This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Expected value of letters of permutations with a given number of kk-cycles

Peter Kagey

In this paper, we study permutations Ο€βˆˆSn\pi\in S_{n} with exactly mm transpositions. In particular, we are interested in the expected value of π​(1)\pi(1) when such permutations are chosen uniformly at random. When nn is even, this expected value is approximated closely by (n+1)/2(n+1)/2, with an error term that is related to the number isometries of the (n/2βˆ’m)(n/2-m)-dimensional hypercube that move every face. Furthermore, when k∣nk\mid n, this construction generalizes to allow us to compute the expected value of π​(1)\pi(1) for permutations with exactly mm kk-cycles. In this case, the expected value has an error term which is related instead to the number derangements of the generalized symmetric group S​(k,n/kβˆ’m)S(k,n/k-m).

When kk does not divide nn, the expected value of π​(1)\pi(1) is precisely (n+1)/2(n+1)/2. Indirectly, this suggests the existence of a reversible algorithm to insert a letter into a permutation which preserves the number of kk-cycles, which we construct.

1 Background

In 2010, Mark Conger [3] proved that a permutation with kk descents has an expected first letter of π​(1)=k+1\pi(1)=k+1, independent of nn. This paper has the same premise, but with a different permutation statistic: the number of kk-cycles of a permutation.

This section, (Section 1) provides an overview of where we’re headed, and includes an critical example that will hopefully spark the reader’s curiosity and motivate the remainder of the paper.

Section 2 establishes some recurrence relations for the number of permutations in SnS_{n} with a given number of kk-cycles. It also contains a theorem that gives an explicit way to compute the expected value of the first letter based on these counts.

Section 3 describes an explicit correspondence between kk-cycles of permutations in Sk​nS_{kn} and fixed points of elements of the generalized symmetric group (β„€/k​℀)≀Sn(\mathbb{Z}/k\mathbb{Z})\wr S_{n}. Using generating functions and results from the previous section, this shows that the expected value of π​(1)\pi(1) of a permutation with a given number of kk-cycles is intimately connected to the number of derangements of a generalized symmetric group.

While Section 3 emphasizes the case of Sk​nS_{kn}, Section 4 looks at SNS_{N} where k∀Nk\nmid N. Here, the expected value of π​(1)\pi(1) is simply (N+1)/2(N+1)/2, which agrees with the expected value of the first letter of a uniformly chosen NN-letter permutation with no additional restrictions. This fact together with the main theorem from Section 2 implies the existence of a bijection Ο†k:SNβˆ’1Γ—[N]β†’SN\varphi_{k}\colon S_{N-1}\times[N]\rightarrow S_{N} that preserves the number of kk-cycles whenever k∀Nk\nmid N. Section 4 constructs such a bijection explicitly, and proves that it has the desired properties.

1.1 Motivating Examples

In support of the first examples, we start by defining the first bit of notation.

Definition 1.1.

Let Ck​(n,m)C_{k}(n,m) denote the number of permutations Ο€βˆˆSn\pi\in S_{n} such that Ο€\pi has exactly mm kk-cycles.

These theoremsβ€”and many of the following lemmasβ€”were discovered by looking at examples such as the following, written in both one-line and cycle notation:

Example 1.2.

There are C2​(4,0)=15C_{2}(4,0)=15 permutations in S4S_{4} with no 22-cycles:

1234\displaystyle 1234 =(1)​(2)​(3)​(4)\displaystyle=(1)(2)(3)(4)\hskip 14.22636pt 2314=(312)​(4)\displaystyle 2314=(312)(4)\hskip 14.22636pt 3124=(321)​(4)\displaystyle 3124=(321)(4)\hskip 14.22636pt 4123=(4321)\displaystyle 4123=(4321)
1342\displaystyle 1342 =(1)​(423)\displaystyle=(1)(423)\hskip 14.22636pt 2341=(4123)\displaystyle 2341=(4123)\hskip 14.22636pt 3142=(4213)\displaystyle 3142=(4213)\hskip 14.22636pt 4132=(421)​(3)\displaystyle 4132=(421)(3)
1423\displaystyle 1423 =(1)​(432)\displaystyle=(1)(432)\hskip 14.22636pt 2413=(4312)\displaystyle 2413=(4312)\hskip 14.22636pt 3241=(2)​(413)\displaystyle 3241=(2)(413)\hskip 14.22636pt 4213=(2)​(431)\displaystyle 4213=(2)(431)
2431=(3)​(412)\displaystyle 2431=(3)(412)\hskip 14.22636pt 3421=(4132)\displaystyle 3421=(4132)\hskip 14.22636pt 4312=(4231)\displaystyle 4312=(4231)

There are C2​(4,1)=6C_{2}(4,1)=6 permutations in S4S_{4} with exactly one 22-cycle:

1243\displaystyle 1243 =(1)​(2)​(43)\displaystyle=(1)(2)(43)\hskip 28.45274pt 2134=(21)​(3)​(4)\displaystyle 2134=(21)(3)(4)
1324\displaystyle 1324 =(1)​(32)​(4)\displaystyle=(1)(32)(4)\hskip 28.45274pt 3214=(2)​(31)​(4)\displaystyle 3214=(2)(31)(4)
1432\displaystyle 1432 =(1)​(3)​(42)\displaystyle=(1)(3)(42)\hskip 28.45274pt 4231=(2)​(3)​(41)\displaystyle 4231=(2)(3)(41)

And there are C2​(4,2)=3C_{2}(4,2)=3 permutations in S4S_{4} with exactly two 22-cycles,

2143=(21)​(43)3412=(31)​(42)4321=(32)​(41).2143=(21)(43)\hskip 28.45274pt3412=(31)(42)\hskip 28.45274pt4321=(32)(41).

By averaging the first letter over these examples, we can compute that

𝔼​[π​(1)|Ο€βˆˆS4​ has no ​2​-cycles]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{4}\text{ has no }2\text{-cycles}\,] =3​(1)+4​(2+3+4)15\displaystyle=\frac{3(1)+4(2+3+4)}{15} =135,\displaystyle=\frac{13}{5},
𝔼​[π​(1)|Ο€βˆˆS4​ has exactly ​1 2​-cycle]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{4}\text{ has exactly }1\ 2\text{-cycle}] =3​(1)+(2+3+4)6\displaystyle=\frac{3(1)+(2+3+4)}{6} =2,Β and\displaystyle=2,\text{ and}
𝔼​[π​(1)|Ο€βˆˆS4​ has exactly ​2 2​-cycles]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{4}\text{ has exactly }2\ 2\text{-cycles}\,] =2+3+43\displaystyle=\frac{2+3+4}{3} =3.\displaystyle=3.

The table in Figure 1 gives the expected value of π​(1)\pi(1) given that Ο€βˆˆSn\pi\in S_{n} and has exactly mm 22-cycles in its cycle decomposition. Notice that when ii is odd, row ii has a constant value of (i+1)/2(i+1)/2. Also notice that the number in position (i,j)(i,j) has the same denominator as the number in position (i+2,j+1)(i+2,j+1), and that these denominators increase with nn. The sequence of denominators begins

1,5,29,233,2329,27949,…,1,5,29,233,2329,27949,\dots, (1.1)

which agrees with the type B derangement numbers, sequence A000354 in the On-Line Encyclopedia of Integer Sequences (OEIS) [6]. In other words, the denominators in the table appear to be related to the symmetries of the hypercube that move every facet.

m0123456n11/11/12/12/12/113/52/13/153/13/13/16101/2918/53/14/174/14/14/14/181049/233130/2923/54/15/195/15/15/15/15/11012809/23291282/233159/2928/55/16/1116/16/16/16/16/16/112181669/2794915138/23291515/233188/2933/56/17/1137/17/17/17/17/17/17/1\begin{array}[]{|ll|l|l|l|l|l|l|l|l|l|l|}\hline\cr&&\vrule\lx@intercol\hfil m\hfil\lx@intercol\vrule\lx@intercol\\ \cline{3-9}\cr&&0&1&2&3&4&5&6\\ \hline\cr\hbox{\multirowsetup$n$}&\vrule\lx@intercol\hfil 1\hfil\lx@intercol\vrule\lx@intercol&1/1&&&&&&\\ \cline{2-4}\cr&\vrule\lx@intercol\hfil 2\hfil\lx@intercol\vrule\lx@intercol&1/1&2/1&&&&&\\ \cline{2-4}\cr&\vrule\lx@intercol\hfil 3\hfil\lx@intercol\vrule\lx@intercol&2/1&2/1&&&&&\\ \cline{2-5}\cr&\vrule\lx@intercol\hfil 4\hfil\lx@intercol\vrule\lx@intercol&13/5&2/1&3/1&&&&\\ \cline{2-5}\cr&\vrule\lx@intercol\hfil 5\hfil\lx@intercol\vrule\lx@intercol&3/1&3/1&3/1&&&&\\ \cline{2-6}\cr&\vrule\lx@intercol\hfil 6\hfil\lx@intercol\vrule\lx@intercol&101/29&18/5&3/1&4/1&&&\\ \cline{2-6}\cr&\vrule\lx@intercol\hfil 7\hfil\lx@intercol\vrule\lx@intercol&4/1&4/1&4/1&4/1&&&\\ \cline{2-7}\cr&\vrule\lx@intercol\hfil 8\hfil\lx@intercol\vrule\lx@intercol&1049/233&130/29&23/5&4/1&5/1&&\\ \cline{2-7}\cr&\vrule\lx@intercol\hfil 9\hfil\lx@intercol\vrule\lx@intercol&5/1&5/1&5/1&5/1&5/1&&\\ \cline{2-8}\cr&\vrule\lx@intercol\hfil 10\hfil\lx@intercol\vrule\lx@intercol&12809/2329&1282/233&159/29&28/5&5/1&6/1&\\ \cline{2-8}\cr&\vrule\lx@intercol\hfil 11\hfil\lx@intercol\vrule\lx@intercol&6/1&6/1&6/1&6/1&6/1&6/1&\\ \cline{2-9}\cr&\vrule\lx@intercol\hfil 12\hfil\lx@intercol\vrule\lx@intercol&181669/27949&15138/2329&1515/233&188/29&33/5&6/1&7/1\\ \cline{2-9}\cr&\vrule\lx@intercol\hfil 13\hfil\lx@intercol\vrule\lx@intercol&7/1&7/1&7/1&7/1&7/1&7/1&7/1\\ \hline\cr\end{array}
Figure 1: A table of the expected value of the first letter of Ο€βˆˆSn\pi\in S_{n} with exactly mm 22-cycles, 𝔼​[π​(1)|Ο€βˆˆSn​ has exactly ​m​ 2​-cycles]{\mathbb{E}[\pi(1)\,|\,\pi\in S_{n}\text{ has exactly }m\ 2\text{-cycles}\,]}.

2 Structure of permutations with mm kk-cycles

This section is about connecting the number of permutations with a given number of kk-cycles to the expected value of the first letter. Saying this, it is appropriate to start with a 1944 theorem of Goncharov that, by the principle of inclusion/exclusion, gives an explicit formula that counts the number of such permutations.

2.1 Counting permutations based on cycles

Theorem 2.1 ([5], [1]).

The number of permutations in SnS_{n} with exactly mm kk-cycles is given by the following sum, via the principle inclusion/exclusion:

Ck​(n,m)=n!m!​kmβ€‹βˆ‘i=0⌊n/kβŒ‹βˆ’m(βˆ’1)ii!​ki.C_{k}(n,m)=\frac{n!}{m!k^{m}}\sum_{i=0}^{\lfloor n/k\rfloor-m}\frac{(-1)^{i}}{i!\,k^{i}}. (2.1)
Corollary 2.2.

For k∀nk\nmid n, there are exactly nn times as many permutations in SnS_{n} with exactly mm kk-cycles than there are in Snβˆ’1S_{n-1}. When k∣nk\mid n, there is an explicit formula for the difference.

Ck​(n,m)βˆ’n​Ck​(nβˆ’1,m)=\displaystyle C_{k}(n,m)-nC_{k}(n-1,m)= 0\displaystyle 0 k∀nk\nmid n (2.2)
Ck​(n,m)βˆ’n​Ck​(nβˆ’1,m)=\displaystyle C_{k}(n,m)-nC_{k}(n-1,m)= n!​(βˆ’1)nkβˆ’m(n/k)!​knk​(n/km)\displaystyle\displaystyle\frac{n!(-1)^{\frac{n}{k}-m}}{(n/k)!\,k^{\frac{n}{k}}}\binom{n/k}{m} k∣nk\mid n (2.3)
Proof.

When k∀nk\nmid n, ⌊nkβŒ‹=⌊nβˆ’1kβŒ‹\displaystyle\mathopen{}\mathclose{{}\left\lfloor\frac{n}{k}}\right\rfloor=\mathopen{}\mathclose{{}\left\lfloor\frac{n-1}{k}}\right\rfloor, so the bounds on the sums are identical and the result follows directly

n!m!​kmβ€‹βˆ‘i=0⌊n/kβŒ‹βˆ’m(βˆ’1)ii!​kiβˆ’n​((nβˆ’1)!m!​kmβ€‹βˆ‘i=0⌊(nβˆ’1)/kβŒ‹βˆ’m(βˆ’1)ii!​ki)=0.\displaystyle\frac{n!}{m!k^{m}}\sum_{i=0}^{\lfloor n/k\rfloor-m}\frac{(-1)^{i}}{i!\,k^{i}}-n\mathopen{}\mathclose{{}\left(\frac{(n-1)!}{m!k^{m}}\sum_{i=0}^{\lfloor(n-1)/k\rfloor-m}\frac{(-1)^{i}}{i!\,k^{i}}}\right)=0. (2.4)

Otherwise, when k∣nk\mid n, ⌊nβˆ’1kβŒ‹=nkβˆ’1\displaystyle\mathopen{}\mathclose{{}\left\lfloor\frac{n-1}{k}}\right\rfloor=\frac{n}{k}-1, so

n!m!​kmβ€‹βˆ‘i=0n/kβˆ’m(βˆ’1)ii!​kiβˆ’n​((nβˆ’1)!m!​kmβ€‹βˆ‘i=0n/kβˆ’1βˆ’m(βˆ’1)ii!​ki)\displaystyle\frac{n!}{m!k^{m}}\sum_{i=0}^{n/k-m}\frac{(-1)^{i}}{i!\,k^{i}}-n\mathopen{}\mathclose{{}\left(\frac{(n-1)!}{m!k^{m}}\sum_{i=0}^{n/k-1-m}\frac{(-1)^{i}}{i!\,k^{i}}}\right)
=n!m!​km​((βˆ’1)n/kβˆ’m(n/kβˆ’m)!​kn/kβˆ’m)\displaystyle\hskip 113.81102pt=\frac{n!}{m!k^{m}}\mathopen{}\mathclose{{}\left(\frac{(-1)^{n/k-m}}{(n/k-m)!k^{n/k-m}}}\right)
=n!​(βˆ’1)n/kβˆ’m(n/kβˆ’m)!​m!​kn/k\displaystyle\hskip 113.81102pt=\frac{n!(-1)^{n/k-m}}{(n/k-m)!m!k^{n/k}}
=n!​(βˆ’1)nkβˆ’m(n/k)!​kn/k​(n/km).\displaystyle\hskip 113.81102pt=\frac{n!(-1)^{\frac{n}{k}-m}}{(n/k)!\,k^{n/k}}\binom{n/k}{m}. (2.5)

∎

See Section 4 for a bijective proof of Equation 2.2.

2.2 Permutations by first letter

In order to compute the expected value of the first letter of a permutation, it is useful to be able to compute the number of permutations that have a given number of kk-cycles and a given first letter.

Definition 2.3.

Let Ck(a)​(n,m)C_{k}^{(a)}(n,m) be the number of permutations Ο€βˆˆSn\pi\in S_{n} that have exactly mm kk-cycles and π​(1)=a\pi(1)=a.

The expected value of π​(1)\pi(1) with a given number of kk-cycles is

𝔼​[π​(1)|Ο€βˆˆSn​ has exactly ​m​k​-cycles]=1Ck​(n,m)β€‹βˆ‘a=1na​Ck(a)​(n,m).\mathbb{E}[\pi(1)\,|\,\pi\in S_{n}\text{ has exactly }m\ k\text{-cycles}\,]=\frac{1}{C_{k}(n,m)}\sum_{a=1}^{n}aC_{k}^{(a)}(n,m). (2.6)

The following three lemmas compute Ck(a)​(n,m)C_{k}^{(a)}(n,m) from Ck​(n,m)C_{k}(n,m).

Proposition 2.4.

For all k>1k>1, the number of permutations in SnS_{n} starting with 11 and having mm kk-cycles is equal to the number of permutations in Snβˆ’1S_{n-1} with mm kk-cycles:

Ck(1)​(n,m)=Ck​(nβˆ’1,m).C_{k}^{(1)}(n,m)=C_{k}(n-1,m). (2.7)
Proof.

The straightforward bijection from {Ο€βˆˆSn:π​(1)=1}\{\pi\in S_{n}:\pi(1)=1\} to Snβˆ’1S_{n-1} given by deleting 11 and relabeling preserves the number of kk-cycles for k>1k>1. ∎

Proposition 2.5.

For all a,bβ‰₯2a,b\geq 2, the number of permutations having kk-cycles and starting with aa are the same as the number of those starting with bb:

Ck(2)​(n,m)=β‹―=Ck(a)​(n,m)=β‹―=Ck(b)​(n,m)=β‹―=Ck(n)​(n,m).C_{k}^{(2)}(n,m)=\cdots=C_{k}^{(a)}(n,m)=\cdots=C_{k}^{(b)}(n,m)=\cdots=C_{k}^{(n)}(n,m). (2.8)
Proof.

Since the permutations under consideration do not fix 11, conjugation by (a​b)(ab) is an isomorphism which takes all words starting with aa to words starting with bb without changing the cycle structure. ∎

Lemma 2.6.

For all 2≀a≀n2\leq a\leq n,

Ck(a)​(n,m)=Ck​(n,m)βˆ’Ck​(nβˆ’1,m)nβˆ’1.\displaystyle C_{k}^{(a)}(n,m)=\frac{C_{k}(n,m)-C_{k}(n-1,m)}{n-1}. (2.9)
Proof.

Since

Ck​(n,m)=Ck(1)​(n,m)+Ck(2)​(n,m)+β‹―+Ck(n)​(n,m),C_{k}(n,m)=C_{k}^{(1)}(n,m)+C_{k}^{(2)}(n,m)+\dots+C_{k}^{(n)}(n,m), (2.10)

using Proposition 2.5, for the last (nβˆ’1)(n-1) terms, this can be rewritten as

Ck​(n,m)=Ck(1)​(n,m)+(nβˆ’1)​Ck(a)​(n,m).C_{k}(n,m)=C_{k}^{(1)}(n,m)+(n-1)C_{k}^{(a)}(n,m). (2.11)

Solving for Ck(a)​(n,m)C_{k}^{(a)}(n,m) and using the substitution from Proposition 2.4 gives the desired result. ∎

Now, equipped with explicit formulas for Ck(a)​(n,m)C_{k}^{(a)}(n,m) and Ck​(n,m)C_{k}(n,m), we can compute the expected value of π​(1)\pi(1) for Ο€βˆˆSn\pi\in S_{n} with exactly mm kk-cycles.

2.3 Expected value of first letter

Theorem 2.7.

For k>1k>1, the expected value of the first letter of a permutation Ο€βˆˆSn\pi\in S_{n} with mm kk-cycles is given by

𝔼​[π​(1)βˆ£Ο€βˆˆSn​ has exactly ​m​k​-cycles]\displaystyle\mathbb{E}[\pi(1)\ \mid\ \pi\in S_{n}\text{ has exactly }m\ k\text{-cycles}\,]
=n2​(1βˆ’Ck​(nβˆ’1,m)Ck​(n,m))+1.\displaystyle\hskip 113.81102pt=\frac{n}{2}\mathopen{}\mathclose{{}\left(1-\frac{C_{k}(n-1,m)}{C_{k}(n,m)}}\right)+1. (2.12)
Proof.

Using Proposition 2.5, we can consolidate all but the first term of the sum in Equation 2.6

βˆ‘a=1na​Ck(a)​(n,m)\displaystyle\sum_{a=1}^{n}aC_{k}^{(a)}(n,m) (2.13)
=Ck(1)​(n,m)+βˆ‘a=2na​Ck(n)​(n,m)\displaystyle\hskip 28.45274pt=C_{k}^{(1)}(n,m)+\sum_{a=2}^{n}aC_{k}^{(n)}(n,m) (2.14)
=Ck(1)​(n,m)+(nβˆ’1)​(n+2)2​Ck(n)​(n,m)\displaystyle\hskip 28.45274pt=C_{k}^{(1)}(n,m)+\frac{(n-1)(n+2)}{2}C_{k}^{(n)}(n,m) (2.15)
=Ck​(nβˆ’1,m)+(nβˆ’1)​(n+2)2​(Ck​(n,m)βˆ’Ck​(nβˆ’1,m)nβˆ’1)\displaystyle\hskip 28.45274pt=C_{k}(n-1,m)+\frac{(n-1)(n+2)}{2}\mathopen{}\mathclose{{}\left(\frac{C_{k}(n,m)-C_{k}(n-1,m)}{n-1}}\right) (2.16)
=(n2+1)​Ck​(n,m)βˆ’n2​Ck​(nβˆ’1,m).\displaystyle\hskip 28.45274pt=\mathopen{}\mathclose{{}\left(\frac{n}{2}+1}\right)C_{k}(n,m)-\frac{n}{2}C_{k}(n-1,m). (2.17)

Dividing by Ck​(n,m)C_{k}(n,m) yields the result. ∎

Corollary 2.8.

When k∀nk\nmid n, Ck​(n,m)=n​Ck​(nβˆ’1,m)C_{k}(n,m)=nC_{k}(n-1,m) by Equation 2.2, so

𝔼​[π​(1)βˆ£Ο€βˆˆSn​ has exactly ​m​k​-cycles]=n2​(1βˆ’1n)+1=n+12.\mathbb{E}[\pi(1)\ \mid\ \pi\in S_{n}\text{ has exactly }m\ k\text{-cycles}\,]=\frac{n}{2}\mathopen{}\mathclose{{}\left(1-\frac{1}{n}}\right)+1=\frac{n+1}{2}. (2.18)

Together with Theorem 2.1, this theorem and its corollary provides our first formula for the expected value of π​(1)\pi(1) that performs exponentially better than brute force.

2.4 Identities for counting permutations with given cycle conditions

Both in practical terms (if computing the expected value of π​(1)\pi(1) by hand or optimizing an algorithm) and in a theoretical sense, the following recurrence is simple and useful.

Lemma 2.9.

For n<m​kn<mk or m<0m<0, Ck​(n,m)=0C_{k}(n,m)=0. Otherwise, for all k,mβ‰₯1k,m\geq 1

m​Ck​(n,m)=(kβˆ’1)!​(nk)​Ck​(nβˆ’k,mβˆ’1).mC_{k}(n,m)=(k-1)!\binom{n}{k}C_{k}(n-k,m-1). (2.19)

While this can be proven directly by the algebraic manipulation of the identity in Theorem 2.1, a bijective proof has been included here because it is natural and may be of interest.

Proof.

Let

π’žk​(n,m)={Ο€βˆˆSnβˆ£Ο€β€‹Β has exactly ​m​k​-cycles}.\mathcal{C}_{k}(n,m)=\{\pi\in S_{n}\,\mid\,\pi\text{ has exactly }m\ k\text{-cycles}\}. (2.20)

Then consider the two sets, whose cardinalities match the left- and right-hand sides of the equation above:

Xn,m,kL\displaystyle X^{L}_{n,m,k} ={(Ο€,c)βˆ£Ο€βˆˆπ’žk​(n,m),c​ a distinguished ​k​-cycle of ​π}.\displaystyle=\{(\pi,c)\mid\pi\in\mathcal{C}_{k}(n,m),c\text{ a distinguished }k\text{-cycle of }\pi\}. (2.21)
Xn,m,kR\displaystyle X^{R}_{n,m,k} ={(Οƒ,d)βˆ£Ο€βˆˆπ’žk​(nβˆ’k,mβˆ’1),d​ an ​n​-ary necklace of length ​k}.\displaystyle=\{(\sigma,d)\mid\pi\in\mathcal{C}_{k}(n-k,m-1),d\text{ an }n\text{-ary necklace of length }k\}. (2.22)

The first set, Xn,m,kLX^{L}_{n,m,k}, is constructed by taking a permutation in π’žk​(n,m)\mathcal{C}_{k}(n,m) and choosing one of its mm kk-cycles to be distinguished, so #​Xn,m,kL=m​Ck​(n,m)\#X^{L}_{n,m,k}=mC_{k}(n,m).

In the second set, Xn,m,kRX^{R}_{n,m,k}, the two parts of the tuple are independent. There are Ck​(nβˆ’k,mβˆ’1)C_{k}(n-k,m-1) choices for the permutation Οƒ\sigma and (kβˆ’1)!​(nk)(k-1)!\binom{n}{k} choices for the necklace dd. Thus #​Xn,m,kR=(kβˆ’1)!​(nk)​Ck​(nβˆ’k,mβˆ’1)\#X^{R}_{n,m,k}=(k-1)!\binom{n}{k}C_{k}(n-k,m-1).

Now, consider the map Ο†:Xn,m,kLβ†’Xn,m,kR\varphi\colon X^{L}_{n,m,k}\rightarrow X^{R}_{n,m,k} which removes the distinguished kk-cycle and relabels the remaining nβˆ’kn-k letters as {1,2,…,nβˆ’k}\{1,2,\dots,n-k\}, preserving the relative order:

(Ο€1​π2​⋯​πℓ,Ο€i)β†¦πœ‘(Ο€1′​π2′​⋯​πiβˆ’1′​πi+1′​⋯​πℓ′,Ο€i)(\pi_{1}\pi_{2}\cdots\pi_{\ell},\pi_{i})\xmapsto{\varphi}(\pi^{\prime}_{1}\pi^{\prime}_{2}\cdots\pi^{\prime}_{i-1}\pi^{\prime}_{i+1}\cdots\pi^{\prime}_{\ell},\pi_{i}) (2.23)

where Ο€iβ€²\pi^{\prime}_{i} is Ο€i\pi_{i} after relabeling.

By construction, Οƒ\sigma has one fewer kk-cycle and kk fewer letters than Ο€\pi.

The inverse map is similar. To recover Ο€\pi, increment the letters of Οƒ\sigma appropriately and add the necklace dd back in as the distinguished cycle. Thus Ο†\varphi is a bijection and #​Xn,m,kL=#​Xn,m,kR\#X^{L}_{n,m,k}=\#X^{R}_{n,m,k}. ∎

Example 2.10.

Suppose Ο€=(423)​(πŸ”πŸ)​(75)\pi=(423)\mathbf{(61)}(75) in cycle notation with (61)(61) distinguished. Then

φ​((423)​(61)​(75),(61))=((312)​(54),(61))\displaystyle\varphi((423)(61)(75),(61))=((312)(54),(61)) (2.24)

under the bijection Ο†\varphi, described in the proof of Lemma 2.9.

The recurrence in Lemma 2.9 suggests that understanding Ck​(n,m)C_{k}(n,m) is related to understanding Ck​(nβˆ’k​m,0)C_{k}(n-km,0), the permutations of Snβˆ’k​mS_{n-km} with no kk-cycles. On the other hand, Corollary 2.2 suggests that the case where k∣nk\mid n has some of the most intricate structure. We can, of course, combine these two observations and analyze the case of Ck​(k​n,0)C_{k}(kn,0), which has a particularly simple generating function, which will show up again in a different guise.

Lemma 2.11.

For kβ‰₯2k\geq 2,

βˆ‘n=0∞Ck​(k​n,0)​kn(k​n)!​xn=exp⁑(βˆ’x)1βˆ’k​x.\sum_{n=0}^{\infty}\frac{C_{k}(kn,0)k^{n}}{(kn)!}x^{n}=\frac{\exp(-x)}{1-kx}. (2.25)
Proof.

By substitution of Ck​(k​n,0)C_{k}(kn,0) via the identity in Theorem 2.1,

βˆ‘n=0∞Ck​(k​n,0)​kn(k​n)!​xn\displaystyle\sum_{n=0}^{\infty}\frac{C_{k}(kn,0)k^{n}}{(kn)!}x^{n} =βˆ‘n=0βˆžβˆ‘i=0n(βˆ’1)iki​i!​kn​xn\displaystyle=\sum_{n=0}^{\infty}\sum_{i=0}^{n}\frac{(-1)^{i}}{k^{i}i!}k^{n}x^{n} (2.26)
=βˆ‘n=0βˆžβˆ‘i=0n(βˆ’x)ii!​(k​x)nβˆ’i\displaystyle=\sum_{n=0}^{\infty}\sum_{i=0}^{n}\frac{(-x)^{i}}{i!}(kx)^{n-i} (2.27)
=(βˆ‘n=0∞(βˆ’x)nn!)​(βˆ‘n=0∞(k​x)n)\displaystyle=\mathopen{}\mathclose{{}\left(\sum_{n=0}^{\infty}\frac{(-x)^{n}}{n!}}\right)\mathopen{}\mathclose{{}\left(\sum_{n=0}^{\infty}(kx)^{n}}\right) (2.28)
=exp⁑(βˆ’x)1βˆ’k​x.\displaystyle=\frac{\exp(-x)}{1-kx}. (2.29)

∎

This section allowed for the practical computation of the expected value of π​(1)\pi(1) with a given number of kk-cycles, but leaves the observation about Figure 1 unexplained. The following section will explain the connection between the expected values of π​(1)\pi(1) and the facet-derangements of the hypercube.

3 Connection with the generalized symmetric group

This section explains the connection between the expected value of π​(1)\pi(1) given that Ο€\pi has exactly mm 22-cycles and the facet-derangements of the hypercube, by telling the more general story of derangements of the generalized symmetric group. Thus it is appropriate to start this section by defining both the generalized symmetric group and its derangements.

3.1 Derangements of the generalized symmetric group

Definition 3.1.

The generalized symmetric group S​(k,n)S(k,n) is the wreath product (β„€/k​℀)≀Sn(\mathbb{Z}/k\mathbb{Z})\wr S_{n}, which in turn is a semidirect product (β„€/k​℀)nβ‹ŠSn(\mathbb{Z}/k\mathbb{Z})^{n}\rtimes S_{n}.

A natural way of thinking about the symmetric group SnS_{n} is by considering how the elements act on length-nn sequences by permuting the indices. Informally, we can think about the generalized symmetric group S​(k,n)S(k,n) in an essentially similar way: each element consists of an ordered pair in (β„€/k​℀)nβ‹ŠSn(\mathbb{Z}/k\mathbb{Z})^{n}\rtimes S_{n}, where (β„€/k​℀)n(\mathbb{Z}/k\mathbb{Z})^{n} gives information about what to add componentwise, and SnS_{n} gives information about how to rearrange afterward.

Example 3.2.

Consider the generalized permutation

((1,3,0)⏟∈(β„€/4​℀)3,(23)⏟∈S3)∈S​(4,3).(\underbrace{(1,3,0)}_{\in(\mathbb{Z}/4\mathbb{Z})^{3}},\underbrace{(23)}_{\in S_{3}})\in S(4,3).

It acts on the sequence (0,1,1)∈(β„€/2​℀)3(0,1,1)\in(\mathbb{Z}/2\mathbb{Z})^{3} first by adding element-wise, and then permuting:

((1,3,0),(23))⏟∈S​(k,n)β‹…(0,1,1)=(23)⏟∈S3β‹…(1+0,3+1,0+1)=(23)β‹…(1,0,1)=(1,1,0).\displaystyle\underbrace{((1,3,0),(23))}_{\in S(k,n)}\cdot(0,1,1)=\underbrace{(23)}_{\in S_{3}}\cdot(1+0,3+1,0+1)=(23)\cdot(1,0,1)=(1,1,0). (3.1)

When k=1k=1, the sequence (β„€/1​℀)n(\mathbb{Z}/1\mathbb{Z})^{n} is trivially the zero sequence, so S​(1,n)β‰…SnS(1,n)\cong S_{n}. When k=2k=2, S​(2,n)S(2,n) is the hyperoctahedral group that we brushed up against in Figure 1: the group of symmetries of the nn-dimensional hypercube. When kβ‰₯3k\geq 3, S​(k,n)S(k,n) does not have such an immediate geometric interpretation, but it is precisely the right analog for the expected value of π​(1)\pi(1) when Ο€\pi has a given number of kk-cycles.

Definition 3.3.

A derangement or fixed-point-free element of the generalized symmetric group is an element ((x1,…,xn),Ο€)∈S​(k,n)((x_{1},\dots,x_{n}),\pi)\in S(k,n) such that for all ii, either π​(i)β‰ i\pi(i)\neq i or xiβ‰ 0x_{i}\neq 0.

That is, when a derangement acts on a sequence in the manner described above, it changes the position or the value of every term in the sequence. When k=1k=1 and S​(1,n)β‰…SnS(1,n)\cong S_{n}, this recovers the usual sense of a derangement in SnS_{n}: a permutation with no fixed points. In terms of the hyperoctahedral group, S​(2,n)S(2,n), a derangement is a symmetry of the nn-cube that moves each (nβˆ’1)(n-1)-dimensional face.

Example 3.4.

The element ((1,3,0),(23))∈S​(4,3)((1,3,0),(23))\in S(4,3) is a derangement because it increments the first term and swaps the second and third termsβ€”thus changing the position or value for each term.

The number of derangements of the generalized symmetric group can be described by an explicit sum via the principle of inclusion/exclusion, and it has a particularly elegant exponential generating function.

Theorem 3.5 ([2]).

For k>1k>1, the number of derangements of the generalized symmetric group S​(k,n)S(k,n) is

D​(k,n)=kn​n!β€‹βˆ‘i=0n(βˆ’1)iki​i!.D(k,n)=k^{n}n!\sum_{i=0}^{n}\frac{(-1)^{i}}{k^{i}i!}. (3.2)

which has exponential generating function

βˆ‘n=0∞D​(k,n)n!​xn=exp⁑(βˆ’x)1βˆ’k​x.\sum_{n=0}^{\infty}\frac{D(k,n)}{n!}x^{n}=\frac{\exp(-x)}{1-kx}. (3.3)

Notice that this agrees identically with the generating function in Lemma 2.11, which is our first hint in explaining the connection between kk-cycles in permutations and fixed points in elements of the generalized symmetric group.

3.2 Permutation cycles and derangements

Lemma 3.6.

For kβ‰₯1k\geq 1, the number of permutations with k​n+k​mkn+km letters and mm kk-cycles is

Ck​(k​(n+m),m)=(k​n+k​mk​n)​Ck​(k​n,0)​(k​m)!km​m!.C_{k}(k(n+m),m)=\binom{kn+km}{kn}C_{k}(kn,0)\frac{(km)!}{k^{m}m!}. (3.4)
Algebraic proof.

This will proceed by induction on mm. The base case is clear when m=0m=0, so suppose that the lemma is true up to mβˆ’1m-1, that is

Ck​(k​(n+mβˆ’1),mβˆ’1)\displaystyle C_{k}(k(n+m-1),m-1) =(k​mβˆ’k)!kmβˆ’1​(mβˆ’1)!​(k​n+k​mβˆ’kk​n)​Ck​(k​n,0).\displaystyle=\frac{(km-k)!}{k^{m-1}(m-1)!}\binom{kn+km-k}{kn}C_{k}(kn,0). (3.5)
=(k​n+k​mβˆ’k)!kmβˆ’1​(mβˆ’1)!​(k​n)!​Ck​(k​n,0).\displaystyle=\frac{(kn+km-k)!}{k^{m-1}(m-1)!(kn)!}C_{k}(kn,0). (3.6)

Rearranging Lemma 2.9,

Ck​(k​(n+m),m)\displaystyle C_{k}(k(n+m),m) =(kβˆ’1)!m​(k​(n+m)k)​Ck​(k​(n+mβˆ’1),mβˆ’1)\displaystyle=\frac{(k-1)!}{m}\binom{k(n+m)}{k}C_{k}(k(n+m-1),m-1) (3.7)
=(k​n+k​m)!k​m​(k​n+k​mβˆ’k)!​Ck​(k​(n+mβˆ’1),mβˆ’1).\displaystyle=\frac{(kn+km)!}{km(kn+km-k)!}C_{k}(k(n+m-1),m-1). (3.8)

Now, notice there is a (k​n+k​mβˆ’k)!(kn+km-k)! term in the numerator of Equation 3.6 and the denominator of Equation 3.8, so substituting and simplifying yields

Ck​(k​(n+m),m)=(k​n+k​m)!km​m!​(k​n)!​Ck​(k​n,0),C_{k}(k(n+m),m)=\frac{(kn+km)!}{k^{m}m!(kn)!}C_{k}(kn,0), (3.9)

as desired. ∎

Combinatorial proof.

This lemma lends itself to a combinatorial proof. The left hand side of the equation counts the number of permutations in Sk​n+k​mS_{kn+km} with exactly mm kk-cycles. The right hand side of the equation says that this is the number of ways to choose k​nkn letters in the permutation that will not be in kk-cycles, and for each of these, there are Ck​(k​n,0)C_{k}(kn,0) ways to arrange these such that they have no kk-cycles. This leaves over k​mkm letters, of which there are (k​m)!/(km​m!)(km)!/(k^{m}m!) ways to write them as products of mm disjoint kk-cycles. ∎

The following lemma uses the above identities to establish that the proportion of permutations in the symmetric group Sk​nS_{kn} with exactly mm kk-cycles is equal to the proportion of elements in the generalized symmetric group S​(k,n)S(k,n) with exactly mm fixed points.

Lemma 3.7.

For kβ‰₯2k\geq 2,

Ck​(k​n,m)(k​n)!=(nm)​D​(k,nβˆ’m)kn​n!.\frac{C_{k}(kn,m)}{(kn)!}=\binom{n}{m}\frac{D(k,n-m)}{k^{n}n!}. (3.10)
Proof.

By solving for D​(k,nβˆ’m)D(k,n-m) on the right hand side and substituting n+mn+m for nn, it is enough to show that the exponential generating function for D​(k,n)D(k,n) (as shown in Theorem 3.5) is also the exponential generating function for

Ck​(k​n+k​m,m)​m!​n!​kn+m(k​n+k​m)!.C_{k}(kn+km,m)\frac{m!n!k^{n+m}}{(kn+km)!}. (3.11)

By the identity in Lemma 3.6,

βˆ‘n=0∞Ck​(k​n+k​m,m)​m!​n!​kn+m(k​n+k​m)!​xnn!\displaystyle\sum_{n=0}^{\infty}C_{k}(kn+km,m)\frac{m!n!k^{n+m}}{(kn+km)!}\frac{x^{n}}{n!} (3.12)
=βˆ‘n=0∞(k​m)!m!​km​(k​n+k​mk​n)​Ck​(k​n,0)​m!​n!​kn+m(k​n+k​m)!​xnn!\displaystyle\hskip 56.9055pt=\sum_{n=0}^{\infty}\frac{(km)!}{m!k^{m}}\binom{kn+km}{kn}C_{k}(kn,0)\frac{m!n!k^{n+m}}{(kn+km)!}\frac{x^{n}}{n!} (3.13)
=βˆ‘n=0∞Ck​(k​n,0)​kn​xn(k​n)!\displaystyle\hskip 56.9055pt=\sum_{n=0}^{\infty}C_{k}(kn,0)\frac{k^{n}x^{n}}{(kn)!} (3.14)
=exp⁑(βˆ’x)1βˆ’k​x,\displaystyle\hskip 56.9055pt=\frac{\exp(-x)}{1-kx}, (3.15)

with the final equality being the identity in Lemma 2.11. ∎

3.3 Expected value of letters of permutations

We now have the ingredients we need to prove the pattern that we observed in Figure 1 that purported to show a relationship between permutations given number of 22-cycles and derangements of the hyperoctahedral group. These ingredients come together in the following theorem, which establishes the more general relationship between permutations with a given number of kk-cycles and derangements of the generalized symmetric group, S​(k,n)S(k,n).

Theorem 3.8.

The expected value of the first letter of a permutation Ο€βˆˆSk​n\pi\in S_{kn} with exactly mm kk-cycles, where k>1k>1 and 0≀m≀n0\leq m\leq n, is

𝔼​[π​(1)|Ο€βˆˆSk​n​ has exactly ​m​k​-cycles]=k​n+12+(βˆ’1)nβˆ’m2​D​(k,nβˆ’m)\mathbb{E}[\pi(1)\,|\,\pi\in S_{kn}\text{ has exactly }m\ k\text{-cycles}\,]=\frac{kn+1}{2}+\frac{(-1)^{n-m}}{2D(k,n-m)} (3.16)

where D​(k,n)D(k,n) is the number of derangements of the generalized symmetric group S​(k,n)=(β„€/m​℀)≀SnS(k,n)=(\mathbb{Z}/m\mathbb{Z})\wr S_{n}.

Proof.

Inverting the identity in Lemma 3.7, yields

(k​n)!n!​kn​(nm)Ck​(k​n,m)=1D​(k,nβˆ’m).\frac{\frac{(kn)!}{n!k^{n}}\binom{n}{m}}{C_{k}(kn,m)}=\frac{1}{D(k,n-m)}. (3.17)

Multiplying through by (βˆ’1)nβˆ’m(-1)^{n-m} to match the right hand side of Equation 3.16, together with some small manipulations yields

1βˆ’Ck​(k​n,m)βˆ’(βˆ’1)nβˆ’m​(k​n)!n!​kn​(nm)Ck​(k​n,m)=(βˆ’1)nβˆ’mD​(k,nβˆ’m).1-\frac{C_{k}(kn,m)-(-1)^{n-m}\frac{(kn)!}{n!k^{n}}\binom{n}{m}}{C_{k}(kn,m)}=\frac{(-1)^{n-m}}{D(k,n-m)}. (3.18)

Now adding k​n+1kn+1 and dividing by 22 yields

k​n2​(1βˆ’Ck​(k​n,m)βˆ’(βˆ’1)nβˆ’m​(k​n)!n!​kn​(nm)k​n​Ck​(k​n,m))+1\displaystyle\frac{kn}{2}\mathopen{}\mathclose{{}\left(1-\frac{C_{k}(kn,m)-(-1)^{n-m}\frac{(kn)!}{n!k^{n}}\binom{n}{m}}{knC_{k}(kn,m)}}\right)+1
=k​n+12+(βˆ’1)nβˆ’m2​D​(k,nβˆ’m),\displaystyle\hskip 56.9055pt=\frac{kn+1}{2}+\frac{(-1)^{n-m}}{2D(k,n-m)}, (3.19)

which gives the right hand side as desired. Since the numerator on the left hand side is equal to k​n​Ck​(k​nβˆ’1,m){knC_{k}(kn-1,m)} by Equation 2.2, the proof then follows from by Theorem 2.7. ∎

With the expected value of the first letter found, we can generalize this one more step to find the expected value of the ii-th letter of these permutations.

Corollary 3.9.

The expected value of the ii-th letter of a permutation in Sk​nS_{kn} with exactly mm kk-cycles, where nβˆˆβ„•>0n\in\mathbb{N}_{>0}, k>1k>1, 1≀i≀k​n1\leq i\leq kn, and 0≀m≀n0\leq m\leq n, is

𝔼​[π​(i)|Ο€βˆˆSk​n​ has exactly ​m​k​-cycles]=k​n+12+(βˆ’1)nβˆ’m2​D​(k,nβˆ’m)​k​n+1βˆ’2​ik​nβˆ’1.\mathbb{E}[\pi(i)\,|\,\pi\in S_{kn}\text{ has exactly }m\ k\text{-cycles}\,]=\frac{kn+1}{2}+\frac{(-1)^{n-m}}{2D(k,n-m)}\frac{kn+1-2i}{kn-1}.
Proof.

Denote by NN the number of permutations in Sk​nS_{kn} with mm kk-cycles where 11 is a fixed point; denote by MM the number of permutations in Sk​nS_{kn} with mm kk-cycles where π​(1)=aβ‰ 1\pi(1)=a\neq 1. Note that while NN and MM implicitly depend on mm, nn, and kk, MM does not depend on aa by Proposition 2.5.

Thus

𝔼​[π​(1)|Ο€βˆˆSk​n​ has exactly ​m​k​-cycles]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{kn}\text{ has exactly }m\ k\text{-cycles}\,]
=1N+(k​nβˆ’1)​M​(N+βˆ‘a=2k​na​M)\displaystyle\hskip 42.67912pt=\frac{1}{N+(kn-1)M}\mathopen{}\mathclose{{}\left(N+\sum_{a=2}^{kn}aM}\right)
=1N+(k​nβˆ’1)​M​(N+(k​n​(k​n+1)2βˆ’1)​M).\displaystyle\hskip 42.67912pt=\frac{1}{N+(kn-1)M}\mathopen{}\mathclose{{}\left(N+\mathopen{}\mathclose{{}\left(\frac{kn(kn+1)}{2}-1}\right)M}\right). (3.20)

More generally, if we conjugate with (1​i)(1i) then

𝔼​[π​(i)|Ο€βˆˆSk​n​ has exactly ​m​k​-cycles]\displaystyle\mathbb{E}[\pi(i)\,|\,\pi\in S_{kn}\text{ has exactly }m\ k\text{-cycles}\,]
=1N+(k​nβˆ’1)​M​(N+βˆ‘aβ‰ ia​M)\displaystyle\hskip 42.67912pt=\frac{1}{N+(kn-1)M}\mathopen{}\mathclose{{}\left(N+\sum_{a\neq i}aM}\right)
=1N+(k​nβˆ’1)​M​(i​N+(k​n​(k​n+1)2βˆ’i)​M).\displaystyle\hskip 42.67912pt=\frac{1}{N+(kn-1)M}\mathopen{}\mathclose{{}\left(iN+\mathopen{}\mathclose{{}\left(\frac{kn(kn+1)}{2}-i}\right)M}\right). (3.21)

We can extend the function 𝔼​[π​(i)|Ο€βˆˆSk​n​ has exactly ​m​k​-cycles]\mathbb{E}[\pi(i)\,|\,\pi\in S_{kn}\text{ has exactly }m\ k\text{-cycles}\,] to a function f​(n,k,m,i)f(n,k,m,i) where iβˆˆβ„ši\in\mathbb{Q} is not necessarily an integer. As can be seen in Equation 3.21, ff is affine function in ii. By Theorem 3.8, when i=1i=1,

f​(n,k,m,1)=k​n+12+(βˆ’1)nβˆ’m2​D​(k,nβˆ’m).f(n,k,m,1)=\frac{kn+1}{2}+\frac{(-1)^{n-m}}{2D(k,n-m)}.

When i=(k​n+1)/2i=(kn+1)/2 yields

f​(n,k,m,(k​n+1)/2)=k​n+12.f(n,k,m,(kn+1)/2)=\frac{kn+1}{2}.

Because f​(n,k,m,i)f(n,k,m,i) is affine in ii, it is enough to use linear interpolation and extrapolation to compute ff for arbitrary ii. This can be done by scaling the (βˆ’1)nβˆ’m2​D​(k,nβˆ’m)\displaystyle\frac{(-1)^{n-m}}{2D(k,n-m)} term by an affine function of ii which is 11 when i=1i=1 and which vanishes when i=(k​n+1)/2i=(kn+1)/2, namely k​n+1βˆ’2​ik​nβˆ’1\displaystyle\frac{kn+1-2i}{kn-1}, as desired. ∎

Example 3.10.

For n=2n=2, k=2k=2, and m=0m=0 the expected value of the first letter in a permutation in Sn​k=S4S_{nk}=S_{4} with no k=2k=2-cycles is 135\displaystyle\frac{13}{5}, as shown in Example 1.2. This agrees with Theorem 3.8:

k​n+12+(βˆ’1)nβˆ’m2​D​(k,nβˆ’m)=4+12+(βˆ’1)2βˆ’02​D​(2,2βˆ’0)=52+110=135,\frac{kn+1}{2}+\frac{(-1)^{n-m}}{2D(k,n-m)}=\frac{4+1}{2}+\frac{(-1)^{2-0}}{2D(2,2-0)}=\frac{5}{2}+\frac{1}{10}=\frac{13}{5}, (3.22)

since D​(2,2)=5D(2,2)=5 as illustrated in Figure 2.

2431
3142
4213
1324
2431
3142
4213
1324
Figure 2: The 22​2!=82^{2}2!=8 symmetries of a square with fixed sides circled. The square (22-dimensional hypercube) has symmetry group S​(2,2)=(β„€/2​℀)β‰€π•Š2S(2,2)=(\mathbb{Z}/2\mathbb{Z})\wr\mathbb{S}_{2} and D​(2,2)=5D(2,2)=5 of these symmetries are derangements, meaning that they do not fix any sides.

While Theorem 2.7 gave us our first way to efficiently compute the expected value of the first letter of a permutation on k​nkn letters with a given number of kk-cycles, we can also compute this efficiently with Theorem 3.8 by using the formulas for D​(k,n)D(k,n) in Theorem 3.5. But this is not the only reason that Theorem 3.8 is of interest; because of the structure of the formula it provides, this theorem suggests other quantitative and qualitative insights.

Recall that when there are no restrictions on a permutation Ο€βˆˆSk​n\pi\in S_{kn}, the first letter is equally likely to take on any value, so 𝔼​[π​(1)βˆ£Ο€βˆˆSk​n]=(k​n+1)/2\mathbb{E}[\pi(1)\mid\pi\in S_{kn}]=(kn+1)/2. The first insight given by Theorem 3.8 is that the expected value of π​(1)\pi(1) given some number of kk cycles differs from (k​n+1)/2(kn+1)/2 by at most 1/21/2, because D​(k,N)β‰₯1D(k,N)\geq 1 for kβ‰₯2k\geq 2. Secondly, since D​(k,N)D(k,N) increases as a function of NN, the expected value gets closer to (k​n+1)/2(kn+1)/2 as the number of kk-cycles decreases. Lastly, the numerator of (βˆ’1)nβˆ’m(-1)^{n-m} in the second summand of Equation 3.16 shows that the expected value of the first letter is larger than (k​n+1)/2(kn+1)/2 if and only if nn and mm have the same parity.

4 A kk-cycle preserving bijection

Motivated by Equation 2.2, this section describes a family of bijections,

Ο•k:Snβˆ’1Γ—[n]β†’Sn,\phi_{k}\colon S_{n-1}\times[n]\rightarrow S_{n},

each of which preserves the number of kk-cycles when k∀nk\nmid n. Of course, there is no map that preserves the number of kk-cycles when k∣nk\mid n. For example, a permutation in SnS_{n} consisting entirely of kk-cycles contains n/kn/k kk-cycles, while a permutation in Snβˆ’1S_{n-1} can contain at most n/kβˆ’1n/k-1 kk-cycles by the pigeonhole principle.

Informally, these maps are defined by writing down a permutation ΟƒβˆˆSnβˆ’1\sigma\in S_{n-1} in canonical cycle notation, incrementing all letters in Οƒ\sigma that are greater than or equal to x∈[n]x\in[n], inserting xx into the rightmost cycle, and then recursively moving letters into or out of subsequent cycles, whenever a kk-cycle is turned into a (k+1)(k+1)-cycle or a (kβˆ’1)(k-1)-cycle is turned into a kk-cycle.

4.1 Example of recursive structure

The definition of the map can look complicated, so it’s worthwhile to start with an example to give some sense of the overarching idea.

Example 4.1.

This example illustrates how the map Ο•3\phi_{3} inserts II into the permutation (D​76)​(E)​(F​32)​(G​91​C)​(K​54)​(L​J​8)​(M​B)​(N​A​H)(D76)(E)(F32)(G91C)(K54)(LJ8)(MB)(NAH) while preserving the number of 33-cycles. The maps Ο•k\phi_{k} and ψk\psi_{k} are the result of moving letters according to the arrows and are applied from right-to-left. (This example uses the convention that 1<2<β‹―<9<A<B<β‹―<N1<2<\dots<9<A<B<\dots<N.)

Ο•3​((D​76)​(Eβ€‹βˆ«β£)​(Fβ€‹βˆ«3¯​2β€‹βˆ«β£)​(Gβ€‹βˆ«9¯​1β€‹βˆ«CΒ―)​(Kβ€‹βˆ«β£β€‹5β€‹βˆ«4Β―)​(Lβ€‹βˆ«β£β€‹Jβ€‹βˆ«8Β―)​(Mβ€‹βˆ«β£β€‹Bβ€‹βˆ«β£)​(Nβ€‹βˆ«A¯​Hβ€‹βˆ«β£),∫IΒ―)\displaystyle\phi_{3}((D76)(E\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(F\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{3}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}2\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(G\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{9}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}1\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{C}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(K\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}5\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{4}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(L\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}J\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{8}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(M\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}B\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(N\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{A}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}H\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}),\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{I}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})
=(D​76)​(E​3)​(F​29)​(G​1)​(K​C​5)​(L​4​J)​(M​8​B​A)​(N​H​I)\displaystyle\hskip 28.45274pt=(D76)(E3)(F29)(G1)(KC5)(L4J)(M8BA)(NHI)
Ο•3\phi_{3}Ο•3\phi_{3}ψ3\psi_{3}ψ3\psi_{3}ψ3\psi_{3}Ο•3\phi_{3}Ο•3\phi_{3}
ψ3​((D​76)​(Eβ€‹βˆ«3Β―)​(Fβ€‹βˆ«β£β€‹2β€‹βˆ«9Β―)​(Gβ€‹βˆ«β£β€‹1β€‹βˆ«β£)​(Kβ€‹βˆ«C¯​5β€‹βˆ«β£)​(Lβ€‹βˆ«4¯​Jβ€‹βˆ«β£)​(Mβ€‹βˆ«8¯​Bβ€‹βˆ«AΒ―)​(Nβ€‹βˆ«β£β€‹Hβ€‹βˆ«IΒ―))β€‹βˆ«β£\displaystyle\psi_{3}((D76)(E\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{3}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(F\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}2\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{9}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(G\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}1\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(K\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{C}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}5\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(L\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{4}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}J\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(M\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{8}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}B\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{A}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}})(N\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}H\leavevmode\hbox to9.17pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 4.58334pt\lower-2.66875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.58334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}$\underline{I}$}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}))\leavevmode\hbox to11.67pt{\vbox to14.23pt{\pgfpicture\makeatletter\hbox{\hskip 5.83334pt\lower-2.61319pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.83334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vbox{\halign{\hfil#\hfil\cr\cr\vskip 17.0pt\cr\hbox{{\vphantom{$\int$}\textvisiblespace}}\cr}}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
=((D​76)​(E)​(F​32)​(G​91​C)​(K​54)​(L​J​8)​(M​B)​(N​A​H),I)\displaystyle\hskip 28.45274pt=((D76)(E)(F32)(G91C)(K54)(LJ8)(MB)(NAH),I)
ψ3\psi_{3}ψ3\psi_{3}Ο•3\phi_{3}Ο•3\phi_{3}Ο•3\phi_{3}ψ3\psi_{3}ψ3\psi_{3}

Again, it is worth reemphasizing that the following definitions will follow the convention that permutations are written in canonical cycle notation,

Ο€=(c1(t)​⋯​cβ„“t(t))⏟c(t)​⋯​(c1(1)​⋯​cβ„“1(1))⏟c(1),\pi=\underbrace{(c^{(t)}_{1}\cdots c^{(t)}_{\ell_{t}})}_{c^{(t)}}\cdots\underbrace{(c^{(1)}_{1}\cdots c^{(1)}_{\ell_{1}})}_{c^{(1)}},

where cycle c(i)=(c1(i)​⋯​cβ„“i(i))c^{(i)}=(c^{(i)}_{1}\cdots c^{(i)}_{\ell_{i}}) has β„“i\ell_{i} letters. This means that the first letter in each cycle, c1(i)c^{(i)}_{1}, is the largest letter in that cycle, and that the cycles are ordered in increasing order by first letter when read from right-to-left: c1(i+1)<c1(i)c^{(i+1)}_{1}<c^{(i)}_{1} for all ii.

4.2 Formal definition and properties

Definition 4.2.

Define Ο•k:Snβˆ’1Γ—[n]↦Sn\phi_{k}\colon S_{n-1}\times[n]\mapsto S_{n} recursively as follows:

Ο•k​(βˆ…,1)=(1),\phi_{k}(\emptyset,1)=(1), (4.1)

and for n>1n>1, Ο€βˆˆSnβˆ’1\pi\in S_{n-1}, and x∈[n]x\in[n],

Ο•k​(Ο€,x)=\displaystyle\phi_{k}(\pi,x)= c(t)​⋯​c(1)​(x)\displaystyle c^{(t)}\cdots c^{(1)}(x) x>c1(1)x>c^{(1)}_{1} (4.2)
Ο•k​(Ο€,x)=\displaystyle\phi_{k}(\pi,x)= Ο•k​(c(t)​⋯​c(2),c2(1))​(c1(1)​c3(1)​⋯​ck(1)​x)\displaystyle\phi_{k}(c^{(t)}\cdots c^{(2)},c^{(1)}_{2})(c^{(1)}_{1}c^{(1)}_{3}\cdots c^{(1)}_{k}x) β„“1=k\ell_{1}=k (4.3)
Ο•k​(Ο€,x)=\displaystyle\phi_{k}(\pi,x)= π′​(c1(1)​x′​c2(1)​⋯​ckβˆ’1(1)​x)\displaystyle\pi^{\prime}(c^{(1)}_{1}x^{\prime}c^{(1)}_{2}\cdots c^{(1)}_{k-1}x) β„“1=kβˆ’1,t>1\ell_{1}=k-1,t>1 (4.4)
Ο•k​(Ο€,x)=\displaystyle\phi_{k}(\pi,x)= c(t)​⋯​c(2)​(c1(1)​⋯​cβ„“1(1)​x)\displaystyle c^{(t)}\cdots c^{(2)}(c^{(1)}_{1}\cdots c^{(1)}_{\ell_{1}}x) otherwise. (4.5)

Here, Ο•k\phi_{k} depends on the auxillary function ψk:Sn↦Snβˆ’1Γ—[n]\psi_{k}\colon S_{n}\mapsto S_{n-1}\times[n],

ψk​(Ο€)=\displaystyle\psi_{k}(\pi)= (c(t)​…​c(2),c1(1))\displaystyle\mathopen{}\mathclose{{}\left(c^{(t)}\dots c^{(2)},c^{(1)}_{1}}\right) β„“1=1\ell_{1}=1 (4.6)
ψk​(Ο€)=\displaystyle\psi_{k}(\pi)= (Ο•k​(c(t)​⋯​c(2),a2(1))​(c1(1)​c3(1)​…​ck(1)),ck+1(1))\displaystyle\mathopen{}\mathclose{{}\left(\phi_{k}(c^{(t)}\cdots c^{(2)},a_{2}^{(1)})(c^{(1)}_{1}c^{(1)}_{3}\dots c^{(1)}_{k}),c^{(1)}_{k+1}}\right) β„“1=k+1\ell_{1}=k+1 (4.7)
ψk​(Ο€)=\displaystyle\psi_{k}(\pi)= (π′​(c1(1)​x′​c2(1)​…​ckβˆ’1(1)),ck(1))\displaystyle\mathopen{}\mathclose{{}\left(\pi^{\prime}(c^{(1)}_{1}x^{\prime}c^{(1)}_{2}\dots c^{(1)}_{k-1}),c^{(1)}_{k}}\right) β„“1=k,t>1\ell_{1}=k,t>1 (4.8)
ψk​(Ο€)=\displaystyle\psi_{k}(\pi)= (c(t)​⋯​c(2)​(c1(1)​⋯​cβ„“1βˆ’1(1)),cβ„“1(1))\displaystyle\mathopen{}\mathclose{{}\left(c^{(t)}\cdots c^{(2)}(c^{(1)}_{1}\cdots c^{(1)}_{\ell_{1}-1}),c^{(1)}_{\ell_{1}}}\right) otherwise, (4.9)

and in both functions, (Ο€β€²,xβ€²)=Οˆβ€‹(c(t)​…​c(2))(\pi^{\prime},x^{\prime})=\psi(c^{(t)}\dots c^{(2)}).

Note 4.3.

Strictly speaking, Ο•k\phi_{k} and ψk\psi_{k} have an additional implicit parameter nn, which indicates the size of permutation that these functions act on. Since the construction of these functions do not depend on nn, this is suppressed in the notation.

The following theorem motivates this map, and together with Lemma 4.7, it implies Equation 2.2.

Theorem 4.4.

If k∀nk\nmid n, the number of kk-cycles of Ο€βˆˆSnβˆ’1\pi\in S_{n-1} is equal to the number of kk-cycles in Ο•k​(Ο€,x)\phi_{k}(\pi,x).

Proof.

By construction, the maps Ο•k\phi_{k} and ψk\psi_{k} change the rightmost cycle into a (different) kk-cycle if it was previously a kk-cycle, and they change non-kk-cycles into non-kk-cycles, except for the case where there is one cycle remaining with length kβˆ’1k-1 (in the case of Ο•\phi) or length kk (in the case of ψ\psi). These cases can only be achieved when k∣nk\mid n, by the following lemma. ∎

Lemma 4.5.

The number of letters in Ο€\pi in (recursive) applications of Ο•k\phi_{k} and ψk\psi_{k} are of congruent to nβˆ’1modkn-1\bmod k and nmodkn\bmod k, respectively. Therefore, the only time that the input to Ο•k\phi_{k} can be a single cycle of length kβˆ’1k-1 or the input to ψk\psi_{k} can be a single cycle of length kk is when n≑0(modk)n\equiv 0\ (\bmod\ k).

Proof.

The proof proceeds by induction on the number of recursive iterations of Ο•k\phi_{k} and ψk\psi_{k}. The base case is clear: on the first application of a map is always Ο•k:Snβˆ’1Γ—[n]β†’Sn\phi_{k}\colon S_{n-1}\times[n]\rightarrow S_{n}, and the input permutation has nβˆ’1n-1 letters by definition.

Now, either we’re finished, or we recurse (Equations 4.3, 4.4, 4.7, or 4.8), which we look at case-by-case.

  1. Case 1.

    In Equation 4.3, the map Ο•k\phi_{k} sets aside kk letters from the input, so the number of letters in the recursive input to Ο•k\phi_{k} is also congruent to nβˆ’1modkn-1\bmod k.

  2. Case 2.

    In Equation 4.4, the map Ο•k\phi_{k} sets aside kβˆ’1k-1 letters from the leftmost cycle of the input. Since the number of letters in the original permutation was congruent to nβˆ’1modkn-1\bmod k, the number of letters in the permutation being input to ψk\psi_{k} is congruent to nmodkn\bmod k.

  3. Case 3.

    In Equation 4.7, the map ψk\psi_{k} sets aside k+1k+1 letters from the leftmost cycle of the input. Since the number of letters in the original permutation was congruent to nmodkn\bmod k, the number of letters in the permutation being input to Ο•k\phi_{k} is congruent to nβˆ’1modkn-1\bmod k.

  4. Case 4.

    In Equation 4.8, the map ψk\psi_{k} sets aside kk letters from the input, so the number of letters in the recursive input to ψk\psi_{k} is also congruent to nmodkn\bmod k.

∎

The following lemma provides a certain β€œniceness” property of the map, which allows us to analyze it. In particular, all recursive inputs in both Ο•k\phi_{k} and ψk\psi_{k} are written in canonical cycle notation.

Lemma 4.6.

The output of Ο•k\phi_{k} is in canonical cycle notation.

Proof.

Canonical cycle notation is preserved by construction. In particular, Ο•k\phi_{k} moves the first letter in any cycle, and Equation 4.2 guards against inserting a number into a cycle that is bigger than the largest number already in the cycle. Similarly, ψk\psi_{k} only moves the first letter in the case of Equation 4.6, but in this case, the cycle only has one letter, so this is equivalent to deleting the cycle. ∎

4.3 Inverting the bijection

Lemma 4.7.

The maps Ο•k:Snβˆ’1Γ—[n]β†’Sn\phi_{k}\colon S_{n-1}\times[n]\rightarrow S_{n} and ψk:Snβ†’Snβˆ’1Γ—[n]\psi_{k}\colon S_{n}\rightarrow S_{n-1}\times[n] are inverse to one another.

Proof.

To prove this lemma, it suffices to show that ψkβˆ˜Ο•k=id\psi_{k}\circ\phi_{k}=\operatorname{id} by induction on the number of cycles of Ο€\pi. This will simultaneously prove that Ο•k∘ψk=id\phi_{k}\circ\psi_{k}=\operatorname{id}, because Snβˆ’1Γ—[n]S_{n-1}\times[n] and SnS_{n}, both having n!n! elements, have the same cardinality.

When Ο€\pi has no cycles, the base case is clear: ψk​(Ο•k​(βˆ…,x))=ψk​((x))=(βˆ…,x)\psi_{k}(\phi_{k}(\emptyset,x))=\psi_{k}((x))=(\emptyset,x).

Now there are five remaining cases to check, corresponding to each of the cases in the definition of Ο•k​(Ο€,x)\phi_{k}(\pi,x)

  1. Case 1.

    Assume x>c1(1)x>c_{1}^{(1)}, so that Ο•k​(Ο€,x)\phi_{k}(\pi,x) is evaluated via Equation 4.2:

    ψk​(Ο•k​(Ο€,x))\displaystyle\psi_{k}(\phi_{k}(\pi,x)) =ψk​(c(t)​⋯​c(1)​(x))\displaystyle=\psi_{k}(c^{(t)}\cdots c^{(1)}(x)) (4.10)
    =(c(t)​⋯​c(1),x)\displaystyle=(c^{(t)}\cdots c^{(1)},x) (4.11)
    =(Ο€,x).\displaystyle=(\pi,x). (4.12)
  2. Case 2.

    Assume β„“1=k\ell_{1}=k, so that Ο•k​(Ο€,x)\phi_{k}(\pi,x) is evaluated via Equation 4.3:

    ψk​(Ο•k​(Ο€,x))\displaystyle\psi_{k}(\phi_{k}(\pi,x)) =ψk​(Ο•k​(c(t)​⋯​c(2),c2(1))​(c1(1)​c3(1)​⋯​ck(1)​x)⏟length ​k)\displaystyle=\psi_{k}(\phi_{k}(c^{(t)}\cdots c^{(2)},c^{(1)}_{2})\underbrace{(c^{(1)}_{1}c^{(1)}_{3}\cdots c^{(1)}_{k}x)}_{\text{length }k}) (4.13)
    =(π′​(c1(1)​x′​c3(1)​…​ck(1)),x)\displaystyle=(\pi^{\prime}(c^{(1)}_{1}x^{\prime}c^{(1)}_{3}\dots c^{(1)}_{k}),x) (4.14)
  3. Case 3.

    Assume β„“1=kβˆ’1\ell_{1}=k-1 and t>1t>1, so that Ο•k​(Ο€,x)\phi_{k}(\pi,x) is evaluated via Equation 4.4:

    ψk​(Ο•k​(Ο€,x))\displaystyle\psi_{k}(\phi_{k}(\pi,x)) =ψk​(π′​(c1(1)​x′​c2(1)​⋯​ckβˆ’1(1)​x)⏟length ​k+1)\displaystyle=\psi_{k}(\pi^{\prime}\underbrace{(c^{(1)}_{1}x^{\prime}c^{(1)}_{2}\cdots c^{(1)}_{k-1}x)}_{\text{length }k+1}) (4.15)

    where (Ο€β€²,xβ€²)=ψk​(c(t)​…​c(2))(\pi^{\prime},x^{\prime})=\psi_{k}(c^{(t)}\dots c^{(2)}). Therefore, this simplifies by Equation 4.8:

    ψk​(Ο•k​(Ο€,x))\displaystyle\psi_{k}(\phi_{k}(\pi,x)) =(Ο•k​(Ο€β€²,xβ€²)​(c1(1)​⋯​ckβˆ’1(1)),x)\displaystyle=\mathopen{}\mathclose{{}\left(\phi_{k}(\pi^{\prime},x^{\prime})(c^{(1)}_{1}\cdots c^{(1)}_{k-1}),x}\right) (4.16)
    =(Ο•k​(ψk​(c(t)​…​c(2)))⏟c(t)​…​c(2)​(c1(1)​⋯​ckβˆ’1(1))⏟c(1),x)\displaystyle=\Big{(}\underbrace{\phi_{k}(\psi_{k}(c^{(t)}\dots c^{(2)}))}_{c^{(t)}\dots c^{(2)}}\underbrace{(c^{(1)}_{1}\cdots c^{(1)}_{k-1})}_{c^{(1)}},x\Big{)} (4.17)
    =(Ο€,x),\displaystyle=(\pi,x), (4.18)

    because Ο•k​(ψk​(c(t)​…​c(2)))=c(t)​…​c(2)\phi_{k}(\psi_{k}(c^{(t)}\dots c^{(2)}))=c^{(t)}\dots c^{(2)} by the induction hypothesis on tβˆ’1t-1 letters.

  4. Case 4.

    Assume that x>c1(1)x>c_{1}^{(1)} and β„“1βˆ‰{kβˆ’1,k}\ell_{1}\not\in\{k-1,k\}, so that Ο•k​(Ο€,x)\phi_{k}(\pi,x) is evaluated via Equation 4.5:

    ψk​(Ο•k​(Ο€,x))\displaystyle\psi_{k}(\phi_{k}(\pi,x)) =ψk​(c(t)​⋯​c(2)​(c1(1)​⋯​cβ„“1(1)​x))\displaystyle=\psi_{k}(c^{(t)}\cdots c^{(2)}(c^{(1)}_{1}\cdots c^{(1)}_{\ell_{1}}x)) (4.19)
    =(c(t)​⋯​c(1),x)\displaystyle=(c^{(t)}\cdots c^{(1)},x) (4.20)
    =(Ο€,x).\displaystyle=(\pi,x). (4.21)
  5. Case 5.

    Assume that β„“1=kβˆ’1\ell_{1}=k-1 and t=1t=1, so that Ο•k​(Ο€,x)\phi_{k}(\pi,x) is evaluated via Equation 4.5:

    ψk​(Ο•k​(Ο€,x))\displaystyle\psi_{k}(\phi_{k}(\pi,x)) =ψk​((c1(1)​⋯​ckβˆ’1(1)​x))\displaystyle=\psi_{k}((c^{(1)}_{1}\cdots c^{(1)}_{k-1}x)) (4.22)
    =(c(1),x)\displaystyle=(c^{(1)},x) (4.23)
    =(Ο€,x).\displaystyle=(\pi,x). (4.24)

∎

In this section we constructed a recursively-defined map and its inverse to give a bijective proof that Ck​(n,m)=n​Ck​(nβˆ’1,m)C_{k}(n,m)=nC_{k}(n-1,m) when k∀nk\nmid n. This is a novel, reversible algorithm for inserting a letters into a permutation that preserves the number of kk-cycles whenever possible.

5 Further directions

In the introduction, we mentioned Conger’s paper which analyzed how the number of descents of a permutation affects the expected value of the first letter of the permutation. And similarly in the following sections, we looked at how the number of kk-cycles affects the expected value of the first letter of the permutation. This section will principally look at the obvious generalization: given some permutation statistic stat:Snβ†’β„€\operatorname{stat}\colon S_{n}\rightarrow\mathbb{Z}, does the map

f​(n,m)=𝔼​[π​(i)βˆ£Ο€βˆˆSn,stat⁑(Ο€)=m]f(n,m)=\mathbb{E}[\pi(i)\mid\pi\in S_{n},\operatorname{stat}(\pi)=m] (5.1)

have any interesting structure?

But notice that the first letter of a permutation is itself a statistic, so we can play a more general game. Given pairs of statistics (stat1,stat2)(\operatorname{stat}_{1},\operatorname{stat}_{2}), does the map

g​(n,m)=𝔼​[stat1⁑(Ο€)βˆ£Ο€βˆˆSn,stat2⁑(Ο€)=m]g(n,m)=\mathbb{E}[\operatorname{stat}_{1}(\pi)\mid\pi\in S_{n},\operatorname{stat}_{2}(\pi)=m] (5.2)

have any interesting structure?

5.1 FindStat database

The result by Conger gives the expected value of π​(1)\pi(1) given des⁑(Ο€)\operatorname{des}(\pi), and this paper gave the expected value of π​(1)\pi(1) given the number of kk-cycles of Ο€\pi. Of course, it would be interesting to do analogous analysis with other permutations. In particular, the FindStat permutation statistics database [7] contains over 370 different permutation statistics, and many of these appear to have some structure with respect to the expected value of the first letter of a permutation.

5.2 Mahonian statistics

In particular, the family of Mahonian statistics may be fruitful to investigate. Below, we have given conjectures about two: the major index and the inversion number. Mahonian statistics are maps mah:Snβ†’β„•β‰₯0\operatorname{mah}\colon S_{n}\rightarrow\mathbb{N}_{\geq 0} that are equidistributed with the inversion number.[4] That is,

#​{w∈Sn:mah⁑(w)=k}=#​{w∈Sn:inv⁑(w)=k}.\#\{w\in S_{n}:\operatorname{mah}(w)=k\}=\#\{w\in S_{n}:\operatorname{inv}(w)=k\}.

Naturally, all Mahonian statistics share the same generating function:

βˆ‘ΟƒβˆˆSnxmah⁑(Οƒ)=[n]q!=∏i=0nβˆ’1βˆ‘j=0i(qj).\sum_{\sigma\in S_{n}}x^{\operatorname{mah}(\sigma)}=[n]_{q}!=\prod_{i=0}^{n-1}\sum_{j=0}^{i}(q^{j}).

Because the expected value of the first letter is given by the weighted sum of the permutations with mah⁑(w)=k\operatorname{mah}(w)=k divided by the number of such permutations, 𝔼​[π​(1)|Ο€βˆˆSn,mah⁑(Ο€)=k]\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{mah}(\pi)=k] has a denominator that is (a factor of) M​(n,k)M(n,k), the number of permutations of w∈Snw\in S_{n} such that inv⁑(w)=k\operatorname{inv}(w)=k. For fixed kk, these satisfy a degree kk polynomial for all n>kn>k. Notably, in the cases of the major index and the inversion number, the numerators appear to satisfy degree kk and degree kβˆ’1k-1 polynomials respectively.

Conjecture 5.1.

For fixed kk and n>kn>k, the expected value of the first letter of a permutation with a given number of inversions satisfies a rational function in nn given by

𝔼​[π​(1)|Ο€βˆˆSn,inv⁑(Ο€)=k]=M​(n+1,k)M​(n,k),\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{inv}(\pi)=k]=\frac{M(n+1,k)}{M(n,k)},

where M​(n,k)M(n,k), as above, is the number of permutations w∈Snw\in S_{n} such that inv⁑(w)=k\operatorname{inv}(w)=k.

Conjecture 5.2.

For fixed k>0k>0 and nβ‰₯kn\geq k, 𝔼​[π​(1)|Ο€βˆˆSn,maj⁑(Ο€)=k]\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{maj}(\pi)=k] satisfies a rational function in nn that is 1/(k+1)1/(k+1) times the quotient of a monic degree-(k+1)(k+1) polynomial by a monic degree-kk polynomial. Specifically,

𝔼​[π​(1)|Ο€βˆˆSn,maj⁑(Ο€)=1]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{maj}(\pi)=1] =12​(n2+nβˆ’2nβˆ’1),\displaystyle=\frac{1}{2}\mathopen{}\mathclose{{}\left(\frac{n^{2}+n-2}{n-1}}\right), (5.3)
𝔼​[π​(1)|Ο€βˆˆSn,maj⁑(Ο€)=2]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{maj}(\pi)=2] =13​(n3βˆ’nβˆ’6n2βˆ’nβˆ’2),\displaystyle=\frac{1}{3}\mathopen{}\mathclose{{}\left(\frac{n^{3}-n-6}{n^{2}-n-2}}\right), (5.4)
𝔼​[π​(1)|Ο€βˆˆSn,maj⁑(Ο€)=3]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{maj}(\pi)=3] =14​(n4+6​n3βˆ’13​n2βˆ’18​nn3βˆ’7​n),Β and\displaystyle=\frac{1}{4}\mathopen{}\mathclose{{}\left(\frac{n^{4}+6n^{3}-13n^{2}-18n}{n^{3}-7n}}\right),\text{ and} (5.5)
𝔼​[π​(1)|Ο€βˆˆSn,maj⁑(Ο€)=4]\displaystyle\mathbb{E}[\pi(1)\,|\,\pi\in S_{n},\operatorname{maj}(\pi)=4] =15​(n5+20​n4βˆ’45​n3βˆ’80​n2βˆ’16​nn4+2​n3βˆ’13​n2βˆ’14​n).\displaystyle=\frac{1}{5}\mathopen{}\mathclose{{}\left(\frac{n^{5}+20n^{4}-45n^{3}-80n^{2}-16n}{n^{4}+2n^{3}-13n^{2}-14n}}\right). (5.6)

Note that the denominator is given by an integer multiple of M​(n,k)M(n,k), a degree kk polynomial.

5.3 An elusive bijection

Let Fk​(n,m)F_{k}(n,m) be the number of elements of the generalized symmetric group S​(k,n)=(β„€/k​℀)≀SnS(k,n)=(\mathbb{Z}/k\mathbb{Z})\wr S_{n} with mm fixed points, and recall that Ck​(n,m)C_{k}(n,m) is the number of elements of Sk​nS_{kn} with mm kk-cycles. Then for each pair of nonnegative integers (Ξ±,Ξ²)(\alpha,\beta) with Ξ±,β≀n\alpha,\beta\leq n, then as Lemma 3.7 suggests, there exists a bijection of sets

Ck​(n,Ξ±)Γ—Fk​(n,Ξ²)β†’Ck​(n,Ξ²)Γ—Fk​(n,Ξ±).C_{k}(n,\alpha)\times F_{k}(n,\beta)\rightarrow C_{k}(n,\beta)\times F_{k}(n,\alpha). (5.7)

This bijection has proven to be elusive to construct outside of the special cases where n=1n=1 or k=1k=1. Note that, the map cannot be a group automorphism of Sk​nΓ—S​(k,n)S_{kn}\times S(k,n), because the identity of this group is in Ck​(n,0)Γ—Fk​(n,n)C_{k}(n,0)\times F_{k}(n,n), so it cannot be preserved under this map.

It would be especially interesting if there’s a way to use the embedding of (β„€/k​℀)≀Sn(\mathbb{Z}/k\mathbb{Z})\wr S_{n} into Sk​nS_{kn} as the centralizer of an element that is the product of nn disjoint kk cycles.

6 Acknowledgments

A special thanks to my advisor, Sami Assaf, for sharing the spark that she found for this questions in a remark by Jim Pitman, and for her patient guidance. This paper benefitted from the feedback from my colleague, Sam Armon and his generosity, kindness, and sharp eye. It is unlikely that this paper would have been written if not for the On-Line Encyclopedia of Integer Sequences, which gave a several crucial hints, especially around the pattern in Figure 1.

References

  • [1] Richard Arratia and Simon Tavare. The cycle structure of random permutations. The Annals of Probability, 20(3):1567–1591, 1992.
  • [2] SamiΒ H Assaf. Cyclic derangements. The Electronic Journal of Combinatorics, 17(R163), 2010.
  • [3] Mark Conger. A refinement of the Eulerian numbers, and the joint distribution of π​(1)\pi(1) and Des⁑(Ο€)\operatorname{Des}(\pi) in Sn{S}_{n}. Ars Combinatoria, 95, 04 2010.
  • [4] Dominique Foata. Distributions euleriennes et mahoniennes sur le groupe des permutations. In Martin Aigner, editor, Higher Combinatorics, pages 27–49, Dordrecht, 1977. Springer Netherlands.
  • [5] V.Β Goncharov. Du domaine de l’analyse combinatoire. Izv. Akad. Nauk SSSR Ser. Mat., 8:3–48, 1944.
  • [6] OEISΒ Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2021.
  • [7] Martin Rubey, Christian Stump, etΒ al. FindStat - The combinatorial statistics database. http://www.FindStat.org. Accessed: .