This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force in a bounded interval

Naoki Tsuge Department of Mathematics Education, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu Gifu 501-1193 Japan. tuge@gifu-u.ac.jp
Abstract.

In the field of differential equations, particularly fluid dynamics, many researchers have shown an interest in the behavior of time periodic solutions. In this paper, we study isentropic gas flow in a bounded interval and apply a time periodic outer force. This motion is described by the compressible Euler equation with the outer force. Our purpose in this paper is to prove the existence of a time periodic solution. Unfortunately, little is known for the system of conservation laws until now. The problem seems to lie in fact that the equation does not possesses appropriate decay estimates.

When we prove the existence of the time periodic solution, we are faced with two difficult problems. One problem is to prove that initial data and the corresponding solutions at the time period are contained in the same bounded set. To overcome this, we employ an invariant region deduced from the mass and energy. This enable us to investigate the behavior of solutions in detail. In addition, this method provide us a decay estimate to suppresses the growth of solutions caused by the outer force and discontinuities. Moreover, there is a possibility that this estimate will lead us to the asymptotic stability for large data in the future. Second problem is to construct a continuous map from initial data to the corresponding solutions at the time period. We need the map to apply a fixed point theorem. To construct this, we introduce a new type Lax-Friedrichs scheme, which has a recurrence relation consisting of discretized approximate solutions. In virtue of the fixed point theorem, we can prove a existence of a fixed point, which represents a time periodic solution. Furthermore, the ideas and techniques developed in this paper will be applicable to not only conservation laws but also other nonlinear problems involving similar difficulties such as nonlinear wave equations, the numerical analysis.

Finally, we use the compensated compactness framework to prove the convergence of our approximate solutions.

Key words and phrases:
The Compressible Euler Equation, a time periodic outer force, the compensated compactness, a time periodic solution, the modified Lax Friedrichs scheme, the fixed point theorem, decay estimates.
1991 Mathematics Subject Classification:
Primary 35L03, 35L65, 35Q31, 76N10, 76N15; Secondary 35A01, 35B35, 35B50, 35L60, 76H05, 76M20.
N. Tsuge’s research is partially supported by Grant-in-Aid for Scientific Research (C) 17K05315, Japan.

1. Introduction

There has been a great discussion about time periodic solutions in fluid dynamics. However, the compressible Euler equation has been little investigated. The present paper is thus concerned with isentropic gas dynamics with an outer force.

{ρt+mx=0,mt+(m2ρ+p(ρ))x=F(x,t)ρ,x(0,1),t(0,1)\displaystyle\begin{cases}\displaystyle{\rho_{t}+m_{x}=0,}\\ \displaystyle{m_{t}+\left(\frac{m^{2}}{\rho}+p(\rho)\right)_{x}=F(x,t)\rho,}\end{cases}x\in(0,1),\quad t\in(0,1) (1.1)

where ρ\rho, mm and pp are the density, the momentum and the pressure of the gas, respectively. If ρ>0\rho>0, v=m/ρv=m/\rho represents the velocity of the gas. For a barotropic gas, p(ρ)=ργ/γp(\rho)=\rho^{\gamma}/\gamma, where γ(1,5/3]\gamma\in(1,5/3] is the adiabatic exponent for usual gases. The given function FC1([0,1]×[0,1])F\in C^{1}([0,1]\times[0,1]) represents a time periodic outer force with the time period 11, i.e., F(x,0)=F(x,1),Ft(x,0)=Ft(x,1)F(x,0)=F(x,1),\;F_{t}(x,0)=F_{t}(x,1).

We consider the initial boundary value problem (1.1) with the initial and boundary data

(ρ,m)|t=0=(ρ0(x),m0(x))m|x=0=m|x=1=0.\displaystyle(\rho,m)|_{t=0}=(\rho_{0}(x),m_{0}(x))\quad m|_{x=0}=m|_{x=1}=0. (1.2)

The above problem (1.1)–(1.2) can be written in the following form

{ut+f(u)x=g(x,t,u),x(0,1),t(0,1),u|t=0=u0(x),m|x=0=m|x=1=0\displaystyle\left\{\begin{array}[]{lll}u_{t}+f(u)_{x}=g(x,t,u),\quad{x}\in(0,1),\quad t\in(0,1),\\ u|_{t=0}=u_{0}(x),\\ m|_{x=0}=m|_{x=1}=0\end{array}\right. (1.6)

by using u=(ρ,m)tu={}^{t}(\rho,m), f(u)=(m,m2ρ+p(ρ))t\displaystyle f(u)={}^{t}\!\left(m,\frac{m^{2}}{\rho}+p(\rho)\right) and g(x,t,u)=(0,F(x,t)ρ)t\displaystyle{g(x,t,u)={}^{t}\!\left(0,F(x,t)\rho\right)}.

Let us survey the related mathematical results. Time periodic solutions are widely studied for other differential equations. For example, Matsumura and Nishida [2] investigates those of the compressible Navier Stokes equation. On the other hand, as far as conservation laws concerned, it has not been received much attention until now. Takeno [4] studies a single conservation law and proved the existence of a time periodic solution for the space periodic boundary condition. The key tool is the decay estimate in Tadmor [3]. It should be noted that we cannot apply the method of [3] to systems. Greenberg and Rascle [1] treat with an artificial system of conservation laws by the Glimm scheme. Although the existence theorem for isentropic gas dynamics is recently obtained in Tsuge [11], the initial and boundary conditions are restrictive.

Our goal in this paper is to prove the existence of a time periodic solution under a general case. We are then faced with two difficult problems.

  • (P1)

    One is to prove that initial data and the corresponding solutions at a period are contained in the same bounded set.

  • (P2)

    Second is to construct a continuous map in a finite dimension.

To overcome (P1), we need an invariant region. [5][12] develop invariant regions with known functions as their lower and upper bounds. However, we cannot apply their method to the present problem (see Remark 1.4). To solve this, we employ an invariant region including unknown functions such as the mass and energy. In addition, this method enables us to deduce a decay estimate (see (1.31)–(1.32)). Owing to this estimate, we can control the growth of solutions caused by the outer force and discontinuities. Furthermore, it has the advantage that it is applicable for large data. Therefore, this estimate is expected to be used for the analysis of its asymptotic stability in the future.

We next consider (P2). To prove the existence of a time periodic solution, we apply the Brouwer fixed point theorem to the continuous map from initial data to solutions at one period. To construct this map, we introduce a new type Lax-Friedrichs scheme, which has a recurrence relation consisting of discretized approximate solutions. The formula yields the continuous map in a finite dimension. In addition, the approximate solutions are different from those of [5][12]. Since the approximate solutions consist of unknown functions, we must apply the iteration method for their construction in each cell.

Remark 1.1.

If we employ the Glimm scheme, we can obtain the decay of the total variation of solutions, which may solves (P1). However, the random choice method of the scheme prevents us from constructing the continuous map in (P2). In addition, the scheme cannot treat with large data.

To state our main theorem, we define the Riemann invariants w,zw,z, which play important roles in this paper, as

Definition 1.1.
w:=mρ+ρθθ=v+ρθθ,z:=mρρθθ=vρθθ(θ=γ12).\displaystyle w:=\frac{m}{\rho}+\frac{\rho^{\theta}}{\theta}=v+\frac{\rho^{\theta}}{\theta},\quad{z}:=\frac{m}{\rho}-\frac{\rho^{\theta}}{\theta}=v-\frac{\rho^{\theta}}{\theta}\quad\left(\theta=\frac{\gamma-1}{2}\right).

These Riemann invariants satisfy the following.

Remark 1.2.
|w||z|,w0,whenv0.|w||z|,z0,whenv0.\displaystyle|w|\geqq|z|,\;w\geqq 0,\;\mbox{\rm when}\;v\geqq 0.\quad|w|\leqq|z|,\;z\leqq 0,\;\mbox{\rm when}\;v\leqq 0.
v=w+z2,ρ=(θ(wz)2)1/θ,m=ρv.\displaystyle v=\frac{w+z}{2},\;\rho=\left(\frac{\theta(w-z)}{2}\right)^{1/\theta},\;m=\rho v.

From the above, the lower bound of zz and the upper bound of ww yield the bound of ρ\rho and |v||v|.

Moreover, we define the entropy weak solution and an time periodic entropy weak solution.

Definition 1.2.

A measurable function u(x,t)u(x,t) is called an entropy weak solution of the initial boundary value problem (1.6) if

0101uφt+f(u)φx+g(x,t,u)φdxdt+01u0(x)φ(x,0)𝑑x=0\displaystyle\int^{1}_{0}\int^{1}_{0}u\varphi_{t}+f(u)\varphi_{x}+g(x,t,u)\varphi dxdt+\int^{1}_{0}u_{0}(x)\varphi(x,0)dx=0

holds for any test function φC1([0,1]×[0,1))\varphi\in C^{1}([0,1]\times[0,1)) and

0101η(u)ψt+q(u)ψx+η(u)g(x,t,u)ψdxdt0\displaystyle\int^{1}_{0}\int^{1}_{0}\eta(u)\psi_{t}+q(u)\psi_{x}+\nabla\eta(u)g(x,t,u)\psi dxdt\geqq 0 (1.7)

holds for any non-negative test function ψC1((0,1)×(0,1))\psi\in C^{1}((0,1)\times(0,1)), where (η,q)(\eta,q) is a pair of convex entropy–entropy flux of (1.1).

Definition 1.3.

A measurable function u(x,t)u(x,t) is called an time periodic entropy weak solution of the initial boundary value problem (1.6) with the period 11 if there exists a bounded measurable function u0(x)=(ρ0(x),m0(x))u^{\ast}_{0}(x)=(\rho^{\ast}_{0}(x),m^{\ast}_{0}(x)) such that

0101uφt+f(u)φx+g(x,t,u)φdxdt+01u0(x)(φ(x,0)φ(x,1))𝑑x=0\displaystyle\int^{1}_{0}\int^{1}_{0}u\varphi_{t}+f(u)\varphi_{x}+g(x,t,u)\varphi dxdt+\int^{1}_{0}u^{\ast}_{0}(x)\left(\varphi(x,0)-\varphi(x,1)\right)dx=0

holds for any test function φC1([0,1]×[0,1])\varphi\in C^{1}([0,1]\times[0,1]) and (1.7).

We set ρ¯=01ρ0(x)𝑑x,η¯=01η(u0(x))𝑑x\displaystyle\bar{\rho}=\int^{1}_{0}\rho_{0}(x)dx,\;\bar{\eta}_{\ast}=\int^{1}_{0}\eta_{\ast}(u_{0}(x))dx, where η(u)=12m2ρ+1γ(γ1)ργ.\displaystyle\eta_{\ast}(u)=\frac{1}{2}\frac{m^{2}}{\rho}+\frac{1}{\gamma(\gamma-1)}\rho^{\gamma}. Since ρ¯=0\displaystyle\bar{\rho}=0 implies that the solution becomes vacuum, we assume ρ¯>0\displaystyle\bar{\rho}>0.

Our main theorems are as follows.

Theorem 1.1.

For any positive constants ρ¯,η¯,ε\bar{\rho},\bar{\eta}_{\ast},\varepsilon satisfying 0<ε<2(γ1)γ+10<\varepsilon<\frac{2(\gamma-1)}{\gamma+1}, there exist positive constants M,κ,αM,\kappa,\alpha and a positive function M(t)M(t) such that the following (A) and (B) hold.

(A) M(0)=M(1)=MM(0)=M(1)=M;

(B) If

FL([0,1]×[0,1])κ\displaystyle\|F\|_{L^{\infty}([0,1]\times[0,1])}\leq\kappa (1.8)

and u0L([0,1])u_{0}\in{L}^{\infty}([0,1]) satisfy

ρ0(x)0,M+0xζ(u0(y))𝑑yz(u0(x)),w(u0(x))M+0xζ(u0(y))𝑑y,\begin{split}&\rho_{0}(x)\geq 0,\quad-M+\int^{x}_{0}\zeta(u_{0}(y))dy\leq z(u_{0}(x)),\\ &w(u_{0}(x))\leq M+\int^{x}_{0}\zeta(u_{0}(y))dy,\end{split} (1.9)

then, there exists a solution u(x,t)u(x,t) of the initial boundary problem (1.6) such that, for (x,t)[0,1]×[0,1](x,t)\in[0,1]\times[0,1],

ρ(x,t)\displaystyle\rho(x,t)\geq 0,M(t)+0xζ(u(y,t))𝑑yz(x,t),\displaystyle 0,\quad-M(t)+\int^{x}_{0}\zeta(u(y,t))dy\leq z(x,t), (1.10)
w(x,t)\displaystyle w(x,t)\leq M(t)+0xζ(u(y,t))𝑑y,\displaystyle M(t)+\int^{x}_{0}\zeta(u(y,t))dy,

where

K=αρ¯01η(u0(x))𝑑x1=M2(γ1)γ+1ε\displaystyle\begin{aligned} K=\alpha\bar{\rho}-\int^{1}_{0}\eta_{\ast}(u_{0}(x))dx-1=M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon}\end{aligned} (1.11)

and

ζ(u)=η(u)αρ+K.\displaystyle\zeta(u)=\eta_{\ast}(u)-\alpha\rho+K. (1.12)

We deduce from Theorem 1.1 the following theorem.

Theorem 1.2.

There exists a time periodic entropy weak solution of the initial boundary value problem (1.6).

Remark 1.3.

We will deduce from (1.10) that

|z(u(x,t))|=O(M),|w(u(x,t))|=O(M),(x,t)[0,1]×[0,1].\displaystyle\begin{aligned} &|z(u(x,t))|=O(M),\;|w(u(x,t))|=O(M),\quad(x,t)\in[0,1]\times[0,1].\end{aligned} (1.13)

In addition, it will follows from the conservation of mass and energy inequality that

0xη(u(y,t))𝑑y=O(1),0xρ(y,t)𝑑y=O(1),(x,t)[0,1]×[0,1].\displaystyle\begin{aligned} &\int^{x}_{0}\eta_{\ast}(u(y,t))dy=O(1),\;\int^{x}_{0}\rho(y,t)dy=O(1),\;(x,t)\in[0,1]\times[0,1].\end{aligned} (1.14)

We notice that O(1)O(1) is independent of MM.

In view of (1.9) and (1.10), we find that our solution are contained in the same bounded set.

Remark 1.4.

We let the lower and upper bounds in (1.10) be

L(x,t;u)=M(t)+0x{η(u(y,t))αρ(y,t)+K}𝑑y,U(x,t;u)=M(t)+0x{η(u(y,t))αρ(y,t)+K}𝑑y,\displaystyle\begin{aligned} &L(x,t;u)=-M(t)+\int^{x}_{0}\left\{\eta_{\ast}(u(y,t))-\alpha\rho(y,t)+K\right\}dy,\\ &U(x,t;u)=M(t)+\int^{x}_{0}\left\{\eta_{\ast}(u(y,t))-\alpha\rho(y,t)+K\right\}dy,\end{aligned}

respectively. Then we notice that

L(0,t;u)U(0,t;u),L(1,t;u)U(1,t;u).\displaystyle-L(0,t;u)\leq U(0,t;u),\;-L(1,t;u)\geq U(1,t;u). (1.15)

In fact, the former is clear. The latter is deduced from (1.11), (1.8) and (1.13) as follows.

L(1,t;u)+U(1,t;u)=\displaystyle L(1,t;u)+U(1,t;u)= 201{η(u(x,t))αρ(x,t)+K}𝑑x\displaystyle 2\int^{1}_{0}\left\{\eta_{\ast}(u(x,t))-\alpha\rho(x,t)+K\right\}dx
=\displaystyle= 201{(η(u(x,t))η(u0(x)))α(ρ(x,t)ρ¯)1}𝑑x\displaystyle 2\int^{1}_{0}\left\{\left(\eta_{\ast}(u(x,t))-\eta_{\ast}({u}_{0}(x))\right)-\alpha\left(\rho(x,t)-\bar{\rho}\right)-1\right\}dx
\displaystyle\leq 2010tF(x,s)m(x,s)𝑑x𝑑s1\displaystyle 2\int^{1}_{0}\int^{t}_{0}F(x,s)m(x,s)dxds-1
\displaystyle\leq 0,\displaystyle 0, (1.16)

choosing κ\kappa small enough.

(1.15) is a necessary condition that (1.10) is an invariant region with boundary data m=0m=0.

Tsuge [5][12] propose various invariant regions. Their lower and upper bounds consist of known functions, which are increasing. The property plays an important role for their analysis. However, they cannot satisfy (1.15). To solve this, we introduce an invariant region consisting of not known functions but unknown functions such as the mass and energy (see (1.10)).

1.1. Outline of the proof (formal argument)

The proof of main theorem is a little complicated. Therefore, before proceeding to the subject, let us grasp the point of the main estimate by a formal argument. We assume that a solution is smooth and the density is nonnegative in this section.

We consider the physical region ρ0\rho\geqq 0 (i.e., wzw\geqq z.). Recalling Remark 1.2, it suffices to derive the lower bound of z(u)z(u) and the upper bound of w(u)w(u) to obtain the bound of uu. To do this, we diagonalize (1.1). If solutions are smooth, we deduce from (1.1)

zt+λ1zx=F(x,t),wt+λ2wx=F(x,t),\displaystyle z_{t}+\lambda_{1}z_{x}=F(x,t),\quad w_{t}+\lambda_{2}w_{x}=F(x,t), (1.17)

where λ1\lambda_{1} and λ2\lambda_{2} are the characteristic speeds defined as follows

λ1=vρθ,λ2=v+ρθ.\displaystyle\lambda_{1}=v-\rho^{\theta},\quad\lambda_{2}=v+\rho^{\theta}. (1.18)

We introduce z~,w~\tilde{z},\tilde{w} as follows.

z=z~+0x{η(u)αρ+K}𝑑y,w=w~+0x{η(u)αρ+K}𝑑y.\displaystyle\begin{split}z=\tilde{z}+\int^{x}_{0}\left\{\eta_{\ast}(u)-\alpha\rho+K\right\}dy,\quad w=\tilde{w}+\int^{x}_{0}\left\{\eta_{\ast}(u)-\alpha\rho+K\right\}dy.\end{split} (1.19)

We deduce from the conservation of mass and energy that

z~t+λ1z~x=g1(x,t,u),w~t+λ2w~x=g2(x,t,u),\displaystyle\tilde{z}_{t}+\lambda_{1}\tilde{z}_{x}=g_{1}(x,t,u),\quad\tilde{w}_{t}+\lambda_{2}\tilde{w}_{x}=g_{2}(x,t,u), (1.20)

where

g1(x,t,u)=Kλ1+1γ(γ1)ργ+θ+1γργv+12ρθ+1v2αρθ+1+F(x,t)0xF(y,t)m(y,t)𝑑y,g2(x,t,u)=Kλ21γ(γ1)ργ+θ+1γργv12ρθ+1v2+αρθ+1+F(x,t)0xF(y,t)m(y,t)𝑑y.\displaystyle\begin{aligned} &g_{1}(x,t,u)=&&-K\lambda_{1}+\dfrac{1}{\gamma(\gamma-1)}\rho^{\gamma+\theta}+\dfrac{1}{\gamma}\rho^{\gamma}v+\dfrac{1}{2}\rho^{\theta+1}v^{2}-\alpha\rho^{\theta+1}\\ &&&+F(x,t)-\int^{x}_{0}F(y,t)m(y,t)dy,\\ &g_{2}(x,t,u)=&&-K\lambda_{2}-\dfrac{1}{\gamma(\gamma-1)}\rho^{\gamma+\theta}+\dfrac{1}{\gamma}\rho^{\gamma}v-\dfrac{1}{2}\rho^{\theta+1}v^{2}+\alpha\rho^{\theta+1}\\ &&&+F(x,t)-\int^{x}_{0}F(y,t)m(y,t)dy.\end{aligned} (1.21)

Then, we notice that

Mz~0(x),w~0(x)M,ρ~0(x)0.\displaystyle-M\leq\tilde{z}_{0}(x),\quad\tilde{w}_{0}(x)\leq M,\quad\tilde{\rho}_{0}(x)\geq 0.

Let us prove that

Sinv={(z~,w~)𝐑2;ρ~0,z~M,w~M}\displaystyle S_{inv}=\{(\tilde{z},\tilde{w})\in{\bf R}^{2};\tilde{\rho}\geq 0,\;\tilde{z}\geq-M,\;\tilde{w}\leq M\}

is an invariant region.

To achieve this, assuming that

M<z~0(x),w~0(x)<M\displaystyle-M<\tilde{z}_{0}(x),\quad\tilde{w}_{0}(x)<M

and there exist x(0,1), 0<t1x_{\ast}\in(0,1),\;0<t_{\ast}\leq 1 such that (1.22) or (1.23) holds, we deduce a contradiction, where

M<z~(x,t),w~(x,t)<M,x(0,1), 0t<tandz~(x,t)=M,w~(x,t)M,\displaystyle\begin{aligned} &-M<\tilde{z}(x,t),\;\tilde{w}(x,t)<M,\quad x\in(0,1),\;0\leq t<t_{\ast}\\ &\text{and}\quad\tilde{z}(x_{\ast},t_{\ast})=-M,\;\tilde{w}(x_{\ast},t_{\ast})\leq M,\end{aligned} (1.22)
M<z~(x,t),w~(x,t)<M,x(0,1), 0t<tandz~(x,t)M,w~(x,t)=M.\displaystyle\begin{aligned} &-M<\tilde{z}(x,t),\;\tilde{w}(x,t)<M,\quad x\in(0,1),\;0\leq t<t_{\ast}\\ &\text{and}\quad\tilde{z}(x_{\ast},t_{\ast})\geq-M,\;\tilde{w}(x_{\ast},t_{\ast})=M.\end{aligned} (1.23)

To do this, we prove

g1(x,t,u)>0, when (1.22) holds,\displaystyle g_{1}(x_{\ast},t_{\ast},u)>0\text{, when \eqref{invariant1} holds}, (1.24)
g2(x,t,u)<0, when (1.23) holds.\displaystyle g_{2}(x_{\ast},t_{\ast},u)<0\text{, when \eqref{invariant2} holds}. (1.25)

We first investigate (1.25).

Under (1.23), for 0tt0\leq t\leq t_{\ast}, we show that the energy is bounded. From (1.20), we notice ρ~=ρ\tilde{\rho}=\rho. Observing

(ρ(x,t))θθ=(ρ~(x,t))θθ=w~(x,t)z~(x,t)2M,\displaystyle\dfrac{(\rho(x,t))^{\theta}}{\theta}=\dfrac{({\tilde{\rho}(x,t)})^{\theta}}{\theta}=\dfrac{\tilde{w}(x,t)-\tilde{z}(x,t)}{2}\leq M,

we have

ρ(x,t)(θM)1θ\displaystyle\rho(x,t)\leq(\theta M)^{\frac{1}{\theta}} (1.26)

and

|v(x,t)|=|v~(x,t)+0xζ(u(y,t))𝑑y||v~(x,t)|+|0xζ(u(y,t))𝑑y|M+01η(u(x,t))𝑑x+αρ¯+K.\displaystyle\begin{aligned} |v(x,t)|=&\left|\tilde{v}(x,t)+\int^{x}_{0}\zeta(u(y,t))dy\right|\leq|\tilde{v}(x,t)|+\left|\int^{x}_{0}\zeta(u(y,t))dy\right|\\ \leq&M+\int^{1}_{0}\eta_{\ast}(u(x,t))dx+\alpha\bar{\rho}+K.\end{aligned} (1.27)

From (1.8), (1.26), (1.27) and the energy inequality, we obtain

01η(u(x,t))dx01η(u0(x))𝑑x+0t01m(x,s)F(x,s)𝑑x𝑑sη¯+0tκ(θM)1θ(M+01η(u(x,s))𝑑x+αρ¯+K)𝑑sC+0tκ(θM)1θ01η(u(x,s))𝑑x𝑑s,\displaystyle\begin{aligned} \int^{1}_{0}&\eta_{\ast}(u(x,t))dx\leq\int^{1}_{0}\eta_{\ast}(u_{0}(x))dx+\int^{t}_{0}\int^{1}_{0}m(x,s)F(x,s)dxds\\ \leq&\bar{\eta}_{\ast}+\int^{t}_{0}\kappa(\theta M)^{\frac{1}{\theta}}\left(M+\int^{1}_{0}\eta_{\ast}(u(x,s))dx+\alpha\bar{\rho}+K\right)ds\\ \leq&C+\int^{t}_{0}\kappa(\theta M)^{\frac{1}{\theta}}\int^{1}_{0}\eta_{\ast}(u(x,s))dxds,\end{aligned} (1.28)

where C=η¯+κ(θM)1θ(M+αρ¯+K)C=\bar{\eta}_{\ast}+\kappa(\theta M)^{\frac{1}{\theta}}\left(M+\alpha\bar{\rho}+K\right). We deduce from the Gronwall inequality

01\displaystyle\int^{1}_{0} η(u(x,t))dxCexp|0tκ(θM)1θ𝑑s|Cexp(κ(θM)1θ).\displaystyle\eta_{\ast}(u(x,t))dx\leq C\exp\left|\int^{t}_{0}\kappa(\theta M)^{\frac{1}{\theta}}ds\right|\leq C\exp(\kappa(\theta M)^{\frac{1}{\theta}}).

Choosing κ\kappa small enough, we have

01η(u(x,t))𝑑x=O(1)0tt,\displaystyle\int^{1}_{0}\eta_{\ast}(u(x,t))dx=O(1)\quad 0\leq t\leq t_{\ast}, (1.29)

where O(1)O(1) is the Landau symbol as MM\rightarrow\infty.

In this case, from (1.11) and (1.29), we have

K=M2(γ1)γ+1ε,α=M2(γ1)γ+1ε/ρ¯+O(1),ρ=ρ~,v~0,λ2=λ~2+O(M2(γ1)γ+1ε),λ~2=v~+ρ~θ=M(1/θ1)ρθθM,\displaystyle\begin{aligned} &K=M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon},\quad\alpha=M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon}/\bar{\rho}+O(1),\quad\rho=\tilde{\rho},\quad\tilde{v}\geq 0,\\ &\lambda_{2}=\tilde{\lambda}_{2}+O(M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon}),\quad\tilde{\lambda}_{2}=\tilde{v}+\tilde{\rho}^{\theta}=M-\left(1/\theta-1\right)\rho^{\theta}\geq\theta M,\end{aligned} (1.30)

where O(1)O(1) and O(M2(γ1)γ+1ε)O(M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon}) are the Landau symbol as MM\rightarrow\infty.

Separating two parts, we shall prove (1.25).

  1. (i)

    ρ>(ρ¯M3)1θ+1\rho>\left(\dfrac{\bar{\rho}M}{3}\right)^{\frac{1}{\theta+1}}

    For (x,t)=(x,t)(x,t)=(x_{\ast},t_{\ast}), from γ>1\gamma>1, (1.11)\eqref{condition1} and (1.8)\eqref{condition2}, we have

    g2(x,t,u)Kλ~2γ+12γ2(γ1)ργ+θρθ+12(vρθγ)2+αρθ+1+O(M4(γ1)γ+12ε)ρθ+1{γ+12γ2(γ1)ργ1α}+O(M4(γ1)γ+12ε)12M1+2(γ1)γ+1ε,\displaystyle\begin{aligned} &g_{2}(x,t,u)&&\leq&&-K\tilde{\lambda}_{2}-\dfrac{\gamma+1}{2\gamma^{2}(\gamma-1)}\rho^{\gamma+\theta}-\dfrac{\rho^{\theta+1}}{2}\left({v}-\frac{\rho^{\theta}}{\gamma}\right)^{2}+\alpha\rho^{\theta+1}\\ &&&&&+O(M^{\frac{4(\gamma-1)}{\gamma+1}-2\varepsilon})\\ &&&\leq&&-\rho^{\theta+1}\left\{\dfrac{\gamma+1}{2\gamma^{2}(\gamma-1)}\rho^{\gamma-1}-\alpha\right\}+O(M^{\frac{4(\gamma-1)}{\gamma+1}-2\varepsilon})\\ &&&\leq&&-\frac{1}{2}M^{1+\frac{2(\gamma-1)}{\gamma+1}-\varepsilon},\end{aligned} (1.31)

    choosing MM large enough and κ\kappa small enough.

  2. (ii)

    ρ(ρ¯M3)1θ+1\rho\leq\left(\dfrac{\bar{\rho}M}{3}\right)^{\frac{1}{\theta+1}}

    For (x,t)=(x,t)(x,t)=(x_{\ast},t_{\ast}), we have

    g2(x,t,u)Kλ~2γ+12γ2(γ1)ργ+θρθ+12(vρθγ)2+αρθ+1+O(M4(γ1)γ+12ε)M2(γ1)γ+1ε(M(1/θ1)(ρ¯M2)θθ+1)+M3M2(γ1)γ+1ε+O(M4(γ1)γ+12ε)<12M1+2(γ1)γ+1ε,\displaystyle\begin{aligned} &g_{2}(x,t,u)&\leq&-K\tilde{\lambda}_{2}-\dfrac{\gamma+1}{2\gamma^{2}(\gamma-1)}\rho^{\gamma+\theta}-\dfrac{\rho^{\theta+1}}{2}\left({v}-\frac{\rho^{\theta}}{\gamma}\right)^{2}+\alpha\rho^{\theta+1}\\ &&&+O(M^{\frac{4(\gamma-1)}{\gamma+1}-2\varepsilon})\\ &&\leq&-M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon}\left(M-(1/\theta-1)\left(\dfrac{\bar{\rho}M}{2}\right)^{\frac{\theta}{\theta+1}}\right)+\dfrac{M}{3}M^{\frac{2(\gamma-1)}{\gamma+1}-\varepsilon}\\ &&&+O(M^{\frac{4(\gamma-1)}{\gamma+1}-2\varepsilon})\\ &&<&-\frac{1}{2}M^{1+\frac{2(\gamma-1)}{\gamma+1}-\varepsilon},\end{aligned} (1.32)

    choosing MM large enough and κ\kappa small enough.

Therefor, we complete the proof of (1.25). On the other hand, since w~\tilde{w} attains the maximum at (x,t)=(x,t)(x,t)=(x_{\ast},t_{\ast}), we find that w~t(x,t)0,w~x(x,t)=0\tilde{w}_{t}(x_{\ast},t_{\ast})\geq 0,\;\tilde{w}_{x}(x_{\ast},t_{\ast})=0. Then, from (1.20)2\eqref{Riemann2}_{2}, we have g2(x,t,u)0g_{2}(x,t,u)\geq 0 at (x,t)=(x,t)(x,t)=(x_{\ast},t_{\ast}). This is a contradiction. We can similarly prove (1.24) and deduce a contradiction.

It should be noted that (1.31)–(1.32) yields a decay estimate.

Remark 1.5.

We review the role of each component of ζ(u)\zeta(u) in the above argument. We recall that ζ(u)\zeta(u) in (1.12) consits of tree terms η(u),αρ\eta_{\ast}(u),\;\alpha\rho and KK. When the density is large (i), η(u)\eta_{\ast}(u) is a leading term in (1.31). On the other hand, when the density is small (ii), so is KK in (1.32). However, if ζ(u)\zeta(u) has only these two terms, (1.15) does not hold. To solve this, we add αρ\alpha\rho to η(u)\eta_{\ast}(u). These terms thus play the role of trinity.

Since (1.1) has a discontinuous solution, the above argument is formal. In fact, SinvS_{inv} is not an invariant region for our problem (see (1.14)) exactly, because our weak solutions increase due to their discontinuities, whose quantity is denoted by JjnJ^{n}_{j} in (2.3). We will treat with JjnJ^{n}_{j} by the decay estimate (1.31)–(1.32).

Next, we prove the existence of a time periodic solution. We find that both (z~0(x),w~0(x))(\tilde{z}_{0}(x),\tilde{w}_{0}(x)) and (z~(x,1),w~(x,1))(\tilde{z}(x,1),\tilde{w}(x,1)) are containded in SinvS_{inv}. Therfore, applying the fixed point theorem, we obtain a fixed point (z~0(x),w~0(x))=(z~(x,1),w~(x,1))(\tilde{z}^{*}_{0}(x),\tilde{w}^{*}_{0}(x))=(\tilde{z}^{*}(x,1),\tilde{w}^{*}(x,1)). (Exactly speaking, we apply the Brauwer fixed point theorem to a sequence deduced from a difference scheme.) This implies (ρ~0(x),v~0(x))=(ρ~(x,1),v~(x,1))(\tilde{\rho}^{*}_{0}(x),\tilde{v}^{*}_{0}(x))=(\tilde{\rho}^{*}(x,1),\tilde{v}^{*}(x,1)). However, we must prove a fixed point for original unknown functions.

First, since ρ=ρ~\rho=\tilde{\rho}, we have ρ0(x)=ρ(x,1)x[0,1]{\rho}^{*}_{0}(x)={\rho}^{*}(x,1)\;x\in[0,1]. Next, let us prove v0(x)=v(x,1)x[0,1]{v}^{*}_{0}(x)={v}^{*}(x,1)\;x\in[0,1]. Recalling (1.19), we find that

v(x,1)=v~(x,1)+0x{η(u)αρ+K}𝑑y,\displaystyle v^{*}(x,1)=\tilde{v}^{*}(x,1)+\int^{x}_{0}\left\{\eta_{\ast}(u^{*})-\alpha\rho^{*}+K\right\}dy, (1.33)
v0(x)=v~0(x)+0x{η(u0)αρ0+K}𝑑y.\displaystyle v^{*}_{0}(x)=\tilde{v}^{*}_{0}(x)+\int^{x}_{0}\left\{\eta_{\ast}(u^{*}_{0})-\alpha\rho^{*}_{0}+K\right\}dy. (1.34)

From ρ0(x)=ρ(x,1){\rho}^{*}_{0}(x)={\rho}^{*}(x,1), we obtain

v(x,1)v0(x)=0x12ρ0(x)(v(y,1)+v0(y))(v(y,1)v0(y))𝑑y.\displaystyle v^{*}(x,1)-v^{*}_{0}(x)=\int^{x}_{0}\frac{1}{2}\rho^{*}_{0}(x)(v^{*}(y,1)+v^{*}_{0}(y))(v^{*}(y,1)-v^{*}_{0}(y))dy. (1.35)

We assume that there exists a point x(0,1)x^{\star}\in(0,1) such that v0(x)v(x,1)v^{*}_{0}(x^{\star})\neq v^{*}(x^{\star},1). Then, we set x0=infx{x[0,1];x<x,v0(x)v(x,1)}\displaystyle x^{\star}_{0}=\inf_{x}\left\{x\in[0,1];x<x^{\star},\;v^{*}_{0}(x)\neq v^{*}(x,1)\right\}. From (1.35), since v(0,1)v0(0)=0v^{*}(0,1)-v^{*}_{0}(0)=0, we find that v(x0,1)v0(x0)=0v^{*}(x^{\star}_{0},1)-v^{*}_{0}(x^{\star}_{0})=0. Differentiating (1.35), deviding the resultant equation by v(x,1)v0(x)v^{*}(x,1)-v^{*}_{0}(x) and integrating the resultant one from x0x^{\star}_{0} to xx^{\star}, we have

log|v(x,1)v0(x)|log|v(x0,1)v0(x0)|=x0x12ρ0(x)(v(y,1)+v0(y))𝑑y.\displaystyle\begin{aligned} &\log|v^{*}(x^{\star},1)-v^{*}_{0}(x^{\star})|-\log|v^{*}(x^{\star}_{0},1)-v^{*}_{0}(x^{\star}_{0})|\\ &=\int^{x^{\star}}_{x^{\star}_{0}}\frac{1}{2}\rho^{*}_{0}(x)(v^{*}(y,1)+v^{*}_{0}(y))dy.\end{aligned} (1.36)

log|v(x0,1)v0(x0)|\log|v^{*}(x^{\star}_{0},1)-v^{*}_{0}(x^{\star}_{0})| is -\infty. On the other hand, the right hand side is bounded. This is a contradiction.

Although the above argument is formal, it is essential. In fact, we shall implicitly use this property in Section 3–4. However, we cannot justify the above argument by the standard difference scheme such as Godunov or Lax-Friedrichs scheme. Therefore, we introduce a new type Lax Friedrichs scheme in Section 2. Recently, the various difference schemes are developed in [5][12], which consist of known functions. On the other hand, the present approximate solutions include unknown functions in the form of (1.19) with constants z~,w~\tilde{z},\tilde{w} (see (2.14)).

The present paper is organized as follows. In Section 2, we construct approximate solutions by the Lax Friedrichs scheme mentioned above. In Section 3, we drive the bounded estimate of our approximate solutions. In Section 4, we prove the existence of a fixed point by using a recurrence relation which is deduced from our approximate solutions.

2. Construction of Approximate Solutions

In this section, we construct approximate solutions. In the strip 0t10\leqq{t}\leqq{1}, we denote these approximate solutions by uΔ(x,t)=(ρΔ(x,t),mΔ(x,t))u^{\varDelta}(x,t)=(\rho^{\varDelta}(x,t),m^{\varDelta}(x,t)). For Nx𝐍N_{x}\in{\bf N}, we define the space mesh lengths by Δx=1/(2Nx){\varDelta}x=1/(2N_{x}). Using MM in (1.8), we take time mesh length Δx{\varDelta}{x} such that

ΔxΔt=[[2M]]+1,\displaystyle\frac{{\varDelta}x}{{\varDelta}{t}}=[[2M]]+1, (2.1)

where [[x]][[x]] is the greatest integer not greater than xx. Then we define Nt=1/(2Δt)𝐍N_{t}=1/(2{\varDelta t})\in{\bf N}. In addition, we set

(j,n)𝐍x×𝐍t,\displaystyle(j,n)\in{\bf N}_{x}\times{\bf N}_{t},

where 𝐍x={0,1,2,,2Nx}{\bf N}_{x}=\{0,1,2,\ldots,2N_{x}\} and 𝐍t={0,1,2,,2Nt}{\bf N}_{t}=\{0,1,2,\ldots,2N_{t}\}. For simplicity, we use the following terminology

xj=jΔx,tn=nΔt,tn.5=(n+12)Δt,tn=nΔt0,tn+=nΔt+0.\displaystyle\begin{aligned} &x_{j}=j{\varDelta}x,\;t_{n}=n{\varDelta}t,\;t_{n.5}=\left(n+\frac{1}{2}\right){\varDelta}t,\;t_{n-}=n{\varDelta}t-0,\;t_{n+}=n{\varDelta}t+0.\end{aligned} (2.2)

First we define uΔ(x,0)u^{\varDelta}(x,-0) by uΔ(x,0)=u0(x)u^{\varDelta}(x,-0)=u_{0}(x) and set

Jn={k𝐍x;k+n=odd}.\displaystyle J_{n}=\{k\in{\bf N}_{x};k+n=\text{odd}\}.

Then, for jJ0j\in J_{0}, we define Ej0(u)E_{j}^{0}(u) by

Ej0(u)=12Δxxj1xj+1uΔ(x,0)𝑑x.\displaystyle E_{j}^{0}(u)=\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}u^{\varDelta}(x,-0)dx.

Next, assume that uΔ(x,t)u^{\varDelta}(x,t) is defined for t<tnt<{t}_{n}.

(i) nn is even

Then, for jJnj\in J_{n}, we define Ejn(u)E^{n}_{j}(u) by

Ejn(u)=12Δxxj1xj+1uΔ(x,tn)𝑑x.\displaystyle E^{n}_{j}(u)=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}u^{\varDelta}(x,t_{n-})dx.

(ii) nn is odd

Then, for jJn{0,2Nx}j\in J_{n}\setminus\{0,2N_{x}\}, we define Ejn(u)E^{n}_{j}(u) by

Ejn(u)=12Δxxj1xj+1uΔ(x,tn)𝑑x;\displaystyle E^{n}_{j}(u)=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}u^{\varDelta}(x,t_{n-})dx;

for j{0,2Nx}j\in\{0,2N_{x}\}, we define Ejn(u)E^{n}_{j}(u) by

E0n(u)=\displaystyle E^{n}_{0}(u)= 1Δx0x1uΔ(x,tn)𝑑x,E2Nxn(u)=1Δxx2Nx1x2NxuΔ(x,tn)𝑑x.\displaystyle\frac{1}{{\varDelta}x}\int_{0}^{x_{1}}u^{\varDelta}(x,t_{n-})dx,\;E^{n}_{2N_{x}}(u)=\frac{1}{{\varDelta}x}\int_{x_{2N_{x}-1}}^{x_{2N_{x}}}u^{\varDelta}(x,t_{n-})dx.

Let En(x;u)E^{n}(x;u) be a piecewise constant function defined by

En(x;u)={Ejn(u),x[xj1,xj+1)(jJn,n is even),Ejn(u),x[xj1,xj+1)(jJn,j0,2Nx,n is odd),E0n(u),x[0,x1)(j=0,n is odd),E2Nxn(u),x[x2Nx1,x2Nx)(j=2Nx,n is odd).\displaystyle E^{n}(x;u)=\begin{cases}E^{n}_{j}(u),\quad&x\in[x_{j-1},x_{j+1})\quad(j\in J_{n},\;\text{$n$ is even}),\vspace*{0.5ex}\\ E^{n}_{j}(u),\quad&x\in[x_{j-1},x_{j+1})\quad(j\in J_{n},\;j\neq 0,2N_{x},\;\;\text{$n$ is odd}),\vspace*{0.5ex}\\ E^{n}_{0}(u),\quad&x\in[0,x_{1})\quad(j=0,\;\;\text{$n$ is odd}),\vspace*{0.5ex}\\ E^{n}_{2N_{x}}(u),&x\in[x_{2N_{x}-1},x_{2N_{x}})\quad(j=2N_{x},\;\;\text{$n$ is odd}).\end{cases}

To define ujn=(ρjn,mjn)u_{j}^{n}=(\rho_{j}^{n},m_{j}^{n}) for jJnj\in J_{n}, we first define symbols IjnI^{n}_{j} and LjnL^{n}_{j}. Let the approximation of ζ(u)\zeta(u) be

Ijn:={x0xj1ζ(En(x;u))𝑑x+12xj1xj+1ζ(En(x;u))𝑑x=x0xjζ(En(x;u))𝑑x,n is even,0xj1ζ(En(x;u))𝑑x+12xj1xj+1ζ(En(x;u))𝑑x=x0xjζ(En(x;u))𝑑x,n is odd, j0,2Nx,120x1ζ(En(x;u))𝑑x,n is odd, j=0,0x1ζ(En(x;u))𝑑x+12x2Nx1x2Nxζ(En(x;u))𝑑x,n is odd, j=2Nx,\displaystyle I^{n}_{j}:=\begin{cases}\displaystyle\int^{x_{j-1}}_{x_{0}}\zeta(E^{n}(x;u))dx+\frac{1}{2}\int_{x_{j-1}}^{x_{j+1}}\zeta(E^{n}(x;u))dx&\\ \displaystyle\quad=\int^{x_{j}}_{x_{0}}\zeta(E^{n}(x;u))dx,\;&\text{$n$ is even,}\vspace*{1ex}\\ \displaystyle\int^{x_{j-1}}_{0}\zeta(E^{n}(x;u))dx+\frac{1}{2}\int_{x_{j-1}}^{x_{j+1}}\zeta(E^{n}(x;u))dx&\\ \displaystyle\quad=\int^{x_{j}}_{x_{0}}\zeta(E^{n}(x;u))dx,&\text{$n$ is odd,\;$j\neq 0,2N_{x}$,}\vspace*{1ex}\\ \displaystyle\frac{1}{2}\int^{x_{1}}_{0}\zeta(E^{n}(x;u))dx,\;&\text{$n$ is odd,\;$j=0$,}\vspace*{1ex}\\ \displaystyle\int^{x_{1}}_{0}\zeta(E^{n}(x;u))dx+\frac{1}{2}\int^{x_{2N_{x}}}_{x_{2N_{x}-1}}\zeta(E^{n}(x;u))dx,\;&\text{$n$ is odd,\; $j=2N_{x}$,}\end{cases}

where ζ\zeta is defined in (1.12).

Let 𝒟=(x(t),t){\mathcal{D}}=(x(t),t) denote a discontinuity in uΔ(x,t),[η]{u}^{\varDelta}(x,t),\;[\eta_{\ast}] and [q][q_{\ast}] denote the jump of η(uΔ(x,t))\eta_{\ast}({u}^{\varDelta}(x,t)) and q(uΔ(x,t))q_{\ast}({u}^{\varDelta}(x,t)) across 𝒟{\mathcal{D}} from left to right, respectively,

[η]=η(uΔ(x(t)+0,t))η(uΔ(x(t)0,t)),\displaystyle[\eta_{\ast}]=\eta_{\ast}({u}^{\varDelta}(x(t)+0,t))-\eta_{\ast}({u}^{\varDelta}(x(t)-0,t)),
[q]=q(uΔ(x(t)+0,t))q(uΔ(x(t)0,t)).\displaystyle{[q_{\ast}]=q_{\ast}({u}^{\varDelta}(x(t)+0,t))-q_{\ast}({u}^{\varDelta}(x(t)-0,t))}.

To measure the error in the entropy condition and the gap of the energy at tn±t_{n\pm}, we introduce the following functional.

Ljn=0tn0x1σ[η][q]dt+n𝐍t01{η(uΔ(x,tn0))η(En(x;u))}𝑑x+(1+Cγα01ρ0(x)𝑑x)jJnn𝐍t12Δxxj1xj+1(xj+1x)Rjn(x)𝑑x,\displaystyle\begin{aligned} L^{n}_{j}=&\int^{t_{n}}_{0}\sum_{0\leq x\leq 1}\sigma[\eta_{\ast}]-[q_{\ast}]dt+\sum_{n\in{\bf N}_{t}}\int^{1}_{0}\left\{\eta_{\ast}({u}^{\varDelta}(x,t_{n-0}))-\eta_{\ast}(E^{n}(x;u))\right\}dx\\ &+\left(1+C_{\gamma}\alpha\int^{1}_{0}\rho_{0}(x)dx\right)\sum_{\begin{subarray}{c}j\in J_{n}\\ n\in{\bf N}_{t}\end{subarray}}\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)R^{n}_{j}(x)dx,\end{aligned} (2.3)

where

Cγ=max{2θ(θ+1),2γ(γ1)γ2+(12)γ1},\displaystyle C_{\gamma}=\max\left\{2^{\theta}(\theta+1),\dfrac{2\gamma(\gamma-1)}{\gamma-2+\left(\frac{1}{2}\right)^{\gamma-1}}\right\}, (2.4)
Rjn(x)=\displaystyle R^{n}_{j}(x)= 01(1τ)(uΔ(x,tn)ujn)t2η(ujn+τ{uΔ(x,tn)ujn})\displaystyle\int^{1}_{0}(1-\tau)\cdot{}^{t}\left({u}^{\varDelta}(x,t_{n-})-u^{n}_{j}\right)\nabla^{2}\eta_{\ast}\left(u^{n}_{j}+\tau\left\{{u}^{\varDelta}(x,t_{n-})-u^{n}_{j}\right\}\right)
×(uΔ(x,tn)ujn)dτ\displaystyle\times\left({u}^{\varDelta}(x,t_{n-})-u^{n}_{j}\right)d\tau

and the summention in 0x1\sum_{0\leq x\leq 1} is taken over all discontinuities in uΔ(x,t){u}^{\varDelta}(x,t) at a fixed time tt over x[0,1]x\in[0,1], σ\sigma is the propagating speed of the discontinuities.

From the entropy condition, σ[η][q]0\sigma[\eta_{\ast}]-[q_{\ast}]\geq 0. From the Jensen inequality, 01{η(uΔ(x,tn0))η(En(x;u))}𝑑x0\int^{1}_{0}\left\{\eta_{\ast}({u}^{\varDelta}(x,t_{n-0}))-\eta_{\ast}(E^{n}(x;u))\right\}dx\geq 0. Therefore, we find that Ljn0L^{n}_{j}\geq 0.

Using Ijn,LjnI^{n}_{j},L^{n}_{j}, we define ujnu_{j}^{n} as follows.

We choose δ\delta such that 1<δ<1/(2θ)1<\delta<1/(2\theta). If

Ejn(ρ):=12Δxxj1xj+1ρΔ(x,tn)𝑑x<(Δx)δ,\displaystyle E^{n}_{j}(\rho):=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\rho^{\varDelta}(x,t_{n-})dx<({\varDelta}x)^{\delta},

we define ujnu_{j}^{n} by ujn=(0,0)u_{j}^{n}=(0,0); otherwise, setting

zjn:=max{z(Ejn(u)),MnLjn+Ijn},wjn:=min{w(Ejn(u)),Mn+Ljn+Ijn},\displaystyle{z}_{j}^{n}:=\max\left\{z(E_{j}^{n}(u)),\;-M_{n}-L^{n}_{j}+I^{n}_{j}\right\},\;w_{j}^{n}:=\min\left\{w(E_{j}^{n}(u)),\;M_{n}+L^{n}_{j}+I^{n}_{j}\right\}, (2.5)

we define ujnu_{j}^{n} by

ujn:=(ρjn,mjn):=(ρjn,ρjnvjn):=({θ(wjnzjn)2}1/θ,{θ(wjnzjn)2}1/θwjn+zjn2).\displaystyle u_{j}^{n}:=(\rho_{j}^{n},m_{j}^{n}):=(\rho_{j}^{n},\rho_{j}^{n}v^{n}_{j}):=\left(\left\{\frac{\theta(w_{j}^{n}-z_{j}^{n})}{2}\right\}^{1/\theta},\left\{\frac{\theta(w_{j}^{n}-z_{j}^{n})}{2}\right\}^{1/\theta}\frac{w_{j}^{n}+z_{j}^{n}}{2}\right).
Remark 2.1.

We find

MnLjn+Ijnz(ujn),w(ujn)Mn+Ljn+Ijn.\displaystyle\begin{split}-M_{n}-L^{n}_{j}+I^{n}_{j}\leqq z(u_{j}^{n}),\quad{w}(u_{j}^{n})\leqq M_{n}+L^{n}_{j}+I^{n}_{j}.\end{split} (2.6)

This implies that we cut off the parts where z(Ejn(u))<MnLjn+Ijnz(E_{j}^{n}(u))<-M_{n}-L^{n}_{j}+I^{n}_{j} and w(Ejn(u))>Mn+Ljn+Ijnw(E_{j}^{n}(u))>M_{n}+L^{n}_{j}+I^{n}_{j} in defining z(ujn)z(u_{j}^{n}) and w(ujn){w}(u_{j}^{n}). Observing (3.6), the order of these cut parts is o(Δx)o({\varDelta}x). The order is so small that we can deduce the compactness and convergence of our approximate solutions.

We must construct our approximate solutions uΔ(x,t)u^{\varDelta}(x,t) near the boundary and in an interior domain. The construction of two cases is similar. Therefore, we are devoted to treating with the construction in the cell in the interior domain.

2.1. Construction of Approximate Solutions in the Cell of the interior domain

We then assume that approximate solutions uΔ(x,t)u^{\varDelta}(x,t) are defined in domains D1:t<tn(n𝐍t)D_{1}:t<{t}_{n}\quad(n\in{\bf N}_{t}) and D2:x<xj1(jJn+1),tnt<tn+1D_{2}:x<x_{j-1}\quad(j\in J_{n+1}),\;{t}_{n}\leqq{t}<t_{n+1}. By using ujnu_{j}^{n} defined above and uΔ(x,t)u^{\varDelta}(x,t) defined in D2D_{2}, we construct the approximate solutions in the cell nΔtt<(n+1)Δt(n𝐍t),xj1x<xj+1(jJn{0,1,2Nx1,2Nx})n{\varDelta}{t}\leqq{t}<(n+1){\varDelta}{t}\quad(n\in{\bf N}_{t}),\quad x_{j-1}\leqq{x}<x_{j+1}\quad(j\in J_{n}\setminus\{0,1,2N_{x}-1,2N_{x}\}).

We first solve a Riemann problem with initial data (uj1n,uj+1n)(u_{j-1}^{n},u_{j+1}^{n}). Call constants uL(=uj1n),uM,uR(=uj+1n)u_{\rm L}(=u_{j-1}^{n}),u_{\rm M},u_{\rm R}(=u_{j+1}^{n}) the left, middle and right states, respectively. Then the following four cases occur.

  • Case 1 A 1-rarefaction wave and a 2-shock arise.

  • Case 2 A 1-shock and a 2-rarefaction wave arise.

  • Case 3 A 1-rarefaction wave and a 2-rarefaction arise.

  • Case 4 A 1-shock and a 2-shock arise.

We then construct approximate solutions uΔ(x,t)u^{\varDelta}(x,t) by perturbing the above Riemann solutions.

Let α\alpha be a constant satisfying 1/2<α<11/2<\alpha<1. Then we can choose a positive value β\beta small enough such that β<α\beta<\alpha, 1/2+β/2<α<12β1/2+\beta/2<\alpha<1-2\beta, β<2/(γ+5)\beta<2/(\gamma+5) and (93γ)β/2<α(9-3\gamma)\beta/2<\alpha.

In this step, we consider Case 1 in particular. The constructions of Cases 2–4 are similar to that of Case 1. We consider only the case in which uMu_{\rm M} is away from the vacuum. The other case (i.e., the case where uMu_{\rm M} is near the vacuum) is a little technical. Therefore, we postpone this case to Appendix B.

Consider the case where a 1-rarefaction wave and a 2-shock arise as a Riemann solution with initial data (ujn,uj+1n)(u_{j}^{n},u_{j+1}^{n}). Assume that uL,uMu_{\rm L},u_{\rm M} and uM,uRu_{\rm M},u_{\rm R} are connected by a 1-rarefaction and a 2-shock curve, respectively.
Step 1.
In order to approximate a 1-rarefaction wave by a piecewise constant rarefaction fan, we introduce the integer

p:=max{[[(zMzL)/(Δx)α]]+1,2},\displaystyle p:=\max\left\{[[(z_{\rm M}-z_{\rm L})/({\varDelta}x)^{\alpha}]]+1,2\right\},

where zL=z(uL),zM=z(uM)z_{\rm L}=z(u_{\rm L}),z_{\rm M}=z(u_{\rm M}) and [[x]][[x]] is the greatest integer not greater than xx. Notice that

p=O((Δx)α).\displaystyle p=O(({\varDelta}x)^{-\alpha}). (2.7)

Define

z1:=zL,zp:=zM,wi:=wL(i=1,,p),\displaystyle z_{1}^{*}:=z_{\rm L},\;z_{p}^{*}:=z_{\rm M},\;w_{i}^{*}:=w_{\rm L}\;(i=1,\ldots,p),

and

zi:=zL+(i1)(Δx)α(i=1,,p1).\displaystyle z_{i}^{*}:=z_{\rm L}+(i-1)({\varDelta}x)^{\alpha}\;(i=1,\ldots,p-1).

We next introduce the rays x=(j+1/2)Δx+λ1(zi,zi+1,wL)(tnΔt)x=(j+1/2){\varDelta}x+\lambda_{1}(z_{i}^{*},z_{i+1}^{*},w_{\rm L})(t-n{\varDelta}{t}) separating finite constant states (zi,wi)(i=1,,p)(z_{i}^{*},w_{i}^{*})\;(i=1,\ldots,p), where

λ1(zi,zi+1,wL):=v(zi,wL)S(ρ(zi+1,wL),ρ(zi,wL)),\displaystyle\lambda_{1}(z_{i}^{*},z_{i+1}^{*},w_{\rm L}):=v(z_{i}^{*},w_{\rm L})-S(\rho(z_{i+1}^{*},w_{\rm L}),\rho(z_{i}^{*},w_{\rm L})),
ρi:=ρ(zi,wL):=(θ(wLzi)2)1/θ,vi:=v(zi,wL):=wL+zi2\displaystyle\rho_{i}^{*}:=\rho(z_{i}^{*},w_{\rm L}):=\left(\frac{\theta(w_{\rm L}-z_{i}^{*})}{2}\right)^{1/\theta}\;,\quad{v}_{i}^{*}:={v}(z_{i}^{*},w_{\rm L}):=\frac{w_{\rm L}+z_{i}^{*}}{2}

and

S(ρ,ρ0):={ρ(p(ρ)p(ρ0))ρ0(ρρ0),ifρρ0,p(ρ0),ifρ=ρ0.\displaystyle S(\rho,\rho_{0}):=\left\{\begin{array}[]{lll}\sqrt{\displaystyle{\frac{\rho(p(\rho)-p(\rho_{0}))}{\rho_{0}(\rho-\rho_{0})}}},\quad\mbox{if}\;\rho\neq\rho_{0},\\ \sqrt{p^{\prime}(\rho_{0})},\quad\mbox{if}\;\rho=\rho_{0}.\end{array}\right. (2.10)

We call this approximated 1-rarefaction wave a 1-rarefaction fan.

Step 2.
In this step, we replace the above constant states with functions of xx and tt as follows:

In view of (1.19), we construct u1Δ(x,t){u}^{\varDelta}_{1}(x,t).

We first determine the approximation of z~,w~\tilde{z},\tilde{w} in (1.19) as follows.

z~1Δ=zLx0xj1ζ(un,0Δ(x))𝑑x,w~1Δ=wLx0xj1ζ(un,0Δ(x))𝑑x.\displaystyle\begin{aligned} \tilde{z}^{\varDelta}_{1}=&z_{\rm L}-\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx,\;\tilde{w}^{\varDelta}_{1}=w_{\rm L}-\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx.\end{aligned}

We set

zˇ1Δ(x,t)=z~1Δ+x0xj1ζ(un,0Δ(x))𝑑x+x1Δxζ(uL)𝑑y+{g1(x,t;uL)+V(uL)}(ttn),wˇ1Δ(x,t)=w~1Δ+x0xj1ζ(un,0Δ(x))𝑑x+x1Δxζ(uL)𝑑y+{g2(x,t;uL)+V(uL)}(ttn),\displaystyle\begin{aligned} &\check{z}^{\varDelta}_{1}(x,t)=&&\tilde{z}^{\varDelta}_{1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+\int^{x}_{x^{\varDelta}_{1}}\zeta(u_{\rm L})dy+\left\{g_{1}(x,t;u_{\rm L})+V(u_{\rm L})\right\}(t-t_{n}),\\ &\check{w}^{\varDelta}_{1}(x,t)=&&\tilde{w}^{\varDelta}_{1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+\int^{x}_{x^{\varDelta}_{1}}\zeta(u_{\rm L})dy+\left\{g_{2}(x,t;u_{\rm L})+V(u_{\rm L})\right\}(t-t_{n}),\end{aligned} (2.11)

where x1Δ=xj1x^{\varDelta}_{1}=x_{j-1},

V(u)=q(u)αm,\displaystyle V(u)=q_{\ast}(u)-\alpha m, (2.12)

q(u)q_{\ast}(u) is the flux of η(u)\eta_{\ast}(u) defined by

q(u)=m(12m2ρ2+ργ1γ1)\displaystyle q_{\ast}(u)=m\left(\frac{1}{2}\frac{m^{2}}{\rho^{2}}+\frac{\rho^{\gamma-1}}{\gamma-1}\right)

and un,0Δ(x)u^{\varDelta}_{n,0}(x) is a piecewise constant function defined by

un,0Δ(x)={ujn,x[xj1,xj+1)(jJn,n is even),ujn,x[xj1,xj+1)(jJn,j0,2Nx,n is odd),u0n,x[0,x1)(j=0,n is odd),u2Nxn,x[x2Nx1,x2Nx)(j=2Nx,n is odd).\displaystyle u^{\varDelta}_{n,0}(x)=\begin{cases}u^{n}_{j},\quad&x\in[x_{j-1},x_{j+1})\quad(j\in J_{n},\;\text{$n$ is even}),\vspace*{0.5ex}\\ u^{n}_{j},\quad&x\in[x_{j-1},x_{j+1})\quad(j\in J_{n},\;j\neq 0,2N_{x},\;\;\text{$n$ is odd}),\vspace*{0.5ex}\\ u^{n}_{0},\quad&x\in[0,x_{1})\quad(j=0,\;\;\text{$n$ is odd}),\vspace*{0.5ex}\\ u^{n}_{2N_{x}},&x\in[x_{2N_{x}-1},x_{2N_{x}})\quad(j=2N_{x},\;\;\text{$n$ is odd}).\end{cases} (2.13)

Using uˇ1Δ(x,t)\check{u}^{\varDelta}_{1}(x,t), we next define u1Δ(x,t){u}^{\varDelta}_{1}(x,t) as follows.

z1Δ(x,t)=z~1Δ+x0xj1ζ(un,0Δ(x))𝑑x+x1Δxζ(uˇ1Δ(y,t))𝑑y+{g1(x,t;uˇ1Δ)+V(uL)}(ttn),w1Δ(x,t)=w~1Δ+x0xj1ζ(un,0Δ(x))𝑑x+x1Δxζ(uˇ1Δ(y,t))𝑑y+{g2(x,t;uˇ1Δ)+V(uL)}(ttn).\displaystyle\begin{aligned} &{z}^{\varDelta}_{1}(x,t)=&&\tilde{z}^{\varDelta}_{1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+\int^{x}_{x^{\varDelta}_{1}}\zeta(\check{u}^{\varDelta}_{1}(y,t))dy\\ &&&+\left\{g_{1}(x,t;\check{u}^{\varDelta}_{1})+V(u_{\rm L})\right\}(t-t_{n}),\\ &{w}^{\varDelta}_{1}(x,t)=&&\tilde{w}^{\varDelta}_{1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+\int^{x}_{x^{\varDelta}_{1}}\zeta(\check{u}^{\varDelta}_{1}(y,t))dy\\ &&&+\left\{g_{2}(x,t;\check{u}^{\varDelta}_{1})+V(u_{\rm L})\right\}(t-t_{n}).\end{aligned} (2.14)
Remark 2.2.

  1. (i)

    We notice that approximate solutions z1Δ,w1Δ{z}^{\varDelta}_{1},{w}^{\varDelta}_{1} and z~1Δ,w~1Δ\tilde{z}^{\varDelta}_{1},\tilde{w}^{\varDelta}_{1} correspond to z,wz,w and z~,w~\tilde{z},\tilde{w} in (1.19), respectively.

  2. (ii)

    For t>tnt>t_{n}, our approximate solutions will satisfy

    x0xj1ζ(uΔ(x,tn+1))dx+tntn+10xxj1(σ[η][q])dt=x0xj1ζ(un,0Δ(x))𝑑x+V(uL)Δt+o(Δx).\displaystyle\begin{aligned} \int^{x_{j-1}}_{x_{0}}&\zeta(u^{\varDelta}(x,t_{n+1-}))dx+\int^{t_{n+1}}_{t_{n}}\sum_{0\leq x\leq x_{j-1}}(\sigma[\eta_{\ast}]-[q_{\ast}])dt\\ &=\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L}){\varDelta}t+o({\varDelta}x).\end{aligned} (2.15)

    In (2.14), we thus employ the right hand side of (2.15) instead of the left hand side.

  3. (iii)

    Our construction of approximate solutions uses the iteration method twice (see (2.11) and (2.14)) to deduce (3.4).

First, by the implicit function theorem, we determine a propagation speed σ2\sigma_{2} and u2=(ρ2,m2)u_{2}=(\rho_{2},m_{2}) such that

  • (1.a)

    z2:=z(u2)=z2z_{2}:=z(u_{2})=z^{*}_{2}

  • (1.b)

    the speed σ2\sigma_{2}, the left state u1Δ(x2,tn.5){u}^{\varDelta}_{1}(x_{2},t_{n.5}) and the right state u2u_{2} satisfy the Rankine–Hugoniot conditions, i.e.,

    f(u2)f(u1Δ(x2Δ(tn.5),tn.5))=σ2(u2u1Δ(x2Δ(tn.5),tn.5)),\displaystyle f(u_{2})-f({u}^{\varDelta}_{1}(x^{\varDelta}_{2}(t_{n.5}),t_{n.5}))=\sigma_{2}(u_{2}-{u}^{\varDelta}_{1}(x^{\varDelta}_{2}(t_{n.5}),t_{n.5})),

where x2Δ(t)=xj+σ2(ttn)x^{\varDelta}_{2}(t)=x_{j}+\sigma_{2}(t-t_{n}). Then we fill up by u1Δ(x){u}^{\varDelta}_{1}(x) the sector where tnt<tn+1,xj1x<x2Δ(t)t_{n}\leqq{t}<t_{n+1},x_{j-1}\leqq{x}<x^{\varDelta}_{2}(t) (see Figure 1).

Refer to caption
Figure 1. The approximate solution in the case where a 1-rarefaction and a 2-shock arise in the cell.

Assume that uku_{k}, ukΔ(x,t){u}^{\varDelta}_{k}(x,t), a propagation speed σk\sigma_{k} and xkΔ(t)x^{\varDelta}_{k}(t) are defined. Then we similarly determine σk+1\sigma_{k+1} and uk+1=(ρk+1,mk+1)u_{k+1}=(\rho_{k+1},m_{k+1}) such that

  • (kk.a)

    zk+1:=z(uk+1)=zk+1z_{k+1}:=z(u_{k+1})=z^{*}_{k+1},

  • (kk.b)

    σk<σk+1\sigma_{k}<\sigma_{k+1},

  • (kk.c)

    the speed σk+1\sigma_{k+1}, the left state ukΔ(xk+1Δ(tn.5),tn.5){u}^{\varDelta}_{k}(x^{\varDelta}_{k+1}(t_{n.5}),t_{n.5}) and the right state uk+1u_{k+1} satisfy the Rankine–Hugoniot conditions,

where xk+1Δ(t)=xj+σk+1(ttn)x^{\varDelta}_{k+1}(t)=x_{j}+\sigma_{k+1}(t-t_{n}). Then we fill up by ukΔ(x,t){u}^{\varDelta}_{k}(x,t) the sector where tnt<tn+1,xkΔ(t)x<xk+1Δ(t)t_{n}\leqq{t}<t_{n+1},x^{\varDelta}_{k}(t)\leqq{x}<x^{\varDelta}_{k+1}(t) (see Figure 1).

We construct uk+1Δ(x,t){u}^{\varDelta}_{k+1}(x,t) as follows.

We first determine

z~k+1Δ=zk+1x0xj1ζ(un,0Δ(x))𝑑xV(uL)Δt2l=1kxlΔ(tn.5)xl+1Δ(tn.5)ζ(ulΔ(x,tn.5))𝑑x,\displaystyle\begin{aligned} &\tilde{z}^{\varDelta}_{k+1}=&&z_{k+1}-\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx-V(u_{\rm L})\frac{{\varDelta}t}{2}-\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t_{n.5})}_{x^{\varDelta}_{l}(t_{n.5})}\zeta(u^{\varDelta}_{l}(x,t_{n.5}))dx,\end{aligned}
w~k+1Δ=wk+1x0xj1ζ(un,0Δ(x))𝑑xV(uL)Δt2l=1kxlΔ(tn.5)xl+1Δ(tn.5)ζ(ulΔ(x,tn.5))𝑑x,\displaystyle\begin{aligned} &\tilde{w}^{\varDelta}_{k+1}=&&w_{k+1}-\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx-V(u_{\rm L})\frac{{\varDelta}t}{2}-\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t_{n.5})}_{x^{\varDelta}_{l}(t_{n.5})}\zeta(u^{\varDelta}_{l}(x,t_{n.5}))dx,\end{aligned}

where x1Δ(t)=xj1,xlΔ(t)=xj+σl(ttn)(l=2,3,,k+1)x^{\varDelta}_{1}(t)=x_{j-1},\;x^{\varDelta}_{l}(t)=x_{j}+\sigma_{l}(t-t_{n})\quad(l=2,3,\ldots,k+1) and tn.5t_{n.5} is defined in (2.2).

We next define uˇk+1Δ\check{u}^{\varDelta}_{k+1} as follows.

zˇk+1Δ(x,t)=z~k+1Δ+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+l=1kxlΔ(t)xl+1Δ(t)ζ(ulΔ(x,t))𝑑x+xk+1Δ(t)xζ(uk+1)𝑑y+g1(x,t;uk+1)(ttn.5),\displaystyle\begin{aligned} &\check{z}^{\varDelta}_{k+1}(x,t)=&&\tilde{z}^{\varDelta}_{k+1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t)}_{x^{\varDelta}_{l}(t)}\zeta(u^{\varDelta}_{l}(x,t))dx\\ &&&+\int^{x}_{x^{\varDelta}_{k+1}(t)}\zeta(u_{k+1})dy+g_{1}(x,t;u_{k+1})(t-t_{n.5}),\end{aligned}
wˇk+1Δ(x,t)=w~k+1Δ+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+l=1kxlΔ(t)xl+1Δ(t)ζ(ulΔ(x,t))𝑑x+xk+1Δ(t)xζ(uk+1)𝑑y+g2(x,t;uk+1)(ttn.5).\displaystyle\begin{aligned} &\check{w}^{\varDelta}_{k+1}(x,t)=&&\tilde{w}^{\varDelta}_{k+1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t)}_{x^{\varDelta}_{l}(t)}\zeta(u^{\varDelta}_{l}(x,t))dx\\ &&&+\int^{x}_{x^{\varDelta}_{k+1}(t)}\zeta(u_{k+1})dy+g_{2}(x,t;u_{k+1})(t-t_{n.5}).\end{aligned}

Finally, using uˇk+1Δ(x,t)\check{u}^{\varDelta}_{k+1}(x,t), we define uk+1Δ(x,t){u}^{\varDelta}_{k+1}(x,t) as follows.

zk+1Δ(x,t)=z~k+1Δ+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+l=1kxlΔ(t)xl+1Δ(t)ζ(ulΔ(x,t))𝑑x+xk+1Δ(t)xζ(uˇk+1Δ(y,t))𝑑y+g1(x,t;uˇk+1Δ)(ttn.5),wk+1Δ(x,t)=w~k+1Δ+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+l=1kxlΔ(t)xl+1Δ(t)ζ(ulΔ(x,t))𝑑x+xk+1Δ(t)xζ(uˇk+1Δ(y,t))𝑑y+g2(x,t;uˇk+1Δ)(ttn.5).\displaystyle\begin{aligned} &{z}^{\varDelta}_{k+1}(x,t)&=&\tilde{z}^{\varDelta}_{k+1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t)}_{x^{\varDelta}_{l}(t)}\zeta(u^{\varDelta}_{l}(x,t))dx\\ &&&+\int^{x}_{x^{\varDelta}_{k+1}(t)}\zeta(\check{u}^{\varDelta}_{k+1}(y,t))dy+g_{1}(x,t;\check{u}^{\varDelta}_{k+1})(t-t_{n.5}),\\ &{w}^{\varDelta}_{k+1}(x,t)&=&\tilde{w}^{\varDelta}_{k+1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t)}_{x^{\varDelta}_{l}(t)}\zeta(u^{\varDelta}_{l}(x,t))dx\\ &&&+\int^{x}_{x^{\varDelta}_{k+1}(t)}\zeta(\check{u}^{\varDelta}_{k+1}(y,t))dy+g_{2}(x,t;\check{u}^{\varDelta}_{k+1})(t-t_{n.5}).\end{aligned} (2.16)

By induction, we define uiu_{i}, uiΔ(x,t){u}^{\varDelta}_{i}(x,t) and σi\sigma_{i} (i=1,,p1)(i=1,\ldots,p-1). Finally, we determine a propagation speed σp\sigma_{p} and up=(ρp,mp)u_{p}=(\rho_{p},m_{p}) such that

  • (pp.a)

    zp:=z(up)=zpz_{p}:=z(u_{p})=z^{*}_{p},

  • (pp.b)

    the speed σp\sigma_{p}, and the left state up1Δ(xpΔ(tn.5),tn.5){u}^{\varDelta}_{p-1}(x^{\varDelta}_{p}(t_{n.5}),t_{n.5}) and the right state upu_{p} satisfy the Rankine–Hugoniot conditions,

where xpΔ(t)=xj+σp(ttn)x^{\varDelta}_{p}(t)=x_{j}+\sigma_{p}(t-t_{n}). We then fill up by up1Δ(x,t){u}^{\varDelta}_{p-1}(x,t) and upu_{p} the sector where tnt<tn+1,xp1Δ(t)x<xpΔ(t)t_{n}\leqq{t}<t_{n+1},x^{\varDelta}_{p-1}(t)\leqq{x}<x^{\varDelta}_{p}(t) and the line tnt<tn+1,x=xpΔ(t)t_{n}\leqq{t}<t_{n+1},x=x^{\varDelta}_{p}(t), respectively.

Given uLu_{\rm L} and zMz_{\rm M} with zLzMz_{\rm L}\leqq{z}_{\rm M}, we denote this piecewise functions of xx and tt 1-rarefaction wave by R1Δ(uL,zM,x,t)R_{1}^{\varDelta}(u_{\rm L},z_{\rm M},x,t).

On the other hand, we construct uRΔ(x,t){u}^{\varDelta}_{\rm R}(x,t) as follows.

We first set

z~RΔ=zRx0xj+1ζ(un,0Δ(x))𝑑x,w~RΔ=wRx0xj+1ζ(un,0Δ(x))𝑑x.\displaystyle\begin{aligned} \tilde{z}^{\varDelta}_{\rm R}=z_{\rm R}-\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx,\;\tilde{w}^{\varDelta}_{\rm R}=w_{\rm R}-\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx.\end{aligned}

We next construct uˇRΔ\check{u}^{\varDelta}_{\rm R}

zˇRΔ(x,t)=z~RΔ+x0xj+1ζ(un,0Δ(x))𝑑x+V(uR)(ttn)+xj+1xζ(uR)𝑑y+g1(x,t;uR)(ttn),wˇRΔ(x,t)=w~RΔ+x0xj+1ζ(un,0Δ(x))𝑑x+V(uR)(ttn)+xj+1xζ(uR)𝑑y+g2(x,t;uR)(ttn).\displaystyle\begin{aligned} \check{z}^{\varDelta}_{\rm R}(x,t)&&=&\tilde{z}^{\varDelta}_{\rm R}+\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm R})(t-t_{n})+\int^{x}_{x_{j+1}}\zeta(u_{\rm R})dy\\ &&&+g_{1}(x,t;u_{\rm R})(t-t_{n}),\\ \check{w}^{\varDelta}_{\rm R}(x,t)&&=&\tilde{w}^{\varDelta}_{\rm R}+\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm R})(t-t_{n})+\int^{x}_{x_{j+1}}\zeta(u_{\rm R})dy\\ &&&+g_{2}(x,t;u_{\rm R})(t-t_{n}).\end{aligned}

Using uˇRΔ(x,t)\check{u}^{\varDelta}_{\rm R}(x,t), we define uRΔ(x,t){u}^{\varDelta}_{\rm R}(x,t) as follows.

Now we fix uRΔ(x,t){u}^{\varDelta}_{\rm R}(x,t) and up1Δ(x,t){u}^{\varDelta}_{p-1}(x,t). Let σs\sigma_{s} be the propagation speed of the 2-shock connecting uMu_{\rm M} and uRu_{\rm R}. Choosing σp{\sigma}^{\diamond}_{p} near to σp\sigma_{p}, σs{\sigma}^{\diamond}_{s} near to σs\sigma_{s} and uMu^{\diamond}_{\rm M} near to uMu_{\rm M}, we fill up by uMΔ(x,t){u}^{\varDelta}_{\rm M}(x,t) the gap between x=xj+σp(ttn)x=x_{j}+{\sigma}^{\diamond}_{p}(t-{t}_{n}) and x=xj+σs(ttn)x=x_{j}+{\sigma}^{\diamond}_{s}(t-{t}_{n}), such that

  • (M.a)

    σp1<σp<σs\sigma_{p-1}<\sigma^{\diamond}_{p}<\sigma^{\diamond}_{s},

  • (M.b)

    the speed σp{\sigma}^{\diamond}_{p}, the left and right states up1Δ(xp,tn.5),uMΔ(xp,tn.5){u}^{\varDelta}_{p-1}(x^{\diamond}_{p},t_{n.5}),{u}^{\varDelta}_{\rm M}(x^{\diamond}_{p},t_{n.5}) satisfy the Rankine–Hugoniot conditions,

  • (M.c)

    the speed σs{\sigma}^{\diamond}_{s}, the left and right states uMΔ(xs,tn.5),uRΔ(xs,tn.5){u}^{\varDelta}_{\rm M}(x^{\diamond}_{s},t_{n.5}),{u}^{\varDelta}_{\rm R}(x^{\diamond}_{s},t_{n.5}) satisfy the Rankine–Hugoniot conditions,

where xp:=xj+σpΔ/2x^{\diamond}_{p}:=x_{j}+\sigma^{\diamond}_{p}{\varDelta}/2, xs:=xj+σsΔ/2x^{\diamond}_{s}:=x_{j}+\sigma^{\diamond}_{s}{\varDelta}/2 and uMΔ(x,t){u}^{\varDelta}_{\rm M}(x,t) defined as follows.

We first set

z~MΔ=zMx0xj+1ζ(un,0Δ(x))𝑑xV(uR)Δt2xj+1xRΔ(tn.5)ζ(uRΔ(x,tn.5))𝑑x,w~MΔ=wMx0xj+1ζ(un,0Δ(x))𝑑xV(uR)Δt2xj+1xRΔ(tn.5)ζ(uRΔ(x,tn.5))𝑑x,\displaystyle\begin{aligned} \tilde{z}^{\varDelta}_{\rm M}&=&&z^{\diamond}_{\rm M}-\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}\left(x\right))dx-V(u_{\rm R})\frac{{\varDelta}t}{2}-\int^{x^{\varDelta}_{\rm R}(t_{n.5})}_{x_{j+1}}\zeta(u^{\varDelta}_{\rm R}(x,t_{n.5}))dx,\\ \tilde{w}^{\varDelta}_{\rm M}&=&&w^{\diamond}_{\rm M}-\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}\left(x\right))dx-V(u_{\rm R})\frac{{\varDelta}t}{2}-\int^{x^{\varDelta}_{\rm R}(t_{n.5})}_{x_{j+1}}\zeta(u^{\varDelta}_{\rm R}(x,t_{n.5}))dx,\end{aligned}

where xRΔ(t)=jΔx+σR(ttn)x^{\varDelta}_{\rm R}(t)=j{\varDelta}x+\sigma_{\rm R}(t-t_{n}).

We construct uˇMΔ\check{u}^{\varDelta}_{\rm M}

zˇMΔ(x,t)=z~MΔ+x0xj+1ζ(un,0Δ(x))𝑑x+V(uR)(ttn)+xj+1xRΔ(t)ζ(uRΔ(x,t))𝑑y+xRΔ(t)xζ(uM)𝑑y+g1(x,t;uM)(ttn.5),wˇMΔ(x,t)=w~MΔ+x0xj+1ζ(un,0Δ(x))𝑑x+V(uR)(ttn)+xj+1xRΔ(t)ζ(uRΔ(x,t))𝑑y+xRΔ(t)xζ(uM)𝑑y+g2(x,t;uM)(ttn.5).\displaystyle\begin{aligned} \check{z}^{\varDelta}_{\rm M}(x,t)&=&&\tilde{z}^{\varDelta}_{\rm M}+\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm R})(t-t_{n})+\int^{x^{\varDelta}_{\rm R}(t)}_{x_{j+1}}\zeta(u^{\varDelta}_{\rm R}(x,t))dy\\ &&&+\int_{x^{\varDelta}_{\rm R}(t)}^{x}\zeta(u_{\rm M})dy+g_{1}(x,t;u_{\rm M})(t-t_{n.5}),\\ \check{w}^{\varDelta}_{\rm M}(x,t)&=&&\tilde{w}^{\varDelta}_{\rm M}+\int^{x_{j+1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm R})(t-t_{n})+\int^{x^{\varDelta}_{\rm R}(t)}_{x_{j+1}}\zeta(u^{\varDelta}_{\rm R}(x,t))dy\\ &&&+\int_{x^{\varDelta}_{\rm R}(t)}^{x}\zeta(u_{\rm M})dy+g_{2}(x,t;u_{\rm M})(t-t_{n.5}).\end{aligned}

Using uˇMΔ(x,t)\check{u}^{\varDelta}_{\rm M}(x,t), we next define uMΔ(x,t){u}^{\varDelta}_{\rm M}(x,t) as follows.

We denote this approximate Riemann solution, which consists of (2.16), (LABEL:appr-R), (LABEL:appr-R) , by uΔ(x,t){u}^{\varDelta}(x,t). The validity of the above construction is demonstrated in [5, Appendix A].

Remark 2.3.

uΔ(x,t){u}^{\varDelta}(x,t) satisfies the Rankine–Hugoniot conditions at the middle time of the cell, t=tn.5t=t_{n.5}.

Remark 2.4.

The approximate solution uΔ(x,t)u^{\varDelta}(x,t) is piecewise smooth in each of the divided parts of the cell. Then, in the divided part, uΔ(x,t)u^{\varDelta}(x,t) satisfies

(uΔ)t+f(uΔ)xg(x,uΔ)=O(Δx).\displaystyle(u^{\varDelta})_{t}+f(u^{\varDelta})_{x}-g(x,u^{\varDelta})=O(\varDelta x).

3. The LL^{\infty} estimate of the approximate solutions

First aim in this section is to deduce from (2.6) the following theorem:

Theorem 3.1.

For xj1xxj+1x_{j-1}\leq x\leq x_{j+1},

zΔ(x,tn+1)Mn+1Ljn+x0xζ(uΔ(y,tn+1))𝑑yo(Δx),wΔ(x,tn+1)Mn+1+Ljn+x0xζ(uΔ(y,tn+1))𝑑y+tntn+1y<xj1(σ[η][q])dt+o(Δx),\displaystyle\begin{aligned} &\displaystyle{z}^{\varDelta}(x,t_{n+1-})&\geq&-M_{n+1}-L^{n}_{j}+\int^{x}_{x_{0}}\zeta({u}^{\varDelta}(y,t_{n+1-}))dy-{\it o}({\varDelta}x),\\ &\displaystyle{w}^{\varDelta}(x,t_{n+1-})&\leq&M_{n+1}+L^{n}_{j}+\int^{x}_{x_{0}}\zeta({u}^{\varDelta}(y,t_{n+1-}))dy+\int^{t_{n+1}}_{t_{n}}\sum_{y<x_{j-1}}(\sigma[\eta_{\ast}]-[q_{\ast}])dt\\ &&&+{\it o}({\varDelta}x),\end{aligned} (3.1)

where

Mn+1=M(1Δt4)n+1,\displaystyle M_{n+1}=M\left(1-\dfrac{{\varDelta}t}{4}\right)^{n+1}, (3.2)

tn+1=(n+1)Δt0t_{n+1-}=(n+1){\varDelta}t-0 and o(Δx){\it o}({\varDelta}x) depends only on MM in (1.18).

Throughout this paper, by the Landau symbols such as O(Δx)O({\varDelta}x), O((Δx)2)O(({\varDelta}x)^{2}) and o(Δx)o({\varDelta}x), we denote quantities whose moduli satisfy a uniform bound depending only on MM unless we specify them.

Now, in the previous section, we have constructed uΔ(x,t)u^{\varDelta}(x,t) in Case 1. When we consider LL^{\infty} estimates in this case, main difficulty is to obtain (3.1)2(\ref{goal})_{2} along R1ΔR^{\varDelta}_{1}. Therefore, we are concerned with (3.1)2(\ref{goal})_{2} along R1ΔR^{\varDelta}_{1}.

3.1. Estimates of wΔ(x,t){w}^{\varDelta}(x,t) along R1ΔR^{\varDelta}_{1} in Case 1

In this step, we estimate wΔ(x,t){w}^{\varDelta}(x,t) along R1ΔR^{\varDelta}_{1} in Case 1 of Section 2. We recall that uΔ{u}^{\varDelta} along R1ΔR^{\varDelta}_{1} consists of ukΔ(k=1,2,3,,p1){u}^{\varDelta}_{k}\quad(k=1,2,3,\ldots,p-1). In this case, wΔ(x,t){w}^{\varDelta}(x,t) has the following properties, which is proved in [5, Appendix A]:

wk+1Δ(xk+1Δ(tn.5),tn.5)=\displaystyle{w}^{\varDelta}_{k+1}(x^{\varDelta}_{k+1}(t_{n.5}),t_{n.5})= wk+1=wkΔ(xk+1Δ(tn.5),tn.5)+O((Δx)3α(γ1)β)\displaystyle w_{k+1}={w}^{\varDelta}_{k}(x^{\varDelta}_{k+1}(t_{n.5}),t_{n.5})+{\it O}(({\varDelta}x)^{3\alpha-(\gamma-1)\beta})
(k=1,,p2),\displaystyle\hskip 94.72192pt(k=1,\ldots,p-2), (3.3)

where tn.5t_{n.5} is defined in (2.2).

We first consider w~1Δ\tilde{w}^{\varDelta}_{1}. We recall that

w~1Δ=wLx0xj1ζ(un,0Δ(x))𝑑x.\displaystyle\begin{aligned} \tilde{w}^{\varDelta}_{1}=w_{\rm L}-\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx.\end{aligned}

From (2.6), we have w~1ΔMn+Ljn\tilde{w}^{\varDelta}_{1}\leq M_{n}+L^{n}_{j}.

Since

uˇ1Δ(x,t)=u1Δ(x,t)+O((Δx)2),\displaystyle\check{u}^{\varDelta}_{1}(x,t)={u}^{\varDelta}_{1}(x,t)+O(({\varDelta}x)^{2}), (3.4)

recalling (2.15), we have

w1Δ(x,t)=w~1Δ+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+x1Δxζ(uˇ1Δ(y,t))𝑑y+g2(x,t;uˇΔ)(ttn)Mn+Ljn+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+x1Δxζ(uˇ1Δ(y,t))𝑑y+g2(x,t;uΔ)(ttn)+o(Δx).\displaystyle\begin{aligned} &{w}^{\varDelta}_{1}(x,t)&=&\tilde{w}^{\varDelta}_{1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\int^{x}_{x^{\varDelta}_{1}}\zeta(\check{u}^{\varDelta}_{1}(y,t))dy\\ &&&+g_{2}(x,t;\check{u}^{\varDelta})(t-t_{n})\\ &&\leq&M_{n}+L^{n}_{j}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\int^{x}_{x^{\varDelta}_{1}}\zeta(\check{u}^{\varDelta}_{1}(y,t))dy\\ &&&+g_{2}(x,t;{u}^{\varDelta})(t-t_{n})+o({\varDelta}x).\end{aligned}

If w1Δ(x,tn+10)<Mn+Ljn+IjnΔx{w}^{\varDelta}_{1}(x,t_{n+1-0})<M_{n}+L^{n}_{j}+I^{n}_{j}-\sqrt{{\varDelta}x}, from (2.15) and Mn+1=Mn+O(Δx)M_{n+1}=M_{n}+O({\varDelta}x), we obtain (3.1)2\eqref{goal}_{2}. Otherwise, from the argument (1.31)–(1.32), regarding MM in (1.31)–(1.32) as Mn+JjnM_{n}+J^{n}_{j}, we have g2(x,t;u1Δ)12(Mn+Jjn)12Mng_{2}(x,t;{u}^{\varDelta}_{1})\leq-\frac{1}{2}(M_{n}+J^{n}_{j})\leq-\frac{1}{2}M_{n}. From (2.15), we conclude (3.1)2\eqref{goal}_{2}.

Next, we assume that

wkΔ(x,t)Mn+Ljn+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+xj1xζ(uΔ(y,t))𝑑y+o(Δx).\displaystyle\begin{aligned} &{w}^{\varDelta}_{k}(x,t)&\leq&M_{n}+L^{n}_{j}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})\\ &&&+\int^{x}_{x_{j-1}}\zeta({u}^{\varDelta}(y,t))dy+o({\varDelta}x).\end{aligned} (3.5)

We recall that

w~k+1Δ=wk+1x0xj1ζ(un,0Δ(x))𝑑xV(uL)Δt2l=1kxlΔ(tn.5)xl+1Δ(tn.5)ζ(ulΔ(x,tn.5))𝑑x.\displaystyle\begin{aligned} &\tilde{w}^{\varDelta}_{k+1}=&&w_{k+1}-\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx-V(u_{\rm L})\frac{{\varDelta}t}{2}-\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t_{n.5})}_{x^{\varDelta}_{l}(t_{n.5})}\zeta(u^{\varDelta}_{l}(x,t_{n.5}))dx.\end{aligned}

From (3.3) and (3.5), we have

w~k+1ΔMn+Ljn+kO((Δx)3α(γ1)β)+o(Δx).\displaystyle\tilde{w}^{\varDelta}_{k+1}\leq M_{n}+L^{n}_{j}+k\cdot{\it O}(({\varDelta}x)^{3\alpha-(\gamma-1)\beta})+o({\varDelta}x).

From a similar argument to w1Δ{w}^{\varDelta}_{1}, we have

wk+1Δ(x,t)=w~k+1Δ+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+l=1kxlΔ(t)xl+1Δ(t)ζ(ulΔ(x,t))𝑑x+xk+1Δ(t)xζ(uˇk+1Δ(y,t))𝑑y+g2(x,t;uˇk+1Δ)(ttn.5)Mn+Ljn+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)(ttn)+xj1xζ(uΔ(y,t))𝑑y+g2(x,t;uˇk+1Δ)(ttn.5)+kO((Δx)3α(γ1)β)+o(Δx)(k=1,2,3,,p1).\displaystyle\begin{aligned} &{w}^{\varDelta}_{k+1}(x,t)&=&\tilde{w}^{\varDelta}_{k+1}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\sum^{k}_{l=1}\int^{x^{\varDelta}_{l+1}(t)}_{x^{\varDelta}_{l}(t)}\zeta(u^{\varDelta}_{l}(x,t))dx\\ &&&+\int^{x}_{x^{\varDelta}_{k+1}(t)}\zeta(\check{u}^{\varDelta}_{k+1}(y,t))dy+g_{2}(x,t;\check{u}^{\varDelta}_{k+1})(t-t_{n.5})\\ &&\leq&M_{n}+L^{n}_{j}+\int^{x_{j-1}}_{x_{0}}\zeta(u^{\varDelta}_{n,0}(x))dx+V(u_{\rm L})(t-t_{n})+\int^{x}_{x_{j-1}}\zeta({u}^{\varDelta}(y,t))dy\\ &&&+g_{2}(x,t;\check{u}^{\varDelta}_{k+1})(t-t_{n.5})+k\cdot{\it O}(({\varDelta}x)^{3\alpha-(\gamma-1)\beta})+o({\varDelta}x)\\ &&&\quad(k=1,2,3,\ldots,p-1).\end{aligned}

From (2.7), since {3α(γ1)β}p>1\left\{3\alpha-(\gamma-1)\beta\right\}p>1, we conclude (3.1)2\eqref{goal}_{2}.

The remainder in this section is to prove the following theorem. This is important to ensures (2.6).

Theorem 3.2.

We assume that uΔ(x,t)u^{\varDelta}(x,t) satisfies (3.1).

Then, if Ejn+1(ρ)(Δx)δE^{n+1}_{j}(\rho)\geq({\varDelta}x)^{\delta}, it holds that

Mn+1Ljn+1+Ijn+1o(Δx)z(Ejn+1(u)),w(Ejn+1(u))Mn+1+Ljn+1+Ijn+1+o(Δx),\displaystyle\begin{split}&-M_{n+1}-L^{n+1}_{j}+I^{n+1}_{j}-{\it o}({\varDelta}x)\leq{z}(E_{j}^{n+1}(u)),\\ &w(E^{n+1}_{j}(u))\leq M_{n+1}+L^{n+1}_{j}+I^{n+1}_{j}+{\it o}({\varDelta}x),\end{split} (3.6)

where jJn+1j\in J_{n+1} and o(Δx){\it o}({\varDelta}x) depends only on MM in (1.18).

Proof of Theorem 3.2. For x[xj1,xj+1]x\in[x_{j-1},x_{j+1}], we set

zΔ(x,tn+1)=\displaystyle{z}^{\varDelta}_{\dagger}(x,t_{n+1-})= zΔ(x,tn+1)x0xζ(uΔ(y,tn+1))𝑑y+xj1xη(uΔ(y,tn+1))𝑑y\displaystyle{z}^{\varDelta}(x,t_{n+1-})-\int^{x}_{x_{0}}\zeta\left({u}^{\varDelta}(y,t_{n+1-})\right)dy+\int^{x}_{x_{j-1}}\eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-})\right)dy
xj1xajn+1ρΔ(y,tn+1)𝑑y+xj1xK𝑑y,\displaystyle-\int^{x}_{x_{j-1}}a^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-})dy+\int^{x}_{x_{j-1}}Kdy,
wΔ(x,tn+1)=\displaystyle{w}^{\varDelta}_{\dagger}(x,t_{n+1-})= wΔ(x,tn+1)x0xζ(uΔ(y,tn+1))𝑑y+xj1xη(uΔ(y,tn+1))𝑑y\displaystyle{w}^{\varDelta}(x,t_{n+1-})-\int^{x}_{x_{0}}\zeta\left({u}^{\varDelta}(y,t_{n+1-})\right)dy+\int^{x}_{x_{j-1}}\eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-})\right)dy
xj1xajn+1ρΔ(y,tn+1)𝑑y+xj1xK𝑑y,\displaystyle-\int^{x}_{x_{j-1}}a^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-})dy+\int^{x}_{x_{j-1}}Kdy,

where ajn+1=ηρ(ujn+1)+ηm(ujn+1){vjn+1(ρjn)θ}a^{n+1}_{j}=\dfrac{\partial\eta_{\ast}}{\partial\rho}(u^{n+1}_{j})+\dfrac{\partial\eta_{\ast}}{\partial m}(u^{n+1}_{j})\left\{v^{n+1}_{j}-\left(\rho^{n}_{j}\right)^{\theta}\right\}.

Then we notice that

ρΔ(x,tn+1)=\displaystyle{\rho}^{\varDelta}_{\dagger}(x,t_{n+1-})= ρΔ(x,tn+1),\displaystyle{\rho}^{\varDelta}(x,t_{n+1-}),
vΔ(x,tn+1)=\displaystyle{v}^{\varDelta}_{\dagger}(x,t_{n+1-})= vΔ(x,tn+1)x0xζ(uΔ(y,tn+1))𝑑y+xj1xη(uΔ(y,tn+1))𝑑y\displaystyle{v}^{\varDelta}(x,t_{n+1-})-\int^{x}_{x_{0}}\zeta\left({u}^{\varDelta}(y,t_{n+1-})\right)dy+\int^{x}_{x_{j-1}}\eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-})\right)dy
xj1xajn+1ρΔ(y,tn+1)𝑑y+xj1xK𝑑y.\displaystyle-\int^{x}_{x_{j-1}}a^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-})dy+\int^{x}_{x_{j-1}}Kdy.

Since LjnL^{n}_{j} is positive, (3.6)2\eqref{average}_{2} is more difficult than (3.6)1\eqref{average}_{1}. We thus treat with only (3.6)2\eqref{average}_{2} in this proof.

w(Ejn+1(u))=\displaystyle w(E^{n+1}_{j}(u))= 12Δxxj1xj+1mΔ(x,tn+1)𝑑x+(12Δxxj1xj+1ρΔ(x,tn+1)𝑑x)θ/θ12Δxxj1xj+1ρΔ(x,tn+1)𝑑x\displaystyle\frac{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}m^{\varDelta}(x,t_{n+1-})dx+\left(\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx\right)^{\theta}/\theta}{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx}
=\displaystyle= 12Δxxj1xj+1mΔ(x,tn+1)𝑑x+(12Δxxj1xj+1ρΔ(x,tn+1)𝑑x)θ/θ12Δxxj1xj+1ρΔ(x,tn+1)𝑑x\displaystyle\frac{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{m}^{\varDelta}_{\dagger}(x,t_{n+1-})dx+\left(\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}_{\dagger}(x,t_{n+1-})dx\right)^{\theta}/\theta}{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}_{\dagger}(x,t_{n+1-})dx}
+12Δxxj1xj+1ρΔ(x,tn+1){x0xj1η(uΔ(y,tn+1))𝑑y}𝑑x12Δxxj1xj+1ρΔ(x,tn+1)𝑑x\displaystyle+\frac{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})\left\{\int^{x_{j-1}}_{x_{0}}\eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-})\right)dy\right\}dx}{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx}
12Δxxj1xj+1ρΔ(x,tn+1){(αajn+1)x0xρΔ(y,tn+1)𝑑y}𝑑x12Δxxj1xj+1ρΔ(x,tn+1)𝑑x\displaystyle-\frac{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})\left\{\left(\alpha-a^{n+1}_{j}\right)\int^{x}_{x_{0}}{\rho}^{\varDelta}(y,t_{n+1-})dy\right\}dx}{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx}
+12Δxxj1xj+1ρΔ(x,tn+1){x0xj1K𝑑y}𝑑x12Δxxj1xj+1ρΔ(x,tn+1)𝑑x\displaystyle+\frac{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})\left\{\int^{x_{j-1}}_{x_{0}}Kdy\right\}dx}{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx}
=\displaystyle= A1+A2+A3+A4.\displaystyle A_{1}+A_{2}+A_{3}+A_{4}.

Considering A3A_{3}, we have

12Δxxj1xj+1ρΔ(x,tn+1){(αajn+1)x0xρΔ(y,tn+1)𝑑y}𝑑x\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})\left\{\left(\alpha-a^{n+1}_{j}\right)\int^{x}_{x_{0}}{\rho}^{\varDelta}(y,t_{n+1-})dy\right\}dx
=12Δxxj1xj+1ρΔ(x,tn+1)𝑑x×(αajn+1)x0xj1ρΔ(y,tn+1)𝑑x\displaystyle=\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx\times\left(\alpha-a^{n+1}_{j}\right)\int^{x_{j-1}}_{x_{0}}{\rho}^{\varDelta}(y,t_{n+1-})dx
+12Δxxj1xj+1ρΔ(x,tn+1){(αajn+1)xj1xρΔ(y,tn+1)𝑑y}𝑑x\displaystyle\quad+\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})\left\{\left(\alpha-a^{n+1}_{j}\right)\int^{x}_{x_{j-1}}{\rho}^{\varDelta}(y,t_{n+1-})dy\right\}dx
=A31+A32.\displaystyle=A_{31}+A_{32}.

From the integration by parts, we have

A32=\displaystyle A_{32}= 12Δxxj1xj+1ρΔ(x,tn+1)𝑑x×(αajn+1)xj1xj+1ρΔ(y,tn+1)𝑑x\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx\times\left(\alpha-a^{n+1}_{j}\right)\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(y,t_{n+1-})dx
12Δxxj1xj+1{xj1xρΔ(y,tn+1)𝑑y}(αajn+1)ρΔ(x,tn+1)𝑑x\displaystyle-\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}\left\{\int^{x}_{x_{j-1}}{\rho}^{\varDelta}(y,t_{n+1-})dy\right\}\left(\alpha-a^{n+1}_{j}\right){\rho}^{\varDelta}(x,t_{n+1-})dx
=\displaystyle= 12Δxxj1xj+1ρΔ(x,tn+1)𝑑x×(αajn+1)xj1xj+1ρΔ(x,tn+1)𝑑xA32.\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx\times\left(\alpha-a^{n+1}_{j}\right)\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx-A_{32}.

We thus obtain

A32=\displaystyle A_{32}= 12×12Δxxj1xj+1ρΔ(x,tn+1)𝑑x×(αajn+1)xj1xj+1ρΔ(y,tn+1)𝑑x.\displaystyle\frac{1}{2}\times\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx\times\left(\alpha-a^{n+1}_{j}\right)\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(y,t_{n+1-})dx.

Therefore, we obtain

w(Ejn+1(u))=12Δxxj1xj+1mΔ(x,tn+1)+(12Δxxj1xj+1ρΔ(x,tn+1)𝑑x)θ/θ12Δxxj1xj+1ρΔ(x,tn+1)𝑑x+x0xj1η(un+1,0Δ(x))𝑑xαx0xj1ρΔ(x,tn+1)𝑑xαajn+12xj1xj+1ρΔ(x,tn+1)𝑑x+Kxj1+x0xj1{η(uΔ(x,tn+1))η(un+1,0Δ(x))}𝑑x.\displaystyle\begin{aligned} w(E^{n+1}_{j}(u))=&\frac{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{m}^{\varDelta}_{\dagger}(x,t_{n+1-})+\left(\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}_{\dagger}(x,t_{n+1-})dx\right)^{\theta}/\theta}{\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}_{\dagger}(x,t_{n+1-})dx}\\ &+\int^{x_{j-1}}_{x_{0}}\eta_{\ast}\left({u}^{\varDelta}_{n+1,0}(x)\right)dx\\ &-\alpha\int^{x_{j-1}}_{x_{0}}{\rho}^{\varDelta}(x,t_{n+1-})dx-\frac{\alpha-a^{n+1}_{j}}{2}\int^{x_{j+1}}_{x_{j-1}}{\rho}^{\varDelta}(x,t_{n+1-})dx\\ &+Kx_{j-1}+\int^{x_{j-1}}_{x_{0}}\left\{\eta_{\ast}\left({u}^{\varDelta}(x,t_{n+1-})\right)-\eta_{\ast}\left({u}^{\varDelta}_{n+1,0}(x)\right)\right\}dx.\end{aligned} (3.7)

Here we introduce the following lemma. The proof is postponed to Appendix A.

Lemma 3.3.

If

12Δxxj1xj+1ρΔ(x,tn+10)𝑑x(Δx)δ\displaystyle\begin{aligned} \frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}{\rho}^{\varDelta}_{\dagger}(x,t_{n+1-0})dx\geq({\varDelta}x)^{\delta}\end{aligned} (3.8)

and

wΔ(x,tn+10)\displaystyle{w}^{\varDelta}_{\dagger}(x,t_{n+1-0})\leq Mn+1+Ljn+xj1xη(uΔ(y,tn+10))𝑑yxj1xajn+1ρΔ(y,tn+10)𝑑y\displaystyle M_{n+1}+L^{n}_{j}+\int^{x}_{x_{j-1}}\eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-0})\right)dy-\int^{x}_{x_{j-1}}a^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-0})dy
+xj1xK𝑑y+tntn+1y<xj1(σ[η][q])dt+o(Δx)\displaystyle+\int^{x}_{x_{j-1}}Kdy+\int^{t_{n+1}}_{t_{n}}\sum_{y<x_{j-1}}(\sigma[\eta_{\ast}]-[q_{\ast}])dt+o({\varDelta}x)
=\displaystyle= :A(x,tn+10)+o(Δx)(x[xj1,xj+1]),\displaystyle:A(x,t_{n+1-0})+o({\varDelta}x)\hskip 8.61108pt(x\in[x_{j-1},x_{j+1}]), (3.9)

the following holds

w(Ejn+1(uΔ))A¯j(tn+10)+o(Δx),\displaystyle w(E_{j}^{n+1}({u}^{\varDelta}_{\dagger}))\leq\bar{A}_{j}(t_{n+1-0})+o({\varDelta}x),

where Ejn+1(uΔ)=12Δxxj1xj+1uΔ(x,tn+10)𝑑x,A¯j(tn+10)=12Δxxj1xj+1A(x,tn+10)𝑑x\displaystyle E_{j}^{n+1}({u}^{\varDelta}_{\dagger})=\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}u^{\varDelta}_{\dagger}(x,t_{n+1-0})dx,\;\bar{A}_{j}(t_{n+1-0})=\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}A(x,t_{n+1-0})dx.

It follows from Theorem 3.1 and this lemma that

w(Ejn+1(u))Mn+1+Ljn+Ijn+1+tntn+1y<xj1(σ[η][q])dt+x0xj1{η(uΔ(x,tn+1))η(un+1,0Δ(x))}𝑑x+12Δxxj1xj+1xj1x{η(uΔ(y,tn+1))η(ujn+1)}𝑑y𝑑x12Δxxj1xj+1xj1xajn+1(ρΔ(y,tn+1)ρjn+1)𝑑y𝑑x+o(Δx).\displaystyle\begin{aligned} w(E^{n+1}_{j}(u))\leq&M_{n+1}+L^{n}_{j}+I^{n+1}_{j}+\int^{t_{n+1}}_{t_{n}}\sum_{y<x_{j-1}}(\sigma[\eta_{\ast}]-[q_{\ast}])dt\\ &+\int^{x_{j-1}}_{x_{0}}\left\{\eta_{\ast}\left({u}^{\varDelta}(x,t_{n+1-})\right)-\eta_{\ast}\left({u}^{\varDelta}_{n+1,0}(x)\right)\right\}dx\\ &+\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}\int^{x}_{x_{j-1}}\left\{\eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-})\right)-\eta_{\ast}\left({u}^{n+1}_{j}\right)\right\}dydx\\ &-\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}\int^{x}_{x_{j-1}}a^{n+1}_{j}\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)dydx+o({\varDelta}x).\end{aligned} (3.10)

To complete the proof of Theorem 3.2, we must investigate

Γjn+1(y)=\displaystyle\Gamma^{n+1}_{j}(y)= η(uΔ(y,tn+1))η(ujn+1)ajn+1(ρΔ(y,tn+1)ρjn+1)\displaystyle\eta_{\ast}({u}^{\varDelta}(y,t_{n+1-}))-\eta_{\ast}(u^{n+1}_{j})-a^{n+1}_{j}\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)

in (3.10), where

ajn+1=\displaystyle a^{n+1}_{j}= ηρ(ujn+1)+ηm(ujn+1){vjn+1(ρjn+1)θ}.\displaystyle\dfrac{\partial\eta_{\ast}}{\partial\rho}(u^{n+1}_{j})+\dfrac{\partial\eta_{\ast}}{\partial m}(u^{n+1}_{j})\left\{v^{n+1}_{j}-\left(\rho^{n+1}_{j}\right)^{\theta}\right\}.

From the Taylor expansion, we have

η(uΔ(y,tn+1))η(ujn+1)=η(ujn+1)(uΔ(y,tn+1)ujn+1)+01(1τ)(uΔ(y,tn+1)ujn+1)t×2η(ujn+1+τ{uΔ(y,tn+1)ujn+1})dτ×(uΔ(y,tn+1)ujn+1)=η(ujn+1)(uΔ(y,tn+1)ujn+1)+Rjn+1(y),\displaystyle\begin{aligned} \eta_{\ast}\left({u}^{\varDelta}(y,t_{n+1-})\right)-\eta_{\ast}\left(u^{n+1}_{j}\right)=&\nabla\eta_{\ast}(u^{n+1}_{j})\left({u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right)\\ &+\int^{1}_{0}(1-\tau)\cdot{}^{t}\left({u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right)\\ &\times\nabla^{2}\eta_{\ast}\left(u^{n+1}_{j}+\tau\left\{{u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right\}\right)d\tau\\ &\times\left({u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right)\\ =&\nabla\eta_{\ast}(u^{n+1}_{j})\left({u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right)+R^{n+1}_{j}(y),\end{aligned} (3.11)

where

Rjn+1(y)=\displaystyle R^{n+1}_{j}(y)= 01(1τ)(uΔ(y,tn+1)ujn+1)t2η(ujn+1+τ{uΔ(y,tn+1)ujn+1})\displaystyle\int^{1}_{0}(1-\tau)\cdot{}^{t}\left({u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right)\nabla^{2}\eta_{\ast}\left(u^{n+1}_{j}+\tau\left\{{u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right\}\right)
×(uΔ(y,tn+1)ujn+1)dτ.\displaystyle\times\left({u}^{\varDelta}(y,t_{n+1-})-u^{n+1}_{j}\right)d\tau.

We then deduce that

Γjn+1(y)=ηm(ujn+1)ρΔ(y,tn+1)(w(y,tn+1)wjn+1)ηm(ujn+1)01(1τ)(θ+1)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ1𝑑τ×(ρΔ(y,tn+1)ρjn+1)2+Rjn+1(y)=vjn+1ρΔ(y,tn+1)(w(y,tn+1)wjn+1)vjn+101(1τ)(θ+1)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ1𝑑τ×(ρΔ(y,tn+1)ρjn+1)2+Rjn+1(y).\displaystyle\begin{aligned} \Gamma^{n+1}_{j}(y)=&\dfrac{\partial\eta_{\ast}}{\partial m}(u^{n+1}_{j}){\rho}^{\varDelta}(y,t_{n+1-})\left(w(y,t_{n+1-})-w^{n+1}_{j}\right)\\ &-\dfrac{\partial\eta_{\ast}}{\partial m}(u^{n+1}_{j})\int^{1}_{0}(1-\tau)(\theta+1)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta-1}d\tau\\ &\times\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}+R^{n+1}_{j}(y)\\ =&v^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-})\left(w(y,t_{n+1-})-w^{n+1}_{j}\right)\\ &-v^{n+1}_{j}\int^{1}_{0}(1-\tau)(\theta+1)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta-1}d\tau\\ &\times\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}+R^{n+1}_{j}(y).\end{aligned}

We thus obtain

12Δxxj1xj+1xj1xΓjn+1(y,ujn+1)𝑑y𝑑x=12Δxxj1xj+1(xj+1x)Γjn+1(x,ujn+1)𝑑x=12Δxxj1xj+1(xj+1x)vjn+1ρΔ(y,tn+1)(w(y,tn+1)wjn+1)𝑑x12Δxxj1xj+1(xj+1x)vjn+101(1τ)(θ+1)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ1𝑑τ×(ρΔ(y,tn+1)ρjn+1)2dx+12Δxxj1xj+1(xj+1x)Rjn+1(x,ujn+1)𝑑x=:B1+B2+B3.\displaystyle\begin{aligned} \frac{1}{2{\varDelta}x}&\int^{x_{j+1}}_{x_{j-1}}\int^{x}_{x_{j-1}}\Gamma^{n+1}_{j}(y,u^{n+1}_{j})dydx=\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)\Gamma^{n+1}_{j}(x,u^{n+1}_{j})dx\\ =&\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)v^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-})\left(w(y,t_{n+1-})-w^{n+1}_{j}\right)dx\\ &-\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)v^{n+1}_{j}\int^{1}_{0}(1-\tau)(\theta+1)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta-1}d\tau\\ &\times\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}dx+\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)R^{n+1}_{j}(x,u^{n+1}_{j})dx\\ =&:B_{1}+B_{2}+B_{3}.\end{aligned} (3.12)

If Ejn+1(ρ)<(Δx)δE^{n+1}_{j}(\rho)<({\varDelta}x)^{\delta}, we find B1=o(Δx)B_{1}=o({\varDelta}x) and B2=o(Δx)B_{2}=o({\varDelta}x). Therefore, we devote to investigating the case where Ejn+1(ρ)(Δx)δE^{n+1}_{j}(\rho)\geq({\varDelta}x)^{\delta}. From (2.5), we recall that Ejn+1(z)=zjn+1,Ejn+1(w)=wjn+1E^{n+1}_{j}(z)=z^{n+1}_{j},\;E^{n+1}_{j}(w)=w^{n+1}_{j}.

We set

S={x[xj1,xj+1];wΔ(x,tn0)Mn+1+Ljn+1+Ijn+1(Δx)1/4}.\displaystyle S=\left\{x\in[x_{j-1},x_{j+1}];w^{\varDelta}(x,t_{n-0})\leq M_{n+1}+L^{n+1}_{j}+I^{n+1}_{j}-\left({\varDelta}x\right)^{1/4}\right\}.

If μ(S)/(2Δx)(Δx)1/4\mu(S)/(2{\varDelta}x)\geq\left({\varDelta}x\right)^{1/4}, from the Jensen inequality, we find that wjn+1Mn+1+Ljn+1+Ijn+1(Δx)1/2/2w^{n+1}_{j}\leq M_{n+1}+L^{n+1}_{j}+I^{n+1}_{j}-\left({\varDelta}x\right)^{1/2}/2, where μ\mu is the Lebesgue measure. In this case, since B1=O(Δx),B2=O(Δx),B3=O(Δx)B_{1}=O({\varDelta}x),\;B_{2}=O({\varDelta}x),\;B_{3}=O({\varDelta}x), we can obtain (3.6)2\eqref{average}_{2}.

Otherwise, we consider the following lemma.

Lemma 3.4.

If μ(S)/(2Δx)<(Δx)1/4\mu(S)/(2{\varDelta}x)<\left({\varDelta}x\right)^{1/4},

12Δxxj1xj+1xj1xΓjn+1(y)𝑑y𝑑x\displaystyle\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}\int^{x}_{x_{j-1}}\Gamma^{n+1}_{j}(y)dydx\leq (1+Cγα01ρ0(x)𝑑x)12Δxxj1xj+1(xj+1x)Rjn+1(x)𝑑x\displaystyle\left(1+C_{\gamma}\alpha\int^{1}_{0}\rho_{0}(x)dx\right)\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)R^{n+1}_{j}(x)dx
+o(Δx).\displaystyle+o({\varDelta}x).
Proof.

We first treat with B1B_{1} in (3.12). If μ(S)/(2Δx)<(Δx)1/4\mu(S)/(2{\varDelta}x)<\left({\varDelta}x\right)^{1/4}, there exists a positive constant CC independent of Δx{\varDelta}x such that wjn+1Mn+1+Ljn+1+Ijn+1C(Δx)1/4w^{n+1}_{j}\geq M_{n+1}+L^{n+1}_{j}+I^{n+1}_{j}-C\left({\varDelta}x\right)^{1/4}. We thus have

|B1|12Δxxj1xj+1|(xj+1x)vjn+1ρΔ(y,tn+1)(w(y,tn+1)wjn+1)|𝑑xO(1){12ΔxS|w(y,tn+1)wjn+1|dx+12Δx[xj1,xj+1]S|w(y,tn+1)wjn+1|dx}=o(Δx).\displaystyle\begin{aligned} |B_{1}|\leq&\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}\left|(x_{j+1}-x)v^{n+1}_{j}{\rho}^{\varDelta}(y,t_{n+1-})\left(w(y,t_{n+1-})-w^{n+1}_{j}\right)\right|dx\\ \leq&O(1)\left\{\frac{1}{2{\varDelta}x}\int_{S}\left|w(y,t_{n+1-})-w^{n+1}_{j}\right|dx+\frac{1}{2{\varDelta}x}\int_{[x_{j-1},x_{j+1}]\setminus S}\left|w(y,t_{n+1-})-w^{n+1}_{j}\right|dx\right\}\\ =&o({\varDelta}x).\end{aligned}

We next consider B2B_{2}. Since zjn+1Mn+1Ljn+1+Ijn+1+O(Δx)z^{n+1}_{j}\geq-M_{n+1}-L^{n+1}_{j}+I^{n+1}_{j}+O({\varDelta}x), we find vjn+1Ijn+1v^{n+1}_{j}\geq I^{n+1}_{j}. If vjn+10v^{n+1}_{j}\geq 0, we have B20B_{2}\leq 0. Therefore, we devotes to considering the case vjn+1<0v^{n+1}_{j}<0. Since Ijn+1vjn+10I^{n+1}_{j}\leq v^{n+1}_{j}\leq 0, from the conservation of mass, we have

vjn+1Ijn+1α01ρ0(x)𝑑x+o(Δx).\displaystyle-v^{n+1}_{j}\leq-I^{n+1}_{j}\leq\alpha\int^{1}_{0}\rho_{0}(x)dx+o({\varDelta}x).

On the other hand, we find that (ρjn+1)θ/θMn+1+Ljn+1+Ijn+1C(Δx)1/41/θ(\rho^{n+1}_{j})^{\theta}/\theta\geq M_{n+1}+L^{n+1}_{j}+I^{n+1}_{j}-C\left({\varDelta}x\right)^{1/4}\geq 1/\theta, choosing MM large enough.

If ρΔ(y,tn+1)ρjn+1/2{\rho}^{\varDelta}(y,t_{n+1-})\geq\rho^{n+1}_{j}/2, we have

(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ1=(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})γ2(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ\displaystyle\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta-1}=\dfrac{\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\gamma-2}}{\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta}}
(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})γ2(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})γ2(1/2)θ.\displaystyle\qquad\leq\dfrac{\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\gamma-2}}{\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta}}\leq\dfrac{\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\gamma-2}}{\left(1/2\right)^{\theta}}.

If ρΔ(y,tn+1)<ρjn+1/2{\rho}^{\varDelta}(y,t_{n+1-})<\rho^{n+1}_{j}/2, since

01(1τ)(θ+1)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ1𝑑τ(ρΔ(y,tn+1)ρjn+1)2=(ρΔ(y,tn+1))θ+1θ(ρjn+1)θ+1θ(θ+1)(ρjn+1)θθ(ρΔ(y,tn+1)ρjn+1)(ρjn+1)θ+1\displaystyle\begin{aligned} &\int^{1}_{0}(1-\tau)(\theta+1)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta-1}d\tau\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}\\ &\quad=\dfrac{({\rho}^{\varDelta}(y,t_{n+1-}))^{\theta+1}}{\theta}-\dfrac{(\rho^{n+1}_{j})^{\theta+1}}{\theta}-\dfrac{(\theta+1)(\rho^{n+1}_{j})^{\theta}}{\theta}\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)\leq(\rho^{n+1}_{j})^{\theta+1}\end{aligned}

and

01(1τ)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})γ2𝑑τ(ρΔ(y,tn+1)ρjn+1)2=(ρΔ(y,tn+1))γγ(γ1)(ρjn+1)γγ(γ1)(ρjn+1)γ1γ1(ρΔ(y,tn+1)ρjn+1)γ2+(12)γ12γ(γ1)(ρjn+1)γγ2+(12)γ12γ(γ1)(ρjn+1)θ+1.\displaystyle\begin{aligned} &\int^{1}_{0}(1-\tau)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\gamma-2}d\tau\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}\\ &\quad=\dfrac{({\rho}^{\varDelta}(y,t_{n+1-}))^{\gamma}}{\gamma(\gamma-1)}-\dfrac{(\rho^{n+1}_{j})^{\gamma}}{\gamma(\gamma-1)}-\dfrac{(\rho^{n+1}_{j})^{\gamma-1}}{\gamma-1}\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)\\ &\quad\geq\dfrac{\gamma-2+\left(\frac{1}{2}\right)^{\gamma-1}}{2\gamma(\gamma-1)}(\rho^{n+1}_{j})^{\gamma}\geq\dfrac{\gamma-2+\left(\frac{1}{2}\right)^{\gamma-1}}{2\gamma(\gamma-1)}(\rho^{n+1}_{j})^{\theta+1}.\end{aligned}

For CγC_{\gamma} in (2.4), we have

01(1τ)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})θ+1𝑑τ(ρΔ(y,tn+1)ρjn+1)2Cγ01(1τ)(ρjn+1+τ{ρΔ(y,tn+1)ρjn+1})γ2𝑑τ(ρΔ(y,tn+1)ρjn+1)2CγRjn+1(y).\displaystyle\begin{aligned} &\int^{1}_{0}(1-\tau)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\theta+1}d\tau\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}\\ &\quad\leq C_{\gamma}\int^{1}_{0}(1-\tau)\left(\rho^{n+1}_{j}+\tau\left\{{\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right\}\right)^{\gamma-2}d\tau\left({\rho}^{\varDelta}(y,t_{n+1-})-\rho^{n+1}_{j}\right)^{2}\\ &\quad\leq C_{\gamma}R^{n+1}_{j}(y).\end{aligned}

From Lemma 3.4, we can complete the proof of Theorem 3.2.

4. Proof of Theorem 1.2

To deduce that the sum of JjnJ^{n}_{j} is bounded, we prove the following lemma.

Lemma 4.1.
0\displaystyle 0\leq n𝐍t01{η(uΔ(x,tn))η(un,0Δ(x))}𝑑x\displaystyle\sum_{n\in{\bf N}_{t}}\int^{1}_{0}\left\{\eta_{\ast}\left({u}^{\varDelta}(x,t_{n-})\right)-\eta_{\ast}\left({u}^{\varDelta}_{n,0}(x)\right)\right\}dx (4.1)
=\displaystyle= jJnn𝐍txj1xj+1Rjn(x)𝑑x+o(Δx)\displaystyle\sum_{\begin{subarray}{c}j\in J_{n}\\ n\in{\bf N}_{t}\end{subarray}}\int^{x_{j+1}}_{x_{j-1}}R^{n}_{j}(x)dx+o({\varDelta}x) (4.2)
=\displaystyle= 01{η(uΔ(x,t0))η(u2Nx,0Δ(x))}𝑑x010x1(σ[η][q])dt+o(Δx)\displaystyle\int^{1}_{0}\left\{\eta_{\ast}\left({u}^{\varDelta}(x,t_{0-})\right)-\eta_{\ast}\left({u}^{\varDelta}_{2N_{x},0}(x)\right)\right\}dx-\int^{1}_{0}\sum_{0\leq x\leq 1}(\sigma[\eta_{\ast}]-[q_{\ast}])dt+o({\varDelta}x)
\displaystyle\leq 01η(u0(x))𝑑x+o(Δx),\displaystyle\int^{1}_{0}\eta_{\ast}(u_{0}(x))dx+o({\varDelta}x), (4.3)
(1+Cγα01ρ0(x)𝑑x)jJnn𝐍t12Δxxj1xj+1(xj+1x)Rjn(x)𝑑xKγ01η(u0(x))𝑑x.\displaystyle\left(1+C_{\gamma}\alpha\int^{1}_{0}\rho_{0}(x)dx\right)\sum_{\begin{subarray}{c}j\in J_{n}\\ n\in{\bf N}_{t}\end{subarray}}\frac{1}{2{\varDelta}x}\int^{x_{j+1}}_{x_{j-1}}(x_{j+1}-x)R^{n}_{j}(x)dx\leq K_{\gamma}\int^{1}_{0}\eta_{\ast}(u_{0}(x))dx. (4.4)
Proof.

Recalling (2.13), we deduce from the Jensen inequality (4.1); from (3.11), we obtain (4.2); we can find a similar argument to (4.3) in [5, (6.12)]; it follows from the second inequality that (4.4). ∎

Our approximate solutions satisfy the following propositions holds (these proofs are similar to [5][7].).

Proposition 4.2.

The measure sequence

η(uΔ)t+q(uΔ)x\displaystyle\eta_{\ast}(u^{\varDelta})_{t}+q(u^{\varDelta})_{x}

lies in a compact subset of Hloc1(Ω)H_{\rm loc}^{-1}(\Omega) for all weak entropy pair (η,q)(\eta_{\ast},q), where Ω[0,1]×[0,1]\Omega\subset[0,1]\times[0,1] is any bounded and open set.

Proposition 4.3.

Assume that the approximate solutions uΔu^{\varDelta} are bounded and satisfy Proposition 4.2. Then there is a convergent subsequence uΔn(x,t)u^{\varDelta_{n}}(x,t) in the approximate solutions uΔ(x,t)u^{\varDelta}(x,t) such that

uΔn(x,t)u(x,t)a.e., as n.u^{\varDelta_{n}}(x,t)\rightarrow u(x,t)\hskip 8.61108pt\text{\rm a.e.,\quad as\;\;}n\rightarrow\infty.

The function u(x,t)u(x,t) is a global entropy solution of the Cauchy problem (1.6).

4.1. Existence of a time periodic solution

From Remark 2.4, uΔu^{\varDelta} satisfy

(uΔ)t+f(uΔ)xg(x,t,uΔ)=O(Δx)\displaystyle(u^{\varDelta})_{t}+f(u^{\varDelta})_{x}-g(x,t,u^{\varDelta})=O(\varDelta x)

on the divided part in the cell where uΔu^{\varDelta} are smooth. Moreover, uΔu^{\varDelta} satisfy an entropy condition (see [5, Lemma 5.1–Lemma 5.4]) along discontinuous lines approximately. Then, applying the Green formula to (uΔ)t+f(uΔ)xg(x,t,uΔ)(u^{\varDelta})_{t}+f(u^{\varDelta})_{x}-g(x,t,u^{\varDelta}) in the cell xj1x<xj+1,tnt<tn+1(jJn+1,n𝐍t)x_{j-1}\leqq{x}<x_{j+1},\;{t}_{n}\leqq{t}<{t}_{n+1}\quad(j\in J_{n+1},\;n\in{\bf N}_{t}), we have

ρjn+1=ρj+1n+ρj1n2Δt2Δx{mj+1nmj1n}Rj+1n+Rj1n+o(Δx),mjn+1=mj+1n+mj1n2Δt2Δx{(mj+1n)2ρj+1n+p(ρj+1n)(mj1n)2ρj1np(ρj1n)}Sj+1n+Sj1nΔtρj+1n+ρj1n2F(xj,tn)+o(Δx),\displaystyle\begin{split}\rho^{n+1}_{j}=&\frac{\rho^{n}_{j+1}+\rho^{n}_{j-1}}{2}-\frac{\varDelta t}{2\varDelta x}\left\{m^{n}_{j+1}-m^{n}_{j-1}\right\}-R^{n}_{j+1}+R^{n}_{j-1}+o(\varDelta x),\\ m^{n+1}_{j}=&\frac{m^{n}_{j+1}+m^{n}_{j-1}}{2}-\frac{\varDelta t}{2\varDelta x}\left\{\frac{(m^{n}_{j+1})^{2}}{\rho^{n}_{j+1}}+p(\rho^{n}_{j+1})-\frac{(m^{n}_{j-1})^{2}}{\rho^{n}_{j-1}}-p(\rho^{n}_{j-1})\right\}\\ &-S^{n}_{j+1}+S^{n}_{j-1}-{\varDelta t}\dfrac{\rho^{n}_{j+1}+\rho^{n}_{j-1}}{2}F(x_{j},t_{n})+o(\varDelta x),\end{split} (4.5)

where

Rjn=(Δt)28Δx{ρjn(Hjn+Gjn)+mjn(ρjn)θ(HjnGjn)},Sjn=Δx4(ρjn)ζ(ujn)+(Δt)28Δx[2ρjn{Hjn+Gjn+2V(ujn)}+ρjn(vjn)2+(ρjn)γ(ρjn)θ(HjnGjn)2mjn],(recall (1.12) and (2.12))\displaystyle\begin{aligned} R^{n}_{j}=&\frac{(\varDelta t)^{2}}{8\varDelta x}\left\{\rho^{n}_{j}\left(H^{n}_{j}+G^{n}_{j}\right)+\dfrac{m^{n}_{j}}{(\rho^{n}_{j})^{\theta}}\left(H^{n}_{j}-G^{n}_{j}\right)\right\},\\ S^{n}_{j}=&\frac{\varDelta x}{4}(\rho^{n}_{j})\zeta(u^{n}_{j})+\frac{(\varDelta t)^{2}}{8\varDelta x}\biggl{[}2\rho^{n}_{j}\left\{H^{n}_{j}+G^{n}_{j}+2V(u^{n}_{j})\right\}\\ &\left.+\dfrac{\rho^{n}_{j}(v^{n}_{j})^{2}+(\rho^{n}_{j})^{\gamma}}{(\rho^{n}_{j})^{\theta}}\left(H^{n}_{j}-G^{n}_{j}\right)-2m^{n}_{j}\right],\quad(\text{recall \eqref{zeta} and \eqref{V}})\end{aligned} (4.6)
Gjn=Kλ1(ujn)+1γ(γ1)(ρjn)γ+θ+1γ(ρjn)γvjn+12(ρjn)θ+1(vjn)2α(ρjn)θ+1+F(xj,tn)kJnk+2jF(xk+1,tn)ξkn,Hjn=Kλ2(ujn)1γ(γ1)(ρjn)γ+θ1γ(ρjn)γvjn12(ρjn)θ+1(vjn)2+α(ρjn)θ+1+F(xj,tn)kJnk+2jF(xk+1,tn)ξkn,\displaystyle\begin{aligned} G^{n}_{j}=&-K\lambda_{1}(u^{n}_{j})+\dfrac{1}{\gamma(\gamma-1)}(\rho^{n}_{j})^{\gamma+\theta}+\dfrac{1}{\gamma}(\rho^{n}_{j})^{\gamma}v^{n}_{j}+\dfrac{1}{2}(\rho^{n}_{j})^{\theta+1}(v^{n}_{j})^{2}\\ &-\alpha(\rho^{n}_{j})^{\theta+1}+F(x_{j},t_{n})-\sum_{\begin{subarray}{c}k\in J_{n}\\ k+2\leq j\end{subarray}}F(x_{k+1},t_{n})\xi^{n}_{k},\\ H^{n}_{j}=&-K\lambda_{2}(u^{n}_{j})-\dfrac{1}{\gamma(\gamma-1)}(\rho^{n}_{j})^{\gamma+\theta}-\dfrac{1}{\gamma}(\rho^{n}_{j})^{\gamma}v^{n}_{j}-\dfrac{1}{2}(\rho^{n}_{j})^{\theta+1}(v^{n}_{j})^{2}\\ &+\alpha(\rho^{n}_{j})^{\theta+1}+F(x_{j},t_{n})-\sum_{\begin{subarray}{c}k\in J_{n}\\ k+2\leq j\end{subarray}}F(x_{k+1},t_{n})\xi^{n}_{k},\end{aligned}

where

ξkn=(mk+2n+mkn)Δx2Δt3{(mk+2n)2ρk+2n+p(ρk+2n)(mkn)2ρknp(ρkn)}.\displaystyle\xi^{n}_{k}=({m^{n}_{k+2}+m^{n}_{k}}){\varDelta x}-\frac{2\varDelta t}{3}\left\{\frac{(m^{n}_{k+2})^{2}}{\rho^{n}_{k+2}}+p(\rho^{n}_{k+2})-\frac{(m^{n}_{k})^{2}}{\rho^{n}_{k}}-p(\rho^{n}_{k})\right\}.

Moreover, from (3.1) and Theorem 3.2, we have

MjnLjn+Ijno(Δx)z(ujn),w(ujn)Mjn+Ljn+Ijn+o(Δx),ρjn0.\displaystyle-M^{n}_{j}-L^{n}_{j}+I^{n}_{j}-{\it o}({\varDelta}x)\leqq{z}(u^{n}_{j}),\quad{w}(u^{n}_{j})\leqq M^{n}_{j}+L^{n}_{j}+I^{n}_{j}+{\it o}({\varDelta}x),\quad\rho^{n}_{j}\geqq 0. (4.7)

Then, we define a sequence u˘jn=(ρ˘jn,m˘jn)\breve{u}^{n}_{j}=(\breve{\rho}^{n}_{j},\breve{m}^{n}_{j}) as follows.

ρ˘jn+1=ρ˘j+1n+ρ˘j1n2Δt2Δx{m˘j+1nm˘j1n}R˘j+1n+R˘j1n,m˘jn+1=m˘j+1n+m˘j1n2Δt2Δx{(m˘j+1n)2ρ˘j+1n+p(ρ˘j+1n)(m˘j1n)2ρ˘j1np(ρ˘j1n)}S˘j+1n+S˘j1nΔtρ˘j+1n+ρ˘j1n2F(xj,tn),(jJn+1,n𝐍t)\displaystyle\begin{aligned} \breve{\rho}^{n+1}_{j}=&\frac{\breve{\rho}^{n}_{j+1}+\breve{\rho}^{n}_{j-1}}{2}-\frac{\varDelta t}{2\varDelta x}\left\{\breve{m}^{n}_{j+1}-\breve{m}^{n}_{j-1}\right\}-\breve{R}^{n}_{j+1}+\breve{R}^{n}_{j-1},\\ \breve{m}^{n+1}_{j}=&\frac{\breve{m}^{n}_{j+1}+\breve{m}^{n}_{j-1}}{2}-\frac{\varDelta t}{2\varDelta x}\left\{\frac{(\breve{m}^{n}_{j+1})^{2}}{\breve{\rho}^{n}_{j+1}}+p(\breve{\rho}^{n}_{j+1})-\frac{(\breve{m}^{n}_{j-1})^{2}}{\breve{\rho}^{n}_{j-1}}-p(\breve{\rho}^{n}_{j-1})\right\}\\ &-\breve{S}^{n}_{j+1}+\breve{S}^{n}_{j-1}-{\varDelta t}\dfrac{\breve{\rho}^{n}_{j+1}+\breve{\rho}^{n}_{j-1}}{2}F(x_{j},t_{n}),\quad(j\in J_{n+1},\;n\in{\bf N}_{t})\end{aligned} (4.8)
u˘j0=uj0(jJ0),\displaystyle\breve{u}^{0}_{j}={u}^{0}_{j}\quad(j\in J_{0}),

where R˘jn,S˘jn\breve{R}^{n}_{j},\;\breve{S}^{n}_{j} are defined by replacing ujn{u}^{n}_{j} with u˘jn\breve{u}^{n}_{j} in (4.5) respectively.

We notice that (4.8) is the recurrence relation obtained by removing o(Δx)o(\varDelta x) from (4.5).

Therefore, from (4.5)–(4.8), there exists δ(Δx)>0\delta({\varDelta}x)>0 satisfying δ(Δx)0\delta({\varDelta}x)\rightarrow 0 as Δx0{\varDelta}x\rightarrow 0, such that

MjnLjn+Ijnδ(Δx)z(u˘jn),w(u˘jn)Mjn+Ljn+Ijn+δ(Δx),ρ˘jn0.\displaystyle\begin{split}&-M^{n}_{j}-L^{n}_{j}+I^{n}_{j}-\delta({\varDelta}x)\leqq{z}(\breve{u}^{n}_{j}),\quad{w}(\breve{u}^{n}_{j})\leqq M^{n}_{j}+L^{n}_{j}+I^{n}_{j}+\delta({\varDelta}x),\quad\breve{\rho}^{n}_{j}\geqq 0.\end{split} (4.9)

Then, we define a map F:𝐑4Nx+2𝐑4Nx+2F:{\bf R}^{4N_{x}+2}\rightarrow{\bf R}^{4N_{x}+2} as follows.

({z(u˘j0)Ij0}j=02Nx,{w(u˘j0)Ij0}j=02Nx)({z(u˘j2Nt)Ij2Nt}j=02Nx,{w(u˘j2Nt)Ij2Nt}j=02Nx).\displaystyle\begin{aligned} &\left(\left\{{z}(\breve{u}^{0}_{j})-I^{0}_{j}\right\}^{2N_{x}}_{j=0},\left\{{w}(\breve{u}^{0}_{j})-I^{0}_{j}\right\}^{2N_{x}}_{j=0}\right)\\ &\mapsto\left(\left\{{z}(\breve{u}^{2N_{t}}_{j})-I^{2N_{t}}_{j}\right\}^{2N_{x}}_{j=0},\left\{{w}(\breve{u}^{2N_{t}}_{j})-I^{2N_{t}}_{j}\right\}^{2N_{x}}_{j=0}\right).\end{aligned} (4.10)

From (4.8), FF is continuous.

To ensure that uj0u^{0}_{j} and uj2𝐍tu^{2{\bf N}_{t}}_{j} are a same bounded set, we show the following.

Lemma 4.4.
MM/10+Ij2𝐍tz(Ej2𝐍t(u)),w(Ej2𝐍t(u))M+Ij2𝐍t+M/10.\displaystyle\begin{split}&-M-M/10+I^{2{\bf N}_{t}}_{j}\leq{z}(E_{j}^{2{\bf N}_{t}}(u)),\;w(E^{2{\bf N}_{t}}_{j}(u))\leq M+I^{2{\bf N}_{t}}_{j}+M/10.\end{split} (4.11)
Proof.

From Lemma 4.1, there exists a constant CC independent of MM such that jJnn𝐍tJjnC\sum_{\begin{subarray}{c}j\in J_{n}\\ n\in{\bf N}_{t}\end{subarray}}J_{j}^{n}\leq C. On the other hand, since M2𝐍tM_{2{\bf N}_{t}} in (3.6) satisfies M2𝐍tM_{2{\bf N}_{t}}=M(114Δt)2𝐍tMe14(Δt0)=M\left(1-\frac{1}{4}{\varDelta}t\right)^{2{\bf N}_{t}}\rightarrow Me^{-\frac{1}{4}}\quad({\varDelta}t\rightarrow 0), it holds that M2𝐍t<4/5MM_{2{\bf N}_{t}}<4/5M, choosing Δt{\varDelta}t small enough. Therefore, we deduce that Jj2𝐍t+M2𝐍tM+M/10J_{j}^{2{\bf N}_{t}}+M_{2{\bf N}_{t}}\leq M+M/10, choosing MM large enough. We can thus prove this lemma. ∎

From Lemma 4.4, FF is the map from a bounded set to the same bounded set, choosing Δx{\varDelta}x small enough. Therefore, applying the Brouwer fixed point theorem to FF, we have a fixed point

((z(u˘j0)Ij0),(w(u˘j0)Ij0))=((z(u˘j2Nt)Ij2Nt),(w(u˘j2Nt)Ij2Nt)).\displaystyle\left(\left({z}(\breve{u}^{0}_{j})-I^{0}_{j}\right)^{*},\left({w}(\breve{u}^{0}_{j})-I^{0}_{j}\right)^{*}\right)=\left(\left({z}(\breve{u}^{2N_{t}}_{j})-I^{2N_{t}}_{j}\right)^{*},\left({w}(\breve{u}^{2N_{t}}_{j})-I^{2N_{t}}_{j}\right)^{*}\right).

This implies that

((ρ˘j0),(v˘j0Ij0))=((ρ˘j2Nt),(v˘j2NtIj2Nt)).\displaystyle\left(\left(\breve{\rho}^{0}_{j}\right)^{*},\left(\breve{v}^{0}_{j}-I^{0}_{j}\right)^{*}\right)=\left(\left(\breve{\rho}^{2N_{t}}_{j}\right)^{*},\left(\breve{v}^{2N_{t}}_{j}-I^{2N_{t}}_{j}\right)^{*}\right).

The remainder is to show (v˘j0)=(v˘j2Nt)\left(\breve{v}^{0}_{j}\right)^{*}=\left(\breve{v}^{2N_{t}}_{j}\right)^{*} for any fixed Δx{\varDelta}x. Assuming that there exists jJ2Ntj_{*}\in J_{2N_{t}} such that (v˘j0)=(v˘j2Nt)(0j<j)\left(\breve{v}^{0}_{j}\right)^{*}=\left(\breve{v}^{2N_{t}}_{j}\right)^{*}\quad(0\leq j<j_{*}) and (v˘j0)(v˘j2Nt)\left(\breve{v}^{0}_{j_{*}}\right)^{*}\neq\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}, we deduce a contradiction.

(v˘j2Nt)(v˘j0)=\displaystyle\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}-\left(\breve{v}^{0}_{j_{*}}\right)^{*}= (v˘j2NtIj2Nt)+(Ij2Nt)(v˘j0Ij0)(Ij0)\displaystyle{\left(\breve{v}^{2N_{t}}_{j_{*}}-I^{2N_{t}}_{j_{*}}\right)^{*}}+\left(I^{2N_{t}}_{j_{*}}\right)^{*}-{\left(\breve{v}^{0}_{j_{*}}-I^{0}_{j_{*}}\right)^{*}}-\left(I^{0}_{j_{*}}\right)^{*}
=\displaystyle= (Ij2NtIj0)\displaystyle\left(I^{2N_{t}}_{j_{*}}-I^{0}_{j_{*}}\right)^{*}
=\displaystyle= xj1xj(ρ˘j0)((v˘j2Nt)+(v˘j0))((v˘j2Nt)(v˘j0))𝑑x\displaystyle\int^{x_{j_{*}}}_{x_{j_{*}-1}}\left(\breve{\rho}^{0}_{j_{*}}\right)^{*}\left(\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}+\left(\breve{v}^{0}_{j_{*}}\right)^{*}\right)\left(\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}-\left(\breve{v}^{0}_{j_{*}}\right)^{*}\right)dx
=\displaystyle= (ρ˘j0)((v˘j2Nt)+(v˘j0))xj1xj(xj1xj(Ij2NtIj0)𝑑x1)𝑑x0\displaystyle\left(\breve{\rho}^{0}_{j_{*}}\right)^{*}\left(\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}+\left(\breve{v}^{0}_{j_{*}}\right)^{*}\right)\int^{x_{j_{*}}}_{x_{j_{*}-1}}\left(\int^{x_{j_{*}}}_{x_{j_{*}-1}}\left(I^{2N_{t}}_{j_{*}}-I^{0}_{j_{*}}\right)^{*}dx_{1}\right)dx_{0}
=\displaystyle= {(ρ˘j0)((v˘j2Nt)+(v˘j0))}m\displaystyle\left\{\left(\breve{\rho}^{0}_{j_{*}}\right)^{*}\left(\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}+\left(\breve{v}^{0}_{j_{*}}\right)^{*}\right)\right\}^{m}
×xj1xj((xj1xj(Ij2NtIj0)dxm))dx0\displaystyle\times\int^{x_{j_{*}}}_{x_{j_{*}-1}}\left(\cdots\left(\int^{x_{j_{*}}}_{x_{j_{*}-1}}\left(I^{2N_{t}}_{j_{*}}-I^{0}_{j_{*}}\right)^{*}dx_{m}\right)\cdots\right)dx_{0}
=\displaystyle= {(ρ˘j0)((v˘j2Nt)+(v˘j0))Δx}m(Ij2NtIj0).\displaystyle\left\{\left(\breve{\rho}^{0}_{j_{*}}\right)^{*}\left(\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}+\left(\breve{v}^{0}_{j_{*}}\right)^{*}\right){\varDelta}x\right\}^{m}\left(I^{2N_{t}}_{j_{*}}-I^{0}_{j_{*}}\right)^{*}. (4.12)

By choosing Δx{\varDelta}x small enough, we drive {(ρ˘j0)((v˘j2Nt)+(v˘j0))Δx}<1\left\{\left(\breve{\rho}^{0}_{j}\right)^{*}\left(\left(\breve{v}^{2N_{t}}_{j_{*}}\right)^{*}+\left(\breve{v}^{0}_{j_{*}}\right)^{*}\right){\varDelta}x\right\}<1. Since mm is arbitrary, this contradicts (4.12).

Therefore, we obtain a fixed point

((ρ˘j0),(v˘j0))=((ρ˘j2Nt),(v˘j2Nt)).\displaystyle\left(\left(\breve{\rho}^{0}_{j}\right)^{*},\left(\breve{v}^{0}_{j}\right)^{*}\right)=\left(\left(\breve{\rho}^{2N_{t}}_{j}\right)^{*},\left(\breve{v}^{2N_{t}}_{j}\right)^{*}\right).

Supplying the above as initial data, we can prove Theorem 1.2.

5. Open problem

When we deduce (1.21), we use the boundary condition m|x=0=0m|_{x=0}=0. It should be noted that it is essential for our proof. Therefore, we cannot apply the present technique to the periodic boundary problem or other Dirichlet ones.

We have obtained the decay estimates (1.31) and (1.32) for large data. However, they do not still attain the convergence to an equilibrium (ρ¯,0)(\bar{\rho},0).

Appendix A Proof of Lemma 3.3

Proof.

Due to space limitations, we denote tn+10t_{n+1-0} by TT in this section.

Set

ρΔ(x,T)\displaystyle\rho^{\varDelta}_{\dagger}(x,T) :=ρ^(x,T){A(x,T)}2γ1,\displaystyle:=\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}},
mΔ(x,T)\displaystyle m^{\varDelta}_{\dagger}(x,T) :=m^(x,T){A(x,T)}γ+1γ1,\displaystyle:=\hat{m}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}},
Ejn+1(ρΔ)\displaystyle E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}) :=12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x,\displaystyle:=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx,
Ejn+1(mΔ)\displaystyle E_{j}^{n+1}(m^{\varDelta}_{\dagger}) :=12Δxxj1xj+1m^(x,T){A(x,T)}γ+1γ1𝑑x.\displaystyle:=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{m}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx.

Then, we find that

w(u^(x,T))1+o(Δx).\displaystyle{w}(\hat{u}(x,T))\leq 1+{\it o}({\varDelta}x). (A.1)

Let us prove

w(Ejn+1(ρΔ),Ejn+1(mΔ))A¯j(T)+o(Δx),\displaystyle w(E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}),E_{j}^{n+1}(m^{\varDelta}_{\dagger}))\leq\bar{A}_{j}(T)+o({\varDelta}x),

where

A¯j(T)=12Δxxj1xj+1A(x,T)𝑑x\displaystyle\bar{A}_{j}(T)=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}A(x,T)dx

and

w\displaystyle w (Ejn+1(ρΔ),Ejn+1(mΔ))\displaystyle(E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}),E_{j}^{n+1}(m^{\varDelta}_{\dagger}))
=Ejn+1(mΔ)/Ejn+1(ρΔ)+{Ejn+1(ρΔ)}θ/θ\displaystyle=E_{j}^{n+1}(m^{\varDelta}_{\dagger})/E_{j}^{n+1}(\rho^{\varDelta}_{\dagger})+\{E_{j}^{n+1}(\rho^{\varDelta}_{\dagger})\}^{\theta}/\theta
=12Δxxj1xj+1m^(x,T){A(x,T)}γ+1γ1𝑑x+(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ+1/θ12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle=\frac{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{m}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx}+{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta+1}}/{\theta}}{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx}}.

We find

Ejn+1(ρΔ)\displaystyle E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}) =12Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1{A(x,T)}1𝑑x\displaystyle=\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}\left\{A(x,T)\right\}^{-1}dx
={A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1𝑑x\displaystyle=\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx
+12Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1×({A(x,T)}1{A¯j(T)}1)𝑑x\displaystyle\quad+\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}\times\left(\left\{A(x,T)\right\}^{-1}-\left\{\bar{A}_{j}(T)\right\}^{-1}\right)dx
={A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1𝑑x\displaystyle=\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx
{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)𝑑x+o(Δx),\displaystyle\quad-\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx+o({\varDelta}x),

where r(x,T)=A(x,T)A¯j(T)\displaystyle r(x,T)=A(x,T)-\bar{A}_{j}(T). Recalling (3.9), we notice that r(x,T)=O(Δx)\displaystyle r(x,T)=O({\varDelta}x).

Substituting the above equation for (LABEL:lemma3.1-2), we obtain

w(Ejn+1(ρΔ),Ejn+1(mΔ))\displaystyle w(E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}),E_{j}^{n+1}(m^{\varDelta}_{\dagger}))
=\displaystyle= 12Δxxj1xj+1m^(x,T){A(x,T)}γ+1γ1𝑑x+(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ+1/θ{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1𝑑x\displaystyle\frac{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{m}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx}+{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta+1}}/{\theta}}{\displaystyle{\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx}}
+12Δxxj1xj+1m^(x,T){A(x,T)}γ+1γ1𝑑x+(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ+1/θ(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)2\displaystyle+\frac{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{m}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx}+{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta+1}}/{\theta}}{\displaystyle{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{2}}}
×{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)𝑑x+o(Δx).\displaystyle\times\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx+o({\varDelta}x). (A.3)

Set

μ:=2γ+11(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ\displaystyle\mu:=\frac{2}{\gamma+1}\frac{1}{\displaystyle{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta}}}
×12Δxxj1xj+1m^(x,T){A(x,T)}γ+1γ1𝑑x+(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ+1/θ12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle\times\frac{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{m}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx}+{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta+1}}/{\theta}}{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx}}. (A.4)

Then assume that the following holds.

(Ejn+1(ρΔ))θ+1\displaystyle(E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}))^{\theta+1} 12Δxxj1xj+1(ρ^(x,T))θ+1{A(x,T)}γ+1γ1𝑑x\displaystyle\leq\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}(\hat{\rho}(x,T))^{\theta+1}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx
γ+12μ{A¯j(T)}1(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ\displaystyle\quad-\frac{\gamma+1}{2}\mu\left\{\bar{A}_{j}(T)\right\}^{-1}\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta}
×(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)dx\displaystyle\quad\times\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx\right.
12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1dx12Δxxj1xj+1r(x,T)dx)\displaystyle\left.\quad-\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}r(x,T)dx\right)
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle\quad+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx. (A.5)

This estimate shall be proved in step 2–4. Then, substituting (A.5) for (A.3), we deduce from (A.1) that

w(Ejn+1(ρ¯),Ejn+1(mΔ))\displaystyle w(E_{j}^{n+1}(\bar{\rho}),E_{j}^{n+1}(m^{\varDelta}_{\dagger}))\leq 12Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1[v^(x,T)+{ρ^(x,T)}θθ]𝑑x{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}γ+1γ1𝑑x\displaystyle\frac{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}\left[\hat{v}(x,T)+\frac{\{\hat{\rho}(x,T)\}^{\theta}}{\theta}\right]dx}}{\displaystyle{\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx}}
+o(Δx)\displaystyle+o({\varDelta}x)
\displaystyle\leq A¯j(T)+o(Δx).\displaystyle\bar{A}_{j}(T)+o({\varDelta}x).

Therefore we must prove (A.5). Separating three steps, we derive this estimate.

Step 2. From (3.8), we notice that

|μ|C(Δx)θδε,\displaystyle|\mu|\leq{C}({\varDelta}x)^{-\theta\delta-\varepsilon},

where CC depends only on MM.

In this step, we consider the first equation of (A.3):

(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ+1.\displaystyle{\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta+1}}.

Since θδ<1/2\theta\delta<1/2, we first find

Ejn+1(ρΔ)=\displaystyle E_{j}^{n+1}(\rho^{\varDelta}_{\dagger})= 12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1{A(x,T)}μ𝑑x\displaystyle\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}\left\{A(x,T)\right\}^{-\mu}dx
=\displaystyle= {A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x\displaystyle\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx
μ{A¯j(T)}μ112Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1r(x,T)𝑑x\displaystyle-\mu\left\{\bar{A}_{j}(T)\right\}^{-\mu-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}r(x,T)dx
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x\displaystyle+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx
:=\displaystyle:= I0I1+I2.\displaystyle I_{0}-I_{1}+I_{2}.

We next estimate I1I_{1} as follows:

I1\displaystyle I_{1} =μ{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)𝑑x\displaystyle=\mu\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle\quad+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx.

Therefore, we have

Ejn+1(ρΔ)=12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1{A(x,T)}μ𝑑x={A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑xμ{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)𝑑x+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle\begin{split}E_{j}^{n+1}(\rho^{\varDelta}_{\dagger})=&\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}\left\{A(x,T)\right\}^{-\mu}dx\\ =&\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx\\ &-\mu\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx\\ &+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx.\end{split}

From the above, we deduce that

(Ejn+1(ρΔ))θ+1\displaystyle(E_{j}^{n+1}(\rho^{\varDelta}_{\dagger}))^{\theta+1} =({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1dx\displaystyle=\left(\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx\right.
μ{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)dx)θ+1\displaystyle\quad\left.-\mu\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx\right)^{\theta+1}
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x\displaystyle\quad+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx
=({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x)θ+1\displaystyle=\left(\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx\right)^{\theta+1}
+(θ+1)({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x)θ\displaystyle\quad+(\theta+1)\left(\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx\right)^{\theta}
×μ{A¯j(T)}112Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)dx\displaystyle\quad\times-\mu\left\{\bar{A}_{j}(T)\right\}^{-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x\displaystyle\quad+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx
=({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x)θ+1\displaystyle=\left(\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx\right)^{\theta+1}
γ+12μ{A¯j(T)}1(12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x)θ\displaystyle\quad-\frac{\gamma+1}{2}\mu\left\{\bar{A}_{j}(T)\right\}^{-1}\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx\right)^{\theta}
×12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1r(x,T)𝑑x\displaystyle\quad\times\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}r(x,T)dx
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle\quad+o({\varDelta}x)\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx. (A.6)

Step 3 Applying the Jensen inequality to the first term of the right-hand of (A.6), we have

({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x)θ+1\displaystyle\left(\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx\right)^{\theta+1}
=({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x12Δxxj1xj+1{A(x,T)}γ+1γ1μ𝑑x)θ+1\displaystyle=\left(\frac{\displaystyle{\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx}}{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx}}\right)^{\theta+1}
×(12Δxxj1xj+1{A(x,T)}γ+1γ1μ𝑑x)θ+1\displaystyle\quad\times\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx\right)^{\theta+1}
=({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μ+2γ1𝑑x12Δxxj1xj+1{A(x,T)}γ+1γ1μ𝑑x)θ+1\displaystyle=\left(\frac{\displaystyle{\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu+\frac{2}{\gamma-1}}dx}}{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx}}\right)^{\theta+1}
×(12Δxxj1xj+1{A(x,T)}γ+1γ1μ𝑑x)\displaystyle\quad\times\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx\right)
×({A¯j(T)}γ+12μ+γ+12μ{A¯j(T)}γ+12μ112Δxxj1xj+1r(x,T)𝑑x+o(Δx))\displaystyle\quad\times\left(\left\{\bar{A}_{j}(T)\right\}^{\frac{\gamma+1}{2}\mu}+\frac{\gamma+1}{2}\mu\left\{\bar{A}_{j}(T)\right\}^{\frac{\gamma+1}{2}\mu-1}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}r(x,T)dx+o({\varDelta}x)\right)
=({A¯j(T)}μ12Δxxj1xj+1ρ^(x,T){A(x,T)}μγ+1γ1μ+2γ1{A(x,T)}γ+1γ1μ𝑑x12Δxxj1xj+1{A(x,T)}γ+1γ1μ𝑑x)θ+1\displaystyle=\left(\frac{\displaystyle{\left\{\bar{A}_{j}(T)\right\}^{-\mu}\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\mu-\frac{\gamma+1}{\gamma-1}\mu+\frac{2}{\gamma-1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx}}{\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx}}\right)^{\theta+1}
×(12Δxxj1xj+1{A(x,T)}γ+1γ1μ𝑑x){A¯j(T)}γ+12μ\displaystyle\quad\times\left(\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}\mu}dx\right)\left\{\bar{A}_{j}(T)\right\}^{\frac{\gamma+1}{2}\mu}
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x\displaystyle\quad+o({\varDelta}x){\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx}}
12Δxxj1xj+1(ρ^(x,T))θ+1{A(x,T)}γ+1γ1𝑑x\displaystyle\leq\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}(\hat{\rho}(x,T))^{\theta+1}\left\{A(x,T)\right\}^{\frac{\gamma+1}{\gamma-1}}dx
+o(Δx)12Δxxj1xj+1ρ^(x,T){A(x,T)}2γ1𝑑x.\displaystyle\quad+o({\varDelta}x){\displaystyle{\frac{1}{2{\varDelta}x}\int_{x_{j-1}}^{x_{j+1}}\hat{\rho}(x,T)\left\{A(x,T)\right\}^{\frac{2}{\gamma-1}}dx}}. (A.7)

From (A.6) and (A.7), we obtain (A.5) and complete the proof of lemma 3.3. ∎

Appendix B Construction and LL^{\infty} estimates of approximate solutions near the vacuum in Case 1

In this step, we consider the case where ρM(Δx)β\rho_{\rm M}\leqq({\varDelta}x)^{\beta}, which means that uMu_{\rm M} is near the vacuum. Since we cannot use the implicit function theorem, we must construct uΔ(x,t)u^{\varDelta}(x,t) in a different way.

Case 1 A 1-rarefaction wave and a 2-shock arise.

In this case, we notice that ρR(Δx)β,zRMnLjn+Ijn\rho_{\rm R}\leqq({\varDelta}x)^{\beta},\;z_{\rm R}\geqq-M_{n}-L^{n}_{j}+I^{n}_{j} and wRMn+Ljn+Ijnw_{\rm R}\leqq M_{n}+L^{n}_{j}+I^{n}_{j}.

Case 1.1 ρL>(Δx)β\rho_{\rm L}>({\varDelta}x)^{\beta}

We denote uL(1)u^{(1)}_{\rm L} a state satisfying w(uL(1))=w(uL)w(u_{\rm L}^{(1)})=w(u_{\rm L}) and ρL(1)=(Δx)β\rho^{(1)}_{\rm L}=({\varDelta}x)^{\beta}. Let uL(2)u^{(2)}_{\rm L} be a state connected to u1Δ(xj1,tn+1){u}^{\varDelta}_{1}(x_{j-1},t_{n+1-}) on the right by R1Δ(uL,zL(1),x,tn+1)R_{1}^{\varDelta}(u_{\rm L},z^{(1)}_{\rm L},x,t_{n+1-}). We set

(zL(3),wL(3))={(zL(2),wL(2)),if zL(2)Djn,(Djn,wL(2)),if zL(2)<Djn,\displaystyle(z^{(3)}_{\rm L},w^{(3)}_{\rm L})=\begin{cases}(z^{(2)}_{\rm L},w^{(2)}_{\rm L}),\quad\text{if $z^{(2)}_{\rm L}\geq D^{n}_{j}$},\\ (D^{n}_{j},w^{(2)}_{\rm L}),\quad\text{if $z^{(2)}_{\rm L}<D^{n}_{j}$},\end{cases}

where

Djn=\displaystyle D^{n}_{j}= Mn+1Ljn+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)Δt+xj1xj+1K𝑑x\displaystyle-M_{n+1}-L^{n}_{j}+\int^{x_{j-1}}_{x_{0}}\zeta({u}^{\varDelta}_{n,0}(x))dx+V(u_{\rm L}){\varDelta}t+\int^{x_{j+1}}_{x_{j-1}}Kdx
+xj1xj+λ1(uL(2))Δtη(R1Δ(uL,zL(1),x,tn+1))𝑑x.\displaystyle+\int^{x_{j}+\lambda_{1}(u^{(2)}_{\rm L}){\varDelta}t}_{x_{j-1}}\eta(R_{1}^{\varDelta}(u_{\rm L},z^{(1)}_{\rm L},x,t_{n+1-}))dx.

Then, we define uΔ(x,t){u}^{\varDelta}(x,t) as follows.

uΔ(x,t)={R1Δ(uL,zL(1),x,t),if xj1xxj+λ1(uL(2))(ttn) and tnt<tn+1,uRw(x,t),if xj+λ1(uL(2))(ttn)<xxj+λ2(uM,uR)(ttn) and tnt<tn+1,uRΔ(x,t) defined in (LABEL:appr-R),if xj+λ2(uM,uR)(ttn)<xxj+1 and tnt<tn+1,\displaystyle{u}^{\varDelta}(x,t)=\begin{cases}R_{1}^{\varDelta}(u_{\rm L},z^{(1)}_{\rm L},x,t),\hskip 8.61108pt\text{if $x_{j-1}\leqq{x}\leqq x_{j}+\lambda_{1}(u^{(2)}_{\rm L})(t-{t}_{n})$}\\ \hskip 81.8053pt\text{ and ${t}_{n}\leqq{t}<{t}_{n+1}$,}\vspace*{1ex}\\ u_{\rm Rw}(x,t),\hskip 8.61108pt\text{if $x_{j}+\lambda_{1}(u^{(2)}_{\rm L})(t-{t}_{n})$$<x\leqq x_{j}+\lambda_{2}(u_{\rm M},u_{\rm R})(t-{t}_{n})$}\\ \hskip 47.36096pt\text{ and ${t}_{n}\leqq{t}<{t}_{n+1}$,}\vspace*{1ex}\\ {u}^{\varDelta}_{\rm R}(x,t)\text{ defined in \eqref{appr-R}},\hskip 8.61108pt\text{if $x_{j}+\lambda_{2}(u_{\rm M},u_{\rm R})(t-{t}_{n})$$<x\leqq x_{j+1}$ }\\ \hskip 120.55518pt\text{and ${t}_{n}\leqq{t}<{t}_{n+1}$,}\end{cases}

where (a) λ2(uM,uR)\lambda_{2}(u_{\rm M},u_{\rm R}) is a propagation speed of 2-shock wave; (b) uRw(x,t)u_{\rm Rw}(x,t) is ararefaction wave connecting uL(3)u^{(3)}_{\rm L} and uL(4)u^{(4)}_{\rm L}; (c) uL(4)u^{(4)}_{\rm L} is defined by zL(4)=max{zL(3),zM},z^{(4)}_{\rm L}=\max\{z^{(3)}_{\rm L},z_{\rm M}\},wL(4)=wL(3)w^{(4)}_{\rm L}=w^{(3)}_{\rm L}.

Refer to caption
Figure 2. Case 1.1: The approximate solution uΔ{u}^{\varDelta} in the cell.

Case 1.2 ρL(Δx)β\rho_{\rm L}\leqq({\varDelta}x)^{\beta}

We set (zL(5),wL(5))=(max{zL,Djn},min{wL,Ujn})(z^{(5)}_{\rm L},w^{(5)}_{\rm L})=(\max\{z_{\rm L},D^{n}_{j}\},\min\{w_{\rm L},U^{n}_{j}\}), where

Ujn=\displaystyle U^{n}_{j}= Mn+1+Ljn+x0xj1ζ(un,0Δ(x))𝑑x+V(uL)Δt.\displaystyle M_{n+1}+L^{n}_{j}+\int^{x_{j-1}}_{x_{0}}\zeta({u}^{\varDelta}_{n,0}(x))dx+V(u_{\rm L}){\varDelta}t.

Then, we define uΔ(x,t){u}^{\varDelta}(x,t) as follows.

uΔ(x,t)={u1Δ(x,t) defined in (2.14),if xj1xxj+λ1(uL)(ttn) and tnt<tn+1,uRw(x,t),if xj+λ1(uL)(ttn)<xxj+λ2(uM,uR)(ttn) and tnt<tn+1,uRΔ(x,t) defined in (LABEL:appr-R),if xj+λ2(uM,uR)(ttn)<xxj+1 and tnt<tn+1,\displaystyle{u}^{\varDelta}(x,t)=\begin{cases}{u}^{\varDelta}_{1}(x,t)\text{ defined in \eqref{appro1}},\hskip 8.61108pt\text{if $x_{j-1}\leqq{x}\leqq x_{j}+\lambda_{1}(u_{\rm L})(t-{t}_{n})$}\\ \hskip 120.55518pt\text{ and ${t}_{n}\leqq{t}<{t}_{n+1}$,}\vspace*{1ex}\\ u_{\rm Rw}(x,t),\hskip 8.61108pt\text{if $x_{j}+\lambda_{1}(u_{\rm L})(t-{t}_{n})$$<x\leqq x_{j}+\lambda_{2}(u_{\rm M},u_{\rm R})(t-{t}_{n})$}\\ \hskip 47.36096pt\text{ and ${t}_{n}\leqq{t}<{t}_{n+1}$,}\vspace*{1ex}\\ {u}^{\varDelta}_{\rm R}(x,t)\text{ defined in \eqref{appr-R}},\hskip 8.61108pt\text{if $x_{j}+\lambda_{2}(u_{\rm M},u_{\rm R})(t-{t}_{n})$$<x\leqq x_{j+1}$ }\\ \hskip 120.55518pt\text{and ${t}_{n}\leqq{t}<{t}_{n+1}$,}\end{cases}

where (a) uRw(x,t)u_{\rm Rw}(x,t) is a rarefaction wave connecting uL(5)u^{(5)}_{\rm L} and uL(6)u^{(6)}_{\rm L}; (b) uL(6)u^{(6)}_{\rm L} is defined by zL(6)=max{zL(5),zM},wL(6)=wL(5)z^{(6)}_{\rm L}=\max\{z^{(5)}_{\rm L},z_{\rm M}\},\;w^{(6)}_{\rm L}=w^{(5)}_{\rm L}.

Remark B.1.

We notice that ρΔ(x,t)=O((Δx)β){\rho}^{\varDelta}(x,t)=O(({\varDelta}x)^{\beta}) in (1.ii), (1.iii) and (2.i)–(2.iii). Therefore, the followings hold in these areas.

Although (1.ii) and (2.ii) are solutions of homogeneous isentropic gas dynamics (i.e., g(x,t,u))=0g(x,t,u))=0), they is also a solution of (1.6) approximately

(uΔ)t+f(uΔ)xg(x,uΔ)=g(x,uΔ)=O((Δx)β).\displaystyle(u^{\varDelta})_{t}+f(u^{\varDelta})_{x}-g(x,u^{\varDelta})=-g(x,u^{\varDelta})=O(({\varDelta}x)^{\beta}).

In addition, discontinuities separating (1.i)–(1.iii) and (2.i)–(2.iii) satisfy [5, Lemma 5.3].

B.1. LL^{\infty} estimates of approximate solutions

We consider Case 1.1 in particular. It suffices to treat with uRw(x,t)u_{\rm Rw}(x,t) in the region where xj+λ1(uL(2))(ttn)<xxj+λ2(uM,uR)(ttn)x_{j}+\lambda_{1}(u^{(2)}_{\rm L})(t-{t}_{n})<x\leqq x_{j}+\lambda_{2}(u_{\rm M},u_{\rm R})(t-{t}_{n}) and tnt<tn+1{t}_{n}\leqq{t}<{t}_{n+1}. The other cases are similar to Theorem 3.1.

In this case, since ρΔ(x,t)=O((Δx)β){\rho}^{\varDelta}(x,t)=O(({\varDelta}x)^{\beta}), we have

η(uΔ(x,t))=O((Δx)β).\displaystyle\eta_{\ast}({u}^{\varDelta}(x,t))=O(({\varDelta}x)^{\beta}). (B.1)

Moreover, we notice that

wΔ(x,tn+1)=wL(2)=w(R1Δ(uL,zL(1),xj+λ1(uL(2))Δt,tn+1)).\displaystyle{w}^{\varDelta}(x,t_{n+1-})=w^{(2)}_{\rm L}=w(R_{1}^{\varDelta}(u_{\rm L},z^{(1)}_{\rm L},x_{j}+\lambda_{1}(u^{(2)}_{\rm L}){\varDelta}t,t_{n+1-})).

Applying Theorem 3.1 to R1Δ(uL,zL(1),x,tn+1)R_{1}^{\varDelta}(u_{\rm L},z^{(1)}_{\rm L},x,t_{n+1-}), we drive

wΔ(x,tn+1)Mn+1+Ljn+x0xj+λ1(uL(2))Δtζ(uΔ(y,tn+1))𝑑y+tntn+1y<xj1(σ[η][q])dt+o(Δx)Mn+1+Ljn+x0xζ(uΔ(y,tn+1))𝑑y+tntn+1y<xj1(σ[η][q])dt+o(Δx),\displaystyle\begin{aligned} &\displaystyle{w}^{\varDelta}(x,t_{n+1-})&\leq&M_{n+1}+L^{n}_{j}+\int^{x_{j}+\lambda_{1}(u^{(2)}_{\rm L}){\varDelta}t}_{x_{0}}\zeta({u}^{\varDelta}(y,t_{n+1-}))dy\\ &&&+\int^{t_{n+1}}_{t_{n}}\sum_{y<x_{j-1}}(\sigma[\eta_{\ast}]-[q_{\ast}])dt+{\it o}({\varDelta}x)\\ &&\leq&M_{n+1}+L^{n}_{j}+\int^{x}_{x_{0}}\zeta({u}^{\varDelta}(y,t_{n+1-}))dy+\int^{t_{n+1}}_{t_{n}}\sum_{y<x_{j-1}}(\sigma[\eta_{\ast}]-[q_{\ast}])dt\\ &&&+{\it o}({\varDelta}x),\end{aligned}

which means (3.1)2\eqref{goal}_{2}.

Next, we notice that zΔ(x,t)Djn{z}^{\varDelta}(x,t)\geq D^{n}_{j}. In view of (2.15) and (B.1), we obtain (3.1)1\eqref{goal}_{1}.

Acknowledgements.

N. Tsuge’s research is partially supported by Grant-in-Aid for Scientific Research (C) 17K05315, Japan.

References

  • [1] Greenberg, J. M., Rascle, M.: Time-periodic solutions to systems of conservation laws. Arch. Rational Mech. Anal. 115, 395–407 (1991)
  • [2] Matsumura A., Nishida T: Periodic solutions of a viscous gas equation. Lecture Notes in Num. Appl. Anal. 10, 49–82 (1998)
  • [3] Tadmor E.: The large-time behavior of the scalar, genuinely nonlinear Lax–Friedrichs scheme. Math. Comp. 43 353–368 (1984)
  • [4] Takeno, S.: Time-periodic solutions for a scalar conservation law. Nonlinear Anal. 45, 1039–1060 (2001)
  • [5] Tsuge, N.: Global LL^{\infty} solutions of the compressible Euler equations with spherical symmetry. J. Math. Kyoto Univ. 46, 457–524 (2006)
  • [6] N. Tsuge: Existence of global solutions for unsteady isentropic gas flow in a Laval nozzle. Arch. Ration. Mech. Anal. 205, 151–193 (2012)
  • [7] N. Tsuge: Isentropic gas flow for the compressible Euler equation in a nozzle, Arch. Ration. Mech. Anal. 209, 365–400 (2013)
  • [8] N. Tsuge: Existence and stability of solutions to the compressible Euler equations with an outer force. Nonlinear Anal. Real World Appl. 27, 203–220 (2016)
  • [9] N. Tsuge: Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow for large data: Application of the generalized invariant regions and the modified Godunov scheme. Nonlinear Anal. Real World Appl. 37, 217–238 (2017)
  • [10] Tsuge, N.: Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow, Hyperbolic Problems: Theory, Numerics, Applications By Alberto Bressan, Marta Lewicka, Dehua Wang, Yuxi Zheng (Eds.), AIMS on Applied Mathematics 10, 666–673 (2020)
  • [11] Tsuge, N.: Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force. Nonlinear Anal. Real World Appl. 53, 103080 (2020)
  • [12] N. Tsuge: Remarks on the energy inequality of a global LL^{\infty} solution to the compressible Euler equations for the isentropic nozzle flow. Commun. Math. Sci. to appear.