This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Excited doubly heavy baryon production via W+W^{+} boson decays

Peng-Hui Zhang zhangpenghui@cqu.edu.cn    Lei Guo guoleicqu@cqu.edu.cn, correponding author    Xu-Chang Zheng zhengxc@cqu.edu.cn    Qi-Wei Ke keqw@cqu.edu.cn College of Physics, Chongqing University, Chongqing 401331, P.R. China.
(September 22, 2025)
Abstract

In this paper, decay widths of the doubly heavy baryons (ΞccandΞbc\Xi_{cc}~\text{and}~\Xi_{bc}) production are theoretically calculated in the whole phase space through W+Ξcc+c¯+s¯W^{+}\to\Xi_{cc}+\bar{c}+\bar{s} and W+Ξbc+b¯+s¯W^{+}\to\Xi_{bc}+\bar{b}+\bar{s}, within the framework of nonrelativistic QCD (NRQCD). Differential widths dΓ/ds12d\Gamma/ds_{12}, dΓ/ds23d\Gamma/ds_{23}, dΓ/dcosθ12d\Gamma/dcos\theta_{12}, and dΓ/dcosθ13d\Gamma/dcos\theta_{13} are also given. In addition to the ordinary S-wave contributions for the baryons, we specifically calculate P-wave contributions as a comparison, namely the high excited states of the intermediate diquark, including [1P1][^{1}P_{1}] and [3PJ][^{3}P_{J}] (with J=0,1,2J=0,1,2) in both color antitriplet state 𝟑¯\overline{\mathbf{3}} and color sextuplet state 𝟔\mathbf{6}. It shows that the contribution from the P-wave is about one order lower than the S-wave. According to the results, we can expect plentiful events produced at the LHC, i.e., 3.69×1053.69\times 10^{5} Ξcc\Xi_{cc} events and 4.91×1044.91\times 10^{4} Ξbc\Xi_{bc} events per year.

PACS numbers: 12.38.Bx, 13.60.Rj, 14.70.Fm

I Introduction

W+W^{+} boson is one of the vector bosons that mediate the weak interaction, of which the decay properties are significant to the standard model (SM). Measurements about the width and the branching ratios of W+W^{+} boson decay actually provide a way to determine the mixing of cc quark and ss quark (|Vcs||V_{cs}|) DELPHI:1998hlc ; PDG2020W . Ascertainment for quark mixing matrix element |Vtb||V_{tb}| also involves the branching ratio B(tW+b)B(t\to W+b) D0:2010mwe ; ParticleDataGroup:2018ovx , and moreover, researches on WW-physics can be a meaningful verification for the SM and a practicable access to new phenomena beyond the standard model CMS:2017zts ; CMS:2017fgp ; Cen:2018okf ; CMS:2012bpt ; Haisch:2018djm .

Doubly heavy baryon is a notable prediction in the constituent quark model. It contains two heavy quarks, which can only be cccc, bcbc, or bbbb, since top quark has already decayed before hadronization. Doubly heavy baryons with a strange quark include Ωcc+\Omega^{+}_{cc}, Ωbc0\Omega^{0}_{bc}, and Ωbb\Omega^{-}_{bb}, while those with a light quark uu or dd include Ξcc++\Xi^{++}_{cc}, Ξcc+\Xi^{+}_{cc}, Ξbc+\Xi^{+}_{bc}, Ξbc0\Xi^{0}_{bc}, Ξbb0\Xi^{0}_{bb}, and Ξbb\Xi^{-}_{bb}; we unify the related baryons as Ξcc\Xi_{cc} and Ξbc\Xi_{bc} for short in this paper. Searching for doubly heavy baryons can become a substantial test to the quark model, QCD theory, and gauge theory of strong interaction. Further studies also develop our comprehension of NRQCD theory, promote heavy flavor physics, and advance our understanding for the quark structure inside these heavy baryons Aliev:2020lly ; LHCb:2021xba ; LHCb:2020iko ; Luchinsky:2020fdf .

Heavy quarkonia and BcB_{c} meson have been discovered for a long time, and extensively investigated Brambilla:2010cs ; Andronic:2015wma ; Lansberg:2019adr ; Chapon:2020heu ; Bodwin:2013nua ; CHCJXW08 ; Chang:2007si ; CFQLPS11 ; Petrelli:1997ge ; Zheng:2019egj ; JJCFQ16 ; QLLXGW12 . Comparing to these, researches on doubly heavy baryons are not plentiful in both experiment and theory. Hitherto the unique observed doubly heavy baryon in experiment is Ξcc++\Xi_{cc}^{++}. It is first discovered in the channel Ξcc++Λc+Kπ+π+\Xi_{cc}^{++}\rightarrow\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+} and reported by the LHCb collaboration in 2017 LHCb17 , which is confirmed through its decay Ξcc++Ξc+π+\Xi_{cc}^{++}\to\Xi_{c}^{+}\pi^{+} in following experiment LHCb:2018pcs . Although there are no new doubly heavy baryons found yet, the discovery of Ξcc++\Xi_{cc}^{++} certainly inspires people’s great interest in further researches on them. As to the theoretical aspect, some papers concentrate on the direct production of the doubly heavy baryon at e+ee^{+}e^{-} colliders ZXCCHC16 ; JJXGW12 , the indirect production in the decay of Higgs or top quark Niu:2019xuq ; JJN18 , and hardronic production Berezhnoy:1998aa ; Zhang:2011hi ; Chang:2006eu .

In the NRQCD framework Bodwin:1994jh , the production of doubly heavy baryons can be divided into two procedures: the first one is that W+W^{+} boson decays to produce four particles cs¯c\bar{s} and QQ¯Q\bar{Q} (QQ for a heavy quark cc or bb), and then cc and heavy quark QQ bind to a perturbatively heavy diquark (Qc)[n](Qc)[n] ([n][n] is for color and spin state). The second procedure is that the hadronization of diquark (Qc)[n](Qc)[n] into the doubly heavy baryon ΞQc\Xi_{Qc}, which is depicted by a nonperturbative factor. The nonperturbative factor can be related with the wave function at the origin |Ψ(0)||\Psi(0)| for S-wave, or the derivative wave function at the origin |Ψ(0)||\Psi^{\prime}(0)| for P-wave. |Ψ(0)||\Psi(0)| and |Ψ(0)||\Psi^{\prime}(0)| for heavy hadrons are derived from the experiment or some nonperturbative methods, e.g., the potential model Kiselev:2000jc ; Kiselev:2002iy , lattice QCD (LQCD) Bodwin:1996tg , or QCD sum rules Kiselev:1999sc . It is necessary to mention here that the estimates for |Ψ(0)||\Psi(0)| and |Ψ(0)||\Psi^{\prime}(0)| have distinguishable disparities between different methods Buchmuller:1980su ; Eich78 ; Quigg:1977dd ; Martin:1980jx . But fortunately, these nonperturbative elements are overall parameters, and cause changes of the final results only in the sense of constant times. To speak further, the essential part in the results, comparing to the overall factor |Ψ(0)||\Psi(0)| and |Ψ(0)||\Psi^{\prime}(0)|, is the perturbative part from the first procedure W+diquarkW^{+}\to diquark; dynamics of the perturbative diquark production is embodied in the shapes of the differential distributions.

In our paper, we shall analyse the indirect production of Ξcc\Xi_{cc} and Ξbc\Xi_{bc} via the main relevant channels of W+W^{+}-boson decay, i.e., W+Ξcc+c¯+s¯W^{+}\to\Xi_{cc}+\bar{c}+\bar{s} and W+Ξbc+b¯+s¯W^{+}\to\Xi_{bc}+\bar{b}+\bar{s}. Due to the small value of |Vcb||V_{cb}| (|VcbVcs|2<0.002|\frac{V_{cb}}{V_{cs}}|^{2}<0.002) , the contribution from the channel W+cb¯W^{+}\to c{\bar{b}} is suppressed comparing with the channel W+cs¯W^{+}\to c{\bar{s}}, so we do not consider W+cb¯W^{+}\to c{\bar{b}} in calculation. As the published date, the total width ΓW=2.085GeV\Gamma_{W}=2.085~\rm{GeV}, and the branching ratio B(W+cX)B(W^{+}\to cX) occupies 33.3%33.3\% in the W+W^{+} decay mode PDG2020W . With the collision energy s=14TeV\sqrt{s}=14~\rm{TeV} and luminosity =1034cm2s1{\cal L}=10^{34}~\rm{cm^{-2}\cdot s^{-1}}, W+W^{+} events are evaluated to be 3.07×10103.07\times 10^{10} per operation year at the LHC Gaunt:2010pi ; Qiao:2011yk . Here we can roughly estimate doubly heavy baryon events around 10510^{5}. Therefore, the LHC can generate sufficient doubly heavy baryons and offer a satisfactory platform to study WW-physics. Apart from the hadronic collider, the proposed e+ee^{+}e^{-} colliders might provide less but specifical information as well, owing to the pure background, e.g., the Circular Electron Positron Collider (CEPC) and the International Linear Collider (ILC). The CEPC is designed to produce a total of 1×1081\times 10^{8} W bosons CEPCStudyGroup:2018ghi ; hence the doubly heavy baryons in the CEPC will be around order of 10310^{3}. Nevertheless, events from direct production at the CEPC can reach 10510^{5} as well JJXGW12 .

The rest parts of this paper are organized as follows. In Sec. II, we make a review of the NRQCD formulation, and give the amplitudes for the process W+ΞQc+Q¯+s¯W^{+}\rightarrow\Xi_{Qc}+\bar{Q}+\bar{s}. In Sec. III, the numeral results of the total widths and the derivative distributions are given in detail. Then we make a discussion on the uncertainties with different mass of quarks. The final section is reversed for a short summary.

II Calculation Techniques

As mentioned in section I, we shall deal with W+W^{+} boson decays into the doubly heavy baryons Ξcc\Xi_{cc} and Ξbc\Xi_{bc}, which can be written together as ΞQc\Xi_{Qc} for short. Fig.1 shows the Feynman diagrams for the processes W+(cc)[n]+c¯+s¯W^{+}\rightarrow(cc)[n]+\bar{c}+\bar{s} and W+(bc)[n]+b¯+s¯W^{+}\rightarrow(bc)[n]+\bar{b}+\bar{s} respectively, where [n][n] indicates the spin-color quantum number of the intermediate diquark state.

Under the framework of NRQCD effective theory Bodwin:1994jh , the unpolarized differential decay width for ΞQc\Xi_{Qc} production through the channel W+(p0)ΞQc(k1)+Q¯(k2)+s¯(k3)W^{+}(p_{0})\to\Xi_{Qc}(k_{1})+\bar{Q}(k_{2})+\bar{s}(k_{3}) can be factorized as:

dΓW+ΞQc+Q¯+s¯=ndΓ^W+(Qc)[n]+Q¯+s¯𝒪[n],d\Gamma_{W^{+}\to\Xi_{Qc}+\bar{Q}+\bar{s}}=\sum_{n}{d\hat{\Gamma}_{W^{+}\to(Qc)[n]+\bar{Q}+\bar{s}}\langle{\cal O}^{\cal B}[n]\rangle}, (1)

here dΓ^W+(Qc)[n]+Q¯+s¯d\hat{\Gamma}_{W^{+}\to(Qc)[n]+\bar{Q}+\bar{s}} represents the differential decay width for W+(Qc)[n]+Q¯+s¯W^{+}\to(Qc)[n]+\bar{Q}+\bar{s}, which is actually a short-distance coefficient of the hard process that W+W^{+} decays into diquark state (Qc)[n](Qc)[n], and perturbatively calculable hence. The other factor 𝒪[n]\langle{\cal O}^{\cal B}[n]\rangle, namely the long-distance matrix element, characterizes the nonperturbative process from the diquark state (Qc)[n](Qc)[n] hadronizing to a doubly heavy baryon ΞQc\Xi_{Qc}. \cal B is short for any doubly heavy baryon ΞQc\Xi_{Qc}.

Refer to caption
Refer to caption
Figure 1: Typical Feynman diagrams for the processes W+(p0)(cc)[n](k1)+c¯(k2)+s¯(k3)W^{+}(p_{0})\rightarrow(cc)[n](k_{1})+\bar{c}(k_{2})+\bar{s}(k_{3}) and W+(p0)(bc)[n](k1)+b¯(k2)+s¯(k3)W^{+}(p_{0})\rightarrow(bc)[n](k_{1})+\bar{b}(k_{2})+\bar{s}(k_{3}), where p0p_{0} and kik_{i} represent the four momenta of the associated particles.

The nonperturbative element 𝒪[n]\langle{\cal O}^{\cal B}[n]\rangle is proportional to the transition probability of the diquark (Qc)[n](Qc)[n] hadronizing into ΞQc\Xi_{Qc}, and can be obtained by calculating the origin value of wave function or its derivative, 𝒪[n]=|Ψ(0)|2\langle{\cal O}^{\cal B}[n]\rangle=|\Psi(0)|^{2} (|Ψ(0)|2|\Psi^{\prime}(0)|^{2} for P-wave). Meanwhile, the perturbatively short-distance coefficient can be explicitly expressed as

dΓ^W+(Qc)[n]+Q¯+s¯=12mW¯|M(Qc)[n]|2dΦ3,d\hat{\Gamma}_{W^{+}\to(Qc)[n]+\bar{Q}+\bar{s}}=\frac{1}{2m_{W}}\overline{\sum}\left|M_{(Qc)[n]}\right|^{2}d\Phi_{3}, (2)

where ¯\overline{\sum} means to average over the spin states of the initial particles and to sum over the spin and color states of the final particles. dΦ3d\Phi_{3} is the three-body phase space, i.e.

dΦ3=(2π)4δ4(p0i3ki)i=13d3ki(2π)32ki0.d{\Phi_{3}}=(2\pi)^{4}\delta^{4}\left(p_{0}-\sum_{i}^{3}k_{i}\right)\prod_{i=1}^{3}\frac{d^{3}{k_{i}}}{(2\pi)^{3}2k_{i}^{0}}. (3)

By defining the invariant mass as sij=(ki+kj)2s_{ij}=(k_{i}+k_{j})^{2}, the differential decay width is equivalently written as

dΓ^W+(Qc)[n]+Q¯+s¯=1256π3mW3¯|M(Qc)[n]|2ds12ds23.d\hat{\Gamma}_{W^{+}\to(Qc)[n]+\bar{Q}+\bar{s}}=\frac{1}{256\pi^{3}m_{W}^{3}}\overline{\sum}\left|M_{(Qc)[n]}\right|^{2}{ds_{12}ds_{23}}. (4)

The Feynman diagrams are generated by FeynArts 3.11 Hahn:2000kx . With the help of FeynCalc 9.2 Shtabovenko:2020gxv and three-body phase space formulas, we are able to calculate the total decay width, and moreover, the relevant differential distributions. More detailed formulas for the three-body phase space can be seen in Ref.Chang:2007si .

II.1 Amplitudes for the diquark production

In the heavy diquark (Qc)(Qc) production, W+W^{+} first produces two quarks cs¯c\bar{s}, and emits an intermediate gluon which is hard enough to generate a heavy quark pair QQ¯Q\bar{Q}. Ergo, the amplitude for this process can be derived in the perturbative QCD (pQCD).

By the method of applying charge conjugation C=C= iγ2γ0-i\gamma^{2}\gamma^{0}, the hard amplitudes, corresponding to the perturbative parts in the baryons production, can be correlated with amplitudes of the quarkonium or meson production, which are more accustomed processes to us. It has been sufficiently demonstrated in Refs.ZXCCHC16 ; JJXGW12 , and here we are going to give a brief presentation. When dealing with the hard amplitudes for doubly heavy baryons, we should utilize charge conjugation to reverse one fermion line, generally writing as L1=u¯s1(k12)Γi+1SF(qi,mi)SF(q1,m1)Γ1vs2(k2)L1=\bar{u}_{s_{1}}\left(k_{12}\right)\Gamma_{i+1}S_{F}\left(q_{i},m_{i}\right)\cdots S_{F}\left(q_{1},m_{1}\right)\Gamma_{1}v_{s_{2}}\left(k_{2}\right). Here Γi\Gamma_{i} is the interaction vertex, SF(qi,mi)S_{F}\left(q_{i},m_{i}\right) is the fermion propagator, s1s_{1} or s2s_{2} is for spin index, and ii is the number of the fermion propagator (i=0,1,i=0,1,...) in this fermion line. This conversion obeys

vs2T(k2)C\displaystyle v_{s_{2}}^{T}\left(k_{2}\right)C =\displaystyle= u¯s2(k2),\displaystyle-\bar{u}_{s_{2}}\left(k_{2}\right),
Cu¯s1(k12)T\displaystyle C^{-}\bar{u}_{s_{1}}\left(k_{12}\right)^{T} =\displaystyle= vs1(k12),\displaystyle v_{s_{1}}\left(k_{12}\right),
CSFT(qi,mi)C\displaystyle C^{-}S_{F}^{T}\left(-q_{i},m_{i}\right)C =\displaystyle= SF(qi,mi),\displaystyle S_{F}\left(q_{i},m_{i}\right),
CΓiTC\displaystyle C^{-}\Gamma_{i}^{T}C =\displaystyle= Γi.\displaystyle-\Gamma_{i}. (5)

Inserting the identity I=CCI=CC^{-}, the fermion line L1L1 is reversed to

L1=L1T\displaystyle L1=L1^{T} =\displaystyle= vs2T(k2)Γ1TFFT(q1,m1)SFT(qi,mi)Γi+1Tu¯s1T(k12)\displaystyle v^{T}_{s_{2}}(k_{2})\Gamma^{T}_{1}F^{T}_{F}(q_{1},m_{1})\cdots S^{T}_{F}(q_{i},m_{i})\Gamma^{T}_{i+1}\bar{u}^{T}_{s_{1}}\left(k_{12}\right) (6)
=\displaystyle= vs2T(k2)CCΓ1TCCSFT(q1,m1)CCCCSFT(qi,mi)CCΓi+1TCCu¯s1T(k12)\displaystyle v^{T}_{s_{2}}(k_{2})CC^{-}\Gamma^{T}_{1}CC^{-}S^{T}_{F}(q_{1},m_{1})CC^{-}\cdots CC^{-}S^{T}_{F}(q_{i},m_{i})CC^{-}\Gamma^{T}_{i+1}CC^{-}\bar{u}^{T}_{s_{1}}\left(k_{12}\right)
=\displaystyle= (1)(i+2)u¯s2(k2)Γ1SF(q1,m1)SF(qi,mi)Γi+1vs1(k12).\displaystyle(-1)^{(i+2)}\bar{u}_{s_{2}}(k_{2})\Gamma_{1}S_{F}(-q_{1},m_{1})\cdots S_{F}(-q_{i},m_{i})\Gamma_{i+1}v_{s_{1}}\left(k_{12}\right).

As an example, we first consider an amplitude of the process that W+W^{+} boson decay to four free quarks, namely W+c+b+b¯+s¯W^{+}\to c+b+\bar{b}+\bar{s} (cc and bb have not bound to diquark yet),

iMb1\displaystyle iM_{b1} =\displaystyle= ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s1(k12)(igsγμ)vs2(k2)u¯s1(k11)ε̸(p0)PL\displaystyle\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\bar{u}_{s1}\left(k_{12}\right)\left(ig_{s}\gamma^{\mu}\right)v_{s2}(k_{2})\bar{u}_{s1^{\prime}}(k_{11})\not{\varepsilon}(p_{0})P_{L} (7)
i(12+2+3)+iϵ(igsγμ)vs3(k3),\displaystyle\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right),

where k11k_{11} and k12k_{12} denote the momenta of cc and QQ (QQ is bb quark for this diagram), 𝒞{\cal C} is the color factor, and θW\theta_{W} is the Weinberg angle. After reversing the first fermion line, we obtain

iMb1\displaystyle iM_{b1} =\displaystyle= (1)i+2ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s2(k2)(igsγμ)vs1(k12)u¯s1(k11)ε̸(p0)PL\displaystyle(-1)^{i+2}\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\bar{u}_{s2}\left(k_{2}\right)\left(ig_{s}\gamma^{\mu}\right)v_{s1}(k_{12})\bar{u}_{s1^{\prime}}(k_{11})\not{\varepsilon}(p_{0})P_{L} (8)
i(12+2+3)+iϵ(igsγμ)vs3(k3).\displaystyle\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right).

Here ε̸(p0)\not{\varepsilon}(p_{0}) is short for εν(p0)γν\varepsilon_{\nu}(p_{0})\gamma^{\nu}; i=0i=0, since no fermion propagator exists in this fermion line. To form the diquark state, we suppose the relative velocity between two heavy quarks is small. More explicitly, we suppose that k11=mcMQck1+qk_{11}=\frac{m_{c}}{M_{Qc}}k_{1}+q and k12=mQMQck1qk_{12}=\frac{m_{Q}}{M_{Qc}}k_{1}-q, in which k1k_{1} is the momentum of the diquark and qq is the small relative momentum between two components in the diquark. Meanwhile, MQcmQ+mcM_{Qc}\simeq m_{Q}+m_{c} is adopted in order to ensure the gauge invariance of the amplitude. Now we can insert the spin projector Π\Pi and finally write the amplitude as

iMb1=ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s2(k2)(igsγμ)Πε̸(p0)PLi(12+2+3)+iϵ(igsγμ)vs3(k3).\displaystyle iM_{b1}=\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\bar{u}_{s2}\left(k_{2}\right)\left(ig_{s}\gamma^{\mu}\right)\Pi\not{\varepsilon}(p_{0})P_{L}\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right). (9)

The projector Π\Pi takes the form of

Πk1(q)=MQc4mQmc(12mQ)γ5(11+mc),\displaystyle\Pi_{k_{1}}(q)=\frac{-\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\not{k}_{12}-m_{Q}\right)\gamma^{5}\left(\not{k}_{11}+m_{c}\right), (10)

or

Πk1β(q)=MQc4mQmc(12mQ)γβ(11+mc),\displaystyle\Pi_{k_{1}}^{\beta}(q)=\frac{-\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\not{k}_{12}-m_{Q}\right)\gamma^{\beta}\left(\not{k}_{11}+m_{c}\right), (11)

for spin-singlet state or spin-triplet state respectively; we can equivalently adopt the simplified Eqs.(29, 30). The S-wave amplitudes for the third picture in Fig.1 can be written as

iMb1[1S0]\displaystyle iM_{b1}[^{1}S_{0}] =\displaystyle= ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s2(k2)(igsγμ)Mbc4mbmc(12mb)γ5(11+mc)ε̸(p0)PL\displaystyle\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\bar{u}_{s2}\left(k_{2}\right)\left(ig_{s}\gamma^{\mu}\right)\frac{-\sqrt{M_{bc}}}{4m_{b}m_{c}}\left(\not{k}_{12}-m_{b}\right)\gamma^{5}\left(\not{k}_{11}+m_{c}\right)\not{\varepsilon}(p_{0})P_{L} (12)
i(12+2+3)+iϵ(igsγμ)vs3(k3)|q=0,\displaystyle\cdot\left.\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right)\right|_{q=0},
iMb1[3S1]\displaystyle iM_{b1}[^{3}S_{1}] =\displaystyle= εβs(k1)ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s2(k2)(igsγμ)Mbc4mbmc(12mb)γβ(11+mc)ε̸(p0)PL\displaystyle\varepsilon^{s}_{\beta}(k_{1})\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\bar{u}_{s2}\left(k_{2}\right)\left(ig_{s}\gamma^{\mu}\right)\frac{-\sqrt{M_{bc}}}{4m_{b}m_{c}}\left(\not{k}_{12}-m_{b}\right)\gamma^{\beta}\left(\not{k}_{11}+m_{c}\right)\not{\varepsilon}(p_{0})P_{L} (13)
i(12+2+3)+iϵ(igsγμ)vs3(k3)|q=0.\displaystyle\cdot\left.\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right)\right|_{q=0}.

As to the P-wave amplitudes, the expression can be interconnected with the derivative of the S-wave expression in spin singlet or spin triplet respectively,

iMb1[1P1]\displaystyle iM_{b1}[^{1}P_{1}] =\displaystyle= εαl(k1)ddqα[ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s2(k2)(igsγμ)Mbc4mbmc(12mb)γ5(11+mc)ε̸(p0)\displaystyle\varepsilon^{l}_{\alpha}(k_{1})\frac{d}{dq_{\alpha}}\left[\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\right.\bar{u}_{s2}\left(k_{2}\right)\left(ig_{s}\gamma^{\mu}\right)\frac{-\sqrt{M_{bc}}}{4m_{b}m_{c}}\left(\not{k}_{12}-m_{b}\right)\gamma^{5}\left(\not{k}_{11}+m_{c}\right)\not{\varepsilon}(p_{0}) (14)
PLi(12+2+3)+iϵ(igsγμ)vs3(k3)]|q=0,\displaystyle\cdot\left.\left.P_{L}\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right)\right]\right|_{q=0},
iMb1[3PJ]\displaystyle iM_{b1}[^{3}P_{J}] =\displaystyle= εαβJ(k1)ddqα[ieVcs𝒞sinθWi(k12+k2)2+iϵu¯s2(k2)(igsγμ)Mbc4mbmc(12mb)γβ(11+mc)ε̸(p0)\displaystyle\varepsilon^{J}_{\alpha\beta}(k_{1})\frac{d}{dq_{\alpha}}\left[\frac{-ieV_{cs}{\cal C}}{sin{\theta}_{W}}\frac{-i}{\left(k_{12}+k_{2}\right)^{2}+i\epsilon}\right.\bar{u}_{s2}\left(k_{2}\right)\left(ig_{s}\gamma^{\mu}\right)\frac{-\sqrt{M_{bc}}}{4m_{b}m_{c}}\left(\not{k}_{12}-m_{b}\right)\gamma^{\beta}\left(\not{k}_{11}+m_{c}\right)\not{\varepsilon}(p_{0}) (15)
PLi(12+2+3)+iϵ(igsγμ)vs3(k3)]|q=0,\displaystyle\cdot\left.\left.P_{L}\frac{i}{-(\not{k}_{12}+\not{k}_{2}+\not{k}_{3})+i\epsilon}\left(ig_{s}\gamma_{\mu}\right)v_{s3}\left(k_{3}\right)\right]\right|_{q=0},

where εβs(k1)\varepsilon^{s}_{\beta}(k_{1}) or εαl(k1)\varepsilon^{l}_{\alpha}(k_{1}) is the polarization vector that relates with the spin or orbit angular momentum of the diquark (bc)(bc) in spin triplet S-state or spin singlet P-state; εαβJ(k1)\varepsilon^{J}_{\alpha\beta}(k_{1}) is the polarization tensor for the spin triplet P-wave states with JJ=0, 1 or 2. To select the appropriate total angular momentum, we perform polarization sum properly. The sum over polarization vector is

rzεαrεαr=Παα,\displaystyle\sum_{r_{z}}\varepsilon^{r}_{\alpha}\varepsilon_{\alpha^{\prime}}^{r*}=\Pi_{\alpha\alpha^{\prime}}, (16)

rr stands for ss or ll. The sum over polarization tensors are

εαβ0εαβ0\displaystyle\varepsilon_{\alpha\beta}^{0}\varepsilon_{\alpha^{\prime}\beta^{\prime}}^{0*} =\displaystyle= 13ΠαβΠαβ,\displaystyle\frac{1}{3}\Pi_{\alpha\beta}\Pi_{\alpha^{\prime}\beta^{\prime}}, (17)
Jzεαβ1εαβ1\displaystyle\sum_{J_{z}}\varepsilon_{\alpha\beta}^{1}\varepsilon_{\alpha^{\prime}\beta^{\prime}}^{1*} =\displaystyle= 12(ΠααΠββΠαβΠαβ),\displaystyle\frac{1}{2}\left(\Pi_{\alpha\alpha^{\prime}}\Pi_{\beta\beta^{\prime}}-\Pi_{\alpha\beta^{\prime}}\Pi_{\alpha^{\prime}\beta}\right), (18)
Jzεαβ2εαβ2\displaystyle\sum_{J_{z}}\varepsilon_{\alpha\beta}^{2}\varepsilon_{\alpha^{\prime}\beta^{\prime}}^{2*} =\displaystyle= 12(ΠααΠββ+ΠαβΠαβ)13ΠαβΠαβ.\displaystyle\frac{1}{2}\left(\Pi_{\alpha\alpha^{\prime}}\Pi_{\beta\beta^{\prime}}+\Pi_{\alpha\beta^{\prime}}\Pi_{\alpha^{\prime}\beta}\right)-\frac{1}{3}\Pi_{\alpha\beta}\Pi_{\alpha^{\prime}\beta^{\prime}}.

Here we define

Παβ=gαβ+k1αk1βMQc2.\displaystyle\Pi_{\alpha\beta}=-g_{\alpha\beta}+\frac{k_{1\alpha}k_{1\beta}}{M_{Qc}^{2}}. (20)

Through the same approach, other amplitudes can be obtained. The derivatives of the spin projectors in the P-wave expressions can be simplified as Eqs.(31, 32).

With respect to the color factors above, these have been illustrated in Refs.ZXCCHC16 ; JJXGW12 ; JJN18 ; Niu:2019xuq . The color state for the diquark (Qc)(Qc) is either antitriplet 𝟑¯\overline{\mathbf{3}} or sextuplet 𝟔\mathbf{6} due to the decomposition of SUC(3)SU_{C}(3) color group 𝟑𝟑=𝟑¯𝟔\mathbf{3}\otimes\mathbf{3}=\overline{\mathbf{3}}\oplus\mathbf{6}. The color factor is 𝒞ij,k=𝒩×a,m,n(Ta)im(Ta)jn×Gmnk\mathcal{C}_{ij,k}=\mathcal{N}\times\sum_{a,m,n}\left(T^{a}\right)_{im}\left(T^{a}\right)_{jn}\times G_{mnk}; GmnkG_{mnk} is the antisymmetric function εmnk\varepsilon_{mnk} for color antitriplet or the symmetric function fmnkf_{mnk} for color sextuplet, and 𝒩=1/2\mathcal{N}=1/\sqrt{2} is the normalization constant. Finally, in the squared amplitudes, we acquire that 𝒞2\mathcal{C}^{2} is 43\frac{4}{3} for the color antitriplet state, and 23\frac{2}{3} for the color sextuplet state. In consideration of exchange antisymmetry from the identical quarks, the quantum number of the diquark (cc)(cc) is [1S0]𝟔[^{1}S_{0}]_{{\mathbf{6}}}, [3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}}, [1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}}, or [3PJ]𝟔[^{3}P_{J}]_{\mathbf{6}}, while the diquark (bc)(bc) allows all color and spin states, i.e., [1S0]𝟑¯[^{1}S_{0}]_{\overline{\mathbf{3}}}, [1S0]𝟔[^{1}S_{0}]_{{\mathbf{6}}}, [3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}}, [3S1]𝟔[^{3}S_{1}]_{{\mathbf{6}}}, [1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}}, [1P1]𝟔[^{1}P_{1}]_{{\mathbf{6}}}, [3PJ]𝟑¯[^{3}P_{J}]_{\overline{\mathbf{3}}}, and [3PJ]𝟔[^{3}P_{J}]_{{\mathbf{6}}}.

II.2 Hadronization

The hadronization of the diquark into doubly heavy baryon is nonperturbative; the effect of this procedure is extracted into an overall coefficient 𝒪\langle{\cal O}^{\cal B}\rangle Eq.(1), which has been associated with the wave function at the origin. We shall not distinguish the wave function for different color states 𝟑¯\overline{\mathbf{3}} and 𝟔{\mathbf{6}} as Refs.Petrelli:1997ge ; Ma:2003zk ; JJXGW12 ; Niu:2019xuq ; JJN18 . Some people argue that the interaction inside the diquark with 𝟑¯\overline{\mathbf{3}} state is attractive while repulsive for the diquark with 𝟔\mathbf{6} state owing to the one-gluon exchange interaction, so 𝟔\mathbf{6} is suppressed to 𝟑¯\overline{\mathbf{3}} by order v2v^{2} and its contribution can be ignored ZXCCHC16 ; Ma:2003zk . But another view is that 𝟔\mathbf{6} and 𝟑¯\overline{\mathbf{3}} are of the same importance JJXGW12 ; JJN18 ; Niu:2019xuq ; Ma:2003zk .

We use h𝟑¯h_{\overline{\mathbf{3}}} and h𝟔h_{\mathbf{6}} to represent the transition probabilities of the color antitriplet state and the color sextuplet state. According to NRQCD, ΞQc\Xi_{Qc}, which is a bound state of two heavy quarks with other light dynamical freedoms of QCD, can be expanded to a series of Fock states,

|ΞQc=c1(v)|(Qc)q+c2(v)|(Qc)qg+\displaystyle\left|\Xi_{Qc}\right\rangle=c_{1}(v)\left|\left(Qc\right)q\right\rangle+c_{2}(v)\left|\left(Qc\right)qg\right\rangle+
c3(v)|(Qc)qgg+,\displaystyle c_{3}(v)\left|\left(Qc\right)qgg\right\rangle+\cdots, (21)

where vv is a small relative velocity between heavy quarks in the rest frame of the diquark. For a diquark in 𝟑¯\overline{\mathbf{3}} state, one of the heavy quarks can emit a gluon without changing the spin of the heavy quark, and this gluon then splits to a quark pair qq¯q\bar{q}. The heavy diquark can catch the light quark qq to form the baryon. As for 𝟔\mathbf{6} state, if the baryon is formed by |(Qc)q\left|\left(Qc\right)q\right\rangle, the emitted gluon must change the spin of the heavy quark, leading to a suppression to h𝟔h_{\mathbf{6}}. But it can formed from the component |(Qc)qg\left|\left(Qc\right)qg\right\rangle as well. One of the heavy quarks emits a gluon without changing the spin of the heavy quark, and this gluon splits into qq¯q\bar{q}. The light quarks can also emit gluons, then the component can be formed with qgqg. Since a light quark can emit gluons easily, these contributions are at the same level, i.e., c1(v)c2(v)c3(v)c_{1}(v)\sim c_{2}(v)\sim c_{3}(v) Ma:2003zk . Then we can take the assumption that

h6h3¯\displaystyle h_{6}\simeq h_{\overline{3}} =\displaystyle= 𝒪=|Ψ(0)|2(or|Ψ(0)|2).\displaystyle\left\langle\mathcal{O}^{\cal B}\right\rangle=\left|\Psi(0)\right|^{2}~(\text{or}~\left|\Psi^{\prime}(0)\right|^{2}). (22)

The wave function at the origin can naturally connect with the radial wave function at the origin,

|Ψ(0)|2\displaystyle|\Psi(0)|^{2} =\displaystyle= 14π|R(0)|2,\displaystyle\frac{1}{4\pi}|R(0)|^{2},
|Ψ(0)|2\displaystyle|\Psi^{\prime}(0)|^{2} =\displaystyle= 34π|R(0)|2.\displaystyle\frac{3}{4\pi}|R^{\prime}(0)|^{2}. (23)

III Numerical Results

The input parameters are adopted as:

mc=1.8GeV,mb=5.1GeV,\displaystyle m_{c}=1.8~\mathrm{GeV},~m_{b}=5.1~\mathrm{GeV},
mW=80.4GeV,mZ=91.2GeV,\displaystyle m_{W}=80.4~\mathrm{GeV},~m_{Z}=91.2~\mathrm{GeV},
e=4π128,cos(θW)=mWmZ,|Vcs|=1.\displaystyle e=\sqrt{\displaystyle{\frac{4\pi}{128}}},~cos(\theta_{W})=\displaystyle{\frac{m_{W}}{m_{Z}}},~\left|V_{cs}\right|=1. (24)

As a common choice, here masses are kept the same with Refs.Baranov:1995rc ; Chang:2006eu . We will use the same values of |R(0)||R(0)| and |R(0)||R^{\prime}(0)| as Ref.Kiselev:2002iy in our paper, which are calculated in the K2OK^{2}O potential motivated by QCD with a three-loop function,

|Rcc(0)|=0.523GeV32,|Rcc(0)|=0.102GeV52,\displaystyle|R_{cc}(0)|=0.523~\mathrm{GeV^{\frac{3}{2}}},|R_{cc}^{\prime}(0)|=0.102~\mathrm{GeV^{\frac{5}{2}}},
|Rbc(0)|=0.722GeV32,|Rbc(0)|=0.200GeV52.\displaystyle|R_{bc}(0)|=0.722~\mathrm{GeV^{\frac{3}{2}}},|R_{bc}^{\prime}(0)|=0.200~\mathrm{GeV^{\frac{5}{2}}}. (25)

The renormalization scale is set to be 2mc2m_{c}. From the solution of the five-loop renormalization group equation, we obtain αs(2mc)=0.239\alpha_{s}(2m_{c})=0.239 JJN18 ; Baikov:2016tgj ; Herzog:2017ohr . Since the mass of ss quark is so small, we will take ms=0m_{s}=0 in our calculations and it only causes a difference to the total value less than 10510^{-5} order of magnitude.

III.1 Ξcc\Xi_{cc} baryons

We have listed the decay widths of W+cc[n]+c¯+s¯W^{+}\to cc[n]+{\bar{c}}+\bar{s} in Table 1. Here the branching ratio is defined as

Br[n]=ΓW+Ξcc[n]+c¯+s¯ΓW,\displaystyle Br[n]=\frac{\Gamma_{W^{+}\to\Xi_{cc}[n]+\bar{c}+\bar{s}}}{\Gamma_{W}}, (26)

[n][n] is the intermediate spin-color state. S-wave stands for the sum of states [1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} and [3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}}. P-wave stands for the sum of states [1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}} and [3PJ]𝟔[^{3}P_{J}]_{\mathbf{6}} (J=0,1,2J=0,1,2). We find that

  • The contribution from [3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}} is the largest one among these states. The decay width of [1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} is about 48%48\% of that of [3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}}. For S-wave, the color state is antitriplet for spin triplet and sextuplet for spin singlet; the former color factor is twice of the latter one.

  • The total decay width of P-wave is about one order lower than that of S-wave. The decay widths from [1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}}, [3P0]𝟔[^{3}P_{0}]_{\mathbf{6}}, [3P1]𝟔[^{3}P_{1}]_{\mathbf{6}}, and [3P2]𝟔[^{3}P_{2}]_{\mathbf{6}} are about 3.5%3.5\%, 2.6%2.6\%, 2.9%2.9\%, and 1.1%1.1\% of that from [3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}}, respectively. Comparing with S-wave states, contributions from P-wave states are considerable when detailed calculations are needed.

  • At the LHC, there are totally 3.69×1053.69\times 10^{5} Ξcc\Xi_{cc} events from W+W^{+} decays per year, which indicates that the LHC can be a fruitful platform for doubly charmed baryon researches. Events from P-wave states are of considerable quantity as well, reaching 10410^{4}-order.

  State  Decay width  Branching ratio  Events
[1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} 7.64 3.67×1063.67\times 10^{-6}  1.13×1051.13\times 10^{5}
[3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}} 15.8 7.59×1067.59\times 10^{-6} 2.33×1052.33\times 10^{5}
[1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}} 0.561 2.69×1072.69\times 10^{-7} 8.26×1038.26\times 10^{3}
[3P0]𝟔[^{3}P_{0}]_{\mathbf{6}} 0.404 1.94×1071.94\times 10^{-7} 5.96×1035.96\times 10^{3}
[3P1]𝟔[^{3}P_{1}]_{\mathbf{6}} 0.455 2.18×1072.18\times 10^{-7} 6.70×1036.70\times 10^{3}
[3P2]𝟔[^{3}P_{2}]_{\mathbf{6}} 0.169 8.09×1088.09\times 10^{-8} 2.48×1032.48\times 10^{3}
S-wave 23.5 1.13×1051.13\times 10^{-5} 3.46×1053.46\times 10^{5}
P-wave 1.59 7.62×1077.62\times 10^{-7} 2.34×1042.34\times 10^{4}
Total 25.1 1.20×1051.20\times 10^{-5} 3.69×1053.69\times 10^{5}
Table 1: Decay widths (in unit: keV), branching ratios, and events at the LHC for the production of Ξcc\Xi_{cc} via W+W^{+} decays. States represent the spin and color states for the intermediate diquark.
Refer to caption
Refer to caption
Figure 2: The invariant mass differential decay widths dΓ/ds12d\Gamma/ds_{12} (top) and dΓ/ds23d\Gamma/ds_{23} (bottom) for W+Ξcc[n]+c¯+s¯W^{+}\to\Xi_{cc}[n]+\bar{c}+\bar{s}, where [n][n] stands for different state of the intermediate diquark. The subscripts “1, 2, 3” denote Ξcc\Xi_{cc}, c¯\bar{c}, and s¯\bar{s} in sequence.
Refer to caption
Refer to caption
Figure 3: The angular differential decay widths dΓ/dcosθ12d\Gamma/dcos\theta_{12} (top) and dΓ/dcosθ23d\Gamma/dcos\theta_{23} (bottom) for W+Ξcc[n]+c¯+s¯W^{+}\to\Xi_{cc}[n]+\bar{c}+\bar{s}, where [n][n] stands for different state of the intermediate diquark. The subscripts “1, 2, 3” denote Ξcc\Xi_{cc}, c¯\bar{c}, and s¯\bar{s} in sequence.

In order to show the characteristics of the decay W+Ξcc[n]+c¯+s¯W^{+}\to\Xi_{cc}[n]+{\bar{c}}+\bar{s}, we derive the differential distributions of the invariant masses s12s_{12} and s23s_{23} in Fig.2, as well as the differential distributions of the angles θ12\theta_{12} and θ13\theta_{13} in Fig.3. Here θij\theta_{ij} means the angle between outgoing three momenta ki\overrightarrow{k_{i}} and kj\overrightarrow{k_{j}} in the rest frame of W+W^{+} boson. We use different size of dotted lines to represent the differential distributions from six intermediate states. Since one spin state has one corresponding color state for Ξcc\Xi_{cc} baryon, we simply tag lines with spin states in these figures, e.g., [1S0][^{1}S_{0}] and [1P1][^{1}P_{1}] mean [1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} and [1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}} respectively.

Figure.2 shows that the behaviors for the productions from the different states are similar to each other. In Fig.3, we can find that the angular differential width dΓ/dcosθ12d\Gamma/dcos\theta_{12} takes its maximum value when θ12=0\theta_{12}=0, i.e., the Ξcc\Xi_{cc} baryon and c¯\bar{c} quark move side by side in the W+W^{+} rest frame; however, dΓ/dcosθ13d\Gamma/dcos\theta_{13} takes its maximum value when θ13=π\theta_{13}=\pi, i.e., the Ξcc\Xi_{cc} baryon and s¯\bar{s} quark move back to back.

III.2 Ξbc\Xi_{bc} baryons

The production of Ξbc\Xi_{bc} baryon through W+cb[n]+b¯+s¯W^{+}\to cb[n]+{\bar{b}}+\bar{s} is similar to the Ξcc\Xi_{cc} baryon production. The widths, branching ratios, and events at the LHC, are listed in Table 2, and we find that

  State  Decay width  Branching ratio     Events
[1S0]𝟑¯[^{1}S_{0}]_{\overline{\mathbf{3}}} 1.095 5.25×1075.25\times 10^{-7} 1.61×1041.61\times 10^{4}
[3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}} 0.958 4.59×1074.59\times 10^{-7} 1.41×1041.41\times 10^{4}
[1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} 0.548 2.63×1072.63\times 10^{-7} 8.06×1038.06\times 10^{3}
[3S1]𝟔[^{3}S_{1}]_{\mathbf{6}} 0.479 2.30×1072.30\times 10^{-7} 7.05×1037.05\times 10^{3}
[1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}} 0.030 1.43×1081.43\times 10^{-8} 4.37×1024.37\times 10^{2}
[3P0]𝟑¯[^{3}P_{0}]_{\overline{\mathbf{3}}} 0.078 3.76×1083.76\times 10^{-8} 1.15×1031.15\times 10^{3}
[3P1]𝟑¯[^{3}P_{1}]_{\overline{\mathbf{3}}} 0.057 2.74×1082.74\times 10^{-8} 8.43×1028.43\times 10^{2}
[3P2]𝟑¯[^{3}P_{2}]_{\overline{\mathbf{3}}} 0.0047 2.27×1092.27\times 10^{-9} 6.97×106.97\times 10
[1P1]𝟔[^{1}P_{1}]_{\mathbf{6}} 0.015 7.13×1097.13\times 10^{-9} 2.19×1022.19\times 10^{2}
[3P0]𝟔[^{3}P_{0}]_{\mathbf{6}} 0.039 1.88×1081.88\times 10^{-8} 5.77×1025.77\times 10^{2}
[3P1]𝟔[^{3}P_{1}]_{\mathbf{6}} 0.029 1.37×1081.37\times 10^{-8} 4.21×1024.21\times 10^{2}
[3P2]𝟔[^{3}P_{2}]_{\mathbf{6}} 0.0024 1.14×1091.14\times 10^{-9} 3.49×103.49\times 10
S-wave 3.08 1.48×1061.48\times 10^{-6} 4.53×1044.53\times 10^{4}
P-wave 0.255 1.22×1071.22\times 10^{-7} 3.76×1033.76\times 10^{3}
Total 3.33 1.60×1061.60\times 10^{-6} 4.91×1044.91\times 10^{4}
Table 2: Decay widths (in unit: keV), branching ratios, and events at the LHC for Ξbc\Xi_{bc} production via W+W^{+} decays. States represent the spin-color states of the intermediate diquark.
Refer to caption
Refer to caption
Figure 4: The invariant mass differential decay widths dΓ/ds12d\Gamma/ds_{12} (top) and dΓ/ds23d\Gamma/ds_{23} (bottom) for W+Ξbc[n]+b¯+s¯W^{+}\to\Xi_{bc}[n]+\bar{b}+\bar{s}, where [n][n] stands for different state of the intermediate diquark. The subscripts “1, 2, 3” denote Ξbc\Xi_{bc}, b¯\bar{b}, and s¯\bar{s} in sequence.
Refer to caption
Refer to caption
Figure 5: The angular differential decay widths dΓ/dcosθ12d\Gamma/dcos\theta_{12} (top) and dΓ/dcosθ23d\Gamma/dcos\theta_{23} (bottom) for W+Ξbc[n]+b¯+s¯W^{+}\to\Xi_{bc}[n]+\bar{b}+\bar{s}, where [n][n] stands for different state of the intermediate diquark. The subscripts “1, 2, 3” denote Ξbc\Xi_{bc}, b¯\bar{b}, and s¯\bar{s} in sequence.
  • Comparing with Ξcc\Xi_{cc} production, the decay widths for Ξbc\Xi_{bc} are lower by about one order of magnitude. This can be understood from the production process. As shown in Fig.1, the W+W^{+} boson decays into cc quark and s¯\bar{s} quark, then emits a hard gluon that generates a heavy quark pair cc¯c\bar{c} or bb¯b\bar{b}. It is more difficult for the hard gluon to generate bb-quark-pair than cc-quark-pair, and the production of Ξbc\Xi_{bc} is consequently suppressed.

  • The biggest contribution is from [1S0]𝟑¯[^{1}S_{0}]_{\overline{\mathbf{3}}}. By adding up the same color states, the decay widths for spin states [3S1][^{3}S_{1}], [1P1][^{1}P_{1}], [3P0][^{3}P_{0}], [3P1][^{3}P_{1}], and [3P2][^{3}P_{2}] are about 87.5%87.5\%, 2.7%2.7\%, 7.1%7.1\%, 5.2%5.2\%, 0.43%0.43\% of that for [1S0][^{1}S_{0}].

  • At the LHC, there are totally 4.91×1044.91\times 10^{4} Ξbc\Xi_{bc} events per year, which include 4.53×1044.53\times 10^{4} events coming from S-wave states and 3.76×1033.76\times 10^{3} events coming from P-wave states. If considering the LHC possible update with the higher luminosity =1036cm2s1{\cal L}=10^{36}~\rm{cm^{-2}\cdot s^{-1}}, these events can increase again by two order of magnitudes.

We present the differential widths of the invariant masses and the angles in Figs.4,5 to show the behaviors of the decay process. For Ξbc\Xi_{bc} baryon, both color antitriplet state and color sextuplet state are allowed for any spin states, so there are twelve states in total. To make these figures clear to see, we add the same color states up for different spin states, e.g., the line labeled with [1S0][^{1}S_{0}] means the sum of contributions from [1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} and [1S0]𝟑¯[^{1}S_{0}]_{\overline{\mathbf{3}}}. These figures seem alike to Figs.2,3. Those similarities of the angular and invariant mass differential widths also indicate the similar kinematic behaviors between the Ξcc\Xi_{cc} and Ξbc\Xi_{bc} productions in W+W^{+} decays.

III.3 Uncertainty analysis

We have mentioned that only the channel W+c+s¯W^{+}\to{c}+\bar{s} is accounted in our calculation. In fact, production of doubly heavy hadron in W+W^{+} decays might have two channels, i.e., W+c+s¯W^{+}\to{c}+\bar{s} and W+c+b¯W^{+}\to{c}+\bar{b}. For charmonium, the contribution of W+cc¯+c+b¯W^{+}\to c{\bar{c}}+c+\bar{b} is suppressed by three orders comparing with W+cc¯+c+s¯W^{+}\to c{\bar{c}}+c+\bar{s}, due to the small value of |Vcb||V_{cb}|. Therefore, theoretical estimates can ignore it. In the case of BcB_{c} meson production, the contribution of W+cb¯+b+b¯W^{+}\to c{\bar{b}}+b+\bar{b} is also suppressed comparing with the contribution of W+cb¯+b+s¯W^{+}\to c{\bar{b}}+b+\bar{s}. However, except W+cb¯+b+b¯W^{+}\to c{\bar{b}}+b+\bar{b}, there is a second way to form BcB_{c} meson in W+c+b¯W^{+}\to{c}+\bar{b} channel, i.e., through W+cb¯+c+c¯W^{+}\to c{\bar{b}}+c+\bar{c} the antibottom quark directly from W+W^{+} combines with the charmed quark from the intermediate gluon. Since the intermediate gluon is much easier to generate cc¯c\bar{c} quark pair than bb¯b\bar{b} quark pair, the width of W+cb¯+c+c¯W^{+}\to c{\bar{b}}+c+\bar{c} is only one order less than the width of W+cb¯+b+s¯W^{+}\to c{\bar{b}}+b+\bar{s} QLLXGW12 . This contribution is comparable with the P-wave contribution from the channel W+cs¯W^{+}\to c{\bar{s}}; in that case the channel W+cb¯W^{+}\to c{\bar{b}} is non-negligible for BcB_{c} meson. But fortunately this discussion does not exist in the doubly heavy baryon production. There is no such way to form Ξbc\Xi_{bc} baryon from W+cb¯W^{+}\to c\bar{b}. The heavy quark bb in Ξbc\Xi_{bc} can only be provided by the intermediate gluon, and the antibottom quark directly from W+W^{+} boson is a free quark. As for the process W+cb+b¯+b¯W^{+}\to cb+{\bar{b}}+\bar{b}, it is three orders of magnitude smaller than W+cb+b¯+s¯W^{+}\to cb+{\bar{b}}+\bar{s} as above. Finally, we can directly ignore the channel W+c+b¯W^{+}\to{c}+\bar{b}.

The transition probability and the strong coupling constant have apparent theoretical uncertainties, but they influence the results merely as an overall factor, so here we does not discuss them. Apart from them, the decay width is also sensitive to quark masses mcm_{c} and mbm_{b}. We vary mc=1.8±0.3GeVm_{c}=1.8\pm 0.3~\mathrm{GeV} for Ξcc\Xi_{cc} production and mb=5.1±0.3GeVm_{b}=5.1\pm 0.3~\mathrm{GeV} for Ξbc\Xi_{bc} production to obtain the uncertainties, which are presented in Tables (3, 4) respectively. In Table 4, state [n][n] means the sum of the results from [n]𝟑¯[n]_{\overline{\mathbf{3}}} and [n]𝟔[n]_{\mathbf{6}}.

  State  mc=1.5m_{c}=1.5~  mc=1.8m_{c}=1.8  mc=2.1m_{c}=2.1
[1S0]𝟔[^{1}S_{0}]_{\mathbf{6}} 13.38 7.64 4.75
[3S1]𝟑¯[^{3}S_{1}]_{\overline{\mathbf{3}}} 27.66 15.8 9.83
[1P1]𝟑¯[^{1}P_{1}]_{\overline{\mathbf{3}}} 1.42 0.561 0.254
[3P0]𝟔[^{3}P_{0}]_{\mathbf{6}} 1.01 0.404 0.185
[3P1]𝟔[^{3}P_{1}]_{\mathbf{6}} 1.15 0.455 0.208
[3P2]𝟔[^{3}P_{2}]_{\mathbf{6}} 0.427 0.169 0.077
Total 45.06 25.1 15.3
Table 3: Decay widths (in unit: keV) for the production of Ξcc\Xi_{cc} via W+W^{+} decays by varying mcm_{c} (in unit: GeV).
  State  mb=4.8m_{b}=4.8~  mb=5.1m_{b}=5.1  mc=5.4m_{c}=5.4
[1S0][^{1}S_{0}] 2.00 1.64 1.36
[3S1][^{3}S_{1}] 1.76 1.44 1.18
[1P1][^{1}P_{1}] 0.0566 0.0446 0.0356
[3P0][^{3}P_{0}] 0.145 0.118 0.0962
[3P1][^{3}P_{1}] 0.108 0.0858 0.0690
[3P2][^{3}P_{2}] 0.010 0.0071 0.0052
Total 4.08 3.33 2.75
Table 4: Decay widths (in unit: keV) for the production of Ξbc\Xi_{bc} via W+W^{+} decays by varying mbm_{b} (in unit: GeV).

It seems that the mass deviation mc=1.8±0.3GeVm_{c}=1.8\pm 0.3~\mathrm{GeV} brings larger influence to the width for Ξcc\Xi_{cc} production, than mb=5.1±0.3GeVm_{b}=5.1\pm 0.3~\mathrm{GeV} to the width for Ξbc\Xi_{bc} production, but 0.3GeV0.3~\mathrm{GeV} is also relatively larger to mcm_{c} than to mbm_{b}. We can change the mass of cc quark in Ξbc\Xi_{bc} baryon as well, however, it causes smaller difference than changing mbm_{b}. By varying mc=1.8±0.3GeVm_{c}=1.8\pm 0.3~\mathrm{GeV}, the total uncertainty for Ξbc\Xi_{bc} baryon is

Γ(Ξbc)=3.330.03+0.07keV.\displaystyle\Gamma(\Xi_{bc})=3.33^{+0.07}_{-0.03}~\mathrm{keV}.

If adding these two uncertainties for Ξbc\Xi_{bc} baryon caused by mcm_{c} and mbm_{b} in quadrature, we can eventually obtain the total widths for Ξcc\Xi_{cc} and Ξbc\Xi_{bc} as follows

Γ(Ξcc)\displaystyle\Gamma(\Xi_{cc}) =\displaystyle= 25.19.8+20.0keV,\displaystyle 25.1^{+20.0}_{-9.8}~\mathrm{keV},
Γ(Ξbc)\displaystyle\Gamma(\Xi_{bc}) =\displaystyle= 3.330.58+0.75keV.\displaystyle 3.33^{+0.75}_{-0.58}~\mathrm{keV}. (27)

IV Summary

In this paper, we investigate the production of the doubly heavy baryons Ξcc\Xi_{cc} and Ξbc\Xi_{bc} from the decay W+ΞQc+Q¯+s¯W^{+}\to\Xi_{Qc}+\bar{Q}+\bar{s} under the NRQCD framework. High excited states are studied as well, include [1P1][^{1}P_{1}], [3P0][^{3}P_{0}], [3P1][^{3}P_{1}], and [3P2][^{3}P_{2}]. Color antitriplet and sextuplet states are supposed to be of importance at the same level. The widths for different states and the total width are both well presented for convenience to see; the differential widths of angles and invariant masses are also given to promote our realization about the characteristics of these processes. The shapes of these figures are relevant to kinematics of the decays, and independent of those overall factors. Finally, the uncertainties are discussed by varying masses of the heavy constituent quarks mc=1.8±0.3GeVm_{c}=1.8\pm 0.3~\mathrm{GeV} and mb=5.1±0.3GeVm_{b}=5.1\pm 0.3~\mathrm{GeV}.

Numerical results show that the contribution from the P-wave is generally one order less than the S-wave; Ξbc\Xi_{bc} baryon production is also about one order lower than Ξcc\Xi_{cc} production. For Ξcc\Xi_{cc}, the total width is 25.19.8+20.0keV25.1^{+20.0}_{-9.8}~\mathrm{keV}, in which the P-wave occupies 6.3%6.3\%. For Ξbc\Xi_{bc}, the total width is 3.330.58+0.75keV3.33^{+0.75}_{-0.58}~\mathrm{keV}, in which the P-wave occupies 7.7%7.7\%. These excited states may directly or indirectly (cascade-decay) decay to the ground states with a probability of almost 100%100\% via electromagnetic or hadronic interactions, so they are additional sources for the observed ground-state doubly heavy baryons in experiment. At the LHC running with the luminosity =1034cm2s1{\cal L}=10^{34}~\rm{cm^{-2}\cdot s^{-1}}, we can expect that there are totally 3.69×1053.69\times 10^{5} Ξcc\Xi_{cc} events and 4.91×1044.91\times 10^{4} Ξbc\Xi_{bc} events per operation year. In the paper, we do the integral in the whole phase space with no rapidity or transverse momentum cut. Thus, the yields above are the total events actually produced at the LHC, though there might be some events that are not recorded by the detectors in experiments for some inevitable reasons, like detectabilities.

Last of all, we discuss different colliders and the feasibility of experimental identifications about the production channels of doubly heavy baryons. There are two things that people are concerned about. Some of them focus on the final particles (like baryons here) properties with little interest in which process generates the particles, while others of them want to distinguish and study different processes. Generally speaking, we can reconstruct the decay processes from W+W^{+} bosons to doubly heavy baryons, just as we reconstruct the doubly heavy baryons through their decay modes (like Ξcc++Λc+Kπ+π+\Xi_{cc}^{++}\rightarrow\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}, Λc+pKπ+\Lambda_{c}^{+}\rightarrow pK^{-}\pi^{+}, and Ξbc+Ξcc++π\Xi_{bc}^{+}\rightarrow\Xi_{cc}^{++}\pi^{-}). However, products of final states at hadron colliders are complex and bring many difficulties to our reconstruction. Besides, the dominant mechanism at the LHC is gluon-gluon fusion, and its yields are several magnitudes larger than yields of W+W^{+} boson decays according to Refs.Chang:2006eu ; Zhang:2011hi . If one wants to deeply explore the production process, the better choice is e+ee^{+}e^{-} colliders, on which we can precisely detect the heavy particles as well as the light s¯\bar{s} antiquark in final states under the clean background. This means that the reconstruction of W+W^{+} boson decays into doubly heavy baryons is feasible on e+ee^{+}e^{-} colliders, and some proposed Higgs factories are exactly capable for this target, such as the Future Circular Collider, the International Linear Collider, the Circular Electron Positron Collider, etc. Since the theoretical calculation on this indirect production is independent of colliders, our results about decay widths can be simply applied to these factories.

Acknowledgments: This work was supported by the Natural Science Foundation of China under Grants No. 12005028 and No. 12047564, the Fundamental Research Funds for the Central Universities under Grant No. 2020CDJQY-Z003, and the China Postdoctoral Science Foundation under Grant No. 2021M693743.

Appendix A The spin projectors and their derivatives for diquark Q¯c\bar{Q}c

The spin projectors and their derivatives are extensively used to calculate the hadron production. We have related the baryon production with the meson’s. Now we give the relevant formulas; these formulas can be seen in Ref.Chang:2007si but no detailed demonstration there.

Let q=0q=0, with {γμ,γν}=2gμν\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}, we have

1112\displaystyle\not{k}_{11}\not{k}_{12} =\displaystyle= mcmQMQc2γμγν(k1)μ(k1)ν\displaystyle\frac{m_{c}m_{Q}}{M_{Qc}^{2}}\gamma^{\mu}\gamma^{\nu}(k_{1})_{\mu}(k_{1})_{\nu} (28)
=\displaystyle= mcmQMQc2[γμγν(k1)μ(k1)ν+γνγμ(k1)ν(k1)μ]2\displaystyle\frac{m_{c}m_{Q}}{M_{Qc}^{2}}\frac{[\gamma^{\mu}\gamma^{\nu}(k_{1})_{\mu}(k_{1})_{\nu}+\gamma^{\nu}\gamma^{\mu}(k_{1})_{\nu}(k_{1})_{\mu}]}{2}
=\displaystyle= mcmQMQc2γμγν+γνγμ2(k1)μ(k1)ν\displaystyle\frac{m_{c}m_{Q}}{M_{Qc}^{2}}\frac{\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}}{2}(k_{1})_{\mu}(k_{1})_{\nu}
=\displaystyle= mcmQMQc2k12=mcmQ.\displaystyle\frac{m_{c}m_{Q}}{M_{Qc}^{2}}k_{1}^{2}=m_{c}m_{Q}.

Using Eq.(28) and the properties k1βεβs(k1)=0k_{1}^{\beta}\varepsilon^{s}_{\beta}(k_{1})=0 (εβs(k1)\varepsilon^{s}_{\beta}(k_{1}) is the polarization vector for S-wave mesons), we can simplify Eqs.(10, 11) as

Πk1(0)\displaystyle\Pi_{k_{1}}(0) =\displaystyle= MQc4mQmc(12mQ)γ5(11+mc)\displaystyle\frac{-\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\not{k}_{12}-m_{Q}\right)\gamma^{5}\left(\not{k}_{11}+m_{c}\right) (29)
=\displaystyle= MQc4mQmcγ5(12+mQ)(11+mc)\displaystyle\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\gamma^{5}\left(\not{k}_{12}+m_{Q}\right)\left(\not{k}_{11}+m_{c}\right)
=\displaystyle= MQc4mQmcγ5(2mcmQ+2mcmQMQc1)\displaystyle\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\gamma^{5}\left(2m_{c}m_{Q}+2\frac{m_{c}m_{Q}}{M_{Qc}}\not{k}_{1}\right)
=\displaystyle= 12MQcγ5(1+MQc),\displaystyle\frac{1}{2\sqrt{M_{Qc}}}\gamma^{5}\left(\not{k}_{1}+M_{Qc}\right),
Πk1β(0)\displaystyle\Pi_{k_{1}}^{\beta}(0) =\displaystyle= MQc4mQmc(12mQ)γβ(11+mc)\displaystyle\frac{-\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\not{k}_{12}-m_{Q}\right)\gamma^{\beta}\left(\not{k}_{11}+m_{c}\right) (30)
=\displaystyle= MQc4mQmc(γβ122k12β+γβmQ)(11+mc)\displaystyle\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\gamma^{\beta}\not{k}_{12}-2k_{12}^{\beta}+\gamma^{\beta}m_{Q}\right)\left(\not{k}_{11}+m_{c}\right)
=\displaystyle= MQc4mQmcγβ(12+mQ)(11+mc)\displaystyle\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\gamma^{\beta}\left(\not{k}_{12}+m_{Q}\right)\left(\not{k}_{11}+m_{c}\right)
=\displaystyle= 12MQcγβ(1+MQc).\displaystyle\frac{1}{2\sqrt{M_{Qc}}}\gamma^{\beta}\left(\not{k}_{1}+M_{Qc}\right).

For P-wave amplitudes, the derivatives of Eqs.(10, 11) are

ddqαΠk1(q)|q=0\displaystyle\left.\frac{d}{dq_{\alpha}}\Pi_{k_{1}}(q)\right|_{q=0} =\displaystyle= ddqαMQc4mQmc(12mQ)γ5(11+mc)|q=0\displaystyle\left.\frac{d}{dq_{\alpha}}\frac{-\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\not{k}_{12}-m_{Q}\right)\gamma^{5}\left(\not{k}_{11}+m_{c}\right)\right|_{q=0} (31)
=\displaystyle= MQc4mQmc[γαγ5(11+mc)(12mQ)γ5γα]|q=0\displaystyle\left.\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}[\gamma^{\alpha}\gamma^{5}\left(\not{k}_{11}+m_{c}\right)-\left(\not{k}_{12}-m_{Q}\right)\gamma^{5}\gamma^{\alpha}]\right|_{q=0}
=\displaystyle= MQc4mQmc[γαγ5(1+mcmQ)2γ5(k12)α]|q=0\displaystyle\left.\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}[\gamma^{\alpha}\gamma^{5}\left(\not{k}_{1}+m_{c}-m_{Q}\right)-2\gamma^{5}(k_{12})^{\alpha}]\right|_{q=0}
=\displaystyle= MQc4mQmcγαγ5(1+mcmQ),\displaystyle\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\gamma^{\alpha}\gamma^{5}\left(\not{k}_{1}+m_{c}-m_{Q}\right),
ddqαΠk1β(q)|q=0\displaystyle\left.\frac{d}{dq_{\alpha}}\Pi^{\beta}_{k_{1}}(q)\right|_{q=0} =\displaystyle= ddqαMQc4mQmc(12mQ)γβ(11+mc)|q=0\displaystyle\left.\frac{d}{dq_{\alpha}}\frac{-\sqrt{M_{Qc}}}{4m_{Q}m_{c}}\left(\not{k}_{12}-m_{Q}\right)\gamma^{\beta}\left(\not{k}_{11}+m_{c}\right)\right|_{q=0} (32)
=\displaystyle= MQc4mQmc[γαγβ(11+mc)(12mQ)γβγα]|q=0\displaystyle\left.\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}[\gamma^{\alpha}\gamma^{\beta}\left(\not{k}_{11}+m_{c}\right)-\left(\not{k}_{12}-m_{Q}\right)\gamma^{\beta}\gamma^{\alpha}]\right|_{q=0}
=\displaystyle= MQc4mQmc[γαγβ(1+mcmQ)2gαβ(12mQ)2γαk12β2γβk12α]|q=0\displaystyle\left.\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}[\gamma^{\alpha}\gamma^{\beta}\left(\not{k}_{1}+m_{c}-m_{Q}\right)-2g^{\alpha\beta}\left(\not{k}_{12}-m_{Q}\right)-2\gamma^{\alpha}k_{12}^{\beta}-2\gamma^{\beta}k_{12}^{\alpha}]\right|_{q=0}
=\displaystyle= MQc4mQmc[γαγβ(1+mcmQ)2gαβ(12mQ)]|q=0.\displaystyle\left.\frac{\sqrt{M_{Qc}}}{4m_{Q}m_{c}}[\gamma^{\alpha}\gamma^{\beta}\left(\not{k}_{1}+m_{c}-m_{Q}\right)-2g^{\alpha\beta}\left(\not{k}_{12}-m_{Q}\right)]\right|_{q=0}.

Here k1αεαl(k1)=0k_{1}^{\alpha}\varepsilon^{l}_{\alpha}(k_{1})=0 and k1αεαβJ(k1)=k1βεαβJ(k1)=0k_{1}^{\alpha}\varepsilon^{J}_{\alpha\beta}(k_{1})=k_{1}^{\beta}\varepsilon^{J}_{\alpha\beta}(k_{1})=0 are uesed for the amplitudes of [1P1][^{1}P_{1}] and [3PJ][^{3}P_{J}] states respectively.

References

  • (1) P. Abreu et al. (DELPHI Collaboration),, Phys. Lett. B 439, 209 (1998).
  • (2) P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (3) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 106, 022001 (2011).
  • (4) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
  • (5) A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. D 97, 092005 (2018).
  • (6) A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. Lett. 119, 141802 (2017).
  • (7) J. Y. Cen, J. H. Chen, X. G. He, G. Li, J. Y. Su and W. Wang, J. High Energy Phys. 01 (2019) 148.
  • (8) S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 723, 280 (2013).
  • (9) U. Haisch and G. Polesello, J. High Energy Phys. 09 (2018) 544 151.
  • (10) T. M. Aliev and K. Şimşek, Phys. Rev. D 103, 054044 (2021).
  • (11) R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 547 11 (2020) 095.
  • (12) R. Aaij et al. (LHCb Collaboration), Chin. Phys. C 45, 093002 (2021).
  • (13) A. V. Luchinsky and A. K. Likhoded, Phys. Rev. D 102, 014019 (2020).
  • (14) N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell V. Papadimitriou et al., Eur. Phys. J. C 71, 1534 (2011).
  • (15) A. Andronic, F. Arleo, R. Arnaldi, A. Beraudo, E. Bruna, D. Caffarri, Z. C. del Valle, J. G. Contreras, T. Dahms A. Dainese et al., Eur. Phys. J. C 76, 107 (2016).
  • (16) J. P. Lansberg, Phys. Rep. 889, 1 (2020).
  • (17) E. Chapon, D. d’Enterria, B. Ducloue, M. G. Echevarria, P. B. Gossiaux, V. Kartvelishvili, T. Kasemets, J. P. Lansberg, R. McNulty D. D. Price et al., Prog. Part. Nucl. Phys. 122, 103906 (2022).
  • (18) G. T. Bodwin, E. Braaten, E. Eichten, S. L. Olsen, T. K. Pedlar, and J. Russ, arXiv:1307.7425.
  • (19) A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, and M. L. Mangano, Nucl. Phys. B 514, 245 (1998).
  • (20) C. H. Chang, J. X. Wang, and X. G. Wu, Phys. Rev. D 77, 014022 (2008).
  • (21) C. H. Chang, J. X. Wang, and X. G. Wu, Phys. Rev. D 77, 014022 (2008).
  • (22) C. F. Qiao, L. P. Sun, D. S. Yang, and R. L. Zhu, Eur. Phys. J. C 71, 1766 (2011).
  • (23) Q. L. Liao, X. G. Wu, J. Jiang, Z. Yang, Z. Y. Fang, and J. W. Zhang, Phys. Rev. D 86, 014031 (2012).
  • (24) J. Jiang and C. F. Qiao, Phys. Rev. D 93, 054031 (2016).
  • (25) X. C. Zheng, C. H. Chang, X. G. Wu, J. Zeng, and X. D. Huang, Phys. Rev. D 101, 034029 (2020).
  • (26) R. Aaij et al. (LHCb collaboration), Phys. Rev. Lett. 119, 112001 (2017).
  • (27) R. Aaij et al. (LHCb collaboration), Phys. Rev. Lett. 121, 162002 (2018).
  • (28) X. C. Zheng, C. H. Chang, and Z. Pan, Phys. Rev. D 93, 034019 (2016).
  • (29) J. Jiang, X. G. Wu, Q. L. Liao, X. C. Zheng, and Z. Y. Fang, Phys. Rev. D 86, 054021 (2012).
  • (30) J. J. Niu, L. Guo, H. H. Ma, and X. G. Wu, Eur. Phys. J. C 79, 339 (2019).
  • (31) J. J. Niu, L. Guo, H. H. Ma, and X. G. Wu, Phys. Rev. D 98, 094021 (2018).
  • (32) A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Phys. Rev. D 57, 4385 (1998).
  • (33) C. H. Chang, C. F. Qiao, J. X. Wang, and X. G. Wu, Phys. Rev. D 73, 094022 (2006).
  • (34) J. W. Zhang, X. G. Wu, T. Zhong, Y. Yu, and Z. Y. Fang, Phys. Rev. D 83, 034026 (2011).
  • (35) G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995); 55, 5853(E) (1997).
  • (36) V. V. Kiselev, A. E. Kovalsky and A. I. Onishchenko, Phys. Rev. D 64, 054009 (2001).
  • (37) V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V. A. Saleev, Phys. Rev. D 66, 034030 (2002).
  • (38) G. T. Bodwin, D. K. Sinclair, and S. Kim, Phys. Rev. Lett. 77, 2376 (1996).
  • (39) V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Nucl. Phys. B 569, 473 (2000).
  • (40) W. Buchmuller and S. H. H. Tye, Phys. Rev. D 24, 132 (1981).
  • (41) A. Martin, Phys. Lett.93B, 338 (1980).
  • (42) C. Quigg and J. L. Rosner, Phys. Lett.71B, 153 (1977).
  • (43) E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D 17, 3090 (1978); 21, 313(E) (1980); 21, 203 (1980).
  • (44) J. P. Ma and Z. G. Si, Phys. Lett. B 568, 135 (2003).
  • (45) J. R. Gaunt, C. H. Kom, A. Kulesza, and W. J. Stirling, Eur. Phys. J. C 69, 53 (2010).
  • (46) C. F. Qiao, L. P. Sun, D. S. Yang, and R. L. Zhu, Eur. Phys. J. C 71, 1766 (2011).
  • (47) J. B. Guimarães da Costa et al. (CEPC Study Group), arXiv:1811.10545.
  • (48) T. Hahn, Comput. Phys. Commun. 140, 418 (2001).
  • (49) V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 256, 107478 (2020).
  • (50) S. P. Baranov, Phys. Rev. D 54, 3228 (1996).
  • (51) P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett. 118, 082002 (2017).
  • (52) F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, J. High Energy Phys. 02 (2017) 090.