This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence and probabilistic representation of the solutions of semilinear parabolic PDEs with fractional Laplacians

Guillaume Penent111pene0001@e.ntu.edu.sg   Nicolas Privault222 nprivault@ntu.edu.sg
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link, Singapore 637371
Abstract

We obtain existence results for the solution uu of nonlocal semilinear parabolic PDEs on d with polynomial nonlinearities in (u,u)(u,\nabla u), using a tree-based probabilistic representation. This probabilistic representation applies to the solution of the equation itself, as well as to its partial derivatives by associating one of dd marks to the initial tree branch. Partial derivatives are dealt with by integration by parts and subordination of Brownian motion. Numerical illustrations are provided in examples for the fractional Laplacian in dimension up to 1010, and for the fractional Burgers equation in dimension two.

Keywords: Semilinear PDEs, nonlocal PDEs, branching processes, pseudodifferential operators, fractional Laplacian, Lévy processes, stable processes, subordination, Volterra integral equations, Monte-Carlo method.

Mathematics Subject Classification (2020): 35K58, 35K55, 35R11, 47G30, 35S05, 35B65, 35S10, 60J85, 65R20, 60G51, 60G52, 65C05, 45D05, 33C05, 60H07.

1 Introduction

Nonlocal partial differential operators such as the fractional Laplacian are useful in the modeling of anomalous diffusion phenomena driven in particular by stable Lévy processes, and they have found applications in multiple fields of engineering, physics and finance. The numerical solution of elliptic boundary value problems involving fractional Laplacians have been studied by means of finite differences in the one-dimensional case in e.g. Huang and Oberman (2016) in the parabolic case, and in Acosta et al. (2018), and Acosta and Borthagaray (2021) in the elliptic case.

Probabilistic approaches relying on the Feynman-Kac formula represent alternatives to finite differences for the numerical solution of parabolic partial differential equations. The use of stochastic diffusion branching mechanisms for the representation of solutions of partial differential equations has been introduced by Skorokhod (1964), and this construction has been extended in Ikeda et al. (1968-1969) to branching Markov processes. In Nagasawa and Sirao (1969), branching Markov processes have been applied to the blowup of solutions of a wide class of parabolic PDEs using their Duhamel integral formulations and the Markov property of the branching process at its first branching time. The branching mechanism has also been applied in McKean (1975) to the KPP equation, and to the blow-up of solutions of Fujita (1966) equations of the form u(t,x)/t=Δu(t,x)+cuβ(t,x)\partial u(t,x)/\partial t=\Delta u(t,x)+cu^{\beta}(t,x) in López-Mimbela (1996), see also Chakraborty and López-Mimbela (2008) for the existence of solutions of parabolic PDEs with power series nonlinearities. Related arguments have also been applied to Fourier-transformed PDEs in order to treat the Navier-Stokes equation by the use of stochastic cascades in Le Jan and Sznitman (1997), see also Blömker et al. (2007) for the representation of Fourier modes for the solution of class of semilinear parabolic PDEs.

This branching argument has been recently extended in Henry-Labordère et al. (2019) to the treatment polynomial non-linearities in gradient terms. For this, branches associated to gradient terms are specified using marks, and are subject to Malliavin integrations by parts. This approach applies in principle to continuous Itô diffusion generators, provided that the corresponding Malliavin weight can be successfully estimated. In the absence of gradient nonlinearities, the tree-based approach has been recently implemented for nonlocal semilinear PDEs in Belak et al. (2020).

In this paper, we obtain existence results for the solution of nonlocal semilinear PDEs by extending the above arguments from the standard Laplacian Δ\Delta to pseudo-differential operators of the form η(Δ/2)-\eta(-\Delta/2), where η\eta is a Bernstein function such that η(0+)=0\eta(0^{+})=0.

Precisely, given a horizon time T>0T>0, we consider the semilinear PDE given as

{ut(t,x)η(Δ/2)u(t,x)+f(t,x,u(t,x),ux1(t,x),,uxm(t,x))=0,u(T,x)=ϕ(x),x=(x1,,xd),d\begin{cases}\displaystyle\frac{\partial u}{\partial t}(t,x)-\eta(-\Delta/2)u(t,x)+f\left(t,x,u(t,x),\frac{\partial u}{\partial x_{1}}(t,x),\ldots,\frac{\partial u}{\partial x_{m}}(t,x)\right)=0,\vskip 6.0pt plus 2.0pt minus 2.0pt\\ u(T,x)=\phi(x),\qquad x=(x_{1},\ldots,x_{d})\in{}^{d},\end{cases} (1.1)

where f(t,x,y,z1,,zm)f(t,x,y,z_{1},\ldots,z_{m}) is a polynomial nonlinearity given by

f(t,x,y,z1,,zm)=l=(l0,,lm)mcl(t,x)yl0z1l1zmlm,f(t,x,y,z_{1},\ldots,z_{m})=\sum\limits_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}c_{l}(t,x)y^{l_{0}}z^{l_{1}}_{1}\cdots z^{l_{m}}_{m},

t+t\in{}_{+}, x,y,z1,,zmx,y,z_{1},\ldots,z_{m}\in\real, for some m{0,,d}m\in\{0,\ldots,d\}, where m{\cal L}_{m} is a finite subset of m+1\mathbb{N}^{m+1} and cl(t,x)c_{l}(t,x) are measurable functions of (t,x)[0,T]×d(t,x)\in[0,T]\times{}^{d}, l=(l0,,lm)ml=(l_{0},\ldots,l_{m})\in{\cal L}_{m}. In the sequel, we let x:=x12++xd2\|x\|:=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}, x=(x1,,xd)dx=(x_{1},\ldots,x_{d})\in{}^{d}.
Assumption (AA): We assume that the coefficients cl(t,x)c_{l}(t,x) are uniformly bounded, i.e.

|cl|:=supt[0,T],xd|cl(t,x)|<,l=(l0,,lm)m,|c_{l}|_{\infty}:=\sup_{t\in[0,T],x\in\mathbb{R}^{d}}|c_{l}(t,x)|<\infty,\qquad l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}, (1.2)

and that the terminal condition ϕ\phi is Lipschitz, i.e.

|ϕ(x)ϕ(y)|Lxy,x,y,d|\phi(x)-\phi(y)|\leq L\|x-y\|,\qquad x,y\in{}^{d}, (1.3)

for some L>0L>0, and bounded on d.

In the sequel, we will say that a function u(t,x)u(t,x) is an integral solution if u(t,x)u(t,x) satisfies the Duhamel formulation of (1.1), i.e.

u(t,x)\displaystyle u(t,x) =\displaystyle= dφ(Tt,yx)ϕ(y)𝑑y\displaystyle\int_{{}^{d}}\varphi(T-t,y-x)\phi(y)dy
+l=(l0,,lm)mtTdφ(st,yx)cl(s,y)ul0(s,y)j=1m(uyj(s,y))ljdyds,\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\int_{t}^{T}\int_{{}^{d}}\varphi(s-t,y-x)c_{l}(s,y)u^{l_{0}}(s,y)\prod_{j=1}^{m}\left(\frac{\partial u}{\partial y_{j}}(s,y)\right)^{l_{j}}dyds,

(t,x)[0,T]×d(t,x)\in[0,T]\times{}^{d}. Note that the above setting includes the case of the standard fractional Laplacian Δα=η(Δ/2)\Delta_{\alpha}=-\eta(-\Delta/2) by choosing the Laplace exponent η(λ)=(2λ)α/2\eta(\lambda)=(2\lambda)^{\alpha/2}.

In particular, in Theorem 3.1 we provide probabilistic representations for the solutions of a wide class of semilinear parabolic PDEs of the form

ut(t,x)η(Δ/2)u(t,x)+f(t,x,u(t,x),ux1(t,x),,uxm(t,x))=0,u(T,)=ϕ(),\frac{\partial u}{\partial t}(t,x)-\eta(-\Delta/2)u(t,x)+f\left(t,x,u(t,x),\frac{\partial u}{\partial x_{1}}(t,x),\ldots,\frac{\partial u}{\partial x_{m}}(t,x)\right)=0,~{}~{}u(T,\cdot)=\phi(\cdot), (1.5)

(t,x)[0,T]×d(t,x)\in[0,T]\times\mathbb{R}^{d}, with polynomial non-linearity ff in the solution uu and its partial derivatives u/xi\partial u/\partial x_{i}, i=1,,mi=1,\ldots,m, and η\eta is a Bernstein function that satisfies η(0+)=0\eta(0^{+})=0.

The probabilistic representations of Theorem 3.1 uses a functional of a random branching process driven by a subordinated Lévy process (Zt)t+:=(BSt)t+(Z_{t})_{t\in{}_{+}}:=(B_{S_{t}})_{t\in{}_{+}}, where (Bt)t+(B_{t})_{t\in{}_{+}} is a standard dd-dimensional Brownian motion and (St)t+(S_{t})_{t\in{}_{+}} is a Lévy subordinator with Laplace exponent η\eta such that

𝔼[eλSt]=etη(λ),λ,t0,\mathbb{E}\big{[}e^{-\lambda S_{t}}\big{]}=e^{-t\eta(\lambda)},\qquad\lambda,t\geq 0,

see e.g. Theorem 1.3.23 and pages 55-56 in Applebaum (2009). Then, by Proposition 1.3.27 in Applebaum (2009), (Zt)t+(Z_{t})_{t\in{}_{+}} has Lévy symbol ψZ(ξ)=η(ξ2/2)\psi_{Z}(\xi)=-\eta(\|\xi\|^{2}/2) such that 𝔼[eiξZt]=etψZ(ξ)\mathbb{E}\big{[}e^{i\xi Z_{t}}\big{]}=e^{t\psi_{Z}(\xi)}, ξd\xi\in{}^{d}, t0t\geq 0, and, by Theorem 3.3.3 therein, the infinitesimal generator of (Zt)t+(Z_{t})_{t\in{}_{+}} is the pseudo-differential operator η(Δ/2)-\eta(-\Delta/2).

In the case of stable processes we have η(λ):=(2λ)α/2\eta(\lambda):=(2\lambda)^{\alpha/2}, and η(Δ/2)-\eta(-\Delta/2) becomes the fractional Laplacian

Δαu=(Δ)α/2u=2αΓ(d/2+α/2)πd/2|Γ(α/2)|limr0+d\B(x,r)u(+z)u(z)|z|d+α𝑑z,\Delta_{\alpha}u=-(-\Delta)^{\alpha/2}u=\frac{2^{\alpha}\Gamma(d/2+\alpha/2)}{\pi^{d/2}|\Gamma(-\alpha/2)|}\lim_{r\rightarrow 0^{+}}\int_{\mathbb{R}^{d}\backslash B(x,r)}\frac{u(\cdot+z)-u(z)}{|z|^{d+\alpha}}dz,

for α(0,2]\alpha\in(0,2], where Γ(p):=0eλxλp1𝑑λ\Gamma(p):=\displaystyle\int_{0}^{\infty}e^{-\lambda x}\lambda^{p-1}d\lambda, p>0p>0, is the gamma function, see e.g. Kwaśnicki (2017).

For each i=0,1,,di=0,1,\ldots,d we construct a sufficiently integrable functional ϕ(𝒯t,x,i)\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i}) of a random tree 𝒯t,x,i\mathcal{T}_{t,x,i} such that we have the representations

u(t,x):=𝔼[ϕ(𝒯t,x,0)],(t,x)[0,T]×,du(t,x):=\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,0})\big{]},\quad(t,x)\in[0,T]\times{}^{d},

and

uxi(t,x):=𝔼[ϕ(𝒯t,x,i)],(t,x)[0,T]×,di=1,,d,\frac{\partial u}{\partial x_{i}}(t,x):=\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i})\big{]},\quad(t,x)\in[0,T]\times{}^{d},\quad i=1,\ldots,d,

see Theorem 3.1. Dealing with gradient terms in the proof of Theorem 3.1 requires to perform an integration by parts, which is made possible using the Gaussian density of BtB_{t} in the subordination Zt:=BStZ_{t}:=B_{S_{t}}, as done in Kawai and Takeuchi (2013) in the case of stable processes with η(λ):=(2λ)α/2\eta(\lambda):=(2\lambda)^{\alpha/2}.

As a consequence of Theorem 3.1, in Proposition 3.2 we show that the probabilistic representation of Theorem 3.1 can be used to recover the classical result of Fujita (1966) on the blow-up of semilinear PDEs.

While the branching tree mechanism is quite general and can be applied to a wide range of differential equations via formal calculations, proving the existence of solutions requires to show the integrability of functional ϕ(𝒯t,x,i)\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i}) representing the PDE solution u(t,x)u(t,x) and its partial derivatives. We deal with this integrability using existence results for the solutions of Volterra integral equations, instead of using ODEs as in e.g. Henry-Labordère and Touzi (2018) and Henry-Labordère et al. (2019).

Theorem 4.1, we show that the integrability required for the probabilistic representation Theorem 3.1 is satisfied provided that λ1/(λη(λ))\lambda\rightarrow 1/(\sqrt{\lambda}\eta(\lambda)) is integrable at ++\infty. In comparison with recent work in the diffusion case, see Henry-Labordère et al. (2019), our integrability condition (3.2)-(3.3) in Theorem 3.1 is sharper because it only involves mark indexes of partial derivatives appearing in the main PDE. In addition, we provide a detailed justification for the commutation relation (3.7) instead of stating it as an assumption as in Henry-Labordère et al. (2019), see Assumption 3.2 therein.

As a direct consequence of Theorems 3.1 and 4.1, we obtain the following result on local-in-time existence of solutions.

Theorem 1.1

Under Assumption (AA), suppose that

λ01λη(λ)𝑑λ<\int_{\lambda_{0}}^{\infty}\frac{1}{\sqrt{\lambda}\eta(\lambda)}d\lambda<\infty

for some λ0>0\lambda_{0}>0. Then, there exists a small enough T>0T>0 such that the PDE (1.1) admits an integral solution on [0,T][0,T] in the sense of (1).

Related local and global-in-time existence results have been obtained for generalized fractional Laplacians by deterministic arguments under more technical conditions in e.g. Ishige et al. (2014) and more recently in Ishige et al. (2021) for power nonlinearities of sufficiently low orders. In the particular case of the α\alpha-fractional Laplacian where η(λ):=(2λ)α/2\eta(\lambda):=(2\lambda)^{\alpha/2} with α(1,2)\alpha\in(1,2), we obtain the following corollary.

Corollary 1.2

Taking η(λ):=(2λ)α/2\eta(\lambda):=(2\lambda)^{\alpha/2} with α(1,2)\alpha\in(1,2), under Assumption (AA) there exists a small enough T>0T>0 such that the PDE (1.1) with α\alpha-fractional Laplacian admits an integral solution on [0,T][0,T] in the sense of (1).

In the case of the fractional Laplacian, Proposition 4.4 provides quantitative estimates on the horizon time TT, ensuring existence of solutions on [0,T][0,T] by Theorem 3.1.

We also provide a Monte Carlo implementation of our algorithm for the numerical solutions of nonlinear fractional PDEs with and without gradient term in dimension up to 10, and of a fractional Burgers equation. The tree-based Monte Carlo method avoids the curse of dimensionality, whereas the application of deterministic numerical methods is notoriously difficult including in the fractional case, see, e.g., Bonito et al. (2018).

The paper is organized as follows. In Section 2 we present the description of the branching mechanism in Section 2. In Section 3 we state our main result Theorem 3.1 which gives the probabilistic representation of the solution and its partial derivatives. In Section 4 we give give a sufficient condition on the Bernstein function η\eta that ensures the integrability needed for the the probabilistic representation of Theorem 3.1 to hold. In Section 5, we present some numerical simulations to illustrate the method on specific examples.

Bernstein functions and subordinators

Let η:(0,)[0,)\eta:(0,\infty)\rightarrow[0,\infty) denote a Bernstein function, i.e. η\eta is a CC^{\infty} function whose nthnth derivative satisfies (1)nη(n)0(-1)^{n}\eta^{(n)}\leq 0 for all n1n\geq 1, and limz0η(z)=0\lim_{z\searrow 0}\eta(z)=0, see Theorem 1.3.23 in Applebaum (2009). We consider a subordinator (St)t+(S_{t})_{t\in{}_{+}}, i.e. a +-valued non-decreasing Lévy process, with Laplace exponent η\eta, which admits the representation

η(λ)=bλ+0(1eλy)ν(dy),\eta(\lambda)=b\lambda+\int_{0}^{\infty}(1-e^{-\lambda y})\nu(dy), (1.6)

where b0b\geq 0 and the Lévy measure ν\nu satisfies

0(y1)ν(dy)<,\int_{0}^{\infty}(y\wedge 1)\nu(dy)<\infty,

see Theorem 1.3.15 in Applebaum (2009). Using the identity

xp=1Γ(p)0eλxλp1𝑑λx>0,x^{-p}=\frac{1}{\Gamma(p)}\int_{0}^{\infty}e^{-\lambda x}\lambda^{p-1}d\lambda\qquad x>0, (1.7)

the negative moments of StS_{t} are given by

𝔼[Stp]=1Γ(p)0etη(λ)λp1𝑑λ,p>0.\mathbb{E}\big{[}S_{t}^{-p}\big{]}=\frac{1}{\Gamma(p)}\int_{0}^{\infty}e^{-t\eta(\lambda)}\lambda^{p-1}d\lambda,\qquad p>0. (1.8)

When (St)t+(S_{t})_{t\in{}_{+}} is an α/2\alpha/2-stable subordinator with Laplace exponent η(λ)=(2λ)α/2\eta(\lambda)=(2\lambda)^{\alpha/2}, the subordinated process Zt=BStZ_{t}=B_{S_{t}} becomes an α\alpha-stable process with generator Δα\Delta_{\alpha}. In that case, we have b=0b=0 in (1.6), the Lévy measure ν\nu of the subordinator (St)t+(S_{t})_{t\in{}_{+}} is given by

ν(dx)=α2α/21Γ(1α/2)dxx1+α/2,\nu(dx)=\alpha\frac{2^{\alpha/2-1}}{\Gamma(1-\alpha/2)}\frac{dx}{x^{1+\alpha/2}},

and its Lévy symbol ψS\psi_{S} satisfies

ψS(ξ)\displaystyle\psi_{S}(\xi) =\displaystyle= 2α/2α2Γ(1α/2)0(eiξy1)dyy1+α/2\displaystyle\frac{2^{\alpha/2}\alpha}{2\Gamma(1-\alpha/2)}\int_{0}^{\infty}(e^{i\xi y}-1)\frac{dy}{y^{1+\alpha/2}} (1.9)
=\displaystyle= α(2|ξ|)α/22Γ(1α/2)Γ(α/2)eiαarg(iξ)/2\displaystyle\frac{\alpha(2|\xi|)^{\alpha/2}}{2\Gamma(1-\alpha/2)}\Gamma(-\alpha/2)e^{i\alpha\arg(-i\xi)/2}
=\displaystyle= cos(πα4)(2|ξ|)α/2(1isign(ξ)tan(πα4)),ξ,\displaystyle-\cos\left(\frac{\pi\alpha}{4}\right)(2|\xi|)^{\alpha/2}\left(1-i\ \!\mathrm{sign}\>(\xi)\tan\left(\frac{\pi\alpha}{4}\right)\right),\qquad\xi\in\real,

where we used the identity

0(ewy1)y1α/2𝑑y=Γ(α/2)|w|α/2eiαarg(w)/2\int_{0}^{\infty}(e^{wy}-1)y^{-1-\alpha/2}dy=\Gamma(-\alpha/2)|w|^{\alpha/2}e^{i\alpha\arg(-w)/2}

which is valid for α(0,2)\alpha\in(0,2) and any ww\in\mathbb{C}^{*} with R(w)0\eufrak{R}(w)\leq 0, see Relation (14.18) page 84 of Sato (1999). In this case, the negative moments of StS_{t} are given by

𝔼[Stp]\displaystyle\mathbb{E}\big{[}S_{t}^{-p}\big{]} =\displaystyle= 1Γ(p)0et(2λ)α/2λp1𝑑λ\displaystyle\frac{1}{\Gamma(p)}\int_{0}^{\infty}e^{-t(2\lambda)^{\alpha/2}}\lambda^{p-1}d\lambda (1.10)
=\displaystyle= 1t2p/α21pαΓ(p)0u1+2p/αeu𝑑u\displaystyle\frac{1}{t^{2p/\alpha}}\frac{2^{1-p}}{\alpha\Gamma(p)}\int_{0}^{\infty}u^{-1+2p/\alpha}e^{-u}du
=\displaystyle= 21pΓ(2p/α)αt2p/αΓ(p),p>0.\displaystyle\frac{2^{1-p}\Gamma(2p/\alpha)}{\alpha t^{2p/\alpha}\Gamma(p)},\qquad p>0.

2 Random trees with marked branches

In the sequel, we will provide a probabilistic representation for the solution of (1.1), using a branching mechanism such that the solution of (1.1) will be given by the expectation of a multiplicative functional defined on a random tree structure.

Let ρ:+(0,)\rho:\mathbb{R}^{+}\rightarrow(0,\infty) be a probability density function on +, and consider a probability mass function (ql0,,lm)(l0,,lm)m(q_{l_{0},\ldots,l_{m}})_{(l_{0},\ldots,l_{m})\in{\cal L}_{m}} on m{\cal L}_{m} with ql0,,lm>0q_{l_{0},\ldots,l_{m}}>0, (l0,,lm)m(l_{0},\ldots,l_{m})\in{\cal L}_{m}, and (l0,,lm)m|l|ql0,,lm<\sum_{(l_{0},\ldots,l_{m})\in{\cal L}_{m}}|l|q_{l_{0},\ldots,l_{m}}<\infty, where |l|=l0++lm|l|=l_{0}+\cdots+l_{m}. In addition, we consider

  • an i.i.d. family (τi,j)i,j1(\tau^{i,j})_{i,j\geq 1} of random variables with distribution ρ(t)dt\rho(t)dt on +,

  • an i.i.d. family (Ii,j)i,j1(I^{i,j})_{i,j\geq 1} of discrete random variables, with

    (Ii,j=(l0,,lm))=ql0,,lm>0,(l0,,lm)m,\mathbb{P}\big{(}I^{i,j}=(l_{0},\ldots,l_{m})\big{)}=q_{l_{0},\ldots,l_{m}}>0,\qquad(l_{0},\ldots,l_{m})\in{\cal L}_{m}, (2.1)
  • an independent family (Zi,j)i,j1(Z^{i,j})_{i,j\geq 1} of subordinated Lévy processes constructed as

    Zti,j:=BSti,ji,j,t,+i,j1,Z^{i,j}_{t}:=B^{i,j}_{S^{i,j}_{t}},\qquad t\in{}_{+},\quad i,j\geq 1,

    where (Bi,j)i,j1(B^{i,j})_{i,j\geq 1} and (Si,j)i,j1(S^{i,j})_{i,j\geq 1} are independent standard Brownian motions and independent subordinators with Laplace exponent η\eta.

The sequences (τi,j)i,j1(\tau^{i,j})_{i,j\geq 1}, (Ii,j)i,j1(I^{i,j})_{i,j\geq 1} and (Zi,j)i,j1(Z^{i,j})_{i,j\geq 1} are assumed to be mutually independent.

Marked branching process

We consider a marked branching process starting from a particle at the position xdx\in{}^{d}, with label \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111=(1)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}=(1) and mark i{0,1,,d}i\in\{0,1,\ldots,d\} at time t[0,T]t\in[0,T], which evolves according to the process Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111=x+Zst1,1X_{s,x}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}=x+Z_{s-t}^{1,1}, s[t,t+τ1,1]s\in[t,t+\tau^{1,1}].

If τ1,1<Tt\tau^{1,1}<T-t, the process branches at time t+τ1,1t+\tau^{1,1} into new independent copies of (Zt)t+(Z_{t})_{t\in{}_{+}}, each of them started at the position Xt+τ1,1X_{t+\tau^{1,1}} at time t+τ1,1t+\tau^{1,1}. Based on the values of I1,1=(l0,,lm)mI^{1,1}=(l_{0},\ldots,l_{m})\in{\cal L}_{m}, a family of |l|:=l0++lm|l|:=l_{0}+\cdots+l_{m} of new branches carrying respectively the marks i=0,,di=0,\ldots,d are created with the probability ql0,,lmq_{l_{0},\ldots,l_{m}}, where

  • the first l0l_{0} branches carry the mark 0 and are indexed by (1,1),(1,2),,(1,l0)(1,1),(1,2),\ldots,(1,l_{0}),

  • the next l1l_{1} branches carry the mark 11 and are indexed by (1,l0+1),,(1,l0+l1)(1,l_{0}+1),\ldots,(1,l_{0}+l_{1}), and so on.

Each new particle then follows independently the same mechanism as the first one, and every branch stops when it reaches the horizon time TT. Particles at the generation n1n\geq 1 are assigned a label of the form \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=(1,k2,,kn)n\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}=(1,k_{2},\ldots,k_{n})\in\mathbb{N}^{n}, and their parent is labeled \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k:=(1,k2,,kn1)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-:=(1,k_{2},\ldots,k_{n-1}). The particle labeled \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k} is born at time T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-} and its lifetime τn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\tau^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})} is the element of index πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}) in the i.i.d. sequence (τn,j)j1(\tau^{n,j})_{j\geq 1}, defining a random injection

πn:n,n1.\pi_{n}:\mathbb{N}^{n}\to\mathbb{N},\qquad n\geq 1.

The random evolution of particle \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k} is given by

Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k:=XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k+ZsT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k),s[T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k],X_{s,x}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}:=X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}+Z_{s-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})},\qquad s\in[T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}], (2.2)

where T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k:=T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k+τn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}:={\mathrm{{\rm T}}}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}+\tau^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}.

If T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k:=T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k+τn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)<TT_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}:={\mathrm{{\rm T}}}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}+\tau^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}<T, we draw a sample I\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k:=In,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)=(l0,,lm)I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}:=I^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}=(l_{0},\ldots,l_{m}) of In,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)I^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})} with distribution (2.1), and the particle \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k} branches into |In,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|=l0++lm|I^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}|=l_{0}+\cdots+l_{m} offsprings at generation (n+1)(n+1), which are indexed by (1,,kn,i)(1,\ldots,k_{n},i), i=1,,|In,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|i=1,\ldots,|I^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}|. The particles whose index ends with an integer between 11 and l0l_{0} will carry the mark 0, and those with index ending with an integer between l0++li1+1l_{0}+\cdots+l_{i-1}+1 and l0++lil_{0}+\cdots+l_{i} will carry a mark i{1,,d}i\in\{1,\ldots,d\}. Finally, the mark of particle \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k} will be denoted by θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k{0,1,,d}\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\in\{0,1,\ldots,d\}. Note that the indexes are only be used to distinguish the particles in the branching process, and they are distinct from the marks.

The set of particles dying before time TT is denoted by 𝒦\mathcal{K}^{\circ}, whereas those dying after TT form a set denoted by 𝒦\mathcal{K}^{\partial}.

Definition 2.1

When started at time t[0,T]t\in[0,T] from a position xdx\in{}^{d} and a mark i{0,1,,d}i\in\{0,1,\ldots,d\} on its first branch, the above construction yields a marked branching process called a random marked tree, and denoted by 𝒯t,x,i\mathcal{T}_{t,x,i}.

The tree 𝒯t,x,0\mathcal{T}_{t,x,0} will be used for the stochastic representation of the solution uu of the PDE (1.1), while the trees 𝒯t,x,i\mathcal{T}_{t,x,i} will be used for the stochastic representation of the partial derivatives u/xi\partial u/\partial x_{i}, i=1,,mi=1,\ldots,m. The next table summarizes the notation introduced so far.


Object Notation
Initial time tt
Initial position xx
Tree rooted at (t,x)(t,x) with initial mark ii 𝒯t,x,i\mathcal{T}_{t,x,i}
Particle (or label) of generation n1n\geq 1 \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=(1,k2,,kn)\stackrel{{\scriptstyle}}{{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}=(1,k_{2},\ldots,k_{n})}}
First branching time T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}
Lifespan of a particle τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}=T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}
Birth time of a particle k¯\bar{k} T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}
Death time of a particle k¯\bar{k} T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}
Position at birth XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kX^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}
Position at death XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kX^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}},x}
Mark θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}

To represent the structure of the tree we use the following conventions, in which different colors mean different ways of branching:

time position time position labelmarklabelmarklabelmark time position labelmark

Specifically, let us draw a tree sample for the following PDE:

utη(Δ/2)u+c0(t,x)+c0,1(t,x)uux1=0\frac{\partial u}{\partial t}-\eta(-\Delta/2)u+c_{0}(t,x)+c_{0,1}(t,x)u\frac{\partial u}{\partial x_{1}}=0

in dimension d=1d=1. For this tree, there are two types of branching: we can either branch into no branch at all (which is represented in blue), or into two branches (one bearing the mark 0 and one bearing the mark 11, which is represented in purple). The black color is used for leaves that have reached the horizon time TT.

tt xx t+T1¯t+T_{\bar{1}} XT1¯,x1¯X^{\bar{1}}_{T_{\bar{1}},x} t+T1¯+T(1,2)t+T_{\bar{1}}+T_{(1,2)} XT(1,2),x(1,2)X^{(1,2)}_{T_{(1,2)},x} t+T1¯+T(1,2)+T(1,2,2)t+T_{\bar{1}}+T_{(1,2)}+T_{(1,2,2)} XT(1,2,2),x(1,2,2)X^{(1,2,2)}_{T_{(1,2,2)},x} (1,2,2)(1,2,2)   11 TT XT,x(1,2,1)X^{(1,2,1)}_{T,x} (1,2,1)(1,2,1)0(1,2)(1,2)11 t+T1¯+T(1,1)t+T_{\bar{1}}+T_{(1,1)} XT(1,1),x(1,1)X^{(1,1)}_{T_{(1,1)},x} (1,1)(1,1)01¯\bar{1}0

In the above example we have 𝒦={1¯,(1,1),(1,2),(1,2,2)}\mathcal{K}^{\circ}=\{\bar{1},(1,1),(1,2),(1,2,2)\} and 𝒦={(1,2,1)}\mathcal{K}^{\partial}=\{(1,2,1)\}.

3 Probabilistic representation

Given t[0,T]t\in[0,T], xdx\in\mathbb{R}^{d} and a mark i{0,1,,d}i\in\{0,1,\ldots,d\}, we consider the functional ϕ\mathcal{H}_{\phi} of the random tree 𝒯t,x,i\mathcal{T}_{t,x,i}, defined as

ϕ(𝒯t,x,i):=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kqI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρ(τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦(ϕ(XT,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)ϕ(XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0})𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k),{\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i}):=\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\big{(}T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}},X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}},x}\big{)}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}{q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho(\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{\big{(}\phi\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T,x}\big{)}-\phi\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}\big{)}{\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}}\big{)}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}},

where \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(z):=1(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111z)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(z):=1-\mathbb{P}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}\leq z), z0z\geq 0, and 𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}} is a random weight defined by

𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=0}+𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0}(XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kXT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\displaystyle\displaystyle\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}=0\}}+\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}\frac{\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}},x}-X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}\big{)}_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}}{S^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}-S^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}} if \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦,\displaystyle\mbox{if~{}}~{}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}, (3.1a)
𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=0}+𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0}(XT,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kXT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\displaystyle\displaystyle\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}=0\}}+\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}\frac{\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T,x}-X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}\big{)}_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}}{S^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T}-S^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}} if \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦,\displaystyle\mbox{if~{}}~{}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}, (3.1b)

where θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k{0,1,,d}\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\in\{0,1,\ldots,d\} denotes the mark of the particle \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}, and for each particle labeled \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=(1,k2,,kn)n\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}=(1,k_{2},\ldots,k_{n})\in\mathbb{N}^{n} at generation n1n\geq 1, the subordinator (St\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)t[T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k]\big{(}S_{t}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\big{)}_{t\in[T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}]} is defined as

St\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k:=StT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k),t[T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k].S_{t}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}:=S_{t-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})},\qquad t\in[T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}].

Here, (XT,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kXT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T,x}-X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}\big{)}_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}} denotes the θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-thth component of the vector XT,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kXT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kX^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T,x}-X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x} in d.

Theorem 3.1

Let m0m\geq 0 denote the number of partial derivatives u(t,x)/x1,,u(t,x)/xm\partial u(t,x)/\partial x_{1},\ldots,\partial u(t,x)/\partial x_{m} appearing in (1.1), and let m0{m,,d}m_{0}\in\{m,\ldots,d\}. Under the integrability conditions

𝔼[supxd|ϕ(𝒯t,x,i)|]<,t[0,T],i=0,1,,m,{\mathbb{E}\left[\sup_{x\in{}^{d}}\big{|}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i})\big{|}\right]<\infty},\quad t\in[0,T],\quad i=0,1,\ldots,m, (3.2)

and

𝔼[|ϕ(𝒯t,x,i)|]<,(t,x)[0,T]×,di=m+1,,m0,{\mathbb{E}\left[\big{|}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i})\big{|}\right]<\infty},\quad(t,x)\in[0,T]\times{}^{d},\quad i=m+1,\ldots,m_{0}, (3.3)

the function

u(t,x):=𝔼[ϕ(𝒯t,x,0)],(t,x)[0,T]×,du(t,x):=\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,0})\big{]},\quad(t,x)\in[0,T]\times{}^{d}, (3.4)

is an integral solution of the PDE (1.1). In addition, the partial derivatives u(t,x)/xi\partial u(t,x)/\partial x_{i} exist and are represented as

uxi(t,x):=𝔼[ϕ(𝒯t,x,i)],(t,x)[0,T]×,di=1,,m0.\frac{\partial u}{\partial x_{i}}(t,x):=\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i})\big{]},\quad(t,x)\in[0,T]\times{}^{d},\quad i=1,\ldots,m_{0}. (3.5)

Proof. We denote by φ(t,yx)\varphi(t,y-x) the kernel of the pseudo differential operator η(Δ/2)-\eta(-\Delta/2), which is the fundamental solution of the PDE φ/t=η(Δ/2)φ\partial\varphi/\partial t=-\eta(-\Delta/2)\varphi. Letting

ui(t,x):=𝔼[ϕ(𝒯t,x,i)],(t,x)[0,T]×,di=1,,m0,u_{i}(t,x):=\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i})\big{]},\quad(t,x)\in[0,T]\times{}^{d},\quad i=1,\ldots,m_{0},

and applying the Markov property at the first branching time T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}} on the tree 𝒯t,x,0\mathcal{T}_{t,x,0}, we have

u(t,x)\displaystyle u(t,x) :=\displaystyle:= 𝔼[ϕ(𝒯t,x,0)]\displaystyle\mathbb{E}\big{[}\mathcal{H}_{\phi}\big{(}\mathcal{T}_{t,x,0}\big{)}\big{]} (3.6)
=\displaystyle= 𝔼[ϕ(𝒯t,x,0)(𝟙{T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt}+𝟙{T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111Tt})]\displaystyle\mathbb{E}\big{[}\mathcal{H}_{\phi}\big{(}\mathcal{T}_{t,x,0}\big{)}\big{(}\mathbbm{1}_{\{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t\}}+\mathbbm{1}_{\{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}\leq T-t\}}\big{)}\big{]}
=\displaystyle= (T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(Tt)dφ(Tt,yx)ϕ(y)𝑑y\displaystyle\frac{\mathbb{P}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t)}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-t)}\int_{{}^{d}}\varphi(T-t,y-x)\phi(y)dy
+l=(l0,,lm)m0Ttdφ(s,yx)cl(t+s,y)ul0(t+s,y)j=1mujlj(t+s,y)dyds\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\int_{0}^{T-t}\int_{{}^{d}}\varphi(s,y-x)c_{l}(t+s,y)u^{l_{0}}(t+s,y)\prod_{j=1}^{m}u_{j}^{l_{j}}(t+s,y)dyds
=\displaystyle= dφ(Tt,yx)ϕ(y)𝑑y\displaystyle\int_{{}^{d}}\varphi(T-t,y-x)\phi(y)dy
+l=(l0,,lm)mtTdφ(st,yx)cl(s,y)ul0(s,y)j=1mujlj(s,y)dyds.\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\int_{t}^{T}\int_{{}^{d}}\varphi(s-t,y-x)c_{l}(s,y)u^{l_{0}}(s,y)\prod_{j=1}^{m}u_{j}^{l_{j}}(s,y)dyds.

Next, if θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111{1,,d}\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}\in\{1,\ldots,d\}, we have

  1. a)

    the subordination relation

    Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111=x+Zst1,1=x+BSsBSt=dx+BSsSt,x,d0tsT,X_{s,x}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}=x+Z_{s-t}^{1,1}=x+B_{S_{s}}-B_{S_{t}}\stackrel{{\scriptstyle d}}{{=}}x+B_{S_{s}-S_{t}},\quad x\in{}^{d},\quad 0\leq t\leq s\leq T,

    where (Bt)t+=((Bt)1,,(Bt)d)t+(B_{t})_{t\in{}_{+}}=((B_{t})_{1},\ldots,(B_{t})_{d})_{t\in{}_{+}} is a standard dd-dimensional Brownian motion,

  2. b)

    conditional integration by parts with respect the Gaussian density of the θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}-th component (BSsSt)θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111(B_{S_{s}-S_{t}})_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}} given SsStS_{s}-S_{t}, and

  3. c)

    the definition (3.1a)-(3.1b) of 𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}},

we have

𝔼[𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111h(Xt,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)|T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt]\displaystyle\mathbb{E}\big{[}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}h\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{t,x}\big{)}\ \!\big{|}\ \!T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t\big{]} =\displaystyle= 𝔼[(BSTSt)θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111STSth(Xt,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)|T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt]\displaystyle\mathbb{E}\left[\frac{(B_{S_{T}-S_{t}})_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}{S_{T}-S_{t}}h\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{t,x}\big{)}\ \!\Big{|}\ \!T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t\right] (3.7)
=\displaystyle= 𝔼[hxθ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111(x+BSTSt)]\displaystyle\mathbb{E}\left[\frac{\partial h}{\partial x_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}\big{(}x+B_{S_{T}-S_{t}}\big{)}\right]
=\displaystyle= xθ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111dφ(Tt,y)h(x+y)𝑑y\displaystyle\frac{\partial}{\partial x_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}\int_{{}^{d}}\varphi(T-t,y)h(x+y)dy
=\displaystyle= xθ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111𝔼[h(x+BSTSt)],\displaystyle\frac{\partial}{\partial x_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}\mathbb{E}\big{[}h\big{(}x+B_{S_{T}-S_{t}}\big{)}\big{]},

for any function hh in the space 𝒞b1()d{\cal C}^{1}_{b}({}^{d}) of 𝒞1{\cal C}^{1} bounded functions on d. As in Theorem 3.1 in Fournié et al. (1999), see the proof argument of Corollary 3.6 in Kawai and Takeuchi (2011), the above identity (3.7) extends from h𝒞b1()dh\in{\cal C}^{1}_{b}({}^{d}) to ϕ(x+)\phi(x+\cdot), with ϕ:d\phi:{}^{d}\to\real continuous and bounded, as the differentiability relation

xθ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111dφ(Tt,y)ϕ(x+y)𝑑y=𝔼[𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111(ϕ(Xt,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)ϕ(x))|T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt],\frac{\partial}{\partial x_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}\int_{{}^{d}}\varphi(T-t,y)\phi(x+y)dy=\mathbb{E}\big{[}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}\big{(}\phi\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{t,x}\big{)}-\phi(x)\big{)}\ \!\big{|}\ \!T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t\big{]}, (3.8)

which holds from (3.7) and the fact that 𝔼[𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111]=0\mathbb{E}\big{[}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}]=0. Next, noting that by (3.2) and dominated convergence, the function

h(y):=cl(s,y)ul0(s,y)j=1mujlj(s,y),y,dh(y):=c_{l}(s,y)u^{l_{0}}(s,y)\prod_{j=1}^{m}u_{j}^{l_{j}}(s,y),\qquad y\in{}^{d},

is continuous and bounded, a similar argument shows that

xθ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111dφ(st,y)cl(s,x+y)ul0(s,x+y)j=1mujlj(s,x+y)dy\displaystyle\frac{\partial}{\partial x_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}\int_{{}^{d}}\varphi(s-t,y)c_{l}(s,x+y)u^{l_{0}}(s,x+y)\prod_{j=1}^{m}u_{j}^{l_{j}}(s,x+y)dy (3.9)
=\displaystyle= xθ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111𝔼[cl(s,x+BSsSt)ul0(s,x+BSsSt)j=1mujlj(s,x+BSsSt)]\displaystyle\frac{\partial}{\partial x_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}}\mathbb{E}\left[c_{l}\big{(}s,x+B_{S_{s}-S_{t}}\big{)}u^{l_{0}}\big{(}s,x+B_{S_{s}-S_{t}}\big{)}\prod_{j=1}^{m}u_{j}^{l_{j}}\big{(}s,x+B_{S_{s}-S_{t}}\big{)}\right]
=\displaystyle= 𝔼[𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111cl(s,Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)ul0(s,Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)j=1mujlj(s,Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)|T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111=s],\displaystyle\mathbb{E}\left[\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}c_{l}(s,X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{s,x})u^{l_{0}}(s,X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{s,x})\prod_{j=1}^{m}u_{j}^{l_{j}}(s,X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{s,x})\ \!\bigg{|}\ \!T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}=s\right],

l=(l0,,lm)ml=(l_{0},\ldots,l_{m})\in{\cal L}_{m}, 0tsT0\leq t\leq s\leq T. Applying the Markov property at the first branching time T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}} on the tree 𝒯t,x,i\mathcal{T}_{t,x,i} and using (3.2)-(3.3) and (3.8) we have, for i=1,,m0i=1,\ldots,m_{0},

ui(t,x)\displaystyle u_{i}(t,x) =\displaystyle= 𝔼[ϕ(𝒯t,x,i)(𝟙{T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt}+𝟙{T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111Tt})]\displaystyle\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i})\big{(}\mathbbm{1}_{\{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t\}}+\mathbbm{1}_{\{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}\leq T-t\}}\big{)}\big{]}
=\displaystyle= (T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(Tt)𝔼[𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111(ϕ(Xt,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)ϕ(x))|T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111>Tt]\displaystyle\frac{\mathbb{P}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t)}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-t)}\mathbb{E}\big{[}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}\big{(}\phi\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{t,x}\big{)}-\phi(x)\big{)}\ \!\big{|}\ \!T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}>T-t\big{]}
+l=(l0,,lm)mtT𝔼[𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111ρ(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)cl(s,Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)ul0(s,Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)j=1mujlj(s,Xs,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111)|T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111=s]ρ(s)𝑑s\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\int_{t}^{T}\mathbb{E}\Bigg{[}\frac{\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}}{\rho(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}})}c_{l}(s,X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{s,x})u^{l_{0}}\big{(}s,X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{s,x}\big{)}\prod_{j=1}^{m}u_{j}^{l_{j}}\big{(}s,X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}_{s,x}\big{)}\ \!\bigg{|}\ \!T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}}=s\Bigg{]}\rho(s)ds
=\displaystyle= xidφ(Tt,y)ϕ(x+y)𝑑y\displaystyle\frac{\partial}{\partial x_{i}}\int_{{}^{d}}\varphi(T-t,y)\phi(x+y)dy
+l=(l0,,lm)mxitTdφ(st,y)(cl(s,x+y)ul0(s,x+y)j=1mujlj(s,x+y))𝑑y𝑑s.\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{\partial}{\partial x_{i}}\int_{t}^{T}\int_{{}^{d}}\varphi(s-t,y)\left(c_{l}(s,x+y)u^{l_{0}}(s,x+y)\prod_{j=1}^{m}u_{j}^{l_{j}}(s,x+y)\right)dyds.

By (3.6) this shows (3.5), i.e.

ui(t,x)=uxi(t,x),(t,x)[0,T]×,di=1,,m0,u_{i}(t,x)=\frac{\partial u}{\partial x_{i}}(t,x),\quad(t,x)\in[0,T]\times{}^{d},\quad i=1,\ldots,m_{0},

and therefore we have

u(t,x)\displaystyle u(t,x) =\displaystyle= dφ(Tt,yx)ϕ(y)𝑑y\displaystyle\int_{{}^{d}}\varphi(T-t,y-x)\phi(y)dy
+l=(l0,,lm)mtTdφ(st,yx)cl(s,y)ul0(s,y)j=1m(uyj(s,y))ljdyds,\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\int_{t}^{T}\int_{{}^{d}}\varphi(s-t,y-x)c_{l}(s,y)u^{l_{0}}(s,y)\prod_{j=1}^{m}\left(\frac{\partial u}{\partial y_{j}}(s,y)\right)^{l_{j}}dyds,

(t,x)[0,T]×d(t,x)\in[0,T]\times{}^{d}, showing that uu is an integral solution of (1.1). \square

We note that (3.2) also implies that u(t,)u(t,\cdot) and ui(t,)u_{i}(t,\cdot) are in L()dL^{\infty}({}^{d}) for all t[0,T]t\in[0,T] and i=1,,mi=1,\ldots,m. In the next proposition, we note that the probabilistic representation of Theorem 3.1 can be used to recover the classical result of Fujita (1966) on the blow-up of semilinear PDEs, in the case of the fractional Laplacian.

Proposition 3.2

(Fujita (1966), Sugitani (1975), Birkner et al. (2002)) Consider the PDE

ut+Δαu+u1+β=0\frac{\partial u}{\partial t}+\Delta_{\alpha}u+u^{1+\beta}=0 (3.10)

with strictly positive terminal condition u(T,x)=ϕ(x)>0u(T,x)=\phi(x)>0, xdx\in{}^{d}. Under Assumption (AA), when αβd\alpha\geq\beta d there exists T>0T>0 such that (3.10) admits no solution on [0,T][0,T].

Proof. Given φ\varphi the solution of the heat equation tφ+Δαφ=0\partial_{t}\varphi+\Delta_{\alpha}\varphi=0 with φ(T,x)=ϕ(x)\varphi(T,x)=\phi(x), we denote as v(t,x;T)v(t,x;T) the unique solution of

tv(t,x;T)+Δαv(t,x;T)+v(t,x;T)φβ(t,x)=0,v(T,x;T)=ϕ(x),\partial_{t}v(t,x;T)+\Delta_{\alpha}v(t,x;T)+v(t,x;T)\varphi^{\beta}(t,x)=0,\qquad v(T,x;T)=\phi(x),

(t,x)[0,T]×d(t,x)\in[0,T]\times{}^{d}, which is a sub-solution of (3.10). Since φ\varphi and ϕ\phi are bounded on d, v(t,x;T)v(t,x;T) can be represented by Theorem 3.1 using a 11-branching tree as

v(t,x;T)=𝔼[ϕ(𝒯t,x,0)]=𝔼t,x[k¯𝒦φβ(Tk¯,XTk¯)ρ(ΔTk¯)k¯𝒦ϕ(XTk¯)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TTk¯)],v(t,x;T)=\mathbb{E}\big{[}\mathcal{H}_{\phi}(\mathcal{T}_{t,x,0})\big{]}=\mathbb{E}_{t,x}\left[\prod_{\bar{k}\in\mathcal{K}^{\circ}}\frac{\varphi^{\beta}(T_{\bar{k}},X_{T_{\bar{k}}})}{\rho(\Delta T_{\bar{k}})}\prod_{\bar{k}\in\mathcal{K}^{\partial}}\frac{\phi(X_{T_{\bar{k}}})}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\bar{k}})}\right],

(t,x)[0,T]×d(t,x)\in[0,T]\times{}^{d}, where 𝔼t,x\mathbb{E}_{t,x} denotes the conditional expectation given that the tree is rooted at (t,x)(t,x). Next, letting r{\cal B}_{r} denoting the ball of radius r>0r>0 centered at 0 in d, consider the event

A:={ωΩ:XTk¯k¯(TTk¯)1/α,k¯𝒦,andXTk¯1,k¯𝒦}.A:=\big{\{}\omega\in\Omega\ :\ X_{T_{\bar{k}}}^{\bar{k}}\in{\cal B}_{(T-T_{\bar{k}})^{1/\alpha}},\bar{k}\in\mathcal{K}^{\circ},\ and\ X_{T}^{\bar{k}}\in{\cal B}_{1},\bar{k}\in\mathcal{K}^{\partial}\big{\}}.

Let x1x\in{\cal B}_{1} and denote by 𝒢:=σ(τi,j,i,j1)\mathcal{G}:=\sigma\big{(}\tau^{i,j},\ i,j\geq 1\big{)}, the sigma-algebra generated by the branching times. By Lemma 2.2 in Birkner et al. (2002) there exists κ>0\kappa>0 such that x(A𝒢)>κ>0\mathbb{P}_{x}(A\mid\mathcal{G})>\kappa>0, a.e. on the event

B(t):={ωΩ,tTk¯T/2,k¯𝒦}{T1T},B(t):=\left\{\omega\in\Omega,t\leq T_{\bar{k}-}\leq T/2,\bar{k}\in\mathcal{K}^{\partial}\right\}\cup\{T_{1}\geq T\},

where for ωB(t)\omega\in B(t), the random tree 𝒯t,x(ω)\mathcal{T}_{t,x}(\omega) has its last branching time before T/2T/2. By (2.3) in Birkner et al. (2002), there exists c>0c>0 such that

f(t):=c(Tt)d/α(Tt)1/αϕ(y)𝑑yφ(t,x),x(Tt)1/α.f(t):=c(T-t)^{-d/\alpha}\int_{{\cal B}_{(T-t)^{1/\alpha}}}\phi(y)dy\leq\varphi(t,x),\qquad x\in{\cal B}_{(T-t)^{1/\alpha}}.

Hence, letting C:=infx1ϕ(x)>0\displaystyle C:=\inf_{x\in{\cal B}_{1}}\phi(x)>0, we have

v(0,x;T)=𝔼0,x[k𝒦φβ(Tk¯,XTk¯)ρ(ΔTk¯)k𝒦ϕ(XTk¯)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TTk¯)]𝔼0,x[𝟙A𝟙B(0)k𝒦fβ(Tk¯)ρ(ΔTk¯)k𝒦C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TTk¯)]𝔼0,x[(A𝒢)𝟙B(0)k𝒦fβ(Tk¯)ρ(ΔTk¯)k𝒦C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TTk¯)]κ𝔼0,x[𝟙B(0)k𝒦fβ(Tk¯)ρ(ΔTk¯)k𝒦C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TTk¯)]:=κg(0;T),\begin{split}v(0,x;T)&=\mathbb{E}_{0,x}\left[\prod_{k\in\mathcal{K}^{\circ}}\frac{\varphi^{\beta}(T_{\bar{k}},X_{T_{\bar{k}}})}{\rho(\Delta T_{\bar{k}})}\prod_{k\in\mathcal{K}^{\partial}}\frac{\phi(X_{T_{\bar{k}}})}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\bar{k}})}\right]\\ &\geq\mathbb{E}_{0,x}\left[\mathbbm{1}_{A}\mathbbm{1}_{B(0)}\prod_{k\in\mathcal{K}^{\circ}}\frac{f^{\beta}(T_{\bar{k}})}{\rho(\Delta T_{\bar{k}})}\prod_{k\in\mathcal{K}^{\partial}}\frac{C}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\bar{k}})}\right]\\ &\geq\mathbb{E}_{0,x}\left[{\mathord{\mathbb{P}}}(A\mid\mathcal{G})\mathbbm{1}_{B(0)}\prod_{k\in\mathcal{K}^{\circ}}\frac{f^{\beta}(T_{\bar{k}})}{\rho(\Delta T_{\bar{k}})}\prod_{k\in\mathcal{K}^{\partial}}\frac{C}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\bar{k}})}\right]\\ &\geq\kappa\mathbb{E}_{0,x}\left[\mathbbm{1}_{B(0)}\prod_{k\in\mathcal{K}^{\circ}}\frac{f^{\beta}(T_{\bar{k}})}{\rho(\Delta T_{\bar{k}})}\prod_{k\in\mathcal{K}^{\partial}}\frac{C}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\bar{k}})}\right]\\ &:=\kappa g(0;T),\end{split}{}

where the function

g(t;T):=𝔼t,x[𝟙B(t)k𝒦fβ(Tk¯)ρ(ΔTk¯)k𝒦C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TTk¯)],0tT,g(t;T):=\mathbb{E}_{t,x}\left[\mathbbm{1}_{B(t)}\prod_{k\in\mathcal{K}^{\circ}}\frac{f^{\beta}(T_{\bar{k}})}{\rho(\Delta T_{\bar{k}})}\prod_{k\in\mathcal{K}^{\partial}}\frac{C}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\bar{k}})}\right],\qquad 0\leq t\leq T,

is the solution of the ODE

g(t;T)=C+tT/2fβ(s)g(s;T)𝑑s,0tT2.g(t;T)=C+\int_{t}^{T/2}f^{\beta}(s)g(s;T)ds,\qquad 0\leq t\leq\frac{T}{2}. (3.11)

After solving (3.11), we obtain

g(t;T)\displaystyle g(t;T) =\displaystyle= Cexp(tT/2fβ(s)𝑑s)\displaystyle C\exp\bigg{(}\int_{t}^{T/2}f^{\beta}(s)ds\bigg{)}
\displaystyle\geq Cexp(T/2Tt(s1/αϕ(x)𝑑x)βsβd/α𝑑s)\displaystyle C\exp\bigg{(}\int_{T/2}^{T-t}\frac{\big{(}\int_{{\cal B}_{s^{1/\alpha}}}\phi(x)dx\big{)}^{\beta}}{s^{\beta d/\alpha}}ds\bigg{)}
\displaystyle\geq Cexp((dϕ(x)𝑑x)β(Tt)1βd/α(T/2)1βd/α2β(1βd/α)),\displaystyle C\exp\left(\bigg{(}\int_{{}^{d}}\phi(x)dx\bigg{)}^{\beta}\frac{(T-t)^{1-\beta d/\alpha}-(T/2)^{1-\beta d/\alpha}}{2^{\beta}(1-\beta d/\alpha)}\right),

hence limTg(0;T)=\lim_{T\to\infty}g(0;T)=\infty, provided that α>βd\alpha>\beta d. Therefore, we have

limTinfx1|v(0,x;T)|=,\lim_{T\to\infty}\inf_{x\in{\cal B}_{1}}|v(0,x;T)|=\infty,

which is sufficient to conclude to blow-up as in § 3 of Birkner et al. (2002). In the critical case d=β/αd=\beta/\alpha we find

g(t;T)C(2TtT)(dϕ(x)𝑑x/2)β,0tT.g(t;T)\geq C\left(2\frac{T-t}{T}\right)^{\left(\int_{{}^{d}}\phi(x)dx/2\right)^{\beta}},\qquad 0\leq t\leq T.

Letting now ww denote the solution of tw+Δαw+wvβ=0\partial_{t}w+\Delta_{\alpha}w+wv^{\beta}=0, with w(T,x;T)=ϕ(x)w(T,x;T)=\phi(x), xdx\in{}^{d}, the above argument shows that w(0,x;T)κh(0;T)w(0,x;T)\geq\kappa h(0;T), where

h(t;T)=Cexp(CβtT/2(TsT/2)β(dϕ(x)𝑑x/2)β𝑑s),h(t;T)=C\exp\left(C^{\beta}\int_{t}^{T/2}\left(\frac{T-s}{T/2}\right)^{\beta\left(\int_{{}^{d}}\phi(x)dx/2\right)^{\beta}}ds\right),

and limTh(0;T)=\lim_{T\to\infty}h(0;T)=\infty, therefore limTinfx1|w(0,x;T)|=\lim_{T\to\infty}\inf_{x\in{\cal B}_{1}}|w(0,x;T)|=\infty, which allows us to conclude to blow-up as above. Finally, the blow-up of u(t,x;T)u(t,x;T) follows from the inequalities u(t,x;T)v(t,x;T)w(t,x;T)u(t,x;T)\geq v(t,x;T)\geq w(t,x;T), (t,x)[0,T]×d(t,x)\in[0,T]\times{}^{d}. \square

4 LpL^{p} Integrability

In Theorem 4.1 and Proposition 4.4 we derive sufficient conditions for the integrability conditions (3.2)-(3.3) to hold. As in Theorem 3.1, we let m0m\geq 0 denote the number of partial derivatives appearing in (1.5). The next result covers the case α=2\alpha=2 of the standard Laplacian by taking η(λ):=2λ\eta(\lambda):=2\lambda with the deterministic subordinator St=tS_{t}=t, t+t\in{}_{+}.

Theorem 4.1

Under Assumption (AA), for any p1p\geq 1 and m0{m,,d}m_{0}\in\{m,\ldots,d\} there exists a small enough T=T(p,m0)>0T=T(p,m_{0})>0 such that

𝔼[supxd|ϕ(𝒯t,x,i)|p]<,t[0,T],i=0,,m0,{\mathbb{E}\left[\sup_{x\in{}^{d}}\big{|}\mathcal{{H}}_{\phi}(\mathcal{T}_{t,x,i})\big{|}^{p}\right]<\infty},\quad t\in[0,T],\qquad i=0,\ldots,m_{0}, (4.1)

provided that

0T1ρp1(s)𝑑s<and0T0esη(λ)ρp1(s)λp/21𝑑λ𝑑s<.{\int_{0}^{T}\frac{1}{\rho^{p-1}(s)}ds<\infty\quad\mbox{and}\quad\int_{0}^{T}\int_{0}^{\infty}\frac{e^{-s\eta(\lambda)}}{\rho^{p-1}(s)}\lambda^{p/2-1}d\lambda ds<\infty}. (4.2)

When p=1p=1, both conditions in (4.2) are satisfied if

λ01η(λ)λ𝑑λ<\int_{\lambda_{0}}^{\infty}\frac{1}{\eta(\lambda)\sqrt{\lambda}}d\lambda<\infty (4.3)

for some λ0>0\lambda_{0}>0.

Proof. Under (1.2) and (1.3), the random variable ϕ(𝒯t,x,i)\mathcal{{H}}_{\phi}(\mathcal{T}_{t,x,i}) is bounded as

|ϕ(𝒯t,x,i)|\displaystyle\big{|}\mathcal{{H}}_{\phi}(\mathcal{T}_{t,x,i})\big{|} \displaystyle\leq \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k||𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρ(τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|(ϕ(XT,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)ϕ(XT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0})𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\displaystyle\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|}{q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho(\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{\big{|}\big{(}\phi\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T,x}\big{)}-\phi\big{(}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}\big{)}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}\big{)}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\big{|}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}
\displaystyle\leq \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k||𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρ(τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦LXT,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kXT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k,x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0}+|ϕ|𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=0}\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\displaystyle\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|}{q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho(\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{L\big{\|}X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T,x}-X^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-},x}\big{\|}\big{|}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\big{|}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}+|\phi|_{\infty}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}=0\}}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}
=\displaystyle= \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k||𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρ(τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦LZTT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0}+|ϕ|𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=0}\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k),xd,\displaystyle\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|}{q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho(\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{L\big{\|}Z_{T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\big{\|}\big{|}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\big{|}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}+|\phi|_{\infty}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}=0\}}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})},\qquad x\in\mathbb{R}^{d},

i=0,,m0i=0,\ldots,m_{0}. By the Cauchy-Schwartz inequality and (2.2), (3.1b), when θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k{1,,d}\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\in\{1,\ldots,d\} we have

𝔼[ZTT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kp]\displaystyle\mathbb{E}\big{[}\big{\|}Z_{T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\big{\|}^{p}\big{]} =\displaystyle= 𝔼[ZTT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)p|(ZTT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k))θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|p(ST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)p]\displaystyle\mathbb{E}\left[\big{\|}Z_{T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\big{\|}^{p}\frac{\big{|}\big{(}Z_{T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\big{)}_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\big{|}^{p}}{(S^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T}-S^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}})^{p}}\right] (4.5)
\displaystyle\leq 𝔼[ZTT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)2p(ST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)p]𝔼[(ZTT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k))θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k2p(ST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)p]\displaystyle\sqrt{\mathbb{E}\Bigg{[}\frac{\big{\|}Z_{T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\big{\|}^{2p}}{\big{(}S_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}-S_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}\big{)}^{p}}\Bigg{]}\mathbb{E}\Bigg{[}\frac{\big{(}Z_{T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\big{)}_{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}^{2p}}{\big{(}S_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}-S_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}\big{)}^{p}}\Bigg{]}}
=\displaystyle= Mpd,\displaystyle M_{p}\sqrt{d},

where Mp:=𝔼[|X|p]=2pΓ(p+1/2)/πM_{p}:=\mathbb{E}[|X|^{p}]=2^{p}\Gamma(p+1/2)/\sqrt{\pi} for X𝒩(0,1)X\sim\mathcal{N}(0,1). Hence, by conditional independence given 𝒢:=σ(τi,j,Ii,j,i,j1)\mathcal{G}:=\sigma\big{(}\tau^{i,j},I^{i,j},i,j\geq 1\big{)} of the terms in the product over \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦𝒦\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}\cup\mathcal{K}^{\partial} in (LABEL:dsdfdnf$), for all marks i{0,,m0}i\in\{0,\ldots,m_{0}\} and all t[0,T]t\in[0,T], denoting by 𝔼t,i[]\mathbb{E}_{t,i}[\ \!\cdot\ \!] the expected value given the initial mark ii at time tt, we have

𝔼[supxd|ϕ(𝒯t,x,i)|p]𝔼t,i[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|p|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρp(τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)]\mathbb{E}\left[\sup_{x\in{}^{d}}\big{|}\mathcal{{H}}_{\phi}(\mathcal{T}_{t,x,i})\big{|}^{p}\right]\leq\mathbb{E}_{t,i}\left[\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho^{p}(\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\right]

with C,p:=max{|ϕ|p,MpLpd}C_{\partial,p}:=\max\big{\{}|\phi|_{\infty}^{p},M_{p}L^{p}\sqrt{d}\big{\}} and qmin:=minl=(l0,,lm)mql>0q_{\min}:=\min_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}q_{l}>0. To show (4.1) we will derive a system of Volterra integral equations and give sufficient conditions for this system to have a local solution. Proceeding by conditioning on the first branching time T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{1}} as in the proof of Theorem 3.1, we note that the functions (v0,v1,vm0)(v_{0},v_{1},\ldots v_{m_{0}}) defined as

vi(t):=𝔼t,i[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|p|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρp(τ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)],i=0,1,,m0,v_{i}(t):=\mathbb{E}_{t,i}\left[\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho^{p}(\tau_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\right],\qquad i=0,1,\ldots,m_{0},

solve a system of Volterra integral equations of the form:

v0(t)=C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)+l=(l0,,lm)m|cl|pqminp1tTv0l0(s)ρp1(st)j=1mvjlj(s)ds,v_{0}(t)=\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{v_{0}^{l_{0}}(s)}{\rho^{p-1}(s-t)}\prod_{j=1}^{m}v_{j}^{l_{j}}(s)ds,

and

vi(t)=C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)\displaystyle v_{i}(t)=\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}
+l=(l0,,lm)m|cl|ptT1ρp1(st)𝔼[dG(SsSt,x,y)|yx|p(SsSt)p𝑑y]v0l0(s)j=1mvjlj(s)ds\displaystyle+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}|c_{l}|_{\infty}^{p}\int_{t}^{T}\frac{1}{\rho^{p-1}(s-t)}\mathbb{E}\left[\int_{{}^{d}}G(S_{s}-S_{t},x,y)\frac{|y-x|^{p}}{(S_{s}-S_{t})^{p}}dy\right]v_{0}^{l_{0}}(s)\prod_{j=1}^{m}v_{j}^{l_{j}}(s)ds
=\displaystyle= C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)+Mpl=(l0,,lm)m|cl|pqminp1tT𝔼[Sstp/2]ρp1(st)v0l0(s)j=1mvjlj(s)ds,\displaystyle\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}+M_{p}\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}}{\rho^{p-1}(s-t)}v_{0}^{l_{0}}(s)\prod_{j=1}^{m}v_{j}^{l_{j}}(s)ds,

for the marks i=1,,m0i=1,\ldots,m_{0}, where G(SsSt,x,y)G(S_{s}-S_{t},x,y) denotes the standard Gaussian kernel with variance SsStS_{s}-S_{t}, 0t<s0\leq t<s. We have

v0(t)C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)+l=(l0,,lm)m|cl|pqminp1tTv|l|(s)ρp1(st)𝑑s,v_{0}(t)\leq\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{v^{|l|}(s)}{\rho^{p-1}(s-t)}ds,

and

vi(t)C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)+Mpl=(l0,,lm)m|cl|pqminp1tT𝔼[Sstp/2]ρp1(st)v|l|(s)𝑑s,v_{i}(t)\leq\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}+M_{p}\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}}{\rho^{p-1}(s-t)}v^{|l|}(s)ds,

for the marks i=1,,m0i=1,\ldots,m_{0}. Letting v(t):=max0imvi(t)v(t):=\max_{0\leq i\leq m}v_{i}(t), t[0,T]t\in[0,T], this leads to the Volterra integral inequality

v(t)\displaystyle v(t) \displaystyle\leq C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)+max{l=(l0,,lm)m|cl|pqminp1tTv|l|(s)ρp1(st)ds,\displaystyle\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}+\max\Bigg{\{}\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{v^{|l|}(s)}{\rho^{p-1}(s-t)}ds, (4.6)
Mpl=(l0,,lm)m|cl|pqminp1tT𝔼[Sstp/2]ρp1(st)v|l|(s)ds}\displaystyle\qquad M_{p}\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}}{\rho^{p-1}(s-t)}v^{|l|}(s)ds\Bigg{\}}
\displaystyle\leq C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(Tt)+l=(l0,,lm)m|cl|pqminp1tTv|l|(s)ρp1(st)(1+Mp𝔼[Sstp/2])𝑑s.\displaystyle\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T-t)}+\sum_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}\frac{|c_{l}|_{\infty}^{p}}{q_{\min}^{p-1}}\int_{t}^{T}\frac{v^{|l|}(s)}{\rho^{p-1}(s-t)}\big{(}1+M_{p}\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}\big{)}ds.

Using the comparison theorem for Volterra integral equations (see page 121 of Miller (1971)), the integral inequality (4.6) admits a local in time solution v(t):=max0imvi(t)v(t):=\max_{0\leq i\leq m}v_{i}(t), provided that the corresponding Volterra integral equation admits a local maximal solution v(t)v(t) which is finite on an interval of the form (T,T][0,T](T_{*},T]\supset[0,T], implying (4.1).

In order to ensure the existence of this local in time maximal solution, by Theorem 5.1 page 116 Theorem 1 page 87 of Miller (1971) it suffices to check that conditions (H3), (H4) and (H7) pages 86-87 and 99 in Miller (1971) are satisfied, i.e.

sup0tTtT1ρp1(st)𝑑s<andsup0tTtT𝔼[Sstp/2]ρp1(st)𝑑s<,\sup_{0\leq t\leq T}\int_{t}^{T}\frac{1}{\rho^{p-1}(s-t)}ds<\infty\quad\mbox{and}\quad\sup_{0\leq t\leq T}\int_{t}^{T}\frac{\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}}{\rho^{p-1}(s-t)}ds<\infty,
limtt0supgC([0,T],)|g|b0T|g|l|(s)𝟙{t<s}ρp1(st)(1+Mp𝔼[Sstp/2])g|l|(s)𝟙{t0<s}ρp1(st0)(1+Mp𝔼[Sst0p/2])|𝑑s=0,\lim_{t\rightarrow t_{0}}\sup_{g\in C([0,T],\real)\atop|g|_{\infty}\leq b}\int_{0}^{T}\left|\frac{g^{|l|}(s)\mathbbm{1}_{\{t<s\}}}{\rho^{p-1}(s-t)}\big{(}1+M_{p}\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}\big{)}-\frac{g^{|l|}(s)\mathbbm{1}_{\{t_{0}<s\}}}{\rho^{p-1}(s-t_{0})}\big{(}1+M_{p}\mathbb{E}\big{[}S_{s-t_{0}}^{-p/2}\big{]}\big{)}\right|ds=0,

ll\in\mathcal{L}, and

limh0tht1+Mp𝔼[Sst+hp/2]ρp1(st+h)𝑑s=0,\lim_{h\rightarrow 0}\int_{t-h}^{t}\frac{1+M_{p}\mathbb{E}\big{[}S_{s-t+h}^{-p/2}\big{]}}{\rho^{p-1}(s-t+h)}ds=0, (H7)

uniformly in t[0,T]t\in[0,T]. Regarding (H3), using (1.7) and (1.8) we have

𝔼[Sstp/2]=1Γ(p/2)0e(st)η(λ)λp/21𝑑λ,\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}=\frac{1}{\Gamma(p/2)}\int_{0}^{\infty}e^{-(s-t)\eta(\lambda)}\lambda^{p/2-1}d\lambda,

which shows by (4.2) that (H3) is satisfied. Regarding (H4), under the condition |g|b|g|_{\infty}\leq b, gC([0,T],)g\in C([0,T],\real), we have

limtt0supgC([0,T],)|g|b|0T(g|l|(s)𝟙{t<s}ρp1(st)(1+Mp𝔼[Sstp/2])g|l|(s)𝟙{t0<s}ρp1(st0)(1+Mp𝔼[Sst0p/2]))𝑑s|\displaystyle\lim_{t\rightarrow t_{0}}\sup_{g\in C([0,T],\real)\atop|g|_{\infty}\leq b}\left|\int_{0}^{T}\left(\frac{g^{|l|}(s)\mathbbm{1}_{\{t<s\}}}{\rho^{p-1}(s-t)}\big{(}1+M_{p}\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}\big{)}-\frac{g^{|l|}(s)\mathbbm{1}_{\{t_{0}<s\}}}{\rho^{p-1}(s-t_{0})}\big{(}1+M_{p}\mathbb{E}\big{[}S_{s-t_{0}}^{-p/2}\big{]}\big{)}\right)ds\right|
b|l|limtt00T|𝟙{t<s}ρp1(st)𝟙{t0<s}ρp1(st0)|𝑑s\displaystyle\leq b^{|l|}\lim_{t\rightarrow t_{0}}\int_{0}^{T}\left|\frac{\mathbbm{1}_{\{t<s\}}}{\rho^{p-1}(s-t)}-\frac{\mathbbm{1}_{\{t_{0}<s\}}}{\rho^{p-1}(s-t_{0})}\right|ds
+b|l|Mplimtt00T|𝟙{t<s}𝔼[Sstp/2]ρp1(st)𝟙{t0<s}𝔼[Sst0p/2]ρp1(st0)|𝑑s\displaystyle\quad+b^{|l|}M_{p}\lim_{t\rightarrow t_{0}}\int_{0}^{T}\left|\mathbbm{1}_{\{t<s\}}\frac{\mathbb{E}\big{[}S_{s-t}^{-p/2}\big{]}}{\rho^{p-1}(s-t)}-\mathbbm{1}_{\{t_{0}<s\}}\frac{\mathbb{E}\big{[}S_{s-t_{0}}^{-p/2}\big{]}}{\rho^{p-1}(s-t_{0})}\right|ds
=b|l|MpΓ(p/2)limtt00T0|𝟙{t<s}e(st)η(λ)ρp1(st)𝟙{t0<s}e(st0)η(λ)ρp1(st0)|λp/21𝑑λ𝑑s\displaystyle=\frac{b^{|l|}M_{p}}{\Gamma(p/2)}\lim_{t\rightarrow t_{0}}\int_{0}^{T}\int_{0}^{\infty}\left|\mathbbm{1}_{\{t<s\}}\frac{e^{-(s-t)\eta(\lambda)}}{\rho^{p-1}(s-t)}-\mathbbm{1}_{\{t_{0}<s\}}\frac{e^{-(s-t_{0})\eta(\lambda)}}{\rho^{p-1}(s-t_{0})}\right|\lambda^{p/2-1}d\lambda ds
=0\displaystyle=0

for all l=(l0,,lm)ml=(l_{0},\ldots,l_{m})\in{\cal L}_{m} by Scheffé’s lemma since by (4.2) and dominated convergence we have

limtt00T𝟙{t<s}ρp1(st)𝑑s=0T𝟙{t0<s}ρp1(st0)𝑑s\lim_{t\rightarrow t_{0}}\int_{0}^{T}\frac{\mathbbm{1}_{\{t<s\}}}{\rho^{p-1}(s-t)}ds=\int_{0}^{T}\frac{\mathbbm{1}_{\{t_{0}<s\}}}{\rho^{p-1}(s-t_{0})}ds

and

limtt00T0𝟙{t<s}e(st)η(λ)ρp1(st)λp/21𝑑λ𝑑s=0T0𝟙{t0<s}e(st0)η(λ)ρp1(st0)λp/21𝑑λ𝑑s.\lim_{t\rightarrow t_{0}}\int_{0}^{T}\int_{0}^{\infty}\mathbbm{1}_{\{t<s\}}\frac{e^{-(s-t)\eta(\lambda)}}{\rho^{p-1}(s-t)}\lambda^{p/2-1}d\lambda ds=\int_{0}^{T}\int_{0}^{\infty}\mathbbm{1}_{\{t_{0}<s\}}\frac{e^{-(s-t_{0})\eta(\lambda)}}{\rho^{p-1}(s-t_{0})}\lambda^{p/2-1}d\lambda ds.

Regarding (H7), by (4.2) we have

limh0tht1+Mp𝔼[Sst+hp/2]ρp1(st+h)𝑑s=limh00hdsρp1(s)+limh0MpΓ(p/2)0h0esη(λ)ρp1(s)λp/21𝑑λ𝑑s=0.{\lim_{h\rightarrow 0}\int_{t-h}^{t}\frac{1+M_{p}\mathbb{E}\big{[}S_{s-t+h}^{-p/2}\big{]}}{\rho^{p-1}(s-t+h)}ds=\lim_{h\rightarrow 0}\int_{0}^{h}\frac{ds}{\rho^{p-1}(s)}+\lim_{h\rightarrow 0}\frac{M_{p}}{\Gamma(p/2)}\int_{0}^{h}\int_{0}^{\infty}\frac{e^{-s\eta(\lambda)}}{\rho^{p-1}(s)}\lambda^{p/2-1}d\lambda ds=0.} (4.7)

When p=1p=1 we have

0λ1/2tTe(st)η(λ)𝑑s𝑑λ\displaystyle\int_{0}^{\infty}\lambda^{-1/2}\int_{t}^{T}e^{-(s-t)\eta(\lambda)}dsd\lambda =\displaystyle= 01e(Tt)η(λ)η(λ)λ1/2𝑑λ,\displaystyle\int_{0}^{\infty}\frac{1-e^{-(T-t)\eta(\lambda)}}{\eta(\lambda)}\lambda^{-1/2}d\lambda,

and we conclude from the facts that the integrand (1e(Tt)ζη(λ))λ1/2/η(λ)(1-e^{-(T-t)\zeta\eta(\lambda)})\lambda^{-1/2}/\eta(\lambda) is equivalent to (Tt)/λ(T-t)/\sqrt{\lambda} as λ0\lambda\to 0, and to λ1/2/η(λ)\lambda^{-1/2}/\eta(\lambda) as λ+\lambda\to+\infty. \square

The probabilistic representation (3.4) provided in Theorem 3.1 will be used to estimate the solution of (1.1) by Monte Carlo simulations in Section 5. Finiteness of the second moment of the functional ϕ(𝒯t,x,i)\mathcal{H}_{\phi}(\mathcal{T}_{t,x,i}) is needed in order to control the convergence via the central limit theorem, and is ensured by the sufficient conditions on ρ\rho and η\eta in Theorem 4.1.

Remark 4.2

When m=0m=0, i.e. the PDE (1.1) does not contain any partial derivative, it follows, by inspection of its proof, that Theorem 4.1 holds by replacing (4.2) with the single condition 0T1ρp1(s)𝑑s<\displaystyle\int_{0}^{T}\frac{1}{\rho^{p-1}(s)}ds<\infty.

When p=1,2p=1,2 and η(λ)=(2λ)α/2\eta(\lambda)=(2\lambda)^{\alpha/2} the integrability condition (4.3) can be made more specific in the case of fractional Laplacians.

Corollary 4.3

Consider the case η(λ)=(2λ)α/2\eta(\lambda)=(2\lambda)^{\alpha/2} of the fractional Laplacian Δα=(Δ)α/2\Delta_{\alpha}=-(-\Delta)^{\alpha/2}.

  1. i)

    When p=1p=1, the integrability conditions (3.2)-(3.3) hold whenever α(1,2)\alpha\in(1,2).

  2. ii)

    When p=2p=2 and ρ:+(0,)\rho:\mathbb{R}^{+}\rightarrow(0,\infty) is the gamma probability density function ρ(s):=sδ1es/Γ(δ)\rho(s):=s^{\delta-1}e^{-s}/\Gamma(\delta) for δ>0\delta>0, the integrability conditions (3.2)-(3.3) hold provided that δ<22/α\delta<2-2/\alpha.

Proof. (i)(i) When p=1p=1, by (4.3) it suffices to note that the function 1/(λα/2λ)1/(\lambda^{\alpha/2}\sqrt{\lambda}) is integrable at ++\infty if and only if 1/2+α/2>11/2+\alpha/2>1.

(ii)(ii) When p=2p=2 we have 0T𝑑s/ρ(s)<\int_{0}^{T}ds/\rho(s)<\infty since δ<2\delta<2, and

0T1ρ(s)0es(2λ)α/2𝑑λ𝑑s\displaystyle\int_{0}^{T}\frac{1}{\rho(s)}\int_{0}^{\infty}e^{-s(2\lambda)^{\alpha/2}}d\lambda ds =\displaystyle= 2α0Ts2/αρ(s)0eμμ1+2/α𝑑μ𝑑s\displaystyle\frac{2}{\alpha}\int_{0}^{T}\frac{s^{-2/\alpha}}{\rho(s)}\int_{0}^{\infty}e^{-\mu}\mu^{-1+2/\alpha}d\mu ds
=\displaystyle= 2αΓ(δ)Γ(2/α)0Ts1δ2/αes𝑑s\displaystyle\frac{2}{\alpha}\Gamma(\delta)\Gamma(2/\alpha)\int_{0}^{T}s^{1-\delta-2/\alpha}e^{s}ds
<\displaystyle< ,\displaystyle\infty,

which holds since δ<22/α\delta<2-2/\alpha, hence (4.2) is satisfied. \square

In the case of the fractional Laplacian, quantitative bounds on the time TT satisfying (4.1) and ensuring existence of solutions on [0,T][0,T] by Theorem 3.1, are derived in the next result. Note that (4.8)-(4.9) hold respectively for the gamma probability density function ρ(s):=sδ1es/Γ(δ)\rho(s):=s^{\delta-1}e^{-s}/\Gamma(\delta) when 0<δ<11/α0<\delta<1-1/\alpha, resp. 0<δ<1p/(α(p1))0<\delta<1-p/(\alpha(p-1)) if p>1p>1.

Proposition 4.4

Let p1p\geq 1. Under Assumption (AA), assume that η(λ)=(2λ)α/2\eta(\lambda)=(2\lambda)^{\alpha/2} with α(1,2]\alpha\in(1,2], let qmin:=minl=(l0,,lm)mql>0q_{\min}:=\min_{l=(l_{0},\ldots,l_{m})\in{\cal L}_{m}}q_{l}>0, C,p:=max{|ϕ|,(2L)pΓ(p+1/2)d/π}C_{\partial,p}:=\max\big{\{}|\phi|_{\infty},(2L)^{p}\Gamma(p+1/2)\sqrt{d/\pi}\big{\}}, and m0{m,,d}m_{0}\in\{m,\ldots,d\}. Then, the bound (4.1) holds for all t[0,T]t\in[0,T], provided that TT satisfies condition (a)(a) or condition (b)(b) below.

  1. a)

    The time TT is small enough so that

    C,p(T):=1qminpsupl|cl|pmax{2Γ(p/α)2p/2αΓ(p/2)sups(0,T]sp/αρp(s),sups(0,T]1ρp(s)}1,C_{\circ,p}(T):=\frac{1}{q_{\min}^{p}}\sup_{l\in\mathcal{L}}|c_{l}|^{p}\max\left\{\frac{2\Gamma(p/\alpha)}{2^{p/2}\alpha\Gamma(p/2)}\sup_{s\in(0,T]}\frac{s^{-p/\alpha}}{\rho^{p}(s)},\sup_{s\in(0,T]}\frac{1}{\rho^{p}(s)}\right\}\leq 1, (4.8)

    and

    C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp(T)1.\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p}(T)}\leq 1. (4.9)
  2. b)

    The time TT is small enough so that

    C~,p(T):=1qminp1supl|cl|p1max{2Γ(p/α)2p/2αΓ(p/2)sups(0,T]sp/αρp1(s),sups(0,T]1ρp1(s)}<,\widetilde{C}_{\circ,p}(T):=\frac{1}{q_{\min}^{p-1}}\sup_{l\in\mathcal{L}}|c_{l}|^{p-1}\max\left\{\frac{2\Gamma(p/\alpha)}{2^{p/2}\alpha\Gamma(p/2)}\sup_{s\in(0,T]}\frac{s^{-p/\alpha}}{\rho^{p-1}(s)},\sup_{s\in(0,T]}\frac{1}{\rho^{p-1}(s)}\right\}<\infty,

    and

    T<1C~,p(T)C,p/\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(T)(l|cl|x|l|)1𝑑x.T<\frac{1}{\widetilde{C}_{\circ,p}(T)}\int_{C_{\partial,p}/\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T)}^{\infty}\left(\sum_{l\in\mathcal{L}}|c_{l}|_{\infty}x^{|l|}\right)^{-1}dx. (4.10)

Proof. a)a) By (4.5) and conditional independence of the terms in the product over \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦𝒦\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}\cup\mathcal{K}^{\partial} in (LABEL:dsdfdnf$) given 𝒢:=σ(τi,j,Ii,j,i,j1)\mathcal{G}:=\sigma\big{(}\tau^{i,j},I^{i,j},i,j\geq 1\big{)}, denoting by 𝔼t,i[]\mathbb{E}_{t,i}[\ \!\cdot\ \!] the expected value given the starting time t[0,T]t\in[0,T] of the tree with initial mark ii{0,,m0}i\in i\in\{0,\ldots,m_{0}\}, we have

𝔼[supxd|ϕ(𝒯t,x,i)|p]\displaystyle\mathbb{E}\left[\sup_{x\in\mathbb{R}^{d}}\big{|}\mathcal{{H}}_{\phi}(\mathcal{T}_{t,x,i})\big{|}^{p}\right] (4.11)
\displaystyle\leq 𝔼t,i[𝔼[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|p|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kpρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]𝔼[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦LpZT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kn,πn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)p|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|p𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k0}+|ϕ|p𝟙{θ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=0}\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]]\displaystyle\mathbb{E}_{t,i}\left[\mathbb{E}\left[\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|^{p}}{q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}^{p}\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right]\mathbb{E}\left[\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{L^{p}\big{\|}Z_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{n,\pi_{n}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k})}\big{\|}^{p}\big{|}\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\big{|}^{p}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}\neq 0\}}+|\phi|_{\infty}^{p}\mathbbm{1}_{\{\theta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}=0\}}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right]\right]
\displaystyle\leq 𝔼t,i[𝔼[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|p|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp(T)].\displaystyle\mathbb{E}_{t,i}\left[\mathbb{E}\left[\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right]\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p}(T)}\right].

Next, for a particle labeled k¯\bar{k} with mark θk¯0\theta_{\bar{k}}\neq 0, using (1.10) and (4.8) we have

|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝔼[|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]\displaystyle\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}}\mathbb{E}\left[\frac{|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|^{p}}{\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right] =\displaystyle= |cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝔼[𝔼[|𝒲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|σ(Si,j)]|𝒢]\displaystyle\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}}\mathbb{E}\left[\mathbb{E}\left[\frac{|\mathcal{W}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}|^{p}}{\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\sigma(S^{i,j})\right]\ \!\bigg{|}\ \!\mathcal{G}\right]
=\displaystyle= |cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝔼[MpST\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kp/21ρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]\displaystyle\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}}\mathbb{E}\left[\frac{M_{p}}{S_{T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-}}^{p/2}}\frac{1}{\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right]
=\displaystyle= 21p|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pMpΓ(p/α)αqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kΓ(p/2)𝔼[(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)p/αρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]\displaystyle\frac{2^{1-p}|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}M_{p}\Gamma(p/\alpha)}{\alpha q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\Gamma(p/2)}\mathbb{E}\left[\frac{(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})^{-p/\alpha}}{\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right]
\displaystyle\leq C,p(T)\displaystyle C_{\circ,p}(T)

and

|cI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k|pqminp1qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝔼[1ρp(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)|𝒢]C,p(T),\begin{split}\frac{|c_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}|_{\infty}^{p}}{q_{\min}^{p-1}q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}}\mathbb{E}\left[\frac{1}{\rho^{p}(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\ \!\bigg{|}\ \!\mathcal{G}\right]\leq C_{\circ,p}(T),\end{split}

hence by (3.1a), under (4.9) the random variable (𝒯t,x,i)\mathcal{H}(\mathcal{T}_{t,x,i}) is bounded by 11.
b)b) We rewrite (4.11) as

𝔼[supxd|ϕ(𝒯t,x,i)|p]η(t):=𝔼t,i[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦C~,p(T)|cIk¯|qI\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kρ(T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k𝒦C,p/\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(T)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(TT\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k)]\begin{split}\mathbb{E}\left[\sup_{x\in\mathbb{R}^{d}}\big{|}\mathcal{{H}}_{\phi}(\mathcal{T}_{t,x,i})\big{|}^{p}\right]&\leq\eta(t):=\mathbb{E}_{t,i}\left[\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\circ}}\frac{\widetilde{C}_{\circ,p}(T)|c_{I_{\bar{k}}}|_{\infty}}{q_{I_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}}\rho(T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}}-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\prod_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in\mathcal{K}^{\partial}}\frac{C_{\partial,p}/\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T)}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}(T-T_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}-})}\right]\end{split}

where η(t)\eta(t) solves the ODE

η(t)=C,p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Fp1(T)+C~,p(T)tTl|cl|η(s)|l|ds,t[0,T],\eta(t)=\frac{C_{\partial,p}}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}^{p-1}(T)}+\widetilde{C}_{\circ,p}(T)\int_{t}^{T}\sum_{l\in\mathcal{L}}|c_{l}|_{\infty}\eta(s)^{|l|}ds,\qquad t\in[0,T],

which admits a (finite) solution as long as (4.10) holds. \square

Examples

We discuss some examples of subordinators and their Laplace exponents in relation with the above integrability conditions, see e.g. § 6 of Kyprianou and Rivero (2008).

The first example is a variation of the stable subordinator.

Example 4.5

Sum of independant stable processes. For a,b>0a,b>0 and 0<α<β<10<\alpha<\beta<1, let

η(λ):=aλβα+bλβ,\eta(\lambda):=a\lambda^{\beta-\alpha}+b\lambda^{\beta},

which is the Laplace exponent of the sum of two independant stable subordinators with parameters βα\beta-\alpha and β\beta. Since we have η(λ)λbλβ+1/2\eta(\lambda)\sqrt{\lambda}\sim b\lambda^{\beta+1/2} as λ\lambda tends to infinity, the integrability condition (4.3) holds if and only if β>1/2\beta>1/2.

Example 4.6

Stable subordinator with drift. The Bernstein function

η(λ):=κ+μλ+cλα\eta(\lambda):=\kappa+\mu\lambda+c\lambda^{\alpha}

is the Laplace exponent of an α\alpha-stable subordinator, α(0,1)\alpha\in(0,1), with drift μ>0\mu>0 killed at the rate κ>0\kappa>0, with c>0c>0. Due to the equivalent η(λ)λλ3/2\eta(\lambda)\sqrt{\lambda}\sim\lambda^{3/2} as λ\lambda tends to infinity, the integrability condition (4.3) is always satisfied in this case.

Example 4.7

Consider the Bernstein function

η(λ):=cλΓ(λ+ν)Γ(λ+ν+μ)=cλΓ(μ)B(λ+ν,μ),\eta(\lambda):=\frac{c\lambda\Gamma(\lambda+\nu)}{\Gamma(\lambda+\nu+\mu)}=\frac{c\lambda}{\Gamma(\mu)}B(\lambda+\nu,\mu),

with c>0c>0, ν0\nu\geq 0, μ(0,1)\mu\in(0,1). Due to the equivalent λη(λ)cλμ+3/2\sqrt{\lambda}\eta(\lambda)\sim c\lambda^{-\mu+3/2} as λ\lambda tends to infinity, the integrability condition (4.3) holds if and only if μ<1/2\mu<1/2.

Example 4.8

Relativistic stable subordinator. The Bernstein function η(λ):=(λ+m2/α)α/2m\eta(\lambda):=(\lambda+m^{2/\alpha})^{\alpha/2}-m, with α(0,2)\alpha\in(0,2), m>0m>0, satisfies η(λ)λλ(1+α)/2\eta(\lambda)\sqrt{\lambda}\sim\lambda^{(1+\alpha)/2} as λ\lambda tends to infinity, thus the integrability condition (4.3) holds if and only if α>1\alpha>1.

Example 4.9

For α(0,2)\alpha\in(0,2) and β(0,2α)\beta\in(0,2-\alpha), the Bernstein function η(λ):=λα/2(log(1+λ))β/2\eta(\lambda):=\lambda^{\alpha/2}(\log(1+\lambda))^{\beta/2} satisfies the integrability condition (4.3) if and only if α>1\alpha>1. When β(0,α)\beta\in(0,\alpha), the Bernstein function η(λ):=λα/2(log(1+λ))β/2\eta(\lambda):=\lambda^{\alpha/2}(\log(1+\lambda))^{-\beta/2} satisfies the integrability condition (4.3) if and only if α>1\alpha>1.

The following table summarizes the above examples of integrability conditions.

Laplace exponent η(λ)\eta(\lambda) Parameters Integrability condition
aλβα+bλβa\lambda^{\beta-\alpha}+b\lambda^{\beta} a,b>0a,b>0 and 0<α<β<10<\alpha<\beta<1 0<max(α,1/2)<β<10<\max(\alpha,1/2)<\beta<1
κ+μλ+cλα\kappa+\mu\lambda+c\lambda^{\alpha} α(0,1)\alpha\in(0,1), μ>0\mu>0, κ,c>0\kappa,c>0 Always satisfied
cλB(λ+ν,μ)/Γ(μ)c\lambda B(\lambda+\nu,\mu)/\Gamma(\mu) c>0,ν0,μ(0,1)c>0,~{}\nu\geq 0,~{}\mu\in(0,1) 0<μ<1/20<\mu<1/2
(λ+m2/α)α/2m(\lambda+m^{2/\alpha})^{\alpha/2}-m α(0,2),m>0\alpha\in(0,2),~{}m>0 1<α<21<\alpha<2
λα/2(log(1+λ))β/2\lambda^{\alpha/2}(\log(1+\lambda))^{\beta/2} α(0,2),β(0,2α)\alpha\in(0,2),~{}\beta\in(0,2-\alpha) 1<α<21<\alpha<2
λα/2(log(1+λ))β/2\lambda^{\alpha/2}(\log(1+\lambda))^{-\beta/2} α(0,2),β(0,α)\alpha\in(0,2),~{}\beta\in(0,\alpha) 1<α<21<\alpha<2

Higher order derivatives

Here, we shortly discuss the difficulties in dealing with higher orders of derivation inside the coefficient ff of (1.1). Writing the iterated integrations by parts relation (3.7)-(3.9) for a higher order of derivation p2p\geq 2 would require to use a weight 𝒲k\mathcal{W}_{k} given from a Hermite polynomial of degree pp, and therefore to show the integrability of (BSsSt)p/(SsSt)p\big{(}B_{S_{s}-S_{t}}\big{)}^{p}/(S_{s}-S_{t})^{p}. Since BSsSt/(SsSt)1/2𝒩(0,1)B_{S_{s}-S_{t}}/(S_{s}-S_{t})^{1/2}\sim{\cal N}(0,1) given SsStS_{s}-S_{t}, this would however require to show the finiteness of

0T𝔼[Ssp/2]𝑑s\int_{0}^{T}\mathbb{E}\big{[}S_{s}^{-p/2}\big{]}ds

for p2p\geq 2, which does not hold. Indeed, from (1.8), we have

0T𝔼[Ssp/2]𝑑s=1Γ(p/2)0T0esη(λ)λp/21𝑑λ𝑑s=1Γ(p/2)01eTη(λ)η(λ)λp/21𝑑λ,\int_{0}^{T}\mathbb{E}\big{[}S_{s}^{-p/2}\big{]}ds=\frac{1}{\Gamma(p/2)}\int_{0}^{T}\int_{0}^{\infty}e^{-s\eta(\lambda)}\lambda^{p/2-1}d\lambda ds=\frac{1}{\Gamma(p/2)}\int_{0}^{\infty}\frac{1-e^{-T\eta(\lambda)}}{\eta(\lambda)}\lambda^{p/2-1}d\lambda,

which is not integrable at 0 when p2p\geq 2. For example, in the case of the fractional Laplacian when (St)t+(S_{t})_{t\in{}_{+}} is an α/2\alpha/2-subordinator, (1.10) shows that

𝔼[Ssp/2]=21p/2Γ(p/α)αsp/αΓ(p/2)\mathbb{E}\big{[}S_{s}^{-p/2}\big{]}=\frac{2^{1-p/2}\Gamma(p/\alpha)}{\alpha s^{p/\alpha}\Gamma(p/2)}

is integrable in ss around 0 if and only if α(p,2)\alpha\in(p,2), which excludes integration by parts of order p2p\geq 2. As a result, this method does not allow for higher order integration by parts, and therefore it does not extend to the treatment of higher order derivatives in the PDE (1.1).

5 Numerical examples

In this section we consider numerical examples involving the fractional Laplacian Δα\Delta_{\alpha} and the α/2\alpha/2-stable subordinator (St)t+(S_{t})_{t\in{}_{+}} with Laplace exponent η(λ)=(2λ)α/2\eta(\lambda)=(2\lambda)^{\alpha/2} for α(1,2)\alpha\in(1,2). For the generation of random samples of StS_{t}, we use the formula

S~t:=2t2/αsin(α(U+π/2)/2)cos2/α(U)(cos(Uα(U+π/2)/2)E)1+2/α\widetilde{S}_{t}:=2t^{2/\alpha}\frac{\sin(\alpha\big{(}U+\pi/2)/2\big{)}}{\cos^{2/\alpha}(U)}\left(\frac{\cos\big{(}U-\alpha(U+\pi/2)/2\big{)}}{E}\right)^{-1+2/\alpha}

based on the Chambers-Mallows-Stuck (CMS) method, where UU(π/2,π/2)U\sim U(-\pi/2,\pi/2), and EExp(1)E\sim{\rm Exp}(1), see Relation (3.2) in Weron (1996), where ψS(λ)\psi_{S}(\lambda) denotes the Lévy symbol of (St)t+(S_{t})_{t\in{}_{+}}, see (1.9). We start by testing our algorithm on an equation admitting a known solution. For k0k\geq 0, we consider the function

Φk,α(x):=(1x2)+k+α/2,x,d\Phi_{k,\alpha}(x):=(1-\|x\|^{2})^{k+\alpha/2}_{+},\qquad x\in{}^{d},

which is Lipschitz if k>1α/2k>1-\alpha/2, and solves the Poisson problem ΔαΦk,α=Ψk,α\Delta_{\alpha}\Phi_{k,\alpha}=-\Psi_{k,\alpha} on d, with

Ψk,α(x)\displaystyle\Psi_{k,\alpha}(x)
:={Γ((d+α)/2)Γ(k+1+α/2)2αΓ(k+1)Γ(d/2)F12(d+α2,k;d2;x2),x12αΓ((d+α)/2)Γ(k+1+α/2)Γ(k+1+(d+α)/2)Γ(α/2)xd+αF12(d+α2,2+α2;k+1+d+α2;1x2),x>1\displaystyle:=\left\{\begin{array}[]{ll}\displaystyle\frac{\Gamma((d+\alpha)/2)\Gamma(k+1+\alpha/2)}{2^{-\alpha}\Gamma(k+1)\Gamma(d/2)}~{}{}_{2}F_{1}\left(\frac{d+\alpha}{2},-k;\frac{d}{2};\|x\|^{2}\right),~{}~{}\|x\|\leq 1\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \displaystyle\frac{2^{\alpha}\Gamma((d+\alpha)/2)\Gamma(k+1+\alpha/2)}{\Gamma(k+1+(d+\alpha)/2)\Gamma(-\alpha/2)\|x\|^{d+\alpha}}{}_{2}F_{1}\left(\frac{d+\alpha}{2},\frac{2+\alpha}{2};k+1+\frac{d+\alpha}{2};\frac{1}{\|x\|^{2}}\right),~{}~{}\|x\|>1\end{array}\right. (5.3)

xdx\in{}^{d}, where F12(a,b;c;y){}_{2}F_{1}(a,b;c;y) is Gauss’s hypergeometric function, see (5.2) in Getoor (1961), Lemma 4.1 in Biler et al. (2015), and Relation (36) in Huang and Oberman (2016).

Nonlinear fractional PDE

Based on (5.3), we aim at recovering the explicit solution

u(t,x)=etΦk,α(x)=et(1x2)+k+α/2,(t,x)[0,T]×.du(t,x)=e^{-t}\Phi_{k,\alpha}(x)=e^{-t}(1-\|x\|^{2})^{k+\alpha/2}_{+},\qquad(t,x)\in[0,T]\times{}^{d}. (5.4)

of the nonlinear PDE

{ut(t,x)=Δαu(t,x)+etΨk,α(x)e4t(1x2)+4k+2α+u(t,x)+u4(t,x),u(T,x)=eT(1x2)+k+α/2,\begin{cases}\displaystyle-\frac{\partial u}{\partial t}(t,x)=\Delta_{\alpha}u(t,x)+e^{-t}\Psi_{k,\alpha}(x)-e^{-4t}(1-\|x\|^{2})^{4k+2\alpha}_{+}+u(t,x)+u^{4}(t,x),\vskip 6.0pt plus 2.0pt minus 2.0pt\\ u(T,x)=e^{-T}(1-\|x\|^{2})^{k+\alpha/2}_{+},\end{cases}{} (5.5)

with m=0m=0, f(t,x,y)=c0(t,x)+y+y4f(t,x,y)=c_{0}(t,x)+y+y^{4} and 0={0,1,4}{\cal L}_{0}=\{0,1,4\}, c0(t,x)=etΨk,α(x)e4t(1x2)+4k+2αc_{0}(t,x)=e^{-t}\Psi_{k,\alpha}(x)-e^{-4t}(1-\|x\|^{2})^{4k+2\alpha}_{+}, c1(t,x)=c4(t,x)=1c_{1}(t,x)=c_{4}(t,x)=1. The random tree associated to Equation (5.5) started with a mark i{0,,d}i\in\{0,\ldots,d\} branches into 0 branch, 1 branch, or 4 branches, with the mark 0, as in the following random sample:

tt xx t+T1¯t+T_{\bar{1}} XT1¯,x1¯X^{\bar{1}}_{T_{\bar{1}},x} TT XT,x(1,4)X^{(1,4)}_{T,x} (1,4)(1,4)0 t+T1¯+T(1,3)t+T_{\bar{1}}+T_{(1,3)} XT(1,3),x(1,3)X^{(1,3)}_{T_{(1,3)},x} t+T1¯+T(1,3)+T(1,3,4)t+T_{\bar{1}}+T_{(1,3)}+T_{(1,3,4)} XT(1,3,4),x(1,3,4)X^{(1,3,4)}_{T_{(1,3,4)},x} (1,3,4)(1,3,4)0 TT XT,x(1,3,3)X^{(1,3,3)}_{T,x} (1,3,3)(1,3,3)0 TT XT,x(1,3,2)X^{(1,3,2)}_{T,x} (1,3,2)(1,3,2)0 TT XT,x(1,3,1)X^{(1,3,1)}_{T,x} (1,3,1)(1,3,1)0(1,3)(1,3)0 t+T1¯+T(1,2)t+T_{\bar{1}}+T_{(1,2)} XT(1,2),x(1,2)X^{(1,2)}_{T_{(1,2)},x} (1,2)(1,2)0 t+T1¯+T(1,1)t+T_{\bar{1}}+T_{(1,1)} XT(1,1),x(1,1)X^{(1,1)}_{T_{(1,1)},x} TT XT,x(1,1,1)X^{(1,1,1)}_{T,x} (1,1,1)(1,1,1) 0(1,1)(1,1)01¯\bar{1}ii

In Figure 1 we plot the numerical solutions u(t,x1,0,,0)u(t,x_{1},0,\ldots,0) of (5.5) obtained from (3.4) in terms of the first coordinate x1x_{1} in dimension d=10d=10, with T=1T=1, t=0.9t=0.9 and α=1.5\alpha=1.5.

Refer to caption
(a) Numerical solution of (5.5) with k=0k=0.
Refer to caption
(b) Numerical solution of (5.5) with k=1k=1.
Figure 1: Numerical solution of (5.5) in dimension d=10d=10.

Nonlinear fractional PDE with gradient term

We consider the nonlinear PDE

{ut(t,x)=Δαu(t,x)+u(t,x)+etΨk,α(x)+(2k+α)e2t(1x2)+2k+α1j=1dxj+u(t,x)j=1duxj(t,x)u(T,x)=eT(1x2)+k+α/2,\begin{cases}\displaystyle-\frac{\partial u}{\partial t}(t,x)=\Delta_{\alpha}u(t,x)+u(t,x)+e^{-t}\Psi_{k,\alpha}(x)\\ \hskip 65.44142pt\displaystyle+(2k+\alpha)e^{-2t}(1-\|x\|^{2})^{2k+\alpha-1}_{+}\sum_{j=1}^{d}x_{j}+u(t,x)\sum_{j=1}^{d}\frac{\partial u}{\partial x_{j}}(t,x)\vskip 6.0pt plus 2.0pt minus 2.0pt\\ u(T,x)=e^{-T}(1-\|x\|^{2})^{k+\alpha/2}_{+},\end{cases}{} (5.6)

with m=dm=d,

f(t,x,y,z1,,zd)=c0,,0(t,x)+y(z1++zd),f(t,x,y,z_{1},\ldots,z_{d})=c_{0,\ldots,0}(t,x)+y(z_{1}+\cdots+z_{d}),

d={(0,,0),(1,1,,0),,(1,0,,1)}{\cal L}_{d}=\{(0,\ldots,0),(1,1,\ldots,0),\ldots,(1,0,\ldots,1)\},

c0,,0(t,x)=etΨk,α(x)+(2k+α)e2t(1x2)+2k+α1(x1++xd),c_{0,\ldots,0}(t,x)=e^{-t}\Psi_{k,\alpha}(x)+(2k+\alpha)e^{-2t}(1-\|x\|^{2})^{2k+\alpha-1}_{+}(x_{1}+\cdots+x_{d}),

and c1,1,,0(t,x)==c1,0,,1(t,x)=1c_{1,1,\ldots,0}(t,x)=\cdots=c_{1,0,\ldots,1}(t,x)=1, whose explicit solution u(t,x)u(t,x) is also given by (5.4) according to (5.3). In dimension d=1d=1 the possible marks are 0 and 11, and the corresponding random trees branches into 0 branch, 1 branch, or 2 branches), as in the following random sample:

tt xx t+T1¯t+T_{\bar{1}} XT1¯,x1¯X^{\bar{1}}_{T_{\bar{1}},x} t+T1¯+T(1,2)t+T_{\bar{1}}+T_{(1,2)} XT(1,2),x(1,2)X^{(1,2)}_{T_{(1,2)},x} t+T1¯+T(1,2)+T(1,2,2)t+T_{\bar{1}}+T_{(1,2)}+T_{(1,2,2)} XT(1,2,2),x(1,2,2)X^{(1,2,2)}_{T_{(1,2,2)},x} (1,2,2)(1,2,2)11 TT XT,x(1,2,1)X^{(1,2,1)}_{T,x} (1,2,1)(1,2,1)0(1,2)(1,2)11 t+T1¯+T(1,1)t+T_{\bar{1}}+T_{(1,1)} XT(1,1),x(1,1)X^{(1,1)}_{T_{(1,1)},x} t+T1¯+T(1,1)+T(1,1,1)t+T_{\bar{1}}+T_{(1,1)}+T_{(1,1,1)} XT(1,1,1),x(1,1,1)X^{(1,1,1)}_{T_{(1,1,1)},x} (1,1,1)(1,1,1)0(1,1)(1,1)01¯\bar{1}0

In dimension d>1d>1 the tree expands into d+2d+2 different types of branches, namely 0 branch, one branch with mark 0, and dd types of two branches with one branch bearing the mark 0 and the other branch bearing a mark i{1,,d}i\in\{1,\dots,d\}, which corresponds to the partial derivative with respect to xix_{i}. In Figure 2 we plot the numerical solutions u(t,x1,0,,0)u(t,x_{1},0,\ldots,0) of (5.6) obtained from (3.4) in terms of the first coordinate x1x_{1} in dimension d=2d=2, with T=1T=1, t=0.9t=0.9 and α=1.5\alpha=1.5.

Refer to caption
(a) Numerical solution of (5.6) with k=1k=1.
Refer to caption
(b) Numerical solution of (5.6) with k=2k=2.
Figure 2: Numerical solution of (5.6) in dimension d=2d=2.

Fractional Burgers equation

We consider the fractional Burgers equation

ut(t,x)+κΔαu(t,x)u(t,x)j=1duxj(t,x)=0,x=(x1,,xd),d\frac{\partial u}{\partial t}(t,x)+\kappa\Delta_{\alpha}u(t,x)-u(t,x)\sum_{j=1}^{d}\frac{\partial u}{\partial x_{j}}(t,x)=0,\qquad x=(x_{1},\ldots,x_{d})\in{}^{d}, (5.7)

with m=dm=d, f(t,x,y,z1,,zd)=y(z1++zd)f(t,x,y,z_{1},\ldots,z_{d})=y(z_{1}+\cdots+z_{d}) and d={(1,1,,0),,(1,0,,1)}{\cal L}_{d}=\{(1,1,\ldots,0),\ldots,(1,0,\ldots,1)\}, c1,1,,0(t,x)==c1,0,,1(t,x)=1c_{1,1,\ldots,0}(t,x)=\cdots=c_{1,0,\ldots,1}(t,x)=1, and one of the following two terminal conditions.

  1. 1.

    Half-space terminal condition

    u(T,x)=𝟙[0,)d(x1),x=(x1,,xd).du(T,x)=\mathbbm{1}_{[0,\infty)^{d}}(x_{1}),\qquad x=(x_{1},\ldots,x_{d})\in{}^{d}. (5.8)
  2. 2.

    Product cosine terminal condition

    u(T,x)=cos(x1)cos(xd)𝟙[π/2,π/2]d(x1,,xd),x=(x1,,xd).du(T,x)=\cos(x_{1})\cdots\cos(x_{d})\mathbbm{1}_{[-\pi/2,\pi/2]^{d}}(x_{1},\ldots,x_{d}),\qquad x=(x_{1},\ldots,x_{d})\in{}^{d}. (5.9)

The random tree associated to this equation is a binary tree with dd types of branching. At each branching time, two branches are generated, one bearing the mark 0 to represent uu and the other one bearing a mark i{1,,d}i\in\{1,\dots,d\} to represent u/xi\partial u/\partial x_{i}, which yields the following sample tree in dimension d=1d=1.


tt xx t+T1¯t+T_{\bar{1}} XT1¯,x1¯X^{\bar{1}}_{T_{\bar{1}},x} t+T1¯+T(1,2)t+T_{\bar{1}}+T_{(1,2)} XT(1,2),x(1,2)X^{(1,2)}_{T_{(1,2)},x} TT XT,x(1,2,2)X^{(1,2,2)}_{T,x} (1,2,2)(1,2,2)11 TT XT,x(1,2,1)X^{(1,2,1)}_{T,x} (1,2,1)(1,2,1)0(1,2)(1,2)11 TT XT,x(1,1)X^{(1,1)}_{T,x} (1,1)(1,1)01¯\bar{1}0

In Figure 3 we plot the numerical solutions u(t,x1,0)u(t,x_{1},0) of (5.7) obtained from (3.4) in terms of the first coordinate x1x_{1} in dimension d=2d=2, with κ=10\kappa=10, T=1T=1 and α=1.5\alpha=1.5.

Refer to caption
(a) Terminal condition (5.8) and t=0.99t=0.99.
Refer to caption
(b) Terminal condition (5.9) and t=0.9t=0.9.
Figure 3: Numerical solution of (5.7) in dimension d=2d=2.

Data availability statement

No new data were created during the study.

References

  • Acosta and Borthagaray (2021) G. Acosta and J.P. Borthagaray. A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM J. Numer. Anal., 55(2):472–495, 2021.
  • Acosta et al. (2018) G. Acosta, J.P. Borthagaray, O. Bruno, and M. Maas. Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comp., 87(312):1821–1857, 2018.
  • Applebaum (2009) D. Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2009.
  • Belak et al. (2020) C. Belak, D. Hoffmann, and F.T. Seifried. Branching diffusions with jumps and valuation with systemic counterparties. Preprint SSRN, 2020.
  • Biler et al. (2015) P. Biler, C. Imbert, and G. Karch. The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Archive for Rational Mechanics and Analysis, 215(2):497–529, 2015.
  • Birkner et al. (2002) M. Birkner, J.A. López-Mimbela, and A. Wakolbinger. Blow-up of semilinear PDE’s at the critical dimension. A probabilistic approach. Proc. Amer. Math. Soc., 130(8):2431–2442 (electronic), 2002.
  • Blömker et al. (2007) D. Blömker, M. Romito, and R. Tribe. A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees. Ann. Inst. H. Poincaré Probab. Statist., 43(2):175–192, 2007.
  • Bonito et al. (2018) A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola, and A.J. Salgado. Numerical methods for fractional diffusion. Comput. Vis. Sci., 19(5-6):19–46, 2018.
  • Chakraborty and López-Mimbela (2008) S. Chakraborty and J.A. López-Mimbela. Nonexplosion of a class of semilinear equations via branching particle representations. Advances in Appl. Probability, 40:250–272, 2008.
  • Fournié et al. (1999) E. Fournié, J.M. Lasry, J. Lebuchoux, P.-L. Lions, and N. Touzi. Applications of Malliavin calculus to Monte Carlo methods in finance. Finance and Stochastics, 3(4):391–412, 1999.
  • Fujita (1966) H. Fujita. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+αu_{t}=\Delta u+u^{1+\alpha}. J. Fac. Sci. Univ. Tokyo Sect. I, 13:109–124 (1966), 1966.
  • Getoor (1961) R.K. Getoor. First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc., 101:75–90, 1961.
  • Henry-Labordère and Touzi (2018) P. Henry-Labordère and N. Touzi. Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation. Preprint arXiv:1801.08794, 2018.
  • Henry-Labordère et al. (2019) P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. Ann. Inst. H. Poincaré Probab. Statist., 55(1):184–210, 2019.
  • Huang and Oberman (2016) Y. Huang and A. Oberman. Finite difference methods for fractional Laplacians. Preprint arXiv:1611.00164, 2016.
  • Ikeda et al. (1968-1969) N. Ikeda, M. Nagasawa, and S. Watanabe. Branching Markov processes I, II, III. J. Math. Kyoto Univ., 8-9:233–278, 365–410, 95–160, 1968-1969.
  • Ishige et al. (2014) K. Ishige, T. Kawakami, and K. Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete Contin. Dyn. Syst. Ser. S, 7(4):767–783, 2014.
  • Ishige et al. (2021) K. Ishige, T. Kawakami, and K. Okabe. Existence of solutions to nonlinear parabolic equations via majorant integral kernel. arXiv:2101.06581, 2021.
  • Kawai and Takeuchi (2011) R. Kawai and A. Takeuchi. Greeks formulas for an asset price model with gamma processes. Math. Finance, 21(4):723–742, 2011.
  • Kawai and Takeuchi (2013) R. Kawai and A. Takeuchi. Computation of Greeks for asset price dynamics driven by stable and tempered stable processes. Quantitative Finance, 13(8):1303–1316, 2013.
  • Kwaśnicki (2017) M. Kwaśnicki. Ten equivalent definitions of the fractional Laplace operator. Fractional Calculus and Applied Analysis, 20(1):7–51, 2017.
  • Kyprianou and Rivero (2008) A.E. Kyprianou and V. Rivero. Special, conjugate and complete scale functions for spectrally negative Lévy processes. Electron. J. Probab., 13:no. 57, 1672–1701 (electronic), 2008.
  • Le Jan and Sznitman (1997) Y. Le Jan and A. S. Sznitman. Stochastic cascades and 33-dimensional Navier-Stokes equations. Probab. Theory Related Fields, 109(3):343–366, 1997.
  • López-Mimbela (1996) J.A. López-Mimbela. A probabilistic approach to existence of global solutions of a system of nonlinear differential equations. In Fourth Symposium on Probability Theory and Stochastic Processes (Spanish) (Guanajuato, 1996), volume 12 of Aportaciones Mat. Notas Investigación, pages 147–155. Soc. Mat. Mexicana, México, 1996.
  • McKean (1975) H.P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math., 28(3):323–331, 1975.
  • Miller (1971) R.K. Miller. Nonlinear Volterra integral equations. W. A. Benjamin, Inc., Menlo Park, Calif., 1971. Mathematics Lecture Note Series.
  • Nagasawa and Sirao (1969) M. Nagasawa and T. Sirao. Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation. Trans. Amer. Math. Soc., 139:301–310, 1969.
  • Sato (1999) K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • Skorokhod (1964) A.V. Skorokhod. Branching diffusion processes. Teor. Verojatnost. i. Primenen., 9:492–497, 1964.
  • Sugitani (1975) S. Sugitani. On nonexistence of global solutions for some nonlinear integral equations. Osaka J. Math., 12:45–51, 1975.
  • Weron (1996) R. Weron. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statistics & probability letters, 28(2):165–171, 1996.