a\in\binom{\mathbb{N}}{<\infty}} and measurable g:D[k],k0g:D_{[k]}\rightarrow\mathbb{R},k\geq 0 with 𝔼[g(X[k])|]<\mathbb{E}[g(X_{[k]})|]<\infty it is

avg(g,n)(X[n])n𝔼[g(X[k])|X1()]almost surely.\operatorname*{\mathbin{avg}}(g,n)(X_{[n]})\overset{n\rightarrow\infty}{\longrightarrow}\mathbb{E}[g(X_{[k]})|X^{-1}(\mathcal{I})]\leavevmode\nobreak\ \leavevmode\nobreak\ \text{almost surely.}
Remark 15.

An alternative approach to Corollary 2 is by backwards martingale convergence; however, the proof using pointwise convergence theorem is much more direct.

Basic measure theoretic considerations give that X=(Xa)aX=(X_{a})_{a} is ergodic iff for every k0k\geq 0 and bounded measurable kernel g:D[k]g:D_{[k]}\rightarrow\mathbb{R} it is 𝔼[g(X[k])|X1()]=a.s.𝔼[g(X[k])]\mathbb{E}[g(X_{[k]})|X^{-1}(\mathcal{I})]\overset{a.s.}{=}\mathbb{E}[g(X_{[k]})] a.s. constant, which is equivalent to the variance of 𝔼[g(X[k])|X1()]\mathbb{E}[g(X_{[k]})|X^{-1}(\mathcal{I})] being zero. For every exchangeable XX, not necessarily ergodic, and every square integrable kernel g:D[k]g:D_{[k]}\rightarrow\mathbb{R}, that is 𝔼[g2(X[k])]<\mathbb{E}[g^{2}(X_{[k]})]<\infty, simple calculations using exchangeability, sampling consistency and functorality of DD give for every nkn\geq k

𝕍ar(avg(g,n)(X[n]))=(nk)!n!a([n]k)π:[k]abij.ov(g(X[k]),gD[π](Xa)).\mathbb{V}ar\big{(}\operatorname*{\mathbin{avg}}(g,n)(X_{[n]})\big{)}=\frac{(n-k)!}{n!}\sum_{a\in\binom{[n]}{k}}\sum_{\pi:[k]\rightarrow a\leavevmode\nobreak\ \text{bij.}}\mathbb{C}ov\Big{(}g(X_{[k]}),g\circ D[\pi](X_{a})\Big{)}. (4.1)

This is used to prove:

Theorem 8.

Let X=(Xa)a(<)X=(X_{a})_{a\in\binom{\mathbb{N}}{<\infty}} be an exchangeable DD-measurement. Equivalent are:

  1. (i)

    XX is ergodic,

  2. (ii)

    XX has the independence property: Xa,XbX_{a},X_{b} are stochastically independent for all a,b(<)a,b\in\binom{\mathbb{N}}{<\infty} with ab=a\cap b=\emptyset,

  3. (iii)

    for every countable set 𝒢k0D[k]\mathcal{G}\subseteq\bigcup_{k\geq 0}\mathbb{R}^{D_{[k]}} of bounded measurable functions there exists a deterministic sequence (xn)n(x_{n})_{n\in\mathbb{N}} with xnD[mn]x_{n}\in D_{[m_{n}]} such that mnm_{n}\rightarrow\infty and for every g𝒢,g:D[k]g\in\mathcal{G},g:D_{[k]}\rightarrow\mathbb{R}

    𝔼[g(X[k])]=limnavg(g,mn)(xn).\mathbb{E}[g(X_{[k]})]=\lim\limits_{n\rightarrow\infty}\operatorname*{\mathbin{avg}}(g,m_{n})(x_{n}).
Proof.

(i)\Rightarrow(iii)\Rightarrow(ii)\Rightarrow(i) is shown.
(i)\Rightarrow(iii). By Corollary 2 avg(g,n)(X[n])𝔼[g(X[k])]\operatorname*{\mathbin{avg}}(g,n)(X_{[n]})\rightarrow\mathbb{E}[g(X_{[k]})] a.s. for every g𝒢g\in\mathcal{G} defined on D[k]D_{[k]}. Since 𝒢\mathcal{G} is countable the convergence almost surely holds simultaneously over 𝒢\mathcal{G}, take xn=Xn(ω)x_{n}=X_{n}(\omega) for some ω\omega from the corresponding probability-one event; mn=nm_{n}=n in this case.
(iii)\Rightarrow(ii). Let a,b(<)a,b\in\binom{\mathbb{N}}{<\infty} with ab=a\cap b=\emptyset and f:Da,g:Dbf:D_{a}\rightarrow\mathbb{R},g:D_{b}\rightarrow\mathbb{R} be bounded measurable, so 𝔼[f(Xa)g(Xb)]=𝔼[f(Xa)]𝔼[g(Xb)]\mathbb{E}[f(X_{a})g(X_{b})]=\mathbb{E}[f(X_{a})]\mathbb{E}[g(X_{b})] is to be shown. Let kk\in\mathbb{N} be such that ab[k]a\cup b\subseteq[k] and h:D[k]h:D_{[k]}\rightarrow\mathbb{R} be

h=(fD[ιa,[k]])(gD[ιb,[k]]).h=\big{(}f\circ D[\iota_{a,[k]}]\big{)}\cdot\big{(}g\circ D[\iota_{b,[k]}]\big{)}.

Applying (iii) to the three-element set 𝒢={fD[ιa,[k]],gD[ιb,[k]],h}\mathcal{G}=\{f\circ D[\iota_{a,[k]}],g\circ D[\iota_{b,[k]}],h\} gives a deterministic sequence (xn)(x_{n}) with xnD[mn]x_{n}\in D_{[m_{n}]}, mnm_{n}\rightarrow\infty, such that for a uniform random injection Tk,mn:[k][mn]T_{k,m_{n}}:[k]\rightarrow[m_{n}] it holds that

𝔼[f(Xa)]=𝔼[f(D[ιa,[k]](X[k]))]\displaystyle\mathbb{E}[f(X_{a})]=\mathbb{E}\big{[}f\big{(}D[\iota_{a,[k]}](X_{[k]})\big{)}\big{]} =limn𝔼[f(D[Tk,mnιa,[k]](xn))],\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\Big{[}f\Big{(}D[T_{k,m_{n}}\circ\iota_{a,[k]}](x_{n})\Big{)}\Big{]},
𝔼[g(Xb)]=𝔼[g(D[ιb,[k]](X[k]))]\displaystyle\mathbb{E}[g(X_{b})]=\mathbb{E}\big{[}g\big{(}D[\iota_{b,[k]}](X_{[k]})\big{)}\big{]} =limn𝔼[g(D[Tk,mnιb,[k]](xn))],\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\Big{[}g\Big{(}D[T_{k,m_{n}}\circ\iota_{b,[k]}](x_{n})\Big{)}\Big{]},
𝔼[f(Xa)g(Xb)]\displaystyle\mathbb{E}[f(X_{a})g(X_{b})] =limn𝔼[f(D[Tk,mnιa,[k]](xn))g(D[Tk,mnιb,[k]](xn))].\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\Big{[}f\Big{(}D[T_{k,m_{n}}\circ\iota_{a,[k]}](x_{n})\Big{)}g\Big{(}D[T_{k,m_{n}}\circ\iota_{b,[k]}](x_{n})\Big{)}\Big{]}.

Let Tk,mnT^{\prime}_{k,m_{n}} be another random uniform injection [k][mn][k]\rightarrow[m_{n}] independent from Tk,mnT_{k,m_{n}} and let Ak,mn={Tk,mn(a)Tk,mn(b)=}A_{k,m_{n}}=\{T_{k,m_{n}}(a)\cap T^{\prime}_{k,m_{n}}(b)=\emptyset\}. Elementary combinatorial calculations show that [Ak,mn]1\mathbb{P}[A_{k,m_{n}}]\rightarrow 1 as nn\rightarrow\infty and that for every fixed nn with mnkm_{n}\geq k the joint distribution of (Tk,mnιa,[k],Tk,mnιb,[k])(T_{k,m_{n}}\circ\iota_{a,[k]},T_{k,m_{n}}\circ\iota_{b,[k]}) is the same as that of (Tk,mnιa,[k],Tk,mnιb,[k])(T_{k,m_{n}}\circ\iota_{a,[k]},T^{\prime}_{k,m_{n}}\circ\iota_{b,[k]}) conditioned on Ak,mnA_{k,m_{n}}. This gives

𝔼[f(Xa)g(Xb)]\displaystyle\mathbb{E}[f(X_{a})g(X_{b})] =limn𝔼[f(D[Tk,mnιa,[k]](xn))g(D[Tk,mnιb,[k]](xn))]\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\Big{[}f\Big{(}D[T_{k,m_{n}}\circ\iota_{a,[k]}](x_{n})\Big{)}g\Big{(}D[T_{k,m_{n}}\circ\iota_{b,[k]}](x_{n})\Big{)}\Big{]}
=limn𝔼[f(D[Tk,mnιa,[k]](xn))g(D[Tk,mnιb,[k]](xn))|Ak,mn]\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\Big{[}f\Big{(}D[T_{k,m_{n}}\circ\iota_{a,[k]}](x_{n})\Big{)}g\Big{(}D[T^{\prime}_{k,m_{n}}\circ\iota_{b,[k]}](x_{n})\Big{)}\leavevmode\nobreak\ \Big{|}\leavevmode\nobreak\ A_{k,m_{n}}\leavevmode\nobreak\ \Big{]}
=limn𝔼[f(D[Tk,mnιa,[k]](xn))]𝔼[g(D[Tk,mnιb,[k]](xn))]\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\Big{[}f\Big{(}D[T_{k,m_{n}}\circ\iota_{a,[k]}](x_{n})\Big{)}\Big{]}\mathbb{E}\Big{[}g\Big{(}D[T^{\prime}_{k,m_{n}}\circ\iota_{b,[k]}](x_{n})\Big{)}\Big{]}
=𝔼[f(Xa)]𝔼[g(Xb)].\displaystyle=\mathbb{E}[f(X_{a})]\mathbb{E}[g(X_{b})].

(ii)\Rightarrow(i). Let g:D[k],k0g:D_{[k]}\rightarrow\mathbb{R},k\geq 0 be bounded measurable, it is shown that the variance of 𝔼[g(X[k])|X1()]\mathbb{E}[g(X_{[k]})|X^{-1}(\mathcal{I})] is zero. By pointwise and dominated convergence

𝕍ar(𝔼[g(X[k])|X1()])=limn𝕍ar(avg(g,n)(X[n])).\mathbb{V}ar(\mathbb{E}[g(X_{[k]})|X^{-1}(\mathcal{I})])=\lim\limits_{n\rightarrow\infty}\mathbb{V}ar\Big{(}\operatorname*{\mathbin{avg}}(g,n)\big{(}X_{[n]}\big{)}\Big{)}.

By (4.1) the variance of avg(g,n)(X[n])\operatorname*{\mathbin{avg}}(g,n)(X_{[n]}) depends on covariances ov(g(X[k]),gD[π](Xa))\mathbb{C}ov(g(X_{[k]}),g\circ D[\pi](X_{a})) with a([n]k)a\in\binom{[n]}{k} and π:[k]a\pi:[k]\rightarrow a bijective. By assumption (ii) such a covariance is zero if [k]a=[k]\cap a=\emptyset. For n2kn\geq 2k there are (nkk)\binom{n-k}{k} of such a([n]k)a\in\binom{[n]}{k}, bounding |g|C|g|\leq C gives

𝕍ar(avg(g,n)(X[n]))k!(nk)!n![(nk)(nkk)]C2=[1(nkk)/(nk)]C2,\mathbb{V}ar\Big{(}\operatorname*{\mathbin{avg}}(g,n)\big{(}X_{[n]}\big{)}\Big{)}\leq\frac{k!(n-k)!}{n!}\big{[}\binom{n}{k}-\binom{n-k}{k}\big{]}C^{2}=\big{[}1-\binom{n-k}{k}/\binom{n}{k}\big{]}C^{2},

for fixed kk the upper bound goes to zero as nn\rightarrow\infty. ∎

Remark 16 (Asymptotic of UU-statistics).

Let g:D[k]g:D_{[k]}\rightarrow\mathbb{R} be a symmetric measurable kernel, that is gD[π]=gg\circ D[\pi]=g for every bijection π:[k][k]\pi:[k]\rightarrow[k]. In this case gg can be extended to have domain DaD_{a} for every aa with |a|=k|a|=k. If X=(Xa)a(<)X=(X_{a})_{a\in\binom{\mathbb{N}}{<\infty}} is exchangeable with 𝔼[g2(X[k])]<\mathbb{E}[g^{2}(X_{[k]})]<\infty the variance formula (4.1) can be further reduced: for n2kn\geq 2k it is

𝕍ar(avg(g,n)(X[n]))=l=0k(kl)(nkkl)(nk)clwithcl=ov(g(X[k]),g(X[l]+{k+1,,2kl})).\mathbb{V}ar\big{(}\operatorname*{\mathbin{avg}}(g,n)(X_{[n]})\big{)}=\sum_{l=0}^{k}\frac{\binom{k}{l}\binom{n-k}{k-l}}{\binom{n}{k}}c_{l}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{with}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ c_{l}=\mathbb{C}ov(g(X_{[k]}),g(X_{[l]+\{k+1,\dots,2k-l\}})).

In case D=𝚂𝚎𝚚(𝒳)D=\mathtt{Seq}(\mathcal{X}) this follows from classical UU-statistics theory, see [KB94], and in this case clc_{l} has a representation as the variance of a conditional expectation, which directly gives cl0c_{l}\geq 0. This also holds for general DD: by Corollary 1 there is a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s natural transformation η:RD\eta:R\rightarrow D representing the law of XX, for every a(<)a\in\binom{\mathbb{N}}{<\infty} let Xa:=ηa((Ue)ea)X_{a}:=\eta_{a}((U_{e})_{e\subseteq a}) with Ue,e(<)U_{e},e\in\binom{\mathbb{N}}{<\infty} iid unif[0,1]\sim\operatorname*{\mathbin{unif}}[0,1]. In this special construction of XX, the same ideas as for the sequential case give

cl=ov(g(X[k]),g(X[l]+{k+1,,2kl}))=𝕍ar(𝔼[g(X[k])|(Ue)e[l]])0.c_{l}=\mathbb{C}ov\big{(}g(X_{[k]}),g(X_{[l]+\{k+1,\dots,2k-l\}})\big{)}=\mathbb{V}ar\Big{(}\mathbb{E}\big{[}g(X_{[k]})\big{|}(U_{e})_{e\subseteq[l]}\big{]}\Big{)}\leavevmode\nobreak\ \geq 0.

In case XX is ergodic it is c0=0c_{0}=0, which follows directly from the independence property and is also reflected in the previous formula noting that for ergodic laws no randomness from UU_{\emptyset} is needed in functional representations, see Remark 8.
Theorem 17 from [AO18] can be applied to consider the asymptotic distribution of avg(g,n)(X[n])\operatorname*{\mathbin{avg}}(g,n)(X_{[n]}): in case XX is ergodic it is

n[avg(g,n)(X[n])𝔼[g(X[k])]]nNormal(0,σ2)in distribution,\sqrt{n}\leavevmode\nobreak\ \Big{[}\leavevmode\nobreak\ \operatorname*{\mathbin{avg}}(g,n)(X_{[n]})\leavevmode\nobreak\ -\leavevmode\nobreak\ \mathbb{E}[g(X_{[k]})]\leavevmode\nobreak\ \Big{]}\leavevmode\nobreak\ \leavevmode\nobreak\ \overset{n\rightarrow\infty}{\longrightarrow}\leavevmode\nobreak\ \leavevmode\nobreak\ \operatorname*{\mathbin{Normal}}(0,\sigma^{2})\leavevmode\nobreak\ \leavevmode\nobreak\ \text{in distribution},

where the asymptotic variance σ20\sigma^{2}\geq 0 can be found as

σ2=limnnl=1k(kl)(nkkl)(nk)cl=k2c1,\sigma^{2}=\lim_{n\rightarrow\infty}n\sum_{l=1}^{k}\frac{\binom{k}{l}\binom{n-k}{k-l}}{\binom{n}{k}}c_{l}=k^{2}c_{1},

with c1=ov(g(X{1,,k}),g(X{1,k+1,k+2,,2k1}))=𝕍ar(𝔼[g(X[k])|U{1}])c_{1}=\mathbb{C}ov\big{(}g(X_{\{1,\dots,k\}}),g(X_{\{1,k+1,k+2,\dots,2k-1\}})\big{)}=\mathbb{V}ar\big{(}\mathbb{E}\big{[}g(X_{[k]})\big{|}U_{\{1\}}\big{]}\big{)}.

4.3. Limits of combinatorial structures

Let D:𝙸𝙽𝙹op𝙵𝙸𝙽+D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{FIN}_{+} be a combinatorial data structure. For simplicity assume the finite set aa can be recovered from xDax\in D_{a}, so one can define |x|:=|a||x|:=|a|. If this is not the case replace DD by the isomorphic BDS D~\tilde{D} defined as D~a={(a,x)|xDa}\tilde{D}_{a}=\{(a,x)|x\in D_{a}\} and D~[τ]((a,x))=(b,D[τ](x))\tilde{D}[\tau]((a,x))=(b,D[\tau](x)).
For xDb,yDax\in D_{b},y\in D_{a} with |x||y||x|\leq|y| let

density(x,y)=(|a||b|)!|a|!|{τ:bainjective:D[τ](y)=x}|,\operatorname*{\mathbin{density}}(x,y)=\frac{(|a|-|b|)!}{|a|!}\Big{|}\big{\{}\tau:b\rightarrow a\leavevmode\nobreak\ \text{injective}\leavevmode\nobreak\ :\leavevmode\nobreak\ D[\tau](y)=x\leavevmode\nobreak\ \big{\}}\Big{|},

that is density(x,y)=[D[Tba](y)=x]\operatorname*{\mathbin{density}}(x,y)=\mathbb{P}[D[T_{ba}](y)=x] for a uniform random injection Tba:baT_{ba}:b\rightarrow a. The value density(x,y)[0,1]\operatorname*{\mathbin{density}}(x,y)\in[0,1] is interpreted as the (combinatorial) density of the smaller structure xx within the larger structure yy.

Definition 17 (Limits of combinatorial structures).

A sequence x=(xn)n1\textbf{x}=(x_{n})_{n\geq 1} with xnDanx_{n}\in D_{a_{n}} is said to be convergent iff |xn|=|an||x_{n}|=|a_{n}|\rightarrow\infty and for every xDbx\in D_{b} the limit

limndensity(x,xn)[0,1]\lim_{n\rightarrow\infty}\operatorname*{\mathbin{density}}(x,x_{n})\in[0,1]

exists. In this case, the limit of x is the rule that maps xDbx\in D_{b} to limndensity(x,xn)[0,1]\lim_{n}\operatorname*{\mathbin{density}}(x,x_{n})\in[0,1].

The following is an application of Theorem 8 for the combinatorial case, technical details are in the Appendix.

Theorem 9.

Limits of convergent sequences coincide with 𝚂𝚈𝙼erg(D)\mathtt{SYM}^{\text{erg}}(D): for every convergent sequence x=(xn)n1\textbf{x}=(x_{n})_{n\geq 1} there is exactly one rule μ𝚂𝚈𝙼erg(D)\mu\in\mathtt{SYM}^{\text{erg}}(D) such that

μb({x})=limndensity(x,xn)for every b andxDb\mu_{b}(\{x\})=\lim_{n\rightarrow\infty}\operatorname*{\mathbin{density}}(x,x_{n})\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{for every $b$ and}\leavevmode\nobreak\ x\in D_{b} (4.2)

and conversely, every μ𝚂𝚈𝙼erg(D)\mu\in\mathtt{SYM}^{\text{erg}}(D) is of this form for some convergent sequence x.

Remark 17 (𝚂𝚈𝙼(D)\mathtt{SYM}(D) is a Bauer simplex for combinatorial data structures).

Let 𝙲𝙾𝙼𝙿𝙰𝙲𝚃\mathtt{COMPACT} be the category of continuous maps between compact metrizable topological spaces. Every finite discrete space is compact metrizable and every map between finite discrete spaces continuous, thus combinatorial data structures can be seen as functors D:𝙸𝙽𝙹op𝙲𝙾𝙼𝙿𝙰𝙲𝚃D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{COMPACT}. In this case extensions to 𝙲𝙸𝙽𝙹op𝙸𝙽𝙹op\mathtt{CINJ}^{\text{op}}\supset\mathtt{INJ}^{\text{op}} always exists and can be seen as functors D:𝙲𝙸𝙽𝙹op𝙲𝙾𝙼𝙿𝙰𝙲𝚃D:\mathtt{CINJ}^{\text{op}}\rightarrow\mathtt{COMPACT}; the derived group action 𝕊×DD\mathbb{S}_{\infty}\times D_{\mathbb{N}}\rightarrow D_{\mathbb{N}} is a topological group action on compact metrizable space, which are studied in ergodic theory, see [Gla03]. For any compact metrizable space 𝒮\mathcal{S} and topological group action 𝕊×𝒮𝒮\mathbb{S}_{\infty}\times\mathcal{S}\rightarrow\mathcal{S} the space of invariant laws, denoted with 𝒫sym(𝒮)\mathscr{P}^{\text{sym}}(\mathcal{S}), has the structure of a Choquet simplex. Our discussion shows that 𝒫sym(D)\mathscr{P}^{\text{sym}}(D_{\mathbb{N}}) has a closed set of extremal points – either check that the independence property is closed or argue that extremal points coincide with a Martin boundary – in particular, 𝒫sym(D)\mathscr{P}^{\text{sym}}(D_{\mathbb{N}}) is a Bauer simplex. This is not obvious from general theory: with 𝒮={0,1}𝕊\mathcal{S}=\{0,1\}^{\mathbb{S}_{\infty}} and π(xσ)σ𝕊=(xπ1σ)σ𝕊\pi(x_{\sigma})_{\sigma\in\mathbb{S}_{\infty}}=(x_{\pi^{-1}\sigma})_{\sigma\in\mathbb{S}_{\infty}} it is known that 𝒫sym({0,1}𝕊)\mathscr{P}^{\text{sym}}(\{0,1\}^{\mathbb{S}_{\infty}}) is the Poulsen simplex by the fact that 𝕊\mathbb{S}_{\infty} is amenable and countable infinite and thus does not have Kazhdan’s property (T), see Theorem 13.15 in [Gla03].

5. Weak FRT

To recall, the indexing system I=I=\square^{*}_{\neq} is defined by Ib=bI_{b}=b^{*}_{\neq}, that is the set of all tuples i=(i1,,ik)bk\textbf{i}=(i_{1},\dots,i_{k})\in b^{k} with ijij,jji_{j}\neq i_{j^{\prime}},j\neq j^{\prime}, and for an injection τ:ba\tau:b\rightarrow a it is I[τ](i)aI[\tau](\textbf{i})\in a^{*}_{\neq} defined by

I[τ](i)=τ(i)=(τi1,,τik).I[\tau](\textbf{i})=\vec{\tau}(\textbf{i})=\big{(}\tau i_{1},\dots,\tau i_{k}\big{)}.

For a finite set aa and index i=(i1,,ik)a=Ia\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq}=I_{a} let τi,a:[k]a,jij\tau_{\textbf{i},a}:[k]\rightarrow a,j\mapsto i_{j}, which is injective.

The following result characterizes natural transformations η:D𝙰𝚛𝚛𝚊𝚢(𝒳,)\eta:D\rightarrow\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}), where DD is an arbitrary Borel data structure and 𝒳\mathcal{X} an arbitrary Borel space. It arises as a special case of Theorem 12 later, but because \square^{*}_{\neq} is of great importance to the general theory and the proof is especially tractable in this case, it is presented here separately. Note that the components ηa\eta_{a} of a natural transformation η:D𝙰𝚛𝚛𝚊𝚢(𝒳,I)\eta:D\rightarrow\mathtt{Array}(\mathcal{X},I) are measurable maps ηa:Da𝒳Ia\eta_{a}:D_{a}\rightarrow\mathcal{X}^{I_{a}} and thus have inner component functions ηa,i:Da𝒳,iIa\eta_{a,\textbf{i}}:D_{a}\rightarrow\mathcal{X},\textbf{i}\in I_{a} such that ηa()=(ηa,i())iIa\eta_{a}(\cdot)=(\eta_{a,\textbf{i}}(\cdot))_{\textbf{i}\in I_{a}}.

Proposition 6.

There is a one-to-one correspondence between

  • Natural Transformations η:D𝙰𝚛𝚛𝚊𝚢(𝒳,)\eta:D\rightarrow\mathtt{Array}(\mathcal{X},\square^{*}_{\neq})

  • Sequences of measurable maps (fk)k0(f_{k})_{k\geq 0} with fk:D[k]𝒳f_{k}:D_{[k]}\rightarrow\mathcal{X}

given by

  • η(fk)k0\eta\mapsto(f_{k})_{k\geq 0} with fk=η[k],(1,,k)f_{k}=\eta_{[k],(1,\dots,k)}

  • (fk)k0η(f_{k})_{k\geq 0}\mapsto\eta with ηa()=(fkD[τi,a]())i=(i1,,ik)a\eta_{a}(\cdot)=\big{(}f_{k}\circ D[\tau_{\textbf{i},a}](\cdot)\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq}}.

Proof.

Let E=𝙰𝚛𝚛𝚊𝚢(𝒳,)E=\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}). For every rule η:DE\eta:D\rightarrow E that maps a finite set aa to a measurable map ηa:DaEa=𝒳Ia\eta_{a}:D_{a}\rightarrow E_{a}=\mathcal{X}^{I_{a}} consider the "inner" component functions ηa,i:Da𝒳\eta_{a,\textbf{i}}:D_{a}\rightarrow\mathcal{X} which are measurable and satisfy μa()=(μa,i())iIa\mu_{a}(\cdot)=(\mu_{a,\textbf{i}}(\cdot))_{\textbf{i}\in I_{a}}. It is easily checked that η\eta is a natural transformation iff the inner components satisfy for every injection τ:ba\tau:b\rightarrow a and index iIb\textbf{i}\in I_{b}

ηb,iD[τ]=ηa,I[τ]i.\eta_{b,\textbf{i}}\circ D[\tau]=\eta_{a,I[\tau]\textbf{i}}.

Suppose η\eta is a natural transformation and let fk=η[k],(1,,k)f_{k}=\eta_{[k],(1,\dots,k)}. For every i=(i1,,ik)a\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq} it holds I[τi,a]((1,,k))=iI[\tau_{\textbf{i},a}]((1,\dots,k))=\textbf{i} and hence

fkD[τi,a]=η[k],(1,,k)D[τi,a]=ηa,i,f_{k}\circ D[\tau_{\textbf{i},a}]=\eta_{[k],(1,\dots,k)}\circ D[\tau_{\textbf{i},a}]=\eta_{a,\textbf{i}},

that is: η\eta is determined by (fk)k0(f_{k})_{k\geq 0}, hence the construction η(fk)k0\eta\mapsto(f_{k})_{k\geq 0} is injective.
On the other hand, let (fk)k0(f_{k})_{k\geq 0} be an arbitrary sequence of measurable functions fk:D[k]𝒳f_{k}:D_{[k]}\rightarrow\mathcal{X} and for i=(i1,,ik)a\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq} define the inner component ηa,i:Da𝒳\eta_{a,\textbf{i}}:D_{a}\rightarrow\mathcal{X} by ηa,i=fkD[τi,a]\eta_{a,\textbf{i}}=f_{k}\circ D[\tau_{\textbf{i},a}]. Let τ:ba\tau:b\rightarrow a be an injection. For i=(i1,,ik)b\textbf{i}=(i_{1},\dots,i_{k})\in b^{*}_{\neq} it holds

ττi,b=τI[τ]i,a\tau\circ\tau_{\textbf{i},b}=\tau_{I[\tau]\textbf{i},a}

and hence

ηb,iD[τ]=fkD[τi,b]D[τ]=fkD[ττi,b]=fkD[τI[τ]i,a]=ηa,I[τ]i,\eta_{b,\textbf{i}}\circ D[\tau]=f_{k}\circ D[\tau_{\textbf{i},b}]\circ D[\tau]=f_{k}\circ D[\tau\circ\tau_{\textbf{i},b}]=f_{k}\circ D[\tau_{I[\tau]\textbf{i},a}]=\eta_{a,I[\tau]\textbf{i}},

so the construction (fk)kη(f_{k})_{k}\mapsto\eta defines a natural transformation. It is obvious that the constructions η(fk)k\eta\mapsto(f_{k})_{k} and (fk)kη(f_{k})_{k}\mapsto\eta are inverse to each other. ∎

A first application of Proposition 6 is in proving that Theorem A has an equivalent formulation using natural transformations.

Proof of Theorem 2.

Let D=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}). The following are shown to be equivalent:

  • (i)

    Theorem A

  • (ii)

    For every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) exists a natural transformation η:RD\eta:R\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}.

(i)\Rightarrow(ii). Let μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). By Kolmogorov consistency there exists a 𝒳\mathcal{X}-valued stochastic process X=(Xi)iX=(X_{\textbf{i}})_{\textbf{i}\in\mathbb{N}^{*}_{\neq}} such that for every finite set a(<)a\in\binom{\mathbb{N}}{<\infty} it is (Xi)iaμa(X_{\textbf{i}})_{\textbf{i}\in a^{*}_{\neq}}\sim\mu_{a}. Let Ua,a(<)U_{a},a\in\binom{\mathbb{N}}{<\infty} be iid unif[0,1]\sim\operatorname*{\mathbin{unif}}[0,1] and for every aa let Ya=(Ua)a2aY_{a}=(U_{a^{\prime}})_{a^{\prime}\in 2^{a}}. By Theorem A there is a measurable function f:k[0,1]2[k]𝒳f:\cup_{k}[0,1]^{2^{[k]}}\rightarrow\mathcal{X} such that X=𝑑(f((Uπi(e))e2[k]))i=(i1,,ik)X\overset{d}{=}\big{(}f\big{(}(U_{\pi_{\textbf{i}}(e)})_{e\in 2^{[k]}}\big{)}\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in\mathbb{N}^{*}_{\neq}}, where for i=(i1,,ik)\textbf{i}=(i_{1},\dots,i_{k}) it is πi:[k]{i1,,ik},jij\pi_{\textbf{i}}:[k]\rightarrow\{i_{1},\dots,i_{k}\},j\mapsto i_{j} bijective and it holds

R[τi,a](Ya)=(Uπi(e))e2[k].R[\tau_{\textbf{i},a}](Y_{a})=(U_{\pi_{\textbf{i}}(e)})_{e\in 2^{[k]}}.

For every k0k\geq 0 let fk:[0,1]2[k]𝒳f_{k}:[0,1]^{2^{[k]}}\rightarrow\mathcal{X} be the restriction of ff to [0,1]2[k][0,1]^{2^{[k]}}. The functions (fk)k(f_{k})_{k} give a natural transformation η:RD\eta:R\rightarrow D by the construction in Proposition 6. For every finite subset a(<)a\in\binom{\mathbb{N}}{<\infty} it then holds that

μa(Xi)ia\displaystyle\mu_{a}\sim(X_{\textbf{i}})_{\textbf{i}\in a^{*}_{\neq}} =𝑑(f((Uπi(e))e2[k]))i=(i1,,ik)a\displaystyle\overset{d}{=}\big{(}f\big{(}(U_{\pi_{\textbf{i}}(e)})_{e\in 2^{[k]}}\big{)}\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq}}
=(fkR[τi,a](Ya))i=(i1,,ik)a=ηa(Ya)unif(R)aηa1,\displaystyle=\big{(}f_{k}\circ R[\tau_{\textbf{i},a}](Y_{a})\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq}}=\eta_{a}(Y_{a})\sim\operatorname*{\mathbin{unif}}(R)_{a}\circ\eta_{a}^{-1},

that is μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}.
(ii)\Rightarrow(i). Let X=(Xi)iX=(X_{\textbf{i}})_{\textbf{i}\in\mathbb{N}^{*}_{\neq}} be exchangeable 𝒳\mathcal{X}-valued. For any injection τ:a\tau:a\rightarrow\mathbb{N} define τ~:a,(i1,,ik)(τi1,,τik)\tilde{\tau}:a^{*}_{\neq}\rightarrow\mathbb{N}^{*}_{\neq},(i_{1},\dots,i_{k})\mapsto(\tau i_{1},\dots,\tau i_{k}). The law of Xτ~X\circ\tilde{\tau} does not depend on a concrete choice of τ\tau and hence allows to define

μa=(Xτ~)𝒫(𝒳a)=𝒫(Da),\mu_{a}=\mathcal{L}\big{(}X\circ\tilde{\tau}\big{)}\in\mathscr{P}(\mathcal{X}^{a^{*}_{\neq}})=\mathscr{P}(D_{a}),

independent on the choice of τ\tau. It is easy to check that this defines an exchangeable law μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). By (ii) there is a natural transformation η:RD\eta:R\rightarrow D such that μa=unif(R)aηa1\mu_{a}=\operatorname*{\mathbin{unif}}(R)_{a}\circ\eta^{-1}_{a} for every finite aa. By Proposition 6 there is a sequence of measurable functions (fk)k0(f_{k})_{k\geq 0} representing η\eta which glued together yield f:k[0,1]2[k]𝒳f:\cup_{k}[0,1]^{2^{[k]}}\rightarrow\mathcal{X}. Let Ua,a(<)U_{a},a\in\binom{\mathbb{N}}{<\infty} be iid unif[0,1]\sim\operatorname*{\mathbin{unif}}[0,1] and Ya=(Ua)aaY_{a}=(U_{a^{\prime}})_{a^{\prime}\subseteq a}. It is Yaunif(R)aY_{a}\sim\operatorname*{\mathbin{unif}}(R)_{a} and hence

(Xi)iaμa=unif(R)aηa1=𝑑ηa(Ya)=(f((Uπi(e))e2[k]))i=(i1,,ik)a.\displaystyle(X_{\textbf{i}})_{\textbf{i}\in a^{*}_{\neq}}\sim\mu_{a}=\operatorname*{\mathbin{unif}}(R)_{a}\circ\eta_{a}^{-1}\overset{d}{=}\eta_{a}(Y_{a})=\big{(}f\big{(}(U_{\pi_{\textbf{i}}(e)})_{e\in 2^{[k]}}\big{)}\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq}}.

Note that for every bab\subseteq a by naturality D[ιb,a](ηa(Ya))=ηb(R[ιb,a](Ya))=ηb(Yb)D[\iota_{b,a}](\eta_{a}(Y_{a}))=\eta_{b}(R[\iota_{b,a}](Y_{a}))=\eta_{b}(Y_{b}) and that =n0[n]\mathbb{N}^{*}_{\neq}=\cup_{n\geq 0}[n]^{*}_{\neq}. By Kolmogorov consistency the distributional equations (Xi)ia=𝑑ηa(Ya)(X_{\textbf{i}})_{\textbf{i}\in a^{*}_{\neq}}\overset{d}{=}\eta_{a}(Y_{a}) holding for every finite set aa\subseteq\mathbb{N} can thus be lifted to the whole process:

(Xi)i=𝑑(f((Uπi(e))e2[k]))i=(i1,,ik),(X_{\textbf{i}})_{\textbf{i}\in\mathbb{N}^{*}_{\neq}}\overset{d}{=}\big{(}f\big{(}(U_{\pi_{\textbf{i}}(e)})_{e\in 2^{[k]}}\big{)}\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in\mathbb{N}^{*}_{\neq}},

giving (i). ∎

Theorems A + 2 give:

Corollary 3.

Let D=𝙰𝚛𝚛𝚊𝚢(𝒳,)D=\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}). For every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) exists a natural transformation η:RD\eta:R\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}.

A second application of Proposition 6 is:

Theorem 10.

Every Borel data structure DD can be naturally embedded in 𝙰𝚛𝚛𝚊𝚢([0,1],)\mathtt{Array}([0,1],\square^{*}_{\neq}).

Proof.

A natural transformation ϕ:D𝙰𝚛𝚛𝚊𝚢([0,1],)\phi:D\rightarrow\mathtt{Array}([0,1],\square^{*}_{\neq}) is constructed such that every component ϕa:Da[0,1]a\phi_{a}:D_{a}\rightarrow[0,1]^{a^{*}_{\neq}} is injective.
For every k0k\geq 0 it is D[k]D_{[k]} a Borel space, hence there exists a measurable injection

fk:D[k][0,1].f_{k}:D_{[k]}\rightarrow[0,1].

By Proposition 6 the rule ϕ:D𝙰𝚛𝚛𝚊𝚢([0,1],)\phi:D\rightarrow\mathtt{Array}([0,1],\square^{*}_{\neq}) having components ϕa=(ϕa,i)ia\phi_{a}=(\phi_{a,\textbf{i}})_{\textbf{i}\in a^{*}_{\neq}} with ϕa,i=fkD[τi,a],i=(i1,,ik)a\phi_{a,\textbf{i}}=f_{k}\circ D[\tau_{\textbf{i},a}],\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq} is a natural transformation. For every aa a tuple i=(i1,,ik)a\textbf{i}=(i_{1},\dots,i_{k})\in a^{*}_{\neq} having maximal length k=|a|k=|a| is an enumeration of all elements of aa and hence τi,a:[k]a,jij\tau_{\textbf{i},a}:[k]\rightarrow a,j\mapsto i_{j} is a bijection, so D[τi,a]D[\tau_{\textbf{i},a}] is a bijection and hence ϕa,i\phi_{a,\textbf{i}} is an injection (as a composition of injection fkf_{k} and bijection D[τi,a]D[\tau_{\textbf{i},a}]). Now ϕa=(ϕa,i)ia\phi_{a}=(\phi_{a,\textbf{i}})_{\textbf{i}\in a^{*}_{\neq}} is injective as already some of its component functions are. ∎

Remark 18.

In case depth(D)=k<\operatorname*{\mathbin{depth}}(D)=k<\infty one can construct an embedding ϕ:D𝙰𝚛𝚛𝚊𝚢([0,1],k)\phi:D\rightarrow\mathtt{Array}([0,1],\square^{k}_{\neq}) in an analog way, thus DD is naturally isomorphic to a sub-data structure of 𝙰𝚛𝚛𝚊𝚢([0,1],k)\mathtt{Array}([0,1],\square^{k}_{\neq}).

The embedding constructed in the proof is highly redundant and unpractical for applications: every entry in the array ϕa(x)[0,1]a\phi_{a}(x)\in[0,1]^{a^{*}_{\neq}} that is indexed by a full-length tuple ia\textbf{i}\in a^{*}_{\neq}, of which there are |a|!|a|! many, contains all information about xx and thus also the information about all other entries. But this information can in general not be recovered using a true natural transformation defined on the whole of 𝙰𝚛𝚛𝚊𝚢([0,1],)\mathtt{Array}([0,1],\square^{*}_{\neq}); for some BDS DD there do not even exist a single true natural transformation 𝙰𝚛𝚛𝚊𝚢([0,1],)D\mathtt{Array}([0,1],\square^{*}_{\neq})\rightarrow D.

Lemma 1.

Let D,E,FD,E,F be Borel data structures, μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D), η:DE\eta:D\rightarrow E a μ\mu-a.s. natural transformation and ϕ:EF\phi:E\rightarrow F a rule that maps every finite set aa to a measurable function ϕa:EaFa\phi_{a}:E_{a}\rightarrow F_{a}. Then the following are equivalent:

  • (i)

    ϕ\phi is a μη1\mu\circ\eta^{-1}-a.s. natural transformation,

  • (ii)

    ϕη\phi\circ\eta is a μ\mu-a.s. natural transformation.

Proof.

Let τ:ba\tau:b\rightarrow a be an injection, XaμaX_{a}\sim\mu_{a} and Ya=ηa(Xa)Y_{a}=\eta_{a}(X_{a}), that is Ya(μη1)a=μaηa1Y_{a}\sim(\mu\circ\eta^{-1})_{a}=\mu_{a}\circ\eta^{-1}_{a}. (i)\Rightarrow(ii): It is F[τ]ϕaηa(Xa)=F[τ]ϕa(Ya)=a.s.ϕbE[τ](Ya)F[\tau]\circ\phi_{a}\circ\eta_{a}(X_{a})=F[\tau]\circ\phi_{a}(Y_{a})\overset{a.s.}{=}\phi_{b}\circ E[\tau](Y_{a}) because ϕ\phi is μη1\mu\circ\eta^{-1}-a.s. natural transformation by assumption (i). It is ϕbE[τ](Ya)=ϕbE[τ]ηa(Xa)=a.s.ϕbηbD[τ](Xa)\phi_{b}\circ E[\tau](Y_{a})=\phi_{b}\circ E[\tau]\circ\eta_{a}(X_{a})\overset{a.s.}{=}\phi_{b}\circ\eta_{b}\circ D[\tau](X_{a}) because η\eta is μ\mu-a.s. natural transformation by assumption. Hence F[τ]ϕaηa(Xa)=a.s.ϕbηbD[τ](Xa)F[\tau]\circ\phi_{a}\circ\eta_{a}(X_{a})\overset{a.s.}{=}\phi_{b}\circ\eta_{b}\circ D[\tau](X_{a}), so (ii).
(ii)\Rightarrow(i). It is F[τ]ϕa(Ya)=F[τ]ϕaηa(Xa)=a.s.ϕbηbD[τ](Xa)F[\tau]\circ\phi_{a}(Y_{a})=F[\tau]\circ\phi_{a}\circ\eta_{a}(X_{a})\overset{a.s.}{=}\phi_{b}\circ\eta_{b}\circ D[\tau](X_{a}) since ϕη\phi\circ\eta is μ\mu-a.s. natural transformation by (ii). It is ϕbηbD[τ](Xa)=a.s.ϕbE[τ]ηa(Xa)=ϕbE[τ](Ya)\phi_{b}\circ\eta_{b}\circ D[\tau](X_{a})\overset{a.s.}{=}\phi_{b}\circ E[\tau]\circ\eta_{a}(X_{a})=\phi_{b}\circ E[\tau](Y_{a}) since η\eta is a μ\mu-a.s. natural transformation, hence (i). ∎

Proposition 7.

Let ϕ:DE\phi:D\rightarrow E be an embedding. Then there exists a rule θ:ED\theta:E\rightarrow D that sends every finite set aa to measurable map θa:EaDa\theta_{a}:E_{a}\rightarrow D_{a} such that

  • θϕ=idD\theta\circ\phi=\operatorname*{\mathbin{id}}_{D}, that is θaϕa=idDa\theta_{a}\circ\phi_{a}=\operatorname*{\mathbin{id}}_{D_{a}} for every aa,

  • θ\theta is a μϕ1\mu\circ\phi^{-1}-a.s natural transformation for every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D).

Proof.

Every component ϕa:DaEa\phi_{a}:D_{a}\rightarrow E_{a} is a measurable injection between Borel spaces, hence has a measurable left-inverse. Applying the global axiom of choice gives a rule θ:ED\theta:E\rightarrow D that picks measurable left-inverses, so θϕ=idD\theta\circ\phi=\operatorname*{\mathbin{id}}_{D}. Since both ϕ\phi and θϕ=idD\theta\circ\phi=\operatorname*{\mathbin{id}}_{D} are natural transformations, they are also μ\mu-a.s. natural transformations for every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). By Lemma 1 θ\theta is a μϕ1\mu\circ\phi^{-1}-a.s. natural transformation. ∎

Given the previous results it is now easy to prove the weak FRT (without depth):

Proof of Theorem 3.

It is shown that for every BDS DD and μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) there exists a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:RD\eta:R\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}. Let E=𝙰𝚛𝚛𝚊𝚢([0,1],)E=\mathtt{Array}([0,1],\square^{*}_{\neq}) and ϕ:DE\phi:D\rightarrow E be an embedding, which exists due to Theorem 10. It is μϕ1𝚂𝚈𝙼(E)\mu\circ\phi^{-1}\in\mathtt{SYM}(E) and by Corollary 3 there is a natural transformation ψ:RE\psi:R\rightarrow E such that μϕ1=unif(R)ψ1\mu\circ\phi^{-1}=\operatorname*{\mathbin{unif}}(R)\circ\psi^{-1}.
By Proposition 7 there is a μϕ1\mu\circ\phi^{-1}-a.s. natural transformation θ:ED\theta:E\rightarrow D such that θϕ=idD\theta\circ\phi=\operatorname*{\mathbin{id}}_{D}. Let η=θψ\eta=\theta\circ\psi. It is ψ:RE\psi:R\rightarrow E a natural transformation and θ:ED\theta:E\rightarrow D a μϕ1=unif(R)ψ1\mu\circ\phi^{-1}=\operatorname*{\mathbin{unif}}(R)\circ\psi^{-1}-a.s. natural transformation. Applying Lemma 1 gives that η\eta is a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation. Because θϕ=idD\theta\circ\phi=\operatorname*{\mathbin{id}}_{D} it holds that

η=η(θϕ)1=ηϕ1θ1=unif(R)ψ1θ1=unif(R)(θψ)1=unif(R)η1,\eta=\eta\circ(\theta\circ\phi)^{-1}=\eta\circ\phi^{-1}\circ\theta^{-1}=\operatorname*{\mathbin{unif}}(R)\circ\psi^{-1}\circ\theta^{-1}=\operatorname*{\mathbin{unif}}(R)\circ(\theta\circ\psi)^{-1}=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1},

so η\eta gives the desired functional representation of μ\mu. ∎

Versions of (weak) FRTs for finite depth can be obtained from unbounded depth case by the following; the proof is placed in the appendix, it is very technical.

Proposition 8.

Let DD be a Borel data structure with k=depth(D)<k=\operatorname*{\mathbin{depth}}(D)<\infty and let

r:RRkr:R\rightarrow R^{k}

be the rule that has components

ra:RaRak,uuι(ak),2a.r_{a}:R_{a}\rightarrow R^{k}_{a},u\mapsto u\circ\iota_{\binom{a}{\leq k},2^{a}}.

Then the following holds:

  • (i)

    rr is a natural transformation with unif(Rk)=unif(R)r1\operatorname*{\mathbin{unif}}(R^{k})=\operatorname*{\mathbin{unif}}(R)\circ r^{-1}.

  • (ii)

    for every natural transformation η:RD\eta:R\rightarrow D exists a natural transformation η~:RkD\tilde{\eta}:R^{k}\rightarrow D with η=η~r\eta=\tilde{\eta}\circ r.

  • (iii)

    for every unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:RD\eta:R\rightarrow D exists a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation η~:RkD\tilde{\eta}:R^{k}\rightarrow D with η=η~r\eta=\tilde{\eta}\circ r unif(R)\operatorname*{\mathbin{unif}}(R)-almost surely, that is for every aa it holds that ηa(u)=η~ara(u)\eta_{a}(u)=\tilde{\eta}_{a}\circ r_{a}(u) for unif(R)a\operatorname*{\mathbin{unif}}(R)_{a}-almost all uRau\in R_{a}.

The weak FRT for bounded depth follows easily:

Proof of Theorem 4.

Let DD have depth k=depth(D)<k=\operatorname*{\mathbin{depth}}(D)<\infty and let μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). By Theorem 3 there exists a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:RD\eta:R\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}. Let r:RRkr:R\rightarrow R^{k} be as in Proposition 8, which gives the existence of a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation η~:RkD\tilde{\eta}:R^{k}\rightarrow D with η=η~r\eta=\tilde{\eta}\circ r unif(R)\operatorname*{\mathbin{unif}}(R)-almost surely and such that unif(Rk)=unif(R)r1\operatorname*{\mathbin{unif}}(R^{k})=\operatorname*{\mathbin{unif}}(R)\circ r^{-1}. Combined:

μ=unif(R)η1=unif(R)(η~r)1=unif(R)r1η~1=unif(Rk)η~1.\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}=\operatorname*{\mathbin{unif}}(R)\circ(\tilde{\eta}\circ r)^{-1}=\operatorname*{\mathbin{unif}}(R)\circ r^{-1}\circ\tilde{\eta}^{-1}=\operatorname*{\mathbin{unif}}(R^{k})\circ\tilde{\eta}^{-1}.

6. Array-type data structures

Let I:𝙸𝙽𝙹𝙸𝙽𝙹I:\mathtt{INJ}\rightarrow\mathtt{INJ} be an indexing system, see Definition 8.

Definition 18.

Let bb be a finite set and iIb\textbf{i}\in I_{b}. Define

  • dom(i)=bb,iIbb\operatorname*{\mathbin{dom}}(\textbf{i})=\bigcap_{b^{\prime}\subseteq b,\textbf{i}\in I_{b^{\prime}}}b^{\prime} (domain of i = IDs used to build i),

  • |i|=|dom(i)||\textbf{i}|=|\operatorname*{\mathbin{dom}}(\textbf{i})| the size of i,

  • stab(i)={π|π:dom(i)dom(i)bijective withI[π](i)=i}\operatorname*{\mathbin{stab}}(\textbf{i})=\{\pi\leavevmode\nobreak\ |\leavevmode\nobreak\ \pi:\operatorname*{\mathbin{dom}}(\textbf{i})\rightarrow\operatorname*{\mathbin{dom}}(\textbf{i})\leavevmode\nobreak\ \text{bijective with}\leavevmode\nobreak\ I[\pi](\textbf{i})=\textbf{i}\},

  • for any other index i\textbf{i}^{\prime} write ii\textbf{i}\sim\textbf{i}^{\prime} iff there exists an injection τ\tau such that I[τ](i)=iI[\tau](\textbf{i})=\textbf{i}^{\prime}.

Using functorality of II shows that stab(i)\operatorname*{\mathbin{stab}}(\textbf{i}) is a finite group. The indexing system axioms give the following, a proof is given in the Appendix.

Lemma 2.

Let iIb\textbf{i}\in I_{b} and τ:ba\tau:b\rightarrow a be injective.

  1. (1)

    dom(i)\operatorname*{\mathbin{dom}}(\textbf{i}) does not depend on bb,

  2. (2)

    I[τ](i)=I[τ^](i)I[\tau](\textbf{i})=I[\hat{\tau}](\textbf{i}),

  3. (3)

    dom(I[τ](i))=τ(dom(i))\operatorname*{\mathbin{dom}}(I[\tau](\textbf{i}))=\tau(\operatorname*{\mathbin{dom}}(\textbf{i})),

  4. (4)

    for two injections τ:dom(i)a,σ:dom(i)b\tau:\operatorname*{\mathbin{dom}}(\textbf{i})\rightarrow a,\sigma:\operatorname*{\mathbin{dom}}(\textbf{i})\rightarrow b it holds I[τ](i)=I[σ](i)I[\tau](\textbf{i})=I[\sigma](\textbf{i}) if and only if there exists πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}) with τπ(i)=σ(i)\tau\circ\pi(i)=\sigma(i) for all idom(i)i\in\operatorname*{\mathbin{dom}}(\textbf{i}),

  5. (5)

    \sim is an equivalence relation on indices.

Example 13.

Some examples for Definition 18:

  • I=I=\square: for i=ib\textbf{i}=i\in b it is dom(i)={i}\operatorname*{\mathbin{dom}}(\textbf{i})=\{i\}, |i|=1|\textbf{i}|=1, stab(i)={id{i}}\operatorname*{\mathbin{stab}}(\textbf{i})=\{\operatorname*{\mathbin{id}}_{\{i\}}\}. All indices are equivalent.

  • I=(k)I=\binom{\square}{k}: for i={i1,,ik}(bk)\textbf{i}=\{i_{1},\dots,i_{k}\}\in\binom{b}{k} it is dom(i)=i\operatorname*{\mathbin{dom}}(\textbf{i})=\textbf{i}, |i|=k|\textbf{i}|=k, stab(i)={π|π:iibijective}\operatorname*{\mathbin{stab}}(\textbf{i})=\{\pi|\pi:\textbf{i}\rightarrow\textbf{i}\leavevmode\nobreak\ \text{bijective}\}. All indices are equivalent.

  • I=2I=2^{\square}: for i2b\textbf{i}\in 2^{b} let k0k\geq 0 be such that i(bk)\textbf{i}\in\binom{b}{k}. For this index everything is as in the previous example. Two indices in 22^{\square} are equivalent iff they have the same size.

  • I=kI=\square^{k}_{\neq}: for i=(i1,,ik)bk\textbf{i}=(i_{1},\dots,i_{k})\in b^{k}_{\neq} it is dom(i)={i1,,ik}\operatorname*{\mathbin{dom}}(\textbf{i})=\{i_{1},\dots,i_{k}\}, |i|=k|\textbf{i}|=k and stab(i)={id{dom(i)}}\operatorname*{\mathbin{stab}}(\textbf{i})=\{\operatorname*{\mathbin{id}}_{\{\operatorname*{\mathbin{dom}}(\textbf{i})\}}\}. All indices are equivalent.

  • I=I=\square^{*}_{\neq}: for ib\textbf{i}\in b^{*}_{\neq} let k0k\geq 0 be such that ibk\textbf{i}\in b^{k}_{\neq}. For this index everything is as in the previous example. Two indices in \square^{*}_{\neq} are equivalent iff they have the same size.

  • I=kI=\square^{k}: for i=(i1,,ik)bk\textbf{i}=(i_{1},\dots,i_{k})\in b^{k} it is dom(i)={i1,,ik}\operatorname*{\mathbin{dom}}(\textbf{i})=\{i_{1},\dots,i_{k}\} the set of different entries and |i||\textbf{i}| the number of different entries. stab(i)\operatorname*{\mathbin{stab}}(\textbf{i}) has only one element, the identity on dom(i)\operatorname*{\mathbin{dom}}(\textbf{i}). Every index i=(i1,i2,,ik)\textbf{i}=(i_{1},i_{2},\dots,i_{k}) defines a set-partition of [k][k] by declaring that j,j[k]j,j^{\prime}\in[k] fall in the same block iff ij=iji_{j}=i_{j^{\prime}}. The indices i,i\textbf{i},\textbf{i}^{\prime} are equivalent iff they induce the same partition.

  • I=𝙿𝙰𝙸𝚁(k)I=\mathtt{PAIR}^{(k)} defined by Ib=bb={(l,i)|1lk,ib}I_{b}=b\sqcup\cdots\sqcup b=\{(l,i)|1\leq l\leq k,i\in b\}. For i=(l,i)Ib\textbf{i}=(l,i)\in I_{b} it is I[τ](i)=(l,τ(i))I[\tau](\textbf{i})=(l,\tau(i)), dom(i)={i}\operatorname*{\mathbin{dom}}(\textbf{i})=\{i\}, |i|=1|\textbf{i}|=1 and stab(i)\operatorname*{\mathbin{stab}}(\textbf{i}) has one element (identity). Two indices i=(l,i),i=(l,i)\textbf{i}=(l,i),\textbf{i}^{\prime}=(l^{\prime},i^{\prime}) are equivalent iff l=ll=l^{\prime}.

More complex examples can emerge from composing indexing systems:

Theorem 11.

Let I=2I=2^{\square}\circ\square^{*}_{\neq}. For every finite group GG there is an index i in II such that stab(i)\operatorname*{\mathbin{stab}}(\textbf{i}) and GG are isomorphic as groups.

Proof.

Wlog assume GG is a subgroup G𝕊kG\subseteq\mathbb{S}_{k}. An index iIb=2b\textbf{i}\in I_{b}=2^{b^{*}_{\neq}} is a set i={i1,,il}\textbf{i}=\{\textbf{i}_{1},\dots,\textbf{i}_{l}\} with for each 1jl1\leq j\leq l it is ij=(ij1,,ijkj)b\textbf{i}_{j}=(i_{j1},\dots,i_{jk_{j}})\in b^{*}_{\neq} and for injection τ:ba\tau:b\rightarrow a it is

I[τ](i)={(τij1,τijkj)|(ij1,,ijkj)i}.I[\tau](\textbf{i})=\{(\tau i_{j1},\dots\tau i_{jk_{j}})\leavevmode\nobreak\ |\leavevmode\nobreak\ (i_{j1},\dots,i_{jk_{j}})\in\textbf{i}\}.

The index i={(π1,,πk)|πG}\textbf{i}=\{(\pi 1,\dots,\pi k)|\pi\in G\} has dom(i)=[k]\operatorname*{\mathbin{dom}}(\textbf{i})=[k] and stab(i)=G\operatorname*{\mathbin{stab}}(\textbf{i})=G. ∎

The following is very useful for characterizing natural transformations η:D𝙰𝚛𝚛𝚊𝚢(𝒳,I)\eta:D\rightarrow\mathtt{Array}(\mathcal{X},I).

Definition 19 (Skeleton of an indexing system).

Let II be an indexing system. A skeleton for II is a triple (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}) in which

  • IrepI^{\text{rep}} is a set of normalized representative indices, that is for every index i there is exactly one iIrep\textbf{i}^{*}\in I^{\text{rep}} with ii\textbf{i}\sim\textbf{i}^{*} and for every iIrep\textbf{i}^{*}\in I^{\text{rep}} it is dom(i)=[k]\operatorname*{\mathbin{dom}}(\textbf{i}^{*})=[k] with k=|i|k=|\textbf{i}^{*}|,

  • rr is the rule that maps every index i to the unique r(i)Irepr(\textbf{i})\in I^{\text{rep}} with ir(i)\textbf{i}\sim r(\textbf{i}),

  • π\pi_{\bullet} is a rule that maps every index i with k=|i|k=|\textbf{i}| to a bijection πi:[k]dom(i)\pi_{\textbf{i}}:[k]\rightarrow\operatorname*{\mathbin{dom}}(\textbf{i}) satisfying I[πi](r(i))=iI[\pi_{\textbf{i}}](r(\textbf{i}))=\textbf{i}.

Example 14.

Consider two minimal examples, related to (E2) and (E3) from the introduction:

  • I=2I=\square^{2}_{\neq} has a skeleton given by Irep={(1,2)}I^{\text{rep}}=\{(1,2)\} and for i=(i1,i2)\textbf{i}=(i_{1},i_{2}) it is r(i)=(1,2)r(\textbf{i})=(1,2) and πi:{1,2}{i1,i2},jij\pi_{\textbf{i}}:\{1,2\}\rightarrow\{i_{1},i_{2}\},j\mapsto i_{j}.

  • I=(2)I=\binom{\square}{2} has Irep={{1,2}}I^{\text{rep}}=\{\{1,2\}\} and for i={i1,i2}\textbf{i}=\{i_{1},i_{2}\} (with i1i2i_{1}\neq i_{2}) it is r(i)={1,2}r(\textbf{i})=\{1,2\}. Now a problem arises: π\pi_{\bullet} should be a rule that maps any two-element set i={i1,i2}\textbf{i}=\{i_{1},i_{2}\} to a bijection πi:{1,2}{i1,i2}\pi_{\textbf{i}}:\{1,2\}\rightarrow\{i_{1},i_{2}\} with I[πi]([2])=iI[\pi_{\textbf{i}}]([2])=\textbf{i}; but both bijections [2]{i1,i2}[2]\rightarrow\{i_{1},i_{2}\} have this property. To justify the existence of a rule π\pi_{\bullet} requires

    • Global Axiom of Choice if IDs are arbitrary,

    • (Usual) Axiom of Choice if IDs are elements only of some fixed but arbitrary uncountable set,

    • Countable Axiom of Choice if IDs are elements only of some fixed but arbitrary countable set.

    A choice axiom is not needed when IDs are elements of some fixed but arbitrary set that comes equipped with a total order: in this case one can choose πi:[2]{i1,i2}\pi_{\textbf{i}}:[2]\rightarrow\{i_{1},i_{2}\} to be the strictly increasing function. This was done in the index arithmetic of Chapter 7 in [Kal06], where IDs are always from \mathbb{N}\subseteq\mathbb{Z}. We shortly see that the concrete choice of π\pi_{\bullet} does not really matter; but it is pleasant to have one available.

As seen in the example, the following requires the global axiom of choice.

Proposition 9 (Existence of a skeleton).

Every indexing system II has a skeleton (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}).

Proof.

It is \sim an equivalence relation on indices. Let 𝒯={i|dom(i)=[k]for somek0}\mathcal{T}=\{\textbf{i}|\operatorname*{\mathbin{dom}}(\textbf{i})=[k]\leavevmode\nobreak\ \text{for some}\leavevmode\nobreak\ k\geq 0\} which is a countable set. It is easy to see that every index i is equivalent to some index from 𝒯\mathcal{T}. Restricting \sim to 𝒯\mathcal{T} one can apply axiom of countable choice and obtain IrepI^{\text{rep}} together with a choice function r:𝒯Irepr^{\prime}:\mathcal{T}\rightarrow I^{\text{rep}}. Since for every index i it is {i𝒯|ii}\{\textbf{i}^{\prime}\in\mathcal{T}|\textbf{i}^{\prime}\sim\textbf{i}\} a non-empty set, applying global choice gives a rule r′′r^{\prime\prime} that maps every index i to some index r′′(i)𝒯r^{\prime\prime}(\textbf{i})\in\mathcal{T} with r′′(i)ir^{\prime\prime}(\textbf{i})\sim\textbf{i}. The rule rr is defined as r=rr′′r=r^{\prime}\circ r^{\prime\prime}. Obviously, rr is uniquely determined given IrepI^{\text{rep}}.
For every index i with k=|i|k=|\textbf{i}| it is ir(i)Irep\textbf{i}\sim r(\textbf{i})\in I^{\text{rep}}, hence dom(r(i))=[k]\operatorname*{\mathbin{dom}}(r(\textbf{i}))=[k] and by definition of \sim it is

𝒜i={π:[k]dom(i)|π is bijective with I[π](r(i))=i}\mathcal{A}_{\textbf{i}}=\{\pi:[k]\rightarrow\operatorname*{\mathbin{dom}}(\textbf{i})|\leavevmode\nobreak\ \text{$\pi$ is bijective with $I[\pi](r(\textbf{i}))=\textbf{i}$}\}

a non-empty set. Applying global choice again gives the rule π\pi_{\bullet} which maps every index i to an element πi𝒜i\pi_{\textbf{i}}\in\mathcal{A}_{\textbf{i}}. ∎

Remark 19.

For D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D=\mathtt{Array}(\mathcal{X},I) with |𝒳|2|\mathcal{X}|\geq 2 it is straightforward to check that depth(D)=max{|i||iIrep}\operatorname*{\mathbin{depth}}(D)=\max\{|\textbf{i}^{*}|\leavevmode\nobreak\ |\leavevmode\nobreak\ \textbf{i}^{*}\in I^{\text{rep}}\}, where IrepI^{\text{rep}} is an arbitrary choice of representative indices.

Let DD be a BDS. As before, for a rule η:D𝙰𝚛𝚛𝚊𝚢(𝒳,I)\eta:D\rightarrow\mathtt{Array}(\mathcal{X},I) that maps every finite set aa to a measurable map ηa:Da𝒳Ia\eta_{a}:D_{a}\rightarrow\mathcal{X}^{I_{a}} it is ηa,i:Da𝒳,iIa\eta_{a,\textbf{i}}:D_{a}\rightarrow\mathcal{X},\textbf{i}\in I_{a} the i-th component function of ηa\eta_{a}, that is ηa()=(ηa,i())iIa\eta_{a}(\cdot)=(\eta_{a,\textbf{i}}(\cdot))_{\textbf{i}\in I_{a}}.

Theorem 12.

Let DD be a BDS, 𝒳\mathcal{X} a Borel space and II an indexing system with skeleton (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}). A one-to-one correspondence between

  1. (1)

    natural transformations η:D𝙰𝚛𝚛𝚊𝚢(𝒳,I)\eta:D\rightarrow\mathtt{Array}(\mathcal{X},I) and

  2. (2)

    sequences (fi)iIrep(f_{\textbf{i}^{*}})_{\textbf{i}^{*}\in I^{\text{rep}}} such that for every iIrep\textbf{i}^{*}\in I^{\text{rep}} with k=|i|k=|\textbf{i}^{*}| it is

    fi:D{1,,k}𝒳f_{\textbf{i}^{*}}:D_{\{1,\dots,k\}}\rightarrow\mathcal{X}

    measurable with fi=fiD[π]f_{\textbf{i}^{*}}=f_{\textbf{i}^{*}}\circ D[\pi] for every πstab(i)𝕊[k]\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*})\subseteq\mathbb{S}_{[k]}

is given by

  • η(fi)iIrep\eta\mapsto(f_{\textbf{i}^{*}})_{\textbf{i}^{*}\in I^{\text{rep}}} with fi=η[k],i,k=|i|f_{\textbf{i}^{*}}=\eta_{[k],\textbf{i}^{*}},k=|\textbf{i}^{*}|,

  • (fi)iIrepη(f_{\textbf{i}^{*}})_{\textbf{i}^{*}\in I^{\text{rep}}}\mapsto\eta with ηa,i=fr(i)D[πi]D[ιdom(i),a]\eta_{a,\textbf{i}}=f_{r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}].

Further, the construction (fi)iIrepη(f_{\textbf{i}^{*}})_{\textbf{i}^{*}\in I^{\text{rep}}}\mapsto\eta does not depend on a concrete choice of π\pi_{\bullet}.

Proof.

Let E=𝙰𝚛𝚛𝚊𝚢(𝒳,I)E=\mathtt{Array}(\mathcal{X},I). For a rule η:DE\eta:D\rightarrow E that maps finite sets aa to measurable functions ηa:DaEa=𝒳Ia\eta_{a}:D_{a}\rightarrow E_{a}=\mathcal{X}^{I_{a}} let ηa,i:Da𝒳,iIa\eta_{a,\textbf{i}}:D_{a}\rightarrow\mathcal{X},\textbf{i}\in I_{a} be the components of ηa\eta_{a}. As already noted in the proof of Theorem 6, the following are equivalent:

  • (i)

    ηa\eta_{a} are the components of a natural transformation η:DE\eta:D\rightarrow E,

  • (ii)

    for every injection τ:ba\tau:b\rightarrow a and index iIb\textbf{i}\in I_{b}

    ηb,iD[τ]=ηa,I[τ](i).\eta_{b,\textbf{i}}\circ D[\tau]=\eta_{a,I[\tau](\textbf{i})}. (6.1)

ηf\eta\mapsto f. It is shown that this construction gives a sequences of kernels as in (2). Let iIrep\textbf{i}^{*}\in I^{\text{rep}} with k=|i|k=|\textbf{i}^{*}|. The measureability of fif_{\textbf{i}^{*}} is clear, as it is the inner component of the measurable function η[k]\eta_{[k]}. Applying (6.1) to a=b=[k]a=b=[k] and τ=πstab(i)\tau=\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) gives

fiD[π]=η[k],iD[π]=η[k],I[π](i)=η[k],i=fi,f_{\textbf{i}^{*}}\circ D[\pi]=\eta_{[k],\textbf{i}^{*}}\circ D[\pi]=\eta_{[k],I[\pi](\textbf{i}^{*})}=\eta_{[k],\textbf{i}^{*}}=f_{\textbf{i}^{*}},

that is the construction gives sequences of kernels as in (2).

fηf\mapsto\eta. It is shown that this construction gives a natural transformation. Let ηa=(ηa,i)iIa\eta_{a}=(\eta_{a,\textbf{i}^{*}})_{\textbf{i}^{*}\in I_{a}} with ηa,i=fr(i)D[πi]D[ιdom(i),a]\eta_{a,\textbf{i}}=f_{r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]. Let τ:ba\tau:b\rightarrow a and iIb\textbf{i}\in I_{b}. Property (6.1) needs to be verified. Consider both sides of that equation by plugging in the definitions and write i=I[τ](i)\textbf{i}^{\prime}=I[\tau](\textbf{i}) for short:

ηb,iD[τ]\displaystyle\eta_{b,\textbf{i}}\circ D[\tau] =fr(i)D[πi]D[ιdom(i),b]D[τ],\displaystyle=f_{r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),b}]\circ D[\tau],
ηa,I[τ](i)\displaystyle\eta_{a,I[\tau](\textbf{i})} =fr(i)D[πi]D[ιdom(i),a].\displaystyle=f_{r(\textbf{i}^{\prime})}\circ D[\pi_{\textbf{i}^{\prime}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}^{\prime}),a}].

Now ii\textbf{i}\sim\textbf{i}^{\prime} and hence r(i)=r(i)=:iIrepr(\textbf{i})=r(\textbf{i}^{\prime})=:\textbf{i}^{*}\in I^{\text{rep}}. Calculation on the first term give

ηb,iD[τ]\displaystyle\eta_{b,\textbf{i}}\circ D[\tau] =fiD[πi]D[ιdom(i),b]D[τ]\displaystyle=f_{\textbf{i}^{*}}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),b}]\circ D[\tau]
=fiD[τιdom(i),bπi]\displaystyle=f_{\textbf{i}^{*}}\circ D[\tau\circ\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),b}\circ\pi_{\textbf{i}}]
=fiD[ιτ(dom(i)),aτπi],\displaystyle=f_{\textbf{i}^{*}}\circ D[\iota_{\tau(\operatorname*{\mathbin{dom}}(\textbf{i})),a}\circ\tau^{*}\circ\pi_{\textbf{i}}],

with bijection τ:dom(i)τ(dom(i)),iτ(i)\tau^{*}:\operatorname*{\mathbin{dom}}(\textbf{i})\rightarrow\tau(\operatorname*{\mathbin{dom}}(\textbf{i})),i\mapsto\tau(i). Now consider the second term. It holds dom(i)=τ(dom(i))\operatorname*{\mathbin{dom}}(\textbf{i}^{\prime})=\tau(\operatorname*{\mathbin{dom}}(\textbf{i})). Using the symmetry of fif_{\textbf{i}^{*}}, for every πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) it follows

ηa,I[τ](i)\displaystyle\eta_{a,I[\tau](\textbf{i})} =fiD[πi]D[ιτ(dom(i)),a]\displaystyle=f_{\textbf{i}^{*}}\circ D[\pi_{\textbf{i}^{\prime}}]\circ D[\iota_{\tau(\operatorname*{\mathbin{dom}}(\textbf{i})),a}]
=fiD[π]D[πi]D[ιτ(dom(i)),a]\displaystyle=f_{\textbf{i}^{*}}\circ D[\pi]\circ D[\pi_{\textbf{i}^{\prime}}]\circ D[\iota_{\tau(\operatorname*{\mathbin{dom}}(\textbf{i})),a}]
=fiD[ιτ(dom(i)),aπiπ].\displaystyle=f_{\textbf{i}^{*}}\circ D[\iota_{\tau(\operatorname*{\mathbin{dom}}(\textbf{i})),a}\circ\pi_{\textbf{i}^{\prime}}\circ\pi].

Comparing the final calculations for both sides show that equality, hence naturality of η\eta, follows, if there exists πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) such that πiπ=τπi\pi_{\textbf{i}^{\prime}}\circ\pi=\tau^{*}\circ\pi_{\textbf{i}}, which is simply given by π:=(πi)1τπi\pi:=(\pi_{\textbf{i}^{\prime}})^{-1}\circ\tau^{*}\circ\pi_{\textbf{i}}, one can check πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) noticing I[τ](i)=iI[\tau^{*}](\textbf{i})=\textbf{i}^{\prime}.

ηfη\eta\mapsto f\mapsto\eta^{\prime} implies η=η\eta=\eta^{\prime}. Let fi=η[k],if_{\textbf{i}^{*}}=\eta_{[k],\textbf{i}^{*}} with k=|i|k=|\textbf{i}^{*}|. Let aa be finite and iIa\textbf{i}\in I_{a}. It is ηa,i=fr(i)D[πi]D[ιdom(i),a]\eta^{\prime}_{a,\textbf{i}}=f_{r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]. Write i=I[τ](r(i))\textbf{i}=I[\tau](r(\textbf{i})) with τ=ιdom(i),aπi\tau=\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}\circ\pi_{\textbf{i}} and apply (6.1) to the inner components of η\eta:

ηa,i=ηa,I[τ](r(i))=η[k],r(i)D[πi]D[ιdom(i),a]=ηa,i.\eta_{a,\textbf{i}}=\eta_{a,I[\tau](r(\textbf{i}))}=\eta_{[k],r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]=\eta^{\prime}_{a,\textbf{i}}.

fηff\mapsto\eta\mapsto f^{\prime} implies f=ff=f^{\prime}. Let aa be finite and iIa\textbf{i}\in I_{a}. It is ηa,i=fr(i)D[πi]D[ιdom(i),a]\eta_{a,\textbf{i}}=f_{r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]. For iIrep\textbf{i}^{*}\in I^{\text{rep}} with |i|=k|\textbf{i}^{*}|=k it is

fi=η[k],i=fr(i)D[πi]D[ιdom(i),[k]].f^{\prime}_{\textbf{i}^{*}}=\eta_{[k],\textbf{i}^{*}}=f_{r(\textbf{i}^{*})}\circ D[\pi_{\textbf{i}^{*}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}^{*}),[k]}].

Now r(i)=ir(\textbf{i}^{*})=\textbf{i}^{*} and dom(i)=[k]\operatorname*{\mathbin{dom}}(\textbf{i}^{*})=[k], hence ιdom(i),[k]=id[k]\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}^{*}),[k]}=\operatorname*{\mathbin{id}}_{[k]}, which gives

fi=fiD[πi].f^{\prime}_{\textbf{i}^{*}}=f_{\textbf{i}^{*}}\circ D[\pi_{\textbf{i}^{*}}].

Now it is πi\pi_{\textbf{i}^{*}} such that i=I[πi](r(i))=I[πi](i)\textbf{i}^{*}=I[\pi_{\textbf{i}^{*}}](r(\textbf{i}^{*}))=I[\pi_{\textbf{i}^{*}}](\textbf{i}^{*}), that is πistab(i)\pi_{\textbf{i}^{*}}\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}). Since fif_{\textbf{i}^{*}} is symmetric it follows that fi=fif^{\prime}_{\textbf{i}^{*}}=f_{\textbf{i}^{*}}.
The one-to-one correspondence is thus shown. Only thing left to do:

The construction fηf\mapsto\eta does not depend on a concrete choice of π\pi_{\bullet}. Let (Irep,r)(I^{\text{rep}},r) be a fixed choice of representative indices and let π,π\pi_{\bullet},\pi_{\bullet}^{\prime} be two rules that map an index i to bijections πi,πi:[k]dom(i)\pi_{\textbf{i}},\pi^{\prime}_{\textbf{i}}:[k]\rightarrow\operatorname*{\mathbin{dom}}(\textbf{i}) such that I[πi](r(i))=i=I[πi](r(i))I[\pi_{\textbf{i}}](r(\textbf{i}))=\textbf{i}=I[\pi^{\prime}_{\textbf{i}}](r(\textbf{i})). Applying (4) from Lemma 2 gives a πstab(r(i))\pi\in\operatorname*{\mathbin{stab}}(r(\textbf{i})) with πi=πiπ\pi_{\textbf{i}}=\pi^{\prime}_{\textbf{i}}\circ\pi. Suppose η\eta is defined using π\pi_{\bullet} and η\eta^{\prime} using π\pi^{\prime}_{\bullet}. For a finite set aa and index iIa\textbf{i}\in I_{a} the invariance of the kernel functions give

ηa,i\displaystyle\eta_{a,\textbf{i}} =fr(i)D[πi]D[ιdom(i),a]\displaystyle=f_{r(\textbf{i})}\circ D[\pi_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]
=fr(i)D[πiπ]D[ιdom(i),a]\displaystyle=f_{r(\textbf{i})}\circ D[\pi^{\prime}_{\textbf{i}}\circ\pi]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]
=fr(i)D[π]D[πi]D[ιdom(i),a]\displaystyle=f_{r(\textbf{i})}\circ D[\pi]\circ D[\pi^{\prime}_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]
=fr(i)D[πi]D[ιdom(i),a]\displaystyle=f_{r(\textbf{i})}\circ D[\pi^{\prime}_{\textbf{i}}]\circ D[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]
=ηa,i.\displaystyle=\eta^{\prime}_{a,\textbf{i}}.

Example 15.

Natural transformations η:𝚂𝚎𝚚(𝒳)𝙶𝚛𝚊𝚙𝚑\eta:\mathtt{Seq}(\mathcal{X})\rightarrow\mathtt{Graph}, with 𝙶𝚛𝚊𝚙𝚑=𝙰𝚛𝚛𝚊𝚢({0,1},(2))\mathtt{Graph}=\mathtt{Array}(\{0,1\},\binom{\square}{2}), are determined by symmetric measurable maps f:𝒳×𝒳{0,1}f:\mathcal{X}\times\mathcal{X}\rightarrow\{0,1\} and the corresponding natural transformation has components ηa:𝒳a{0,1}(a2),ηa((xi)ia)=(f(xi,xi)){i,i}(a2)\eta_{a}:\mathcal{X}^{a}\rightarrow\{0,1\}^{\binom{a}{2}},\eta_{a}((x_{i})_{i\in a})=(f(x_{i},x_{i^{\prime}}))_{\{i,i^{\prime}\}\in\binom{a}{2}}. The previous theorem shows: it does not matter in which order ii and ii^{\prime} are picked from {i,i}\{i,i^{\prime}\} and plugged into ff, because of symmetry. However, a concrete choice is made in that theorem via π\pi_{\bullet}.

Example 16 (Local modification rules).

Following Definition 1.27 in [AT10] the concept of a local modification rule is introduced: let DD be an arbitrary BDS and ee be a finite set representing "extra individuals from the outside". A new BDS D(e)D^{(e)} is defined by Da(e)=DaeD^{(e)}_{a}=D_{a\sqcup e} and D(e)[τ]=D[τide]D^{(e)}[\tau]=D[\tau\sqcup\operatorname*{\mathbin{id}}_{e}], where for τ:ba\tau:b\rightarrow a it is τide:beae\tau\sqcup\operatorname*{\mathbin{id}}_{e}:b\sqcup e\rightarrow a\sqcup e the injection that operates as τ\tau on bb and as ide\operatorname*{\mathbin{id}}_{e} on ee. A local modification rule on DD (using ee) is a natural transformation η:D(e)D\eta:D^{(e)}\rightarrow D. In case D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D=\mathtt{Array}(\mathcal{X},I) Theorem 12 gives an explicit description of local modification rules using kernel functions.

A characterization of natural transformations η:ElL𝙰𝚛𝚛𝚊𝚢(𝒳(l),I(l))\eta:E\rightarrow\prod^{L}_{l}\mathtt{Array}(\mathcal{X}^{(l)},I^{(l)}) can be obtained easily given prior results:

Proof of Theorem 6.

For any countable collections of BDS E,D(l),lLE,D^{(l)},l\in L there is an obvious one-to-one correspondence between natural transformations η:ED:=lD(l)\eta:E\rightarrow D:=\prod_{l}D^{(l)} and sequences of natural transformations (η(l))l(\eta^{(l)})_{l} with η(l):ED(l)\eta^{(l)}:E\rightarrow D^{(l)} a natural transformation for every ll: for every such sequence it is ηa(x):=(ηa(l)(x))lL\eta_{a}(x):=(\eta^{(l)}_{a}(x))_{l\in L} the component of a n.t. EDE\rightarrow D and this construction is one-to-one. Hence Theorem 6 directly follows from Theorem 12. ∎

It remains to show the strong FRT for array-type data structure, Theorem 5, which is obtained from the weak version by modifying almost sure natural transformations to true ones.

Lemma 3.

Let 𝒳,𝒴\mathcal{X},\mathcal{Y} be Borel spaces, f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} a measurable map, GG a countable group, G×𝒳𝒳G\times\mathcal{X}\rightarrow\mathcal{X} a measurable group action and ν𝒫(𝒳)\nu\in\mathscr{P}(\mathcal{X}) a probability measure such that for every πG\pi\in G it it f(πx)=f(x)f(\pi x)=f(x) for ν\nu-almost all x𝒳x\in\mathcal{X}. Then there exits a GG-invariant measurable function f~:𝒳𝒴\tilde{f}:\mathcal{X}\rightarrow\mathcal{Y} such that f~(x)=f(x)\tilde{f}(x)=f(x) for ν\nu-almost all xx.

Proof.

For each π\pi the set {x𝒳|f(πx)=f(x)}𝒳\{x\in\mathcal{X}|f(\pi x)=f(x)\}\subseteq\mathcal{X} is measurable with ν\nu-probability one. Since GG is countable the same is true for 𝒳0={x𝒳|f(πx)=f(x)for allπG}=πG{x𝒳|f(πx)=f(x)}\mathcal{X}_{0}=\{x\in\mathcal{X}|f(\pi x)=f(x)\leavevmode\nobreak\ \text{for all}\leavevmode\nobreak\ \pi\in G\}=\cap_{\pi\in G}\{x\in\mathcal{X}|f(\pi x)=f(x)\}. In particular 𝒳0\mathcal{X}_{0}\neq\emptyset. If 𝒳0=𝒳\mathcal{X}_{0}=\mathcal{X} choose f~=f\tilde{f}=f, otherwise choose y0𝒴y_{0}\in\mathcal{Y} arbitrary and define

f~:𝒳𝒴,f^(x)={f(x),x𝒳0y0,x𝒳𝒳0.\tilde{f}:\mathcal{X}\rightarrow\mathcal{Y},\leavevmode\nobreak\ \leavevmode\nobreak\ \hat{f}(x)=\begin{cases}f(x),&x\in\mathcal{X}_{0}\\ y_{0},&x\in\mathcal{X}\setminus\mathcal{X}_{0}.\end{cases}

f~\tilde{f} is measurable which satisfies f~(x)=f(x)\tilde{f}(x)=f(x) ν\nu-almost because ν(𝒳0)=1\nu(\mathcal{X}_{0})=1. The GG-invariance of f~\tilde{f} follows because for every πG\pi\in G the equivalence x𝒳0πx𝒳0x\in\mathcal{X}_{0}\Leftrightarrow\pi x\in\mathcal{X}_{0} holds. ∎

Proposition 10 (Modification).

Let EE be a BDS, μ𝚂𝚈𝙼(E)\mu\in\mathtt{SYM}(E) and D=lL𝙰𝚛𝚛𝚊𝚢(𝒳(l),I(l))D=\prod_{l}^{L}\mathtt{Array}(\mathcal{X}^{(l)},I^{(l)}) a countable product of array-type data structures. Every μ\mu-a.s. natural transformation η:ED\eta:E\rightarrow D has a modification to a true natural transformation η~:ED\tilde{\eta}:E\rightarrow D such that for every finite aa it holds that ηa=η~a\eta_{a}=\tilde{\eta}_{a} μa\mu_{a}-almost surely.

Proof.

Let D(l)=𝙰𝚛𝚛𝚊𝚢(𝒳(l),I(l))D^{(l)}=\mathtt{Array}(\mathcal{X}^{(l)},I^{(l)}). For every aa it is ηa:EaDa=lDa(l)\eta_{a}:E_{a}\rightarrow D_{a}=\prod_{l}D^{(l)}_{a}, let ηa(l):EaDa(l)\eta^{(l)}_{a}:E_{a}\rightarrow D^{(l)}_{a} be the ll-th component function of ηa\eta_{a}. It is η(l)\eta^{(l)} a μ\mu-a.s. natural transformation. If every η(l)\eta^{(l)} can be modified to a true natural transformation η~(l):ED(l)\tilde{\eta}^{(l)}:E\rightarrow D^{(l)} then, because countable intersections of events with probability one have probability one, the rule aη~a=(η~a(l))la\mapsto\tilde{\eta}_{a}=(\tilde{\eta}^{(l)}_{a})_{l} defines the components of the desired modification η~\tilde{\eta} of η\eta. Hence one can restrict to the case L={1}L=\{1\}: showing that every μ\mu-a.s. natural transformation η:ED=𝙰𝚛𝚛𝚊𝚢(𝒳,I)\eta:E\rightarrow D=\mathtt{Array}(\mathcal{X},I) has a modification, where 𝒳\mathcal{X} is an arbitrary Borel space an II an arbitrary indexing system. Let (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}) be a skeleton of II. For aa and iIa\textbf{i}\in I_{a} let ηa,i:Ea𝒳\eta_{a,\textbf{i}}:E_{a}\rightarrow\mathcal{X} be the i-th component of ηa\eta_{a}. Let τ:ba\tau:b\rightarrow a be injective and XaμaX_{a}\sim\mu_{a}. Since η\eta is a μ\mu-a.s. natural transformation it holds that ηbE[τ](Xa)=a.s.D[τ]ηa(Xa)\eta_{b}\circ E[\tau](X_{a})\overset{a.s.}{=}D[\tau]\circ\eta_{a}(X_{a}). This is an almost surely equality in 𝒳Ib\mathcal{X}^{I_{b}} and hence for every index iIb\textbf{i}\in I_{b} it follows that

ηb,iE[τ](Xa)=(ηbE[τ](Xa))(i)=a.s.(D[τ]ηa(Xa))(i)=(ηa(Xa)I[τ])(i)=ηa,I[τ](i)(Xa).\eta_{b,\textbf{i}}\circ E[\tau](X_{a})=\Big{(}\eta_{b}\circ E[\tau](X_{a})\Big{)}(\textbf{i})\overset{a.s.}{=}\Big{(}D[\tau]\circ\eta_{a}(X_{a})\Big{)}(\textbf{i})=\Big{(}\eta_{a}(X_{a})\circ I[\tau]\Big{)}(\textbf{i})=\eta_{a,I[\tau](\textbf{i})}(X_{a}). (6.2)

For iIrep\textbf{i}^{*}\in I^{\text{rep}} with dom(i)=[k],k0\operatorname*{\mathbin{dom}}(\textbf{i}^{*})=[k],k\geq 0 define

fi:E[k]𝒳,fi=η[k],i.f_{\textbf{i}^{*}}:E_{[k]}\rightarrow\mathcal{X},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ f_{\textbf{i}^{*}}=\eta_{[k],\textbf{i}^{*}}.

For πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) applying (6.2) to a=b=[k],i=ia=b=[k],\textbf{i}=\textbf{i}^{*} and τ=πstab(i)\tau=\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) gives

fiE[π](X[k])=η[k],iE[τ](X[k])=a.s.η[k],I[τ](i)(X[k])=fi(X[k]).f_{\textbf{i}^{*}}\circ E[\pi](X_{[k]})=\eta_{[k],\textbf{i}^{*}}\circ E[\tau](X_{[k]})\overset{a.s.}{=}\eta_{[k],I[\tau](\textbf{i})}(X_{[k]})=f_{\textbf{i}^{*}}(X_{[k]}).

By Lemma 3 one can modify fif_{\textbf{i}^{*}} to a measurable function f~i:E[k]𝒳\tilde{f}_{\textbf{i}^{*}}:E_{[k]}\rightarrow\mathcal{X} such that f~iE[π]=f~i\tilde{f}_{\textbf{i}^{*}}\circ E[\pi]=\tilde{f}_{\textbf{i}^{*}} for all πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*}) (pointwise) and f~i(X[k])=a.s.fi(X[k])\tilde{f}_{\textbf{i}^{*}}(X_{[k]})\overset{a.s.}{=}f_{\textbf{i}^{*}}(X_{[k]}). By Theorem 12 one can use (f~i)iIrep(\tilde{f}_{\textbf{i}^{*}})_{\textbf{i}^{*}\in I^{\text{rep}}} to construct a true natural transformation η~:ED=𝙰𝚛𝚛𝚊𝚢(𝒳,I)\tilde{\eta}:E\rightarrow D=\mathtt{Array}(\mathcal{X},I) which has components η~a,i=f~r(i)E[πi]E[ιdom(i),a]\tilde{\eta}_{a,\textbf{i}}=\tilde{f}_{r(\textbf{i})}\circ E[\pi_{\textbf{i}}]\circ E[\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}]. This gives a μ\mu-a.s. modification of η\eta: for a finite set aa and iIa\textbf{i}\in I_{a} let τ=ιdom(i),aπi\tau=\iota_{\operatorname*{\mathbin{dom}}(\textbf{i}),a}\circ\pi_{\textbf{i}}, which is an injection [k]a[k]\rightarrow a such that i=I[τ](r(i))\textbf{i}=I[\tau](r(\textbf{i})) and η~a,i=f~r(i)E[τ]\tilde{\eta}_{a,\textbf{i}}=\tilde{f}_{r(\textbf{i})}\circ E[\tau]. Noticing E[τ](Xa)X[k]E[\tau](X_{a})\sim X_{[k]} gives the calculation

ηa,i(Xa)=ηa,I[τ](r(i))(Xa)=a.s.η[k],r(i)E[τ](Xa)=a.s.f~iE[τ](Xa)=η~a,i(Xa)\displaystyle\eta_{a,\textbf{i}}(X_{a})=\eta_{a,I[\tau](r(\textbf{i}))}(X_{a})\overset{a.s.}{=}\eta_{[k],r(\textbf{i})}\circ E[\tau](X_{a})\overset{a.s.}{=}\tilde{f}_{\textbf{i}^{*}}\circ E[\tau](X_{a})=\tilde{\eta}_{a,\textbf{i}}(X_{a})

and hence ηa(Xa)=a.s.η~a(Xa)\eta_{a}(X_{a})\overset{a.s.}{=}\tilde{\eta}_{a}(X_{a}) (finite intersection of events with probability one). ∎

Proof of Theorem 5.

Let D=lL𝙰𝚛𝚛𝚊𝚢(𝒳(l),I(l))D=\prod_{l}^{L}\mathtt{Array}(\mathcal{X}^{(l)},I^{(l)}) and μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). The weak FRT, Theorem 3, shows that there exists a unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:RD\eta:R\rightarrow D with μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}. Proposition 10 gives that η\eta can be modified to a true natural transformation η~\tilde{\eta} with ηa(u)=η~a(u)\eta_{a}(u)=\tilde{\eta}_{a}(u) for unif(R)a\operatorname*{\mathbin{unif}}(R)_{a}-almost all u[0,1]2au\in[0,1]^{2^{a}}, hence unif(R)η1=unif(R)η~1\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}=\operatorname*{\mathbin{unif}}(R)\circ\tilde{\eta}^{-1}. In case k=depth(D)<k=\operatorname*{\mathbin{depth}}(D)<\infty applying Proposition 8 to the true natural transformation η~\tilde{\eta} gives a true natural transformation η^:RkD\hat{\eta}:R^{k}\rightarrow D with η~=η^r\tilde{\eta}=\hat{\eta}\circ r and hence μ=unif(R)η~1=unif(R)(η^r)1=unif(R)r1η^1=unif(Rk)η^1\mu=\operatorname*{\mathbin{unif}}(R)\circ\tilde{\eta}^{-1}=\operatorname*{\mathbin{unif}}(R)\circ(\hat{\eta}\circ r)^{-1}=\operatorname*{\mathbin{unif}}(R)\circ r^{-1}\circ\hat{\eta}^{-1}=\operatorname*{\mathbin{unif}}(R^{k})\circ\hat{\eta}^{-1}. ∎

6.1. Explicit FRT for array-type data structures

Let II be an indexing system with skeleton (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}). Define I=n0I[n]I_{\mathbb{N}}=\cup_{n\geq 0}I_{[n]} and the action 𝕊×II\mathbb{S}_{\mathbb{N}}\times I_{\mathbb{N}}\rightarrow I_{\mathbb{N}} as

(π,i)πi:=I[π~](i)withπ~:dom(i)π(dom(i)),iπ(i).(\pi,\textbf{i})\mapsto\pi\textbf{i}:=I[\tilde{\pi}](\textbf{i})\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{with}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \tilde{\pi}:\operatorname*{\mathbin{dom}}(\textbf{i})\rightarrow\pi(\operatorname*{\mathbin{dom}}(\textbf{i})),i\mapsto\pi(i).

This gives a notion of exchangeability in arrays as in (1.3). For every bijection π:ba\pi:b\rightarrow a it is im(π):2b2a,bbπ(b)a\operatorname*{\mathbin{im}}(\pi):2^{b}\rightarrow 2^{a},b^{\prime}\subseteq b\mapsto\pi(b^{\prime})\subseteq a. The following is a consequence of Theorems 5, Theorem 12 and formulated in terms of natural extensions of arrays, see Section 4.1.

Corollary 4.

Let 𝒳\mathcal{X} be a Borel space. For every exchangeable 𝒳\mathcal{X}-valued process X=(Xi)iIX=(X_{\textbf{i}})_{\textbf{i}\in I_{\mathbb{N}}} there exist kernel functions (fi)iIrep(f_{\textbf{i}^{*}})_{\textbf{i}^{*}\in I^{\text{rep}}} such that for every iIrep\textbf{i}^{*}\in I^{\text{rep}} with dom(i)=[k],k0\operatorname*{\mathbin{dom}}(\textbf{i}^{*})=[k],k\geq 0 it is

  • fi:[0,1]2[k]𝒳f_{\textbf{i}^{*}}:[0,1]^{2^{[k]}}\rightarrow\mathcal{X} measurable,

  • fi(u)=fi(uim(π))f_{\textbf{i}^{*}}(u)=f_{\textbf{i}^{*}}(u\circ\operatorname*{\mathbin{im}}(\pi)) for every u[0,1]2[k]u\in[0,1]^{2^{[k]}} and πstab(i)𝕊[k]\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}^{*})\subseteq\mathbb{S}_{[k]}

and such that

(Xi)iI=𝑑(fr(i)((Ue)edom(i)im(πi)))iI,\big{(}X_{\textbf{i}}\big{)}_{\textbf{i}\in I_{\mathbb{N}}}\overset{d}{=}\Big{(}f_{r(\textbf{i})}\Big{(}(U_{e})_{e\subseteq\operatorname*{\mathbin{dom}}(\textbf{i})}\circ\operatorname*{\mathbin{im}}(\pi_{\textbf{i}})\Big{)}\Big{)}_{\textbf{i}\in I_{\mathbb{N}}},

with Ua,a(<)U_{a},a\in\binom{\mathbb{N}}{<\infty} iid unif[0,1]\sim\operatorname*{\mathbin{unif}}[0,1]. The representation does not depend on the concrete choice of π\pi_{\bullet} by symmetry of the kernels.

It is directly seen that the FRT needs randomization up to order k=max{|i|:iIrep}=depth(𝙰𝚛𝚛𝚊𝚢(𝒳,I))k=\max\{|\textbf{i}^{*}|:\textbf{i}^{*}\in I^{\text{rep}}\}=\operatorname*{\mathbin{depth}}(\mathtt{Array}(\mathcal{X},I)). Applying the representation to I=,(2),2I=\square,\binom{\square}{2},\square^{2}_{\neq} gives the examples (E1)-(E3), applying it to I=I=\square^{*}_{\neq} gives back Theorem A (from which everything started). It is noted that deriving a FRT for a particular indexing system II from Hoover’s (or any other known) FRT may often be more or less easy by "elementary" arguments - which then often depend on the concrete indexing system II considered. The result above has worked these arguments out simultaneously for any indexing system.

6.2. Atomic indexing systems

To understand what indexing systems are about it is insightful to consider atomic indexing systems. II is called atomic if there exists a unique representative index, that is: if (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}) is a skeleton, then Irep={i}I^{\text{rep}}=\{\textbf{i}^{*}\} has one single element i\textbf{i}^{*} with dom(i)=[k]\operatorname*{\mathbin{dom}}(\textbf{i}^{*})=[k] for some k0k\geq 0. It follows that for every index i from II it is |i|=k|\textbf{i}|=k, r(i)=ir(\textbf{i})=\textbf{i}^{*} and I[πi](i)=iI[\pi_{\textbf{i}}](\textbf{i}^{*})=\textbf{i}.

Example 17.

Atomic indexing systems are \square with representative index i=1\textbf{i}^{*}=1, (k)\binom{\square}{k} with i={1,,k}\textbf{i}^{*}=\{1,\dots,k\} and k\square^{k}_{\neq} with i=(1,,k)\textbf{i}^{*}=(1,\dots,k). Examples of non-atomic indexing systems are (k)\binom{\square}{\leq k} in case k1k\geq 1, k\square^{k} in case k2k\geq 2, 22^{\square} or \square^{*}_{\neq}.

Using Lemma 2 it is straightforward to show that an atomic indexing systems II with |i|=k|\textbf{i}^{*}|=k is always "in between" (k)\binom{\square}{k} and k\square^{k}_{\neq}: for every finite set aa it is

|Ia|=k!|stab(i)|(|a|k),so |(ak)||Ia||ak|.|I_{a}|=\frac{k!}{|\operatorname*{\mathbin{stab}}(\textbf{i}^{*})|}\cdot\binom{|a|}{k},\leavevmode\nobreak\ \leavevmode\nobreak\ \text{so $|\binom{a}{k}|\leq|I_{a}|\leq|a^{k}_{\neq}|$}.

Further, Theorem 12 can be used to justify that natural embeddings ϕ1,ϕ2\phi^{1},\phi^{2}

𝙰𝚛𝚛𝚊𝚢(𝒳,(k))ϕ1𝙰𝚛𝚛𝚊𝚢(𝒳,I)ϕ2𝙰𝚛𝚛𝚊𝚢(𝒳,k)\mathtt{Array}(\mathcal{X},\binom{\square}{k})\overset{\phi^{1}}{\longrightarrow}\mathtt{Array}(\mathcal{X},I)\overset{\phi^{2}}{\longrightarrow}\mathtt{Array}(\mathcal{X},\square^{k}_{\neq})

are given by

  • ϕa1(x)=(x(dom(i)))iIa\phi^{1}_{a}(x)=(x(\operatorname*{\mathbin{dom}}(\textbf{i})))_{\textbf{i}\in I_{a}}; the kernel is the identity function f:𝒳([k]k)𝒳,vvv([k])f:\mathcal{X}^{\binom{[k]}{k}}\rightarrow\mathcal{X},v\mapsto v\equiv v([k]). Injectivity of ϕa1\phi^{1}_{a} follows because dom(i)\operatorname*{\mathbin{dom}}(\textbf{i}) ranges over (ak)\binom{a}{k} as i ranges over IaI_{a},

  • ϕa2(x)=(x(I[τj,a](i)))jak\phi^{2}_{a}(x)=(x(I[\tau_{\textbf{j},a}](\textbf{i}^{*})))_{\textbf{j}\in a^{k}_{\neq}}; the kernel is f:𝒳I[k]𝒳,vv(i)f:\mathcal{X}^{I_{[k]}}\rightarrow\mathcal{X},v\mapsto v(\textbf{i}^{*}). Injectivity of ϕa2\phi^{2}_{a} follows because I[τj,a](i)I[\tau_{\textbf{j},a}](\textbf{i}^{*}) ranges over all elements from IaI_{a} when j ranges over aka^{k}_{\neq} (because then, τj,a\tau_{\textbf{j},a} ranges over all injections [k]a[k]\rightarrow a).

The term "atomic" is justified by the fact that every indexing system II decomposes into atomic indexing systems: if (Irep,r,π)(I^{\text{rep}},r,\pi_{\bullet}) is a skeleton for II and the representatives are enumerated as Irep={im|mM}I^{\text{rep}}=\{\textbf{i}^{*}_{m}|m\in M\}, MM a countable set, then for every mMm\in M an atomic indexing system is given by I(m)I^{(m)} defined as Ib(m)={iIb|iim}IbI^{(m)}_{b}=\{\textbf{i}\in I_{b}|\textbf{i}\sim\textbf{i}^{*}_{m}\}\subseteq I_{b} and I(m)[τ](i)=I[τ](i)I^{(m)}[\tau](\textbf{i})=I[\tau](\textbf{i}) for iIb(m)\textbf{i}\in I^{(m)}_{b}. For every finite set aa it is Ia=Ia(1)+Ia(2)+I_{a}=I^{(1)}_{a}+I^{(2)}_{a}+\dots a disjoint union because \sim is an equivalence relation on indices; a natural isomorphism ϕ:𝙰𝚛𝚛𝚊𝚢(𝒳,I)mM𝙰𝚛𝚛𝚊𝚢(𝒳,I(m))\phi:\mathtt{Array}(\mathcal{X},I)\rightarrow\prod_{m\in M}\mathtt{Array}(\mathcal{X},I^{(m)}) is given by components

ϕa:𝒳IamM𝒳Ia(m),x(xιIa(m),Ia)mM.\phi_{a}:\mathcal{X}^{I_{a}}\rightarrow\prod_{m\in M}\mathcal{X}^{I^{(m)}_{a}},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ x\mapsto\Big{(}x\circ\iota_{I^{(m)}_{a},I_{a}}\Big{)}_{m\in M}.

A formal remark on this: if mMm\in M and aa are such that Ia(m)=I^{(m)}_{a}=\emptyset, then 𝒳Ia(m)=𝒳\mathcal{X}^{I^{(m)}_{a}}=\mathcal{X}^{\emptyset} is the discrete one-point Borel space consisting of the unique function 𝒳\emptyset\rightarrow\mathcal{X}, which for every x𝒳Iax\in\mathcal{X}^{I_{a}} equals xι,Iax\circ\iota_{\emptyset,I_{a}}. In case MM is countable infinite, for every finite set aa it is Ia(m)=I^{(m)}_{a}=\emptyset for all but finitely many mm.

7. Outlook to seperate exchangeability

Let k1k\geq 1 be fixed. The statistical philosophy behind (classical) notions of seperate exchangeability is that there are kk large populations and a statistician picks from any of the kk populations a finite set of individuals, representing individuals from population l[k]l\in[k] via IDs from some finite set ala_{l}. The complete sample of individuals is represented by the tuple (a1,,ak)(a_{1},\dots,a_{k}). Picking subgroups is performed separately on each group, that is via tuples of injections (τ1,,τk)(\tau_{1},\dots,\tau_{k}) such that τl:blal\tau_{l}:b_{l}\rightarrow a_{l} is injective. Composition with (σ1,,σk)(\sigma_{1},\dots,\sigma_{k}), with σl:clbl\sigma_{l}:c_{l}\rightarrow b_{l} injective, is (τ1,,τk)(σ1,,σk)=(τ1σ1,,τkσl)(\tau_{1},\dots,\tau_{k})\circ(\sigma_{1},\dots,\sigma_{k})=(\tau_{1}\circ\sigma_{1},\dots,\tau_{k}\circ\sigma_{l}). The same ideas leading to study BDS (k=1k=1) can be extended to k1k\geq 1 and lead to consider functors

G:(𝙸𝙽𝙹op)k𝙱𝙾𝚁𝙴𝙻,G:(\mathtt{INJ}^{\text{op}})^{k}\rightarrow\mathtt{BOREL},

where (𝙸𝙽𝙹op)k(\mathtt{INJ}^{\text{op}})^{k} is the kk-fold product category of 𝙸𝙽𝙹op\mathtt{INJ}^{\text{op}}. A functor GG gives the Borel spaces G(a1,,ak)G_{(a_{1},\dots,a_{k})} representing spaces of measurements on a group of individuals represented by (a1,,ak)(a_{1},\dots,a_{k}) and for every way of (separately) picking subgroups (τ1,τk)(\tau_{1},\dots\tau_{k}) a measurable map G[(τ1,,τk)]:G(a1,,ak)G(b1,,bk)G[(\tau_{1},\dots,\tau_{k})]:G_{(a_{1},\dots,a_{k})}\rightarrow G_{(b_{1},\dots,b_{k})} which explains how picking subgroups transforms measured data. Imagine the statistician picks individuals and assigns IDs "randomly" and then measures data. As with Borel data structures it is straightforward to model the distribution of such a random measurement by a rule ρ\rho mapping every (a1,,ak)(a_{1},\dots,a_{k}) to some ρ(a1,,ak)𝒫(G(a1,,ak))\rho_{(a_{1},\dots,a_{k})}\in\mathscr{P}(G_{(a_{1},\dots,a_{k})}) such that for any (τ1,,τk):(b1,,bk)(a1,,ak)(\tau_{1},\dots,\tau_{k}):(b_{1},\dots,b_{k})\rightarrow(a_{1},\dots,a_{k}) it holds

ρ(b1,,bk)=ρ(a1,,ak)G[(τ1,,τk)]1.\rho_{(b_{1},\dots,b_{k})}=\rho_{(a_{1},\dots,a_{k})}\circ G[(\tau_{1},\dots,\tau_{k})]^{-1}.

Let 𝚂𝚈𝙼(G)\mathtt{SYM}(G) be the space of such ρ\rho, which are called symmetric laws on GG. Any symmetric law ρ𝚂𝚈𝙼(G)\rho\in\mathtt{SYM}(G) is determined on its diagonal, that is by the values ρ(a,,a)\rho_{(a,\dots,a)} ranging over finite sets aa: for every (a1,,ak)(a_{1},\dots,a_{k}) let a=lala=\cup_{l}a_{l}, it is

ρ(a1,,ak)=ρ(a,,a)G[(ιa1,a,,ιak,a)]1.\rho_{(a_{1},\dots,a_{k})}=\rho_{(a,\dots,a)}\circ G[(\iota_{a_{1},a},\dots,\iota_{a_{k},a})]^{-1}.

Let Δ:𝙸𝙽𝙹op(𝙸𝙽𝙹op)k\Delta:\mathtt{INJ}^{\text{op}}\rightarrow(\mathtt{INJ}^{\text{op}})^{k} be the diagonal functor that sends aa to (a,,a)(a,\dots,a) and τ\tau to (τ,,τ)(\tau,\dots,\tau). It is

GΔ:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻G\circ\Delta:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL}

a Borel data structure and for ρ𝚂𝚈𝙼(G)\rho\in\mathtt{SYM}(G) the rule ρΔ:=[aρ(a,,a)]\rho\circ\Delta:=[a\mapsto\rho_{(a,\dots,a)}] is element ρΔ𝚂𝚈𝙼(GΔ)\rho\circ\Delta\in\mathtt{SYM}(G\circ\Delta). The map ρρΔ\rho\mapsto\rho\circ\Delta is injective. Let

𝚂𝙴𝙿(GΔ):={ρΔ|ρ𝚂𝚈𝙼(G)}𝚂𝚈𝙼(GΔ).\mathtt{SEP}(G\circ\Delta):=\{\rho\circ\Delta|\rho\in\mathtt{SYM}(G)\}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \subseteq\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mathtt{SYM}(G\circ\Delta).

In this context it is reasonable to call μ=ρΔ𝚂𝙴𝙿(GΔ)\mu=\rho\circ\Delta\in\mathtt{SEP}(G\circ\Delta) a seperate exchangeable law and μ𝚂𝚈𝙼(GΔ)\mu\in\mathtt{SYM}(G\circ\Delta) a jointly exchangeable law on the Borel data structure GΔG\circ\Delta. The statistical interpretation of the BDS GΔG\circ\Delta is as follows: a statistician picks n0n\geq 0 individuals from each of the kk populations, obtaining kk distinct groups of individuals each of size nn, and uses a single finite set of IDs aa with |a|=n|a|=n to identify individuals within each of the kk groups, that is every iai\in a points to an individual in each of the kk groups. Storing (joint) information about the picked groups as data gives a value from (GΔ)a=G(a,,a)(G\circ\Delta)_{a}=G_{(a,\dots,a)}. Picking subgroups in GΔG\circ\Delta is performed such that for every iai\in a the kk individuals represented by ii are treated as "linked together". Loosely speaking, this results in the following statistical interpretation of seperate and jointly exchangeable laws:

  • Jointly exchangeable laws μ𝚂𝚈𝙼(GΔ)\mu\in\mathtt{SYM}(G\circ\Delta) arise as follows: μa𝒫(G(a,,a))\mu_{a}\in\mathscr{P}(G_{(a,\dots,a)}) with n=|a|n=|a| is the law of a measurement in which individuals are picked with an arbitrary coupling, that is every pick ii represents a simultaneous pick of kk individuals, exactly one from each population.

  • Seperate exchangeable laws μ𝚂𝙴𝙿(GΔ)\mu\in\mathtt{SEP}(G\circ\Delta) correspond to the coupling being "independent", that is for every ii and every l[k]l\in[k] an inidividual from population ll is picked randomly and assigned ID ii. Of course, 𝚂𝙴𝙿(GΔ)𝚂𝚈𝙼(GΔ)\mathtt{SEP}(G\circ\Delta)\subseteq\mathtt{SYM}(G\circ\Delta).

To summarize: in any BDS DD represented in the form D=GΔD=G\circ\Delta there is a canonical notion of seperate exchangeability 𝚂𝙴𝙿(D)\mathtt{SEP}(D) being stronger than (joint) exchangeability 𝚂𝚈𝙼(D)\mathtt{SYM}(D), that is 𝚂𝙴𝙿(D)𝚂𝚈𝙼(D)\mathtt{SEP}(D)\subseteq\mathtt{SYM}(D). Of course, when k=1k=1 it is D=GΔ=GD=G\circ\Delta=G and 𝚂𝙴𝙿(D)=𝚂𝚈𝙼(D)\mathtt{SEP}(D)=\mathtt{SYM}(D). Next, two ways are given to construct a BDS DD satisfying D=GΔD=G\circ\Delta for some GG constructed from a "base" BDS D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D^{*}:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL}.

For injections τ1,,τk\tau_{1},\dots,\tau_{k} with τl:blal\tau_{l}:b_{l}\rightarrow a_{l} let τ1××τk:b1××bka1××ak\tau_{1}\times\cdots\times\tau_{k}:b_{1}\times\cdots\times b_{k}\rightarrow a_{1}\times\cdots\times a_{k} act as (i1,,ik)(τ1i1,,τkik)(i_{1},\dots,i_{k})\mapsto(\tau_{1}i_{1},\dots,\tau_{k}i_{k}). The coproduct version is the map τ1τk:b1bka1ak\tau_{1}\sqcup\cdots\sqcup\tau_{k}:b_{1}\sqcup\cdots\sqcup b_{k}\rightarrow a_{1}\sqcup\cdots\sqcup a_{k} acing on blb_{l} as τl\tau_{l}. Considering only the "diagonal" version of these constructions leads to the indexing systems k\square^{k}, which sends bb to bk=b××bb^{k}=b\times\cdots\times b and τ\tau to τ=τ×τ×τ\vec{\tau}=\tau\times\tau\cdots\times\tau, and 𝙿𝙰𝙸𝚁(k)\mathtt{PAIR}^{(k)}, which sends bb to bbb\sqcup\cdots\sqcup b (kk-times) and τ\tau to ττ\tau\sqcup\cdots\sqcup\tau.

Let D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D^{*}:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} be an arbitrary BDS.

  • (C1)

    D:=DkD:=D^{*}\circ\square^{k} satisfies D=GΔD=G\circ\Delta with GG being

    G(a1,,ak)=Da1××akandG[(τ1,,τk)]=D[τ1××τk].G_{(a_{1},\dots,a_{k})}=D^{*}_{a_{1}\times\cdots\times a_{k}}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ G[(\tau_{1},\dots,\tau_{k})]=D^{*}[\tau_{1}\times\cdots\times\tau_{k}].
  • (C2)

    D:=D𝙿𝙰𝙸𝚁(k)D:=D^{*}\circ\mathtt{PAIR}^{(k)} satisfies D=GΔD=G\circ\Delta with GG being

    G(a1,,ak)=Da1akandG[(τ1,,τk)]=D[τ1τk].G_{(a_{1},\dots,a_{k})}=D^{*}_{a_{1}\sqcup\cdots\sqcup a_{k}}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \text{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ G[(\tau_{1},\dots,\tau_{k})]=D^{*}[\tau_{1}\sqcup\cdots\sqcup\tau_{k}].

The statistical interpretation of these constructions is straightforward: let the kk picked groups, each of size n=|a|n=|a|, be represented by (a,,a)(a,\dots,a). Data of the form D=DkD=D^{*}\circ\square^{k} is measured by building all pairs (i1,,ik)ak(i_{1},\dots,i_{k})\in a^{k} and using these pairs as new "individuals" on which data is measured according to DD^{*}. Data of the form D=D𝙿𝙰𝙸𝚁(k)D=D^{*}\circ\mathtt{PAIR}^{(k)} is measured by pooling the individuals from the different groups together (in an identifiable way), which gives new IDs (l,i),ia,l[k](l,i),i\in a,l\in[k] (the elements of 𝙿𝙰𝙸𝚁a(k)\mathtt{PAIR}^{(k)}_{a}), and using DD^{*} to measure data on the pooled group.

Example 18.

The classical notion of seperate exchangeability is about arrays indexed by k\mathbb{N}^{k}. This notion can be derived from the previous construction as follows:
It is D=𝙰𝚛𝚛𝚊𝚢(𝒳,k)=DkD=\mathtt{Array}(\mathcal{X},\square^{k})=D^{*}\circ\square^{k} with D=𝚂𝚎𝚚(𝒳)D^{*}=\mathtt{Seq}(\mathcal{X}). As seen before (natural extension of arrays + correspondence with laws of random measurements using a countable infinite set of IDs), jointly exchangeable laws μ𝚂𝚈𝙼(𝙰𝚛𝚛𝚊𝚢(𝒳,k))\mu\in\mathtt{SYM}(\mathtt{Array}(\mathcal{X},\square^{k})) correspond to laws of 𝒳\mathcal{X}-valued arrays X=(Xi)ikX=(X_{\textbf{i}})_{\textbf{i}\in\mathbb{N}^{k}} satisfying for every bijection π:\pi:\mathbb{N}\rightarrow\mathbb{N}

X=𝑑(X(πi1,,πik))i=(i1,,ik)k.X\leavevmode\nobreak\ \leavevmode\nobreak\ \overset{d}{=}\leavevmode\nobreak\ \leavevmode\nobreak\ \big{(}X_{(\pi i_{1},\dots,\pi i_{k})}\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in\mathbb{N}^{k}}.

The derived notion of seperate exchangeability is the classical one: the law of XX is represented by a seperate exchangeable law μ𝚂𝙴𝙿(𝙰𝚛𝚛𝚊𝚢(𝒳,k))\mu\in\mathtt{SEP}(\mathtt{Array}(\mathcal{X},\square^{k})) iff

X=𝑑(X(π1i1,,πkik))i=(i1,,ik)kX\leavevmode\nobreak\ \leavevmode\nobreak\ \overset{d}{=}\leavevmode\nobreak\ \leavevmode\nobreak\ \big{(}X_{(\pi_{1}i_{1},\dots,\pi_{k}i_{k})}\big{)}_{\textbf{i}=(i_{1},\dots,i_{k})\in\mathbb{N}^{k}}

holds for any kk bijections π1,,πk:\pi_{1},\dots,\pi_{k}:\mathbb{N}\rightarrow\mathbb{N}.

Example 19.

Let D=𝚃𝚘𝚝𝙾𝚛𝚍D^{*}=\mathtt{TotOrd} be the data structure of strict total orders. Seperate exchangeable laws in D=𝚃𝚘𝚝𝙾𝚛𝚍𝙿𝙰𝙸𝚁(2)D=\mathtt{TotOrd}\circ\mathtt{PAIR}^{(2)} appeared in [CE17] in the context of identifying the Doob-Martin boundary of a specific combinatorial Markov chain producing randomly growing words over a k=2k=2-letter alphabet; a (functional) representation of seperate exchangeable laws in this case is given by their Theorem 6.12 (where "exchangeable" instead of "seperate exchangeable" is used).

Remark 20.

The constructions (C1), (C2) also have outer versions, details are only given for the product: let D1,,DkD^{1},\dots,D^{k} be BDS and consider the product D=D1××DkD=D^{1}\times\cdots\times D^{k}. It is D=GΔD=G\circ\Delta with G(a1,,ak)=lDallG_{(a_{1},\dots,a_{k})}=\prod_{l}D^{l}_{a_{l}} and G[(τ1,,τk)]=lDl[τl]G[(\tau_{1},\dots,\tau_{k})]=\prod_{l}D^{l}[\tau_{l}]. The statistical interpretation is that on each of the kk groups data is measured separately, on group ll according to DlD^{l}, and recorded in a tuple. Seperate exchangeable laws can be easily identified: μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) is seperate exchangeable iff for every finite set aa

μa()=𝚂𝚈𝙼erg(D1)××𝚂𝚈𝙼erg(Dk)μa1()μak()𝑑Ξ(μ1,,μk)\mu_{a}(\cdot)=\int_{\mathtt{SYM}^{\text{erg}}(D^{1})\times\cdots\times\mathtt{SYM}^{\text{erg}}(D^{k})}\mu^{1}_{a}(\cdot)\otimes\cdots\otimes\mu^{k}_{a}(\cdot)d\Xi(\mu^{1},\dots,\mu^{k})

for a uniquely defined probability measures Ξ\Xi on 𝚂𝚈𝙼erg(D1)××𝚂𝚈𝙼erg(Dk)\mathtt{SYM}^{\text{erg}}(D^{1})\times\cdots\times\mathtt{SYM}^{\text{erg}}(D^{k}). Note the coincidence that for Dl=D=𝚂𝚎𝚚(𝒳)D^{l}=D^{*}=\mathtt{Seq}(\mathcal{X}) for all ll it is D=D××DD𝙿𝙰𝙸𝚁(k)𝚂𝚎𝚚(𝒳k)D=D^{*}\times\cdots\times D^{*}\simeq D^{*}\circ\mathtt{PAIR}^{(k)}\simeq\mathtt{Seq}(\mathcal{X}^{k}), which is special to sequential data.

In future work the abstract notion of seperate exchangeability should be investigated further. For that, many of the results derived for functors D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} and their exchangeable=symmetric laws should have a straightforward generalization to functors G:(𝙸𝙽𝙹op)k𝙱𝙾𝚁𝙴𝙻G:(\mathtt{INJ}^{\text{op}})^{k}\rightarrow\mathtt{BOREL} for arbitrary k1k\geq 1. Studying functional representations for seperate exchangeable laws should be particularly fruitful for BDS of the form D=DkD=D^{*}\circ\square^{k} with D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)D^{*}=\mathtt{Array}(\mathcal{X},I), as in this case D=𝙰𝚛𝚛𝚊𝚢(𝒳,I)k=𝙰𝚛𝚛𝚊𝚢(𝒳,Ik)D=\mathtt{Array}(\mathcal{X},I)\circ\square^{k}=\mathtt{Array}(\mathcal{X},I\circ\square^{k}) is of array-type again, for which general results have been presented. The same holds for D=D𝙿𝙰𝙸𝚁(k)=𝙰𝚛𝚛𝚊𝚢(𝒳,I𝙿𝙰𝙸𝚁(k))D=D^{*}\circ\mathtt{PAIR}^{(k)}=\mathtt{Array}(\mathcal{X},I\circ\mathtt{PAIR}^{(k)}).

8. Concluding remarks/outlook

Remark 21 (Kernels as morphisms).

Let 𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{KBOREL} be the category that has Borel spaces as objects and probability kernels as morphisms, that is: a morphism from 𝒳\mathcal{X} to 𝒴\mathcal{Y} in 𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{KBOREL} is a measurable map k:𝒳𝒫(𝒴)k:\mathcal{X}\rightarrow\mathscr{P}(\mathcal{Y}) and composition with k:𝒴𝒫(𝒵)k^{\prime}:\mathcal{Y}\rightarrow\mathscr{P}(\mathcal{Z}) is defined by disintegration:

(kk)(x,)=𝒴k(y,)k(x,dy),x𝒳.(k^{\prime}\circ k)(x,\cdot)=\int_{\mathcal{Y}}k^{\prime}(y,\cdot)k(x,dy),x\in\mathcal{X}.

A good part of our definitions and results should also hold when 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL} is replaced by 𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{KBOREL}, that is the initial object of study would be functors D:𝙸𝙽𝙹op𝙺𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{KBOREL}; however, the focus of this work was on functional aspects of exchangeability based on the statistical interpretation of "manipulating measurements in a deterministic way". A possible benefit on extending the theory from 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL} to 𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{KBOREL} is to be investigated. It is noted that the results of this work would embed nicely into the more general framework: the category 𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{KBOREL} is obtained as the Kleisli category induced by the Giry monad, see [Gir82], which has a version on 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL}. The results about BDS and natural transformations between BDS would embed in the 𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{KBOREL}-setting by identifying a function 𝒳𝒴,xf(x)\mathcal{X}\rightarrow\mathcal{Y},x\mapsto f(x) with the kernels 𝒳𝒫(𝒴),xδf(x)\mathcal{X}\rightarrow\mathscr{P}(\mathcal{Y}),x\mapsto\delta_{f(x)}.

Remark 22 (Conjecture about generalized Noise-Outsourcing Lemma).

[Aus15] studied exchangeable laws in 𝒫D\mathscr{P}\circ D with D=j=0k𝙰𝚛𝚛𝚊𝚢(𝒳(j),(j))D=\prod_{j=0}^{k}\mathtt{Array}(\mathcal{X}^{(j)},\binom{\square}{j}). As noted in Remark 10, the notions of natural transformations and kernel functions implicitly appeared in that context as skew-product type functions and skew-product tuples. The results obtained there lead to the following conjecture, formulated in a "weak" form for arbitrary BDS of arbitrary depth:

Conjecture 1.

Let EE and DD be Borel data structures.

  • For every μ𝚂𝚈𝙼(E)\mu\in\mathtt{SYM}(E) and μ\mu-a.s. natural transformation η:E𝒫D\eta:E\rightarrow\mathscr{P}\circ D there exists a μunif(R)\mu\otimes\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η~:E×RD\tilde{\eta}:E\times R\rightarrow D such that for every finite set aa it is ηa(x)=unif(R)aη~a(x,)1\eta_{a}(x)=\operatorname*{\mathbin{unif}}(R)_{a}\circ\tilde{\eta}_{a}(x,\cdot)^{-1} for μa\mu_{a}-almost all xEax\in E_{a},

  • Abstract Noise-Outsourcing Lemma: for every ρ𝚂𝚈𝙼(E×D)\rho\in\mathtt{SYM}(E\times D) with first marginal μ𝚂𝚈𝙼(E)\mu\in\mathtt{SYM}(E) there exists a μunif(R)\mu\otimes\operatorname*{\mathbin{unif}}(R)-a.s. natural transformation η:E×RD\eta:E\times R\rightarrow D such that ρ=μunif(R)(1Eη)1\rho=\mu\otimes\operatorname*{\mathbin{unif}}(R)\circ(1_{E}\otimes\eta)^{-1} with 1Eη:E×RE×D1_{E}\otimes\eta:E\times R\rightarrow E\times D having components Ea×RaEa×Da,(x,y)(x,ηa(x,y))E_{a}\times R_{a}\rightarrow E_{a}\times D_{a},(x,y)\mapsto(x,\eta_{a}(x,y)).

Remark 23 (Topological assumptions).

Topological assumptions may be needed to obtain further results, in particular for sub-data structures, which is reflected by the topological assumptions being made in [AT10] for studying hereditary properties. For that, one could replace 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL} with 𝙿𝙾𝙻𝙸𝚂𝙷\mathtt{POLISH} or 𝙲𝙾𝙼𝙿𝙰𝙲𝚃\mathtt{COMPACT} (continuous maps between polish/compact metrizable spaces), both of which have a version of the Giry monad (equipping probability measures with the topology of weak convergence). An interesting question arises: it is known that for every measurable group action 𝕊×𝒮𝒮\mathbb{S}_{\infty}\times\mathcal{S}\rightarrow\mathcal{S} on a Borel space 𝒮\mathcal{S} there exists a polish topology on 𝒮\mathcal{S} generating its σ\sigma-field and such that 𝕊×𝒮𝒮\mathbb{S}_{\infty}\times\mathcal{S}\rightarrow\mathcal{S} becomes a continuous group action, see [Kec00]. Let L:𝙿𝙾𝙻𝙸𝚂𝙷𝙱𝙾𝚁𝙴𝙻L:\mathtt{POLISH}\rightarrow\mathtt{BOREL} be the forgetful functor mapping a polish space to the obtained Borel space and a continuous map to itself; is it true that for every BDS D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} there exists a functor D:𝙸𝙽𝙹op𝙿𝙾𝙻𝙸𝚂𝙷D^{*}:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{POLISH} such that D=LDD=L\circ D^{*}? Such a functor DD^{*} would correspond to a rule that maps every finite aa to a polish topology 𝒯a\mathcal{T}_{a} on DaD_{a} generating its σ\sigma-field and making all maps D[τ]D[\tau] continuous.

Remark 24 (Functors in [AT10]).

In Definition 3.5 of [AT10] contravariant functors D:𝙲𝙸𝙽𝙹op𝚂𝚄𝙱𝙲𝙰𝙽𝚃𝙾𝚁D:\mathtt{CINJ}^{\text{op}}\rightarrow\mathtt{SUBCANTOR} have been introduced, where 𝚂𝚄𝙱𝙲𝙰𝙽𝚃𝙾𝚁\mathtt{SUBCANTOR} has sub-Cantor spaces as objects (topological spaces homeomorphic to a compact subsets of the standard Cantor space) and probability kernels as morphisms. Restricting such a functor to 𝙸𝙽𝙹op𝙲𝙸𝙽𝙹op\mathtt{INJ}^{\text{op}}\subset\mathtt{CINJ}^{\text{op}} and keeping only the measureability structure gives a functor 𝙸𝙽𝙹op𝙺𝙱𝙾𝚁𝙴𝙻\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{KBOREL}, see Remark 21. The derived functor obtained from a sub-Cantor palette (𝒵j)j(\mathcal{Z}_{j})_{j} (Definition 3.7) corresponds to j=0𝙰𝚛𝚛𝚊𝚢(𝒵j,j)\prod_{j=0}^{\infty}\mathtt{Array}(\mathcal{Z}_{j},\square^{j}_{\neq}) in our notation.

Remark 25 (Quasi-Borel spaces).

[Heu+17] introduces the category of quasi-Borel spaces, 𝚀𝚄𝙰𝚂𝙸𝙱𝙾𝚁𝙴𝙻\mathtt{QUASIBOREL}, aiming to provide a more solid mathematical foundation to applications in stochastic programming motivated from the (unpleasant) observation that 𝙱𝙾𝚁𝙴𝙻\mathtt{BOREL} is not Cartesian closed. In particular, a de Finetti-type representation theorem for quasi-Borel-spaced exchangeable sequences is shown; given that and their statistical motivation, it seems interesting to investigate if and in what sense definitions and results in the BDS context translate to functors D:𝙸𝙽𝙹op𝚀𝚄𝙰𝚂𝙸𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{QUASIBOREL}.

Remark 26 (Using category theory terminology).

It should be possible to translate definitions and results using more category theory terminology, which would give the opportunity to search for further abstractions. For example, Theorem 5 (strong FRT for products of arrays) can be formulated as follows: Let 𝙰𝚛𝚛𝚊𝚢\mathtt{Array} be the category that has countable products of array-type data structures as objects and natural transformations as morphisms. Consider the functor 𝚂𝚈𝙼:𝙰𝚛𝚛𝚊𝚢𝙱𝙾𝚁𝙴𝙻\mathtt{SYM}:\mathtt{Array}\rightarrow\mathtt{BOREL} that sends DD to the Borel space of exchangeable laws 𝚂𝚈𝙼(D)=lim𝒫D\mathtt{SYM}(D)=\lim\mathscr{P}\circ D and a natural transformation η:DE\eta:D\rightarrow E to the push-forward η:𝚂𝚈𝙼(D)𝚂𝚈𝙼(E),μμη1\eta^{*}:\mathtt{SYM}(D)\rightarrow\mathtt{SYM}(E),\mu\mapsto\mu\circ\eta^{-1}. Let pt\operatorname*{\mathbin{pt}} be the one-point Borel space. Theorem 5 is equivalent to the existence of a weak universal arrow from pt\operatorname*{\mathbin{pt}} to 𝚂𝚈𝙼\mathtt{SYM} witnessed by the pair R,unif(R)\langle R,\operatorname*{\mathbin{unif}}(R)\rangle, where unif(R)\operatorname*{\mathbin{unif}}(R) is viewed as a function pt𝚂𝚈𝙼(R)\operatorname*{\mathbin{pt}}\rightarrow\mathtt{SYM}(R), see [Mac78] Section X.2.

Remark 27 (Shift-invariance and contractability).

Suppose D:𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{INJ}^{\text{op}}\rightarrow\mathtt{BOREL} is a BDS having an extension D:𝙲𝙸𝙽𝙹op𝙱𝙾𝚁𝙴𝙻D:\mathtt{CINJ}^{\text{op}}\rightarrow\mathtt{BOREL}. Let 𝙸𝙽𝙹(,)\mathtt{INJ}(\mathbb{N},\mathbb{N}) the set of injections τ:\tau:\mathbb{N}\rightarrow\mathbb{N}. It was seen that exchangeable laws 𝚂𝚈𝙼(D)\mathtt{SYM}(D) corresponds to laws of DD_{\mathbb{N}}-valued random variables XX satisfying D[τ](X)=𝑑XD[\tau](X)\overset{d}{=}X for all τ𝙸𝙽𝙹(,)\tau\in\mathtt{INJ}(\mathbb{N},\mathbb{N}). Any subset G𝙸𝙽𝙹(,)G\subseteq\mathtt{INJ}(\mathbb{N},\mathbb{N}) introduces a weaker notion of invariance: (The law of) A DD_{\mathbb{N}}-valued random variable XX is called GG-invariant iff D[τ]X=𝑑XD[\tau]X\overset{d}{=}X for all τG\tau\in G; of course exchangeability induces GG-invariance. To study GG-invariance one can assume wlog that GG is closed under composition and contains id\operatorname*{\mathbin{id}}_{\mathbb{N}}, that is GG being a monoid under composition. Two classical examples fall into this frame:

  • Shift-invariance: G={τk|k0}G=\{\tau_{k}|k\in\mathbb{N}_{0}\} with τk(i)=i+k\tau_{k}(i)=i+k,

  • Contractability/Spreadability: G={τ|τis strictly increasing}G=\{\tau|\tau\leavevmode\nobreak\ \text{is strictly increasing}\}. Note that τG\tau\in G spreads IDs and so, by contravariance, D[τ]D[\tau] contracts measurements.

Both these invariances are based on additional mathematical structure on the concrete choice of IDs \mathbb{N}: addition for shift-invariance and a total order in case of contractability. How to invoke additional structure on IDs into an abstract category theory framework remains open for future research, but should give interesting insights: comparing Theorems 7.15 and 7.22 in [Kal06] shows a deep connection between contractability in 𝙰𝚛𝚛𝚊𝚢(𝒳,2)\mathtt{Array}(\mathcal{X},2^{\square}) and exchangeability in 𝙰𝚛𝚛𝚊𝚢(𝒳,)\mathtt{Array}(\mathcal{X},\square^{*}_{\neq}).

9. Appendix

9.1. Borel spaces

In [Kal97] Borel spaces are introduced as measurable spaces 𝒳\mathcal{X} for which there exists a Borel subset B[0,1]B\subseteq[0,1] and a bi-measurable bijection f:𝒳Bf:\mathcal{X}\rightarrow B. Borel spaces coincide with standard Borel spaces which are typically introduced as measurable spaces 𝒳\mathcal{X} on which the σ\sigma-field is generated from a polish topology on 𝒳\mathcal{X}. The theory of (standard) Borel spaces is presented, for example, in [Kec95].
Borel spaces enjoy the following closure properties:

  • Countable products and coproducts of Borel spaces are Borel,

  • Measurable sub-spaces of Borel spaces are Borel,

  • For a measurable space 𝒳\mathcal{X} let 𝒫(𝒳)\mathscr{P}(\mathcal{X}) be the space of probability measures on 𝒳\mathcal{X} equipped with the σ\sigma-field generated by the evaluation maps ν𝒫(𝒳)ν(M)[0,1],M𝒳\nu\in\mathscr{P}(\mathcal{X})\mapsto\nu(M)\in[0,1],M\subseteq\mathcal{X} measurable. If 𝒳\mathcal{X} is Borel, so is 𝒫(𝒳)\mathscr{P}(\mathcal{X}), see Theorem 1.5 in [Kal17].

Let 𝒳,𝒴\mathcal{X},\mathcal{Y} be Borel spaces and f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} measurable.

  • If ff is bijective its inverse f1:𝒴𝒳f^{-1}:\mathcal{Y}\rightarrow\mathcal{X} is measurable,

  • If ff is injective and M𝒳M\subseteq\mathcal{X} measurable, then the image f(M)𝒴f(M)\subseteq\mathcal{Y} is measurable and in case MM\neq\emptyset it is Mf(M),xf(x)M\rightarrow f(M),x\mapsto f(x) a bi-measurable bijection between the Borel spaces MM and f(M)f(M), see Corollary (15.2) in [Kec95],

  • If ff is injective then there exists a measurable g:𝒴𝒳g:\mathcal{Y}\rightarrow\mathcal{X} with gf=id𝒳g\circ f=\operatorname*{\mathbin{id}}_{\mathcal{X}}.

Borel spaces make the concept of conditional distributions well-behaved, see for example Lemma 3.1 in [Aus12]:

Theorem (Noise-Outsourcing).

Let 𝒳\mathcal{X} be a Borel space and 𝒴\mathcal{Y} an arbitrary measurable space. Let (X,Y)(X,Y) be a 𝒳×𝒴\mathcal{X}\times\mathcal{Y}-valued random variable. Then there exists a measurable function f:𝒴×[0,1]𝒳f:\mathcal{Y}\times[0,1]\rightarrow\mathcal{X} such that (X,Y)=𝑑(f(Y,U),Y)(X,Y)\overset{d}{=}(f(Y,U),Y) with Uunif[0,1]U\sim\operatorname*{\mathbin{unif}}[0,1] independent from YY.

9.2. Some proofs

Proof of Proposition 4.

First we check that the construction (X)𝚂𝚈𝙼(D;C)μ\mathcal{L}(X)\in\mathtt{SYM}(D;C)\mapsto\mu is well-defined: let aa be finite and let c,c(C<)c,c^{\prime}\in\binom{C}{<\infty} and π:ac,π:ac\pi:a\rightarrow c,\pi^{\prime}:a\rightarrow c^{\prime} be two bijections. Then there exists a bijection σ:cc\sigma:c\rightarrow c^{\prime} with σπ=π\sigma\circ\pi=\pi^{\prime} and hence D[π](Xc)=D[σπ](Xc)=D[π](D[σ](Xc))D[\pi^{\prime}](X_{c^{\prime}})=D[\sigma\circ\pi](X_{c^{\prime}})=D[\pi](D[\sigma](X_{c^{\prime}})). Now let d(C<)d\in\binom{C}{<\infty} be with ccdc\cup c^{\prime}\subseteq d. There exists a bijection σ~:dd\tilde{\sigma}:d\rightarrow d such that σ~ιc,d=ιc,dσ\tilde{\sigma}\circ\iota_{c,d}=\iota_{c^{\prime},d}\circ\sigma. With this σ~\tilde{\sigma} the functorality of DD and sampling consistency and exchangeability of XX gives

D[σ](Xc)=a.s.D[σ](D[ιc,d](Xd))=D[ιc,dσ](Xd)=D[σ~ιc,d](Xd)\displaystyle D[\sigma](X_{c^{\prime}})\overset{a.s.}{=}D[\sigma](D[\iota_{c^{\prime},d}](X_{d}))=D[\iota_{c^{\prime},d}\circ\sigma](X_{d})=D[\tilde{\sigma}\circ\iota_{c,d}](X_{d}) =D[ιc,d](D[σ~](Xd))\displaystyle=D[\iota_{c,d}](D[\tilde{\sigma}](X_{d}))
=𝑑D[ιc,d](Xd)=a.s.Xc,\displaystyle\overset{d}{=}D[\iota_{c,d}](X_{d})\overset{a.s.}{=}X_{c},

which gives D[π](Xc)=𝑑D[π](D[σ](Xc))=a.s.D[π](Xc)D[\pi](X_{c})\overset{d}{=}D[\pi](D[\sigma](X_{c^{\prime}}))\overset{a.s.}{=}D[\pi^{\prime}](X_{c^{\prime}}) and hence that the definition μa=(D[π](Xc))\mu_{a}=\mathcal{L}(D[\pi](X_{c})) does not depend on the concrete choice of c,πc,\pi.
Next check μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D): let τ:ba\tau:b\rightarrow a be an injection and μa=(D[π](Xc))\mu_{a}=\mathcal{L}(D[\pi](X_{c})). Then μaD[τ]1=(D[τ](D[π](Xc)))\mu_{a}\circ D[\tau]^{-1}=\mathcal{L}\big{(}D[\tau](D[\pi](X_{c}))\big{)}. Let c=π(τ(b))cc^{\prime}=\pi(\tau(b))\subseteq c and π=πτ^:bc,iπ(τ(i))\pi^{\prime}=\widehat{\pi\circ\tau}:b\rightarrow c^{\prime},i\mapsto\pi(\tau(i)), which is bijection. It holds that πτ=ιc,cπ\pi\circ\tau=\iota_{c^{\prime},c}\circ\pi^{\prime}. By functorality of DD and sampling consistency of XX it is

D[τ](D[π](Xc))=D[πτ](Xc)=a.s.D[π](Xc),D[\tau](D[\pi](X_{c}))=D[\pi\circ\tau](X_{c})\overset{a.s.}{=}D[\pi^{\prime}](X_{c^{\prime}}),

hence μaD[τ]1=μb\mu_{a}\circ D[\tau]^{-1}=\mu_{b}.
Next check that the construction 𝚂𝚈𝙼(D;C)𝚂𝚈𝙼(D)\mathtt{SYM}(D;C)\rightarrow\mathtt{SYM}(D) is a bijection. It is injective: let (X)𝚂𝚈𝙼(D;C)\mathcal{L}(X)\in\mathtt{SYM}(D;C) with constructed rule μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). For c(C<)c\in\binom{C}{<\infty} it is μc=(Xc)\mu_{c}=\mathcal{L}(X_{c}). By sampling consistency the law of X=(Xc)c(C<)X=(X_{c})_{c\in\binom{C}{<\infty}} is determined by (μc)c(C<)(\mu_{c})_{c\in\binom{C}{<\infty}} hence the construction is injective.
Next check that the construction is surjective, that is for every rule η𝚂𝚈𝙼(D)\eta\in\mathtt{SYM}(D) there exists (X)𝚂𝚈𝙼(D;C)\mathcal{L}(X)\in\mathtt{SYM}(D;C) with XcμcX_{c}\sim\mu_{c} for all c(C<)c\in\binom{C}{<\infty}. The Borel space assumption is needed to apply Kolmogorov extension theorem: let (cn)n1C(c_{n})_{n\geq 1}\subseteq C be an increasing sequence of finite sets with C=ncnC=\cup_{n}c_{n}. Applying Theorem 8.21 in [Kal97] gives the existence of a stochastic process (Xcn)n1(X_{c_{n}})_{n\geq 1} such that XcnμcnX_{c_{n}}\sim\mu_{c_{n}} for all nn and D[ιcm,cn](Xcn)=XcmD[\iota_{c_{m},c_{n}}](X_{c_{n}})=X_{c_{m}} almost surely for all mnm\leq n. For any finite set c(C<)c\in\binom{C}{<\infty} let cnc_{n} be the smallest set with ccnc\subseteq c_{n} and define Xc=D[ιc,cn](Xcn)X_{c}=D[\iota_{c,c_{n}}](X_{c_{n}}). It can easily be checked that X=(Xc)c(C<)X=(X_{c})_{c\in\binom{C}{<\infty}} is an exchangeable DD-measurement, that is (X)𝚂𝚈𝙼(D;C)\mathcal{L}(X)\in\mathtt{SYM}(D;C), whose law gives back the rule μ\mu. ∎

Proof of Proposition 5.

(1) Let AA be countable infinite. DAD_{A} is a measurable subset of a(A<)Da\prod_{a\in\binom{A}{<\infty}}D_{a} because it is the countable intersection of sets {(xa)a|D[ιc,b](xb)=xc}\{(x_{a})_{a}|D[\iota_{c,b}](x_{b})=x_{c}\} over cb(A<)c\subseteq b\in\binom{A}{<\infty}, the latter are measurable because D[τ]D[\tau] is for every τ\tau. By assumption 𝚂𝚈𝙼(D)\mathtt{SYM}(D)\neq\emptyset, let μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). By Proposition 4 there exist an exchangeable DAD_{A}-measurement X=(Xa)a(A<)X=(X_{a})_{a\in\binom{A}{<\infty}} with XaμaX_{a}\sim\mu_{a} for every aa, it holds that [XDA]=1\mathbb{P}[X\in D_{A}]=1 and hence DAD_{A}\neq\emptyset. The property X=𝑑XX\overset{d}{=}X^{\prime} iff Xa=𝑑XaX_{a}\overset{d}{=}X^{\prime}_{a} for all finite aa follows from D[ιa,a](Xa)=XaD[\iota_{a^{\prime},a}](X_{a})=X_{a^{\prime}} for all aaa^{\prime}\subseteq a together with laws of processes X=(Xa)aX=(X_{a})_{a} being determined by finite dimensional margins.
(2) Let AA be countable infinite. By definition for every a(A<)a\in\binom{A}{<\infty} it is D[ιa,A]:DADa,(xa)a(A<)xaD[\iota_{a,A}]:D_{A}\rightarrow D_{a},(x_{a^{\prime}})_{a^{\prime}\in\binom{A}{<\infty}}\mapsto x_{a}. The σ\sigma-field on DAD_{A} inherited of aDa\prod_{a}D_{a} is also generated by these projections, in particular D[ιa,A]D[\iota_{a,A}] is measurable. It is easily checked that the extension of DD to arbitrary countable sets satisfies functorality, that is for all composable injections τ,σ\tau,\sigma between countable sets its holds D[τσ]=D[σ]D[τ]D[\tau\circ\sigma]=D[\sigma]\circ D[\tau] and D[idA]=idDAD[\operatorname*{\mathbin{id}}_{A}]=\operatorname*{\mathbin{id}}_{D_{A}}. Only the measureability of D[τ]:DADBD[\tau]:D_{A}\rightarrow D_{B} needs to be checked: let τ:BA\tau:B\rightarrow A be injective. If B=bB=b is finite then D[τ]=D[τ^]D[ιτ(b),A]D[\tau]=D[\hat{\tau}]\circ D[\iota_{\tau(b),A}] is measurable by composition. If BB is also infinite, then D[τ]:DADBD[\tau]:D_{A}\rightarrow D_{B} is measurable iff D[ιb,B]D[τ]D[\iota_{b,B}]\circ D[\tau] is measurable for every b(B<)b\in\binom{B}{<\infty}. By functorality D[ιb,B]D[τ]=D[τιb,B]:DADbD[\iota_{b,B}]\circ D[\tau]=D[\tau\circ\iota_{b,B}]:D_{A}\rightarrow D_{b} which was seen to measurable before.
(3) Let X=(Xa)a(A<)X=(X_{a})_{a\in\binom{A}{<\infty}} be an exchangeable DD-measurement using IDs AA. (iv)\Rightarrow(iii)\Rightarrow(ii) is clear. Assume (ii) and let a(A<)a\in\binom{A}{<\infty} and π:aa\pi:a\rightarrow a bijective. Extend π\pi to a bijection π~:AA\tilde{\pi}:A\rightarrow A via π~=π\tilde{\pi}=\pi on aa and π~(i)=i\tilde{\pi}(i)=i on AaA\setminus a. By (ii) it is D[π~]X=𝑑XD[\tilde{\pi}]X\overset{d}{=}X and hence D[ιa,A]D[π~]X=𝑑D[ιa,A]X=a.s.XaD[\iota_{a,A}]D[\tilde{\pi}]X\overset{d}{=}D[\iota_{a,A}]X\overset{a.s.}{=}X_{a}. Let τ=π~ιa,A:aA\tau=\tilde{\pi}\circ\iota_{a,A}:a\rightarrow A. It is D[ιa,A]D[π~]X=D[τ]XD[\iota_{a,A}]D[\tilde{\pi}]X=D[\tau]X and the latter equals D[τ^]Xτ(a)=D[π](Xa)D[\hat{\tau}]X_{\tau(a)}=D[\pi](X_{a}) by definition, hence Xa=𝑑D[π](Xa)X_{a}\overset{d}{=}D[\pi](X_{a}) and (i) follows. Now assume (i) and show (iv). By Proposition 4 there is μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) with XaμaX_{a}\sim\mu_{a} for every finite set aa. Let τ:AA\tau:A\rightarrow A be an arbitrary injection. It is

D[τ](X)=(D[τιa,A^]Xτ(a))a(A<).D[\tau](X)=\big{(}D[\widehat{\tau\circ\iota_{a,A}}]X_{\tau(a)}\big{)}_{a\in\binom{A}{<\infty}}.

Because laws on DAD_{A} are determined by one-dimensional margins, see (1), only D[τιa,A^]Xτ(a)=𝑑XaD[\widehat{\tau\circ\iota_{a,A}}]X_{\tau(a)}\overset{d}{=}X_{a} needs to be shown. Now it is τιa,A^=τ~\widehat{\tau\circ\iota_{a,A}}=\tilde{\tau} an injection aτ(a)a\rightarrow\tau(a), hence D[τ~]Xτ(a)=𝑑XaD[\tilde{\tau}]X_{\tau(a)}\overset{d}{=}X_{a} follows from μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D).
(4) Let τ:BA\tau:B\rightarrow A be injective between countable infinite sets and (X)𝚂𝚈𝙼(D;A)\mathcal{L}(X)\in\mathtt{SYM}(D;A). It is D[τ](X)D[\tau](X) a DBD_{B}-valued random variable. For every bijection π:BB\pi:B\rightarrow B choose a bijection π~:AA\tilde{\pi}:A\rightarrow A with π~τ=τπ\tilde{\pi}\circ\tau=\tau\circ\pi. It holds D[π]D[τ]X=D[τπ](X)=D[π~τ](X)=D[τ]D[π~]X=𝑑D[τ]XD[\pi]D[\tau]X=D[\tau\circ\pi](X)=D[\tilde{\pi}\circ\tau](X)=D[\tau]D[\tilde{\pi}]X\overset{d}{=}D[\tau]X, that is D[τ]XD[\tau]X is exchangeable and (X)(D[τ]X)\mathcal{L}(X)\mapsto\mathcal{L}(D[\tau]X) is a map 𝚂𝚈𝙼(D;A)𝚂𝚈𝙼(D;B)\mathtt{SYM}(D;A)\rightarrow\mathtt{SYM}(D;B). This map is an isomorphism due to Proposition 4, which shows that both 𝚂𝚈𝙼(D;A)\mathtt{SYM}(D;A) and 𝚂𝚈𝙼(D;B)\mathtt{SYM}(D;B) can be identified with 𝚂𝚈𝙼(D)\mathtt{SYM}(D) by the rule constructed there. ∎

Proof of Theorem 9.

For all xDb,yDax\in D_{b},y\in D_{a} and bijections π:aa,σ:bb\pi:a^{\prime}\rightarrow a,\sigma:b^{\prime}\rightarrow b it holds that

density(x,y)=density(D[σ](x),D[π](y)),\operatorname*{\mathbin{density}}(x,y)=\operatorname*{\mathbin{density}}(D[\sigma](x),D[\pi](y)),

it is thus no restriction to consider only elements xx with xD[k]x\in D_{[k]} for some k0k\geq 0 when investigating limits. Thus, only finite subsets b,a(<)b,a\in\binom{\mathbb{N}}{<\infty} are considered and laws μ𝚂𝚈𝙼erg(D)\mu\in\mathtt{SYM}^{\text{erg}}(D) are identified with laws of ergodic exchangeable DD-measurements X=(Xa)a(<)X=(X_{a})_{a\in\binom{\mathbb{N}}{<\infty}}.

Let S=k0D[k]S=\cup_{k\geq 0}D_{[k]} and for xSx\in S with k=|x|k=|x| let 1{x}:D[k]{0,1}1_{\{x\}}:D_{[k]}\rightarrow\{0,1\} be the indicator of {x}D[k]\{x\}\subseteq D_{[k]}. Let 𝒢={1{x}|xS}\mathcal{G}=\{1_{\{x\}}|x\in S\}. The law of any exchangeable DD-measurement X=(Xa)a(<)X=(X_{a})_{a\in\binom{\mathbb{N}}{<\infty}} is determined by the expectations over 𝒢\mathcal{G}, that is by 𝔼[1{x}(X[k])]=[X[|x|]=x],xS\mathbb{E}[1_{\{x\}}(X_{[k]})]=\mathbb{P}[X_{[|x|]}=x],x\in S.

Applying (i)\Rightarrow(iii) of Theorem 8 to 𝒢\mathcal{G} gives that for every ergodic XμX\sim\mu there exists a convergent sequence xS\textbf{x}\subseteq S such that (4.2) holds.

On the other hand it is easy to check that a limit of a convergent sequence s=(xn)nS\textbf{s}=(x_{n})_{n}\subseteq S with mn=|xn|m_{n}=|x_{n}|\rightarrow\infty gives a rule μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D) via

μa(M)=xMDalimndensity(x,xn).\mu_{a}(M)=\sum_{x\in M\subseteq D_{a}}\lim_{n\rightarrow\infty}\operatorname*{\mathbin{density}}(x,x_{n}).

This works because DaD_{a} and hence MDaM\subseteq D_{a} are assumed to be finite.
It only needs to be checked that μ\mu is ergodic. Let XμX\sim\mu using IDs \mathbb{N}. Because the characterization of ergodicity via independence, Theorem 8, check that for every a,b(<)a,b\in\binom{\mathbb{N}}{<\infty} with ab=a\cap b=\emptyset and xDa,xDbx\in D_{a},x^{\prime}\in D_{b} it holds that 1(Xa=x),1(Xb=x)1(X_{a}=x),1(X_{b}=x^{\prime}) are independent.

For ab[k]a\cup b\subseteq[k], by sampling consistency, that probability for {X[k]=x}\{X_{[k]}=x\} are represented by limits and that D[k]D_{[k]} is finite one obtains:

[Xa=x,Xb=x]\displaystyle\mathbb{P}\big{[}X_{a}=x,X_{b}=x^{\prime}\big{]} =yD[k][X[k]=y][Xa=x,Xb=x|X[k]=y]\displaystyle=\sum_{y\in D_{[k]}}\mathbb{P}[X_{[k]}=y]\mathbb{P}[X_{a}=x,X_{b}=x^{\prime}|X_{[k]}=y]
=yD[k]1(D[ιa,[k]](y)=x,D[ιb,[k]](y)=x)[X[k]=y]\displaystyle=\sum_{y\in D_{[k]}}1(D[\iota_{a,[k]}](y)=x,D[\iota_{b,[k]}](y)=x^{\prime})\mathbb{P}[X_{[k]}=y]
=limnyD[k]1(D[ιa,[k]](y)=x,D[ιb,[k]](y)=x)[D[Tk,mn](xn)=y]\displaystyle=\lim_{n\rightarrow\infty}\sum_{y\in D_{[k]}}1(D[\iota_{a,[k]}](y)=x,D[\iota_{b,[k]}](y)=x^{\prime})\mathbb{P}\Big{[}D[T_{k,m_{n}}](x_{n})=y\Big{]}
=limn[D[Tk,mnιa,[k]](xn)=x,D[Tk,mnιb,[k]](xn)=x].\displaystyle=\lim_{n\rightarrow\infty}\mathbb{P}\Big{[}D[T_{k,m_{n}}\circ\iota_{a,[k]}](x_{n})=x,D[T_{k,m_{n}}\circ\iota_{b,[k]}](x_{n})=x^{\prime}\Big{]}.

The argument that the latter equals [Xa=x][Xb=x]\mathbb{P}[X_{a}=x]\cdot\mathbb{P}[X_{b}=x^{\prime}] is the same as in the proof of (iii)\Rightarrow(ii) from Theorem 8. ∎

Proof of Proposition 8.

(i) This is straightforward to check.

For both (i) and (ii) some preparing observations. It is easy to check that D~\tilde{D} defined by

D~a=a(ak)Da\tilde{D}_{a}=\prod_{a^{\prime}\in\binom{a}{\leq k}}D_{a^{\prime}}

and for τ:ba\tau:b\rightarrow a and x~=(xa)a(ak)D~a\tilde{x}=(x_{a^{\prime}})_{a^{\prime}\in\binom{a}{\leq k}}\in\tilde{D}_{a}

D~[τ](x~)=(D[τιb,b~](xτ(b)))b(bk)\tilde{D}[\tau](\tilde{x})=\Big{(}D\big{[}\widetilde{\tau\circ\iota_{b^{\prime},b}}\big{]}(x_{\tau(b^{\prime})})\Big{)}_{b^{\prime}\in\binom{b}{\leq k}}

defines a new Borel data structure. Again, it is straightforward to check that

ϕ:DD~ϕa(x)=(D[ιa,a](x))a(ak)\phi:D\rightarrow\tilde{D}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \phi_{a}(x)=\big{(}D[\iota_{a^{\prime},a}](x)\big{)}_{a^{\prime}\in\binom{a}{\leq k}}

is a natural transformation such that every component ϕa\phi_{a} is injective due to depth(D)=k\operatorname*{\mathbin{depth}}(D)=k, that is ϕ:DD~\phi:D\rightarrow\tilde{D} is an embedding.

(ii) By Proposition 2 it is Dk=ϕDD~D^{k}=\phi D\subseteq\tilde{D} a Borel data structure naturally isomorphic to DD. Let ϕ^:DDk\hat{\phi}:D\rightarrow D^{k} be the natural isomorphism obtained from ϕ\phi by restricting the range of its components and let ϕ^1:DkD\hat{\phi}^{-1}:D^{k}\rightarrow D be the natural inverse of ϕ^\hat{\phi}.
For every a(ak)a^{\prime}\in\binom{a}{\leq k} it is 2a=(ak)2^{a^{\prime}}=\binom{a^{\prime}}{\leq k} and hence

uRakuι2a,(ak)Ra.u\in R^{k}_{a}\Longrightarrow u\circ\iota_{2^{a^{\prime}},\binom{a}{\leq k}}\in R_{a^{\prime}}.

For every finite set aa and uRaku\in R^{k}_{a} this allows to define

η¯a(u)=(ηa(uι2a,(ak)))a(ak),\bar{\eta}_{a}(u)=\big{(}\eta_{a^{\prime}}\big{(}u\circ\iota_{2^{a^{\prime}},\binom{a}{\leq k}}\big{)}\big{)}_{a^{\prime}\in\binom{a}{\leq k}}, (9.1)

Check that η¯a(u)DakD~a\bar{\eta}_{a}(u)\in D^{k}_{a}\subseteq\tilde{D}_{a}: for every uRaku\in R^{k}_{a} one can choose vRav\in R_{a} with

u=ra(v)=vι(ak),2a.u=r_{a}(v)=v\circ\iota_{\binom{a}{\leq k},2^{a}}.

Note that for every a(ak)a^{\prime}\in\binom{a}{\leq k} it holds that 2a(ak)2a2^{a^{\prime}}\subseteq\binom{a}{\leq k}\subseteq 2^{a} and hence

vι2a,2a=vι(ak),2aι2a,(ak)=uι2a,(ak).v\circ\iota_{2^{a^{\prime}},2^{a}}=v\circ\iota_{\binom{a}{\leq k},2^{a}}\circ\iota_{2^{a^{\prime}},\binom{a}{\leq k}}=u\circ\iota_{2^{a^{\prime}},\binom{a}{\leq k}}.

Applying naturality of η\eta gives

ϕ^aηa(v)\displaystyle\hat{\phi}_{a}\circ\eta_{a}(v) =(D[ιa,a]ηa(v))a(ak)\displaystyle=(D[\iota_{a^{\prime},a}]\circ\eta_{a}(v))_{a^{\prime}\in\binom{a}{\leq k}}
=(ηaR[ιa,a](v))a(ak)\displaystyle=(\eta_{a^{\prime}}\circ R[\iota_{a^{\prime},a}](v))_{a^{\prime}\in\binom{a}{\leq k}}
=(ηa(vι2a,2a))a(ak)\displaystyle=(\eta_{a^{\prime}}\big{(}v\circ\iota_{2^{a^{\prime}},2^{a}}\big{)})_{a^{\prime}\in\binom{a}{\leq k}}
=(ηa(uι2a,(ak)))a(ak)\displaystyle=(\eta_{a^{\prime}}\big{(}u\circ\iota_{2^{a^{\prime}},\binom{a}{\leq k}}\big{)})_{a^{\prime}\in\binom{a}{\leq k}}
=η¯a(u)\displaystyle=\bar{\eta}_{a}(u)
=η¯ara(v).\displaystyle=\bar{\eta}_{a}\circ r_{a}(v).

It is ϕ^aηa(v)Dak\hat{\phi}_{a}\circ\eta_{a}(v)\in D^{k}_{a} and hence η¯a(u)=ϕ^aηa(v)Dak\bar{\eta}_{a}(u)=\hat{\phi}_{a}\circ\eta_{a}(v)\in D^{k}_{a}. That is, ϕ^\hat{\phi} is a measurable rule RkDkR^{k}\rightarrow D^{k} and the previous calculation also showed that

ϕ^η=η¯r.\hat{\phi}\circ\eta=\bar{\eta}\circ r.

Applying ϕ^1\hat{\phi}^{-1} to the left gives η=ϕ^1η¯r\eta=\hat{\phi}^{-1}\circ\bar{\eta}\circ r, so the candidate for η~\tilde{\eta} is the rule η~=ϕ^1η¯:RkD\tilde{\eta}=\hat{\phi}^{-1}\circ\bar{\eta}:R^{k}\rightarrow D. All left to check is that this η~=ϕ^1η¯\tilde{\eta}=\hat{\phi}^{-1}\circ\bar{\eta} is a natural transformation. Since ϕ^1\hat{\phi}^{-1} is it suffices to show that η¯:RkDk\bar{\eta}:R^{k}\rightarrow D^{k} is. Let uRaku\in R^{k}_{a} and choose vRav\in R_{a} with u=ra(v)u=r_{a}(v). Let τ:ba\tau:b\rightarrow a be injective.

η¯bRk[τ](u)\displaystyle\bar{\eta}_{b}\circ R^{k}[\tau](u) =η¯bRk[τ]ra(v)\displaystyle=\bar{\eta}_{b}\circ R^{k}[\tau]\circ r_{a}(v)
=η¯brbR[τ](v)\displaystyle=\bar{\eta}_{b}\circ r_{b}\circ R[\tau](v)
=ϕ^bηbR[τ](v)\displaystyle=\hat{\phi}_{b}\circ\eta_{b}\circ R[\tau](v)
=Dk[τ]ϕ^aηa(v)\displaystyle=D^{k}[\tau]\circ\hat{\phi}_{a}\circ\eta_{a}(v)
=Dk[τ]η¯ara(v)\displaystyle=D^{k}[\tau]\circ\bar{\eta}_{a}\circ r_{a}(v)
=Dk[τ]η¯a(u),\displaystyle=D^{k}[\tau]\circ\bar{\eta}_{a}(u),

that is η¯bRk[τ]=Dk[τ]η¯a\bar{\eta}_{b}\circ R^{k}[\tau]=D^{k}[\tau]\circ\bar{\eta}_{a} as needed.

(iii) The idea is the same as for (ii), but the technical details are a little more subtle. As before, let ϕ:DD~\phi:D\rightarrow\tilde{D} be the embedding and let θ:D~D\theta:\tilde{D}\rightarrow D be a left-inverse that is a μϕ1\mu\circ\phi^{-1}-a.s. natural transformation for every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D), which exists due to Proposition 7. In particular, it holds that θϕ=idD\theta\circ\phi=\operatorname*{\mathbin{id}}_{D} and hence μ=μ(θϕ)1=μϕ1θ1\mu=\mu\circ(\theta\circ\phi)^{-1}=\mu\circ\phi^{-1}\circ\theta^{-1} for every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D).
For every uRaku\in R^{k}_{a} define the value η¯a(u)D~a\bar{\eta}_{a}(u)\in\tilde{D}_{a} as in (9.1), which gives a rule η¯:RkD~\bar{\eta}:R^{k}\rightarrow\tilde{D}.
Let Vaunif(R)aV_{a}\sim\operatorname*{\mathbin{unif}}(R)_{a} and define Ua=ra(Va)U_{a}=r_{a}(V_{a}), so Uaunif(Rk)aU_{a}\sim\operatorname*{\mathbin{unif}}(R^{k})_{a}. The unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. naturality of η\eta gives

ϕaηa(Va)\displaystyle\phi_{a}\circ\eta_{a}(V_{a}) =(D[ιa,a]ηa(Va))a(ak)\displaystyle=(D[\iota_{a^{\prime},a}]\circ\eta_{a}(V_{a}))_{a^{\prime}\in\binom{a}{\leq k}}
=a.s.(ηaR[ιa,a](Va))a(ak)\displaystyle\overset{a.s.}{=}(\eta_{a^{\prime}}\circ R[\iota_{a^{\prime},a}](V_{a}))_{a^{\prime}\in\binom{a}{\leq k}}
=(ηa(Vaι2a,2a))a(ak)\displaystyle=(\eta_{a^{\prime}}\big{(}V_{a}\circ\iota_{2^{a^{\prime}},2^{a}}\big{)})_{a^{\prime}\in\binom{a}{\leq k}}
=(ηa(Vaι2a,(ak)))a(ak)\displaystyle=(\eta_{a^{\prime}}\big{(}V_{a}\circ\iota_{2^{a^{\prime}},\binom{a}{\leq k}}\big{)})_{a^{\prime}\in\binom{a}{\leq k}}
=η¯a(Ua)\displaystyle=\bar{\eta}_{a}(U_{a})
=η¯ara(Va),\displaystyle=\bar{\eta}_{a}\circ r_{a}(V_{a}),

that is the unif(R)\operatorname*{\mathbin{unif}}(R)-a.s. equality of the rules ϕη\phi\circ\eta and η¯r\bar{\eta}\circ r. Applying θ\theta on the left gives η=θη¯r\eta=\theta\circ\bar{\eta}\circ r unif(R)\operatorname*{\mathbin{unif}}(R)-almost surely. The desired candidate for η~:RkD\tilde{\eta}:R^{k}\rightarrow D is thus η~=θη¯\tilde{\eta}=\theta\circ\bar{\eta} and all left to check is that this is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation.
First check that η¯:RkD~\bar{\eta}:R^{k}\rightarrow\tilde{D} is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation. Let Ua=ra(Va)U_{a}=r_{a}(V_{a}) with Vaunif(R)aV_{a}\sim\operatorname*{\mathbin{unif}}(R)_{a} and τ:ba\tau:b\rightarrow a be injective.

η¯bRk[τ](Ua)\displaystyle\bar{\eta}_{b}\circ R^{k}[\tau](U_{a}) =η¯bRk[τ]ra(Va)\displaystyle=\bar{\eta}_{b}\circ R^{k}[\tau]\circ r_{a}(V_{a})
=η¯brbR[τ](Va)\displaystyle=\bar{\eta}_{b}\circ r_{b}\circ R[\tau](V_{a})
=a.s.ϕbηbR[τ](Va)\displaystyle\overset{a.s.}{=}\phi_{b}\circ\eta_{b}\circ R[\tau](V_{a})
=a.s.ϕbD[τ]ηa(Va)\displaystyle\overset{a.s.}{=}\phi_{b}\circ D[\tau]\circ\eta_{a}(V_{a})
=D~[τ]ϕaηa(Va)\displaystyle=\tilde{D}[\tau]\circ\phi_{a}\circ\eta_{a}(V_{a})
=a.s.D~[τ]η¯ara(Va)\displaystyle\overset{a.s.}{=}\tilde{D}[\tau]\circ\bar{\eta}_{a}\circ r_{a}(V_{a})
=D~[τ]η¯a(Ua).\displaystyle=\tilde{D}[\tau]\circ\bar{\eta}_{a}(U_{a}).

So η¯:RkD~\bar{\eta}:R^{k}\rightarrow\tilde{D} is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation.
Check that η~=θη¯:RkD\tilde{\eta}=\theta\circ\bar{\eta}:R^{k}\rightarrow D is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation: it is θ\theta a μϕ1\mu\circ\phi^{-1}-a.s. natural transformation for every μ𝚂𝚈𝙼(D)\mu\in\mathtt{SYM}(D). Let μ=unif(R)η1\mu=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}. Because ϕη=η¯r\phi\circ\eta=\bar{\eta}\circ r unif(R)\operatorname*{\mathbin{unif}}(R)-almost surely and unif(Rk)=unif(R)r1\operatorname*{\mathbin{unif}}(R^{k})=\operatorname*{\mathbin{unif}}(R)\circ r^{-1} it holds that

μϕ1=unif(R)η1ϕ1=unif(R)(ϕη)1=unif(R)(η¯r)1=unif(Rk)η¯1.\mu\circ\phi^{-1}=\operatorname*{\mathbin{unif}}(R)\circ\eta^{-1}\circ\phi^{-1}=\operatorname*{\mathbin{unif}}(R)\circ(\phi\circ\eta)^{-1}=\operatorname*{\mathbin{unif}}(R)\circ(\bar{\eta}\circ r)^{-1}=\operatorname*{\mathbin{unif}}(R^{k})\circ\bar{\eta}^{-1}.

Hence θ\theta is unif(Rk)η¯1\operatorname*{\mathbin{unif}}(R^{k})\circ\bar{\eta}^{-1}-a.s. natural transformation and η¯\bar{\eta} is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation. Lemma 1 gives that η~=θη¯\tilde{\eta}=\theta\circ\bar{\eta} is a unif(Rk)\operatorname*{\mathbin{unif}}(R^{k})-a.s. natural transformation. ∎

Proof of Lemma 2.

(1) For the moment write domb(i)=bb,iIbb\operatorname*{\mathbin{dom}}_{b}(\textbf{i})=\bigcap_{b^{\prime}\subseteq b,\textbf{i}\in I_{b^{\prime}}}b^{\prime}. Let cc be another set with iIc\textbf{i}\in I_{c}. Check that domb(i)=domc(i)\operatorname*{\mathbin{dom}}_{b}(\textbf{i})=\operatorname*{\mathbin{dom}}_{c}(\textbf{i}): since iIb\textbf{i}\in I_{b} and iIc\textbf{i}\in I_{c} it is iIbIc=Ibc\textbf{i}\in I_{b}\cap I_{c}=I_{b\cap c}. Because bcbb\cap c\subseteq b and bccb\cap c\subseteq c

domb(i)=bb,iIbb=dbc,iIdd=cc,iIcc=domc(i).\operatorname*{\mathbin{dom}}_{b}(\textbf{i})=\cap_{b^{\prime}\subseteq b,\textbf{i}\in I_{b^{\prime}}}b^{\prime}=\cap_{d^{\prime}\subseteq b\cap c,\textbf{i}\in I_{d^{\prime}}}d^{\prime}=\cap_{c^{\prime}\subseteq c,\textbf{i}\in I_{c^{\prime}}}c^{\prime}=\operatorname*{\mathbin{dom}}_{c}(\textbf{i}).

(2) Write τ=ιτ(b),aτ^\tau=\iota_{\tau(b),a}\circ\hat{\tau} so that I[τ](i)=I[ιτ(b),a]I[τ^](i)I[\tau](\textbf{i})=I[\iota_{\tau(b),a}]\circ I[\hat{\tau}](\textbf{i}). Because I[ιτ(b),a]=ιIτ(b),IaI[\iota_{\tau(b),a}]=\iota_{I_{\tau(b)},I_{a}} it is

I[τ](i)=ιIτ(b),Ia(I[τ^](i)),I[\tau](\textbf{i})=\iota_{I_{\tau(b)},I_{a}}(I[\hat{\tau}](\textbf{i})),

that is I[τ^](i)Iτ(b)IaI[\hat{\tau}](\textbf{i})\in I_{\tau(b)}\subseteq I_{a} equals I[τ](i)IaI[\tau](\textbf{i})\in I_{a}.
(3) Let i=I[τ](i)\textbf{i}^{\prime}=I[\tau](\textbf{i}) and c=dom(i)c=\operatorname*{\mathbin{dom}}(\textbf{i}) and c=dom(i)c^{\prime}=\operatorname*{\mathbin{dom}}(\textbf{i}^{\prime}). Check c=τ(c)c^{\prime}=\tau(c): since iIc\textbf{i}\in I_{c} it holds that i=ιIc,Ib(i)\textbf{i}=\iota_{I_{c},I_{b}}(\textbf{i}), hence I[τ](i)=I[τιc,b](i)I[\tau](\textbf{i})=I[\tau\circ\iota_{c,b}](\textbf{i}) and so with π=τιc,b^\pi=\widehat{\tau\circ\iota_{c,b}} by (2) i=I[π](i)\textbf{i}^{\prime}=I[\pi](\textbf{i}), which is element of Iπ(c)=Iτ(c)I_{\pi(c)}=I_{\tau(c)}, thus cτ(c)c^{\prime}\subseteq\tau(c). Applying the inverse π1\pi^{-1} to the equation i=I[π](i)\textbf{i}^{\prime}=I[\pi](\textbf{i}) gives i=I[π1](i)\textbf{i}=I[\pi^{-1}](\textbf{i}^{\prime}) and the same reasoning as before yields cπ1(c)c\subseteq\pi^{-1}(c^{\prime}). Because π1\pi^{-1} is bijective it holds that |c||c||c|\leq|c^{\prime}|. From cτ(c)c^{\prime}\subseteq\tau(c) and injectivity of τ\tau it follows |c||c|=|τ(c)||c^{\prime}|\leq|c|=|\tau(c)| and hence |c|=|τ(c)||c^{\prime}|=|\tau(c)|. Because both c,τ(c)c^{\prime},\tau(c) are finite cτ(c)c^{\prime}\subseteq\tau(c) together with |c|=|τ(c)||c^{\prime}|=|\tau(c)| implies c=τ(c)c^{\prime}=\tau(c).
(4) Assume there is πstab(i)\pi\in\operatorname*{\mathbin{stab}}(\textbf{i}) with τπ(i)=σ(i)\tau\circ\pi(i)=\sigma(i) for all idom(i)i\in\operatorname*{\mathbin{dom}}(\textbf{i}). This implies τπ^=σ^\widehat{\tau\circ\pi}=\hat{\sigma} and with (2) it follows

I[σ](i)=I[σ^](i)=I[τπ^](i)=I[τπ](i)=I[τ](I[π](i))=I[τ](i).I[\sigma](\textbf{i})=I[\hat{\sigma}](\textbf{i})=I[\widehat{\tau\circ\pi}](\textbf{i})=I[\tau\circ\pi](\textbf{i})=I[\tau](I[\pi](\textbf{i}))=I[\tau](\textbf{i}).

Now assume I[σ](i)=I[τ](i)I[\sigma](\textbf{i})=I[\tau](\textbf{i}). By (3) it is σ(dom(i))=τ(dom(i))\sigma(\operatorname*{\mathbin{dom}}(\textbf{i}))=\tau(\operatorname*{\mathbin{dom}}(\textbf{i})), hence both σ^,τ^\hat{\sigma},\hat{\tau} are bijections dom(i)τ(dom(i))\operatorname*{\mathbin{dom}}(\textbf{i})\rightarrow\tau(\operatorname*{\mathbin{dom}}(\textbf{i})). By (2) it holds I[τ^](i)=I[τ](i)=I[σ](i)=I[σ^](i)I[\hat{\tau}](\textbf{i})=I[\tau](\textbf{i})=I[\sigma](\textbf{i})=I[\hat{\sigma}](\textbf{i}). Applying τ^1\hat{\tau}^{-1} on the left gives i=I[τ^1σ^](i)\textbf{i}=I[\hat{\tau}^{-1}\circ\hat{\sigma}](\textbf{i}). That is, the bijection π:=τ^1σ^\pi:=\hat{\tau}^{-1}\circ\hat{\sigma} is element of stab(i)\operatorname*{\mathbin{stab}}(\textbf{i}). For idom(i)i\in\operatorname*{\mathbin{dom}}(\textbf{i}) it is σ(i)=σ^(i)τ(dom(i))\sigma(i)=\hat{\sigma}(i)\in\tau(\operatorname*{\mathbin{dom}}(\textbf{i})) and hence τπ(i)=ττ^1(σ^(i))=σ(i)\tau\circ\pi(i)=\tau\circ\hat{\tau}^{-1}(\hat{\sigma}(i))=\sigma(i).
(5) Reflexivity: it is I[ida](i)=iI[\operatorname*{\mathbin{id}}_{a}](\textbf{i})=\textbf{i} hence ii\textbf{i}\sim\textbf{i}. Symmetry: let iIbi^{\prime}\in I_{b} with ii\textbf{i}\sim\textbf{i}^{\prime} witnessed by τ:ba\tau:b\rightarrow a satisfying I[τ](i)=iI[\tau](\textbf{i})=\textbf{i}^{\prime}. By (2) it is I[τ](i)=I[τ^](i)=iI[\tau](\textbf{i})=I[\hat{\tau}](\textbf{i})=\textbf{i}^{\prime}. Applying I[τ^1]I[\hat{\tau}^{-1}] gives i=I[τ^1](i)\textbf{i}=I[\hat{\tau}^{-1}](\textbf{i}^{\prime}) and hence ii\textbf{i}^{\prime}\sim\textbf{i}. Transitivity follows by composing the witnessing injections. ∎

References

  • [Ald09] David J Aldous “More uses of exchangeability: representations of complex random structures” In arXiv preprint arXiv:0909.4339, 2009
  • [Ald10] David J Aldous “Exchangeability and continuum limits of discrete random structures” In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, 2010, pp. 141–153 World Scientific
  • [Ald82] David J Aldous “On exchangeability and conditional independence” In Exchangeability in probability and statistics (Rome, 1981) North-Holland Amsterdam, 1982, pp. 165–170
  • [Ald85] David J Aldous “Exchangeability and related topics” In École d’Été de Probabilités de Saint-Flour XIII—1983 Springer, 1985, pp. 1–198
  • [AO18] Morgane Austern and Peter Orbanz “Limit theorems for distributions invariant under groups of transformations” In Annals of Statistics (to appear), 2018 URL: https://www.e-publications.org/ims/submission/AOS/user/submissionFile/51328?confirm=c0a05f9c
  • [AP14] Tim Austin and Dmitry Panchenko “A hierarchical version of the de Finetti and Aldous-Hoover representations” In Probability Theory and Related Fields 159.3 Springer, 2014, pp. 809–823
  • [AT10] Tim Austin and Terence Tao “Testability and repair of hereditary hypergraph properties” In Random Structures & Algorithms 36.4 Wiley Online Library, 2010, pp. 373–463
  • [Aus08] Tim Austin “On exchangeable random variables and the statistics of large graphs and hypergraphs” In Probability Surveys 5 The Institute of Mathematical Statisticsthe Bernoulli Society, 2008, pp. 80–145
  • [Aus12] Tim Austin “Exchangeable random arrays” In Notes for IAS workshop, 2012
  • [Aus15] Tim Austin “Exchangeable random measures” In Annales de l’IHP Probabilités et statistiques 51.3, 2015, pp. 842–861
  • [Aus19] Morgane Austern “Limit Theorems Beyond Sums of IID Observations” Columbia University, 2019
  • [Ber+98] François Bergeron, F Bergeron, Gilbert Labelle and Pierre Leroux “Combinatorial species and tree-like structures” Cambridge University Press, 1998
  • [CAF16] Diana Cai, Nathanael Ackerman and Cameron Freer “Priors on exchangeable directed graphs” In Electronic Journal of Statistics 10.2 Institute of Mathematical StatisticsBernoulli Society, 2016, pp. 3490–3515
  • [CE17] Hye Soo Choi and Steven N Evans “Doob–Martin compactification of a Markov chain for growing random words sequentially” In Stochastic processes and their applications 127.7 Elsevier, 2017, pp. 2428–2445
  • [DJ07] Persi Diaconis and Svante Janson “Graph limits and exchangeable random graphs” In arXiv preprint arXiv:0712.2749, 2007
  • [EGW17] Steven N Evans, Rudolf Grübel and Anton Wakolbinger “Doob–Martin boundary of Rémy’s tree growth chain” In The Annals of Probability 45.1 Institute of Mathematical Statistics, 2017, pp. 225–277
  • [Fel71] Urlich Felgner “Comparison of the axioms of local and universal choice” In Fundamenta mathematicae 71 Instytut Matematyczny Polskiej Akademii Nauk, 1971, pp. 43–62
  • [FGP21] Tobias Fritz, Tomáš Gonda and Paolo Perrone “De Finetti’s Theorem in Categorical Probability” In Journal of Stochastic Analysis 2.4.6, 2021
  • [FHP18] Noah Forman, Chris Haulk and Jim Pitman “A representation of exchangeable hierarchies by sampling from random real trees” In Probability Theory and Related Fields 172.1 Springer, 2018, pp. 1–29
  • [Ger18] Julian Gerstenberg “Austauschbarkeit in Diskreten Strukturen: Simplizes und Filtrationen”, 2018
  • [Ger20] Julian Gerstenberg “Exchangeable interval hypergraphs and limits of ordered discrete structures” In The Annals of Probability 48.3 Institute of Mathematical Statistics, 2020, pp. 1128–1167
  • [Ger20a] Julian Gerstenberg “General erased-word processes: Product-type filtrations, ergodic laws and Martin boundaries” In Stochastic Processes and their Applications 130.6 Elsevier, 2020, pp. 3540–3573
  • [GGH16] Julian Gerstenberg, Rudolf Grübel and Klaas Hagemann “A boundary theory approach to de Finetti’s theorem” In arXiv preprint arXiv:1610.02561, 2016
  • [Gir82] Michele Giry “A categorical approach to probability theory” In Categorical aspects of topology and analysis Springer, 1982, pp. 68–85
  • [Gla03] Eli Glasner “Ergodic theory via joinings” American Mathematical Soc., 2003
  • [Gne97] Alexander V Gnedin “The representation of composition structures” In The Annals of Probability JSTOR, 1997, pp. 1437–1450
  • [Grü15] Rudolf Grübel “Persisting randomness in randomly growing discrete structures: graphs and search trees” In Discrete Mathematics & Theoretical Computer Science 18 Episciences. org, 2015
  • [Heu+17] Chris Heunen, Ohad Kammar, Sam Staton and Hongseok Yang “A convenient category for higher-order probability theory” In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017, pp. 1–12 IEEE
  • [Hoo79] D.N. Hoover “Relations on probability spaces and arrays of random variables” In Preprint, Institute for Advanced Study, Princeton, 1979
  • [Jan11] Svante Janson “Poset limits and exchangeable random posets” In Combinatorica 31.5 Springer, 2011, pp. 529–563
  • [JS20] Bart Jacobs and Sam Staton “De Finetti’s construction as a categorical limit” In International Workshop on Coalgebraic Methods in Computer Science, 2020, pp. 90–111 Springer
  • [Jun+21] Paul Jung, Jiho Lee, Sam Staton and Hongseok Yang “A generalization of hierarchical exchangeability on trees to directed acyclic graphs” In Annales Henri Lebesgue 4, 2021, pp. 325–368
  • [Kal06] Olav Kallenberg “Probabilistic symmetries and invariance principles” Springer New York, 2006
  • [Kal17] Olav Kallenberg “Random measures, theory and applications” Springer Cham, 2017
  • [Kal97] Olav Kallenberg “Foundations of modern probability” Springer New York, 1997
  • [KB94] Vladimir S Korolyuk and Yu V Borovskich “Theory of U-statistics” Springer Dordrecht, 1994
  • [Kec00] Alexander S. Kechris “Descriptive dynamics” In London Math. Soc. Lecture Note Series 277, 2000, pp. 231–258
  • [Kec95] Alexander S. Kechris “Classical descriptive set theory” Springer New York, 1995
  • [Lau88] Steffen L. Lauritzen “Extremal families and systems of sufficient statistics” Lecutre Notes in Statistics. Springer-Verlag Berlin Heidelberg GmbH, 1988
  • [Lee22] Jiho Lee “A de Finetti-type representation of joint hierarchically exchange-able arrays on DAGs” In ALEA, Lat. Am. J. Probab. Math. Stat. 19, 2022, pp. 925–942
  • [Lin01] Elon Lindenstrauss “Pointwise theorems for amenable groups” In Inventiones mathematicae 146.2 Springer, 2001, pp. 259–295
  • [Llo+13] James Robert Lloyd, Peter Orbanz, Zoubin Ghahramani and Daniel M Roy “Exchangeable databases and their functional representation” In NIPS Workshop on Frontiers of Network Analysis: Methods, Models, and Application, 2013
  • [Mac78] Saunders Mac Lane “Categories for the working mathematician” Springer New York, 1978
  • [McC02] Peter McCullagh “What is a statistical model?” In The Annals of Statistics 30.5 Institute of Mathematical Statistics, 2002, pp. 1225–1310
  • [Mil19] Bartosz Milewski “Category theory for programmers” Bartosz Milewski, 2019
  • [OR14] Peter Orbanz and Daniel M Roy “Bayesian models of graphs, arrays and other exchangeable random structures” In IEEE transactions on pattern analysis and machine intelligence 37.2 IEEE, 2014, pp. 437–461
  • [SS22] Sam Staton and Ned Summers “Quantum de Finetti Theorems as Categorical Limits, and Limits of State Spaces of C*-algebras” In arXiv preprint arXiv:2207.05832, 2022