This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Excited Ω\Omega hyperon in charmful Ωb\Omega_{b} weak decays

Kai-Lei Wang wangkaileicz@foxmail.com Department of Physics, Changzhi University, Changzhi, Shanxi 046011, China Synergetic Innovation Center for Quantum Effects and Applications (SICQEA),
Hunan Normal University, Changsha 410081, China
   Juan Wang wjuanmm@163.com Department of Physics, Changzhi University, Changzhi, Shanxi 046011, China School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China    Yu-Kuo Hsiao yukuohsiao@gmail.com School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China    Xian-Hui Zhong zhongxh@hunnu.edu.cn Synergetic Innovation Center for Quantum Effects and Applications (SICQEA),
Hunan Normal University, Changsha 410081, China
Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China
(July 27, 2025)
Abstract

We investigate the sextet bb-baryon decay processes ΩbJ/ψΩ()\Omega_{b}\to J/\psi\Omega^{(*)}, where Ω\Omega^{*} represents the 1P1P-, 1D1D- and 2S2S-wave excited Ω\Omega hyperons in the spectroscopy. Using the constituent quark model, we obtain (ΩbJ/ψΩ)=8.8×104{\cal B}(\Omega_{b}\to J/\psi\Omega)=8.8\times 10^{-4}, which agrees with the previous studies to the order of magnitude. By identifying Ω(2012)\Omega(2012) as Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}), (ΩbJ/ψΩ(2012))=1.1×103{\cal B}(\Omega_{b}\to J/\psi\Omega(2012))=1.1\times 10^{-3} can be similarly significant. Additionally, Ω(12D5/2+)\Omega(1^{2}D_{5/2^{+}}) and Ω(14D3/2+,14D5/2+)\Omega(1^{4}D_{3/2^{+}},1^{4}D_{5/2^{+}}) states exhibit production rates of 0.5, and (0.6, 0.8), respectively, relative to their ground-state counterpart. Notably, our findings suggest that (ΩbJ/ψΩ(22S1/2+,24S3/2+)){\cal B}(\Omega_{b}\to J/\psi\Omega(2^{2}S_{1/2^{+}},2^{4}S_{3/2^{+}})) are as large as (4.5,20)×104(4.5,20)\times 10^{-4}, making them accessible to experiments at LHCb.

I Introduction

In baryon spectroscopy, the formation of a colorless state from three quarks with three different colors is fundamentally linked to the principles of quantum chromodynamics (QCD) and hadron physics. While the combination of individual quark spins and orbital angular momenta is expected to produce a variety of light baryon states Klempt:2009pi ; Crede:2013kia ; Forkel:2008un , only a subset of these states has been observed to date pdg . The so-called “missing excited baryon” problem highlights an incomplete theoretical understanding of baryon spectroscopy Capstick:2000dk ; Klempt:2009pi .

The Ω\Omega hyperon spectroscopy has been relatively underexplored. Nonetheless, Belle initiated a new era of discoveries with the identification of an excited hyperon, Ω(2012)\Omega(2012) Belle:2018mqs , which was later reconfirmed through the process Ωc0π+Ω(2012),Ω(2012)Ξ0K\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-},\Omega(2012)^{-}\to\Xi^{0}K^{-} Belle:2021gtf . Additionally, a heavier excited hyperon Ω(2109)\Omega(2109)^{-}, observed via e+eΩ(2109)Ω¯++c.c.e^{+}e^{-}\to\Omega(2109)^{-}\bar{\Omega}^{+}+c.c., and reported by BESIII BESIII:2024eqk . To investigate the nature of these new excited hyperons, significant theoretical attention has been devoted Xiao:2018pwe ; Liu:2019wdr ; Wang:2018hmi ; Zeng:2020och ; Aliev:2018yjo ; Aliev:2018syi ; Arifi:2022ntc ; Polyakov:2018mow ; Hu:2022pae ; Ikeno:2022jpe ; Lin:2019tex ; Lu:2020ste ; Ikeno:2020vqv ; Xie:2021dwe ; Valderrama:2018bmv ; Pavao:2018xub ; Huang:2018wth ; Gutsche:2019eoh . Notably, Ω(2012)\Omega(2012) is often preferred as an exotic molecule candidate Hu:2022pae ; Ikeno:2022jpe ; Lin:2019tex ; Lu:2020ste ; Ikeno:2020vqv ; Xie:2021dwe ; Valderrama:2018bmv ; Pavao:2018xub ; Huang:2018wth ; Gutsche:2019eoh rather than as a conventional 1P1P-wave Ω(sss)\Omega(sss) state.

Clearly, the “missing excited baryon” problem persists in Ω\Omega hyperon spectroscopy, as all waves of Ω\Omega hyperons have been theoretically predicted Oh:2007cr ; Capstick:1986ter ; Faustov:2015eba ; Loring:2001ky ; Liu:2007yi ; Chao:1980em ; Chen:2009de ; An:2013zoa ; Kalman:1982ut ; Pervin:2007wa ; An:2014lga ; Engel:2013ig ; CLQCD:2015bgi ; Carlson:2000zr ; Goity:2003ab ; Schat:2001xr ; Matagne:2006zf ; Bijker:2000gq ; Aliev:2016jnp , but only a few have been experimentally observed. These include ΩΩ(1672)\Omega\equiv\Omega(1672) Abrams:1964tu ; Barnes:1964pd , Ω(2012,2109)\Omega(2012,2109) Belle:2018mqs ; Belle:2021gtf ; BESIII:2024eqk , and Ω(2250,2380,2470)\Omega(2250,2380,2470) Biagi:1985rn ; Aston:1987bb ; Aston:1988yn . Since further clarification and exploration are essential, we propose that recent measurements of the sextet bb-baryon decay process ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega D0:2008sbw ; CDF:2009sbo ; LHCb:2013wmn ; CDF:2014mon ; LHCb:2023qxn ; Nicolini:2023stq be extended to include ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega^{*}, where Ω\Omega^{*} denotes higher-wave excited Ω\Omega hyperons.

As LHCb continues to improve the statistics and precision LHCb:2023qxn ; Nicolini:2023stq , the absolute branching fractions of Ωb\Omega_{b}^{-} decays may soon be measured with a similar accuracy to those of the anti-triplet bb-baryon decays UA1:1991vse ; CDF:1992lrw ; CDF:2006eul ; CDF:1996rvy ; D0:2004quf ; D0:2007giz ; D0:2011pqa ; D0:2012hfl ; LHCb:2013hzx ; LHCb:2020iux ; LHCb:2019fim ; LHCb:2019aci ; ATLAS:2014swk ; ATLAS:2015hik ; CMS:2018wjk ; D0:2007gjs . Theoretical estimations are therefore needed, and a variety of theoretical tools are already available for such studies. These include the non-relativistic quark model Fayyazuddin:1998ap ; Mott:2011cx ; Cheng:1995fe ; Cheng:1996cs , the covariant confined quark model Gutsche:2018utw ; Gutsche:2017wag ; Gutsche:2013oea ; Gutsche:2015lea , the covariant oscillator quark model Mohanta:1998iu , the relativistic three-quark model Ivanov:1997hi ; Ivanov:1997ra , the light-front quark model Hsiao:2021mlp ; Wei:2009np ; Zhu:2018jet ; Wang:2024mjw , the perturbative QCD approach Rui:2023fiz ; Chou:2001bn , the generalized factorization approach Hsiao:2015cda ; Fayyazuddin:2017sxq ; Hsiao:2015txa , and SU(3) flavor analysis Dery:2020lbc .

In this work, we employ the constituent quark model Niu:2020gjw ; Niu:2025lgt ; Wang:2022zja ; Niu:2021qcc ; Niu:2020aoz ; Pervin:2006ie ; Pervin:2005ve to provide our estimations. As we will demonstrate, this model can be extended to study both the ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega and ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega^{*} decay processes, enabling a systematic analysis of the missing excited Ω\Omega states. This paper is organized as follows: In Sec. II, we apply the constituent quark model to two-body nonleptonic weak decays of ΩbJ/ψΩ()\Omega_{b}\to J/\psi\Omega^{(*)}. In Sec. III, we present the numerical results. Finally, we provide our discussions and conclusion in Sec. IV.

II framework

As shown in Fig. 1, the recently observed sextet bb-baryon decay, ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega, proceeds exclusively via the internal WW-boson emission diagram Cheng:2021qpd , where Ω\Omega is strait-forwardly formed through the ΩbΩ\Omega_{b}\to\Omega transition. The single decay topology, extended to ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega^{*}, also facilitates the investigation of the 1P1P-, 2S2S- and 1D1D-wave excited Ω\Omega^{*} states.

The quark-level effective Hamiltonian of bcc¯sb\to c\bar{c}s weak transition induces the doubly charmful decay channels ΩbJ/ψΩ()\Omega_{b}\to J/\psi\Omega^{(*)}, given by Buchalla:1995vs

HW\displaystyle H_{W} =\displaystyle= GF2VbcVcs(C1𝒪1+C2𝒪2),\displaystyle\frac{G_{F}}{\sqrt{2}}V_{bc}V_{cs}^{*}(C_{1}\mathcal{O}_{1}+C_{2}\mathcal{O}_{2})\,, (1)

where GFG_{F} is the Fermi constant, C1C_{1} and C2C_{2} are the Wilson coefficients, and (VbcV_{bc}, VcsV_{cs}) are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. Additionally, 𝒪1,2{\cal O}_{1,2} are the current-current operators, which are written as

𝒪1\displaystyle\mathcal{O}_{1} =\displaystyle= ψ¯s¯βγμ(1γ5)ψcβψ¯c¯αγμ(1γ5)ψbα,\displaystyle\bar{\psi}_{\bar{s}_{\beta}}\gamma_{\mu}(1-\gamma_{5})\psi_{c_{\beta}}\bar{\psi}_{\bar{c}_{\alpha}}\gamma^{\mu}(1-\gamma_{5})\psi_{b_{\alpha}}\,,
𝒪2\displaystyle\mathcal{O}_{2} =\displaystyle= ψ¯s¯αγμ(1γ5)ψcβψ¯c¯βγμ(1γ5)ψbα.\displaystyle\bar{\psi}_{\bar{s}_{\alpha}}\gamma_{\mu}(1-\gamma_{5})\psi_{c_{\beta}}\bar{\psi}_{\bar{c}_{\beta}}\gamma^{\mu}(1-\gamma_{5})\psi_{b_{\alpha}}\,. (2)

Here, ψjδ\psi_{j_{\delta}} is the jjth quark field, where jj can be ss, cc or bb, and δ=(α,β)\delta=(\alpha,\beta) is the color index. We define the convention for the quark and antiquark fields

ψc(x)=dp(2π)3/2(mp0)1/2s[us(p)bs,c(p)eipx+vs(p)ds,c(p)eipx],\displaystyle\psi_{c}(x)=\int\frac{dp}{(2\pi)^{3/2}}\left(\frac{m}{p^{0}}\right)^{1/2}\sum_{s}\left[u_{s}(p)b_{s,c}(p)e^{-ip\cdot x}+v_{s}(p)d^{\dagger}_{s,c}(p)e^{ip\cdot x}\right], (3)
ψ¯c(x)=dp(2π)3/2(mp0)1/2s[u¯s(p)bs,c(p)eipx+v¯s(p)ds,c(p)eipx].\displaystyle\bar{\psi}_{c}(x)=\int\frac{dp}{(2\pi)^{3/2}}\left(\frac{m}{p^{0}}\right)^{1/2}\sum_{s}\left[\bar{u}_{s}(p)b^{\dagger}_{s,c}(p)e^{ip\cdot x}+\bar{v}_{s}(p)d_{s,c}(p)e^{-ip\cdot x}\right].

where cc is color quantum number, and

us(p)=E+m2m(φsσpE+mφs),vs(p)=E+m2m(σpE+mχsχs).\displaystyle u_{s}(p)=\sqrt{\frac{E+m}{2m}}\left(\begin{array}[]{c}\varphi_{s}\cr\frac{\mathbf{\sigma}\cdot\emph{{p}}}{E+m}\varphi_{s}\end{array}\right),v_{s}(p)=\sqrt{\frac{E+m}{2m}}\left(\begin{array}[]{c}\frac{\mathbf{\sigma}\cdot\emph{{p}}}{E+m}\chi_{s}\cr\chi_{s}\end{array}\right). (8)

Here, ss represents spin labeling, so

sφsφs=sχsχs=1.\displaystyle\sum_{s}\varphi_{s}\varphi_{s}^{{\dagger}}=\sum_{s}\chi_{s}\chi_{s}^{{\dagger}}=1. (9)

The anticommutation relations of the creation and annihilation operators are given by

{bs,c(p),bs,c(p)}={ds,c(p),ds,c(p)}=δssδccδ3(pp).\displaystyle\{b_{s,c}(p),b_{s^{\prime},c^{\prime}}^{\dagger}(p^{\prime})\}=\{d_{s,c}(p),d_{s^{\prime},c^{\prime}}^{\dagger}(p^{\prime})\}=\delta_{ss^{\prime}}\delta_{cc^{\prime}}\delta^{3}(p-p^{\prime}). (10)

The normalization of spinor is

u¯s(p)us(p)=v¯s(p)vs(p)=δss.\displaystyle\bar{u}_{s}(p)u_{s^{\prime}}(p)=-\bar{v}_{s}(p)v_{s^{\prime}}(p)=\delta_{ss^{\prime}}. (11)
Refer to caption
Figure 1: Feynman diagram for the nonleptonic weak decay ΩbJ/ψΩ()\Omega_{b}\rightarrow J/\psi\Omega^{(*)}.

According to Refs. Mannel:1992ti ; Buras:1985xv ; Blok:1992na , C2J/ψΩ|𝒪2|ΩbC_{2}\langle J/\psi\Omega|{\cal O}_{2}|\Omega_{b}\rangle corresponds to the internal WW-boson emission diagram. On the other hand, C1J/ψΩ|𝒪1|ΩbC_{1}\langle J/\psi\Omega|{\cal O}_{1}|\Omega_{b}\rangle is replaced by C1/NceffJ/ψΩ|𝒪2|ΩbC_{1}/N_{c}^{eff}\langle J/\psi\Omega|{\cal O}_{2}|\Omega_{b}\rangle in the generalized factorization, where NceffN_{c}^{eff} is an effective color number that accounts for the non-factorizable QCD corrections. In the large NceffN_{c}^{eff} limit (NceffN_{c}^{eff}\to\inftyMannel:1992ti ; Buras:1985xv ; Blok:1992na , the contribution from C1𝒪1C_{1}\mathcal{O}_{1} becomes negligible. Therefore, we only consider C2𝒪2C_{2}\mathcal{O}_{2} in this work.

The constituent quark model separates HWH_{W} into the parity-conserving (PC) and parity-violating (PV) components Niu:2020gjw :

HW=HWPC+HWPV.\displaystyle H_{W}=H_{W}^{PC}+H_{W}^{PV}\,. (12)

In the non-relativistic approximation, the two components are given by Niu:2020gjw ; Niu:2025lgt ; Wang:2022zja

HWPC\displaystyle H_{W}^{PC} \displaystyle\simeq GF2VcsVcbC2ϕ^cO^f(2π)3δ3(p3p3p4p5)\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{cb}C_{2}\frac{\hat{\phi}_{c}\hat{O}_{f}}{(2\pi)^{3}}\delta^{3}(\textbf{p}_{3}-\textbf{p}_{3}^{\prime}-\textbf{p}_{4}-\textbf{p}_{5})
{𝝈4(p52m5+p42m4)+𝝈3(p32m3+p32m3)\displaystyle\Bigg{\{}\mbox{\boldmath$\sigma$\unboldmath}_{4}\cdot\left(\frac{\textbf{p}_{5}}{2m_{5}}+\frac{\textbf{p}_{4}}{2m_{4}}\right)+\mbox{\boldmath$\sigma$\unboldmath}_{3}\cdot\left(\frac{\textbf{p}_{3}^{\prime}}{2m_{3}^{\prime}}+\frac{\textbf{p}_{3}}{2m_{3}}\right)
[(p32m3+p32m3)i𝝈3×(p32m3p32m3)]𝝈4\displaystyle-\left[\left(\frac{\textbf{p}_{3}^{\prime}}{2m_{3}^{\prime}}+\frac{\textbf{p}_{3}}{2m_{3}}\right)-i\mbox{\boldmath$\sigma$\unboldmath}_{3}\times\left(\frac{\textbf{p}_{3}}{2m_{3}}-\frac{\textbf{p}_{3}^{\prime}}{2m_{3}^{\prime}}\right)\right]\cdot\mbox{\boldmath$\sigma$\unboldmath}_{4}
𝝈3[(p52m5+p42m4)i𝝈4×(p42m4p52m5)]},\displaystyle-\mbox{\boldmath$\sigma$\unboldmath}_{3}\cdot\left[\left(\frac{\textbf{p}_{5}}{2m_{5}}+\frac{\textbf{p}_{4}}{2m_{4}}\right)-i\mbox{\boldmath$\sigma$\unboldmath}_{4}\times\left(\frac{\textbf{p}_{4}}{2m_{4}}-\frac{\textbf{p}_{5}}{2m_{5}}\right)\right]\Bigg{\}}\,,
HWPV\displaystyle H_{W}^{PV} \displaystyle\simeq GF2VcsVcbC2ϕ^cO^f(2π)3δ3(p3p3p4p5)\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{cb}C_{2}\frac{\hat{\phi}_{c}\hat{O}^{f}}{(2\pi)^{3}}\delta^{3}(\textbf{p}_{3}-\textbf{p}_{3}^{\prime}-\textbf{p}_{4}-\textbf{p}_{5}) (13)
(𝝈3𝝈41),\displaystyle(\mbox{\boldmath$\sigma$\unboldmath}_{3}\cdot\mbox{\boldmath$\sigma$\unboldmath}_{4}-1),

where pj\textbf{p}_{j} and mjm_{j}, as assigned in Fig. 1, are the momentum and mass of the jjth quark, respectively, and 𝝈j\textbf{\mbox{\boldmath$\sigma$\unboldmath}}_{j} is the spin operator of the jjth quark. Additionally, ϕ^c\hat{\phi}_{c} is the color operator and O^f\hat{O}_{f} is the flavor operator.

Explicitly, we present

O^f\displaystyle\hat{O}_{f} =\displaystyle= b^3(c)b^4(c¯)b^5(s)b^3(b),\displaystyle\hat{b}_{3^{\prime}}^{\dagger}(c)\hat{b}_{4}^{\dagger}(\bar{c})\hat{b}_{5}^{\dagger}(s)\hat{b}_{3}(b)\,,
ϕ^c\displaystyle\hat{\phi}_{c} =\displaystyle= δc4c3δc5c3,\displaystyle\delta_{c_{4}c_{3^{\prime}}}\delta_{c_{5}c_{3}}\,, (14)

where b^()(q)\hat{b}^{({\dagger})}(q) annihilates (creates) the quark (q), and the δc5c3(δc4c3)\delta_{c_{5}c_{3}}(\delta_{c_{4}c_{3^{\prime}}}) represents that the colors of c3(c3)c_{3}(c_{3^{\prime}}) and c5(c4)c_{5}(c_{4}) should be conserved.

For the color operator to act on the color wave functions of Ωb\Omega_{b}, Ω()\Omega^{(*)}, and J/ψJ/\psi, we define

|ζΩb=16(RGBRBG+GBRGRB+BRGBGR),\displaystyle|\zeta_{\Omega_{b}}\rangle=\frac{1}{\sqrt{6}}(RGB-RBG+GBR-GRB+BRG-BGR)\,,
|ζΩ()=|ζΩb,\displaystyle|\zeta_{\Omega^{(*)}}\rangle=|\zeta_{\Omega_{b}}\rangle\,,
|ζJ/ψ=13(RR¯+GG¯+BB¯).\displaystyle|\zeta_{J/\psi}\rangle=\frac{1}{\sqrt{3}}(R\bar{R}+G\bar{G}+B\bar{B})\,. (15)

From Eqs. (II) and (II), we obtain

ζJ/ψζΩ()|ϕ^c|ζΩb=3.\displaystyle\langle\zeta_{J/\psi}\zeta_{\Omega^{(*)}}|\hat{\phi}_{c}|\zeta_{\Omega_{b}}\rangle=\sqrt{3}\,. (16)

In the constituent quark model, the decay amplitude is represented as

(ΩbJ/ψΩ())=PC+PV,\displaystyle\mathcal{M}(\Omega_{b}\to J/\psi\Omega^{(*)})=\mathcal{M}^{PC}+\mathcal{M}^{PV}\,, (17)

where

PC(PV)\displaystyle\mathcal{M}^{PC(PV)} =\displaystyle= 13J/ψ(q;1,JJ/ψz)Ω()(Pf;Jf,Jfz)|\displaystyle\frac{1}{\sqrt{3}}\langle J/\psi(\textbf{q};1,J_{J/\psi}^{z})\Omega^{(*)}(\textbf{P}_{f};J_{f},J_{f}^{z})| (18)
(1+P^25+P^15)HWPC(PV)|Ωb(Pi;Ji,Jiz).\displaystyle(1+\hat{P}_{25}+\hat{P}_{15})H_{W}^{PC(PV)}|\Omega_{b}(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle\,.

Here, the factor 13\frac{1}{\sqrt{3}} is the normalization coefficient and P^ij\hat{P}_{ij} represents the permutation operator of quarks ii and jj. In the above equation, J/ψ(q;1,JJ/ψz)J/\psi(\textbf{q};1,J_{J/\psi}^{z}), Ωb(Pi;Ji,Jiz)\Omega_{b}(\textbf{P}_{i};J_{i},J_{i}^{z}), and Ω()(Pf;Jf,Jfz)\Omega^{(*)}(\textbf{P}_{f};J_{f},J_{f}^{z}) are wave functions, where 𝐪{\bf q} and 𝐏i(f){\bf P}_{i(f)} are the total momentum, Ji(f)J_{i(f)} are the total angular momentum, and Ji(f)zJ^{z}_{i(f)} are the third component of the total angular momentum.

It is worth noting that the calculation of the amplitudes for ΩbΩ()J/ψ\Omega_{b}\to\Omega^{(*)}J/\psi decays should consider a question of symmetry. The flavor wave functions of Ωb\Omega_{b} and Ω\Omega are φΩb=ssb\varphi_{\Omega_{b}}=ssb and φΩ=sss\varphi_{\Omega}=sss, respectively. In the ΩbΩ()J/ψ\Omega_{b}\rightarrow\Omega^{(*)}J/\psi nonleptonic decay process, the bottom quark of the Ωb\Omega_{b} decays into an ss quark, which can be any of the three ss quarks in the Ω\Omega. Since the wave functions of the final state Ω()\Omega^{(*)} baryon are fully antisymmetric under the exchange of any two quarks, so we obtain

J/ψ(q;1,JJ/ψz)Ω()(Pf;Jf,Jfz)|HWPC(PV)|Ωb(Pi;Ji,Jiz)\displaystyle\langle J/\psi(\textbf{q};1,J_{J/\psi}^{z})\Omega^{(*)}(\textbf{P}_{f};J_{f},J_{f}^{z})|H_{W}^{PC(PV)}|\Omega_{b}(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle
=\displaystyle= J/ψ(q;1,JJ/ψz)Ω()(Pf;Jf,Jfz)|P^25HWPC(PV)|Ωb(Pi;Ji,Jiz)\displaystyle\langle J/\psi(\textbf{q};1,J_{J/\psi}^{z})\Omega^{(*)}(\textbf{P}_{f};J_{f},J_{f}^{z})|\hat{P}_{25}H_{W}^{PC(PV)}|\Omega_{b}(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle
=\displaystyle= J/ψ(q;1,JJ/ψz)Ω()(Pf;Jf,Jfz)|P^15HWPC(PV)|Ωb(Pi;Ji,Jiz).\displaystyle\langle J/\psi(\textbf{q};1,J_{J/\psi}^{z})\Omega^{(*)}(\textbf{P}_{f};J_{f},J_{f}^{z})|\hat{P}_{15}H_{W}^{PC(PV)}|\Omega_{b}(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle.

Therefore, one can obtain

PC(PV)\displaystyle\mathcal{M}^{PC(PV)} =\displaystyle= 3J/ψ(q;1,JJ/ψz)Ω()(Pf;Jf,Jfz)|\displaystyle\sqrt{3}\langle J/\psi(\textbf{q};1,J_{J/\psi}^{z})\Omega^{(*)}(\textbf{P}_{f};J_{f},J_{f}^{z})| (20)
HWPC(PV)|Ωb(Pi;Ji,Jiz).\displaystyle H_{W}^{PC(PV)}|\Omega_{b}(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle.

Similar calculations have been applied in Ref. Pervin:2006ie .

Table 1: The spin-flavor-space wave-functions of Ω\Omega baryons under SU(6)SU(6) quark model classification are listed below. We denote the baryon states as |N6,2S+1N3,N,L,JP|N_{6},^{2S+1}N_{3},N,L,J^{P}\rangle where N6N_{6} stands for the irreducible representation of spin-flavor SU(6)SU(6) group, N3N_{3} stands for the irreducible representation of flavor SU(3)SU(3) group and NN, LL, JPJ^{P} as principal quantum number, total orbital angular momentum and spin-parity, respectivelyXiao:2018pwe ; Liu:2019wdr ; Wang:2018hmi . The ϕ\phi, χ\chi, ψ\psi denote flavor, spin and spatial wave function, respectively. The Clebsch-Gorden coefficients of spin-orbital coupling and color wave function ζΩ\zeta_{\Omega} have been omitted.
n2S+1LJpn^{2S+1}L_{J^{p}} |N6,2S+1N3,N,L,JP|N_{6},^{2S+1}N_{3},N,L,J^{P}\rangle Wave function
14S32+1^{4}S_{\frac{3}{2}^{+}} |56,410,0,0,32+|56,^{4}10,0,0,\frac{3}{2}^{+}\rangle ϕsχsψ000s\phi^{s}\chi^{s}\psi_{000}^{s}
12P121^{2}P_{\frac{1}{2}^{-}} |70,210,1,1,12|70,^{2}10,1,1,\frac{1}{2}^{-}\rangle 12(ϕsχρψ11Lzρ+ϕsχλψ11Lzλ)\frac{1}{\sqrt{2}}\left(\phi^{s}\chi^{\rho}\psi_{11L_{z}}^{\rho}+\phi^{s}\chi^{\lambda}\psi_{11L_{z}}^{\lambda}\right)
12P321^{2}P_{\frac{3}{2}^{-}} |70,210,1,1,32|70,^{2}10,1,1,\frac{3}{2}^{-}\rangle 12(ϕsχρψ11Lzρ+ϕsχλψ11Lzλ)\frac{1}{\sqrt{2}}\left(\phi^{s}\chi^{\rho}\psi_{11L_{z}}^{\rho}+\phi^{s}\chi^{\lambda}\psi_{11L_{z}}^{\lambda}\right)
22S12+2^{2}S_{\frac{1}{2}^{+}} |70,210,2,0,12+|70,^{2}10,2,0,\frac{1}{2}^{+}\rangle 12(ϕsχρψ200ρ+ϕsχλψ200λ)\frac{1}{\sqrt{2}}\left(\phi^{s}\chi^{\rho}\psi_{200}^{\rho}+\phi^{s}\chi^{\lambda}\psi_{200}^{\lambda}\right)
24S32+2^{4}S_{\frac{3}{2}^{+}} |56,410,2,0,32+|56,^{4}10,2,0,\frac{3}{2}^{+}\rangle ϕsχsψ200s\phi^{s}\chi^{s}\psi_{200}^{s}
12D32+1^{2}D_{\frac{3}{2}^{+}} |70,210,2,2,32+|70,^{2}10,2,2,\frac{3}{2}^{+}\rangle 12(ϕsχρψ22Lzρ+ϕsχλψ22Lzλ)\frac{1}{\sqrt{2}}\left(\phi^{s}\chi^{\rho}\psi_{22L_{z}}^{\rho}+\phi^{s}\chi^{\lambda}\psi_{22L_{z}}^{\lambda}\right)
12D52+1^{2}D_{\frac{5}{2}^{+}} |70,210,2,2,52+|70,^{2}10,2,2,\frac{5}{2}^{+}\rangle 12(ϕsχρψ22Lzρ+ϕsχλψ22Lzλ)\frac{1}{\sqrt{2}}\left(\phi^{s}\chi^{\rho}\psi_{22L_{z}}^{\rho}+\phi^{s}\chi^{\lambda}\psi_{22L_{z}}^{\lambda}\right)
14D12+1^{4}D_{\frac{1}{2}^{+}} |56,410,2,2,12+|56,^{4}10,2,2,\frac{1}{2}^{+}\rangle ϕsχsψ22Lzs\phi^{s}\chi^{s}\psi_{22L_{z}}^{s}
14D32+1^{4}D_{\frac{3}{2}^{+}} |56,410,2,2,32+|56,^{4}10,2,2,\frac{3}{2}^{+}\rangle ϕsχsψ22Lzs\phi^{s}\chi^{s}\psi_{22L_{z}}^{s}
14D52+1^{4}D_{\frac{5}{2}^{+}} |56,410,2,2,52+|56,^{4}10,2,2,\frac{5}{2}^{+}\rangle ϕsχsψ22Lzs\phi^{s}\chi^{s}\psi_{22L_{z}}^{s}
14D72+1^{4}D_{\frac{7}{2}^{+}} |56,410,2,2,72+|56,^{4}10,2,2,\frac{7}{2}^{+}\rangle ϕsχsψ22Lzs\phi^{s}\chi^{s}\psi_{22L_{z}}^{s}
Table 2: The spatial functions ψNLMLσ(𝐩ρ,𝐩λ)\psi^{\sigma}_{NLM_{L}}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda}) as the linear combination of ψnρlρmρ(𝐩ρ)ψnλlλmλ(𝐩λ)\psi_{n_{\rho}l_{\rho}m_{\rho}}(\mathbf{p}_{\rho})\psi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\mathbf{p}_{\lambda}).
ψ000S(𝐩ρ,𝐩λ)=ψ000(𝐩ρ)ψ000(𝐩λ)\psi^{S}_{000}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\psi_{000}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda})
ψ11MLρ(𝐩ρ,𝐩λ)=ψ01ML(𝐩ρ)ψ000(𝐩λ)\psi^{\rho}_{11M_{L}}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\psi_{01M_{L}}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda})
ψ11MLλ(𝐩ρ,𝐩λ)=ψ000(𝐩ρ)ψ01ML(𝐩λ)\psi^{\lambda}_{11M_{L}}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\psi_{000}(\mathbf{p}_{\rho})\psi_{01M_{L}}(\mathbf{p}_{\lambda})
ψ200S(𝐩ρ,𝐩λ)=12[ψ100(𝐩ρ)ψ000(𝐩λ)+ψ000(𝐩ρ)ψ100(𝐩λ)]\psi^{S}_{200}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\frac{1}{\sqrt{2}}[\psi_{100}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda})+\psi_{000}(\mathbf{p}_{\rho})\psi_{100}(\mathbf{p}_{\lambda})]
ψ200λ(𝐩ρ,𝐩λ)=12[ψ100(𝐩ρ)ψ000(𝐩λ)+ψ000(𝐩ρ)ψ100(𝐩λ)]\psi^{\lambda}_{200}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\frac{1}{\sqrt{2}}[-\psi_{100}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda})+\psi_{000}(\mathbf{p}_{\rho})\psi_{100}(\mathbf{p}_{\lambda})]
ψ200ρ(𝐩ρ,𝐩λ)\psi^{\rho}_{200}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})
=13[ψ011(𝐩ρ)ψ011(𝐩λ)ψ010(𝐩ρ)ψ010(𝐩λ)+ψ011(𝐩ρ)ψ011(𝐩λ)]=\frac{1}{\sqrt{3}}[\psi_{011}(\mathbf{p}_{\rho})\psi_{01-1}(\mathbf{p}_{\lambda})-\psi_{010}(\mathbf{p}_{\rho})\psi_{010}(\mathbf{p}_{\lambda})+\psi_{01-1}(\mathbf{p}_{\rho})\psi_{011}(\mathbf{p}_{\lambda})]
ψ22MLS(𝐩ρ,𝐩λ)=12[ψ02ML(𝐩ρ)ψ000(𝐩λ)+ψ000(𝐩ρ)ψ02ML(𝐩λ)]\psi^{S}_{22M_{L}}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\frac{1}{\sqrt{2}}[\psi_{02M_{L}}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda})+\psi_{000}(\mathbf{p}_{\rho})\psi_{02M_{L}}(\mathbf{p}_{\lambda})]
ψ22MLλ(𝐩ρ,𝐩λ)=12[ψ02ML(𝐩ρ)ψ000(𝐩λ)ψ000(𝐩ρ)ψ02ML(𝐩λ)]\psi^{\lambda}_{22M_{L}}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\frac{1}{\sqrt{2}}[\psi_{02M_{L}}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda})-\psi_{000}(\mathbf{p}_{\rho})\psi_{02M_{L}}(\mathbf{p}_{\lambda})]
ψ222ρ(𝐩ρ,𝐩λ)=ψ011(𝐩ρ)ψ011(𝐩λ)\psi^{\rho}_{222}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\psi_{011}(\mathbf{p}_{\rho})\psi_{011}(\mathbf{p}_{\lambda})
ψ221ρ(𝐩ρ,𝐩λ)=12[ψ010(𝐩ρ)ψ011(𝐩λ)+ψ011(𝐩ρ)ψ010(𝐩λ)]\psi^{\rho}_{221}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\frac{1}{\sqrt{2}}[\psi_{010}(\mathbf{p}_{\rho})\psi_{011}(\mathbf{p}_{\lambda})+\psi_{011}(\mathbf{p}_{\rho})\psi_{010}(\mathbf{p}_{\lambda})]
ψ220ρ(𝐩ρ,𝐩λ)\psi^{\rho}_{220}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})
=16[ψ011(𝐩ρ)ψ011(𝐩λ)+2ψ010(𝐩ρ)ψ010(𝐩λ)+ψ011(𝐩ρ)ψ011(𝐩λ)]=\frac{1}{\sqrt{6}}[\psi_{01-1}(\mathbf{p}_{\rho})\psi_{011}(\mathbf{p}_{\lambda})+2\psi_{010}(\mathbf{p}_{\rho})\psi_{010}(\mathbf{p}_{\lambda})+\psi_{011}(\mathbf{p}_{\rho})\psi_{01-1}(\mathbf{p}_{\lambda})]
ψ221ρ(𝐩ρ,𝐩λ)=12[ψ011(𝐩ρ)ψ010(𝐩λ)+ψ010(𝐩ρ)ψ011(𝐩λ)]\psi^{\rho}_{22-1}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\frac{1}{\sqrt{2}}[\psi_{01-1}(\mathbf{p}_{\rho})\psi_{010}(\mathbf{p}_{\lambda})+\psi_{010}(\mathbf{p}_{\rho})\psi_{01-1}(\mathbf{p}_{\lambda})]
ψ222ρ(𝐩ρ,𝐩λ)=ψ011(𝐩ρ)ψ011(𝐩λ)\psi^{\rho}_{22-2}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\psi_{01-1}(\mathbf{p}_{\rho})\psi_{01-1}(\mathbf{p}_{\lambda})

To calculate PC(PV)\mathcal{M}^{PC(PV)} in Eq. (20), the details of the wave functions are required. The total wave function of a baryon system should include four parts: a color wave function ζ\zeta, a flavor wave function ϕ\phi, a spin wave function χ\chi, and a spatial wave function ψ\psi. The spin wave function of a baryon satisfies SU(2) symmetry, which can be expressed as symmetric (χSzS\chi^{S}_{S_{z}}), mixed antisymmetric(χSzρ\chi^{\rho}_{S_{z}}), mixed symmetric(χSzλ\chi^{\lambda}_{S_{z}}) spin wave functions. The detailed representations of the spin wave function is shown in Refs. Niu:2020gjw ; Wang:2017kfr ; Xiao:2013xi .

For the Ω\Omega spectrum, the flavor-spin wave functions are representations of SU(6), which are denoted by |N6,2S+1N3|N_{6},^{2S+1}N_{3}\rangle, where N6N_{6} (N3N_{3}) represents the SU(6) (SU(3)) representation and SS stands for the total spin of the wave function, and the detailed wave function of Ω()\Omega^{(*)} excited states are shown in Table 1. In momentum space, we present the simple harmonic oscillator wave functions to describe the Ω()\Omega^{(*)} baryon Wang:2018hmi . The explicit forms of the spatial wave function ΨNLMLσ(pρ,pλ)\Psi_{NLM_{L}}^{\sigma}(\textbf{p}_{\rho},\textbf{p}_{\lambda}) in the momentum space, up to the NN = 2 shell, can be found in Table 2. The superscript σ\sigma characterizes the same set of quantum numbers (N,L,ML)(N,L,M_{L}) arising from different combinations of the ρ\rho and λ\lambda oscillation systems Karl:1969iz ; Zhenping:1991 ; Xiao:2013xi . Specifically, the combinations are defined by N=2(nρ+nλ)+lρ+lλN=2(n_{\rho}+n_{\lambda})+l_{\rho}+l_{\lambda}, L=lρ+lλ,,|lρlλ|L=l_{\rho}+l_{\lambda},...,|l_{\rho}-l_{\lambda}|, and ML=mρ+mλM_{L}=m_{\rho}+m_{\lambda}, where (ni,li,mi(n_{i},l_{i},m_{i}) with i=ρi=\rho or λ\lambda are the principal, orbital, and magnetic quantum numbers, respectively. The internal momenta of the ρ\rho- and λ\lambda-oscillators, pρ\textbf{p}_{\rho} and pλ\textbf{p}_{\lambda}, are expressed as

𝐩ρ\displaystyle\mathbf{p}_{\rho} =\displaystyle= 22(p1p2),\displaystyle\frac{\sqrt{2}}{2}(\textbf{p}_{1}-\textbf{p}_{2})\,,
𝐩λ\displaystyle\mathbf{p}_{\lambda} =\displaystyle= 62m5(p1+p2)(m1+m2)p5m1+m2+m5,\displaystyle\frac{\sqrt{6}}{2}\frac{m_{5}(\textbf{p}_{1}+\textbf{p}_{2})-(m_{1}+m_{2})\textbf{p}_{5}}{m_{1}+m_{2}+m_{5}}\,, (21)

respectively.

In momentum space, ψnlm(p)\psi_{nlm}(\textbf{p}) is expressed by

ψnlm(p)=(i)l(1)n[2n!(n+l+1/2)!]1/21αl+3/2\displaystyle\psi_{nlm}(\textbf{p})=(i)^{l}(-1)^{n}\left[\frac{2n!}{(n+l+1/2)!}\right]^{1/2}\frac{1}{\alpha^{l+3/2}}
exp(p22α2)Lnl+1/2(p2/α2)𝒴lm(p),\displaystyle\mathrm{exp}\left(-\frac{\textbf{p}^{2}}{2\alpha^{2}}\right)L_{n}^{l+1/2}(\textbf{p}^{2}/\alpha^{2})\mathcal{Y}_{lm}(\textbf{p})\,, (22)

where the llth solid harmonic polynomial is defined as 𝒴lm(p)=|p|lYlm(𝐩^)\mathcal{Y}_{lm}(\textbf{p})=|\textbf{p}|^{l}Y_{lm}(\mathbf{\hat{p}}), and the oscillator parameter α\alpha can be either αρ\alpha_{\rho} or αλ\alpha_{\lambda}. For the Ω()\Omega^{(*)} wave function, we define ααρ=αλ\alpha\equiv\alpha_{\rho}=\alpha_{\lambda}. In this work, we use the α\alpha value obtained from single Gaussian fitting in Ref. Liu:2019wdr .

For Ωb\Omega_{b} baryon, the total wave function can be represented as

ΨΩb(𝐩ρ,𝐩λ)=ζΩbφΩbχszλψ000S(pρ,pλ),\displaystyle\Psi_{\Omega_{b}}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\zeta_{\Omega_{b}}\varphi_{\Omega_{b}}\chi^{\lambda}_{s_{z}}\psi_{000}^{S}(\textbf{p}_{\rho},\textbf{p}_{\lambda})\,, (23)

where ζΩb\zeta_{\Omega_{b}}, χSzλ\chi^{\lambda}_{S_{z}}, and ψ000S(pρ,pλ)\psi_{000}^{S}(\textbf{p}_{\rho},\textbf{p}_{\lambda}) represent the color, spin, and spatial wave functions, respectively. It is worth noting that in momentum space, we employ the simple harmonic oscillator wave functions to describe ψ000S(pρ,pλ)\psi_{000}^{S}(\textbf{p}_{\rho},\textbf{p}_{\lambda}), which is represented as

ψ000S(𝐩ρ,𝐩λ)=ψ000(𝐩ρ)ψ000(𝐩λ)\displaystyle\psi^{S}_{000}(\mathbf{p}_{\rho},\mathbf{p}_{\lambda})=\psi_{000}(\mathbf{p}_{\rho})\psi_{000}(\mathbf{p}_{\lambda}) (24)

where pρ\textbf{p}_{\rho} and pλ\textbf{p}_{\lambda} are the internal momenta of the ρ\rho- and λ\lambda-oscillators, respectively. It is worth mentioning that the parameter αλ\alpha_{\lambda} of Ωb\Omega_{b} wave function is given by αλ=[(3mb)/(2ms+mb)]1/4αρ\alpha_{\lambda}=[(3m_{b})/(2m_{s}+m_{b})]^{1/4}\alpha_{\rho} Wang:2017kfr ; Yao:2018jmc .

For the wave function of J/ψJ/\psi meson, which can be represented as

Ψ(p3,p4)=ζJ/ψφJ/ψχsz1ψ(p3,p4),\displaystyle\Psi(\textbf{p}^{\prime}_{3},\textbf{p}_{4})=\zeta_{J/\psi}\varphi_{J/\psi}\chi^{1}_{s_{z}}\psi(\textbf{p}^{\prime}_{3},\textbf{p}_{4})\,, (25)

where ζJ/ψ\zeta_{J/\psi} is the color wave function. φJ/ψ\varphi_{J/\psi}, χsz1\chi^{1}_{s_{z}}, and ψ(p3,p4)\psi(\textbf{p}^{\prime}_{3},\textbf{p}_{4}) represent the flavor, spin, and spatial wave functions, respectively, which are given as:

χ1,0,11=(,(+)/2,),\displaystyle\chi^{1}_{1,0,-1}=(\uparrow\uparrow,(\uparrow\downarrow+\downarrow\uparrow)/\sqrt{2},\downarrow\downarrow)\,, (26)
φJ/ψ=cc¯,\displaystyle\varphi_{J/\psi}=c\bar{c}\,,
ψ(p3,p4)=1π3/4β3/2exp[(p3p4)28β2].\displaystyle\psi(\textbf{p}^{\prime}_{3},\textbf{p}_{4})=\frac{1}{\pi^{3/4}\beta^{3/2}}\mathrm{exp}\left[-\frac{(\textbf{p}^{\prime}_{3}-\textbf{p}_{4})^{2}}{8\beta^{2}}\right]\,.

In Eq. (26), szs_{z} denotes the zz component of the J/ψJ/\psi spin and β\beta in ψ(p3,p4)\psi(\textbf{p}^{\prime}_{3},\textbf{p}_{4}) controls the width of Gaussian distribution in momentum space.

To convert (ΩbJ/ψΩ()){\cal M}(\Omega_{b}\to J/\psi\Omega^{(*)}) from Eqs. (17) and (18) into the decay width, we use the following equation:

Γ=8π2|q|EJ/ψEΩ()MΩb12JΩb+1Jiz,Jfz|Jiz,Jfz|2,\Gamma=8\pi^{2}\frac{|\textbf{q}|E_{J/\psi}E_{\Omega^{(*)}}}{M_{\Omega_{b}}}\frac{1}{2J_{\Omega_{b}}+1}\sum_{J_{i}^{z},J_{f}^{z}}|\mathcal{M}_{J_{i}^{z},J_{f}^{z}}|^{2}\,, (27)

which is applied in our numerical analysis. In Eq. (27), Jiz,Jfz\mathcal{M}_{J_{i}^{z},J_{f}^{z}} is the transition amplitude.

III Numerical results

For our numerical analysis, we adopt the CKM matrix elements and the masses of Ωb\Omega_{b} and J/ψJ/\psi from PDG pdg , while the quark masses are taken from Wang:2017kfr , as follows:

(Vcb,Vcs)=(0.042,0.987),\displaystyle(V_{cb},V_{cs})=(0.042,0.987)\,,
(mΩb,mΩ,mJ/ψ)=(6.046,1.672,3.0969)GeV,\displaystyle(m_{\Omega_{b}},m_{\Omega},m_{J/\psi})=(6.046,1.672,3.0969)~{\rm GeV}\,,
(ms,mc,mb)=(0.45,1.48,5.0)GeV.\displaystyle(m_{s},m_{c},m_{b})=(0.45,1.48,5.0)~{\rm GeV}\,. (28)

The lifetime of the Ωb\Omega_{b} state is also taken from PDG pdg : τΩb=1.64×1012s\tau_{\Omega_{b}}=1.64\times 10^{-12}s. The Wilson coefficient C2=0.365C_{2}=-0.365 is from Hsiao:2021mlp ; Ali:1998eb ; Hsiao:2014mua . For the harmonic oscillator parameters, we use (αλ,αρ)=(0.56,0.44)(\alpha_{\lambda},\alpha_{\rho})=(0.56,0.44) GeV for Ωb\Omega_{b} Zhong:2007gp , and β=0.50\beta=0.50 GeV for J/ψJ/\psi, as adopted in Barnes:2005pb ; Xiao:2018iez . For the ground-state and excited Ω\Omega hyperon states, the masses and the oscillator parameters α\alpha, calculated in Liu:2019wdr , are summarized in Table 3.

Table 3: Our results for ΩbJ/ψΩ()\Omega_{b}\to J/\psi\Omega^{(*)} using the constituent model, with the quantum numbers n2S+1JPn^{2S+1}J^{P} assigned to Ω()\Omega^{(*)}. The parameter α\alpha and the mass of Ω()\Omega^{(*)} MfM_{f} are both given in units of MeV; Γ\Gamma and {\cal B} are in units of 101710^{-17} GeV and 10410^{-4}, respectively.
Ω()\Omega^{(*)} hyperon α\alpha Liu:2019wdr MfM_{f} Liu:2019wdr Γ\Gamma \mathcal{B} (ΩbJ/ψΩ())(ΩbJ/ψΩ)\frac{{\cal B}(\Omega_{b}^{-}\to J/\psi\Omega^{(*)})}{{\cal B}(\Omega_{b}^{-}\to J/\psi\Omega^{-})}
Ω(14S32+)\Omega(1^{4}S_{\frac{3}{2}^{+}}) 440 1672 36 8.8 1.00
Ω(12P12)\Omega(1^{2}P_{\frac{1}{2}^{-}}) 428 1957 17 4.2 0.48
Ω(12P32)\Omega(1^{2}P_{\frac{3}{2}^{-}}) 411 2012 42 11 1.25
Ω(22S12+)\Omega(2^{2}S_{\frac{1}{2}^{+}}) 387 2232 18 4.5 0.51
Ω(24S32+)\Omega(2^{4}S_{\frac{3}{2}^{+}}) 381 2159 79 20 2.3
Ω(12D32+)\Omega(1^{2}D_{\frac{3}{2}^{+}}) 394 2245 7.5 1.9 0.22
Ω(12D52+)\Omega(1^{2}D_{\frac{5}{2}^{+}}) 380 2303 17 4.2 0.48
Ω(14D12+)\Omega(1^{4}D_{\frac{1}{2}^{+}}) 413 2141 9.3 2.3 0.26
Ω(14D32+)\Omega(1^{4}D_{\frac{3}{2}^{+}}) 399 2188 21 5.4 0.61
Ω(14D52+)\Omega(1^{4}D_{\frac{5}{2}^{+}}) 383 2252 29 7.2 0.81
Ω(14D72+)\Omega(1^{4}D_{\frac{7}{2}^{+}}) 367 2321 14 3.3 0.38

Utilizing the inputs above, we calculate (ΩbJ/ψΩ){\cal B}(\Omega_{b}\to J/\psi\Omega) to compare it with the previous studies. Specifically, the decay widths and branching fractions of possible ΩbJ/ψΩ()\Omega_{b}\to J/\psi\Omega^{(*)} are presented in Table 3. Additionally, we plot Γ(ΩbJ/ψΩ)\Gamma(\Omega_{b}\to J/\psi\Omega) as functions of the parameters α\alpha and β\beta in Fig. 2 and Γ(ΩbJ/ψΩ)\Gamma(\Omega_{b}\to J/\psi\Omega^{*}) as a function of mΩm_{\Omega^{*}} in Fig. 3.

Table 4: The branching fraction of ΩbJ/ψΩ\Omega_{b}\rightarrow J/\psi\Omega is expressed in units of 10410^{-4}, compared with results from different models.
Our work   Gutsche:2018utw   Fayyazuddin:2017sxq   Hsiao:2021mlp   Cheng:1996cs   Rui:2023fiz   Wang:2024mjw
8.8 8 0.45 5.3 16.7 6.90.00.3+0.5+1.0{}^{+0.5+1.0}_{-0.0-0.3} 6.91.7+2.4{}^{+2.4}_{-1.7}
Refer to caption
Figure 2: The decay width of ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega varies with the harmonic parameters α\alpha of Ω\Omega baryon and β\beta of J/ψJ/\psi meson.

IV Discussions and conclusion

The branching fraction of ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega, on the order of 10510310^{-5}-10^{-3}, indicates inconclusive calculations from Gutsche:2018utw ; Fayyazuddin:2017sxq ; Hsiao:2021mlp ; Cheng:1996cs ; Rui:2023fiz . On the other hand, the constituent quark model has been applied to Ωc0\Omega_{c}^{0} decays Wang:2022zja , where (Ωc0π+Ω(2012))/(Ωc0π+Ω)=0.21{\cal B}(\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-})/{\cal B}(\Omega_{c}^{0}\to\pi^{+}\Omega^{-})=0.21 agrees with the experimental value of 0.220±0.059±0.0350.220\pm 0.059\pm 0.035 Belle:2021gtf , suggesting its applicability to Ωb\Omega_{b} decays.

In the constituent quark model, we obtain (ΩbΩJ/ψ)=8.8×104\mathcal{B}(\Omega_{b}\rightarrow\Omega J/\psi)=8.8\times 10^{-4}, which agrees with the calculations using the light-front quark model Hsiao:2021mlp ; Wang:2024mjw , covariant confined quark model Gutsche:2018utw and the perturbative QCD approach Rui:2023fiz to the order of the magnitude, as displayed in Table 4. According to the partial observation pdg , fΩb(ΩbJ/ψΩ)=(1.40.4+0.5)×106\emph{f}_{\Omega_{b}}\mathcal{B}(\Omega_{b}\rightarrow J/\psi\Omega)=(1.4_{-0.4}^{+0.5})\times 10^{-6}, and with the branching fraction substituted by our result, we estimate the fragmentation fraction fΩb0.16×102{}_{\Omega_{b}}\simeq 0.16\times 10^{-2} Hsiao:2021mlp ; Hsiao:2015txa , which denotes the bΩbb\to\Omega_{b} production rate.

It should be pointed out that our calculation of ΩbΩJ/ψ\Omega_{b}\rightarrow\Omega J/\psi depends on α\alpha and β\beta. To test the sensitivity, we depict Γ(ΩbJ/ψΩ)\Gamma(\Omega_{b}\rightarrow J/\psi\Omega) as a function of α\alpha and β\beta, within the parameter space: 0.4GeV<α<0.5GeV0.4~{\rm GeV}<\alpha<0.5~{\rm GeV} and 0.48GeV<β<0.55GeV0.48~{\rm GeV}<\beta<0.55~{\rm GeV}. In Fig. 2, it can be seen that Γ(ΩbJ/ψΩ)\Gamma(\Omega_{b}\rightarrow J/\psi\Omega) is more sensitive to β\beta, varying from 3.0 to 4.2 times 101610^{-16} GeV. However, it remains close to the central value: 3.6×10163.6\times 10^{-16} GeV (see Table 3).

There are two excited 1P1P-wave Ω\Omega states in the Ω\Omega hyperon spectroscopy: Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) and Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}). It is interesting to note that the newly observed Ω(2012)\Omega(2012) state is more likely to be assigned to the latter: Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}), based on the fact that the measured mass and decay width are consistent with the quark model predictions Xiao:2018pwe ; Liu:2019wdr ; Aliev:2018yjo ; Aliev:2018syi ; Polyakov:2018mow .

Based on this assignment, we obtain (ΩbJ/ψΩ(2012))=1.1×103{\cal B}(\Omega_{b}\to J/\psi\Omega(2012))=1.1\times 10^{-3}. Specifically, (ΩbJ/ψΩ(2012))/(ΩbJ/ψΩ)1.3{\cal B}(\Omega_{b}\to J/\psi\Omega(2012))/{\cal B}(\Omega_{b}\to J/\psi\Omega)\simeq 1.3, which clearly avoids the uncertain fragmentation fraction fΩbf_{\Omega_{b}}, making it beneficial for experimental examination. In fact, Ω(2012)\Omega(2012) has been observed Belle:2018mqs and reconfirmed in Ωc0π+Ω(2012),Ω(2012)Ξ0K\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-},\Omega(2012)^{-}\to\Xi^{0}K^{-} Belle:2021gtf . Likewise, this can be reconfirmed from the resonant Ωb\Omega_{b} decays, such as ΩbJ/ψΩ(2012)\Omega_{b}\to J/\psi\Omega(2012), followed by the subsequent decay Ω(2012)Ξ0K\Omega(2012)\rightarrow\Xi^{0}K^{-}. In particular, Ω(2012)ΞK\Omega(2012)\to\Xi K has a branching fraction of around 90%90\% Zhong:2022cjx . The Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) is a typically missing Ω\Omega hyperon, with a predicted mass around 1950 MeV Engel:2013ig ; Capstick:1986ter ; Faustov:2015eba ; Liu:2019wdr . In our evaluation, (ΩbJ/ψΩ(12P1/2))=4.2×104{\cal B}(\Omega_{b}\to J/\psi\Omega(1^{2}P_{1/2^{-}}))=4.2\times 10^{-4} indicates that Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) has a smaller but compatible production rate to its 1P1P-wave cousin state.

Refer to caption
Figure 3: The decay widths of ΩbJ/ψΩ\Omega_{b}\rightarrow J/\psi\Omega^{*} as a function of MΩM_{\Omega^{*}}, with the range from the theoretical estimations.

In the quark model, the 1D1D-wave Ω\Omega^{*} hyperons are classified into the spin-doublet Ω(12D3/2+,12D5/2+)\Omega(1^{2}D_{3/2^{+}},1^{2}D_{5/2^{+}}) and the spin-quartet Ω(14D1/2+,14D3/2+,14D5/2+,14D7/2+)\Omega(1^{4}D_{1/2^{+}},1^{4}D_{3/2^{+}},1^{4}D_{5/2^{+}},1^{4}D_{7/2^{+}}), with masses evaluated to be around 2150 to 2250 MeV Liu:2019wdr ; Xiao:2018pwe ; Wang:2018hmi ; Wang:2022zja in the mass spectrum. However, these states have yet to be firmly established experimentally.

In accordance with the masses from Ref. Liu:2019wdr , we calculate ΩbJ/ψΩ(1D)\Omega_{b}\to J/\psi\Omega(1D). Our the results are listed in Table 3, where Ω(12D5/2+,14D3/2+,14D5/2+,14D7/2+)\Omega(1^{2}D_{5/2^{+}},1^{4}D_{3/2^{+}},1^{4}D_{5/2^{+}},1^{4}D_{7/2^{+}}) states have production rates to be 0.5, 0.6, 0.8, 0.4, respectively, relative to their ground-state counterpart. We highlight that (ΩbJ/ψΩ(14D5/2+))=7.2×104{\cal B}(\Omega_{b}\to J/\psi\Omega(1^{4}D_{5/2^{+}}))=7.2\times 10^{-4} is sufficiently large for a promising establishment of Ω(14D5/2+)\Omega(1^{4}D_{5/2^{+}}) through ΩbΩ(14D5/2+)J/ψ\Omega_{b}\to\Omega(1^{4}D_{5/2^{+}})J/\psi, followed by Ω(14D5/2+)Ξ(1530)0K\Omega(1^{4}D_{5/2^{+}})\to\Xi(1530)^{0}K^{-}, where (Ω(14D5/2+)Ξ(1530)K){\cal B}(\Omega(1^{4}D_{5/2^{+}})\to\Xi(1530)K) is as large as 80%80\% Liu:2019wdr ; Xiao:2018pwe .

As for the existing 2S2S-wave Ω\Omega^{*} hyperon states, Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) and Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}), we obtain (ΩbJ/ψΩ(22S1/2+,24S3/2+))=(4.5,20)×104{\cal B}(\Omega_{b}\to J/\psi\Omega(2^{2}S_{1/2^{+}},2^{4}S_{3/2^{+}}))=(4.5,20)\times 10^{-4}. Remarkably, in the current Ω\Omega spectroscopy studies, Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}) in ΩbJ/ψΩ\Omega_{b}\to J/\psi\Omega^{*} is the only one that can have a production rate larger than that of its ground state counterpart.

The constituent quark model relies on theoretical inputs from the Ω\Omega^{*} masses. Due to the nature of these theoretical estimations, the masses carry some uncertainties. Therefore, in Figs. 3, we depict the decay widths involving various excited Ω\Omega hyperons as functions of MΩM_{\Omega^{*}}, with the possible ranges determined by the model calculations. It is found that the predicted decay widths for both Ω(1P,1D)\Omega^{*}(1P,1D) and Ω(2S)\Omega^{*}(2S) are not sensitive to the uncertainties arising from the mass estimations.

In conclusion, we have calculated the sextet bb-baryon decays ΩbJ/ψΩ()\Omega_{b}\to J/\psi\Omega^{(*)} using the constituent quark model. We found that (ΩbJ/ψΩ)=8.8×104{\cal B}(\Omega_{b}\to J/\psi\Omega)=8.8\times 10^{-4}, which is consistent with the previous studies. With Ω(2012)\Omega(2012) identified as Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}), we found that (ΩbJ/ψΩ(2012))=1.1×103{\cal B}(\Omega_{b}\to J/\psi\Omega(2012))=1.1\times 10^{-3}, which is compatible with (ΩbJ/ψΩ){\cal B}(\Omega_{b}\to J/\psi\Omega). Additionally, the production rates of the Ω(12D5/2+,14D3/2+,14D5/2+,14D7/2+)\Omega(1^{2}D_{5/2^{+}},1^{4}D_{3/2^{+}},1^{4}D_{5/2^{+}},1^{4}D_{7/2^{+}}) states have been calculated to be 0.5, 0.6, 0.8, 0.4, respectively, relative to their ground-state counterpart. We also found that (ΩbJ/ψΩ(22S1/2+,24S3/2+))=(4.5,20)×104{\cal B}(\Omega_{b}\to J/\psi\Omega(2^{2}S_{1/2^{+}},2^{4}S_{3/2^{+}}))=(4.5,20)\times 10^{-4}, which is promising for measurement by LHCb. Since we have demonstrated that our calculations are insensitive to the parameter inputs and uncertainties arising from the Ω\Omega^{*} masses, this provides a suitable test-bed to investigate the Ω\Omega hyperon spectroscopy.

Acknowledgements

We are very grateful to the referee for pointing out the incorrect calculation of the color factor, and to Qiang Zhao and Di Wang for their very helpful discussions regarding the color factor. This work was supported by the National Natural Science Foundation of China (Grants No.12205026, No.12175065 and No.12235018), and Applied Basic Research Program of Shanxi Province, China under Grant No. 202103021223376. YKH was supported by NSFC (Grants No. 12175128 and No. 11675030). JW was supported by General Programs of Changzhi College.

References

  • (1) V. Crede and W. Roberts, Progress towards understanding baryon resonances, Rept. Prog. Phys. 76 (2013), 076301.
  • (2) H. Forkel and E. Klempt, Diquark correlations in baryon spectroscopy and holographic QCD, Phys. Lett. B 679 (2009), 77-80.
  • (3) E. Klempt and J. M. Richard, Baryon spectroscopy, Rev. Mod. Phys. 82 (2010), 1095-1153.
  • (4) S. Navas et al. [Particle Data Group], Review of particle physics, Phys. Rev. D 110 (2024), 030001.
  • (5) S. Capstick et al., Key issues in hadronic physics, arXiv:hep-ph/0012238 [hep-ph].
  • (6) J. Yelton et al. [Belle], Observation of an Excited Ω\Omega^{-} Baryon, Phys. Rev. Lett. 121 (2018), 052003.
  • (7) Y. Li et al. [Belle], Evidence for the decay Ωc0π+Ω(2012)π+(K¯Ξ)\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-}\to\pi^{+}(\bar{K}\Xi)^{-}, Phys. Rev. D 104 (2021), 052005.
  • (8) M. Ablikim et al. [BESIII], Evidence for Two Excited Ω\Omega^{-} Hyperons, arXiv:2411.11648 [hep-ex].
  • (9) L. Y. Xiao and X. H. Zhong, Possible interpretation of the newly observed Ω\Omega(2012) state, Phys. Rev. D 98 (2018), 034004.
  • (10) M. S. Liu, K. L. Wang, Q. F. Lü and X. H. Zhong, Ω\Omega baryon spectrum and their decays in a constituent quark model, Phys. Rev. D 101 (2020), 016002.
  • (11) Z. Y. Wang, L. C. Gui, Q. F. Lü, L. Y. Xiao and X. H. Zhong, Newly observed Ω(2012)\Omega(2012) state and strong decays of the low-lying Ω\Omega excitations, Phys. Rev. D 98 (2018), 114023.
  • (12) T. M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Nature of the Ω(2012)\Omega(2012) through its strong decays, Eur. Phys. J. C 78 (2018), 894.
  • (13) T. M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Interpretation of the newly discovered Ω\Omega(2012), Phys. Rev. D 98 (2018), 014031.
  • (14) A. J. Arifi, D. Suenaga, A. Hosaka and Y. Oh, Strong decays of multistrangeness baryon resonances in the quark model, Phys. Rev. D 105 (2022), 094006.
  • (15) M. V. Polyakov, H. D. Son, B. D. Sun and A. Tandogan, Ω(2012)\Omega(2012) through the looking glass of flavour SU(3), Phys. Lett. B 792 (2019), 315-319.
  • (16) C. H. Zeng, J. X. Lu, E. Wang, J. J. Xie and L. S. Geng, Theoretical study of the Ω(2012)\Omega(2012) state in the Ωc0π+Ω(2012)π+(K¯Ξ)\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-}\to\pi^{+}(\bar{K}\Xi)^{-} and π+(K¯Ξπ)\pi^{+}(\bar{K}\Xi\pi)^{-} decays, Phys. Rev. D 102 (2020), 076009.
  • (17) Y. Huang, M. Z. Liu, J. X. Lu, J. J. Xie and L. S. Geng, Strong decay modes K¯Ξ\bar{K}\Xi and K¯Ξπ\bar{K}\Xi\pi of the Ω(2012)\Omega(2012) in the K¯Ξ(1530)\bar{K}\Xi(1530) and ηΩ\eta\Omega molecular scenario, Phys. Rev. D 98 (2018), 076012.
  • (18) X. Hu and J. Ping, Analysis of Ω\Omega(2012) as a molecule in the chiral quark model, Phys. Rev. D 106 (2022), 054028.
  • (19) N. Ikeno, W. H. Liang, G. Toledo and E. Oset, Interpretation of the Ωcπ+Ω(2012)π+KΞ\Omega_{c}\rightarrow\pi^{+}\Omega(2012)\rightarrow\pi^{+}K\Xi relative to Ωcπ+KΞ\Omega_{c}\rightarrow\pi^{+}K\Xi from the Ω(2012)\Omega(2012) molecular perspective, Phys. Rev. D 106 (2022), 034022.
  • (20) Y. Lin, Y. H. Lin, F. Wang, B. Zou and B. S. Zou, Reanalysis of the newly observed Ω\Omega^{*} state in a hadronic molecule model, Phys. Rev. D 102 (2020), 074025.
  • (21) J. X. Lu, C. H. Zeng, E. Wang, J. J. Xie and L. S. Geng, Revisiting the Ω(2012)\Omega(2012) as a hadronic molecule and its strong decays, Eur. Phys. J. C 80 (2020), 361.
  • (22) N. Ikeno, G. Toledo and E. Oset, Molecular picture for the Ω(2012)\Omega(2012) revisited, Phys. Rev. D 101 (2020), 094016.
  • (23) J. M. Xie, M. Z. Liu and L. S. Geng, Ds0D_{s0}(2590) as a dominant cs¯c\bar{s} state with a small DKD^{*}K component, Phys. Rev. D 104 (2021), 094051.
  • (24) M. P. Valderrama, Ω(2012)\Omega(2012) as a hadronic molecule, Phys. Rev. D 98 (2018), 054009.
  • (25) R. Pavao and E. Oset, Coupled channels dynamics in the generation of the Ω(2012)\Omega(2012) resonance, Eur. Phys. J. C 78 (2018), 857.
  • (26) T. Gutsche and V. E. Lyubovitskij, Strong decays of the hadronic molecule Ω(2012)\Omega^{\ast}(2012), J. Phys. G 48 (2020), 025001.
  • (27) Y. Oh, Ξ\Xi and Ω\Omega baryons in the Skyrme model, Phys. Rev. D 75 (2007), 074002.
  • (28) S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, Phys. Rev. D 34 (1986), 2809-2835.
  • (29) R. N. Faustov and V. O. Galkin, Strange baryon spectroscopy in the relativistic quark model, Phys. Rev. D 92 (2015), 054005.
  • (30) U. Loring, B. C. Metsch and H. R. Petry, The Light baryon spectrum in a relativistic quark model with instanton induced quark forces: The Strange baryon spectrum, Eur. Phys. J. A 10 (2001), 447-486.
  • (31) J. Liu, R. D. McKeown and M. J. Ramsey-Musolf, Global Analysis of Nucleon Strange Form Factors at Low Q2Q^{2}, Phys. Rev. C 76 (2007), 025202.
  • (32) K. T. Chao, N. Isgur and G. Karl, Strangeness -2 and -3 Baryons in a Quark Model With Chromodynamics, Phys. Rev. D 23 (1981), 155.
  • (33) Y. Chen and B. Q. Ma, Light flavor baryon spectrum with higher order hyperfine interactions, Nucl. Phys. A 831 (2009), 1-21.
  • (34) C. S. An, B. C. Metsch and B. S. Zou, Mixing of the low-lying three- and five-quark Ω\Omega states with negative parity, Phys. Rev. C 87 (2013), 065207.
  • (35) C. S. Kalman, PP Wave Baryons in a Consistent Quark Model With Hyperfine Interactions, Phys. Rev. D 26 (1982), 2326.
  • (36) M. Pervin and W. Roberts, Strangeness -2 and -3 baryons in a constituent quark model, Phys. Rev. C 77 (2008), 025202.
  • (37) C. S. An and B. S. Zou, Low-lying Ω\Omega states with negative parity in an extended quark model with Nambu-Jona-Lasinio interaction, Phys. Rev. C 89 (2014), 055209.
  • (38) G. P. Engel et al. [BGR], QCD with Two Light Dynamical Chirally Improved Quarks: Baryons, Phys. Rev. D 87 (2013), 074504.
  • (39) J. Liang et al. [CLQCD], Spectrum and Bethe-Salpeter amplitudes of Ω\Omega baryons from lattice QCD, Chin. Phys. C 40 (2016), 041001.
  • (40) C. E. Carlson and C. D. Carone, Predictions for decays of radially excited baryons, Phys. Lett. B 484 (2000), 260-266.
  • (41) J. L. Goity, C. Schat and N. N. Scoccola, Analysis of the [56,2+] baryon masses in the 1/NcN_{c} expansion, Phys. Lett. B 564 (2003), 83-89.
  • (42) C. L. Schat, J. L. Goity and N. N. Scoccola, Masses of the 70- baryons in large NcN_{c} QCD, Phys. Rev. Lett. 88 (2002), 102002.
  • (43) N. Matagne and F. Stancu, Masses of [70, l+l^{+}] Baryons in the 1/NcN_{c} Expansion, Phys. Rev. D 74 (2006), 034014.
  • (44) R. Bijker, F. Iachello and A. Leviatan, Algebraic models of hadron structure. 2. Strange baryons, Annals Phys. 284 (2000), 89-133.
  • (45) T. M. Aliev, K. Azizi and H. Sundu, Radial Excitations of the Decuplet Baryons, Eur. Phys. J. C 77 (2017), 222.
  • (46) G. S. Abrams, R. A. Burnstein, G. R. Charlton, T. B. Day, B. Kehoe, B. Sechi-Zorn, G. A. Show, M. C. Whatley, G. Wolsky and G. B. Yodh, et al. Example of decay ΩΞ+π0\Omega^{-}\rightarrow\Xi^{-}+\pi^{0}, Phys. Rev. Lett. 13 (1964), 670-672.
  • (47) V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, E. L. Hart, N. Horwitz and P. V. C. Hough, et al. Observation of a Hyperon with Strangeness Minus Three, Phys. Rev. Lett. 12 (1964), 204-206.
  • (48) S. F. Biagi, M. Bourquin, R. M. Brown, H. J. Burckhart, C. Doré, P. Extermann, M. Gailloud, C. N. P. Gee, W. M. Gibson and R. J. Gray, et al. First Observation of Ω\Omega^{*} Resonances, Z. Phys. C 31 (1986), 33.
  • (49) D. Aston, N. Awaji, T. Bienz, F. Bird, J. D’Amore, W. Dunwoodie, R. Endorf, K. Fujii, H. Hayashii and S. Iwata, et al. Observation of Ω\Omega^{*-} Production in KpK^{-}p Interactions at 11-GeV/cc, Phys. Lett. B 194 (1987), 579-585.
  • (50) D. Aston, N. Awaji, T. Bienz, F. Bird, J. D’Amore, W. Dunwoodie, R. Endorf, K. Fujii, H. Hayashii and S. Iwata, et al. Observation of a New Ω\Omega^{*-} at 2.47-GeV/c2c^{2} in KpK^{-}p Interactions at 11-GeV/cc, Phys. Lett. B 215 (1988), 799-804.
  • (51) T. Aaltonen et al. [CDF], Observation of the Ωb\Omega_{b}^{-} and Measurement of the Properties of the Ξb\Xi_{b}^{-} and Ωb\Omega_{b}^{-}, Phys. Rev. D 80 (2009), 072003.
  • (52) V. M. Abazov et al. [DØ], Observation of the doubly strange bb baryon Ωb\Omega_{b}^{-}, Phys. Rev. Lett. 101 (2008), 232002.
  • (53) R. Aaij et al. [LHCb], Measurement of the Λb0\Lambda_{b}^{0}, Ξb\Xi_{b}^{-} and Ωb\Omega_{b}^{-} baryon masses, Phys. Rev. Lett. 110 (2013), 182001.
  • (54) T. A. Aaltonen et al. [CDF], Mass and lifetime measurements of bottom and charm baryons in pp¯p\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV, Phys. Rev. D 89 (2014), 072014.
  • (55) J. Nicolini [LHCb], Weak decays of heavy-quark baryons, arXiv:2305.15366 [hep-ex].
  • (56) R. Aaij et al. [LHCb], Measurement of the mass difference and relative production rate of the Ωb\Omega_{b}^{-} and Ξb\Xi_{b}^{-} baryons, Phys. Rev. D 108 (2023), 052008.
  • (57) C. Albajar et al. [UA1], First observation of the beauty baryon Λb\Lambda_{b} in the decay channel ΛbJ/ψΛ0\Lambda_{b}\to J/\psi\Lambda^{0} at the CERN proton anti-proton collider, Phys. Lett. B 273 (1991), 540-548.
  • (58) F. Abe et al. [CDF], Search for ΛbJ/ψΛ0\Lambda_{b}\to J/\psi\Lambda^{0} in pp¯p\bar{p} collisions at s=1.8\sqrt{s}=1.8 TeV, Phys. Rev. D 47 (1993), R2639-R2643.
  • (59) A. Abulencia et al. [CDF], Measurement of the Λb0\Lambda^{0}_{b} Lifetime in Λb0J/ψΛ0\Lambda^{0}_{b}\to J/\psi\Lambda^{0} in pp¯p\bar{p} Collisions at s\sqrt{s} = 1.96-TeV, Phys. Rev. Lett. 98 (2007), 122001.
  • (60) F. Abe et al. [CDF], Observation of Λb0J/ψΛ\Lambda_{b}^{0}\to J/\psi\Lambda at the Fermilab proton antiproton collider, Phys. Rev. D 55 (1997), 1142-1152.
  • (61) V. M. Abazov et al. [DØ], Measurement of the Λb0\Lambda_{b}^{0} lifetime in the decay Λb0J/ψΛ0\Lambda_{b}^{0}\to J/\psi\Lambda^{0} with the DØ detector, Phys. Rev. Lett. 94 (2005), 102001
  • (62) V. M. Abazov et al. [DØ], Measurement of the Λb\Lambda_{b} Lifetime in the Exclusive Decay ΛbJ/ψΛ\Lambda_{b}\to J/\psi\Lambda, Phys. Rev. Lett. 99 (2007), 142001
  • (63) V. M. Abazov et al. [DØ], Measurement of the production fraction times branching fraction f(bΛb)(ΛbJ/ψΛ)f(b\to\Lambda_{b})\cdot\mathcal{B}(\Lambda_{b}\to J/\psi\Lambda), Phys. Rev. D 84 (2011), 031102.
  • (64) V. M. Abazov et al. [DØ], Measurement of the Λb0\Lambda_{b}^{0} lifetime in the exclusive decay Λb0J/ψΛ0\Lambda_{b}^{0}\to J/\psi\Lambda^{0} in pp¯p\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV, Phys. Rev. D 85 (2012), 112003.
  • (65) R. Aaij et al. [LHCb], Measurements of the Λb0J/ψΛ\Lambda_{b}^{0}\to J/\psi\Lambda decay amplitudes and the Λb0\Lambda_{b}^{0} polarisation in pppp collisions at s=7\sqrt{s}=7 TeV, Phys. Lett. B 724 (2013), 27-35.
  • (66) G. Aad et al. [ATLAS], Measurement of the parity-violating asymmetry parameter αb\alpha_{b} and the helicity amplitudes for the decay Λb0J/ψ+Λ0\Lambda_{b}^{0}\to J/\psi+\Lambda^{0} with the ATLAS detector, Phys. Rev. D 89 (2014), 092009.
  • (67) A. M. Sirunyan et al. [CMS], Measurement of the Λb\Lambda_{b} polarization and angular parameters in ΛbJ/ψΛ\Lambda_{b}\to J/\psi\,\Lambda decays from pp collisions at s=\sqrt{s}= 7 and 8 TeV, Phys. Rev. D 97 (2018), 072010.
  • (68) R. Aaij et al. [LHCb], Measurement of the Λb0J/ψΛ\Lambda^{0}_{b}\rightarrow J/\psi\Lambda angular distribution and the Λb0\Lambda^{0}_{b} polarisation in pppp collisions, JHEP 06 (2020), 110.
  • (69) G. Aad et al. [ATLAS], Measurement of the branching ratio Γ(Λb0ψ(2S)Λ0)/Γ(Λb0J/ψΛ0)\Gamma(\Lambda_{b}^{0}\rightarrow\psi(2S)\Lambda^{0})/\Gamma(\Lambda_{b}^{0}\rightarrow J/\psi\Lambda^{0}) with the ATLAS detector, Phys. Lett. B 751 (2015), 63-80.
  • (70) R. Aaij et al. [LHCb], Measurement of the ratio of branching fractions of the decays Λb0ψ(2S)Λ\Lambda^{0}_{b}\to\psi(2S)\Lambda and Λb0J/ψΛ\Lambda^{0}_{b}\!\to J/\psi\Lambda, JHEP 03 (2019), 126.
  • (71) R. Aaij et al. [LHCb], Isospin amplitudes in Λb0J/ψΛ(Σ0)\Lambda_{b}^{0}\to J/\psi\Lambda(\Sigma^{0}) and Ξb0J/ψΞ0(Λ)\Xi_{b}^{0}\to J/\psi\Xi^{0}(\Lambda) decays, Phys. Rev. Lett. 124 (2020), 111802.
  • (72) V. M. Abazov et al. [DØ], Direct observation of the strange bb baryon Ξb\Xi_{b}^{-}, Phys. Rev. Lett. 99 (2007), 052001.
  • (73) H. Y. Cheng, Nonleptonic weak decays of bottom baryons, Phys. Rev. D 56 (1997), 2799-2811 [erratum: Phys. Rev. D 99 (2019), 079901].
  • (74) Fayyazuddin and Riazuddin, Two-body nonleptonic Λb\Lambda_{b} decays in quark model with factorization ansatz, Phys. Rev. D 58 (1998), 014016.
  • (75) L. Mott and W. Roberts, Rare dileptonic decays of Λb\Lambda_{b} in a quark model, Int. J. Mod. Phys. A 27 (2012), 1250016.
  • (76) H. Y. Cheng and B. Tseng, Phys. Rev. D 53 (1996), 1457 [erratum: Phys. Rev. D 55 (1997), 1697].
  • (77) T. Gutsche, M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, Nonleptonic two-body decays of single heavy baryons ΛQ\Lambda_{Q}, ΞQ\Xi_{Q}, and ΩQ\Omega_{Q} (Q=b,c)(Q=b,c) induced by WW emission in the covariant confined quark model, Phys. Rev. D 98 (2018), 074011.
  • (78) T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, V. V. Lyubushkin and P. Santorelli, Theoretical description of the decays ΛbΛ()(12±,32±)+J/ψ\Lambda_{b}\to\Lambda^{(\ast)}(\frac{1}{2}^{\pm},\frac{3}{2}^{\pm})+J/\psi, Phys. Rev. D 96 (2017), 013003.
  • (79) T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and P. Santorelli, Polarization effects in the cascade decay ΛbΛ(pπ)+J/ψ(l+l)\Lambda_{b}\rightarrow\Lambda(\rightarrow p\pi^{-})+J/\psi(\rightarrow l^{+}l^{-}) in the covariant confined quark model, Phys. Rev. D 88 (2013), 114018.
  • (80) T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and P. Santorelli, Towards an assessment of the ATLAS data on the branching ratio Γ(Λb0ψ(2S)0)/Γ(Λb0J/ψΛ0)\Gamma(\Lambda_{b}^{0}\rightarrow\psi(2S)^{0})/\Gamma(\Lambda_{b}^{0}\rightarrow J/\psi\Lambda^{0}), Phys. Rev. D 92 (2015), 114008.
  • (81) R. Mohanta, A. K. Giri, M. P. Khanna, M. Ishida, S. Ishida and M. Oda, Hadronic weak decays of Λb\Lambda_{b} baryon in the covariant oscillator quark model, Prog. Theor. Phys. 101 (1999), 959-969.
  • (82) M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and A. G. Rusetsky, Exclusive nonleptonic bottom to charm baryon decays including nonfactorizable contributions, Mod. Phys. Lett. A 13 (1998), 181-192.
  • (83) M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and A. G. Rusetsky, Exclusive nonleptonic decays of bottom and charm baryons in a relativistic three quark model: Evaluation of nonfactorizing diagrams, Phys. Rev. D 57 (1998), 5632-5652.
  • (84) Z. T. Wei, H. W. Ke and X. Q. Li, Evaluating decay Rates and Asymmetries of Λb\Lambda_{b} into Light Baryons in LFQM, Phys. Rev. D 80 (2009), 094016.
  • (85) J. Zhu, Z. T. Wei and H. W. Ke, Semileptonic and nonleptonic weak decays of Λb0\Lambda_{b}^{0}, Phys. Rev. D 99 (2019), 054020.
  • (86) Y. K. Hsiao and C. C. Lih, Fragmentation fraction fΩbf_{\Omega_{b}} and the ΩbΩJ/ψ\Omega_{b}\to\Omega J/\psi decay in the light-front formalism, Phys. Rev. D 105 (2022), 056015.
  • (87) Y. L. Wang, Y. K. Hsiao, K. L. Wang and C. C. Lih, Charmful two-body Ωb\Omega_{b} decays in the light-front quark model, Phys. Rev. D 111 (2025), 096013.
  • (88) C. H. Chou, H. H. Shih, S. C. Lee and H. n. Li, ΛbΛJ/ψ\Lambda_{b}\rightarrow\Lambda J/\psi decay in perturbative QCD, Phys. Rev. D 65 (2002), 074030.
  • (89) Z. Rui and Z. T. Zou, Charmonium decays of beauty baryons in the perturbative QCD approach, Phys. Rev. D 109 (2024), 033013.
  • (90) Y. K. Hsiao, P. Y. Lin, L. W. Luo and C. Q. Geng, Fragmentation fractions of two-body b-baryon decays, Phys. Lett. B 751 (2015), 127-130.
  • (91) Y. K. Hsiao, P. Y. Lin, C. C. Lih and C. Q. Geng, Charmful two-body anti-triplet bb-baryon decays, Phys. Rev. D 92 (2015), 114013.
  • (92) Fayyazuddin and M. J. Aslam, Hadronic weak decay b(12+)(12+,32+)+V\mathcal{B}_{b}(\frac{1}{2}^{+})\to\mathcal{B}(\frac{1}{2}^{+},\;\frac{3}{2}^{+})+V, Phys. Rev. D 95 (2017), 113002.
  • (93) A. Dery, M. Ghosh, Y. Grossman and S. Schacht, SU(3)F analysis for beauty baryon decays, JHEP 03 (2020), 165.
  • (94) P. Y. Niu, J. M. Richard, Q. Wang and Q. Zhao, Hadronic weak decays of Λc\Lambda_{c} in the quark model, Phys. Rev. D 102 (2020), 073005.
  • (95) P. Y. Niu, Q. Wang and Q. Zhao, The Cabibbo-favored hadronic weak decays of the Ξc\Xi_{c} in the quark model, [arXiv:2502.04099 [hep-ph]].
  • (96) K. L. Wang, Q. F. Lü, J. J. Xie and X. H. Zhong, Toward discovering the excited Ω\Omega baryons through nonleptonic weak decays of Ωc\Omega_{c}, Phys. Rev. D 107 (2023), 034015.
  • (97) P. Y. Niu, Q. Wang and Q. Zhao, Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826 (2022), 136916.
  • (98) P. Y. Niu, J. M. Richard, Q. Wang and Q. Zhao, Hyperon Weak Radiative Decay, Chin. Phys. C 45 (2021), 013101.
  • (99) M. Pervin, W. Roberts and S. Capstick, Semileptonic decays of heavy omega baryons in a quark model, Phys. Rev. C 74 (2006), 025205.
  • (100) M. Pervin, W. Roberts and S. Capstick, Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72 (2005), 035201.
  • (101) H. Y. Cheng, Charmed baryon physics circa 2021, Chin. J. Phys. 78 (2022), 324-362.
  • (102) G. Buchalla, A. J. Buras and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996), 1125-1144.
  • (103) T. Mannel and W. Roberts, Nonleptonic Λb\Lambda_{b} decays at colliders, Z. Phys. C 59 (1993), 179-182.
  • (104) A. J. Buras, J. M. Gerard and R. Ruckl, 1/n Expansion for Exclusive and Inclusive Charm Decays, Nucl. Phys. B 268 (1986), 16-48.
  • (105) B. Blok and M. A. Shifman, Nonfactorizable amplitudes in weak nonleptonic decays of heavy mesons, Nucl. Phys. B 389 (1993), 534-548.
  • (106) L. Y. Xiao and X. H. Zhong, Ξ\Xi baryon strong decays in a chiral quark model, Phys. Rev. D 87 (2013), 094002.
  • (107) K. L. Wang, Y. X. Yao, X. H. Zhong and Q. Zhao, Strong and radiative decays of the low-lying SS- and PP-wave singly heavy baryons, Phys. Rev. D 96 (2017), 116016.
  • (108) G. Karl and E. Obryk, On wave functions for three-body systems, Nucl. Phys. B 8 (1968), 609-621.
  • (109) Zhenping Li, Ph.D. thesis, University of Tennessee, 1991.
  • (110) Y. X. Yao, K. L. Wang and X. H. Zhong, Strong and radiative decays of the low-lying DD-wave singly heavy baryons, Phys. Rev. D 98 (2018), 076015.
  • (111) A. Ali, G. Kramer and C. D. Lu, Experimental tests of factorization in charmless nonleptonic two-body B decays, Phys. Rev. D 58 (1998), 094009.
  • (112) Y. K. Hsiao and C. Q. Geng, Direct CP violation in Λb\Lambda_{b} decays, Phys. Rev. D 91 (2015), 116007.
  • (113) X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008.
  • (114) T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72 (2005), 054026.
  • (115) L. Y. Xiao, X. Z. Weng, Q. F. Lü, X. H. Zhong and S. L. Zhu, A new decay mode of higher charmonium, Eur. Phys. J. C 78 (2018), 605.
  • (116) H. H. Zhong, R. H. Ni, M. Y. Chen, X. H. Zhong and J. J. Xie, Further study of within a chiral quark model, Chin. Phys. C 47 (2023), 063104.