This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exciton crystal melting and destruction by disorder in bilayer quantum hall system with total filling factor one

Zhengfei Hu and Kun Yang Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
(December 26, 2024)
Abstract

Bilayer quantum hall system with total filling factor 1 was studied in the regime of heavy layer imbalance in a recent transport experiment [Zeng2023, arXiv:2306.16995], with intriguing new findings. We demonstrate in this paper that 1) the exciton Wigner crystal in this regime can melt into a superfluid phase, giving rise to re-entrant superfluid behavior; 2) in the presence of disorder, electron and hole Wigner crystals in the two layers go through a locking/decoupling transition as layer separation increases, resulting in a sudden change in the counter flow conductance. Comparison will be made with the findings of experiments.

I Introduction

Bilayer quantum hall system with total filling factor ν1+ν2=1\nu_{1}+\nu_{2}=1 has been actively studied for several decades [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. The long-lasting interest in it is due to its extremely rich phase diagram and the fascinating physics associated with the novel phases and transitions among them, which is yet to be exhausted. A recent transport experiment [25] focused on a regime that is under-explored before, namely when the two layers are heavily imbalanced, such that Δν=ν1ν21\Delta\nu=\nu_{1}-\nu_{2}\lesssim 1, namely ν21\nu_{2}\ll 1 is the minority layer of electrons, and the hole filling factor in the majority layer 1 is 1ν1=ν21-\nu_{1}=\nu_{2}. The experiment observed an exciton superfluid-insulator transition predicted more than 20 years ago [10], and revealed some new surprises. The purpose of this work is to provide theoretical understandings of two of the new findings.

We start by briefly summarising the relevant observations and basic idea/conclusion of our theoretical work. The experimentalists pass a (drive) current through one of the layers, and measure the current and/or voltage response of the same as well as opposite layer; the latter corresponds to drag response [26]. Symmetric and antisymmetric combinations of these responses form normal and counter flow response functions; the latter is usually attributed to the flow of interlayer excitons which are bound pairs of electron in one layer and hole in the other, assuming they are present and dominate the counter flow transport channel. Bounding between electrons and hole results in the suppression of free charge carrier, and hence an insulating state of net in-plane charge transport. The excitons, on the other hand, may either condense to form a superfluid (SF), or crystallize and form an insulating Wigner crystal (WC) state. We will demonstrate that under appropriate conditions an exciton Wigner crystal may melt into a superfluid state, giving rise to re-entrant superfluid behavior in the counter flow channel seen in the experiment. We further demonstrate that presence of uncorrelated disorder potential in the two layers can disrupt the formation of the interlayer excitons, driving a transition between exciton Wigner crystal and decoupled electron and hole Wigner crystals in each layer. This transition manifests itself in some transport anomalies observed in the counterflow channel. It should be noted that, there could be other phase transitions, e.g., transition between decoupled fractional quantum hall phase and superfluid at Δν=1/3\Delta\nu=1/3 [27]. They will compete with the Wigner crystal phase when |Δν||\Delta\nu| goes away from 1.

The rest of the paper is organized as following. In Sec. II, we calculate the critical temperature of bilayer exciton superfluid using two previously established effective models [7, 10] at layer imbalance 1|Δν|11-|\Delta\nu|\ll 1, and demonstrate it is often higher than the melting temperature of exciton Wigner crystal. As a result the crystal melts into a superfluid when this is the case. In Sec. III we consider the interplay of disorder and interlayer coupling and analyze the competition between them. Clearly interlayer Coulomb coupling drives formation of interlayer excitons, while uncorrelated disorder favors formation of decoupled electron and hole Wigner crystals in each layer. By comparing the energy gains from exciton formation and uncorrelated electron and hole WC distortion in the two layers, we obtain the phase diagram of the system. Some concluding remarks are provided in Sec. IV.

Unless otherwise stated, magnetic length is assumed to be the length scale, i.e. lB=1l_{B}=1.

II Exciton superfluid and melting of Wigner crystal

We start by discussing the phases relevant to this section. It is well-established that single layer 2-dimensional electron gas forms a Wigner crystal at zero temperature for small ν\nu [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Putting two layers together and holding the total filling factor ν1+ν2=1\nu_{1}+\nu_{2}=1, the electron (in the minority layer 2) and hole (on the majority layer 1) Wigner crystals with identical structure lock into an exciton crystal [10], which may melt due to either quantum or thermal fluctuations. Comparisons between drag current versus drive current, and parallel flow versus counter flow conductance, indicate that the resulting zero temperature phase is indeed correlated between the two layers [25]. Electrons in one layer and holes in the other tend to bind and condense into an exciton superfluid when dd is small and 1|Δν|1-|\Delta\nu| is not too close to 1, and form an exciton Wigner crystal otherwise; see orange line of Figure 2 for schematic zero temperature phase diagram near Δν=1\Delta\nu=1. With increasing temperature the exciton Wigner crystal melts into a liquid. We find, surprisingly, that under appropriate conditions the resultant liquid state may be a superfluid.

To understand this we go back to zero temperature, where the exciton superfluid and Wigner crystal phases compete with each other. They are (most likely) separated by a 1st order phase boundary, allowing us to consider thermal effects on them at finite temperature separately. As discussed earlier the exciton Wigner crystal melts into a liquid at some melting temperature which we estimate below. The exciton superfluid, on the other hand, goes through a Kosterlitz-Thouless (KT) transition and becomes a normal fluid. If the superfluid critical (KT) temperature is lower than the melting temperature, we expect WC melts into a normal fluid which is the usual situation. If it turns out the KT temperature is higher than the melting temperature, we conclude that the WC melts into a superfluid instead, resulting in re-entrant superfluidity. The resultant (schematic) phase diagram takes the form of Figure 1. Our results compare favorably with those of [25].

To determine the phase diagram we start by calculating the superfluid stiffness which determines the KT temperature of the superfluid phase, and then compare it with the melting temperature of the WC.

II.1 Phase stiffness and Kosterlitz-Thouless temperature of exciton superfluid

When Δν\Delta\nu is fixed, the low temperature superfluid behavior can be described by an effective XY model. In this section we calculate the phase stiffness from two different models: spin 1/21/2 easy-plane ferromagnet [7] and dilute exciton [10]. Once the phase stiffness ρs\rho_{s} is obtained, critical temperature of SF is bounded by Tc=πρs2T_{c}=\frac{\pi\rho_{s}}{2}. It turns out in the vicinity of Δν=1\Delta\nu=1, two models lead to the same result. Let Q2=e2/(4πϵ)Q^{2}=e^{2}/(4\pi\epsilon) for simplicity.

II.1.1 spin-1/2 easy-plane ferromagnet

To begin with, we setup the notations here. Let ν1=ν=1δ,ν2=ν=δ\nu_{1}=\nu_{\uparrow}=1-\delta,\nu_{2}=\nu_{\downarrow}=\delta, we have Δν=(12δ)=cosθ=2(SS)=mz\Delta\nu=(1-2\delta)=\cos\theta=2(S_{\uparrow}-S_{\downarrow})=m^{z} and δ=1Δν2=sin2(θ/2)\delta=\frac{1-\Delta\nu}{2}=\sin^{2}(\theta/2), density of electron in one layer

n=δ/2π=sin2(θ/2)/2πn=\delta/2\pi=\sin^{2}(\theta/2)/2\pi (1)

The gradient energy density of xy components of local spin is

ρE2[(mx)2+(my)2],\frac{\rho_{E}}{2}[(\nabla m^{x})^{2}+(\nabla m^{y})^{2}], (2)

where ρE=ν32π20VkEh(k)k3dk\rho_{E}=-\frac{\nu}{32\pi^{2}}\int_{0}^{\infty}V_{k}^{E}h(k)k^{3}\mathrm{d}k, and VkE=VkAekd,VkA=2πQ2kV_{k}^{E}=V_{k}^{A}e^{-kd},V_{k}^{A}=\frac{2\pi Q^{2}}{k} are fourier transforms of intralayer Coulomb potential and interlayer Coulomb potential respectively [7] . h(k)=ν2πd2r(g(r)1)exp(i𝐤𝐫)h(k)=\frac{\nu}{2\pi}\int\mathrm{d}^{2}r(g(r)-1)\exp(-i\mathbf{k}\cdot\mathbf{r}) and g(r)=c(𝐫)c(0)g(r)=\langle c^{{\dagger}}(\mathbf{r})c(0)\rangle are particle-hole correlation of Laughlin function in momentum space and real space.

For ν=1\nu=1, g(r)=exp(r2)g(r)=\exp(-r^{2}) and h(k)=exp(|k|22)h(k)=-\exp(-\frac{|k|^{2}}{2}), hence we have

ρE=Q216π[dπ2(d2+1)ed22erfc(d/2)]Q2f(d)16π,\rho_{E}=-\frac{Q^{2}}{16\pi}\left[d-\sqrt{\frac{\pi}{2}}(d^{2}+1)e^{\frac{d^{2}}{2}}\operatorname{erfc}\left(d/\sqrt{2}\right)\right]\equiv\frac{Q^{2}f(d)}{16\pi}, (3)

where dd is the interlayer spacing, f(d)=π2(d2+1)ed22erfc(d/2)df(d)=\sqrt{\frac{\pi}{2}}(d^{2}+1)e^{\frac{d^{2}}{2}}\text{erfc}\left(d/\sqrt{2}\right)-d and erfc(x)=1erf(x)\operatorname{erfc}(x)=1-\operatorname{erf}(x) is the complementary error function.

After we obtain ρE\rho_{E}, phase stiffness of XY spin is ρs=ρEsin2θ\rho_{s}=\rho_{E}\sin^{2}\theta

ρsXY=Q2f(d)4πsin2(θ)4=Q2f(d)8π1(Δν)22,\rho_{s}^{\operatorname{XY}}=\frac{Q^{2}f(d)}{4\pi}\frac{\sin^{2}(\theta)}{4}=\frac{Q^{2}f(d)}{8\pi}\frac{1-(\Delta\nu)^{2}}{2}, (4)

and the critical temperature TKTπ2ρsT_{\mathrm{KT}}\lesssim\frac{\pi}{2}\rho_{s}.

II.1.2 Dilute dipolar exciton

From [10] inverse effective mass of exciton is

m(d)1=Q220x2exdx2/2dx=Q22(π2(d2+1)ed22erfc(d/2)d)=Q22f(d)m(d)^{-1}=\frac{Q^{2}}{2}\int_{0}^{\infty}x^{2}\mathrm{e}^{-xd-x^{2}/2}\mathrm{d}x=\frac{Q^{2}}{2}\left(\sqrt{\frac{\pi}{2}}(d^{2}+1)e^{\frac{d^{2}}{2}}\text{erfc}\left(d/\sqrt{2}\right)-d\right)=\frac{Q^{2}}{2}f(d) (5)

Boson spectrum given by Bogoliubov theory (see e.g. chap18 of [45]) is

E𝐤=ϵ𝐤2+2nV~q=0ϵ𝐤k02nV~0ϵ𝐤=vsk,E_{\mathbf{k}}=\sqrt{\epsilon_{\mathbf{k}}^{2}+2n\tilde{V}_{q=0}\epsilon_{\mathbf{k}}}\xrightarrow{k\rightarrow 0}\sqrt{2n\tilde{V}_{0}\epsilon_{\mathbf{k}}}=\hbar v_{s}k, (6)

where the effective interaction V~k=2ΔVk2N𝐪ΔVqeq2/2,ΔV=VAVE\tilde{V}_{k}=2\Delta V_{k}-\frac{2}{N}\sum_{\mathbf{q}}\Delta V_{q}e^{-q^{2}/2},\Delta V=V^{A}-V^{E} [10]. The Goldstone mode velocity vs=nV~0mv_{s}=\sqrt{\frac{n\tilde{V}_{0}}{m}} is also reported in [10].

Thereafter superfluid phase stiffness ρs=nm\rho_{s}=\frac{n}{m} can be obtained from n𝐯s=ρsθn\mathbf{v}_{s}=\rho_{s}\nabla\theta and 𝐯s=θ/m\mathbf{v}_{s}=\nabla\theta/m where nn is given in (1).

ρsexciton=Q2f(d)4πsin2θ2=Q2f(d)8π(1Δν),\rho_{s}^{\operatorname{exciton}}=\frac{Q^{2}f(d)}{4\pi}\sin^{2}\frac{\theta}{2}=\frac{Q^{2}f(d)}{8\pi}(1-\Delta\nu), (7)

This expression of superfluid density coincides with the result (4) when Δν1\Delta\nu\rightarrow 1 (or θ0\theta\rightarrow 0) since 1(Δν)22=1Δν(1Δν)2/21Δν\frac{1-(\Delta\nu)^{2}}{2}=1-\Delta\nu-(1-\Delta\nu)^{2}/2\simeq 1-\Delta\nu.

We will stick to Equation 7 and use TKT=πρsexciton/2T_{\mathrm{KT}}=\pi\rho_{s}^{\operatorname{exciton}}/2 as our estimate of KT temperature

tKTTKT/Q2=f(d)16(1Δν),t_{\mathrm{KT}}\equiv T_{\mathrm{KT}}/Q^{2}=\frac{f(d)}{16}(1-\Delta\nu), (8)

II.2 Melting temperature of exciton Wigner crystal and phase diagrams

In this subsection we compare melting temperature of exciton Wigner crystal, TmT_{m}, with the KT temperature estimated above, and determine the finite temperature phase diagram of the system.

The melting temperature of classical exciton Wigner crystal was reported to be Tm0.0907d2Q2a3T_{m}\approx 0.0907\frac{d^{2}Q^{2}}{a^{3}} [46, 47]. Relation a=[38π(1Δν)]1/2a=[\frac{\sqrt{3}}{8\pi}(1-\Delta\nu)]^{-1/2} can obtained from 1Δν2=ne1/2π\frac{1-\Delta\nu}{2}=\frac{n_{e}}{1/2\pi} where ne=2/(3a2)n_{e}=2/(\sqrt{3}a^{2}). We then have dimensionless temperatures

tm=0.0907d2[38π(1Δν)]3/2t_{m}=0.0907d^{2}[\frac{\sqrt{3}}{8\pi}(1-\Delta\nu)]^{3/2} (9)

where tm=Tm/Q2t_{m}=T_{m}/Q^{2}. Compare Equation 9 with Equation 8, we are able to determine the finite temperature phase diagrams Figure 1 for two different situations, both of which are included in the zero temperature phase diagram Figure 2. Two situations are separated by dc2d_{c}\simeq 2. When d>dcd>d_{c} the Wigner crystal could melt into either superfluid or normal liquid, otherwise it only melts into superfluid. In the dilute limit 1Δν11-\Delta\nu\ll 1, the exciton Wigner crystal always melts into a superfluid phase since tm<tKTt_{m}<t_{\mathrm{KT}} is always true.

Treating WC as classical leads to an overestimation of TmT_{m}, because quantum fluctuation tends to lower TmT_{m} as well. Since our goal is to demonstrate the possibility of Tm<TKTT_{m}<T_{\mathrm{KT}}, they are justified, and does not change the phase diagram qualitatively. A more serious issue is neglecting the effects of disorder, which are very important when Δν1\Delta\nu\rightarrow 1, where the excitons are destroyed. This is the focus of the next section. The resultant phase there is a single-layer integer quantum Hall state, which dominates the experimental phase diagram there. One should keep this in mind when comparing with the theoretical phase diagrams in this section obtained without taking these into account.

Refer to caption
(a)
Refer to caption
(b)
Figure 1: Finite temperature phase diagrams near Δν=1\Delta\nu=1 based on Equations 8 and 9. The green dashed line is the natural extension of the zero temperature phase boundary between exciton superfluid and Wigner crystal phases. Blue line is the superfluid KT temperature. Orange line is the melting curve of exciton Wigner crystal. (a) Case with d>dc2d>d_{c}\simeq 2 in which the exciton Wigner crystal can melt into either superfluid or normal liquid, depending on Δν\Delta\nu. (b) Case with d<dcd<d_{c} where the exciton Wigner crystal can only melt into a superfluid. It should be noted that region far from Δν=1\Delta\nu=1 shall not be taken too literally.
Refer to caption
Figure 2: Schematic zero temperature phase diagrams near Δν=1\Delta\nu=1. Orange region denotes the superfluid phase which, due to disorder, terminates before Δν=1\Delta\nu=1 is reached. Orange solid line is the schematic zero temperature phase boundary between superfluid and Wigner crystal. Blue and blank region are both Wigner crystal at zero temperature, while the blue one melts into superfluid with increasing temperature and the blank one melts into normal liquid (see the arrows in the right panel). The blue dashed line is obtained by equating Equation 9 with Equation 8. The red dotted line marked by d=0.6d^{\ast}=0.6, reported in [10], is obtained by comparing correlation energy per exciton in superfluid phase and kinetic energy in crystal phase, above which superfluid phase is unfavored.

III Locking-decoupling transition of bilayer Wigner crystal

In the previous section we discussed various phases interlayer excitons can form, and neglected the effects of disorder. Ref. [25] finds a single layer integer quantum Hall state when Δν\Delta\nu is very close to 1, in which the two layers are essentially decoupled. They also report evidence of a transition into the exciton Wigner crystal phase discussed above. We argue below the existence of the decoupled phase is stabilized by disorder, which also drives the transition. In the absence of disorder potential, the electron and hole WCs in the two layers always align themselves with each other to minimize the Coulomb energy, resulting in the exciton WC [10]. On the other hand, disorder potential, which is different in the two layers (assumed to be uncorrelated for simplicity), distorts the two WCs in uncorrelated ways, which tends to disrupt the formation of excitons and decouple the two layers. By comparing the energy gain and loss between disorder potential energy and interlayer Coulomb energy, we are able to obtain the transition line for the two layers to become locked/decoupled.

III.1 Disorder potential energy

We introduce the Gaussian white noise random potential Vi(𝐫)V_{i}(\mathbf{r}) that is uncorrelated between the two layers:

Vi(𝐫)Vj(𝐫)=Δ2δ(𝐫𝐫)δij,\langle V_{i}(\mathbf{r})V_{j}(\mathbf{r^{\prime}})\rangle=\Delta^{2}\delta(\mathbf{r-r^{\prime}})\delta_{ij}, (10)

where i,j=1,2i,j=1,2 are layer indices. Pinning length RR of 2d Wigner crystal, defined as [u(0)u(R)]2a2\langle[u(0)-u(R)]^{2}\rangle\simeq a^{2} where aa is the lattice constant and u(R)u(R) is the field of lattice distortion, is given by balancing the energy gain of random potential and energy cost of lattice distortion [48, 49]

RneΔ=ca2,Rn_{e}\Delta=ca^{2}, (11)

where ne=1/(Aca2),Ac=3/2n_{e}=1/(A_{c}a^{2}),A_{c}=\sqrt{3}/2 is the density of electron, cc is the shear modulus. Left and right hand sides of this equation stand respectively for random potential energy gain and elastic energy cost due to lattice distortion. Since this amount of energy is for a region of linear size RR, dividing by R2R^{2} we obtain the density of random potential energy (for convenience in density comparison we keep one factor of nen_{e} here)

εr=RneΔR2=neΔ2cAca4.\varepsilon_{r}=\frac{Rn_{e}\Delta}{R^{2}}=\frac{n_{e}\Delta^{2}}{cA_{c}a^{4}}. (12)

For single layer Wigner crystal of electron-type interaction and dipole-type interaction we simply take the shear modulus from [50]

c1(da)2.5D2a5dipolec2=0.3Q2a3charge\begin{array}[]{ll}c_{1}(d\lesssim a)\approx 2.5\frac{D^{2}}{a^{5}}&\operatorname{dipole}\\ c_{2}=0.3\frac{Q^{2}}{a^{3}}&\operatorname{charge}\end{array} (13)

where Q2=e24πϵ,D2=e2d24πϵQ^{2}=\frac{e^{2}}{4\pi\epsilon},D^{2}=\frac{e^{2}d^{2}}{4\pi\epsilon}. Transition from coupled to decoupled picture lowers the disorder potential energy (density) by

Δεr=2neΔ2c1Aca4ne(2Δ)2c2Aca4=2neΔ2Aca4(1c11c2),\Delta\varepsilon_{r}=\frac{2n_{e}\Delta^{2}}{c_{1}A_{c}a^{4}}-\frac{n_{e}\left(\sqrt{2}\Delta\right)^{2}}{c_{2}A_{c}a^{4}}=\frac{2n_{e}\Delta^{2}}{A_{c}a^{4}}\left(\frac{1}{c_{1}}-\frac{1}{c_{2}}\right), (14)

where 2Δ\sqrt{2}\Delta is the effective random potential strength seen by the bilayer (since V(𝐫)=V1(𝐫)+V2(𝐫)V(\mathbf{r})=V_{1}(\mathbf{r})+V_{2}(\mathbf{r}) has V(𝐫)V(𝐫)=2Δ2δ(𝐫𝐫)\langle V(\mathbf{r})V(\mathbf{r^{\prime}})\rangle=2\Delta^{2}\delta(\mathbf{r}-\mathbf{r^{\prime}})). On the other hand, in dd\rightarrow\infty the interlayer Coulomb energy is diminished and what we have is merely two copies of single layer Wigner crystal. Therefore c1()=2c2c_{1}(\infty)=2c_{2}. In this limit ΔEr\Delta E_{r} is exactly half of that for individual pinning. In practice for a specific dd in experiments, the effective spacing d/ad/a has an upper bound d/2d/\sqrt{2}, which is generally smaller than 1 (see below). For such considerations, we will simply take the dipole approximation c1=2.5D2/a5c_{1}=2.5D^{2}/a^{5}.

Δεr=2neΔ2AcQ2a(10.312.5d2/a2)=qneQ2a(10.312.5d2/a2),\Delta\varepsilon_{r}=\frac{2n_{e}\Delta^{2}}{A_{c}Q^{2}a}\left(\frac{1}{0.3}-\frac{1}{2.5d^{2}/a^{2}}\right)=q\frac{n_{e}Q^{2}}{a}\left(\frac{1}{0.3}-\frac{1}{2.5d^{2}/a^{2}}\right), (15)

where

q=2Δ2AcQ4=4Δ23Q4q=\frac{2\Delta^{2}}{A_{c}Q^{4}}=\frac{4\Delta^{2}}{\sqrt{3}Q^{4}} (16)

is the dimensionless random potential strength.

III.2 Interlayer correlation energy cost

As we demonstrated above, the system can lower the disorder potential energy by distorting the electron and hole WCs in the two layers independently, compared to that of the exciton WC. Doing that, however, decouples the two layers and destroy the excitons, resulting in an increase in the interlayer Coulomb interaction energy. In this subsection we calculate this energy cost.

In this subsection we let Q2a\frac{Q^{2}}{a} be energy scale and aa, the lattice constant of 2d triangular lattice, be length scale. We are evaluating the interlayer correlation energy difference of Wigner crystal vs. homogeneous electron gas (since random relative distribution of charges in one layer is seen on average as homogeneous gas of charge by the other layer), i.e.

ΔEe=d𝐫[g1(𝐫)g2(𝐫)]1r2+d2=d𝐫[iδ(𝐫𝐑i)1/Ac]1r2+d2,\Delta E_{e}=\int\mathrm{d}\mathbf{r}[g_{1}(\mathbf{r})-g_{2}(\mathbf{r})]\frac{-1}{\sqrt{r^{2}+d^{2}}}=\int\mathrm{d}\mathbf{r}\left[\sum_{i}\delta(\mathbf{r}-\mathbf{R}_{i})-1/A_{c}\right]\frac{1}{\sqrt{r^{2}+d^{2}}}, (17)

where g1(𝐫)=1/Ac,g2(𝐫)=iδ(𝐫𝐑i)g_{1}(\mathbf{r})=1/A_{c},g_{2}(\mathbf{r})=\sum_{i}\delta(\mathbf{r}-\mathbf{R}_{i}), Ac=3/2A_{c}=\sqrt{3}/2 is the area of unit cell. Compared with Equation 15, a transition between locked/decoupled phase will be determined.

In the small dd limit, apart from a divergent 1/d1/d term, this energy difference is the classic problem of static energy of 2d Wigner crystal. That is (see e.g. [51, 52])

limd0[ΔEe(d)1/d]=4.213423,\lim_{d\rightarrow 0}[\Delta E_{e}(d)-1/d]=-4.213423, (18)

We now calculate this energy difference for general dd. Let ΔEe=E0+E1+E2\Delta E_{e}=E_{0}+E_{1}+E_{2}, where E0=1/dE_{0}=1/d and

E1=1π(0π+π)dtt1/2etdetRi2E11+E12E2=1Acd𝐫e2r2+d2=1πAc0dtd𝐫etr2etd2t1/2=πAc0dtt3/2etd2=πAc0πdtt3/2etd22Ac(eπd2πderfc(πd))\begin{array}[]{ccl}E_{1}&=&\frac{1}{\sqrt{\pi}}\left(\int_{0}^{\pi}+\int_{\pi}^{\infty}\right)\mathrm{d}tt^{-1/2}\mathrm{e}^{-td}\sum^{\prime}\mathrm{e}^{-tR_{i}^{2}}\equiv E_{11}+E_{12}\\ E_{2}&=&-\frac{1}{A_{c}}\int\mathrm{d}\mathbf{r}\frac{e^{2}}{\sqrt{r^{2}+d^{2}}}=-\frac{1}{\sqrt{\pi}A_{c}}\int_{0}^{\infty}\mathrm{d}t\int\mathrm{d}\mathbf{r}\mathrm{e}^{-tr^{2}}\mathrm{e}^{-td^{2}}t^{-1/2}=-\frac{\sqrt{\pi}}{A_{c}}\int_{0}^{\infty}\mathrm{d}tt^{-3/2}\mathrm{e}^{-td^{2}}\\ &=&-\frac{\sqrt{\pi}}{A_{c}}\int_{0}^{\pi}\mathrm{d}tt^{-3/2}\mathrm{e}^{-td^{2}}-\frac{2}{A_{c}}\left(e^{-\pi d^{2}}-\pi d\text{erfc}\left(\sqrt{\pi}d\right)\right)\end{array} (19)

where Γ(n)zn=0tn1eztdt\Gamma(n)z^{-n}=\int_{0}^{\infty}t^{n-1}\mathrm{e}^{-zt}\mathrm{d}t is used in rewriting 1/d2+r2=1π0t1/2et(d2+r2)dt1/\sqrt{d^{2}+r^{2}}=\frac{1}{\sqrt{\pi}}\int_{0}^{\infty}t^{-1/2}\mathrm{e}^{-t(d^{2}+r^{2})}\mathrm{d}t, and ππdtt3/2etd2=2π(eπd2πderfc(πd))\sqrt{\pi}\int_{\pi}^{\infty}\mathrm{d}tt^{-3/2}\mathrm{e}^{-td^{2}}=\frac{2}{\sqrt{\pi}}\left(e^{-\pi d^{2}}-\pi d\text{erfc}\left(\sqrt{\pi}d\right)\right). \sum^{\prime} stands for the summation excluding Ri=0R_{i}=0.

Let t=πxt=\pi x, we have

E12=1dxx1/2eπx(d2+Ri2)=erfc[π(d2+Ri2)]/(d2+Ri2),E_{12}=\int_{1}^{\infty}\mathrm{d}xx^{-1/2}\sum\nolimits^{\prime}\mathrm{e}^{-\pi x(d^{2}+R_{i}^{2})}=\sum\nolimits^{\prime}\operatorname{erfc}\left[\sqrt{\pi(d^{2}+R_{i}^{2})}\right]/\sqrt{(d^{2}+R_{i}^{2})}, (20)

where 1x1/2eπxa2dx=erfc(πa)/a\int_{1}^{\infty}x^{-1/2}\mathrm{e}^{-\pi xa^{2}}\mathrm{d}x=\operatorname{erfc}\left(\sqrt{\pi}a\right)/a is utilized. To calculate E11E_{11} we first complete it with a Ri=0R_{i}=0 term

E11=1π0πdtt1/2etd2ΘΓ(t/π)1π0πt1/2etd2dt=πAc0πdtt3/2etd2ΘΓ(π/t)erf(πd)/d=1Ac1dxx1/2eπd2/xeπxKi2erf(πd)/d+πAc0πdtt3/2etd2\begin{array}[]{ccl}E_{11}&=&\frac{1}{\sqrt{\pi}}\int_{0}^{\pi}\mathrm{d}tt^{-1/2}\mathrm{e}^{-td^{2}}\Theta_{\Gamma}(t/\pi)-\frac{1}{\sqrt{\pi}}\int_{0}^{\pi}t^{-1/2}\mathrm{e}^{-td^{2}}\mathrm{d}t\\ &=&\frac{\sqrt{\pi}}{A_{c}}\int_{0}^{\pi}\mathrm{d}tt^{-3/2}\mathrm{e}^{-td^{2}}\Theta_{\Gamma^{\prime}}(\pi/t)-\operatorname{erf}\left(\sqrt{\pi}d\right)/d\\ &=&\frac{1}{A_{c}}\int_{1}^{\infty}\mathrm{d}xx^{-1/2}\mathrm{e}^{-\pi d^{2}/x}\sum^{\prime}\mathrm{e}^{-\pi xK_{i}^{2}}-\operatorname{erf}\left(\sqrt{\pi}d\right)/d+\frac{\sqrt{\pi}}{A_{c}}\int_{0}^{\pi}\mathrm{d}tt^{-3/2}\mathrm{e}^{-td^{2}}\end{array} (21)

with ΘΓ(t)𝐑iΓeπtRi2,Γ\Theta_{\Gamma}(t)\equiv\sum_{\mathbf{R}_{i}\in\Gamma}\mathrm{e}^{-\pi tR_{i}^{2}},\Gamma being a lattice. From first line to second line we used 01t1/2eπtd2dt=erf(aπ)/a\int_{0}^{1}t^{-1/2}\mathrm{e}^{-\pi td^{2}}\mathrm{d}t=\operatorname{erf}\left(a\sqrt{\pi}\right)/a and ΘΓ(t)=tn/2v(Γ)1ΘΓ(1/t)\Theta_{\Gamma}(t)=t^{-n/2}v(\Gamma)^{-1}\Theta_{\Gamma^{\prime}}(1/t), where Γ\Gamma^{\prime} is the dual of lattice Γ\Gamma, v(Γ)v(\Gamma) is the measure of unit cell of Γ\Gamma and nn is dimension of the lattice Γ\Gamma (see e.g. pg. 115 of [53]); from second line to third line, points of dual lattice are denoted as 𝐊i\mathbf{K}_{i} and we let t=π/xt=\pi/x for all Ki|𝐊i|0K_{i}\equiv|\mathbf{K}_{i}|\neq 0 terms. Note that the very last divergent term in E11E_{11} cancel the divergent part of E2E_{2}.

Since

1dxx1/2eπ(d2/x+Ki2x)=e2πdKi(1+erf[π(dKi)])+e2πdKi(1erf[π(d+Ki)])2Kiϕ1/2(d,Ki)\begin{array}[]{ccl}\int_{1}^{\infty}\mathrm{d}xx^{-1/2}\mathrm{e}^{-\pi(d^{2}/x+K_{i}^{2}x)}&=&\frac{\mathrm{e}^{-2\pi dK_{i}}\left(1+\operatorname{erf}\left[\sqrt{\pi}(d-K_{i})\right]\right)+\mathrm{e}^{2\pi dK_{i}}\left(1-\operatorname{erf}\left[\sqrt{\pi}(d+K_{i})\right]\right)}{2K_{i}}\\ &\equiv&\phi_{-1/2}(d,K_{i})\end{array} (22)

we have

E1+E2=erf(πd)d2Ac(eπd2πderfc(πd))+erfc[π(d2+Ri2)]d2+Ri2+1Acϕ1/2(d,Ki)\begin{array}[]{ccl}E_{1}+E_{2}&=&-\frac{\operatorname{erf}\left(\sqrt{\pi}d\right)}{d}-\frac{2}{A_{c}}\left(e^{-\pi d^{2}}-\pi d\text{erfc}\left(\sqrt{\pi}d\right)\right)\\ &&+\sum^{\prime}\frac{\operatorname{erfc}\left[\sqrt{\pi(d^{2}+R_{i}^{2})}\right]}{\sqrt{d^{2}+R_{i}^{2}}}+\frac{1}{A_{c}}\sum^{\prime}\phi_{-1/2}(d,K_{i})\end{array} (23)

For a sanity check, let d0d\rightarrow 0 we have

E1+E2=2(1+1Ac)+erfc(πRi)/Ri+1Acerfc(πKi)/Ki2(1+1Ac)+6erfc(π)+6erfc(π/Ac)=4.213475\begin{array}[]{ccl}E_{1}+E_{2}&=&-2\left(1+\frac{1}{A_{c}}\right)+\sum^{\prime}\operatorname{erfc}\left(\sqrt{\pi}R_{i}\right)/R_{i}+\frac{1}{A_{c}}\sum^{\prime}\operatorname{erfc}\left(\sqrt{\pi}K_{i}\right)/K_{i}\\ &\cong&-2\left(1+\frac{1}{A_{c}}\right)+6\operatorname{erfc}\left(\sqrt{\pi}\right)+6\operatorname{erfc}\left(\sqrt{\pi}/A_{c}\right)\\ &=&-4.213475\end{array} (24)

where we took nearest lattice point approximation, i.e. only six terms with smallest Ri,KiR_{i},K_{i} in the those lattice summations are kept. Nevertheless the result match the known static energy for 2d Wigner crystal up to fourth digit.

For general dd, let δE(d)\delta E(d) be the nearest lattice point approximation of E1+E2E_{1}+E_{2} in Equation 23

δE(d)=erf(πd)d2(eπd2πderfc(πd))Ac+6erfc[π(d2+1)]d2+1+3{e2πd/Ac(1+erf[π(d1Ac)])+e2πd/Acerfc[π(d+1Ac)]}\begin{array}[]{ccl}\delta E(d)&=&-\frac{\operatorname{erf}\left(\sqrt{\pi}d\right)}{d}-\frac{2\left(e^{-\pi d^{2}}-\pi d\text{erfc}\left(\sqrt{\pi}d\right)\right)}{A_{c}}+\frac{6\operatorname{erfc}\left[\sqrt{\pi(d^{2}+1)}\right]}{\sqrt{d^{2}+1}}\\ &&+3\left\{\mathrm{e}^{-2\pi d/A_{c}}\left(1+\operatorname{erf}\left[\sqrt{\pi}\left(d-\frac{1}{A_{c}}\right)\right]\right)+\mathrm{e}^{2\pi d/A_{c}}\operatorname{erfc}\left[\sqrt{\pi}\left(d+\frac{1}{A_{c}}\right)\right]\right\}\end{array} (25)

1/Ac=2/31/A_{c}=2/\sqrt{3} comes from lattice constant of the dual lattice. It behaves asymptotically in the dd\rightarrow\infty limit as δE(d)+1/d6e4πd/3\delta E(d)+1/d\sim 6\mathrm{e}^{-4\pi d/\sqrt{3}}. Also for dd\rightarrow\infty, erfc[π(d2+Ri2)]/d2+Ri2eπ(d2+Ri2)/(π(d2+Ri2))\operatorname{erfc}\left[\sqrt{\pi(d^{2}+R_{i}^{2})}\right]/\sqrt{d^{2}+R_{i}^{2}}\sim\mathrm{e}^{-\pi(d^{2}+R_{i}^{2})}/(\pi(d^{2}+R_{i}^{2})) and erfc(πx)eπx2/(πx)\operatorname{erfc}\left(\sqrt{\pi}x\right)\sim\mathrm{e}^{-\pi x^{2}}/(\pi x) results in

ϕ1/2(d,Ki)[2e2πdKi+eπ(d2+Ki2)/(π(d+Ki))]/(2Ki),\phi_{-1/2}(d,K_{i})\leqslant[2\mathrm{e}^{-2\pi dK_{i}}+\mathrm{e}^{-\pi(d^{2}+K_{i}^{2})}/(\pi(d+K_{i}))]/(2K_{i}), (26)

All terms generated from farther lattice points are dominated by 6e4πd/36\mathrm{e}^{-4\pi d/\sqrt{3}}. In the sense that δE(d)\delta E(d) is a good approximation to E1+E2E_{1}+E_{2} for both d0d\rightarrow 0 and dd\rightarrow\infty, we could safely take

ΔEe1/d+δE(d)\Delta E_{e}\cong 1/d+\delta E(d) (27)

Putting back dimensions, the Coulomb energy density difference is, with δE\delta E defined in Equation 25,

ΔεeneQ2a(a/d+δE(d/a))\Delta\varepsilon_{e}\cong n_{e}\frac{Q^{2}}{a}(a/d+\delta E(d/a)) (28)

III.3 Phase Diagram

Comparing (15) with (28) we can immediately see that the transition between coupled/decoupled phases is determined by the root of the dimensionless equation

q0.3x2xq/2.5x2δE(x)=0,x=d/a=d38π(1Δν)\frac{q}{0.3}x^{2}-x-q/2.5-x^{2}\delta E(x)=0,\quad x=d/a=d\sqrt{\frac{\sqrt{3}}{8\pi}(1-\Delta\nu)} (29)

where qq, defined in Equation 16, is, up to a constant, the energy scale of random potential comparing with Coulomb energy. Putting together, we can draw a phase diagram Figure 3 for the decoupled electron-hole Wigner crystal and exciton Wigner crystal.

Refer to caption
Figure 3: Phase diagram of coupled/decoupled Wigner crystal plotted from Equation 29. q=4Δ23Q4q=\frac{4\Delta^{2}}{\sqrt{3}Q^{4}} characterizes the random potential strength, where Δ\Delta is defined in Equation 10 and Q2=e2/(4πϵ)Q^{2}=e^{2}/(4\pi\epsilon). Region under the surface is decoupled electron-hole Wigner crystal while region above it is exciton Wigner crystal.

IV Concluding Remarks

In this paper, we analyzed the competition between different phases in a bilayer quantum hall system with total filling factor 1 driven by temperature and/or disorder. Our results compare favorably with a recent experiment [25]. Particularly interesting (and surprising) among our findings is that the exciton superfluid can (often) result from melting an exciton WC. This bears remarkable similarity to the observation [54] that melting of electron WC at low filling factor results in fractional quantum Hall liquids. Similar phenomena was observed very recently in systems supporting (fractional) anomalous quantum Hall states [55]. We speculate that melting of electron or hole WC in these systems resulted in the formation of fractional anomalous quantum Hall states. We also note that it is in principle possible to have the WC and SF orders coexist, resulting in an exciton supersolid. It is a very interesting future direction of research to look for such a novel phase, both experimentally and theoretically.

ACKNOWLEDGMENTS

We thank Cory Dean, Lloyd Engel and Leo Li for helpful discussions. This work was supported by the National Science Foundation Grant No. DMR-2315954, and performed at the National High Magnetic Field Laboratory which is supported by National Science Foundation Cooperative Agreement No. DMR-2128556, and the State of Florida.

References

  • Wen and Zee [1992] X.-G. Wen and A. Zee, Neutral superfluid modes and “magnetic” monopoles in multilayered quantum hall systems, Physical Review Letters 69, 1811–1814 (1992).
  • Ezawa and Iwazaki [1992] Z. F. Ezawa and A. Iwazaki, Chern-simons gauge theory for double-layer electron system, International Journal of Modern Physics B 06, 3205–3234 (1992).
  • Eisenstein et al. [1992] J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, K. W. West, and S. He, New fractional quantum hall state in double-layer two-dimensional electron systems, Physical Review Letters 68, 1383–1386 (1992).
  • Wen and Zee [1993] X. G. Wen and A. Zee, Tunneling in double-layered quantum hall systems, Physical Review B 47, 2265–2270 (1993).
  • Yang et al. [1994] K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin, D. Yoshioka, and S.-C. Zhang, Quantum ferromagnetism and phase transitions in double-layer quantum hall systems, Physical Review Letters 72, 732–735 (1994).
  • Butov et al. [1994] L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, Condensation of indirect excitons in coupled alas/gaas quantum wells, Physical Review Letters 73, 304–307 (1994).
  • Moon et al. [1995] K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka, and S.-C. Zhang, Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions, Physical Review B 51, 5138–5170 (1995).
  • Yang et al. [1996] K. Yang, K. Moon, L. Belkhir, H. Mori, S. M. Girvin, A. H. MacDonald, L. Zheng, and D. Yoshioka, Spontaneous interlayer coherence in double-layer quantum hall systems: Symmetry-breaking interactions, in-plane fields, and phase solitons, Physical Review B 54, 11644–11658 (1996).
  • Lilly et al. [1998] M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Coulomb drag in the extreme quantum limit, Physical Review Letters 80, 1714–1717 (1998).
  • Yang [2001] K. Yang, Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum hall systems at ν=1\nu=1, Physical Review Letters 8710.1103/physrevlett.87.056802 (2001).
  • Butov et al. [2002] L. V. Butov, A. C. Gossard, and D. S. Chemla, Macroscopically ordered state in an exciton system, Nature 418, 751–754 (2002).
  • Eisenstein and MacDonald [2004] J. P. Eisenstein and A. H. MacDonald, Bose–einstein condensation of excitons in bilayer electron systems, Nature 432, 691–694 (2004).
  • Kellogg et al. [2004] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Vanishing hall resistance at high magnetic field in a double-layer two-dimensional electron system, Physical Review Letters 9310.1103/physrevlett.93.036801 (2004).
  • Tutuc et al. [2004] E. Tutuc, M. Shayegan, and D. A. Huse, Counterflow measurements in strongly correlated gaas hole bilayers: Evidence for electron-hole pairing, Physical Review Letters 9310.1103/physrevlett.93.036802 (2004).
  • Wiersma et al. [2004] R. D. Wiersma, J. G. S. Lok, S. Kraus, W. Dietsche, K. von Klitzing, D. Schuh, M. Bichler, H.-P. Tranitz, and W. Wegscheider, Activated transport in the separate layers that form the νt=1\nu_{t}=1 exciton condensate, Physical Review Letters 9310.1103/physrevlett.93.266805 (2004).
  • Seradjeh et al. [2008] B. Seradjeh, H. Weber, and M. Franz, Vortices, zero modes, and fractionalization in the bilayer-graphene exciton condensate, Physical Review Letters 10110.1103/physrevlett.101.246404 (2008).
  • Tiemann et al. [2008] L. Tiemann, J. G. S. Lok, W. Dietsche, K. von Klitzing, K. Muraki, D. Schuh, and W. Wegscheider, Exciton condensate at a total filling factor of one in corbino two-dimensional electron bilayers, Physical Review B 7710.1103/physrevb.77.033306 (2008).
  • Weitz et al. [2010] R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene, Science 330, 812–816 (2010).
  • Barlas et al. [2012] Y. Barlas, K. Yang, and A. H. MacDonald, Quantum hall effects in graphene-based two-dimensional electron systems, Nanotechnology 23, 052001 (2012).
  • Nandi et al. [2012] D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton condensation and perfect coulomb drag, Nature 488, 481–484 (2012).
  • Eisenstein [2014] J. Eisenstein, Exciton condensation in bilayer quantum hall systems, Annual Review of Condensed Matter Physics 5, 159–181 (2014).
  • Liu et al. [2017] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim, Quantum hall drag of exciton condensate in graphene, Nature Physics 13, 746–750 (2017).
  • Li et al. [2017] J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, and C. R. Dean, Excitonic superfluid phase in double bilayer graphene, Nature Physics 13, 751–755 (2017).
  • Burg et al. [2018] G. W. Burg, N. Prasad, K. Kim, T. Taniguchi, K. Watanabe, A. H. MacDonald, L. F. Register, and E. Tutuc, Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2\mathrm{WSe}_{2} heterostructures, Physical Review Letters 12010.1103/physrevlett.120.177702 (2018).
  • Zeng et al. [2023] Y. Zeng, Q. Shi, A. Okounkova, D. Sun, K. Watanabe, T. Taniguchi, J. Hone, C. R. Dean, and J. I. A. Li, Evidence for a superfluid-to-solid transition of bilayer excitons (2023).
  • Gramila et al. [1991] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Mutual friction between parallel two-dimensional electron systems, Physical Review Letters 66, 1216–1219 (1991).
  • Chen and Yang [2012] H. Chen and K. Yang, Interaction-driven quantum phase transitions in fractional topological insulators, Physical Review B 8510.1103/physrevb.85.195113 (2012).
  • Wigner [1934] E. Wigner, On the interaction of electrons in metals, Physical Review 46, 1002–1011 (1934).
  • Maki and Zotos [1983] K. Maki and X. Zotos, Static and dynamic properties of a two-dimensional wigner crystal in a strong magnetic field, Physical Review B 28, 4349–4356 (1983).
  • Yoshioka and Lee [1983] D. Yoshioka and P. A. Lee, Ground-state energy of a two-dimensional charge-density-wave state in a strong magnetic field, Physical Review B 27, 4986–4996 (1983).
  • Lam and Girvin [1984] P. K. Lam and S. M. Girvin, Liquid-solid transition and the fractional quantum-hall effect, Physical Review B 30, 473–475 (1984).
  • MacDonald and Bryant [1987] A. H. MacDonald and G. W. Bryant, Strong-magnetic-field states of the pure electron plasma, Physical Review Letters 58, 515–518 (1987).
  • Goldman et al. [1990] V. J. Goldman, M. Santos, M. Shayegan, and J. E. Cunningham, Evidence for two-dimentional quantum wigner crystal, Physical Review Letters 65, 2189–2192 (1990).
  • Senatore and March [1994] G. Senatore and N. H. March, Recent progress in the field of electron correlation, Reviews of Modern Physics 66, 445–479 (1994).
  • Manoharan and Shayegan [1994] H. C. Manoharan and M. Shayegan, Wigner crystal versus hall insulator, Physical Review B 50, 17662–17665 (1994).
  • Shayegan [1996] M. Shayegan, Case for the magnetic‐field‐induced two‐dimensional wigner crystal (1996).
  • Kamilla and Jain [1997] R. K. Kamilla and J. K. Jain, Excitonic instability and termination of fractional quantum hall effect, Physical Review B 55, R13417–R13420 (1997).
  • Yang et al. [2001] K. Yang, F. D. M. Haldane, and E. H. Rezayi, Wigner crystals in the lowest landau level at low-filling factors, Physical Review B 6410.1103/physrevb.64.081301 (2001).
  • Ye et al. [2002] P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer, and K. West, Correlation lengths of the wigner-crystal order in a two-dimensional electron system at high magnetic fields, Physical Review Letters 8910.1103/physrevlett.89.176802 (2002).
  • Chen et al. [2006] Y. P. Chen, G. Sambandamurthy, Z. H. Wang, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W. West, Melting of a 2d quantum electron solid in high magnetic field, Nature Physics 2, 452–455 (2006).
  • Monceau [2012] P. Monceau, Electronic crystals: an experimental overview, Advances in Physics 61, 325–581 (2012).
  • Deng et al. [2019] H. Deng, L. Pfeiffer, K. West, K. Baldwin, L. Engel, and M. Shayegan, Probing the melting of a two-dimensional quantum wigner crystal via its screening efficiency, Physical Review Letters 12210.1103/physrevlett.122.116601 (2019).
  • Smoleński et al. [2021] T. Smoleński, P. E. Dolgirev, C. Kuhlenkamp, A. Popert, Y. Shimazaki, P. Back, X. Lu, M. Kroner, K. Watanabe, T. Taniguchi, I. Esterlis, E. Demler, and A. Imamoğlu, Signatures of wigner crystal of electrons in a monolayer semiconductor, Nature 595, 53–57 (2021).
  • Tsui et al. [2024] Y.-C. Tsui, M. He, Y. Hu, E. Lake, T. Wang, K. Watanabe, T. Taniguchi, M. P. Zaletel, and A. Yazdani, Direct observation of a magnetic-field-induced wigner crystal, Nature 628, 287–292 (2024).
  • Girvin and Yang [2019] S. M. Girvin and K. Yang, Modern Condensed Matter Physics (Cambridge University Press, 2019).
  • von Grünberg et al. [2004] H. H. von Grünberg, P. Keim, K. Zahn, and G. Maret, Elastic behavior of a two-dimensional crystal near melting, Physical Review Letters 9310.1103/physrevlett.93.255703 (2004).
  • Kalia and Vashishta [1981] R. K. Kalia and P. Vashishta, Interfacial colloidal crystals and melting transition, Journal of Physics C: Solid State Physics 14, L643–L648 (1981).
  • Chitra et al. [2001] R. Chitra, T. Giamarchi, and P. Le Doussal, Pinned wigner crystals, Physical Review B 6510.1103/physrevb.65.035312 (2001).
  • Fogler and Huse [2000] M. M. Fogler and D. A. Huse, Dynamical response of a pinned two-dimensional wigner crystal, Physical Review B 62, 7553–7570 (2000).
  • Bruun and Nelson [2014] G. M. Bruun and D. R. Nelson, Quantum hexatic order in two-dimensional dipolar and charged fluids, Physical Review B 8910.1103/physrevb.89.094112 (2014).
  • Bonsall and Maradudin [1977] L. Bonsall and A. A. Maradudin, Some static and dynamical properties of a two-dimensional wigner crystal, Physical Review B 15, 1959–1973 (1977).
  • Borwein et al. [1988] D. Borwein, J. M. Borwein, R. Shail, and I. J. Zucker, Energy of static electron lattices, Journal of Physics A: Mathematical and General 21, 1519–1531 (1988).
  • Serre [1973] J.-P. Serre, A Course in Arithmetic (Springer New York, 1973).
  • Pan et al. [2002] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Transition from an electron solid to the sequence of fractional quantum hall states at very low landau level filling factor, Physical Review Letters 8810.1103/physrevlett.88.176802 (2002).
  • Lu et al. [2024] Z. Lu, T. Han, Y. Yao, J. Yang, J. Seo, L. Shi, S. Ye, K. Watanabe, T. Taniguchi, and L. Ju, Extended quantum anomalous hall states in graphene/hbn moiré superlattices (2024).